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Evolutionary Game Dynamics in Populations with
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Abstract

Evolutionary graph theory is a well established framework for modelling the evolution of social behaviours in structured
populations. An emerging consensus in this field is that graphs that exhibit heterogeneity in the number of connections
between individuals are more conducive to the spread of cooperative behaviours. In this article we show that such a
conclusion largely depends on the individual-level interactions that take place. In particular, averaging payoffs garnered
through game interactions rather than accumulating the payoffs can altogether remove the cooperative advantage of
heterogeneous graphs while such a difference does not affect the outcome on homogeneous structures. In addition, the
rate at which game interactions occur can alter the evolutionary outcome. Less interactions allow heterogeneous graphs to
support more cooperation than homogeneous graphs, while higher rates of interactions make homogeneous and
heterogeneous graphs virtually indistinguishable in their ability to support cooperation. Most importantly, we show that
common measures of evolutionary advantage used in homogeneous populations, such as a comparison of the fixation
probability of a rare mutant to that of the resident type, are no longer valid in heterogeneous populations. Heterogeneity
causes a bias in where mutations occur in the population which affects the mutant’s fixation probability. We derive the
appropriate measures for heterogeneous populations that account for this bias.
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Introduction

Population structure has long been known to affect the outcome

of an evolutionary process [1–4]. Evolutionary graph theory has

emerged as a convenient framework for modelling structured

populations [4,5]. Individuals reside on vertices of the graph and

the edges define the interaction neighbourhoods.

A variety of processes have been investigated on a number of

graph classes. However, few analytical results exist in general,

since an arbitrary graph may not exhibit sufficient symmetry to aid

calculations. The most general class of graphs for which analytical

results are known is the class of homogeneous (vertex-transitive)

graphs. Such a graph G has the property that for any two vertices

vi and vj there exists a structure-preserving transformation g of G

such that g(vi)~vj . It is worth noting that not all regular graphs

are homogeneous; an extreme example is the Frucht graph [6],

which is regular of degree 3 and has only the trivial symmetry.

Intuitively, this class consists of graphs that ‘‘look’’ the same from

any vertex. The amount of symmetry in such graphs has allowed

for a complete set of analytical results for restricted types of

evolutionary processes and weak selection [7–9]. Despite the

tractability of calculations on homogeneous graphs, natural

population structures are seldom homogeneous. Therefore it is

important to understand the effects of heterogeneous population

structures on evolutionary processes [4,8,10] and, in particular, on

the evolution of cooperation.

In the simplest case there are two strategic types: cooper-

ators that provide a benefit b to their interaction partner at

some cost c to themselves (bwcw0), whereas defectors provide

neither benefits nor incur costs. This basic setup is known as an

instance of the prisoner’s dilemma and reflects a conflict of

interest because mutual cooperation yields payoff b{cw0 and

hence both parties prefer this outcome over mutual defection,

which yields a payoff of zero. However, at the same time

each party is tempted to defect in order to avoid the costs

of cooperation. The temptation of increased benefits for

unilateral defection thwarts cooperation – to the detriment of

all. This conflict of interest characterizes social dilemmas

[11,12].

More general kinds of interactions between two individuals

and two strategic types, A and B, can be represented in the

form of a 2|2 payoff matrix as in Table 1. The payoffs

garnered from these game interactions affect an individual’s

expected number of offspring by altering their propensity to

have offspring (their fitness) or their survival. The expected

number of offspring is determined by the fitness of the

individuals and some population updating process, which will

be made precise in the next section. The offspring produced

during the population update have the potential to change the

strategy composition of the population. An increase in the

abundance of one strategy over a sufficiently large time scale

indicates that strategy is favoured by evolution.
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It can be shown, for replicator dynamics, for example [13,14],

that any payoff matrix can be reduced to the matrix in Table 1

without loss of generality because adding a constant term to the

payoff matrix does not affect the dynamics and multiplying the

payoffs by a positive factor merely rescales the time. Therefore we

can always shift the payoffs such that B-B-encounters return a

payoff of zero and scale all other payoffs such that A-A-encounters

yield a payoff of 1. In the Averaged versus Accumulated Payoffs

section, we show that the generality of the matrix in Table 1

extends to other forms of stochastic dynamics in finite populations

based on the frequency dependent Moran process [15].

