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ABSTRACT 

TWO-LEVEL DATA AUGMENTATION WITH TRANSFER LEARNING FOR 
CLASSIFICATION OF MEDICAL IMAGES WITH LIMITED DATA 

by Nihil Pudota 

Machine learning used in the medical industry can potentially detect cancer in 

human cells at an early stage. However, training the machine learning models, 

especially deep learning models require thousands to millions of samples in order to 

reach an acceptable accuracy level. It is well-know that obtaining medical data is 

tedious hence in most cases, medical datasets have limited number of data samples. 

One solution for this problem is utilizing transfer learning such as pretrained networks on 

another dataset. Another solution is to increase the number of training data points with 

data augmentation. Common data augmentation methods for images include not only 

simple techniques such as transforming images using rotation and flipping, but also 

generative adversarial networks (GANs). However, one critical question is “Does the 

original dataset have enough to train a GAN?”. In most scenarios, the answer is “No” for 

this critical question. In this thesis, we propose a two-level data augmentation technique 

(simple data augmentation based on image transformations followed by a GAN) with 

transfer learning, which is tested on a small dataset of cancer cell images. The dataset 

used in this research consists of lung and colon cancer samples, each containing 

different types of cancers. Only part of the original dataset is used for experimenting in 

order to mimic small dataset environment. Our results show that the proposed method is 

able to achieve an accuracy of 94.1% even when 150 original images used for training. 

This is very close to 97.33% accuracy achieved if one uses all the available training data 

which is 12000 samples.  
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1 INTRODUCTION 

The human race is plagued with many diseases that take the lives of many 

worldwide. Most of these diseases can be mitigated or cured either with medicine or 

vaccines. Cancer is one of the world’s biggest public health concerns and is the 

second leading cause of death in the United States [1]. With no cure or vaccine, 

cancer has the ability to attack any age group regardless of previous health. Lung 

and bronchus cancer had the highest number of deaths in the United States in both 

males and females in 2020 [1]. Figure 1 shows the breakdown of the estimated 

death by sex in the United States for the year 2020. Data is obtained from [1]. 

 
Fig. 1. Top leading cancer types for estimated number of 
deaths in 2020 in the United States. 

Cancer is such a deadly and prevalent disease worldwide; however, if detected 

early, it can be mitigated and treated. Though not fully curable, early detection can 
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help cancer not be fatal. A controlled investigation was performed on men 40 and 

over with lung cancer in [2]. These men were split into two groups, those who 

received 6-month chest radiographs over three years and those who did not have 

access to x-rays. The research showed that the 5-year survival rate for the average 

population was 15%, but in the group that received x-rays, the survival rate was 

23%, and the survival rate was only 6% for those who did not receive any x-rays [2]. 

The same pattern existed for the survival rate for squamous carcinoma and 

adenocarcinoma, which showed survival rates of 28% and 25% with x-ray facilitates 

compared to the 15% and 0% survival rates respectively. The research concluded 

that with earlier detection of lung cancer, we can improve survival rates [2]. The 

diagnosis of cancer can be automated with machine learning and deep learning. 

Machine learning can learn and understand from previous historical examples 

and patterns. The ability to break down complex datasets makes machine learning a 

good contender for cancer prognosis and prediction [3]. Machine learning is a 

developing technique for cancer prognosis and detection as papers published on 

this topic have increased over five hundred percent from 1994 to 2005 [3]. Various 

methods were attempted to determine the best model for cancer detection. It was 

found that the bottleneck in most of these works was the size and complexity of a 

given training set [4]. With limited data, any model is prone to overfitting and 

reported extremely high accuracies, misleading the model’s actual performance [3]. 

In a recent 2017 study, a deep convolutional neural network was developed in order 

to detect lung cancer [5]. The study used a dataset that consisted of three different 
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diagnoses of lung cancer that include adenocarcinoma, squamous cell carcinoma, 

and small cell carcinoma. Having access to only a small dataset that is unable to 

train an accurate model, data augmentation was done through rotations, flipping, 

and filtering. This data augmentation was used to prevent the issue of overfitting that 

occurs with small datasets [5]. The dataset consisted of microscopic images of the 

three various lung cancers. The implemented deep convolutional neural network 

obtained a 71% accuracy in classifying the images correctly [5].  

There are various approaches to deal with limited dataset problems. Simpler 

models tend to work better on small training datasets as they are less prone to 

overfitting. Simpler models, though are unable to extract detailed features, can lead 

to a higher misclassification rate not yielding a true accuracy. Transfer learning is a 

technique commonly used for small dataset problems [6]. Transfer learning is the 

process of training a model on a larger set of images such as the ImageNet dataset, 

which includes over 14 million images and applying those parameters to the smaller 

dataset. Transfer learning was used to tackle the detection of diabetic retinopathy. 

Diabetic retinopathy affects the vision of type 1 and type 2 diabetic patients, but 

early detection of this can prevent long-term vision impairment [7]. Weights and 

layers from the Inception-V3 pre-trained models were transferred to the Diabetic 

retinopathy problem with an addition of a soft-max layer at the output. The weights 

for all the layers except the output layer are frozen since the model is pre-trained. 

Previous research on the same problem yielded an accuracy of 87% using 35000 

images. The proposed model using transfer learning yielded an accuracy of 90.9% 
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using 2500 images [7], showing the effectiveness of transfer learning on a small 

dataset. 

This thesis proposes a two-layer data augmentation technique to handle small 

datasets. The two-layer data augmentation technique combines both simple data 

argumentations and generative adversarial networks (GAN). The performance of this 

technique will be compared to that of simple data augmentations and GANs applied 

separately with and without transfer learning. Chapter 2 will cover some basics on 

generative adversarial networks, their current developments using convolutional 

neural networks (CNNs), and transfer learning with pre-trained models. Chapter 3 

will introduce some recent literature that performed machine learning techniques on 

cancer cell data. Chapter 4 will briefly discuss the dataset that was used in the 

thesis. Chapter 5 will discuss the implemented data augmentation techniques and 

transfer learning techniques. Next, chapter 6 will discuss the obtained resulted and 

compare the various techniques. Lastly, Chapter 7 will discuss the conclusion drawn 

from this research.  
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2 BACKGROUND 

This chapter will first introduce convolutional neural networks as they are crucial 

to understanding GANs. The structure of CNNs and their architecture will be 

discussed with some real-world applications. After CNNs, the chapter will discuss 

the implementation of GANs and their various applications in data augmentation. 

Lastly, real-world applications and current uses of GAN’s will be discussed in order 

to show their effectiveness in other use cases.  

2.1 Convolutional Neural Networks 

Convolutional neural networks have increased in popularity over the last decade 

when dealing with specific applications that include: image classification, speech 

recognition, and natural language processing. Convolutional layers are used to 

extract features from images, and the more layers a CNN has, the more detailed 

features get extracted in deeper layers [8]. Each layer is composed of multiple 

neurons. At each neuron, a dot product of the inputs to the neuron and the weights 

is followed by a nonlinear activation function. Backpropagation is an efficient 

algorithm for training neural networks, which is the process of estimating these 

weights in the network.   

