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ABSTRACT

SPARSE CODING FOR DATA AUGMENTATION OF HYPERSPECTRAL MEDICAL
IMAGES

by Rojin Zandi

Hyperspectral imaging presents detailed information about the electromagnetic

spectrum of an object in three dimensions. The significant point about the hyperspectral

images is that it contains tens or hundreds of spectral layers, which provide precise data

about the composition of the studied material. Therefore, hyperspectral images have been

popular in many fields of study, such as medical diagnostic imaging. Speed and precision

are key points to save human life in disease diagnosis, and applying machine learning

techniques to medical hyperspectral images helps answer this need. Convolutional neural

networka are one of the most popular machine learning methods for classifying medical

images. However, training neural networks, in general, requires a large dataset, and the

small size of medical imaging datasets results in a problem. In this thesis, we propose

sparse coding algorithms to regenerate the hyperspectral data and feed it to the CNN

model for training. This issue can be solved with the help of sparse coding algorithms. We

focus on a colon cancer hyperspectral image dataset and different sparse coding methods

utilizing K-SVD and A+ (with and without patching) as dictionary learning methods. The

new reconstructed images have been added to the original image set and provided three

new training sets with doubled number of images (246) for training the CNN. Using the

augmented datasets, the test accuracy has risen to 86.53%, which is 30.13% higher than

the original dataset (56.4%). We have also generated another dataset which is a mixture of

the three reconstruction methods, and increased the number of training images to 266.

Using the mixed dataset, the accuracy has reached 94.23%, and the difference between

the test and training accuracy has dropped by 15.42%. Also, the precision has increased to

100%, which means there is no non-malignant image classified as a lesional image.
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1 INTRODUCTION

Hyperspectral imaging is a technological breakthrough for collecting imagery data

with more spectral details. Each hyperspectral image contains three dimensions, including

two spatial and one spectral dimension [1], as shown in Figure.1. The spectral dimensions

are similar to RGB (Red-Green-Blue) images, but the spectral dimension contains more

than three layers or channels. Increasing the number of spectral channels provides more

data about the electromagnetic spectrum of the scene. Every material has a specific

spectral response, and hyperspectral images aim to capture these responses, which helps

us to understand the material composition of an object [2]. Furthermore, RGB images are

not able to tap the spectral information of the target object because of being highly

quantized. Hence, hyperspectral images are preferred in many study cases in comparison

with RGB images.

Fig. 1. Dimensions of a hyperspectral image.

The ability to collect spectral details of an object in an image has been desirable in

different applications, such as agriculture [3], crime scene detection [4], remote

sensing [5], and medical imaging [6], [7]. In medical applications, hyperspectral images
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can provide precise and nearly real-time information about the studied biomarker by the

characteristics of the reflected spectrums. This aspect makes hyperspectral images helpful

in diagnosing diseases, such as cancers [8], heart and artery diseases [9], shock [10], and

retinal diseases [11]. In this thesis, our focus is on cancer detection.

The process of diagnosing cancer disease depends on the cancer type and its

symptoms, and the medical imaging method is chosen based on these factors. Computed

Tomography (CT), Magnetic Resonance Imaging (MRI), ultrasound, Positron Emission

Tomography (PET), Mammography, Single-Photon Emission Computed Tomography

(SPECT), and optical imaging are the main imaging methods for cancer detection [12],

and they are usually used for early detection or after removing the tumor and

chemotherapy to prevent the recurrence of the disease. Despite the fact of being

commonly used, these methods have different limitations and even may cause side effects

for the patient [13].

As mentioned above, hyperspectral imaging is another technique used for cancer

diagnosis, which can obtain more spectral information about the tumor or lesioned area.

Although medical hyperspectral images are more challenging to obtain and process, they

have been achieving promising results, which is because of the development of machine

learning algorithms and computational power [14].

In 2006, Seong G. Kong et al. [15] used hyperspectral images with 21 spectral layers

for detecting cancerous tumors on mouse skin. The spectral range of images was 440 nm

to 640 nm with 10 nm spectral resolution, which provided sufficient information for

classifying the malignant skin tumors without biopsy. Another cancer diagnosis research

via hyperspectral imaging was done on breast tumors, which is the most common cancer

type among American women [16]. [17] studied 156 hyperspectral cubes of 56 female

rats with the wavelength 450 to 700 nm that resulted in higher sensitivity and specificity

in comparison with the histopathological method. As shown in Fig.2, after the female
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breast (11.7%) and lung (11.4%), prostate cancer has the most cases (7.3%)

worldwide [18]. A prostate cancer diagnosis study has been done on 11 mice using

hyperspectral imaging [19]. The dataset of this research contains images with the spectral

range of 450 to 950 nm with 31 layers, and there are 1.4 million pixels in each image. To

classify the data, they have applied least squares support vector machine, and it resulted in

96.9% specificity and 92.8% sensitivity.

Fig. 2. Percentage of 10 most common cancer cases in 2020

In medical computer vision, deep learning methods are popular for disease diagnosis

and classifying biomarkers. Mostly these methods require large datasets to train an

accurate model which is critical for medical applications. Unfortunately, medical datasets

are usually small and contain a few hundred images; hence researchers have suggested

different methods to tackle this issue, such as probabilistic labels [20] and Generative

Adversarial Networks (GAN) [21]. Furthermore, although hyperspectral images are

precise and provide rich spectral information, they are expensive and complicated to
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obtain [22]. Collecting a medical hyperspectral image dataset is a challenging and

prolonged process.

In this thesis, we aim to classify the lesional and non-lesional hyperspectral images of

the colon cancer dataset [23]. This dataset contains 175 images of 13 patients in lesional

and non-lesional classes. Previous work, done by Mobilia et al. [24], has applied an

optimized Convolutional Neural Network (CNN) for hyperspectral image classification.

Due to lack of enough data, the accuracy of the proposed model was not satisfying even

though the dataset was enlarged using simple image position augmentation. In this thesis,

we propose sparse coding methods for hyperspectral image data augmentation. Sparse

coding algorithms aim to represent the data as a linear combination of a sparse

representation and a dictionary. In Chapter 2, we explain sparse representation and

dictionary learning algorithms and compare them. Chapter 3, reviews the colon cancer

dataset and the work done by Mobilia et al. [24]. Chapter 3 also contains the

pre-processing, model development, and their results. In Chapter 4, we apply different

sparse coding methods to reconstruct the hyperspectral images of the colon cancer dataset

and add the reconstructed images to the training set. We compare the performance of each

reconstruction method and study their effect on classification. Finally, in Chapter 5, we

present the conclusion and future work.
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2 SPARSE CODING

Sparse coding methods are unsupervised algorithms that allow us to learn an

over-complete set of K basis vectors. A sparse coding problem is divided into two parts,

known as sparse signal representation and dictionary learning. In this chapter, we explain

the structure of sparse coding and discuss the most applicable algorithms, which are

required for sparse modeling, such as matching pursuit [25], orthogonal matching

pursuit [26], least squares orthogonal matching pursuit [27], basis pursuit [28], and least

absolute shrinkage and selection operator [29]. In addition, method of optimal

direction [30], K-means [31], K-SVD [32] and A+ [33] methods will be discussed as

dictionary learning methods.

