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ABSTRACT

LINEAR INVERSE PROBLEMS AND NEURAL NETWORKS

by Jasjeet Dhaliwal

We investigate two ideas in this thesis. First, we analyze the results of adapting

recovery algorithms from linear inverse problems to defend neural networks against

adversarial attacks. Second, we analyze the results of substituting sparsity priors with

neural network priors in linear inverse problems. For the former, we are able to extend an

existing compressive sensing framework to defend neural networks against ℓ0, ℓ2,and ℓ∞

norm attacks, and for the latter, we find that our method yields an improvement over

reconstruction results of existing neural network based priors.
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1 INTRODUCTION

Consider the linear system y = Ax+ e where A ∈ Cm×N ,x ∈ CN ,y,e ∈ Cm. Now

suppose we are given A and y and asked to recover x. In case m < N, the linear system is

underdetermined and without additional information, it is impossible to recover x exactly.

However, imposing additional constraints on x, such as sparsity, allows us to make

progress on this problem. This is the linear inverse problem we study in this thesis.

Separately, consider a function f : Rm 7→ Rn, and a finite set of points

X = {(xi, f (xi))}l
i=1 with xi ∈ Rm and another set X ′ = {x′i}k

i=1 with x′i ∈ Rm and

{xi}l
i=1∩{x′i}k

i=1 = /0. Now suppose we are given X and tasked with finding an

approximation f̂ to f such that f̂ (x′i) = f (x′i) for x′i ∈ X ′. Assuming l is some large

number and without having any additional information on the function f , we would need

our search space for f̂ to be rich enough, so as to find a good approximation f̂ . This is

where we turn to neural networks which have been shown to be universal function

approximators [1].

We have seen remarkable results on constrained linear inverse problems in recent

years [2]–[9]. Simultaneously, there has been tremendous success in applying neural

networks to problems in a wide array of problems [10]–[14]. Although progress in each

field has been largely independent of the other, researchers have become interested in

applying methods from one field to improve results in the other. We continue this line of

work and investigate two problems lying at the intersection of both fields.

1.1 Defending Neural Networks Against Adversarial Attacks

We start by considering the problem of defending neural networks against adversarial

inputs. In particular, we extend the framework introduced in [15] to defend neural

networks against ℓ2, ℓ∞, and ℓ0 norm attacks. We call this defense framework

Compressive Recovery Defense (CRD) as it utilizes recovery algorithms from the theory

of compressive sensing. For defending against ℓ2-norm and ℓ0-norm attacks, we use Basis
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Pursuit (BP) as the recovery algorithm and for the case of ℓ∞-norm attacks, we utilize the

Dantzig Selector (DS) with a novel constraint. For each recovery algorithm used, we

provide rigorous recovery guarantees that do not depend on the noise generating

mechanism and can therefore be utilized by CRD against any ℓ2, ℓ∞, or ℓ0 norm attacks.

Finally, we experimentally demonstrate that CRD is effective in defending neural

networks against state of the art ℓ2, ℓ∞, and ℓ0-norm attacks.

1.2 Neural Networks as Priors in Linear Inverse Problems

Generative priors have been shown to provide improved results over sparsity priors in

linear inverse problems. However, current state of the art methods suffer from one or

more of the following drawbacks: (a) speed of recovery is slow; (b) reconstruction quality

is deficient; (c) reconstruction quality is contingent on a computationally expensive

process of tuning hyperparameters. In this work, we address these issues by utilizing

Denoising Auto Encoders (DAEs) as priors and a projected gradient descent algorithm for

recovering the original signal. We provide rigorous theoretical guarantees for our method

and experimentally demonstrate its superiority over existing state of the art methods in

compressive sensing, inpainting, and super-resolution.

1.3 Organization

We begin by providing the necessary background on linear inverse problems in

Section 2. Section 3 provides an introduction to neural networks and adversarial inputs.

We investigate the problem of defending neural networks against adversarial attacks in

Section 4 which is based on the work done in [16]. Finally, in Section 5 we utilize neural

network based priors for solving linear inverse problems which is based on the work done

in [17]. The thesis is structured such that Section 4 and Section 5 are self-contained and

can be read independently.
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2 LINEAR INVERSE PROBLEMS

2.1 Recovery Problem

Linear inverse problems can be formulated mathematically as y = Ax where y ∈ Cm is

the observed vector, A ∈ Cm×N is the measurement process, and x ∈ CN is the original

signal. The problem is to recover the signal x, given the observation y and the

measurement matrix A.

Classic linear algebra results dictate that in order to recover x, we need m≥ N,

otherwise, the system is underdetermined and there are zero or infinitely many solutions.

However, one may ask whether x can be recovered in case certain constraints are imposed

on the structure of x. Surprisingly, it was discovered that an s-sparse vector x can be

recovered with high probability provided m≥Cs ln(N
s ), where C > 0 is a universal

constant (independent of s, m, and N ). We first make these notions precise and then

introduce recovery algorithms.

Let x be a vector in CN and let S⊆ {1, . . . ,N} with S = {1, . . . ,N}\S

Definition 1. The support of x, denoted by supp(x), is the set of indices of the non-zero

entries of x, that is, supp(x) = {i ∈ {1, . . . ,N} : xi ̸= 0}.

Definition 2. The ℓ0-quasinorm of x, denoted ∥x∥0, is defined to be the number of

non-zero entries of x, i.e. ∥x∥0 = card(supp(x)). A vector x is called s-sparse if ∥x∥0 ≤ s.

We use xh(k) to denote a k-sparse vector in CN consisting of the k largest (in absolute

value) entries of x with all other entries zero. For example, if x = [4,5,−9,1]T then

xh(2) = [0,5,−9,0]T . Note that xh(k) may not be uniquely defined. In contexts where a

unique meaning for xh(k) is needed, we can choose xh(k) out of all possible candidates

according to a predefined rule (such as the lexicographic order). We also define

xt(k) = x− xh(k). If x = [x1,x2]
T ∈ C2n with x1,x2 ∈ Cn, and if x1 is k-sparse and x2 is

3



t-sparse, then x is called (k, t)-sparse. We define xh(k,t) = [(x1)h(k),(x2)h(t)]
T , which is a

(k, t)-sparse vector in C2n.

Definition 3. For p > 0, the ℓp-error of best s-term approximation to a vector x ∈CN is

defined as

σs(x)p := inf
{
∥x− z∥p,z ∈ CN is s-sparse

}
Definition 4. The s-th restricted isometry constant δs = δs(A) of a matrix A ∈ Cm×N is

the smallest δ ≥ 0 such that

(1−δ )∥x∥2
2 ≤ ∥Ax∥2

2 ≤ (1+δ )∥x∥2
2

for all s-sparse vectors x ∈ CN . If A ∈ Cm×N is a matrix, we denote by AS ∈ Cm×|S| the

column sub-matrix of A consisting of the columns indexed by S. Next, we introduce two

primary recovery algorithms used in linear inverse problems.

2.2 Recovery Algorithms

A natural approach to consider when reconstructing an s-sparse vector x ∈ CN from

its measurement vector y ∈ Cm is to solve ℓ0-minimization problem

minimize
z∈CN

∥z∥0 subject to ∥Az− y∥2 ≤ η (1)

One approach for this problem could be to solve for Asz = y where the solver iterates

over all possible s-size subsets of [1,2, . . . ,N]. However, since there are
(N

s

)
such subsets,

this approach is computationally prohibitive. In fact, as the next theorem shows, (1) turns

out to be an NP-hard problem.

Theorem 5 (Theorem 2.17 in [18]). For any η ≥ 0, the ℓ0-minimization problem defined

in (1) for general A ∈ Cm×N and y ∈Cm is NP-hard.

4



2.2.1 Basis Pursuit

Since (1) is a non-convex NP-hard problem, the next step to consider is a convex

relaxation of the problem that can be solved in practice. The convex relaxation of (1) is an

ℓ1-minimization problem:

minimize
z∈CN

∥z∥1 subject to ∥Az− y∥2 ≤ η (2)

In fact (2) can be formulated as a Second Order Cone Programming (SOCP) problem

and solved using off-the-shell solvers. The algorithm for solving (2) is commonly referred

to as Basis Pursuit (BP) and shown in Algorithm 1.

Algorithm 1 Basis Pursuit

Input: The observed vector y ∈Cm, where y = Ax̂+e, the measurement matrix A ∈Cm×N ,
and the norm of the error vector η such that ∥e∥2 ≤ η

Output: x# ∈ CN

1: procedure BP(y,A,η)
2: x#← argminz∈CN ∥z∥1 subject to∥Az− y∥2 ≤ η

3: return x#

As stated previously, reconstruction quality depends on the how sparse x is as well as

how close to an isometry A is. The next theorem provides guarantees on recovery with BP

based on the RIP constant of A and the sparsity of x.

Theorem 6 (Theorem 6.12 in [18]). Suppose that the 2s-th restricted isometry constant of

the matrix A ∈ Cm×N satisfies δ2s <
4√
41

. Then, for any x ∈ CN and y ∈ Cm with

∥Ax− y∥2 ≤ η , a solution x̂ of

minimize
z∈CN

∥z∥1 subject to ∥Az− y∥2 ≤ η

5



approximates the vector x with errors

∥x− x̂∥1 ≤Cσs(x)1 +D
√

sη

∥x− x̂∥2 ≤
C√

s
σs(x)1 +Dη

where the constants C,D > 0 depend only on δ2s.

2.2.2 Iterative Hard Thresholding

Another natural approach to consider for solving (2) is using gradient descent

methods. In particular, one can consider an iterative gradient descent procedure with the

update step defined as: xt+1 = xt− γA∗(Axt− y), where γ is the step size. However, since

the vector xt+1 is not necessarily s-sparse, the sparsity constraint on x may be violated. In

order to bypass this issue, we can add a thresholding step that selects the s largest entries

of xt− γA∗(Axt− y) which using our notation can be written as as (xt− γA∗(Axt− y))h(s).

This algorithm is referred to as Iterative Hard Thresholding (IHT) and outlined in

Algorithm 2.

Algorithm 2 Iterative Hard Thresholding

Input: Observed vector y ∈ Cn, measurement matrix A ∈ Cm×N , and sparsity level s, step
size γ , number of iterations T
Output: s-sparse vector x[T+1]

1: procedure IHT(y,A,s,T )
2: x[0]← 0
3: for i ∈ [0, . . . ,T ] do
4: z[i+1]← x[i]+ γA∗(y−Ax[i])
5: x[i+1] = (z[i+1])h(s)

6: return x[T+1]

Once again we can state recovery guarantees for IHT using the RIP constant of A and

the sparsity level of x.