The (additive) prisoner’s dilemma introduced before corre-

sponds to the special case with S~{c=(b{c) and T~b=(b{c).
Rescaling the payoff matrix in Table 1 by b{c yields the

traditional form, Table 2. More generally, the prisoner’s dilemma

requires Sv0 and Tw1 to result in the characteristic conflict of

interest outline above. The special case of the additive prisoner’s

dilemma, Table 2, effectively reduces the game to a single

parameter with T~1{S (and Sv0). Moreover it has the special

property that when an individual changes its strategy, the payoff

gain (or loss) is the same, regardless of the opponents’ strategy –

the so-called equal-gains-from-switching property [16].

In the absence of structure, cooperators dwindle and disappear

in the prisoner’s dilemma. In contrast, structured populations

enable cooperators to form clusters, which ensures that cooper-

ators more frequently interact with other cooperators than they

would with random interactions [17,18]. Such assortment between

cooperators is essential for the survival of cooperation [19].

In heterogeneous graphs not all vertices have the same number

of connections and hence the fitnesses of individuals may be based

on different numbers of interactions. Because of this, some vertices

are more advantageous to occupy than others. However, which

sites are favourable depends on the type of population dynamics.

In particular, for the Moran process in structured populations it is

important to distinguish between birth-death and death-birth

updating [10,20,21], i.e. whether first an individual is randomly

selected for reproduction with a probability proportional to its

fitness and then the clonal offspring replaces a (uniformly)

randomly selected neighbour – or, if first an individual is selected

at random to die and then the vacant site is repopulated with the

offspring of a neighbouring individual with a probability

proportional to its fitness. Even in homogenous populations the

sequence of events is of crucial importance but becomes even more

pronounced in heterogenous structures [10,20].

In order to illustrate that the population dynamics may bestow

an advantage to individuals occupying certain sites in a

heterogeneous population, consider neutral evolution, where game

payoffs do not affect the evolutionary process and all individuals

have the same fitness. For birth-death updating every individual is

chosen to reproduce with the same probability but neighbours of

individuals with few connections are replaced more frequently.

Hence vertices with fewer neighbours are more favourable than

those with many connections. Conversely, for death-birth updat-

ing every individual has the same expected life time but highly-

connected individuals, or, hubs, get more frequently a chance to

produce offspring, since one of their many neighbours dies, and

are thus more favourable than vertices with few neighbours [21–

23]. A simple example of this is a 3-line graph, one central vertex

connected to two end vertices. In the birth-death process, the

central vertex is replaced with probability 2=3, while either end

vertex is replaced with probability 1=6, while in the death-birth

process, the central vertex replaces either end vertex with

probability 2=3 and either end replaces the centre with probability

1=6 [21]. The upshot is, even though the fitness of all individuals is

the same, the effective number of offspring produced depends on

the dynamics as well as an individual’s location in the population.

The intrinsic advantage of some vertices over others can be

further enhanced through game interactions leading to differences

in fitness that depend on an individual’s strategy as well as its

position on the graph. For example, a cooperator occupying a

favourable vertex can more easily establish a cluster of coopera-

tors, which creates a positive feedback through mutual increases in

fitness. Conversely, a favourable vertex also supports the formation

of a cluster of defectors but this results in a negative feedback and

lowers the fitness of the defector in the favourable vertex. The fact

that heterogeneity can promote cooperation was first observed for

the prisoner’s dilemma and snowdrift games [24,25] and has

subsequently been confirmed for public goods games [26,27].

However, the detailed effects not only crucially depend on the

dynamics but also on how fitnesses are determined. For example,

heterogenous population structures favour cooperation if payoffs

from game interactions are accumulated but that advantage

disappears if payoffs are averaged [28–30].

The effects of population structure on the outcome of

evolutionary games is sensitive to a number of factors: population

dynamics [10,20,31], translation of payoffs into fitness [28,30,32–

35], the diversity of players [27,34,36], and the type of game

played – for example, spatial structure tends to support

cooperation in the prisoner’s dilemma but conversely, in the

snowdrift game, spatial structure may be detrimental [37].

Macroscopic features of the evolutionary process on the level of

the population, such as frequency and distribution of cooperators,

are determined by microscopic processes on the level of

individuals. In the current article, we discuss some of these

microscopic processes, such as averaging and accumulating

payoffs, and the rate at which interactions take place, and

illustrate how they affect an evolutionary outcome. Crucially, we

also illustrate that the conditions for evolutionary advantage

commonly found in the literature are not applicable to evolution in

finite, heterogeneous populations. We modify these conditions and

Table 1. The payoff matrix for a general 2 by 2 strategy
game.