2.1 Sparse Representation

Sparse coding has recently become popular for compressing, collecting, and

reconstructing signals and images. It is advantageous in multifarious areas of machine

learning, and signal processing, such as:

∙ Image classification [34]

∙ Image reconstruction [35]

∙ Edge detection [36]

∙ Clustering [37]

∙ Background subtraction [38]

∙ Image super-resolution [39]

∙ Face recognition [40]

A sparse coding algorithm is a simulation of a mammalian’s visual cortex. When we

see an image, our visual cortex generates an accurate representation of that object. Hence,

sparse coding algorithms aim to extract statistically independent and meaningful
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structures in the image using a robust solution [41]. Let 𝑥 ∈ Rn be our original image,

using sparse representation, and every image can be modeled as a linear combination of:

𝑥≈𝐷𝛼 (1)

where 𝐷 is a set of basis vectors, also known as dictionary with K×N dimension size,

and 𝛼 is the sparse representation of the image.

Figure. 3 shows the sparse coding problem, where the red pointers are the selected

atoms for representing the data. The set of these atoms is known as support Ds. In this

figure, the support set is Ds = {4,5,9} and L =3 which is the number of non-zero

elements of 𝛼.

Fig. 3. Sparse coding: dictionary is multiplied with the sparse representation matrix. The
red arrows show the non-zero values, which are the selected atoms (supports)
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Considering that we are using approximation methods to model the data, there is a

residual error ε in the equation:

𝑥=𝐷𝛼+𝜖 (2)

We aim to reduce the error, and the objective function of this optimization problem is:

min
𝛼∈Rm

1
2
‖𝑥−𝐷𝛼‖2 +λG(𝑥) (3)

where λG(x) is a regularization term that controls the sparsity of 𝛼, and choosing G(x)

depends on priorities of the problem such as smoothness, sparsity, and redundancy. In this

thesis, we require smoothness and sparsity and the G(x) function is defined by `0 norm:

min
𝛼∈Rm

1
2
‖𝑥−𝐷𝛼‖2 +λ ‖𝛼‖0 (4)

Considering that we use different norms, so it is useful to review their definition. In the

following (Equations. 5 to 8) 𝑎 and 𝑏 are two vectors of which we aim to find the

distance between d:

∙ `0 norm (Hamming distance):

d0(𝑎,𝑏) = ‖𝑎−𝑏‖0 =
d

∑
i=1

I(𝑎= 𝑏) where I(𝑎= 𝑏) =


1 if 𝑎= 𝑏

0 if 𝑎 ̸= 𝑏

(5)

In later sections, `0 gives us the number of non-zero values in the sparse

representation. Notice that `0 is non-convex and it makes the sparse coding problems

more complex.

∙ `1 norm (Manhattan distance):

d1(𝑎,𝑏) = ‖𝑎−𝑏‖1 = ∑
i=1

|𝑎i −𝑏i| (6)
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∙ `2 norm (Eucleadian distance):

d2(𝑎,𝑏) = ‖𝑎−𝑏‖2 =

√√√√ d

∑
i=1

(𝑎i −𝑏i)2 (7)

∙ `∞ norm, which in some cases is replaced with `1 norm, because it is the rotated

version of `1 norm (Fig. 4):

d∞(𝑎,𝑏) = ‖𝑎−𝑏‖
∞
=

d
max
i=1

‖𝑎i −𝑏i‖ (8)

Fig. 4. Unit balls in R2 for the different norms.

There are two main methods to find the sparse representation: greedy methods [42]

and relaxation methods [43], which are described in detail below.

1) Greedy method: An iterative algorithms, which searches for the sparsest solution in

each iteration, known as greedy method. In each iteration, it searches for a new

solution, while keeping the previous solution. Matching Pursuit (MP) [25],

Orthogonal Matching Pursuit (OMP), Least Squares Orthogonal Matching Pursuit

(LS-OMP), Stagewise Orthogonal Matching Pursuit (StOMP), generalized OMP

8



(gOMP), and Compressive Sampling Matching Pursuit (CoSaMP) are some

examples of greedy algorithms [44].

2) Relaxation method: Relaxation methods are based on convex optimization methods,

in which the smallest l1 or l2 norm of coefficients among all decompositions are

searched, that these algorithms relax the sparsity constraint. The most applicable

relaxation algorithms in sparse coding are basis pursuit [28], Least Absolute

Shrinkage and Selection Operator (LASSO) [29], Least Angle Regression

(LARS) [45], Focal Underdetermined System (FOCUSS) [46], and Iteratively

Reweighted Least Squares (IRLS) [47].

Figure 5 summarizes the sparse coding, mentioning some of the popular algorithms.

Fig. 5. Sparse coding map

2.1.1 Matching Pursuit

Matching pursuit [25] is a greedy algorithm that decomposes the data by using a

redundant dictionary. The notable point about this algorithm is its simplicity and using the

residual error in each step for attaining the best atom. In each iteration, MP selects one

9



atom as the initial column of the dictionary 𝑑i and then optimizes the approximation

problem in two steps. First, it finds the most correlated column of the dictionary using the

inner product of the residual error and 𝑑i, and then computes the new column of the

dictionary 𝑑n in each iteration n:

𝑑n = argmax
𝑑i

|⟨𝜖n−1,𝑑i,⟩|,1 ≤ i ≤ K (9)

where n is the number of iterations, and 𝜖n−1 is the residual error at (n−1) iteration.

The term ”matching” refers to the mentioned correlation. The next step is computing the

corresponding weight of the 𝑑n in the sparse representation vector 𝛼n. And then update

the residual error:

𝛼n = |⟨𝜖n−1,𝑑i,⟩| (10)

𝜖n = 𝜖n−1 −𝛼n𝑑n (11)

Finally, after n iterations, yn, which is the nth approximation of the data, is:

yn =
n

∑
j=1

𝛼n𝑑n (12)

Although matching pursuit is a simple approximation method, there are more precise

methods to apply such as OMP, LS-OMP and BP, which will be discussed in next

sections.