Theorem 7 (Theorem 6.18 in [18]). Suppose that the 3s-th restricted isometry constant of

the matrix A ∈ Cm×N satisfies satisfies δ3s <
1√
3
. Then, for x ∈ CN , e ∈ Cm, and S⊂ [N]

6



with card(S) = s, the sequence xn defined by Algorithm 2 with y = Ax+ e satisfies, for

any n≥ 0,

∥x[n]− xS∥2 ≤ ρ
n∥x[0]− xS∥2 + τ∥AxS +∥2 (3)

where ρ =
√

3δ3s < 1, and τ ≤ 2.18
1−ρ

.
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3 NEURAL NETWORKS

Consider the problem of approximating a non-linear function f : Rm 7→Rn, given only

a finite set of points X = {(xi, f (xi)}l
i=1 with xi ∈ Rm. It seems natural that l would need

to be sufficiently large to capture f well. Moreover, if we want a good approximation f̂ to

f , we would want the search space of functions to be rich enough to represent the

complexity of f . For instance, if f is highly non-linear, we would expect our search space

of functions to contain such non-linear functions. This is where neural networks become

extremely useful. Neural networks are capable of approximating any Borel measurable

function with arbitrary accuracy as long as they have enough parameters [1].

A K-layer neural network is a function F : Rm 7→ Rn of the form:

F(x) = fK(WK(. . . f2(W2( f1(W1x+b1))+b2) . . .)+bK)

where Wi ∈ Rmi×mi−1,bi ∈ Rmi , for 1≤ i≤ K with m0 = m and mK = n. Each fi for

1≤ i≤ K is a non-linear differentiable function that is applied element wise to its input.

The functions fi are commonly referred to as activation functions and in most cases

fi = f j for 1≤ i, j ≤ K. Some examples activation functions are the Sigmoid function:

f (x) = 1
1+e−x or the Tanh function: f (x) = 2

1+e−2x −1. The set of matrices and biases

W = {(Wi,bi)}K
i=1 comprise the parameters of the neural network. The number K is called

the depth of the network and it has been shown that the complexity of functions that the

network can represent grows exponentially with K [19]–[21]. We next describe how the

values of the network parameters W are learned by solving an optimization problem.

3.1 Network Training

Neural network training refers to the procedure of finding a set of parameters values

that ”fit” a given dataset. More formally, given a set of data points X = {(xi,yi)}l
i=1 where

xi ∈ Rm,yi ∈ Rn,1≤ i≤ l, the goal of network training is to find values for the

parameters W such that F(xi) = yi. When yi ∈ {1,2, . . . ,k} for some positive integer k,

8



the task is commonly referred to as a classification task and yi is called the label for xi. In

this case, we can write the neural network function as F : Rm 7→ {1,2, . . . ,k}.

In order solve the above problem, we define an objective function L (F,X) and search

for parameter values that minimize it. This objective function is usually referred to as the

loss function. As an example, the Mean Squred Error (MSE) loss is defined as

LMSE(F,X) =
1
l

l

∑
i=1
∥F(xi)− yi∥2

2 (4)

Since each fi is differentiable, iterative gradient based methods can be utilized to

minimize loss functions such as (4). We note that in general, neural networks have

non-convex loss functions and thus there are no guarantees of finding global minima. For

a more thorough introduction to neural networks, we refer the reader to Chapter 6 in [22].

3.2 Denoising Auto Encoder

A DAE is a neural network F : RN 7→ RN that can be written as a composition of two

neural networks - an encoder neural network E : RN 7→ Rk where k < N and a decoder

neural network D : Rk 7→ RN . Therefore, F(x) = (D◦E)(x). Given a set of n samples

from a domain of interest {xi}n
i=1, the training set X is created by adding Gaussian noise

to the original samples. That is, X = {x′i}n
i=1, where x′i = xi + ei and ei ∼N (µi, σ2

i ).

The loss function for training F is the MSE loss : LMSE(F,X) = 1
n ∑

n
i=1 ∥F(x′i)− xi∥2

2.

The training procedure uses gradient descent to minimize LMSE(F,X).

3.3 Adversarial Inputs

Neural networks have recently been shown to be highly vulnerable to making

incorrect classifications with imperceptible changes to their input [23]–[25]. That is, for a

neural network F and a point x, it is possible for find δ such that F(x+δ ) ̸= F(x) where

∥δ∥p has a very small (almost zero) p-norm . Formally, let F : Rn 7→ {1, . . . ,k} be a

classifier, x ∈ Rn be an input sample where y ∈ {1, . . . ,k} is the label for x and F(x) = y.

Then, xadv = x+δ , where ||δ ||p < ε with ε very small, such that F(xadv) ̸= F(x).
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Such perturbations δ are referred to as adversarial perturbations since they can be

used in an adversarial setting to force a neural networks to incorrectly classify an input.

The process adding adversarial perturbations to inputs is referred to an adversarial attack.

The existence of such adversarial inputs has also been extended into the physical realm,

where adversarial inputs remain adversarial even after physical processing [26]–[28].

Given the increasing use of neural networks in real-world applications, it is crucial to

design methods capable of detecting and preventing such attacks in order to ensure safe

and reliable deployment.

3.3.1 Attack Algorithms

A number of efficient attack algorithms have been developed to create such

adversarial inputs [26], [29]–[34]. Goodfellow et al. developed the Fast Gradient Sign

Method (FGSM) that perturbs the input in the direction that maximizes the objective

function in a single step [29]. Kurakin et al. developed Basic Iterative Method (BIM) that

enhanced the FGSM attack by performing it iteratively, and taking a small step in the

direction maximizing loss at each iteration [26]. While these attacks lead to untargeted

mis-classification, Papernot et al. introduced the Jacobian Saliency Map Attack (JSMA)

to mis-classify an input to a pre-specified target class [30]. Further, Papernot et al. showed

that such attacks can also be launched when the attacker does not have access to the

internal parameters of the neural network [31]. As opposed to gradient-based attacks that

use a linear approximation of the loss surface, Carlini and Wagner (C&W) utilized

optimization to generate adversarial inputs with minimal perturbation [32].

Moosavi-Dezfooli et al. created the DeepFool (DF) attack that uses a linear

approximation of the decision boundary to find adversarial perturbations even when other

attacks fail [33]. Such attacks have been demonstrated against neural networks designed

for tasks like image and object recognition [29], [35], speech recognition [36], and

malware classification [37].
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Adversarial attacks can also be successfully launched in the physical world even

though the attacker has less control over the input features. For example, Kurakin et al.

showed that adversarial perturbations remain adversarial even when they are processed by

physical media [26]. Sharif et al. [27] designed adversarial eye-frames that an attacker

can wear to fool a facial recognition system in a live setting. Eykholt et al. were able to

create adversarial road signs that were misclassified by the computer vision system

present in a moving car [38]. Carlini et al. demonstrated the success of adversarial attacks

against voice assistants, e.g. Google Now, by adding inaudible perturbations to voice

commands [36]. Athalye et al. generated a 3-D printed adversarial object which fooled a

classifier from a wide-range of view points and angles [28]. Grosse et al. crafted

adversarial inputs to fool neural networks built to classify malware [37]. The success of

these attacks in fooling neural networks presents a major roadblock to their safe and

reliable deployment.

Due to the adverse ramifications of such attacks and their implications on the safety of

deep learning systems, a number of defenses have been proposed in the literature.

3.3.2 Defenses Against Adversarial Attacks

Several adversarial detectors have been proposed in the literature that rely on

differences in statistical properties of adversarial and normal inputs. Hendrycks and

Gimpel [39] discovered that adversarial inputs have abnormally large magnitudes of

low-ranked principal components and used that to separate them from normal inputs.

Bhagoji et al. used similar data transformations to prevent adversarial attacks [40]. Xu et

al. used “feature-squeezing”, a method of reducing the range of values an input can have,

to increase the distortion required for adversarial attacks [41]. Papernot and McDaniel

used a k-nearest neighbors approach to detect adversarial samples [42]. Metzen et al. and

Grosse et al. trained a classifier to detect adversarial inputs [43], [44]. Meng and Chen

proposed a two-pronged defense that first used manifold representations to differentiate
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normal inputs from adversarial inputs [45]. Then, they created a secondary network to

push the adversarial inputs back to the manifold of the normal data. Most of these

detectors however rely on statistical properties that are not clearly explainable and may

vary from one dataset to another. Further, it was shown that the above detectors can be

bypassed by an adversary that can adapt to the defense [46], [47]. He et al. further

showed that combining a number of weak statistical detectors together also does not lead

to a strong detector as an attacker can successfully break an ensemble detector [48].
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4 DEFENDING NEURAL NETWORKS AGAINST ADVERSARIAL ATTACKS

4.1 Introduction

Signal measurements are often corrupted by noise. Let us consider the class of

machine learning problems where the inputs are compressible (i.e., approximately sparse)

in some domain. For instance, images and audio signals are known to be compressible in

their frequency domain and machine learning algorithms have been shown to perform

exceedingly well on classification tasks that take such signals as input [49], [50].

However, it was found in [51] that neural networks can be easily forced into making

incorrect predictions by adding adversarial perturbations to their inputs; see also [29],

[35], [52], [53]. Further, the adversarial perturbations that led to incorrect predictions

were shown to be imperceptible to human beings. For this class of machine learning tasks,

we show how to approximately recover original inputs from adversarial inputs and defend

neural networks.

We explain the idea behind the CRD framework in the context of an image classifier.

Let x ∈ Cn be a (flattened) image vector we wish to classify. However, suppose an

adversary perturbs x with a noise vector e ∈ Cn such that we observe y = x+ e, where x

and e are unknown to us. Let F ∈ Cn×n be the Discrete Fourier Transform (DFT) matrix.