A B

A 1 S

B T 0

Here S and T are real numbers.
doi:10.1371/journal.pcbi.1003567.t001

Author Summary

Understanding the evolution of cooperation is a persistent
challenge to evolutionary theorists. A contemporary take
on this subject is to model populations with interactions
structured as close as possible to actual social networks.
These networks are heterogeneous in the number and
type of contact each member has. Our paper demon-
strates that the fate of cooperation in such heterogeneous
populations critically depends on the rate at which
interactions occur and how interactions translate into the
fitnesses of the strategies. We also develop theory that
allows for an evolutionary analysis in heterogeneous
populations. This includes deriving appropriate criteria
for evolutionary advantage.

Evolutionary Dynamics in Heterogenous Populations
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develop a general framework to determine evolutionary advantage

in finite, heterogeneous populations.

The manuscript is organized as follows. Sections ‘‘Accumulated

and Averaged Payoffs’’ and ‘‘Criteria for Evolutionary Success’’

create a critical synthesis of the existing literature concerning

evolution on heterogeneous graphs. In these sections we extend

existing results to general 2|2 games and focus on an imitation

process. We also discuss the inapplicability of approaches used in

homogeneous populations and present our novel conditions for

evolutionary success in heterogeneous populations. Interspersed in

these sections are new observations and results that aid in

establishing a consistent framework on which we base further

novel results presented in the section ‘‘Stochastic Interactions and

Updates’’.

Results

Accumulated Versus Averaged Payoffs
In heterogenous population structures individuals naturally

engage in different numbers of interactions. This renders

comparisons of the performances of individuals more challenging.

One natural approach is to simply accumulate the game payoffs.

This clearly puts hubs with many neighbours in a strong position

as scoring many times even a small payoff may still exceed few

large payoffs. To avoid this bias in favour of hubs, game payoffs

can be averaged. Interestingly, these two approaches not only play

a decisive role for the evolutionary outcome but also entail

important biological implications. In this section we extend

previous work on payoff accounting [29] to general 2|2 games

and provide a thorough discussion of why different payoff

accounting schemes can result in markedly different evolutionary

outcomes.

Consider two different ways to translate the total, accumulated

payoffs pi of an individual i into its fitness fi :

accumulated : fi~edpi , ð1aÞ

averaged : fi~e
d

pi

ni , ð1bÞ

where dw0 denotes the strength of selection and ni is the number

of interactions experienced by i. The limit d?0 recovers the

neutral process, where selection does not act. Note that the payoff

matrix in Table 1 can still be used without loss of generality

because adding a constant k merely changes the (arbitrary)

baseline fitness from 1 to edk and multiplying the payoffs by l is

identical to simply changing the selection strength to dl.

The exponential form of fitness in the above equations is

mathematically convenient since it guarantees that the fitness is

always positive, irrespective of the strength of selection and payoff

values. It is worth noting that if the strength of selection is weak,

that is, d%1, then

accumulated : fi~edpi&1zdpizO(d), ð2aÞ

averaged : fi~e
d

pi

ni&1zd
pi

ni

zO(d), ð2bÞ

which represents another common form for fitness found in the

literature [8].

Homogenous populations. In the past, details of the

payoff accounting have received limited attention, or the two

approaches have been used interchangeably, because they

yield essentially the same results for traditional models of

spatial games, which focus on lattice populations [4,38] or,

more generally, on homogenous populations [8,10,39]. In fact,

the difference in payoff accounting reduces to a change in the

selection strength because in homogenous populations each

individual has the same degree di~d (number of neighbours)

and hence, on average, the same number of interactions �nn per

unit time. If each individual interacts with all its neighbours

then �nn~d. Thus, the only difference is that the selection

strength for accumulated payoffs is �nn-times as strong as for

averaged payoffs.

Therefore, in homogenous populations all individuals engage in

the same number of interactions per unit time and consequently

accumulating or averaging payoffs merely affects the strength of

selection. Naturally, the converse question arises – are uniform

interaction rates restricted to homogenous graphs? Or, more

generally, which class of graphs supports uniform interaction

rates?

To answer this question, let us consider an arbitrary graph G

with adjacency matrix W~½wij � where wij§0 indicates the weight

or the strength of the (directed) edge from vertex i to j. wijw0 if

vertex i is connected to j and wij~0 if it is not. For example, the

natural choice for the edge weights on undirected graphs is

wij~1=di. That is, all di edges leaving vertex i have the same

weight and hence
XN

j~1
wij~1 for all i.