Multiple different types of layers make up a CNN such as convolutional layers, 

activation layers, and down-sampling layers. In CNN, an input is fed into a 

convolutional layer which is a set of learnable kernels that are extracting features 

from a given input. The output of convolutional layer is created by sliding a filter over 

the input and performing a convolution operation.  The result of this yields features 
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maps at each layer extracting the relevant parts of the input images [8]. When 

setting up a convolutional layer, the stride and filter size can be controlled as well. 

The stride and filter size determine the size of the output of the feature maps. For 

example, if the convolution layer was set to a filter size (4 x 4) with a stride of 2 and 

an image size of (64 x 64), the output is as follows below: 

 𝑂𝑢𝑡𝑝𝑢𝑡 =  [
64−4

2
] + 1  =  31 (1) 

The convolution layer is followed by an activation function. The ReLU function is 

usually the preferred activation function since the training happens much faster 

relative to the other functions [9]. Different activation functions include Tanh, 

sigmoid, leaky ReLU, and exponential LU. These activation functions are used in 

order to provide some non-linearity which lets the model learn more complex 

patterns [8]. Down-sampling is also called pooling layer. The pooling layer is used to 

reduce the resolution of the feature maps in order to introduce a small amount of 

variance into the model. A pooling layer can be either a max-pooling layer or an 

average-based pooling layer. This is used to down-sample the inputs and decrease 

the number of parameters which will help with the issue of overfitting in CNNs [8], 

[9]. 

After multiple interlaced convolutional and pooling layers, CNNs are 

accompanied by one or two fully connected layers at the end of the network. The 

key benefits of using CNNs are due to its success in equivalent representations, 

sparse interactions, and parameter sharing [10]. Sparse interactions are 

implemented using kernels that are smaller than the input size. Parameter sharing 
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reduces storage as the model will not need to learn from a separate set of 

parameters for every location [10]. Equivalent representations ensure that if the input 

image is translated, the representations also follow the same pattern. 

We highlighted how a convolutional neural network is implemented and the 

various layers which it uses to determine the output. CNNs can identify important 

features of a data set without any human interventions and have been applied to the 

real-world applications of computer vision, speech processing, face recognition, and 

more [10].  

2.2 Transfer Learning Using CNN-Based Models 

Transfer learning is a technique used primarily when the user does not have 

access to a large dataset.  Transfer learning is a powerful technique that uses model 

parameters learned while training on one dataset for another dataset in a similar 

domain. In particular, for deep CNNs, the initial network layer biases and weights are 

responsible for feature extraction; and hence utilizing initial layers trained for a large 

dataset for some other problem brings advantage in the form of decreased training 

time, performance gain, and computational cost. There are cases in real-world 

applications where getting a large dataset is not possible, in these cases a pre-

trained model, which is a model trained on a similar but large dataset can be utilized 

[11]. Rubin et al, used transfer learning to cope with a small training dataset. They 

trained a machine learning model on sperm cells and applied that trained model to 

predict if a skin  cell was cancerous or not [11]. They received higher accuracy than 

classic methods of extending the dataset such as data augmentation [11]. 
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Models such as VGG16 and GoogLeNet are examples of transfer learning and 

are known as pre-trained networks using ImageNet database [12]. The GoogLeNet 

network was the winner of the ImageNet Large-Scale Visual Recognition Challenge 

(ILSVRC) in 2014 [12]. The GoogLeNet network is 22 layers deep, and the authors 

estimated that the network would converge within less epochs using a few high-end 

GPUs [13]. The challenge in ILSVRC was to classify 100,000 images in the testing 

dataset and 50,000 images in the validation dataset that belong to 1000 different 

classes. Training a neural network using such a large dataset will allow successful 

extraction of various features for image classification problems [13]. These kinds of 

pre-trained networks can be used as a baseline for other image classification 

problems after finetuning using the relevant dataset even if it is limited in size.  

The VGG16 is another pre-trained model that is proposed by Simonyan and 

Zisserman from the University of Oxford [12]. VGG16 is a convolutional neural 

network that was able to achieve a 92.7% accuracy in ImageNet. The dataset used 

to train this network is part of ImageNet and is split into three sets: 1.3 million 

training images, 50 thousand validation images, and 100 thousand testing images 

[12]. This is a pre-trained model that is easy to access and is known to work with 

many other image classification problems [12]. The architecture of the VGG16 model 

involves 41 layers in total including convolution, max pooling, and fully connected 

layers. It uses both the ReLU and softmax activation functions in the convolution 

layers and the output layers, respectively. The original input layer is a 224x224 RGB 

image that is passed through multiple convolution layers. These layers are 
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accompanied by the ReLU activation layer and a max-pooling layer in between the 

convolution layers [12]. After the stack on the convolution layers three fully 

connected layers with different channels are connected. The last layer is a softmax 

layer which makes a prediction of the class of the image. 

2.3 Generative Adversarial Networks  

Generative Adversarial Networks (GANs) are used to generate and create more 

data from an existing dataset. GANs are together with supervised, semi-supervised 

and unsupervised learning methods [14]. GANs consist of both a generator network 

and a discriminator network. As the name of the networks suggests, the generator’s 

job is to generate images and the discriminator’s job is to determine if these are real 

or fake images. Both networks are trained at the same time and essentially compete 

with each other [14]. Both the generator and discriminator networks are usually 

multi-layer neural networks such as CNNs. A random noise is used as input to a 

generator network which then outputs sample data. The discriminator is fed in the 

real and fake data sample and is trained to understand the fake data from the real 

data. The generator is aimed to eventually create images that the discriminator is 

unable to distinguish, making the fake image very similar to the original. Using this 

newly generated fake image, one can expand the original limited-size. dataset (i.ie 

data augmentation) for each class separately.  

There are two conflicting goals that need to be met while training a GAN. The 

discriminator’s goal is to maximize its classification accuracy while the generator’s 
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goal is to maximally confuse the discriminator [14]. The training loss function 

captures both aspects and makes the generator and discriminator network compete. 

The theoretical optimal solution to this competition exists when the generator is 

perfect, and the discriminator can no longer tell the difference between the real and 

fake inputs [15]. A GAN is usually unstable and cannot be trained to the optimal 

network and will have an early stopping condition that is met [14]. 

Many different GAN variants were created after the initial structure and logic 

were in place. One example of a GAN variant is the Wasserstein GAN (WGAN) 

which was proposed to tackle the vanishing gradient problem [15]. The WGAN is 

improved and progressed toward more stability while training GANs, but still failed to 

converge in certain scenarios [15]. Another GAN known as the LS-GAN aimed to 

improve how the parameters were learned while keeping the original GAN structure 

[15]. Other GANs were created with further research, and some changed the original 

GAN structure while some optimized certain loss functions to achieve better results. 

Some other GAN variants are WGAN, LS-GAN, Semi-GAN, C-GAN, and BiGAN 

[15]. Each GAN was created in an attempt to solve a certain problem or optimize 

parameters. GANs opened up a new possibility for new machine learning 

applications that were not possible with previous techniques. 