The Fourier coefficients of x are x̂ = Fx. We can therefore write the observed input y as:

y = F−1x̂+ e (5)

It is well-known that natural images are approximately sparse in the frequency domain, so

we expect that x̂ is approximately sparse (meaning roughly that most of the entries of x̂

are very small). If ∥e∥p ≤ η with η small (as in a ℓp-attack), then we can apply an

appropriate sparse recovery algorithm, with y and F−1 as input, to recover a good

approximation x# to x̂. Since F is unitary, F−1x# will be a good approximation (i.e.,

reconstruction) of x = F−1x̂ as long as x# is a good approximation to x̂. If x# is indeed a
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good approximation to x̂, we can feed F−1x# into the classifier and expect to get the same

classification as we would have for x.

Note that the same framework can be applied with audio signals or other types of data

instead of images. Moreover, the DFT can be replaced by any unitary transformation F

for which x̂ = Fx is approximately sparse. For example, F may be the Cosine Transform,

Sine Transform, Hadamard Transform, or another wavelet transform.

Contributions The authors of [15] introduced this defense framework for the case of

ℓ0-attacks with Iterative Hard Thresholding (IHT) as the recovery algorithm. We make the

following novel extensions to this framework:

• We extend the framework to handle ℓ2 and ℓ∞ norm attacks. introduce the Modified

Dantzig Selector (MDS) which uses a novel constraint to provide better recovery for

ℓ∞ norm attacks.

• We extend the ℓ0-norm defense introduced in [15] to defend against a larger

adversarial noise budget.

4.2 Related Work

The authors of [15] introduced the CRD framework which inspired this work. They

utilized Iterative Hard Thresholding (IHT) as a recovery algorithm and provided

guarantees for ℓ0 norm attacks. We extend this framework to handle ℓ2 and ℓ∞ attacks and

a larger attack budget for ℓ0 norm attacks. We explain this in more detail in Section 4.3.1.

Other works that provide guarantees against adversarial inputs include [54] and [55]

where the authors regularize the Lipschitz constant of a network and lower bound the

perturbation required to change the classifier decision. The authors of [56] use robust

optimization to train the network on adversarial inputs. A similar approach to [56] is [57]

in which the authors use robust optimization to lower bound the adversarial perturbations

on the training data required to cause misclassification. In [58], the authors use techniques

from Differential Privacy [59] and augment the training procedure to improve robustness
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to adversarial inputs. The authors of [60] add i.i.d. Gaussian noise to the input and

provide guarantees on classifier predictions for ℓ2-norm bounded attack vectors.

Most defenses against adversarial inputs do not come with theoretical guarantees.

Instead, a large body of research has focused on finding practical ways to improve

robustness by either augmenting the training data [29], using adversarial inputs from

various networks [61], or by transforming the input [62]. For instance, [63] introduces the

Projected Gradient Descent (PGD) defense that uses robust optimization based adversarial

training. However, the effectiveness of their approach is determined by the amount and

quality of training data available and its similarity to the distribution of the test data. A

transformation based approach is [64]. Here, the authors use Generative Adversarial

Networks (GANs) to estimate the distribution of the training data and, during inference,

use a GAN to reconstruct the input while removing adversarial noise. Other input

transformation approaches include [65], where the authors randomly replace coordinates

of the input vector with neighboring coordinates. Similarly, [66] use random resizing and

padding to remove the effects of adversarial noise.

The field of compressive sensing was essentially initiated with the work of [67]

and [2] in which the authors show rigorously how to recover sparse signals using only a

small number of measurements with the choice of a random matrix. Some of the earlier

work in extending compressive sensing to perform stable recovery with deterministic

matrices was done by [7] and [6], where a sufficient condition for recovery was

satisfaction of a restricted isometry hypothesis. [68] introduced IHT as an algorithm to

recover sparse signals which was later modified in [69] to reduce the search space as long

as the sparsity was structured. The standard DS algorithm was introduced in [9] in order

to perform stable recovery in the presence of ℓ∞ noise.
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4.3 Compressive Recovery Defense

Since the success of CRD depends on recovering a good approximation to x̂ in (5), we

select the recovery algorithm that provides the best recovery guarantees based on the type

of noise used. 1

For ℓ2 or ℓ0 noise, we use Basis Pursuit (Algorithm 3) and for ℓ∞ noise we use

Dantzig Selector with a novel constraint (Algorithm 4).

To motivate the following algorithms, note sparse recovery (without noise) is the

optimization argminz∈CN ∥z∥0 subject to Az = y. This is non-convex and NP-hard, and it

remains so if ∥z∥0 is approximated by ∥z∥q for 0 < q < 1. Taking q > 1 gives a convex,

P-time problem, but the solution need not be sparse. However, if q = 1, the problem is

convex, P-time, and gives sparse solutions. (Details: [3]–[5], [18, p.55-62]).

Algorithm 3 Basis Pursuit: BP(y,A,η)

Input: y ∈ Cm, where y = Ax̂+ e, A ∈ Cm×N , and η such that ||e||2 ≤ η

Output: x#← argminz∈CN ||z||1 subject to||Az− y||2 ≤ η

For details, see p.55-62,77 in [18]). The problem becomes convex and tractable for

q = 1 and has been shown to provide sparse solutions; see [3]–[5].

For ℓ2-norm noise, BP is applied with A = F−1, a unitary matrix. As unitary matrices

are isometries in ℓ2 norm, BP provides good recovery guarantees for such matrices since

they satisfy the robust null space property (Definition 11). Also, since the noise is

bounded in ℓ2 norm and since the solution to BP minimizes the error in ℓ2 norm, BP

proves to be a very good candidate for recovery.

1. An interesting follow up problem is choosing a recovery algorithm when the type of noise is not known a priori. In
practice, inputs are normalized to lie within some range [a,b] (for instance [0,1]), thus the the attacker is still bounded
in ℓ2 norm. Thus, Algorithm 3 is a viable candidate for recovery. We leave a deeper analysis for future investigation.
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For ℓ0-norm noise, where e is t-sparse, the approach is only slightly different. We set

A = [F−1, I] and write

y = F−1x̂h(k)+ e+F−1x̂t(k) = A[x̂h(k),e]
T +F−1x̂t(k)

so that [x̂h(k),e]T is a (k, t)-sparse vector that we can recover using Algorithm 3. We

utilize BP for ℓ0 attacks because it provides recovery guarantees for larger values of k and

t than IHT which is used in [15]. For instance, in the case of MNIST and Fashion-MNIST,

using IHT would allow us to set k = 4 and t = 3, whereas BP (Theorem 10) allows us to

set k = 8 and t = 8.

Algorithm 4 Modified Dantzig Selector: MDS(y,A,η)

Input: y ∈ Cm, where y = Ax̂+ e, A ∈ Cm×N , and η such that ||e||∞ ≤ η

Output: x#← argminz∈CN ∥z∥1 subject to ∥A∗(Az− y)∥∞ ≤
√

nη , ∥Az− y∥∞ ≤ η

We utilize MDS for ℓ∞ norm attacks. The standard Dantzig Selector algorithm does

not have the additional constraint ∥Az− y∥∞ ≤ η . MDS includes this constraint for the

following reason. In our application, we set A = F−1 and we want the reconstruction Ax#

to be close to the original image x, so that they are classified identically. Thus, we want to

the search space for x# to be restricted to those z ∈ CN such that ∥Az− x∥∞ is small. Note,

for any z ∈ CN , ∥Az− x∥∞ ≤ ∥Az− y∥∞ +∥x− y∥∞. In an ℓ∞-attack, ∥x− y∥∞ = ∥e∥∞ is

already small. Thus it suffices to require ∥Az− y∥∞ is small. We experimentally illustrate

the improvement in reconstruction due to the additional constraint in Section 4.4.2 (Figure

2, Table 3).

Remarks on Reverse-Engineered Attacks. In the case of Algorithm 3 and Algorithm

4, the minimization problems can be posed as semi-definite programming problems. If

solved with interior point methods, one can use random initialization of the central path

parameter and add randomness to the stopping criterion. Therefore, in addition to being

non-differentiable, recovery is also non-deterministic and we expect that it would be
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non-trivial to create a successful reverse-engineered attack. However, we are aware that

there are powerful reverse-engineered attacks designed for black-box settings [70] and for

defenses relying on non-differentiability and randomness [71]. We do not investigate

reverse-engineered attacks against CRD in this work, but intend to do so in future work.

4.3.1 Main Results

We now state the formal recovery guarantees based on the type of noise used by an

attacker, i.e. ℓ2, ℓ∞, and ℓ0 norm bounded noise.

Theorem 8 (ℓ2-norm noise). If ∥e∥2 ≤ η , then for x# = BP(y,F−1,η), we have the error

bounds

∥x#− x̂∥1 ≤ 2
(
∥x̂t(k)∥1 +2

√
kη

)
(6)

∥x#− x̂∥2 ≤
2√
k
∥x̂t(k)∥1 +6η (7)

Theorem 9 (ℓ∞-norm noise). If ∥e∥∞ ≤ η , then for x# = MDS(y,F−1,η), we have the

error bounds

∥x#− x̂∥1 ≤ 2
(
∥x̂t(k)∥1 +2k

√
nη
)

(8)

∥x#− x̂∥2 ≤
2√
k
∥x̂t(k)∥1 +6

√
knη (9)

To interpret these results, first note that since F is an isometry,

∥x#− x̂∥2 = ∥Fx#−Fx̂∥2. Thus the results of Theorem 8 and Theorem 9 also bound the

norm difference of the original image x = Fx̂ and the reconstructed image Fx#, where x#

has no sparsity guarantees. Therefore, the inequalities indicate how confident we should

be that the CRD scheme will be able to recover the correct class of the original image,

and thus defend the classifier from the adversarial attack.

Note that the recovery guarantees decay with the sparsity of the vector x̂. Theorem 8

allows us to recover sparse vectors with error that depends on the magnitude of its
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smallest coefficients x̂t(k). Thus for approximately sparse vectors, CRD provides good

recovery guarantees which consequently lead to better classifier performance on the

recovered images. Theorem 9 provides similar guarantees when the noise is bounded in

ℓ∞-norm. Observe also that the results of Theorem 9 incur a factor of
√

n in the error

bounds due to the constraint ∥A∗(Az− y)∥∞ ≤
√

nη in Algorithm 4 which is required to

prove the robust null space property (refer to the proof of Theorem 9 for details). This

weaker guarantee can also be expected as bounding the ℓ∞ norm of the noise vector is a

very weak constraint.

Finally, we provide a novel result that extends the work of [15] for the case of ℓ0

norm attacks by providing guarantees for a larger attack budget (i.e. larger values of k and

t) than the main theorem of [15].