An individual on vertex i is selected to interact with vertex j with

a probability proportional to wij . In this case we say vertex i has

initiated the interaction. Interactions with self are excluded by

requiring wii~0. If there are M interactions per unit time, then

the average number of interactions ni that vertex i engages in is

given by

ni~M

XN

j~1
wijz

XN

j~1
wjiXN

j,k~1
wjk

, ð3Þ

where the fraction indicates the probability that vertex i

participates in one particular interaction either by initiating it

(first sum in numerator) or initiated by neighbours of i (second sum

in numerator). On average each individual engages in 2M=N

interactions. Note that the factor 2 enters because each interaction

affects two individuals. Therefore, a graph structure results in

uniform interaction rates if and only if

XN

j~1
wijzwji

� �
XN

j,k~1
wjk

~
2

N
ð4Þ

Table 2. The payoff matrix for an additive prisoner’s dilemma
game.

C D

C b2c 2c

D b 0

doi:10.1371/journal.pcbi.1003567.t002

Evolutionary Dynamics in Heterogenous Populations
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holds for every vertex i, or equivalently, if
XN

j~1
(wijzwji)~C0

for all i where C0 is an arbitrary positive constant.

If the sum of the weights of all di edges leaving vertex i,XN

j~1
wij~C1w0, is the same for all i then

XN

j,k~1
wkj~N:C1

and Eq. (4) requires that the sum of the weights of all incoming

edges,
XN

j~1
wji~C1, for all i, as well to ensure uniform

interaction rates. The class of graphs that satisfies the conditionXN

j~1
wij~

XN

j~1
wji~C1 for all i are called circulations [5] and,

in the special case with C1~1, the adjacency matrix W is doubly

stochastic such that each row and column sums to 1. A more

generic representative of the broad class of circulation graphs is

shown in Figure 1 but this does not include heterogenous graphs

such as scale-free networks.

In order to illustrate that the number of interactions experi-

enced by an individual depends on which vertex they reside, let us

consider a mean-field approximation for sufficiently large

networks, based on the degree distribution p(d) and degree-

degree correlations p(dj Ddi) [40]. Specifically, p(d) denotes the

probability of a randomly chosen vertex having degree d , and

p(dj Ddi) denotes the conditional probability of a vertex i with

degree di connected to vertices j with degree dj . With this

notation, the connectivity between a vertex of degree di and

another vertex of degree dj is djp(di Ddj). Further averaging this

quantity over all vertices having degree di, we obtain wij , which

indicates the weight of the connection between a vertex of degree

di and another vertex of degree dj ,

wij~
djp(di Ddj)

Np(di)
: ð5Þ

The formula above omits higher-order correlations than two-point

correlations, and works for large, sparse networks (N&1 and

N&di for all i) [41]. In this case, wij can be interpreted as the

probability that vertices i and j are connected at the mean-field

level.

For random, undirected, and degree-uncorrelated graphs,

p(di Ddj) does not depend on dj and is thus given by dip(di)=�dd,

where �dd is the average degree of the network, �dd~
X

i
di=N. This

applies even if the network is not sparse. Accordingly, wij can be

simplified:

wij~
djdi

N�dd
: ð6Þ

Inserting into Eq. (4) yields

ni~M
2

N

di

�dd
: ð7Þ

Hence, the number of interactions of one vertex scales linearly

with its degree.

Similarly, each vertex can initiate the same number of

interactions, m. Then, with probability wji=dj the neighbouring

vertex j initiates an interaction with i:

Figure 1. A representative example of the broad class of circulation graphs. Note that the weights of edges entering as well as those
leaving any vertex all sum to 1.
doi:10.1371/journal.pcbi.1003567.g001

Evolutionary Dynamics in Heterogenous Populations
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ni~m 1z
XN

j~1

wji

dj

 !
~m 1z

XN

j~1

j=i

1

dj

didj

�ddN

0
BBBBBB@

1
CCCCCCA

~m 1z
N{1

N

di

�dd

� �
:

ð8Þ

Again, vertices with a degree greater (less) than the average degree

are expected to have more (fewer) interactions than on average.

Interaction rates on various heterogenous networks are shown in

Figure 2. As shown in Figures 2a–c, this approximation above

works well for a variety of networks where degree of adjacent

vertices are uncorrelated. However, when the network is strongly

degree-correlated, like the two-star graphs [27,34], this approxi-

mation works poorly (also see Figure 2d for such an example of

highly clustered scale free networks). In this case, we may use

Eq.(5) to calculate wij as long as the function for degree-degree

correlations, p(di Ddj), is explicitly known.

This indicates that on undirected graphs uniform interaction

rates can be achieved only on regular graphs, where all vertices

have the same number of neighbours.