2.3.1 Applications of Generative Adversarial Networks 

GANs are used to generate and augment samples that are very similar to the 

real samples in the original dataset. GANs can be used when there isn’t sufficient 

data that can be used effectively for training. In recent years GANs have been 
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popular in image classification and speech recognition [15]. One of the most familiar 

GAN examples is the generation of faces. Boundary Equilibrium Generative 

Adversarial Networks (BEGAN) focused on image generation with high visual quality 

and resolution [16]. 

GANs not only has applications in the image classification department but also in 

speech recognition and language processing. Speech Enhancement Generative 

Adversarial Network (SEGAN) is a GAN that attempts to solve the problem of 

speech enhancement. The goal of this network is to provide a quick enhancement 

process for speech signals. It works with raw audio and learns from different 

speakers and noise types and incorporates them together [17]. SEGAN is able to 

enhance speech in order to improve the overall quality of the listeners.  

Overall, GANs are able to generate data that can easily be interpreted and 

increase the scope of datasets [15]. This generation of realistic data opens up for the 

implementation of other machine learning models such as K-nearest neighbor 

(KNN), CNN, and others which require a large dataset for effective results. GANs 

are problematic when trying to optimize both the networks at the same time, as there 

can be cases when the networks will not converge generating unusable images [15]. 

This thesis focuses on image classification techniques that utilize GANs in order to 

increase the size of the training dataset.  



 

12 

3 LITERATURE REVIEW 

Machine learning was greatly researched in the field of cancer cell classification. 

A combination of GAN and transfer learning was applied to cancer cell classification 

[11], deep CNNs were used to classify lung cancer types [5], and hyperspectral 

colon cancer images were classified using CNNs [18]. A naive Bayes classifier and a 

K-nearest neighbor classifier were used to classify breast cancer with a 97% 

accuracy [19]. The various research shows the versatility and effectiveness of 

machine learning techniques in the medical industry. The models, though cannot 

yield a 100% accuracy working with human doctors, greatly increase efficiency in 

cancer detection. With medical data being complex and not as abundant, the 

bottleneck for high accuracy is small usable training data. In the next subsection, we 

will look at recent research done in cancer cell classification with the use of GANs 

and transfer learning. Three research papers will be discussed. The first two are 

proposing a different method of using GANs for cancer cell detection. At first, a 

pathologyGAN will be discussed which is a new GAN for pathological images. Then, 

a hybrid approach using both transfer learning and GAN will be discussed. Finally, 

we will discuss how transfer learning was used to detect leukemia in blood cells. 

3.1 PathologyGAN for Cancer Tissue 

The PathologyGAN research aimed to develop a framework that allows GANs to 

capture key features for tissues in order to generate samples in the latent space. 

Quiros et al used two cancer tissue datasets in order to develop a model that is able 

to generate high-quality images [20]. This work was done in order to better 
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understand tumors and their diverse structures and features. In order to evaluate the 

fake samples, the researchers used the Frechet Inception Distance (FID) metric 

which is the norm when quantifying a GAN’s performance [20]. To determine the FID 

distance, feature samples are fitted to Gaussian distributions for both the real and 

generated features and the difference between the distances are measured. The 

research also uses expert pathologists in order to determine any significant 

difference between the generated samples and the real ones. The pathologyGAN 

uses samples of breast cancer tissue and colorectal cancer to generate images for 

the respective datasets. The PathologyGAN model is able to generate cancer tissue 

images that are not distinguishable by expert pathologists. The generative model 

captures multiple features that are projected into a latent space in order to create 

realistic generated images [20]. 

3.2 TOP-GAN Cancer Cell Classification 

This research is aimed to perform classification on healthy and cancer cells of 

both primary and metastatic cancer cells. The machine learning methods in this 

research attempt to tackle the problem of the small training set. The proposed 

method is called transferring of a pre-trained generative adversarial network (TOP-

GAN). This method combines both transfer learning and GANs to make up for the 

lack of data in the training set [11]. Rubin et al [11] utilize transfer learning, 

essentially training the GAN on one type of data and implementing this information 

for another type of dataset. The paper uses unclassified sperm cell images and 

classified cancer and non-cancer cell images.  
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First, the GAN is trained on unlabeled optical path delay (OPD) images of human 

sperm cells and learns the feature which makes up the OPD images of these 

biological cells. This discriminator network that is not trained on the sperm cells gets 

its last layer switched and a classifier is created based on the architecture and 

knowledge of the discriminator trained on sperm cells. The output now of the 

discriminator will signify whether the cell is of a healthy skin cell or a cancer skin cell 

[11]. As a result of this, the research combined both transfer learning in which the 

sperm cells built the discriminator network and the GAN to determine the decision of 

healthy and cancer cells. In order to train this TOP-GAN network, an Adam optimizer 

was used with a learning rate of 1e-5 and beta parameters (exponential decay rates) 

as follows: 𝛽1 = 0.6, 𝛽2 = 0.99. This network is trained for 900 epochs or until 

convergence [11]. The result of this network is calculated with different training sets 

with various sizes and methods. As the number of images in the training set 

decreases the accuracy difference for the TOP-GAN implementation and a basic 

CNN implementation increases. The TOP-GAN method is able to cope with a 

situation where there is a small training dataset, given the access to a set of other 

biological cells [11]. 

3.3 Transfer Learning 

Loey et al, researched the effectiveness of using deep transfer learning to 

diagnose Leukemia in blood cells. Leukemia is a deadly disease that takes the lives 

of many, but survival rates can be increased with early detection [21]. Transfer 

learning was applied using the AlexNet pre-trained CNN. The experiment was 
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conducted with a 2820 image dataset. The research proposed two different methods 

of transfer learning both using the AlexNet pre-trained CNN [21]. 

In the first proposed model, images were fixed to 227x227 size, and data 

augmentation was performed using translations, reflections, and rotations to extend 

the dataset. After the images were pre-processed, the Alexnet network was used for 

feature extraction. At the final output layer, four classifiers were used in order to 

determine if the cell has been affected by leukemia. These classifiers included 

support vector machines, linear discriminants, decision trees, and K-nearest 

neighbors [21]. The accuracy for the listed classifiers is 99.3%, 98.51%, 95.82%, 

and 99.04%, respectively.  

In the second proposed model, images were pre-processed the same as 

previously stated. Then images were trained over the Alexnet pre-trained network to 

not only extract features from the data but also classify the images as well [21]. 

There were no extra classifiers that were used to predict the output. The last three 

layers of the Alexnet CNN were replaced to be tuned to the leukemia classification 

problem [21]. The rest of the layers have frozen weights that will not change. This 

model yielded 100% accuracy in detecting leukemia in blood cells. In both proposed 

models, the classification problem makes use of transfer learning to have deeper 

features extracted even with a small dataset. This makes transfer learning an 

effective technique on small dataset machine learning problems.  
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4 LUNG/COLON CANCER HISTOPATHOLOGICAL DATASET 

This chapter will discuss the dataset used in this thesis. First, we discuss how the 

lung cancer images were obtained, and next, we discuss the data augmentation that 

was performed to extend the dataset.  

Borkowski et al created the lung and colon cancer histopathological image 

dataset in order to provide more readily available datasets for the field of machine 

learning [22]. This dataset is split into both lung and colon cancer cell tissue images. 