Theorem 10 (ℓ0-norm noise). Assume |Fi j|2 ≤ c
n . Define

δk,t =
√

ckt
n ,β =

√
max{k,t}c

n ,θ =
√

k+t
(1−δk,t)

β ,τ =

√
1+δk,t

1−δk,t
.

If 0 < δk,t < 1 and 0 < θ < 1, then for x# = BP(y, [F−1, I],∥x̂t(k)∥2), we have the

error bound

∥x̂#− x̂h(k)∥2 ≤
(

2τ
√

k+ t
1−θ

(
1+

β

1−δk,t

)
+2τ

)
∥x̂t(k)∥2 (10)

where we write x# = [x̂#,e#]T ∈ C2n with x̂#,e# ∈ Cn.

4.3.2 Proofs

Definition 11. The matrix A ∈Cm×N satisfies the ℓq robust null space property of order s

with constants 0 < ρ < 1, τ > 0 and norm ∥ · ∥ if for every set S⊆ [N] with card(S)≤ s

and for every v ∈ CN we have

∥vS∥q ≤
1

s1−1/q ρ∥vS∥1 + τ∥Av∥

Note that if q = 1 then this is simply the robust null space property.
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We now focus on proving Theorem 8. In order to do so, we will need some lemmas

that will be used in the main proof.

Lemma 12. If a matrix A ∈ Cm×N satisfies the ℓ2 robust null space property for S⊂ [N|,

with card(S) = s, then it satisfies the ℓ1 robust null space property for S with constants

0 < ρ < 1,τ ′ := τ
√

s > 0.

Proof. For any v ∈ CN , ∥vS∥2 ≤ ρ√
s∥vS̄∥1 + τ∥Av∥. Then, using the fact that

∥vS∥1 ≤
√

s∥vS∥2, we get:∥vS∥1 ≤ ρ∥vS̄∥1 + τ
√

s∥Av∥.

Lemma 13 (Theorem 4.20 in [18]). A matrix A ∈ Cm×N satisfies the ℓ1 robust null space

property with constants 0 < ρ < 1 and τ > 0 relative to S⊂ [N| if and only if:

∥z− x∥1 ≤
1+ρ

1−ρ
(∥z∥1−∥x∥1 +2∥xS̄∥1)+

2τ

1−ρ
∥A(z− x)∥

for all z,x ∈ CN .

Lemma 14 (Proposition 2.3 in [18]). For any q > p > 0 and x ∈ Cn,

σs(x)q ≤
1

s
1
p−

1
q
∥x∥p

Proof of Theorem 8. Let 0 < ρ < 1 be arbitrary. Since F−1 is a unitary matrix, for any

S⊆ [n] and v ∈ Cn, we have

∥vS∥2 ≤
ρ√

k
∥vS∥1 + τ∥v∥2 =

ρ√
k
∥vS∥1 + τ∥F−1v∥2 (11)

where τ = 1. Now let S⊆ [n] such that card(S)≤ k. Then, F−1 satisfies the ℓ2 robust null

space property for S. Next, using Lemma 12 we get ∥vS∥1 ≤ ρ∥vS̄∥1 + τ
√

k∥F−1v∥2 for

all v ∈ Cn. Now let x# = BP(y,F−1,η). Then we know ∥x#∥1 ≤ ∥x̂∥1. So, by fixing

S⊆ [n] to be the support of x̂h(k) and using Lemma 13 and the fact that

∥F−1(x#− x̂)∥2 ≤ 2∥e∥2 ≤ 2η , we get:
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∥x#− x̂∥1 ≤
1+ρ

1−ρ
(∥x#∥1−∥x̂∥1 +2∥x̂t(k)∥1)

+
2τ
√

k
1−ρ

∥F−1(x#− x̂)∥2

≤ 1+ρ

1−ρ

(
2∥x̂t(k)∥1

)
+

4τ
√

k
1−ρ

η

Letting ρ → 0 and recalling that τ = 1 gives (6). Now let S be the support of (x#− x̂)h(k).

Note ∥(x#− x̂)S∥2 = σk((x#− x̂))2. Then, using Lemma 14 and (11), we see that

∥x#− x̂∥2 ≤ ∥(x#− x̂)S∥2 +∥(x#− x̂)S∥2

≤ 1√
k
∥(x#− x̂)∥1 +

ρ√
k
∥(x#− x̂)S∥1

+ τ∥F−1(x#− x)∥2

≤ 1+ρ√
k
∥(x#− x̂)∥1 +2τη

≤ (1+ρ)2
√

k(1−ρ)

(
2∥x̂t(k)∥1

)
+

4τ(1+ρ)

(1−ρ)
η +2τη

Recalling τ = 1 and letting ρ → 0 gives the desired result.

Proof of Theorem 9. The proof follows the same structure as the proof of Theorem 8.

Therefore we provide a sketch and leave out the complete derivation. Let 0 < ρ < 1 be

arbitrary. Since F−1 is a unitary matrix, for any S⊆ [n] and v ∈ Cn, we have

∥vS∥2 ≤
ρ√

k
∥vS∥1 +∥vS∥2 ≤

ρ√
k
∥vS∥1 +

√
k∥v∥∞

The rest of the argument is the same as in the proof of Theorem 8.

We will establish the restricted isometry property for certain structured matrices. First,

we give some definitions.
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Definition 15. Let A be a matrix in Cm×N , let M ⊆ CN , and let δ ≥ 0. We say that A

satisfies the M-restricted isometry property (or M-RIP) with constant δ if

(1−δ )∥x∥2
2 ≤ ∥Ax∥2

2 ≤ (1+δ )∥x∥2
2

for all x ∈M.

Definition 16. We define Mk to be the set of all k-sparse vectors in CN and similarly

define Mk,t to be the set of (k, t)-sparse vectors in C2n. In other words,

Mk,t = {x = [x1 x2]
T ∈ C2n :

x1 ∈ Cn,x2 ∈ Cn,∥x1∥0 ≤ k,∥x2∥0 ≤ t}.

We define Sk,t to be the following collection of subsets of {1, . . . ,2n}:

Sk,t = {S1∪S2 : S1 ⊆ {1, . . . ,n} ,S2 ⊆ {n+1, . . . ,2n} ,

card(S1)≤ k,card(S2)≤ t}

Note that Sk,t is the collection of supports of vectors in Mk,t .

Theorem 17. Let A = [F I] ∈ Cn×2n, where F ∈ Cn×n is a unitary matrix with |Fi j|2 ≤ c
n

and I ∈ Cn×n is the identity matrix. Then(
1−
√

ckt
n

)
∥x∥2

2 ≤ ∥Ax∥2
2 ≤

(
1+

√
ckt
n

)
∥x∥2

2 (12)

for all x ∈Mk,t . In other words, A satisfies the Mk,t-RIP property with constant

√
ckt
n

.

Proof. In this proof, if B denotes a matrix in Cn×n, then λ1(B), . . . ,λn(B) denote the

eigenvalues of B ordered so that |λ1(B)| ≤ · · · ≤ |λn(B)|. It suffices to fix an

S = S1∪S2 ∈ Sk,t and prove (12) for all non-zero x ∈ CS.
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Since A∗SAS is normal, there is an orthonormal basis of eigenvectors u1, . . . ,uk+t for

A∗SAS, where ui corresponds to the eigenvalue λi(A∗SAS). For any non-zero x ∈ CS, we

have x = ∑
k+t
i=1 ciui for some ci ∈ C, so

∥Ax∥2
2

∥x∥2
2

=

〈
A∗SASx,x

〉
⟨x,x⟩

=
∑

k+t
i=1 λi(A∗SAS)c2

i

∑
k+t
i=1 c2

i
. (13)

Thus it will suffice to prove that |λi(A∗SAS)−1| ≤
√

ckt
n for all i. Moreover,

|λi(A∗SAS)−1|= |λi(A∗SAS− I)|

=
√

λi
(
(A∗SAS− I)∗(A∗SAS− I)

)
(14)

where the last equality holds because A∗SAS− I is normal. By combining (13) and (14), we

see that (12) will hold upon showing that the eigenvalues of (A∗SAS− I)∗(A∗SAS− I) are

bounded by ckt/n.

So far we have not used the structure of A, but now we must. Observe that

(A∗SAS− I)∗(A∗SAS− I) is a block diagonal matrix with two diagonal blocks of the form

X∗X and XX∗. Therefore the three matrices (A∗SAS− I)∗(A∗SAS− I), X∗X , and XX∗ have

the same non-zero eigenvalues. Moreover, X is simply the matrix FS1 with those rows not

indexed by S2 deleted. The hypotheses on F imply that the entries of X∗X satisfy

|(X∗X)i j| ≤ ct
n . So the Gershgorin disc theorem implies that each eigenvalue λ of X∗X

and (hence) of (A∗SAS− I)∗(A∗SAS− I) satisfies |λ | ≤ ckt
n .

Lemma 18. Let A ∈ Cn×2n, if
∣∣∥Ax∥2

2−∥x∥2
2

∣∣≤ δ∥x∥2
2 for all x ∈Mk,t , then,

∥A∗SAS− I∥2→2 ≤ δ , for any S ∈ Sk,t .

Proof. Let S ∈ Sk,t be given. Then we have :

∥ASx∥2
2−∥x∥2

2 = ⟨ASx,ASx⟩−⟨x,x⟩= ⟨(A∗SAS− I)x,x⟩. Noting that A∗SAS− I is
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Hermitian, we have:

∥A∗SAS− I∥2→2 = max
x∈CS\{0}

∣∣∣∣⟨(A∗SAS− I)x,x⟩
∥x∥2

2

∣∣∣∣≤ δ

Lemma 19 (Proposition A.15 in [18]). Let A ∈ Cm×n, with m≥ n. If ∥A∗A− I∥2→2 ≤ δ

for some δ ∈ [0,1], then the largest and smallest singular values of A satisfy

σmax(A)≤
√

1+δ , and σmin(A)≥
√

1−δ

Lemma 20 (Lemma A.12 in [18]). Suppose that B ∈ Cn×n satisfies ∥B− I∥2→2 ≤ η for

some η ∈ [0,1). Then B is invertible and ∥B−1∥2→2 ≤ (1−η)−1.

Proof of Theorem 10. We will derive (10) by showing that the matrix A satisfies all the

hypotheses in Theorem 4.33 in [18] for every vector in Mk,t .