2.1.2 Orthogonal Matching Pursuit

Orthogonal matching pursuit was suggested by Tropp and Gilbert [26] as an improved

version of MP so it applies a similar procedure to achieve the representation. OMP is also

a greedy method, which approximates the optimal solution of the problem by adding one
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non-zero value at each iteration. In the first step, the sparse representation is initialized to

zero, and the residual error is equal to the input image:

𝜖0 = 𝑥−𝐷𝛼 (13)

To search for the first atom, the 𝑑i is multiplied with a scaler c, which is obtained by:

copt = 𝑑T
i 𝜖n−1 (14)

The obtained scalar value is multiplied with the chosen atom 𝑑i in the dictionary and then

the residual error is subtracted from the computed value. Using the `2 norm, we achieve a

minimum error value 𝐸i

𝐸i = minc ‖c𝑑i −𝜖n−1‖2
2 (15)

After comparing 𝐸i values, the new atom with the smallest 𝐸i is chosen and the

corresponding coefficient in the sparse representation will be computed:

𝛼n = min𝛼 ‖𝐷𝛼−𝑥‖2
2 ,1 ≤ i ≤ K (16)

And the representation vector is updated. The significant point about OMP is the

orthogonality of the chosen atoms Ds and using the residual error which results in the

uniqueness of atom selection. In other words, the selected atom will never be chosen

again.

2.1.3 Least Square Orthogonal Matching Pursuit

LS-OMP is another greedy method, which computes and uses the actual error to

update the terms, while OMP uses the residual error. The algorithm steps are similar to

OMP, but in the first step,𝐸i is computed as:

𝐸i = min𝛼 ‖𝐷𝛼−𝑥‖2
2 (17)
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As it can be seen, there is no chosen atom, so the error is computed for all the columns of

the dictionary to find the atom with minimum error, which makes the LS-OMP slower

than the other two mentioned methods (section 2.1.1 and 2.1.2). After comparing the

error, the support set and the sparse representation vector are updated, and then to control

the stopping criterion the residual error is computed.

As mentioned above the LS-OMP is slower but more precise than MP and OMP.

Figure 6 compares these three greedy methods in terms of accuracy and speed.

Fig. 6. Pursuit algorithms comparison

2.1.4 Basis Pursuit

Basis pursuit is a relaxation-based algorithm which aims to achieve the most precise

and sparse approximation of data by relaxing the optimization constraints. So, it becomes

a convex optimization problem that can be solved by linear programming (interior point)

algorithms. In Equation 2 BP searches for a coefficient with minimum `1 norm.

min
α

‖𝑥−𝐷𝛼‖2
2 +λ ‖𝛼‖1 (18)

Notice that under certain conditions of 𝐷 and L the `1 and `0 norm of 𝛼 can be equal,

and the BP algorithm uses this method to converge to the global optimum point.

2.1.5 Least Absolute Shrinkage and Selection Operator

In 1994, Tibshirani [29] proposed a new method known as LASSO which searches for

an optimized sparse solution and meanwhile controls the sparsity (Equation 3). LASSO

shrinks the residual sum of squares to zero and its performance is more efficient than
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repetitive greedy algorithms, but the issue with this method is the `0 norm. To tackle this

problem, LASSO transforms the sparse approximation to a convex problem by changing

the `0 to `1 norm (relaxing the constraints):

min‖𝛼‖2
1 s.t. 𝑥=𝐷𝛼 (19)

So, the objective function becomes:

argmin
𝑥

‖𝑥−𝐷𝛼‖2
2 s.t ‖𝛼‖1 ≤ L (20)

where the term ‖𝛼‖1 ≤ L controls the sparsity. There are various methods to solve

convex optimization problems such as directional derivatives, but `1 norm cannot be

directly derived. The solution to this problem is deriving along the eigenvector 𝑢:

∇ f (𝛼,𝑢) = lim
t→ 0+

f (𝛼+ t𝑢)− f (𝛼)

t
(21)

Using this equation, the optimized 𝛼 is found.

2.2 Dictionary Learning

As discussed in the sparse representation in Section 2.1, signals can be modeled as a

linear combination of a sparse approximation and a given dictionary (Equation 3). We

studied five methods to approximate the sparse representation, and in this section, we will

study algorithms to achieve the accurate dictionary. To obtain the dictionary there are

mainly two paths: using fixed dictionaries, and applying dictionary learning algorithms.

Fourier bases [48], wavelets [49], discrete cosine bases [50], and contourlet [51] are

some of fixed dictionaries which are known as transforms and have been used to solve

sparse coding problems. There are another group of fixed dictionaries that can be tunned

with respect to input image, such as curvelets [52] , bandlets [53], and wavelet
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packets [54]. To apply the transform T on input signal x with L non-zero elements, the

steps are mentioned below:

1) Apply the chosen transform method and select L coefficients, then make the rest of

the elements zero.

2) Obtain the approximated signal 𝑥̂L, using the inverse transform

3) Compute the difference between 𝑥 and 𝑥̂L, which is a function of L

e2(L) = E‖𝑥− 𝑥̂L‖2
2 (22)

Our goal is to see the drop of the error e2(L) with maximum speed. To escalate the error

drop, researchers have used a mathematical description of the data. They have replaced

real images with a piecewise smooth region model, separated with piecewise smooth

edges. Using the mathematical description of the data resulted in more accurate

transforms such as contourlet [51] and curvelet transforms [52]. However, real images are

more complicated than the analyzed signals, so fixed dictionaries lead to unsatisfactory

results. To solve this issue, dictionary learning algorithms were implemented. In 1996,

Olshausen and Field [41] published a paper which studied simple cells in mammalian

visual cortex and showed that the brain applies a sparse algorithm for processing scenes.

However, the suggested algorithm in the paper was not sufficiently effective, it proved

dictionary learning is more advantageous than PCA. The study of Olshausen and Field

was the beginning of many dictionary learning based researches and algorithms, such as

MOD [30], K-SVD [32] and A+ [33].

There are various parameters in a dictionary learning including number of non-zero

elements L, size of dictionary K ×N, and the desired residual error 𝜖. The format of the

objective function of the problem depends on known parameters. If L is known, the

objective function is:

min
𝐷,𝛼 j

M

∑
j=1

∥∥𝑥 j −𝐷𝛼 j
∥∥2

F s.t. ∀ j,
∥∥𝛼 j

∥∥
0 ≤ L (23)
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min
𝐷,𝛼 j

M

∑
j=1

∥∥𝛼 j
∥∥

0 s.t. ∀ j,
∥∥𝑥 j −𝐷𝛼 j

∥∥2
F ≤ 𝜖 (24)

where M is number input signals. In Equation 23, we aim to minimize the representation

error with a fixed number of non-zero elements. Hence, the𝐷 and 𝛼 and their

multiplication are undefined, there is a scale ambiguity between them, therefore there is

no unique solution for this problem. To fix this issue, the atoms must be forced to have `0

norm as a constraint of the objective function (Equation 23). In general, if N ≤ K the

dictionary is overcomplete and the sparse representation is unique, but if K < N, it

becomes an `0 minimization problem [32]. In this case, 𝐷 must have 2L columns and

every column of it must be linearly independent.