The set contains five different classes which include: lung benign tissue (lung_n), 

lung adenocarcinoma (lung_aca), lung squamous cell carcinoma (lung_scc), colon 

adenocarcinoma (colon_aca), and colon benign tissue (colon_n). The original 

dataset consists of 750 lung images and 250 colon images. These images are all 

Healthy Insurance Portability and Accountability Act (HIPAA) compliant and validate 

in total 1250 images (250 images in each class). These images were obtained using 

a Lecia Microscope MC190 HD camera with the resolution capped at 1024x768 [23]. 

Figure 2 shows various images from the classes in the dataset. 
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Fig. 2. Four images from each class top to bottom: Lung 
adenocarcinoma, lung normal tissue, lung squamous cell 
carcinoma, colon adenocarcinoma, colon normal tissue. 
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All the images in the dataset are cropped to 768x768 pixels from their original 

1024x768 pixels. Next in order to increase the amount of data in the dataset, the 

images were augmented using the Augmentor library in python [22]. Augmentor is a 

software package, which is able to generate artificial data based on existing 

observations, and available in Python and in Julia. This package provides methods 

such as random rotations, transforms, cropping, zooming, scaling, and resizing in 

various different angles [24]. The Augmentor was used to expand the lung and colon 

cancer data as follows: left and right rotations, and horizontal and vertical flips. 

These data augmentation techniques were able to increase the size of the data set 

from the original 1250 images to 25000 images. The new augmented dataset now 

consists of 5,000 images in each class with all images 768x768 pixels in size and in 

jpeg file format [22]. Figure 2 shows sample images from the lung cancer classes 

from the dataset.  
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5 PROPOSED METHOD: A TWO-LEVEL DATA AUGMENTATION TECHNIQUE 
WITH TRANSFER LEARNING 

The method proposed in this research is a two-level data augmentation 

technique with transfer learning. We will be combining two different data 

augmentation techniques first, and then a pre-trained network is used for prediction. 

The first data augmentation technique, discussed in further detail in this section, will 

be simple data augmentation techniques such as rotations and flips. Following this 

will be a GAN model that will further generate more images to be used during 

training. After augmenting the training dataset, the images are fed into the VGG16 

pretrained network to make a prediction. The output layer of the VGG16 model will 

be trained, and all preceding layers will be frozen so the weights will not update. The 

final or output layer will consist of various machine learning strategies as discussed 

further below. Figure 3 shows a visual representation of the flow of the proposed 

method. 

 
Fig. 3. Visual representation of the proposed method. 

Starting with the original dataset, one simple augmentation technique is picked, 

followed by GAN and VGG16. Finally, one output layer is picked before making a 

prediction. 

Original Traning 
Data set

Simple Data 
Augmentation

GAN 
Implementation

VGG16 Pre-
Trained Network

Prediction
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5.1 Data Preprocessing for VGG16 

The pre-processing of the data before we implement the VGG16 model involves 

shuffling the dataset and normalizing the images into 384x384 pixels. Shuffling the 

data ensures that there is some form of randomness in the models and the image 

size is reduced to enhance computational power and fit to the first layer of VGG16. 

This is performed before the data is inputted into any of the models discussed in this 

thesis. Looking at Figure 3 this happened after the GAN implementation and before 

the VGG16 model in implemented. 

We will be using the same VGG16 model described in Chapter 2. This is to 

research the effectiveness of one- or two-level data augmentation techniques on 

histopathological data using a small training set. In order to mimic the small training 

set, we will use partial dataset with a predetermined accuracy level. This small 

training dataset will be put to test with multiple approaches and will be a standard to 

compare the effect of various augmentation techniques. 

5.2 Output Layer for VGG16  

In order to test the effectiveness of the generated images, the dataset is put 

through a few machines learning models to determine test accuracies. These 

machine learning model will replace the output layer for the VGG16 network. The 

following subsections will summarize the various machine learning models used and 

describe their basic implementations. 
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5.2.1 Architecture of a Shallow Neural Network 

Shallow Artificial Neural Networks (ANNs) are neural networks with only few 

number of layers. Chapter 2 of this thesis discusses the architecture and application 

of CNNs, which is an ANN with specialized layers such as convolution and pooling 

layers. ANNs are used to solve problems involving pattern recognition, clustering, 

and prediction. In addition to CNNs, ANNs can also come in the forms: feed-forward 

networks and recurrent networks [25]. Feed-forward networks, as the name 

suggests has no feedback. Recurrent networks connect back into previous nodes in 

the network creating a loop, which is feedback. Recurrent networks are usually used 

with sequential data such as text and speech.  

The shallow ANN that will be used in this paper is a simple neural network that 

will allow us to make a prediction after extracting the features using VGG16. The 

details about the architecture of the ANN can be seen in Table 1. The first layer is a 

dense layer with ReLU activation function. The first layer is followed by a batch 

normalization and dropout layers. There are 4 dense layers that follow the dropout 

layer with 64, 32, 16, 8 output sizes respectively and with ReLU activation function. 

The output layer is dense and has a softmax activation function and makes a 

prediction on the class of the data passed in. 

5.2.2 K-Nearest Neighbor 

The K-Nearest Neighbor (KNN) algorithm is a supervised learning algorithm that 

makes predictions based on clusters. The clusters are formed based on the  
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Table 1. ANN Architecture 

Layer Parameters  

Input- Dense 128, activation= relu 

Batch Normalization N/A 

Dropout Frequency = 0.2 

Dense 64 activation = relu 

Dense 32 activation = relu 

Dense 16 activation = relu 

Dense 8 activation = relu 

Dense activation = softmax 

 

Euclidean distances from the data points to their neighbors. The amount of 

neighbors that decide the prediction of a particular data point is known as K [26]. 

The K value is a hyperparameter and can be optimized on the test set. After the 

value of K is chosen the algorithm will iterate through all the points in the dataset. 

For each test point, the Euclidean distance will be found to all other data points and 

K closest points will be used for prediction: (i) if the problem is classification, the test 

data point will be assigned a class that is the majority in the K closest points; (ii) if 

the problem is regression, the prediction for the test data point will be the average of 

the outputs of the K closest points. 

5.2.3 Support Vector Machines  

Support Vector Machines (SVMs) are supervised machine learning algorithms 

that are used for both classification and regression. Linear SVMs aim to create a 

hyperplane that is able to separate the data into two classes. Figure 4 shows a  
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Fig. 4. Visual representation of SVM. 

visualization of how the SVM classifies data.  Nonlinear SVMs use a kernel to map 

the data into a different domain and uses a hyperplane in this new domain to 

separate the dataset into two classes. SVMs can be extended to multiclass 

problems using various techniques such as one-versus-all or one-vs-one 

approaches [27], [28].  

5.2.4 Random Forest 

Random Forest (RF) is also a supervised learning algorithm that uses decision 

trees for either classification or regression. Multiple decision trees are formed using 

the same dataset and bagging and the decision from multiple trees are combined 

using either majority rule (classification) or averaging (regression). While forming the 

decision trees, the inputs are selected from a random set of possibilities at each 

node. This is the reason why the algorithm name contains random. RF will not overfit 

the model and can be used when the data set is high dimensional. When 

implementing an RF, the most important parameters are the number of trees in the 

forest and the number of inputs selected at each node. The number of trees in the 
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forest will be equal to the number of outputs that the RF will gather before combining 

the results of these trees.  