Heterogenous populations. In recent years the focus has

shifted from homogenous populations to heterogenous structures

and, in particular, to small-world or scale-free networks because

they capture intriguing features of social networks [42]. On these

structures the accounting of payoffs becomes important and,

indeed, a crucial determinant of the evolutionary outcome. If

payoffs are accumulated, heterogenous structures further promote

the evolution of cooperation [24,25,27,36]. In contrast, averaging

the game payoffs can remove the ability for scale-free graphs to

sustain higher levels of cooperation [28–30].

So far our discussion has focused on interactions between

individuals and the translation of payoffs into fitness. The next step

is to specify how differences in fitness affect the population

dynamics. The most common updating rules in evolutionary

games on graphs fall into three categories: Moran birth-death and

death-birth, and imitation processes. The evolutionary outcome

can be highly sensitive to the choice of update rule. For example,

supposing weak selection, cooperation in the prisoner’s dilemma

may only thrive under death-birth but not under birth-death

updating [8,10,20].

In heterogenous populations the range of payoffs depends on

the payoff accounting: if payoffs are averaged, the range is

determined by the maximum and minimum values in the payoff

matrix but if payoffs are accumulated the range additionally

depends on the size and structure of the population. In particular,

this difference may also affect the updating rule: for example, the

pairwise comparison process 1=2z(fj{fi)=a represents the

probability that vertex i adopts the strategy of vertex j based on

their fitnesses of fi, fj , respectively [43,44]. This represents an

imitation process where a denotes a sufficiently large normaliza-

tion constant to ensure that the expression indeed remains a

probability. Since a needs to be at least twice the range of possible

fitness values, a generic choice of a becomes impossible for

accumulated payoffs.

Here we focus on a related imitation process where an

individual i is chosen at random to reassess its strategy by

comparing its performance to a randomly chosen neighbour j.
Individual i then imitates the strategy of j with probability

1

2
z

1

2

fj{fi

fjzfi

, ð9Þ

where fj and fi are the fitnesses of i and j. This variant is

convenient as it includes an appropriate normalization factor

and hence works regardless of how the fitnesses are calculated.

In particular, for exponential payoff-to-fitness mapping (see

Eq. (1)) the imitation rule, Eq. (9), recovers the Fermi-update

[45]:

accumulated :
1

1ze{d(pj{pi)
, ð10aÞ

averaged :
1

1ze
{d

pj

nj

{
pi

ni

� � , ð10bÞ

For a comparison between averaged and accumulated

payoffs in homogenous and heterogenous populations, see

Figure 3.

On a microscopic level averaging or accumulating payoffs in

heterogenous populations turns out to have important biolog-

ical implications: when averaging payoffs, individuals play

different games depending on their location on the graph,

whereas for accumulated payoffs everyone plays the same

game but at different rates – again based on the individuals’

locations. These intriguing differences are illustrated and

discussed for the simplest heterogenous structure, the star

graph, in a subsequent section. First we develop a framework

that aids in analyzing an evolutionary process in heteroge-

neous, graph-structured populations.

Criteria for Evolutionary Success
In order to determine the evolutionary success of a strategic type

in a finite population we consider three fixation probabilities:

rA,rB and r0. The first, rA, indicates the probability that a single

A type in an otherwise B population goes on to supplant all Bs,

while the second, rB, refers to the probability of the converse

process where a single B type takes over a population of A types.

These fixation probabilities are important whenever mutations can

arise in the population during reproduction or through errors in

imitating the strategies of others. The last probability, r0, denotes

the fixation probability of the neutral process, which is defined as

the dynamic in a population with vanishing selection, d~0. In

such a case the game payoffs do not matter and everyone has the

same fitness. Based on these fixation probabilities two distinct and

complementary criteria are traditionally used to measure evolu-

tionary success [15,20]:

(i) Type A is said to have an evolutionary advantage or is favoured

if

rAwrB ð11Þ

holds. If mutations, or errors in imitation, are rare the mutant

has disappeared or taken over the entire population before

the next mutation occurs. We can then view the population

dynamic as an embedded Markov chain transitioning

between two states: all-A and all-B. Denote the proportion

of time spent in the state all-A (respectively, all-B) by TA

Evolutionary Dynamics in Heterogenous Populations
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(resp. TB). Together, TA and TB are known as the stationary

distribution of the Markov chain and satisfy the balance

equation

TBmArA~TAmBrB, ð12Þ

where mA (mB) is the probability an A (B) appears in the all-B
(all-A) population. For homogeneous populations, or if

mutations are not tied to reproduction or imitation events,

mA~mB and so Eq. (12) reads

TBrA~TArB: ð13Þ

Hence, if rAwrB then TAwTB, which captures the notion

of A having an advantage over B. If the inequality, Eq. (11),

is reversed then type B has the advantage.