First note that by Theorem 17, A satisfies the Mk,t-RIP property with constant

δk,t :=
√

ckt
n . Therefore, by Lemma 18, for any S ∈ Sk,t , we have ∥A∗SAS− I∥2→2 ≤ δk,t .

Since A∗SAS is a positive semi-definite matrix, it has only non-negative eigenvalues that lie

in the range [1−δk,t ,1+δk,t ]. Since δk,t < 1 by assumption, A∗SAS is injective. Thus, we

can set: h = AS(A∗SAS)
−1sgn(xS) and get:

∥h∥2 = ∥AS(A∗SAS)
−1sgn(xS)∥2

≤ ∥AS∥2→2∥(A∗SAS)
−1∥2→2∥sgn(xS)∥2 ≤ τ

√
k+ t

where τ =

√
1+δk,t

1−δk,t
and we have used the following facts: since

∥A∗SAS− I∥2→2 ≤ δk,t < 1, lemma 20 gives us ∥(A∗SAS)
−1∥2→2 ≤ 1

1−δk,t
and using lemma

19 we have largest singular value of A∗S is less than
√

1+δk,t . Now let u = A∗h, then

∥uS− sgn(xS)∥2 = 0. Now we need to bound the value ∥uS∥∞. Denoting row j of A∗
S
AS by

the vector v j, we see that it has at most max{k, t} non-zero entries and that |(v j)l|2 ≤ c
n
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for l = 1, . . . ,(k+ t). Therefore, for any element (uS) j, we have:

|(uS) j|= |⟨(A∗SAS)
−1sgn(xS),(v j)

∗⟩|

≤ ∥(A∗SAS)
−1∥2→2∥sgn(xS)∥2∥v j∥2

≤
√

k+ t
1−δk,t

√
max{k, t}c

n

Defining β :=
√

max{k,t}c
n and θ :=

√
k+t

1−δk,t
β , we get ∥uS∥∞ ≤ θ < 1 and also observe that

maxl∈S ∥A∗Sal∥2 ≤ β . Therefore, all the hypotheses of Theorem 4.33 in [18] have been

satisfied. Note that y = Fx̂+ e = A[x̂h(k) e]T +Fx̂t(k), Therefore, setting

x# = BP(y,A,∥x̂t(k)∥2), we use the fact ∥Fx̂t(k)∥2 = ∥x̂t(k)∥2 combined with the bound in

Theorem 4.33 in [18] to get (10):

∥x̂#− x̂h(k)∥2 ≤
(

2τ
√

k+ t
1−θ

(
1+

β

1−δk,t

)
+2τ

)
∥x̂t(k)∥2

where we write x# = [x̂#,e#]T with x̂#,e# ∈ Cn.

4.4 Experiments

All of our experiments are conducted on CIFAR-10 [72], MNIST [73], and

Fashion-MNIST [74] datasets with pixel values of each image normalized to lie in [0,1].

Each experiment is conducted on a set of 1000 points sampled uniformly at random from

the test set of the respective dataset.

For every experiment, we use the Discrete Cosine Transform (DCT) and the Inverse

Discrete Cosine Transform (IDCT) denoted by the matrices F ∈ Rn×n and FT ∈ Rn×n

respectively. That is, for an adversarial image y ∈ R
√

n×
√

n, such that, y = x+ e, we let

x̂ = Fx, and x = FT x̂, where x, x̂ ∈ Rn and e ∈ Rn is the noise vector. For an adversarial

image y ∈ R
√

n×
√

n×c, that contains c channels, we perform recovery on each channel

independently by considering ym = xm + em, where x̂m = Fxm,xm = FT x̂m for

m = 1, . . . ,c. The value k denotes the number of largest (in absolute value) DCT
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coefficients used for reconstruction of each channel. We set k = 40 for MNIST and

F-MNIST and k = 500 for CIFAR-10. We implement Algorithm 3 and Algorithm 4 using

the open source library CVXPY [75].

For CIFAR-10, we use the network architecture of [76] while the network architecture

for MNIST and Fashion-MNIST datasets is provided in Table 1. We train our networks

using the Adam optimizer for CIFAR-10 and the AdaDelta optimizer for MNIST and

Fashion-MNIST. In both cases, we use a cross-entropy loss function.

We now describe the training and testing procedure for CRD. For each training image

x, we compute x̂h(k) = (Fx)h(k), and then compute the compressed the image

x′ = F−1x̂h(k). We then add both x and x′ to the training set and train the network in the

usual way. Given a (potentially adversarial) test image y, we first use a sparse recovery

algorithm to compute an approximation x# to x̂, then we compute the reconstructed image

y′ = F−1x# and feed it into the network for classification. The code to reproduce our

experiments is available here.

4.4.1 Defense Against ℓ2-norm Attacks

We use the CW ℓ2-norm attack [53] and the Deepfool attack [77] as they are widely

considered state of the art. We note that Theorem 8 does not impose any restrictions on k

and therefore the guarantees of equations (6) and (7) are applicable for recovery in all

experiments of this section.

Table 1: Network Architecture: MNIST and Fashion-MNIST. The first four layers use
ReLU activations while the last layer uses a softmax activation.

Layer Type Properties
1 Convolution 32 channels, 3×3 Kernel, No padding
2 Convolution 64 channels, 3×3 Kernel, No padding, Dropout with p = 0.5
3 Max-pooling 2×2, Dropout with p = 0.5
4 Fully Connected 128 neurons, Dropout with p = 0.5
5 Fully Connected 10 neurons
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We test the performance of CRD in two ways: a) reconstruction quality, and b)

network performance on reconstructed images. To analyze reconstruction quality of

Algorithm 3, for each test image, we first create an adversarial image and then use

Algorithm 3 to recover its largest k coefficients. We then perform the IDCT on these

recovered co-efficients to generate reconstructed images. We illustrate reconstruction on a

randomly selected image from the test set in Figure 1.

In order to check whether this high quality reconstruction also leads to improved

performance in network accuracy, we test each network on reconstructed images using

Algorithm 3. We report the results in Table 2 and note that Algorithm 3 provides a

substantial improvement in network accuracy for each dataset and each attack method

used. For comparison, we implement the PGD defense framework of [63] for MNIST and

Fashion-MNIST and see that CRD outperforms PGD. Due to time and resource

constraints we do not report PGD results for CIFAR-10 as we were unable to get the

network to converge to an accuracy over 70% for non-adversarial test samples. Since

PGD is computationally very expensive [78], [79] and minimizes network loss on

adversarial samples, training a network that performs well on adversarial and

Original CW-ℓ2 BP-Rec DF BP-Rec

Fig. 1. Reconstruction quality: Algorithm 3 for ℓ2 attacks. The first column shows the
original images, while the adversarial images are shown in the second and fourth column.
The reconstructions are shown in columns three and five.
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Table 2: Network Performance: Algorithm 3 for ℓ2 attacks. The ℓ2avg column lists the
average ℓ2-norm of the attack vector. The Orig. Acc column lists the accuracy of the
network on original test inputs, while the Acc. columns under C&W ℓ2 and DF columns
report network accuracy on adversarial inputs. BP Acc. columns lists the accuracy of
the network on inputs reconstructed using Algorithm 3.PGD Acc. shows accuracy of the
defense in [63].

Data Orig. C&W ℓ2 Deepfool
Acc. ℓ2avg Acc. BP Acc. PGD Acc. ℓ2avg Acc. BP Acc. PGD Acc.

Cifar10 84.9% 0.12 8.7% 72.3% - 0.11 7.7% 71.6% -
Mnist 99.17% 1.35 0.9% 92.4% 83.7% 1.72 1.1 90.7% 6.4%

FMnist 90.3% 0.61 5.4% 78.3% 75.9% 0.63 5.5 % 76.4% 25.6%

non-adversarial samples is highly non-trivial. We note that CRD does not suffer from

either of these drawbacks as network training is decoupled from the CRD defense.

4.4.2 Defense Against ℓ∞-norm Attacks

For ℓ∞-norm bounded attacks, we use the BIM attack [80] as it is state of the art and

allows us to control the ℓ∞-norm of the attack vector explicitly. 2

Therefore, we limit our experimental analysis to the BIM attack. Note that for any

attack vector e, ∥e∥2 ≤
√

n∥e∥∞ hence allowing ℓ∞-norm attacks to create attack vectors

with large ℓ2-norm. Therefore, we could expect reconstruction quality and network

accuracy to be lower when compared to ℓ2-norm attacks.

In Figure 2, we compare the reconstruction quality of images reconstructed with

Algorithm 4 to those reconstructed using DS without the additional constraint. It can bee

seen that images reconstructed using DS without the additional constraint may not

produce meaningful images. This is also reflected in Table 3, which shows that the

accuracy of the network is roughly random on images reconstructed without the

additional constraint. We show examples of original images, adversarial images, and their

reconstructions using Algorithm 4 in Figure 3. Finally, we report the network

2. We note that while the CW ℓ∞-norm attack [53] has the ability to create attack vectors with ℓ∞-norm less than or
equal to BIM, it is computationally expensive and also does not allow one to pre-specify a value for the ℓ∞-norm of an
attack vector.

28



performance on reconstructed inputs using Algorithm 4 in Table 3 and also compare this

to the performance on inputs reconstructed using DS without the additional constraint. We

also report the results of the PGD defense of [63] and note that PGD outperforms CRD

against the BIM attack. This can be expected as PGD training uses a very similar method

to BIM in construction adversarial examples used for training.

4.4.3 Defense Against ℓ0-norm Attacks

We test CRD against the CW ℓ0-norm attack and JSMA. We find that even when t is

much larger than the hypotheses of Theorem 10, we find that Algorithm 3 is still able to

defend the network. We hypothesize that this may be related to the behavior of the RIP of

a matrix for “most” vectors as opposed to the RIP for all vectors, and leave a more

rigorous analysis for a follow up work.

Fig 4 shows the reconstruction quality of the images and the improvement in network

performance on reconstructed adversarial images using CRD is reported in Table 4. It can

also be seen that CRD outperforms PGD for both ℓ0 attacks.