2.2.1 Method of Optimal Directions

In 1999, Engan et al. proposed a simple and fast dictionary learning method know as

Method of Optimal Directions (MOD) [30]. This algorithm applies Frobenius norm to

compute the distance between the input signal 𝑥 and approximated signal𝐷𝛼.

min
𝐷,𝛼

‖𝑥−𝐷𝛼‖2
F s.t. ∀ j,‖𝛼‖0 ≤ L (25)

MOD is performed in three steps:

1) Initialize dictionary:The initialized dictionary can be chosen from the predefined

dictionaries, like wavelet, or selecting M random elements from the training data.

2) Fix dictionary and update sparse representation: The sparse representation can be

obtained using any matching pursuit algorithm such as MP, OMP or LS-OMP.

3) Update dictionary using the updated sparse representation: When the sparse

representation is updated and fixed, we can minimize the quadratic expression at

Equation 25 with respect to the 𝐷, as a least squares problem. For minimization, the
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gradient of the quadratic expression must be nulled, which results in the dictionary

update formula.

∇D ‖𝑥−𝐷𝛼‖2
F = (𝑥−𝐷𝛼)𝛼T (26)

This optimization problem is done by Moore-Penrose pseudo inverse.

MOD is suggested in low-dimensional problems because it converges fast. But it is not

efficient in high-dimensional problems due to the difficulty of computing the

pseudo-inverse of High-dimension matrices. Hence, MOD is not widely applicable.

2.2.2 K-Means

K-means is an unsupervised iterative algorithm for partitioning data using a

pre-defined number of clusters. K-means is applicable in image segmentation, image

compression, market segmentation and many other signal processing areas. The algorithm

starts with random selection of K cluster centers known as centroids. Then the input

samples are grouped with the nearest centroid. The distance 𝑑 j of the centroid 𝑐 j, which

is in the cluster j, and the ith data point in the same cluster 𝑥 j
i , is minimized using the

following objective function:

min
k

∑
j=1

m

∑
i=1

∥∥∥𝑥 j
i −𝑐 j

∥∥∥2
(27)

Where m is the number of data points in each cluster. K-means clustering is able to solve

a specific type of dictionary learning problem. If there is only one non-zero value or atom,

this algorithm is helpful and obtains an extremely sparse representation. To optimize

Equation 21, after labeling nearest datapoints to the corresponding centroid 𝑑 j, as

mentioned above, the mean of each cluster is computed. Then the initialized centroid is

replaced with the new mean of the cluster (Equation 28).

𝑐 j =
1
m

m

∑
i=1

𝑥 j (28)
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The centroid value keeps being updated until it reaches a stopping criterion, for example:

∙ the distance 𝑑 j is satisfying.

∙ the cluster stops changing.

∙ the algorithm has reached the maximum iteration number.

K-means is not a practical method because there is no guarantee to reach the convergence,

but it is advantageous in other dictionary learning methods.

2.2.3 K-SVD

In 2006, Aharon et al. introduced a new dictionary learning algorithm, which is based

on K-means and singular value decomposition (SVD) [32]. Generally, the method is

similar to MOD with the same objective function (Equation 19), but the atoms of the

overcomplete dictionary D are updated one by one, and it updates the sparse

representation matrix 𝛼 row by row, by a pursuit algorithm. The update is done in two

main steps:

1) Approximating sparse representation: Using the initialized dictionary, the sparse

representation matrix can be approximated by any of the pursuit algorithms,

discussed in Section 2.1. The paper suggests using orthogonal matching pursuit

because of its fast performance and high accuracy.

argmin
𝛼

‖𝑥−𝐷𝛼‖2
F s.t. ∀ j,‖𝛼‖0 ≤ L (29)

2) Updating dictionary: In this step, the approximated 𝛼 is used to update the

dictionary (Equation 29). As mentioned above, K-SVD updates the dictionary atoms

one by one, by fixing all the atoms except one 𝑑k, and then updates it. In Equation
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29, the 𝐷𝛼 is broken into n rank-1 elements, each being one atom multiplied with

its corresponding coefficient in the sparse representation matrix 𝛼k.

‖𝑥−𝐷𝛼‖2
F =

∥∥∥∥∥𝑥−
n

∑
j=1

𝑑 j𝛼
T
j

∥∥∥∥∥
2

F

(30)

Assuming that all other atoms are fixed, Equation 30 can also be written like:

∥∥𝐸k −𝑑k𝛼
T
k

∥∥2
F =

∥∥∥∥∥(𝑥−
n

∑
j ̸=k

𝑑 j𝛼
T
j )−𝑑k𝛼

T
k

∥∥∥∥∥
2

F

(31)

where 𝐸k is the residual error while removing the atom k. Then, by applying the

SVD decomposition:

𝐸k =𝑈𝐴𝑉 T (32)

As we know, the first eigenvector is the largest and most important column of matrix

𝑈 , and we use the value of, 𝑢1, as the new 𝑑k. After updating 𝑑k, the corresponding

element in the sparse representation must be updated, too. The updated 𝛼k is:

𝛼k = 𝑣1𝐴1,1 (33)

where 𝑣1 is the first column of matrix 𝑉 and 𝐴1,1 is the first element of matrix 𝐴.

K-SVD is an accurate dictionary learning method, but because of computing the inverse,

its speed drops by increasing the dimension. There is a faster method, which will be

discussed in the next sections.

2.2.4 Adjusted Anchored Neighborhood Regression

Adjusted anchored neighborhood regression, known as A+, is a method for single

image super-resolution proposed by Timofte et al. [55]. In 2017, Aeschbacher et al.

modified the A+ algorithm for spectral super resolution based on the K-SVD [33]. In this

method, the dictionary and the sparse representation are obtained by K-SVD and OMP.
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Then, using the CIE 1964 color matching function, the input data and the overcomplete

dictionary are projected to a lower spectral resolution (LSR) and each atom of the

dictionary is shown by Ii. The objective function is:

argmin
𝛼

‖𝑥L −𝑁L𝛼‖2
2 +λ ‖𝛼‖2

2 (34)

where 𝑥L is the input data projected the LSR and 𝑁L is matrix of Ii nearest neighbors in

LSR. The goal of Equation 34 is to optimize the least squares error of the LSR data and

the multiplication of the 𝑁L and its corresponding sparse representation. Also, λ is the

regularization term for sparsity. The closed-form solution of Equation 34 is:

𝛼= (𝑁T
L 𝑁L +λ I)−1𝑁T

L .𝑥L (35)

Using the obtained 𝛼, the nearest neighbor’s matrix of the higher spectral resolution 𝑁H

is computed (Equation 36).