(ii) Type A is a beneficial mutation if

rAwr0 ð14aÞ

holds. Similarly, if

rBwr0 ð14bÞ

holds, the B type is a beneficial mutation. Note that, in

general, Eqs. (14a) and (14b) are not mutually exclusive.

A and B types may simultaneously be advantageous

mutants – in co-existence games, Sw0,Tw1, such as the

snowdrift game – or both disadvantageous – in coordi-

nation games, Sv0,Tv1, such as the stag-hunt game.

However, for payoff matrices that satisfy equal-gains-

from-switching, such as Table 2, rAwr0 implies rBvr0

Figure 2. Average number of interactions as a function of the degree of the vertex for different types of random heterogenous
population structures: (A) Erdós-Rényi random graphs [53], (B) Newman-Watts small-world networks [54. (C) Barabási-Albert scale-free networks
[42], and (D) Klemm-Eguiluz highly-clustered scale-free networks [55]. All graphs have size N~1000 and an average degree of �dd~10. At each time
step a randomly chosen individual interacts with a randomly selected neighbour. The average number of interactions is shown for simulations (blue
dots) and an analytical approximation for graphs where the degrees of adjacent vertices are uncorrelated (red line, see Eq. (8)).
doi:10.1371/journal.pcbi.1003567.g002
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and vice versa in unstructured populations or for weak

selection [46].

The above conditions (11) and (14) are based on the implicit

assumption of homogenous populations or averaged payoffs and

randomly placed mutants. In the present context of heterogenous

populations and with mutants explicitly arising through errors in

reproduction or imitation, both conditions require further scrutiny

and appropriate adjustments.

The first condition implicitly assumes that an A mutant appears

in a monomorphic B population with the same probability as a B
mutant in a monomorphic A population. However, in heterog-

enous populations with accumulated payoffs this is not necessarily

the case. Even in monomorphic states hubs may have a higher

fitness and hence are more readily imitated, or reproduce more

frequently, than low degree vertices. This can result in a bias of the

rates mA,mB at which A and B mutants arise. Thus, the condition

for evolutionary advantage, Eq. (11), must read

mArAwmBrB: ð15Þ

In general, mA and mB depend on the population structure as well

as the payoffs and their accounting. The star structure serves as an

illustrative example in the next section.

Similarly, the second condition also needs to be made more

explicit. In general, to determine whether a mutation is beneficial

its fixation probability should exceed the probability that in the

corresponding monomorphic population one particular individual

eventually establishes as the common ancestor of the entire

Figure 3. Average fraction of strategy A for accumulated (top row) versus averaged (bottom row) payoffs in homogenous (left
column) and heterogeneous (middle column) populations as well as the difference between them (right column) as a function of
the game parameters S and T (see Table 1). In each panel the four quadrants indicate the four basic types of generalized social dilemmas:
prisoner’s dilemma (upper left), snowdrift or co-existence games (upper right), stag hunt or coordination games (lower left) and harmony games
(lower right). Homogenous populations are represented by 50|50 lattices with von Neumann neighbourhood (degree d~4) and heterogenous
populations are represented by Barabási-Albert scale-free networks (size N~2500, average degree �dd~4). The population is updated according to the
imitation rule Eq. (9). The colours indicate the equilibrium fraction of strategy A (left and middle columns) ranging from A dominates (blue), equal
proportions (green), to B dominates (red). Increases in equilibrium fractions due to heterogeneity are shown in blue shades (right column) and
decreases in shades of red. The intensity of the colour indicates the strength of the effect. Accumulated payoffs in heterogenous populations shift the
equilibrium in support of the more efficient strategy A except for harmony games where A dominates in any case (bottom right quadrant).
Conversely, for averaged payoffs the support of strategy A is much weaker and even detrimental for Tv1zS. Parameters: initial configuration is a
random distribution of equal proportions of strategies A and B; each simulation run follows 1:6:107 updates and the equilibrium frequency of A is
averaged over the last 2:5:106 updates; results are averaged over 500 independent runs; for scale-free networks the network is regenerated every 50
runs. No mutations occured during the simulation run.
doi:10.1371/journal.pcbi.1003567.g003
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population. We denote these monomorphic fixation probabilities

by rAA, and rBB, respectively. Thus, the second condition, Eq.