Original With Constraint No Constraint

Fig. 2. Reconstruction quality: Algorithm 4 with and without constraint. Comparison of
images reconstructed using Algorithm 4 (With Constraint) with images reconstructed
using DS without the additional constraint (No Constraint).
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Table 3: Network Performance: Algorithm 4 for ℓ∞ attacks. The ℓ∞avg column lists the
ℓ∞-norm of each attack vector, Orig. Acc. and BIM Acc. columns list the accuracy of the
network on the original and adversarial inputs respectively, and the MDS Acc. column
lists the accuracy of the network on inputs reconstructed using Algorithm 4. We also
show accuracy of the network on images reconstructed with DS (without the additional
constraint) in the DS Acc. column. PGD Acc. shows accuracy of the defense in [63].

Data Orig. BIM
Acc. ℓ∞avg Acc. MDS Acc. DS Acc. PGD Acc.

Cifar10 84.9% 0.015 7.4% 49.4% 17.6% -
Mnist 99.17% 0.15 4.9% 74.7% 10% 95.8%

FMnist 90.3% 0.15 5.3% 57.5% 11.1% 77.3%

Original BIM DS-Rec

Fig. 3. Reconstruction quality: Algorithm 4 for ℓ0 attacks. The first column shows the
original images, while the second columns shows adversarial images and the third columns
shows reconstructions using Algorithm 4 respectively.

Original CW-ℓ0 BP-Rec JSMA BP-Rec

Fig. 4. Reconstruction quality: Algorithm 3 for ℓ0 attacks. The first column shows
randomly selected original images from the test set, while the second and fourth column
show the adversarial images. Reconstructions using BP are labeled BP-Rec. We show
reconstructions in columns three, and five.
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Table 4: Network Performance: Algorithm 3 for ℓ0 attacks. The tavg column lists the
average adversarial noise budget for each attack. The Orig. Acc column lists the accuracy
of the network on original test inputs, the Acc. columns under C&W ℓ0 and JSMA list
network accuracy on adversarial inputs. The BP Acc. column lists the accuracy of the
network on inputs that have been corrected using BP.PGD Acc. shows accuracy of the
defense in [63].

Data Orig. C&W ℓ0 JSMA
Acc. tavg Acc. BP Acc. PGD Acc. tavg Acc. BP Acc. PGD Acc.

Cifar10 84.9% 18 8.7% 67.0% - 34 2.7% 67.3% -
Mnist 98.8% 15 0.9% 55.9% 14.1% 17 56.5 % 67.4% 93.5%

FMnist 91.8% 16 5.27% 71.4% 75.1% 17 62.6 % 72.0% 76.6%
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5 NEURAL NETWORKS AS PRIORS IN LINEAR INVERSE PROBLEMS

5.1 Introduction

Linear inverse problems can be formulated mathematically as y = Ax+ e where

y ∈ Rm is the observed vector, A ∈ Rm×N is the measurement process, e ∈ Rm is a noise

vector, and x ∈ RN is the original signal. The problem is to recover the signal x, given the

observation y and the measurement matrix A. Such problems arise naturally in a wide

variety of fields including image processing, seismic and medical tomography, geophysics,

and magnetic resonance imaging. In this thesis, we focus on three linear inverse problems

encountered in image processing: compressive sensing, inpainting, and super-resolution.

We motivate our method using the compressive sensing problem.

Sparsity Prior The problem of compressive sensing assumes the matrix A ∈ Rm×N is fat,

i.e. m < N. Even when no noise is present (y = Ax), the system is under determined and

the recovery problem is intractable. However, it has been shown that if the matrix A

satisfies certain conditions such as the Restricted Isometry Property (RIP) and if x is

known to be approximately sparse in some fixed basis, then x can typically be recovered

even when m≪ N [2], [6], [81].

Sparsity (or approximate sparsity) is a very restrictive condition to impose on the

signal as it limits the applicability of recovery methods to a small subset of input domains.

There has been considerable effort in using other forms of structured priors such as

structured sparsity [69], sparsity in tree-structured dictionaries [82], and low-rank mixture

of Gaussians [83]. Although these efforts improve on the sparsity prior, they do not cater

to signals that are not naturally sparse or structured-sparse.

Generative Prior Bora et al [84] address this issue by replacing the sparsity prior on x

with a generative prior. In particular, the authors first train a generative model

f : Rk 7→ RN with k < N that maps a lower dimensional latent space to the higher

dimensional ambient space. This model is referred to as the generator. Next, they impose
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the prior that the original signal x lies in (or near) the range of f . Hence, the recovery

problem reduces to finding the best approximation to x in f (Rk).

The quality of the generative prior depends on how well the training set captures the

data distribution. Bora et al [84] used a Generative Adversarial Network (GAN) as the

generator, G : Rk 7→ RN , where k < N, to model the distribution of the training data and

posed the following non-convex optimization problem

ẑ = arg min
z∈Rk

(
∥AG(z)− y∥2 +λ∥z∥2

)
.3

such that G(ẑ) is treated as the approximation to x. The authors provided recovery

guarantees for their methods and validated the efficacy of using generative priors by

showing that their method required 5-10x fewer measurements than Lasso (with a sparsity

constraint) [81] while yielding the same accuracy in recovery. However, since the problem

is non-convex and requires a search over Rk, it is computationally expensive and the

reconstruction quality depends on the initialization vector z ∈ Rk.

Since then, there have been significant efforts to improve recovery results using neural

networks as generative priors [85]–[96]. Shah et al [93] extended the work of [84] by

training a generator G and using a projected gradient descent algorithm that consists of a

gradient descent step wt = xt−ηAT (Axt− y) followed by a projection step

xt+1 = G(arg min
z∈Rk

∥G(z)−wt∥2)The core idea being that the estimate wt is improved by

projecting it onto the range of G. However, since their method requires solving a

non-convex optimization problem at every update step, it also leads to slow recovery.

Raj et al [95] enhanced the results of [93] by eliminating the expensive non-convex

optimization based projection step with one that is an order of magnitude cheaper. In

particular, they trained a GAN G to model the data distribution and also trained a

pseudo-inverse GAN G‡ that learned a mapping from the ambient space to the latent

space. Next, they used the projection step: xt+1 = G(G‡(wt)). By eliminating the need to

3. We use ∥.∥ to denote the ℓ2-norm throughout the thesis
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solve a non-convex optimization problem to update xt+1, they were able to attain a

significant speed up in the running time of the recovery algorithm.

However, the recovery algorithm of [95] has two main drawbacks. First, training two

networks: G and G‡ makes the training process and the projection step unnecessarily

convoluted. Second, their recovery guarantees only hold when the learning rate η = 1
β

,

where β is a RIP-style constant of the matrix A. Since it is NP-hard to estimate the

constant β [97], it follows that setting η = 1
β

is NP-hard as well. 4

DAE Prior In an effort to address the aforementioned issues, we propose to use a

DAE [98] prior in lieu of the generative prior introduced by Bora et al [84]. It has

previously been shown that DAEs not only capture useful structure of the data

distribution [99] but also implicitly capture properties of the data-generating density [100],

[101]. Moreover, as DAEs are trained to remove noise from vectors sampled from the

input distribution, they integrate naturally with gradient descent algorithms that lead to

noisy approximations at each time step.

We replace the generator G used in Bora et al [84] with a DAE F : RN 7→ RN such

that the range of F contains the vectors from the original data generating distribution. We

then impose the prior that the original signal x lies in the range of F and utilize Algorithm

5 to recover an approximation to x. We provide theoretical recovery guarantees and find

that our framework speeds up recovery by two orders of magnitude (over 100x), improves

quality of reconstruction by an order of magnitude (over 10x), and does not require tuning

hyperparameters.

5.2 Related Work

Generative Priors Following the lead of [84], there have been significant efforts to

improve on previous recovery results using neural networks as generative

4. We observed this problem when trying to reproduce the experimental results of [95]. Specifically, we tried an
exhaustive grid-search for η but each value led to poor reconstruction quality.
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models [85]–[96]. One line of work [96], [102] extends the efforts of Bora et al [84] by

fixing a seed z and finding the weights ŵ of an untrained neural network G in the

optimization problem ŵ = arg min
w∈Rl

∥AG(w,z)− y∥2. However, the optimization problem

is highly non-convex and requires a large number of iterations with multiple restarts.

Another line of work, [91], [103] trains a neural network to model the transformation

f (y) = x̂ where x̂ is the approximation to the original input x. This approach is limited as

a) the inverse mapping is non-trivial to learn and b) will only work for a fixed

measurement mechanism.

Denoisers in Linear Inverse Problems Given the success of denoisers in image

processing tasks such as image denoising [104]–[106] and image super-resolution [107] to

yield good results, Venkatakrishnan et al [108] introduced denoisiers as plug-and-play

(PnP) proximal operators in solving linear inverse problems via alternating directions

method of multipliers (ADMM). Ryu et al [109] extended this work by investigating

convergence properties of ADMM methods asked and showed that if the denoiser was

close to the identity map, then PnP methods are contractive iterations that converge with

bounded error.

Chang et al [106] showed that neural network based denoisers (such as DAEs) with

ADMM could achieve state of the art results for a wide array of linear inverse problems.

They also showed that if the gradient of the proximal operator (denoiser) is Lipschitz

continuous, ADMM has a fixed point. Xu et al [110] analyzed convergence results for

minimum mean squared error (MMSE) denoisers used in iterative shrinkage/thresholding

algorithm (ISTA). They showed that the iterates produced by ISTA with an MMSE

denoiser converge to a stationary point of some global cost function. Meinhardt et

al [111] demonstrated that using a fixed denoising network as a proximal operator in the

primal-dual hybrid gradient (PDHG) method yields state-of-the-art results. Gonzalez et

al [112] used variational auto encoders (VAEs) as priors defined an optimization method
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JPMAP that performs Joint Posterior Maximization using an the VAE prior. They showed

theoretical and experimental evidence that the proposed objective function satisfies a

weak bi-convexity property which is sufficient to guarantee that the optimization scheme

converges to a stationary point.

5.3 Algorithm and Results

5.3.1 Algorithm

Recall that in the linear inverse problem y = Ax+ e, our goal is to recover an

approximation x̂ to x such that x̂ lies in the range of F . Thus we aim to find x̂ such that

x̂ = arg min
z∈F(RN)

∥Az− y∥2 As in [93], [95], we use a projected gradient descent algorithm.

Given an estimate xt at iteration t, we compute a gradient descent step for solving the

unrestricted problem: minimize
z∈RN

∥Az− y∥2 as: wt ← xt−ηAT (Axt− y) Next we project wt

onto the range of F to satisfy our prior: xt+1 = F(wt) Note that, compared to [93], [95],

the projection step does not require solving a non-convex optimization problem.