𝑥H =𝑁H𝛼 (36)

In order to have a projection from LRS to HSR, we define a projection matrix 𝑃i:

𝑃i =𝑁H .(𝑁
T
L 𝑁L +λ I)−1𝑁T

L (37)

𝑥H = 𝑃i𝑥L (38)

Finally, the LSR data can be embedded to the HSR by multiplying with the computed

projection matrix. In comparison with the K-SVD, A+ has faster speed and the

reconstruction phase is more accurate.
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3 CANCER DATASET

In this chapter, we study the hyperspectral colon cancer dataset, which we have used

in our research. First, we discuss how the dataset is collected and its numerical and

spectral characteristics. Then, we describe the cancer detection method proposed in [24]

using the same dataset. Next, we explain the pre-processing and data augmentation

methods used for this dataset, and finally, we study the architecture and implementation

of the neural network and the detection performance.

3.1 Colon Cancer Dataset

The colon cancer dataset is collected by researchers at the University of South

Alabama Medical Center Department of Surgery using Q-Imaging Corporation’s Rolera

EM-C2 camera with 14-bit digital output [23]. The dataset contains 175 hyperspectral

images of tissue samples in two classes: lesional and non-lesional (Fig.7).

Fig. 7. Hyperspectral image samples of lesional and non-lesional tissues of patient number
8

Each class includes hyperspectral images of 13 patients from at least two different

points of view (Table 1). The tissue samples were removed from the patients bodies

during surgery (Fig.8). And then, the sample is cut into two parts known as lesional and
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non-lesional, homogeneously. Using the samples, 88 and 87 images have been taken as

lesional and non-lesional, respectively.

Table 1
Number of Tissue Sample HS Images by Patients in Each Class

Patient ID Number of Lesional Images) Number of Non-lesional Images Total
1 3 2 5
2 5 4 9
3 3 5 8
4 8 6 14
5 9 9 18
6 4 6 10
7 15 6 21
8 9 6 15
9 7 8 15
10 8 12 20
12 10 9 19
13 5 6 11
14 2 8 10

Total 88 87 175

Fig. 8. A tissue sample of the colon cancer dataset

The size of each image is 501×502, and there are 38 layers in the spectral dimension,

which results in 9,557,076 pixels, and each pixel is 8 µm × 8 µm. The spectral intensity

of each pixel is between 0 to 16383, and it is unitless. The spectral range is 190 nm, from

360 to 550 nm, and the spectral resolution is 5 nm. As shown in Figure 9 and Figure 10,
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the spectral distributions in lesional and non-lesional images are different. The spectral

range of the blue, green, and red lights are shown with the dotted lines.

Fig. 9. Spectral distribution of lesional images

Fig. 10. Spectral distribution of non-lesional images
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3.2 Pre-processing Data

Mobilia et al. have developed three pre-processing schemes before applying CNNs as

classifiers on the colon cancer hyperspectral image dataset [24]. The schemes are:

1) Panchromatic (PC): All 38 spectral layers are merged into one single channel, so

there are 175 grayscale images.

2) Individual Band (IB): The hyperspectral bands are divided and treated as an

individual image. There are 175 images with 38 layers which results in 6650

grayscale images for training and testing.

3) Hypercube (Hyper): Original hyperspectral images with all 38 layers are used.

As mentioned in Section 1, high accuracy in training neural networks needs a large

dataset. Considering the small size of our dataset for training the CNN, images have been

divided into smaller segments as a data augmentation method. Based on the homogeneity

of images, the Hyper and PC images have been segmented. They have been presented in

two other styles, one with 100×100 and the other one with 50×50 pixel images. The

100×100 segmented Hyper and PC images have been named as segmented hypercubes

(SH) and segmented panchromatic (SPC), respectively, and in total adding up to 4375

images. The smaller segmented hypercubes (SSH) and smaller segmented panchromatic

are the Hyper and PC images with the size of 50×50, which in total are 17500 samples.

Table 2 is a summary of different schemes and corresponding features or pixels.

Table 2
Summary of Schemes and their Corresponding Features in Mobilia et. al

Scheme Total Number of Images Image Dimensions Number of Features
IB 6650 501 × 502 × 1 251502
PC 175 501 × 502 × 1 251502

Hyper 175 501 × 502 × 38 9557076
SPC 4375 100 × 100 × 1 10000
SH 4375 100 × 100 × 38 380000

SSPC 17500 50 × 50 × 1 2500
SSH 17500 50 × 50 × 38 95000
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After pre-processing, the data must be processed further to be proper as an input to

the CNN model. The required pre-processing actions for this CNN are normalizing,

flattening, and storing in hdf5 files. To normalize the dataset, the pixels are divided by

16383, which is the maximum output value of the camera. The next step is flattening and

then storing images (or image segments) and corresponding labels ( 0 for lesional and 1

for non-lesinonal). Mobilia et. al has used shuffling and one-hot-encoding method for the

validation set [24]. As mentioned, there are 13 patients, and the number of images for

each patient is known. The network is trained by images of 12 patients, and images of one

patient are used as test data.

3.3 CNN Architecture and Implementation

The convolutional neural network is made by three 2-dimensional convolution layers

with tanh as the activation function and the dropout regularization method. The

convolutional layers apply zero padding on the inputs. After each convolution layer, there

is a max-pooling layer which last one is followed by a fully connected layer. Table 3

shows a summary of the CNN architecture.

Table 3
CNN Architecture

CNN Layer Kernel Window Size Stride Feature Maps
Conv+tanh+Drop 5 X 5 X d 3 24

Max Pool 2 X 2 X d 2 24
Conv+tanh+Drop 3 X 3 X d 1 48

Max Pool 2 X 2 X d 2 48
Conv+tanh+Drop 2 X 2 X d 1 64

Max Pool 2 X 2 X d 2 64
FC Layer 24 - -

The network is implemented in Python using TensorFlow and the model uses the

Leave One Patient Out (LOPO) method for validation. In other words, images of 12

patients are used for training. Each scheme has a different number of epochs, which is

because of the convergence of the model with different datasets. Table 4 provides the test
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performance of the classification model with different pre-processing methods. As can be

seen, smaller segmented hypercubes dataset has the best performance in comparison with

other schemes.