5.3 Simple Data Augmentation Techniques 

In order to extend the dataset, we propose implementing various different simple 

data augmentation techniques that will augment the images in the original training 

set. These techniques include 180-degree rotations, 45-degree rotations, 90-degree 

rotations, horizontal flips, vertical flips, shear, and blur [29]. These rotations and flips 

are done to show the image in a new perspective to the machine learning model. 

Shearing an image will move one part of the image in one direction while moving the 

other part of the image in the opposite direction. This will distort the image over the 

horizontal axis. Blurring an image will distort the image slightly while keeping the 

main structure of the image intact. Adding blue to the dataset will ensure that if there 

are any distortions in the validation sets, they can be accounted for as well. 

5.4 Implementation of Generative Adversarial Networks 

The GAN used in this thesis is implemented through TensorFlow and Keras. The 

GAN implemented is influenced by the research done by Radford et al [30]. The 

resolution was set to 3 which reduced the images by a factor of 3 as we have limited 

access to GPUs and had to use a cloud-based notebook that limited the memory 

usage. This means that we will be working with 96-pixel square images. Next, all the 

images were pre-processed, sized appropriately to the resolution, and appended 

into a NumPy array. Once all the images have been loaded and preprocessed into a 

NumPy array we can build both the discriminator and generator models. 
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The generator model is a convolutional neural network of which details are given 

in Table 2. The input layer is a dense layer with a ReLU activation function that takes 

in the vector size as the input dimension. In this case, the vector size is set to 100. 

Following this layer is a reshape layer that shapes the input into 4*4*256. Next, we 

have three batches with the same implementation. First, there is an up-sampling 

layer followed by a two-dimensional convolutional layer. The convolutional layer is 

followed by a batch normalization layer and a ReLU activation function. The up-

sampling layer is a simple layer with no weight that will double the dimensions of the 

input. The batch normalization layer keeps the mean close to 0 and the standard 

deviation as close to 1 as possible using a batch of data at each neuron. These two 

layers will help keep the generator more stable. After three batches of these layers, 

there is a final convolutional layer followed by a tanh activation function. The 

generator model is responsible for creating fake images that the discriminator will 

need to classify into fake or real.  

The discriminator model is also a convolutional neural network like that of the 

generator. The input layer for the discriminator is a conv2d layer with a leaky ReLU 

activation function followed by a dropout layer. Next, a convolution layer, batch 

normalization, and leaky ReLU are repeated three times. The dropout layer 

randomly sets input units to 0 and this is done to prevent overfitting of a CNN. A 

leaky ReLU has a small slope for negative input values and is said to be a more 

robust activation function. After the repeated layers, there is a flattening layer 

followed by a dense layer with a sigmoid activation function as the output layer. 
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Table 2. Generator Architecture 

Layer Parameters 

Dense ReLU, Input Dim: 100 

Reshape 4*4*256 

UpSampling2D N/A 

Conv2D 256 Kernel= 3 Padding = “Same” 

BatchNormalization  Momentum = 0.8 

Activation  ReLU 

Conv2D 256 Kernel= 3 Padding = “Same” 

BatchNormalization  Momentum = 0.8 

Activation  ReLU 

Conv2D 128 Kernel= 3 Padding = “Same” 

BatchNormalization  Momentum = 0.8 

Activation  ReLU 

Conv 2D 3 Kernel = 3 Padding = “Same” 

Activation TanH 

 

The flattening layer will flatten the input shape to a simple vector and that will be 

consumed by the output layer. The sigmoid activation function in the last layer will t 

output a value between 0 and 1 which will determine the discriminator’s decision. 

Table 3 describes the architecture of the discriminator.   
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Table 3. Discriminator Architecture 

Layer Parameters 

Conv2D 32, Kernel = 3, Stride = 2 

Activation Leaky ReLU(0.2) 

Dropout 0.25 

Conv2D 64, Kernel = 3, Stride = 2 

BatchNormalization  Momentum = 0.8 

Activation  Leaky ReLU(0.2) 

Dropout 0.25 

Conv2D 128, Kernel = 3, Stride = 2 

BatchNormalization  Momentum = 0.8 

Activation  Leaky ReLU(0.2) 

Dropout 0.25 

Conv2D 256, Kernel = 3, Stride = 1 

BatchNormalization  Momentum = 0.8 

Activation  Leaky ReLU(0.2) 

Dropout 0.25 

Conv2D 512, Kernel = 3, Stride = 1 

BatchNormalization  Momentum = 0.8 

Activation  Leaky ReLU(0.2) 

DropOut 0.25 

Flatten N/A 

Dense 1, Sigmoid 
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After building both the architectures for the discriminator and generator we must 

optimize them using an optimizer. We used the Adam optimization for both the 

discriminator and the generator. The Adam optimization is picked due to its 

stochastic gradient descent nature and its computational efficiency. This optimizer is 

known to do well on most neural networks [31]. The generator loss and the 

discriminator look are both determined using the Keras binary cross-entropy. This 

method calculates the cross-entropy loss between the true labels and the predicted 

labels. Lastly, the learning rate is set to 1.5e-4. Once the generator is trained for a 

particular number of epochs or till convergence the model (the generator and its 

weights) will be saved as an .h5 file. 
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6 EXPERIMENTAL RESULTS 

The experimental results of this paper will be split into three different sections. 

The first section will discuss the results of a standard CNN model, followed by the 

implementation of the VGG16 model. The second section uses various classifiers as 

output layer while utilizing VGG16 for feature selection. Then the effect of simple 

data augmentation will be shown with various models and their accuracies. Next, 

GANs are implemented to increase the training data set and the change in accuracy 

is explored. The proposed two-level data augmentation technique is implemented 

combining GANs and the simple data augmentation techniques. Lastly, we will 

propose another transfer learning technique combined with simple data 

augmentation which would classify colon and lung images. 

6.1 Basic Model: Standard CNN 

The first method that is implemented is a CNN. The architecture of the CNN can 

be seen in Table 4. It is a 14-layer network that is trained using the lung image 

dataset. The training was repeated multiple times increasing the number of data 

points in the original dataset. A fixed test set, 3000 images, was used to validate the 

dataset for all the runs. 

Table 5 shows the validation accuracies of the CNN model using a different 

number of data points. The model was run over 10 epochs with an Adam optimizer 

with learning rate of 0.0001. The validation accuracy for the model was unstable 

over multiple epochs due to the small dataset, and the accuracies were averaged 

over multiple runs. We can clearly see in Table 5 that the validation accuracy  
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Table 4. CNN Architecture 

Layer Parameters  

Convolution 2D Filters=32, Kernel=5, activation=relu 

MaxPool2D Pool=2, Stride=2 

Convolution 2D Filters=64, Kernel=5, activation=relu 

MaxPool2D Pool=2, Stride=2 

Convolution 2D Filters=128, Kernel=5, activation=relu 

MaxPool2D Pool=2, Stride=2 

Convolution 2D Filters=256, Kernel=5, activation=relu 

MaxPool2D Pool=2, Stride=2 

Dropout Freq = 0.5 

Convolution 2D Filters=512, Kernel=5, activation=relu 

MaxPool2D Pool=2, Stride=2 

Dropout Freq = 0.5 

Flatten N/A 

Dense Filters=3, activation=softmax 

 

Table 5. CNN Validation Accuracy with No Data Augmentation 

Number of Training Data Points Validation Accuracy 

75 65.9% 

150 72.2% 

300 76.7% 

750 82.6% 
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increases as the number of data points in the training set increases. Note that the 

same test set was utilized for all these runs. 