Now suppose that the domain of interest is represented by the set D⊆ RN . Then,

given a vector x′ = x+ e, where x ∈ D, and e ∈ RN is an unknown noise vector, the

success of our method depends on how small the error ∥F(x′)−x∥ is. If the training set X

captures the domain of interest well and if the training procedure utilizes a diverse enough

set of noise vectors {ei}N
i=1, then we expect ∥F(x′)− x∥ to be small. Consequently, we

expect the projection step of Algorithm 5 to yield vectors in or close to D. We provide the

complete algorithm below.

5.3.2 Theoretical Results

We begin by introducing two standard definitions required to provide recovery

guarantees.
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Algorithm 5 DAE-PGD

Input: y ∈ Rm,A ∈ Rm×N , f : RN → RN , T ∈ Z+,η ∈ R>0
Output: xT

1: t← 0,x0← 0
2: while t < T do
3: wt ← xt−ηAT (Axt− y)
4: xt+1← f (wt)

5: return xT

Definition 21 (RIP(S,δ )). Given S⊆ RN and δ > 0, a matrix A ∈ Rm×N satisfies the

RIP(S,δ ) property if

(1−δ )∥x1− x2∥2 ≤ ∥A(x1− x2)∥2 ≤ (1+δ )∥x1− x2∥2

for all x1,x2 ∈ S.

A variation of the RIP(S,δ ) property for sparse vectors was first introduced by

Candes et al in [7] and has been shown to be a sufficient condition in proving recovery

guarantees using ℓ1-minimization methods [18]. Next, we define an Approximate

Projection (AP) property and provide an interpretation that elucidates its role in the results

of Theorem 23. 5

Definition 22 (AP(S, α)). Let α ≥ 0. A mapping f : RN → S⊆ RN satisfies AP(S,α) if

∥w− f (w)∥2 ≤ ∥w− x∥2 +α∥ f (w)− x∥

for every w ∈ RN and x ∈ S.

5. Various flavors of the AP(S,α) property have been used in previous works, such as Shah et al [93] and Raj et
al [95].
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We now explain the significance of Def. 22. Let x∗ = arg min
z∈S

∥w− z∥ and observe

∥w− f (w)∥2 ≤ (∥w− x∗∥+∥ f (w)− x∗∥)2 (15)

Hence, α ≤ ∥ f (w)− x∗∥+2∥w− x∗∥ is needed to ensure the RHS of Def. 22 is bounded

by the RHS of (15). In other words, for α to be small, the projection error ∥ f (w)− x∗∥ as

well as distance of w to S need to be small. Since the DAE F learns to minimize

∥F(w)− x∗∥2 (Section 3.2), we expect a small projection error.

Theorem 23. Let f : RN → S⊆ RN satisfy AP(S, α) and let A ∈ Rm×N be a matrix with

∥A∥2 ≤M that satisfies RIP(S,δ ). If y = Ax with x ∈ S, the recovery error of Algorithm 5

is bounded as:

∥xT − x∥ ≤ (2γ)T ∥x0− x∥+α

(
1− (2γ)T

1− (2γ)

)
(16)

where γ =
√

η2M(1+δ )+2η(δ −1)+1.

Theorem 23 tells us that, if γ < 1
2 , then for large T , the recovery error is essentially

α/(1−2γ). Note that the requirement γ < 1
2 is satisfied for a large range of values of η

as long as δ is sufficiently small. 6

Hence, as long as the value of α is small, we expect to see a small recovery error.

We now compare the above results to Theorem 1 of [95], Theorem 2.2 of [93] and

Theorem 1 of [113]. As mentioned in Section 5.1, convergence in Theorem 1 of [95] is

only guaranteed when η = 1
β

, which is a much more restrictive condition on η than

Theorem 23 provides. In fact, β is a RIP-style constant that is NP-hard to find [97] which

makes setting the value of η = 1
β

NP-hard as well. The results of Theorem 2.2 from [93]

require a less restrictive constraint on η but do require a stricter constraint on ∥A∥2 ≤ ω ,

where ω is a RIP-style constant for A. In contrast, the results of Theorem 23 do not

6. For instance, random Gaussian matrices yield small values for δ with high probability [18]
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impose a strict condition on ∥A∥2. Finally, the proof of Theorem 1 of [113] relies on the

matrix A being Gaussian. We do not impose such a constraint.

Proof of Theorem 23. Using the notation of Algorithm 5 and the fact that f satisfies

AP(S,α) we have

∥(wt− x)− (xt+1− x)∥2 ≤ ∥wt− x∥2 +α ∥xt+1− x∥ .

Noting ∥a−b∥2 = ∥a∥2 +∥b∥2−2⟨a,b⟩ and re-arranging terms we get

∥xt+1− x∥2 ≤ 2⟨(wt− x),(xt+1− x)⟩+α ∥xt+1− x∥ .

Now we expand the inner product using wt = xt−ηAT (Axt− y) and y = Ax to get

∥xt+1− x∥2 ≤ 2⟨(I−ηAT A)(xt− x),(xt+1− x)⟩

+α ∥xt+1− x∥ . (17)

Using the Cauchy–Schwarz inequality we have

|⟨(I−ηAT A)(xt− x),(xt+1− x)⟩|

≤
∥∥(I−ηAT A)(xt− x)

∥∥∥(xt+1− x)∥ (18)

By setting u = xt− x, expanding, and using the RIP(S,α) property of A, we see that

∥∥(I−ηAT A)u
∥∥2

=∥u∥2−2η ∥Au∥2 +η
2∥∥AT (Au)

∥∥2

≤∥u∥2−2η(1−δ )∥u∥2

+η
2(1+δ )M∥u∥2

=γ
2 ∥u∥2 (19)
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We substitute the results of (18) and (19) into (17) and divide both sides by ∥xt+1− x∥ to

get

∥xt+1− x∥ ≤ 2γ ∥xt− x∥+α (20)

Using induction on (20) gives (16).

5.4 Experiments

We provide experimental results for the problems of compressive sensing, inpainting,

and super-resolution. We refer to the results of Algorithm 5 as DAE-PGD and compare its

results to the methods of Bora et al [84] ( CSGM), and Shah et al [93], ( PGD-GAN), and

Peng et al [113] (P-AE). Although the work of Raj et al [95] is the closest to our method,

we do not include comparisons to their work as we were unable to reproduce their results.

7

5.4.1 Setup

Datasets Our experiments are conducted on the MNIST [73] and CelebA [114] datasets.

The MNIST dataset consists of 28×28 greyscale images of digits with 50,000 training

and 10,000 test samples. We report results for a random subset of the test set. The CelebA

dataset consists of more than 200,000 celebrity images. We pre-processes each image to a

size of 64×64×3 and use the first 160, 000 images as the training set and a random

subset of the remaining 40,000+ images as the test set.

Network Architecture The network architectures for our DAEs are inspired by the

Variational Auto Encoder architecture from Fig 2. of [115] with a few key changes. We

replace the Leaky Relu activation with Relu, we add the two outputs of the encoder to get

the latent representation z, and we alter the kernel sizes as well as the convolution strides

of the network as described in Table 5.

7. We used their code, their trained models, their recovery algorithm, and a grid search for η but the reconstructed
images were of very poor quality. We also reached out to the authors but they did not have the exact values of η that
were used in their experiments.
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Table 5: Network Architecture: CelebA and MNIST. C-K, C-S, M-K, and M-S report
CelebA Kernel Sizes, CelebA Strides, MNIST Kernel Sizes, and MNIST strides
respectively.

Layer C-K C-S M-K M-S
Conv2D 1 9 × 9 2 5 × 5 2
Conv2D 2 7 × 7 2 5 × 5 2
Conv2D 3 5× 5 2 3× 3 2
Conv2D 4 5 × 5 1 3× 3 1

TransConv2d 1 5 × 5 2 3× 3 1
TransConv2d 2 5 × 5 2 3× 3 2
TransConv2d 3 7× 7 2 5 × 5 2
TransConv2d 4 9 × 9 1 5 × 5 2

Training We use the Adam optimizer [12] to minimize the MSE loss function with

learning rate 0.01 and a batch size of 128. We train the CelebA network for 400 epochs

and the MNIST network for 100 epochs.

In an effort to ensure that ∥A(x′)− x∥ defined in Section 5.3.1 is small, we split the

training set into 5 equal sized subsets. For each distinct subset, we sample the noise

vectors from a Gaussian distribution F(µ, σ2) with a distinct value for σ for each subset.

The five different values for σ that we use are {0.25,0.5,0.75,1.0,1.25}.

All of our experiments were conducted on a Tesla M40 GPU with 12 GB of memory

using Keras [116] and Tensorflow [117] libraries. The code to reproduce our results is

available here.

5.4.2 Compressive Sensing

We consider the problem of compressive sensing without noise: y = Ax and with

noise: y = Ax+ e, with e∼N (0,0.25). We use m to denote the number of observed

measurements in our results (i.e. y ∈ Rm). As done in previous works [84], [93], [95], the

matrix A ∈ Rm×N is chosen to be a random Gaussian matrix with Ai j ∼N (0, 1
m). Finally,

we set the learning rate of Algorithm 5 as η = 1. Note that in both (with and w/out noise)

cases, we also include recovery results for the Lasso algorithm [81] with a DCT basis

(L-DCT) and with a wavelet basis (L-Wavelet).
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We begin with CelebA. Figure 5 provides a qualitative comparison of reconstruction

results for m = 1000. We observe that DAE-PGD provides the best quality

reconstructions and is able to reproduce even fine grained details of the original images

such as eyes, nose, lips, hair, texture, etc. Indeed the high quality reconstructions support

the case that the DAE has a small α as per Def. 22. For a quantitative comparison, we

turn to Figure 6 which plots the average squared reconstruction error ∥x− x̂∥2 for each

algorithm at different values of m. Note that DAE-PGD provides more than 10x

improvement in the squared reconstruction error.

Fig. 5. Compressive Sensing: CelebA. CS on CelebA without noise for m = 1000 (left),
CS on CelebA with noise for m = 1000 (middle), CS on CelebA for various m using
DAE-PGD (right). The left and middle images qualitatively capture the 10x improvement
in reconstruction error. The right image shows how DAE-PGD reconstructions capture
finer grained details as m increases.