Table 4
Test Performance of Mobilia et al.

Model Accuracy Precision Recall F1-score Pre-processing
IB 0.527 0.615 0.463 0.520 divided
PC 0.529 0.612 0.516 0.557 Merged

SPC 0.530 0.740 0.289 0.414 Segmented
SSPC 0.542 0.815 0.269 0.403 Segmented
Hyper 0.564 0.748 0.416 0.498 Original

SH 0.674 0.771 0.629 0.690 Segmented
SSH 0.741 0.853 0.666 0.747 Segmented
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4 PROPOSED METHOD AND PERFORMANCE COMPARISON

In this chapter, we review the limited data size problem of medical hyperspectral

datasets and discuss the methods we applied to solve this issue. Then, we provide results

of our methods. Finally, we compare the result of our data augmentation method with

other methods for classification improvement via data augmentation.

Hyperspectral image datasets provide valuable information about the target object, but

gathering them is expensive and complicated, especially in medical cases. We know that

training neural networks requires large datasets to achieve high accuracy. In this research,

we augment the colon cancer HSI dataset via sparse coding, and then we feed the new

dataset to the CNN model (Table 3) to classify the images as lesional and non-lesional.

4.1 Data Augmentation via Sparse Coding

To increase the number of images in the dataset, image reconstruction can be applied.

There are numerous reconstruction methods such as using adversarial networks [56]. We

have applied K-SVD, A+ with no patching and A+ with 3×3 patching for augmenting

colon cancer hyperspectral images.

The data reconstruction is done in MATLAB and the reconstruction error was

evaluated by the root-mean-square-error (RMSE) and relative RMSE (rRMSE). The

RMSE and rRMSE are computed by:

RMSE =
1
n

n

∑
i=1

√
(li

R − lI
O)

2 (39)

rRMSE =
1
n

n

∑
i=1

√
(li

R − lI
O)

2

li
O

(40)

where li
O and li

R are the ith element of the original and reconstructed image, respectively,

and n is the number of pixels.
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4.1.1 K-SVD

In this section, we use K-SVD method (Section 2.2.3) to reconstruct the hyperspectral

images [35]. The dictionary size is set to 64 with support L = 4. In this study, the

dictionary size, and the number of non-zero values in the sparse representation L are

hyperparameters that we need to optimize. Hence, we have used grid search for

optimizing our hyperparameters. We defined a set of numbers for each one of them. The

set for L contains 4, 5, 6 and 7, and the set for dictionary size contains 32, 64, 128, and

256. After comparing RMSE and rRMSE of these different dictionaries, we chose the one

with lowest error. The RMSE and rRMSE of reconstructing lesional hyperspectral images

with K-SVD method are 7.89x10−1 and 9.13x10−2, respectively. And, for non-lesional

images these numbers are 7.48x10−1 and 9.9x10−2. Reconstructing each image takes

194 seconds in average. The reconstructed and original hyperspectral images are shown in

Figure 11 and the difference between these two images is shown in Figure 12.

Fig. 11. The original and reconstructed image of lesional tissue via K-SVD
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Fig. 12. The difference between original and the reconstructed image lesional tissue via
K-SVD

4.1.2 A+ without patching

In general, the main goal of adjusted anchored neighborhood regression (A+) method

is improving single image super resolution [55], but Aeschbacher et al. [33] have changed

the algorithm for image recovery and reconstruction. The modified A+ has been proposed

for reconstructing hyperspectral images with the visible spectrum, which is 400 nm to 700

nm. However, the spectrum of the colon cancer dataset ranges from 360 nm to 550nm, so

we modify the color matching function using CIE 1964.

The sparsity regularization parameter λ is set to 0.1 and dictionary size is 512. As

discussed in last section (4.1.1), λ and dictionary size in A+ methods are also

hyperparameters and they must be optimized. Hence, we apply the same method with a

set of numbers for each hyperparameter. The set for λ contains 0.01, 0.1, 1 and 10, and
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the set for dictionary size in A+ contains 128, 256, 512, 1024. Notice that increasing the

size of dictionary requires more computing power and time.

Based on the discussed algorithms in section 2.2.4, we will attain two dictionaries:

Lower Spectral Resolution (LSR) and Higher Spectral Resolution (HSR). In our case, we

are working with RGB (3 spectral layers) and hyperspectral images with 38 spectral

layers, so we set the LSR and HSR to 3 and 38, respectively. A+ is six times faster than

K-SVD method and in average, each image reconstruction takes 33 seconds.

The RMSE and rRMSE of reconstructing lesional hyperspectral images (calculated by

Equation 39 and 40) is 4.98x10−1 and 5.76x10−2, respectively. Also, the RMSE and

rRMSE of non-lesional hyperspectral images are 4.77x10−1 and 5.67x10−2, respectively.

There is a positive correlation between the dictionary size and rRMSE. By increasing the

dictionary size, rRMSE drops, but there is a saturation point [33]. As mentioned above,

we try different numbers for the dictionary size. We start by 128, increase it to 256, 512

and finally 1024. The smallest reconstruction error drops by increasing the dictionary size

from 64 to 512, and then for 1024 the error increases, so we stop enlarging the dictionary

size.

Figure 13 shows the reconstructed and original colon cancer hyperspectral images of

patient number 8 in second field of view, and as can be seen the reconstructed image and

spectral plot contains bluer spectrum than the original image, which means the A+

without patching method has used lower spectrum for reconstruction. Each band in the

spectral plot presents one color spectrum (RGB). The difference between images is shown

in Figure 14.
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Fig. 13. The original and reconstructed lesional image using A+ and their spectral plot

Fig. 14. The difference between original and the reconstructed lesional image using A+.
The reconstruction error is for this images is 4.21×10−1
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4.1.3 A+ with 3x3 Patching

A+ with 3×3 patching applies the same algorithm as A+ without patching, but before

using the images for selecting dictionary atoms, the images are patched 3×3 which results

in overlapping patches with 9 pixels. As discussed in section 2.2.4, the A+ algorithm uses

a matrix of nearest neighbors of a pixel for atom selection and in this case the nearest

neighbor contains 9 closest pixels in the image. The difference is in the pre-processing

section, which helps to remove noise of the image by averaging pixel values. The result of

patching can be seen at the decrease of the error in comparison of previous methods.