6.2 VGG16 Without Data Augmentation  

Transfer learning helps combat the problem of a small dataset. The VGG16 is a 

pre-trained neural network that can be used to extract the relevant features of our 

lung dataset. The extracted features from VGG16 are stored and fed to an RF 

classifier, which is the best performing model among the among the one proposed in 

Section 5.2, with a consistent random seed and 50 trees. This last step in the model 

will predict the class and provide us with the training and validation accuracies for 

the dataset. This is iterated multiple times while changing the number of data 

samples in the training lung cancer dataset. The results can be found in Table 6. As 

expected, as the number of training samples increases, validation accuracy gets 

better.  

Table 6. VGG16/RF Accuracies on Different Number of Original Training Data 

Number of Training Data Points Validation Accuracy 

75 81.9% 

150 85.1% 

300 87.6% 

750 90.2% 

 

The ANN, KNN, SVM, and RF algorithms, all described in detail in Chapter 5, will 

be used as output layers for a variety of different training data sizes to understand 

the effect on the validation accuracies. There will be 3000 images separated as the 
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validation set, which will not be seen by any of the algorithms during training. The 

models will be evaluated over three different parameters: validation accuracy, recall, 

and F1-score. The validation accuracy is the accuracy of the model on the data set 

that is not used for training. The recall is the amount of correctly labeled data points 

that are the true positive from the validation set. The F1- score is the harmonic mean 

of the precision and recall, the closer to 1 the better the model is performing. The 

performance of the various models can be seen in Table 7. It is apparent here that 

with the small number of data points used the validation accuracies are not high and 

have some randomness in the results.  

6.3 VGG16 with One-Level Data Augmentation 

6.3.1 Original Dataset   

The original data set with simple data augmentation contained 1250 images of 

lung cancer data. As explained in Chapter 4, the given dataset has a larger 

augmented dataset of 12000 images for the lung dataset with equal number of 

images representing every class using left, right rotations and vertical, horizontal 

flips.  

Table 8 and Figure 5 show the validation accuracies using augmented dataset 

from the VGG16 pre-trained network. Table 9 shows the various different output 

layers connected to VGG16 and their accuracies in combination with simple data 

augmentation. Using a 12000-image augmented dataset, we achieve an accuracy of 

95.6% on lung cancer classification. 
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Table 7. Accuracy for Various Machine Learning Methods Using Different 
Training Datasets 

Model Validation Accuracy F1 Score Recall 

300 Data Points    

ANN 77.33% 81.25% 78.00% 

KNN 83.33% 83.33% 83.33% 

SVM 82.00% 86.23% 87.95% 

RF 88.67% 89.77% 90.00% 

150 Data Points    

ANN 77.66% 79.70% 82.45% 

KNN 85.33% 85.46% 85.33% 

SVM 84.66% 77.30% 77.33% 

RF 88.67% 87.90% 87.98% 

75 Data Points    

ANN 75.33% 75.29% 75.33% 

KNN 84.66% 86.54% 86.78% 

SVM 82.00% 87.61% 88.00% 

RF 90.00% 86.71% 87.39% 

 

Table 8. VGG16/RF Accuracies on Different Number of Augmented Training 
Data 

Training Data Points Validation Accuracy 

1500 91.3% 

3000 93.1% 

4500 94.3% 

12000 95.6% 
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Fig. 5. VGG16 Network: Validation accuracy vs 
size of the training set. 

Table 9. Accuracy Using Augmented Training Dataset for Various Machine 
Learning Methods 

Model Validation Accuracy F1 Score Recall 

12000 Data Points    

ANN 92.93% 92.30% 92.27% 

KNN 94.87% 94.13% 94.13% 

SVM 97.33% 97.13% 97.13% 

RF 94.80% 94.01% 94.00% 

 

6.3.2 Simple Data Augmentation 

In order to simulate the problem of a small training dataset to show the 

effectiveness of data augmentation we used up to only 600 images from the original 

dataset. Data augmentation was used to increase the amount of training data that 

was available to train the machine learning model from. First, we tested a one-level 

technique that used various simple data augmentation techniques. The data 

augmentation techniques, explained in Chapter 5, included rotating, flipping, 
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shearing, and blurring the dataset. Different amounts of training data were used to 

look at the effects of these simple augmentation techniques.  

Table 10 shows the effect of various simple data augmentation techniques on the 

validation accuracies of the model. We can easily conclude that in any augmentation 

technique the number of data points available is correlated with the validation 

accuracy. Shear was the outlier augmentation technique that distorted the image 

and hurt the accuracy of the model. Rotations, flips, and blurs all increased 

validation accuracy as the training dataset increased in size. The table shows the 

least effective and most effective simple data augmentation techniques. 

6.3.3 GAN Implementation 

This section discusses the generated images produced by the GAN. The 

architecture of the GAN includes that of the discriminator and generator which can 

be found in Chapter 5. The goal of the GAN is to generate images that cannot be 

distinguished from the original dataset. This theoretically will augment and create 

more data points in the training data to increase the accuracy of our machine 

learning algorithms. In order to train the GAN, we first start with a latent space vector 

of random noise shown in Figure 6.  

Starting with random noise, the generator will learn over multiple epochs various 

features from the original dataset which will help create better-looking images. 

Figure 7 shows the generated images over multiple epochs with a training set of 500 

randomly picked images from the entire datasets. 
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Table 10. Results for Simple Data Augmentation Techniques 