Fig. 6. Compressive Sensing: Recovery Error. Using ∥x− x̂∥2. Left: CelebA without
noise - DAE-PGD shows over 10x improvement. Middle: CelebA with noise - DAE-PGD
shows over 10x improvement. Right: MNIST without noise - DAE-PGD beats CSGM for
m > 100.
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In order to capture how the quality of reconstruction degrades as the number of

measurements decrease, we refer to Figure 5, which shows reconstructions for different

values of m. We observe that even though reconstructions with a small number of

measurements capture the essence of the original images, the fine grained details are

captured only as the number of measurements increase. We show a similar comparison for

MNIST in Figure 7

Fig. 7. Compressive Sensing: MNIST. CS on MNIST without noise for m = 100 (left),
CS on MNIST with noise for m = 100 (middle), CS on CelebA for various m using
DAE-PGD (right). The left and middle images qualitatively capture the 100x improvement
in reconstruction error. The right image shows how DAE-PGD reconstructions capture
finer grained details as m increases.

We now turn to the speed of reconstruction. Table 6 shows that our method provides

speedups of over 100x as compared to PGD-GAN and CSGM. 8

5.4.3 Inpainting

Inpainting is the problem of recovering the original image, given an occluded version

of it. Specifically, the observed image y consists of occluded (or masked ) regions created

by applying a pixel-wise mask A to the original image x. We use m to refer to the size of

mask that occludes a m×m region of the original image x.

We present recovery results for CelebA with m = 10 in Figure 8 and observe that

DAE-PGD is able to recovery a high quality approximation to the original image and

8. CSGM is executed for 500 max iterations with 2 restarts and PGD-GAN is executed for 100 max iterations and 1
restart.
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Table 6: DAE-PGD Runtime. Average running times (in seconds) for the Compressive
Sensing problem (w/out noise) on the CelebA dataset.

m CGSM PGD-GAN DAE-PGD Speedup
250 53.78 48.40 0.07 692x
500 59.81 48.46 0.09 538x
1000 81.08 48.46 0.11 440x
1500 92.68 48.50 0.14 346x
2000 107.41 48.56 0.21 230x

outperforms CSGM in all cases. Figure 8 also captures how recovery is affected by

different mask sizes. As in the compressive sensing problem, we find that DAE-PGD

reconstructions capture the fine-grained details of each image. Figure 8 also reports the

result for the MNIST dataset. Even though DAE-PGD outperforms CSGM, we see that

the recovery quality of DAE-PGD degrades considerably when m = 15. We hypothesize

this is due to the structure of MNIST images. In particular, since MNIST images are

grayscale with most of the pixels being black, putting a 15×15 black patch on the small

area displaying the number makes the reconstruction problem considerably more difficult.

This causes considerable degradation in reconstruction quality for larger mask sizes.

Fig. 8. Inpainting: CelebA and MNIST. Left: CelebA reconstructions for m = 10.
Middle-Left: DAE-PGD CelebA reconstructions for different m. Middle-Right: MNIST
reconstructions for m = 5. Right: DAE-PGD MNIST reconstructions for different m.

5.4.4 Super-resolution

Super-resolution is the problem of recovering the original image from a smaller and

lower-resolution version. We create this smaller and lower-resolution image by taking the
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spatial averages of f × f pixel values where f is the ratio of downsampling. This results

in blurring a f × f region followed by downsampling the image. We test our algorithm

with f = 2,3,4 corresponding to 4×,9×, and 16× smaller image sizes, respectively.

The reconstruction results are provided in Figure 9. We see that DAE-PGD provides

higher quality reconstruction for f = 2 for both CelebA and MNIST. Moreover,

reconstruction quality degrades gracefully for CelebA for increasing values of f .

However, in the case of MNIST, reconstruction quality degrades considerably when f = 4.

Noting that f = 4 only gives 16 measurements (i.e. y ∈ R16), we hypothesize that 16

measurements may not contain enough signal to accurately reconstruct the original

images.

Fig. 9. Super-resolution: CelebA and MNIST. Left: CelebA reconstructions for f = 2.
Middle-Left: DAE-PGD CelebA reconstructions for different f . Middle-Right: MNIST
reconstructions for f = 2. Right: DAE-PGD MNIST reconstructions for different f .
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6 CONCLUSIONS

6.1 Defending Neural Networks Against Adversarial Attacks

We provided recovery guarantees for corrupted signals in the case of ℓ2, ℓ∞ and

ℓ0-norm bounded noise. We were able to utilize these results in CRD and improve the

performance of neural networks substantially in the case of ℓ2, ℓ∞ and ℓ0 norm bounded

noise. In particular, we utilized the guarantees of Theorem 8 and Theorem 9 to extend the

defense framework of [15] to defend neural networks against ℓ2, ℓ∞ and ℓ0 norm attacks.

6.2 Neural Networks as Priors in Linear Inverse Problems

We utilized DAEs as priors for general linear inverse problems and provided

experimental results for the problems of compressive sensing, inpainting, and

super-resolution on the CelebA and MNIST datasets. Utilizing a projected gradient

descent algorithm for recovery, we provided rigorous theoretical guarantees for our

framework and showed that our recovery algorithm does not impose strict constraints on

the learning rate and hence eliminates the need to tune hyperparameters. We compared

our framework to existing methods experimentally and found that our recovery algorithm

provided a speed up of over two orders of magnitude and an order of magnitude

improvement in reconstruction quality.
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[61] F. Tramèr, A. Kurakin, N. Papernot, D. Boneh, and P. McDaniel. Ensemble
Adversarial Training: Attacks and Defenses. ArXiv e-prints, May 2017.

[62] W. Xu, D. Evans, and Y. Qi. Feature Squeezing Mitigates and Detects
Carlini/Wagner Adversarial Examples. ArXiv e-prints, May 2017.

[63] Aleksander Madry, Aleksandar Makelov, Ludwig Schmidt, Dimitris Tsipras, and
Adrian Vladu. Towards deep learning models resistant to adversarial attacks. arXiv
preprint arXiv:1706.06083, 2017.

[64] Pouya Samangouei, Maya Kabkab, and Rama Chellappa. Defense-gan: Protecting
classifiers against adversarial attacks using generative models. arXiv preprint
arXiv:1805.06605, 2018.

52



[65] Aaditya Prakash, Nick Moran, Solomon Garber, Antonella DiLillo, and James Storer.
Deflecting adversarial attacks with pixel deflection. In Proceedings of the IEEE
conference on computer vision and pattern recognition, pages 8571–8580, 2018.

[66] Cihang Xie, Jianyu Wang, Zhishuai Zhang, Zhou Ren, and Alan Yuille. Mitigating
adversarial effects through randomization. arXiv preprint arXiv:1711.01991, 2017.

[67] Emmanuel J Candès, Justin Romberg, and Terence Tao. Robust uncertainty
principles: Exact signal reconstruction from highly incomplete frequency
information. IEEE Transactions on information theory, 52(2):489–509, 2006.

[68] Thomas Blumensath and Mike E Davies. Iterative hard thresholding for compressed
sensing. Applied and computational harmonic analysis, 27(3):265–274, 2009.

[69] Richard G. Baraniuk, Volkan Cevher, Marco F. Duarte, and Chinmay Hedge.
Model-based compressive sensing. IEEE Transactions on Information Theory,
56(4):1982–2001, 2010.

[70] Nicolas Papernot, Patrick McDaniel, Ian Goodfellow, Somesh Jha, Z Berkay Celik,
and Ananthram Swami. Practical black-box attacks against machine learning. In
Proceedings of the 2017 ACM on Asia conference on computer and communications
security, pages 506–519, 2017.

[71] Anish Athalye, Nicholas Carlini, and David Wagner. Obfuscated gradients give a
false sense of security: Circumventing defenses to adversarial examples. arXiv
preprint arXiv:1802.00420, 2018.

[72] Alex Krizhevsky. Learning multiple layers of features from tiny images. Technical
report, Citeseer, 2009.

[73] Yann LeCun. The mnist database of handwritten digits. http://yann. lecun.
com/exdb/mnist/.

[74] Han Xiao, Kashif Rasul, and Roland Vollgraf. Fashion-mnist: a novel image dataset
for benchmarking machine learning algorithms. arXiv preprint arXiv:1708.07747,
2017.

[75] Steven Diamond and Stephen Boyd. CVXPY: A Python-embedded modeling
language for convex optimization. Journal of Machine Learning Research,
17(83):1–5, 2016.

53



[76] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning
for image recognition. In Proceedings of the IEEE conference on computer vision
and pattern recognition, pages 770–778, 2016.

[77] Seyed-Mohsen Moosavi-Dezfooli, Alhussein Fawzi, and Pascal Frossard. Deepfool:
a simple and accurate method to fool deep neural networks. In Proceedings of the
IEEE conference on computer vision and pattern recognition, pages 2574–2582,
2016.

[78] Ali Shafahi, Mahyar Najibi, Mohammad Amin Ghiasi, Zheng Xu, John Dickerson,
Christoph Studer, Larry S Davis, Gavin Taylor, and Tom Goldstein. Adversarial
training for free! In Advances in Neural Information Processing Systems, pages
3353–3364, 2019.

[79] Eric Wong, Leslie Rice, and J Zico Kolter. Fast is better than free: Revisiting
adversarial training. arXiv preprint arXiv:2001.03994, 2020.

[80] Alexey Kurakin, Ian Goodfellow, and Samy Bengio. Adversarial examples in the
physical world. arXiv preprint arXiv:1607.02533, 2016.

[81] Robert Tibshirani. Regression shrinkage and selection via the lasso. Journal of the
Royal Statistical Society: Series B (Methodological), 58(1):267–288, 1996.

[82] Gabriel Peyre. Best basis compressed sensing. IEEE Transactions on Signal
Processing, 58(5):2613–2622, 2010.

[83] Minhua Chen, Jorge Silva, John Paisley, Chunping Wang, David Dunson, and
Lawrence Carin. Compressive sensing on manifolds using a nonparametric mixture
of factor analyzers: Algorithm and performance bounds. IEEE Transactions on
Signal Processing, 58(12):6140–6155, 2010.

[84] Ashish Bora, Ajil Jalal, Eric Price, and Alexandros G Dimakis. Compressed sensing
using generative models. arXiv preprint arXiv:1703.03208, 2017.
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