(14), should be interpreted as

rAwrBB ð16aÞ

rBwrAA, ð16bÞ

i.e. that the fixation probability of a single A (or B) mutant in a B
(A) population exceeds that of one B (A) individual turning into the

common ancestor of the entire population.

If mutations occur during an updating event, then in

heterogeneous populations mutants occur more frequently in

some vertices than in others. For our imitation process, high

degree vertices serve more often as models than low degree

vertices and hence the mutation is likely to occur in neighbours of

high degree vertices. Note that this is different from placing a

mutant on a vertex chosen uniformly at random from all vertices

[47]. A randomly placed neutral mutant fixates, on average, with a

probability corresponding to the inverse of the population size.

This is not necessarily the case if neutral mutants arise in

reproductive events or errors in imitating or adopting other

strategies. In fact, the distinction between r0,rAA and rBB is only

required on heterogenous graphs with accumulated payoffs and

non-random locations of mutants. In all other situations the

(average) monomorphic fixation probabilities are the same and

equal to r0~1=N, where N is the population size.

In summary, due to the fitness differences in a monomorphic A
population with accumulated payoffs the turnover is accelerated

and more strategy updates take place and hence more errors occur

than in the corresponding monomorphic B population. This

means that, on average, mutant Bs more frequently attempt to

invade an A population than vice versa. Overall, this leads to new

conditions for evolutionary success in heterogeneous populations,

summarized as follows. Type A (i) has an evolutionary advantage or

is favoured if mArAwmBrB where mA is the probability a mutant A
arises in an all-B population (and vice-versa), and, is beneficial if

rAwrBB, where rBB is the probability a single B individual goes

on to become the common ancestor in an all-B population.

Analogous conditions hold for a mutant B type. We apply these

novel conditions to an example found in the literature [47], the

star graph.

The star graph. The star graph represents the simplest,

highly heterogenous structure. A star graph of size Nz1 consist of

a central vertex, the hub, which is connected to all N leaf vertices.

On the star graph the range of degrees is maximal – the hub has

degree N and all leaves have degree one.

In order to illustrate the differences arising from accumulating

and averaging payoffs, consider a situation where each individual

initiated, on average, one interaction. Thus, the hub has Nz1
interactions while the leaves have only 1z1=N. Assume that i
vertices are of type A and N{i of type B. The payoff to a hub of

type A is then (iz(N{i)S)(1z1=N) for accumulated payoffs

and (iz(N{i)S)=N if payoffs are averaged. In contrast, the

payoff of an A leaf is 1z1=N (accumulated) and 1 (averaged).

From each A leaf the hub gains 1z1=N for accumulated payoffs,

which is the same as the gain for the A leaf. However, for averaged

payoffs, the hub only gains 1=N from each A leaf but each A leaf

still gains 1 from the interaction with the hub. Thus, A-A-

interactions are more profitable for vertices with a low degree and

the payoff gets discounted for vertices with larger degrees.

Although potential losses against B leaves also get discounted: T

for B leaves versus S=N for an A hub for averaged payoffs as

opposed to T(1z1=N) for B leaves versus S(1z1=N) for an A
hub for accumulated payoffs. For A types it is less attractive to

interact with B types whenever Sv1 and hence applies to all

generalized social dilemmas [12].

Similarly, the payoffs to a type B hub are iT(1z1=N)
(accumulated) and iT=N (averaged) versus 0 for B leaves

(accumulated and averaged) or S(1z1=N) (accumulated) and

S (averaged) for A leaves. In B-B-interactions both players get

zero, regardless of the aggregation of payoffs, which is a

consequence of our particular scaling of the payoff matrix in

Table 1. Hence there is no discrimination between vertices of

different degrees. An illustration of the differences arising from

payoff accounting for the simpler and more intuitive case of the

prisoner’s dilemma in terms of costs and benefits (see Table 2), is

given in Figure 4.

In particular, on star graphs or, more generally, on scale-free

networks, averaged payoffs result in higher and hence less

favourable cost-to-benefit ratios for most individuals in the

population, those with the lower degree vertices. Naturally these

differences are also reflected in the evolutionary dynamics. We

demonstrate this through the fixation probabilities of a single A (B)

type in a population of B (A) types.

Let us first consider the fixation probability of a single A
type, rA. Because of the heterogenous population structure, rA

depends on the location of the initial A – for a star graph,

whether the A originated in the hub or one of the leaves. We

denote the two fixation probabilities by rADH and rADL,

respectively. With probability N=(Nz1) one of the leaves is

chosen to update its strategy and the hub with probability

1=(Nz1). For averaged payoffs the fitnesses of everyone is the

same in a monomorphic B population and hence the hub is

equally likely to adopt the strategy of a leaf, and make a

mistake with probability m%1, as are leaves that are adopting

the hubs strategy. Hence the average fixation probability is

given by

�rrA~
N

Nz1
rADLz

1

Nz1
rADH : ð17Þ

In contrast, for accumulated payoffs even in a homogenous

population the hub does not necessarily have the same payoffs

as the leaves because of the larger number of interactions.