Data Augmentation Training Data 300 375 450 525 600 1200 

180 Degree 
Rotations 

ANN 85.23 88.16 93.12 93.61 91.74 94.62 

KNN 73.77 79.1 79.5 77 78.49 71.638 

SVM 90.2 91.4 92.3 92.91 92.971 94.56 

RF 91.28 91.8 91.59 92.362 92.81 92.71 

90 Degree Rotations 

ANN 90.64 92.49 93.28 90.45 93.81 94.65 

KNN 73.7 78.9 79.17 78.86 78.681 71.652 

SVM 90.203 91.1 92.36 93.16 92.812 94.493 

RF 91.275 92.16 92.61 92.16 92.507 92.667 

45 Degree Rotations 

ANN 89.1 93.6 92.4 92.5 93.4 93.4 

KNN 73.7 78.4 79.1 78.6 78.16 71.6 

SVM 90.2 91.5 92.3 93.2 92.81 94.4 

RF 91.3 92.2 92.7 92.1 92.5 92.7 

Horizontal 

ANN 85.1 89.13 92.46 93.42 93.29 94.29 

KNN 72.71 78.94 79.12 76.85 78.681 71.652 

SVM 89.67 91.058 92.362 93.16 92.812 94.493 

RF 90.12 92.1 92.61 92.16 92.51 92.667 

Vertical 

ANN 93.33 94.203 93.4 94.51 94.91 95.22 

KNN 73.77 78.9 79.1 76.85 78.61 71.652 

SVM 90.2 91.1 92.36 93.16 92.812 94.52 

RF 91.23 92.159 92.61 92.16 92.51 92.67 

Shear 

ANN 83.1 86.88 87.61 73.7 75.3 82.19 

KNN 56.5 43.1 42.4 40.8 36.9 37.04 

SVM 55.42 33.6 33.13 48.8 47.9 53.089 

RF 70.841 74.3 71.59 72.1 77.8 82.6 

Blur 

ANN 93.6 93.3 89.91 93.8 94.2 93.841 

KNN 73.7 78.9 77.5 76.5 78.61 78.3 

SVM 90.2 91.1 92.3 93.2 92.81 93.8 

RF 91.3 91.2 90.8 92.2 92.5 91.2 
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Fig. 6. Random noise of vector size 100x100. 

 
Fig. 7. Generated Lung SCC images, 20 epochs (top left), 50 
epochs (top right), 200 epochs (bottom left), 450 epochs 
(bottom right). 

Looking at Figure 6, it is visually recognizable that the latent vector is learning 

and getting more detailed as the number of epochs increases. Both the generator 

and discriminator in this model are optimized on the Adam optimizer with a learning 

rate of 1.5e-4 and a 𝛽1 value of 0.5. After multiple tests, we recognize that at 500 

epochs the training seems to plateau, and the images did not get much better. The 

GAN is run twice to generate images with a training data size of 250 per class and a 
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training data size of 100 per class. This was done to understand the effect of a larger 

training sample on the generated images. 

Once the model was trained, its weights and biases were then stored into a .h5 

file so the model can be loaded without needing to be trained again. Six models 

were generated, three with a training size of 100 and three with a training data size 

of 250. Figure 8 shows the difference between the original dataset and the 

generated images from two different GAN models. 

 

 

 
Fig. 8. Lung squamous cell carcinoma (top), Lung 
benign (middle), Lung adenocarcinoma (bottom), 
Original Image (left), GAN with 100 data(middle), GAN 
with 500 data (right). 

After generating the images, the best way to test the performance of algorithms 

using these images was to compare it to the accuracies obtained in the previous 

section.  
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6.3.4 Comparing Models Using Generated Images with GAN 

This section will discuss the accuracies obtained from various machine learning 

techniques using the newly generated data from the data set. Two runs were 

performed with the two sets of generated images from different GAN models. In 

order to have a controlled setting, for all models, the training data from the original 

data set will be the same and the validation set will also be the same. The machine 

learning algorithms will exhibit the same parameters and will not change between 

both these runs. There will be 100 data points that are appended to 100 generated 

images per class. Table 11 shows the accuracies for the various models with the 

generated images from the GAN using 100 data points per class and Table 12 

shows the accuracies for the GAN using 250 data points per class.  

Table 11. Model Accuracy for Images Trained with 100 Original Data Points 
Augmented with 100 Generated Data Points Per Class 

Model Validation Accuracy F1 Score Recall 

ANN 88.67% 90.535% 90.67% 

KNN 80.00% 82.79% 82.67% 

SVM 80.25% 84.67% 84.11% 

RF 87.33% 87.76% 88.00% 

 

As seen in Tables 11 and 12, we observe an increase in accuracies when there 

were more images in the training dataset. The model that gains most due to 

additional data is ANN, which is expected due to its complexity compared to the rest 

of the methods [22]. When compared to the previous accuracies using 300 data 

points (see Table 7), we see that KNN, SVM, and RF perform worse on the first set  
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Table 12. Model Accuracy for Images with 100 Original Data Points 
Augmented with 250 Generated Data Points Per Class 

Model Validation Accuracy F1 Score Recall 

ANN 93.33% 92.02% 92.00% 

KNN 83.33% 84.70% 84.67% 

SVM 80.67% 82.44% 83.33% 

RF 89.33% 89.75% 90.00% 

 

of generated images (see Table 11).  However, if we increase the number of 

generated data points for each class, we observe KNN, and RF performance get 

better with a high margin (see Table 12).  The results in Table 11 and Table 12 are 

obtained by averaging over 10 different runs, which helps stabilize the values 

especially for ANN.  

6.4 Proposed Method: VGG16 with Two-Level Data Augmentation  

In the previous two subsections, the methods of various simple data 

augmentation techniques and GANs were tested. This thesis proposes to utilize a 

two-level data augmentation method, which is sequentially using simple data 

augmentation followed by GANs (see Figure 3).  The main motivation behind this is 

due to the need that GANs also require a good amount of data to be properly 

trained. By utilizing simple data augmentation methods such as rotation, flipping, etc, 

a small dataset can be increased to a data size which is enough to successfully train 

a GAN. This way the data is augmented further using GANs, which brings in 

additional gains in performance. Below are our experimentations with the two-level 

data augmentation.  
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Training images will be added using simple data augmentations followed by a 

GAN to double the size of the training dataset. Initially, we use 150 original images 

from the dataset to mimic small datasets. These 150 images were augmented using 

a simple technique such as flipping to increase the training dataset to 300 images. 

This newly created dataset is run through a GAN to create a final dataset consisting 

of 600 images. The results for these methods can be seen in Table 13. The results 

are an average of 10 different runs with the same validation set. The validation 

accuracy of the two-level data augmentation is significantly better than the validation 

accuracies of one-level techniques described in the Sections 6.3.2 and 6.3.4.  

Table 13. Results on Two-Step Data Augmentation 

Output Layer of 
Vgg16 180 45 90 Blur Horizontal Shear Vertical 

ANN 91.7 92.783 92.8 93.37 91 91.35 94.1 

KNN 53.7 37.7 65.3 54.6 55.13 54.7 52.8 

SVM 90.1 89.4 90.7 89.6 89.1 89.2 90.8 

RF 90.3 89.88 89.7 90.2 90.913 90.58 90.5 

 

In order to understand the gains from two-level data augmentation, we present a 

performance summary of all the models discussed in this thesis in Table 14. When 

we compare the performance of similar training sets, the gains due to two-level data 

augmentation is highly significant (see last two rows in Table 14). Figure 9 shows 

the ROC curves for each of the lung classes in our dataset. ROC curves are used 

for binary classifiers; however, for multiclass problems, we can focus on one class at 

a time, which is the positive class, and obtain the curve assuming the rest of the 

classes represent the negative class. Each curve plots the true positive rate (i.e.,  
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Table 14. Results from Implemented Models 

Model Data Augmentations Training 
Dataset 

Validation 
Accuracy 

CNN No 750 82.6% 

VGG16 + RF No 750 90.2% 

VGG16 + ANN No 300 77.33% 

VGG16 + SVM No 300 82.00% 

VGG16 + KNN No 300 83.33% 

VGG16 + RF Yes (simple) 12000 95.60% 

VGG16 + ANN Yes (simple) 12000 92.83% 

VGG16 + SVM Yes (simple) 12000 97.33% 

VGG16 + KNN Yes (simple) 12000 94.87% 

VGG16 + RF Yes (GAN) 600 89.33% 

VGG16 + ANN Yes (GAN) 600 93.83% 

VGG16 + SVM Yes (GAN) 600 80.67% 

VGG16 + KNN Yes (GAN) 600 83.33% 

VGG16 + ANN Yes (Simple Horizontal) 300 85.11% 

VGG16 + ANN 2-Level (Vertical+ GAN) 600 94.11% 

VGG16 + ANN 2-Level (Blur + GAN) 600 93.37% 

 

recall) as a function of false positive rate (false positives / total number of actual 

negatives). The proposed two-level data augmentation works better for lung 

adenocarcinoma class than for lung squamous cell carcinoma. We have also added 

ROC curve for disease (lung adenocarcinoma or lung squamous cell carcinoma) 

versus normal. 
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Fig. 9. ROC curve of lung classes with the proposed method. 