Table 5 and 6 shows the RMSE and rRMSE of discussed algorithms. A+ with

patching size 3 has the lowest error. Although, increasing the number of patches,

increases the calculation and consequently the reconstruction time. In this study, we tried

to increase the number of patches, but MATLAB has 10000 matrix array limit and cannot

process A+ with patch sizes larger than 3.

Table 5
The RMSE and rRMSE of reconstruction methods for lesional set

Reconstruction Method RMSE rRMSE
K-SVD 7.89×10−1 9.13×10−2

A+ 4.98×10−1 5.76×10−2
A+ (Patch Size = 3) 3.56×10−1 4.17×10−2

Table 6
The RMSE and rRMSE of reconstruction methods for non-lesional set

Reconstruction Method RMSE rRMSE
K-SVD 7.48×10−1 9.9×10−2

A+ 4.77×10−1 5.69×10−2
A+ (Patch Size = 3) 3.39×10−1 4.07×10−2

In Table 5 and 6 K-SVD has the highest and A+ with patch size 3 has the lowest

RMSE and rRMSE. It is notable that one of the most important factors in reconstruction

error is the luminance. The pixels with lower luminance cause higher RMSE, so we
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compute rRMSE which is not biased based on the luminance. The original and the A+

(3x3) reconstructed image are shown in Figure 15, and the difference between these two

images can be seen in Figure 16.

Fig. 15. The original and reconstructed image via A+ (3x3)

Fig. 16. The difference between original and the reconstructed image via A+ (3x3)
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4.2 Image Classification by CNN

After reconstructing the colon cancer hyperspectral images, we use the original and

reconstructed images to improve the performance of the CNN model, as discussed in

section 3.1. Images of patients 3, 6, 9, and 12 have been separated as the test set, so we

have not used them in the reconstruction part. We have reconstructed 123 images with

three reconstruction methods which results in 297 images, and 246 of these images are

used in the training set. Notice that the test images must not be augmented, and we have

used the original images of the mentioned patients for testing, which in total resulted in

52 test images. To compare the effects of reconstruction methods, we have trained the

model with four different datasets:

∙ OKSVD: Original with images generated using K-SVD

∙ OA+: Original with images generated using A+

∙ OA+3by3: Original with images generated using A+ and patching of size 3 patching

∙ OMix: Original with images generated using

As mentioned in section 3.2, the data can be presented in three ways: Panchromatic,

Individual Band, and Hypercube. In this study, we have used the simple Hypercube

images, without any image segmentation. The datasets have been normalized and

flattened to be proper for feeding to the convolutional neural network. We have used the

CNN architecture discussed in the previous Chapter (Table3).

4.2.1 Classification Results

To study the result of increasing number of images in the dataset, we have increased

number of reconstructed images gradually. In each dataset, we have trained the model

with 123 (64 lesional + 59 nonlesional), 147(76 lesional + 71 nonlesional), 171(88

lesional + 83 nonlesional), 195(100 lesional + 95 nonlesional), 219(112 lesional + 107

nonlesional), and 246 (128 lesional + 118 nonlesional) training images. The OMix dataset

contains reconstructed images of all three reconstruction methods, and we have more than
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246 training images. Hence, we increased the number of images in the OMix dataset to

266 training images. This section has been implemented in Google Colab Pro with 25 GB

RAM. Unfortunately, because of lack of computing RAM, we could not use more data for

training. Following figures show the result of increasing training data with different

dictionary learning methods in testing and training accuracy of the colon cancer

classification problem.

We started with OKSVD dataset. The classification test accuracy with the 123 original

training images was 56.4%. In each step, 24 reconstructed images have been added to the

training set and number of iterations in each epoch is proper to the number of training

images. Notice that in the last step 27 images have been added. The reconstructed images

have some residual error, which makes them different from the original image. Hence,

adding reconstructed images increases the diversity of the training set and results in more

robust convolutional neural network. As anticipated, by increasing the number of training

images, the test accuracy increases, and it is to a value of 86.53%. Also, the training

accuracy raises from 75.24% to 90.79%. By looking at the last steps of Figure 17, there

appears to be a sharp upward pattern in the test accuracy. To follow this pattern, there was

no more K-SVD reconstructed images to add to the training set for classification, so we

have used the OMix dataset, which will be discussed further.

Precision =
True Positive

True Positive+False Positive
(41)

Recall =
True Positive

True Positive+False Negative
(42)

F1− score = 2× Precision×Recall
Precision+Recall

(43)
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Fig. 17. The classification accuracy of the OKSVD dataset

The data augmentation technique -using the OKSVD training set, also increases

precision, recall, and F1-score by 23.09%, 28.44%, and 27.47%, respectively. In other

words, there is a decrease in false classification of both cancerous and non-cancerous

tissues. The positive and negative term in Equations 41, 42 and 43, means the lesional and

non-lesional images, hence, true positive refers to the lesional image which has been

correctly classified.

Figure 18 demonstrates the result of data augmentation by A+ method without

patching. There is a consistent rise in the test accuracy, while the growth of training

accuracy in last three steps becomes slower. The highest achieved test accuracy is 82.67%

which is 26.27% higher than the original image set, and training accuracy reaches to

91.28%. As it is shown in Figure 18, the difference between the test and training accuracy

is dropping as the number of images in the training set increases. The precision and recall
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Fig. 18. The classification accuracy of the Original + A+ dataset

of this training set has risen to 94.91% and 68.29%. The F1-score has climbed from

49.8% to 76.07%.

The test and training accuracy of the OA+3by3 dataset are shown in Figure 19. There

is a steady rise in the test accuracy from 123 to 195 training images, then the trend

becomes slower and saturates around at 80.76%. The training accuracy has surged from

75.24% toward 91.25%, and the difference between test and training accuracy has

decreased from 18.84% to 10.94%, which shows augmenting the data has helped solving

the overfitting problem.
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Fig. 19. The classification accuracy of the Original + A+ (3x3) dataset

Improving the CNN performance by sparse coding is proven. In every three cases we

tried the maximum number of reconstructed images, but the figures are still moving

upward. So, we made a mixed dataset of the three reconstruction methods to add more

data for training. . In each step we added 24 images, except the last two steps, that we

added 27 and 20 images, respectively. The images were added randomly and fairly, in

other words, from each reconstruction method (K-SVD, A+ without patching, A+ with

3×3 patching) we have randomly selected 8 reconstructed images, which results in 24

images. Then these 24 images are added to the training set in each step.

By reaching to 266 training images, we reached to maximum RAM in Google Colab

and could not add more training data. Figure 20 demonstrates the accuracy improvement

by adding more data. In previous figures, the maximum number of training images was

246, but in the OMix dataset, this number is increased to 266. Also, the maximum
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accuracy with 246 images is 86.53% but then with 266 images ascents to 94.23%. Also,

the precision rises to 1 which means there is no non-lesional image predicted as lesional.