6.5 Replacing VGG16 with Pre-trained CNN 

Previously, we used the VGG16, a pre-trained model using ImageNet, followed 

by an output layer trained on the lung dataset. This is a method of transfer learning 

using a pre-trained network. Implementing a similar technique, we propose to create 

our own pre-trained network using a CNN architecture that will be trained on the 

colon dataset and be used on a small batch of the lung images. Chapter 4 describes 

both the colon and lung dataset. The CNN architecture is shown in Table 4 in 

Section 6.1. The CNN is first trained over the entire colon image dataset. These 

weights are saved and will not be trained or changed again. The last output layer is 

replaced with a dense layer that takes in 3 filters and is a softmax activation function 

as the lung images have three classes. The last layer is trained and the model uses 

the previous weights trained by the colon dataset in order to predict classes for the 

lung dataset.  

This transfers the features learned from the colon dataset to the lung images. In 

total, 300 lung images are used for training the output layer and 3000 images are 
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used to validate the model. We receive an accuracy that ranged from 84% to 86% 

with an average accuracy of 85%. This simulates a situation where we are 

presented with a large number of images of one type of cell but are lacking images 

of the other type of cell.  

We have also repeated the experiment under the assumption that the colon 

dataset was small in size, but we have enough lung cell samples. Similarly, transfer 

learning is applied such that the features learned from the lung dataset are utilized 

for classifying colon cell images. Note that we modify the output layer of the CNN 

architecture in order to accommodate the fact that the colon dataset had only two 

classes. The pre-trained model is able to predict colon classes with a 90% accuracy 

on the validation set. This model uses the pre-trained weights from CNN trained with 

the lung dataset and fine-tune the model by training the output layer using 300 colon 

images. Furthermore, 3000 colon cell images are dedicated for the validation set. 

There is some variance over different runs in the data and the average validation 

accuracy received is 89%.  

Transfer learning over the lung and colon cancer histopathological dataset 

seemed to be an effective way to generate models. Table 15 shows the validation 

accuracies for predictions using both the colon and lung datasets. The average 

prediction accuracy of the colon dataset is higher than that of the lung dataset. 

There might be a few reasons for this. For the lung prediction, the model was pre-

trained on the colon dataset which only included 10,000 images and had only two 

classes. This model was to then predict a dataset that had three classes. In the  
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Table 15. Results from Pre-Trained CNN 

Model Data Augmentations Training 
Dataset 

Validation Accuracy 

Transfer Learning  
Using Cell Images 

Colon to lung 300 86% 

Transfer Learning  
Using Cell Images 

Lung to colon 300 91% 

 

colon prediction case, the model was trained on 15,000 lung images that included 

three classes. Since the colon dataset was binary and the model was trained on a 

multi-class problem with more data the validation accuracy was higher when 

predicting colon images. Figure 10a and Figure 10b show the ROC curves for colon 

and lung datasets, respectively. Here we assumed disease as the positive class. 

The ROC graph shows that this model is less effective that the one in Figure 9, used 

to classify lung images using the proposed method. It can also be seen that the lung 

adenocarcinoma was similar to the proposed method but there was a huge improve 

in the ROC when looking at the lung squamous cell carcinoma classification. 

 
Fig. 10. (10a left) ROC curve of lung classes using a pre-trained CNN, 
(10b right) ROC curve of colon classes using a pre-trained CNN. 
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7 CONCLUSIONS 

This thesis discussed and implemented various methods for the automatic 

classification of lung cancer images using a small training set. We were presented 

with a small lung and colon image dataset consisting of 250 images per class or 

1250 images in total. There are three lung classes and two colon classes. We first 

demonstrated the effect of a small training dataset using a shallow CNN. The 

maximum accuracy achieved with 750 training data points was only 82% for the lung 

dataset. Different size training datasets were compared to understand the effect of 

the number of training samples. Using the VGG16 pre-trained network and various 

output layers such as ANN, KNN, SVM, and RF, we were able to apply the well-

known method of transfer learning. Firstly, we used the augmented dataset which 

included 12000 images. Transfer learning was applied to different training set sizes 

with the same classifiers stated previously yielding a highest accuracy of 97.33% 

with 12000 training datapoints. Secondly, we implemented simple data 

augmentation techniques (flips, rotations, blur, shear, etc.) on a smaller dataset and 

utilized this augmented dataset in order to train the final layer of VGG16 network. 

These techniques yielded a result of 94.6% accuracy while using only a limited 

number of training samples, i.e. 1200 data points. Next, we performed a more 

complex data augmentation technique that utilized GANs. These GANs were used to 

generate a larger dataset. Two implementations of GANs were used: one was 

trained with only 100 images per class and the other was trained with 250 images 
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per class. These generated images were used with the VGG16 model with multiple 

classifiers. The ANN network classifier with the VGG16 model achieved a 93.3%.  

We observed that it was critical to use enough data-points to train GANs in order 

to generate reliable new images. However, for most of the scenarios, the original 

training dataset may not have enough samples to successfully train the GANs. In 

order to resolve this problem, we proposed a two-level data augmentation technique 

in which the simple data augmentation technique is followed by a GAN in order to 

generate new images in a sequential fashion. This proposed two-level data 

augmentation technique had significantly better validation accuracies from those of 

one-level data augmentation. With using only 150 original images the proposed two-

level data augmentation technique yielded a 94.11% validation accuracy. Lastly, we 

explored the transfer learning among datasets that are similar in nature – in our case 

all images were collected from cells. We have replaced the VGG16 network with a 

shallow CNN pretrained using a colon cancer dataset and tested the network on 

lung dataset. The vice-versa was also implemented. When trained over the colon 

dataset to predict lung cancer cells the validation accuracy was 86% and 91% vice 

versa. 

The proposed two-level data augmentation technique yielded a high validation 

accuracy, 94.11%, with the smallest set of training data (150 samples from the 

original dataset). The highest validation accuracy recorded was 97.33% obtained 

with 12000 training images from the original augmented dataset.  Note that using 

two-level data augmentation we can achieve almost the same performance even 
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when the number of training samples is reduced by 98.75% ((12000-

150)/12000*100).  
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