The recall and F1-score have reached 87.5% and 93.33%. Table 7 demonstrates the

confusion matrix of OMix dataset.

Fig. 20. The classification accuracy of the Original + Mix dataset

Table 7
The confusion matrix of OMix dataset (Test Set)

Predicted Positive
(Lesional)

Predicted Negative
(Non-lesional)

Actual Positive 21 3
Actual Negative 0 28

4.3 Performance Comparison

In this section, performances of different augmentation techniques are compared.

In [24], authors apply image segmentation method to improve the accuracy of the
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classifier, and its results are summarized in Table 4. The SSH scheme has the best

performance by 74.1% accuracy, which is less than the performance obtained using any of

the reconstruction methods. Furthermore, precision, recall, and F1-score of methods in

[24] are also less in comparison with our methods. We have also applied Simple Data

Augmentation (SDA) techniques such as rotating, flipping and cropping, but it did not a

have significant impact. Performance of the model trained by SDA is weaker than SH,

SSH, and any model trained by reconstructed data (the classification metric values are

presented in Table 8 and 9). Table 9 contains the results of original test data which does

not include any reconstructed or generated image.

Table 8
Accuracy of original and reconstructed datasets (%)

Metric Original OKSVD OA+ OA+3by3 OMix (266) SDA
Accuracy 75.24 90.79 91.28 91.25 97.65 83.71

Table 9
Classification metrics of original and augmented datasets (%)

Training Set Test Accuracy Test Precision Test Recall Test F1-score
Original 56.4 74.8 41.6 49.8
OKSVD 86.53 97.89 70.04 77.27

OA+ 82.67 94.91 68.29 76.07
OA+3by3 80.76 92.14 67.81 75.36

OMix 85.69 96.83 70.91 76.5
SDA 63.71 80.83 61.4 65.98
IB 52.7 61.5 46.3 52
PC 52.9 61.2 51.6 55.7

SPC 53 74 28.9 41.4
SSPC 54.2 81.5 26.9 40.3

SH 67.4 77.1 62.9 69
SSH 74.1 85.3 66.66 74.7

As seen in Table 9, the OKSVD outperforms each of other augmented datasets with

86.53% accuracy, 97.89% precision and 77.27% F1-score, and the OMix dataset stands in

the second rank. In Table 5 and 6, we show the RMSE and rRMSE of the three

reconstruction methods. OKSVD has the highest error in lesional and non-lesional
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reconstruction, which means the augmented data is more different, in comparison with

other two methods. We believe the difference between the original and reconstructed

images helps the model to be more robust, which results in lower classification error.

Although, the reconstruction error increases the robustness of the CNN model, there is a

limit for this performance gain. If the error exceeds, the reconstructed spectral layers will

not be similar enough to the original set. Hence, there is a trade-off between the

reconstruction error and the classification accuracy.

As shown in Figure 20, the accuracy of the OMix dataset with 266 training images

reaches 94.23%, which is the highest achieved value between all the mentioned methods.

Also, precision, recall and F1-score of this set are higher than previous methods.

Considering the reconstruction time and number of augmented data, we suggest using the

OMix dataset for the colon cancer hyperspectral image classification problem.
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5 CONCLUSION AND FUTURE WORK

This thesis aimed to improve the classification of the hyperspectral colon cancer

dataset by applying sparse coding as a data augmentation method. To classify this dataset,

we have applied Convolutional Neural Network (CNN), but the small size of the training

set caused overfitting and low accuracy in this classification problem. In most cases,

medical datasets contain a small amount of data, and this problem becomes more

challenging in hyperspectral datasets because obtaining these images is expensive and

complicated. To tackle this issue, the dataset was reconstructed by three dictionary

learning methods and then added to the original training set. We have used K-SVD, A+

without patching, and A+ with 3×3 patching. The new training sets were fed to the CNN

model to classify the lesional and non-lesional hyperspectral images. Using the

reconstruction methods, number of images in the training set were doubled in each new

dataset.

Table 10 compares the classification metrics for the proposed schemes. OKSVD has

the best performance in augmented datasets with 246 training images. Considering the

reconstruction RMSE and rRMSE, higher reconstruction error causes more diverse

training sets, which results in robustness of the CNN.

Table 10
Performance of classifier model with original and reconstructed datasets (%)

Training Set Accuracy Precision Recall F1-score
Original 56.4 74.8 41.6 49.8
OKSVD 86.53 97.89 70.04 77.27

OA+ 82.67 94.91 68.29 76.07
OA+3by3 80.76 92.14 67.81 75.36

OMix (246 images) 85.69 96.83 70.91 76.5
OMix (266 images) 94.23 100 87.5 93.33

As shown in Table 10, OKSVD method had the highest and OA+3by3 has the lowest

RMSE, and the effect of this error on training classification model is notable in Table 10.

Although, high RMSE might help the CNN performance, there is a balance between
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reconstruction error and classification accuracy. If the RMSE exceeds a threshold, the

images are not precisely reconstructed, and they are not advantageous for training the

CNN model.

To study the increasing trend of test accuracy, a new dataset was provided, which is a

combination of all three reconstruction methods, known as OMix dataset. Maximum

number of images in other datasets was 246, but we have added 20 more reconstructed

images to this dataset. Using the new dataset, the test accuracy has reached to 94.23%,

and also the difference between the test and train accuracy has dropped from 18.84% to

3.42%, which proves an improvement in the overfitting problem. We suggest using OMix

dataset, because the number of images can be two times more than OKSVD dataset, and

also reconstruction time is improves since reconstructing images with A+ methods is six

times faster than K-SVD method.

In the proposed work, we have applied convolutional neural network for classifying

the hyperspectral images. For future work, we suggest using transfer learning method for

image classification. Pretrained neural networks are popular in cases we are facing small

and more complicated datasets. Using Resnet50, VGG-16, and EfficientNet would

facilitate image classification task. In [24], author has utilized transfer learning but

showed that the performance does not improve without data augmentation. We believe if

transfer learning is combined with OMix data augmentation, the performance can be

further improved.

Another suggestion for future work is using pairing samples as a data augmentation

method. In this technique, two images are randomly selected and their average for each

pixel is computed. The average image is added to training set, and it helps the

classification model to achieve higher accuracy.

To conclude, we have applied three sparse coding methods and made a mixed training

set of the original and reconstructed images to improve the CNN model performance. The
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experimental results show that augmenting hyperspectral colon cancer images increases

the robustness of classification model and helps to tackle the overfitting issue.
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