However, for our payoff matrix in Table 1, this does not

matter for homogenous B populations as all B-B-interactions

yield a payoff of zero. Consequently, Eq. (17) equally holds for

averaged and accumulated payoffs and, incidentally, this is also

the average fixation probability for a randomly placed A
mutant.

Similarly, we are interested in the average fixation probability,
�rrB, of a single B type in an otherwise homogenous A population.

Again we first need to determine with what probability the B
mutant arises in a leaf or in the hub. Interestingly, and in contrast

to �rrA, this now depends on the accounting of payoffs. If payoffs are

averaged then all individuals have the same payoff and, in analogy

to Eq. (17), we obtain

�rravg
B ~

N

Nz1
rBDLz

1

Nz1
rBDH : ð18Þ

However, for accumulated payoffs, the hub achieves a payoff of

Nz1 as compared to an average payoff of merely 1z1=N for the

leaves. In order to determine the average fixation probability of a
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single B type, �rraccu
B , we first consider the case where the mutant

arises on a leaf. With probability N=(Nz1) a leaf is selected to

update its strategy and adopts the hub’s strategy with probability

1=(1zexp({d(N{1=N))) (c.f. Eq. (10a)). If the leaf adopts the

strategy it makes an error with a small probability and instead of

copying the A strategy, the leaf becomes of type B. Similarly, the

hub reassesses its strategy with probability 1=(Nz1) and switches

to the leafs strategy with probability 1=(1zexp(d(N{1=N))),
which may then give rise to an A type in the hub with a small

probability. Based on these probabilities we can now determine

the proportion of mutants that occur in the leaves and the hub,

respectively. For the leaves we get

N

Nz1

1

1ze
{d N{

1

N

� �
N

Nz1

1

1ze
{d N{

1

N

� �z
1

Nz1

1

1ze
d N{

1

N

� �~

N

Nze
{d N{

1

N

� �

and similarly for the hub

1

Nz1

1

1ze
d N{

1

N

� �
N

Nz1

1

1ze
{d N{

1

N

� �z
1

Nz1

1

1ze
d N{

1

N

� �~

1

1zN e
d N{

1

N

� � :

Thus, the average fixation probability of a single B mutant is

�rraccu
B ~

N

Nze
{d N{

1

N

� � rBjLz
1

1zNe
d N{

1

N

� � rBjH : ð19Þ

In the weak selection limit, d%1 (or, more precisely, dN%1),

Eq. (19) takes on the same form as for averaged payoffs, Eq. (18).

Conversely, for large populations, dN&1, mutants almost surely

arise in leaves and hence �rraccu
B &rBDL. Note that this is a good

approximation as for N~100 and d~0:1 the probability that the

mutant arises in the hub is already less than 10{6.

In order to determine the evolutionary advantage of A and B
types we still need to determine the rates mA,mB at which A and B
mutants arise in monomorphic B and A populations, respectively.

If payoffs are averaged all individuals in the population have the

same fitness and hence with probability 1=2 the focal individual

imitates its neighbour (c.f. Eq. (10a)) and with a small probability m
an error (or mutation) occurs. This holds for monomorphic

populations of either type and hence mA~mB. For accumulated

payoffs the same argument holds for monomorphic B populations

where all individuals have zero payoff. Consequently, A mutants

arise at a rate mA~1=2m. In contrast, in a monomorphic A
population the hub has a much higher fitness and leaves will

almost surely imitate the hub (whereas the hub almost surely will

not imitate a leaf):

mB~
N

Nz1

1

1ze
{d N{

1

N

� �z
1

Nz1

1

1ze
d N{

1

N

� �
0
BBB@

1
CCCAm:ð20Þ

For large N every update essentially results in one of the leaves

imitating the hub, so that mB&m.

Figure 4. A star graph has the hub in the centre surrounded by N leaf vertices. Using the matrix in Table 2, an A type individual (blue) on
the hub provides a benefit b to each leaf, regardless of whether the payoffs are a accumulated or b averaged. For each interaction, the costs to the
hub amount to c in the accumulated case whereas only c=N in the averaged case. Conversely, the costs to a type A leaf are always c and it provides a
benefit b to the hub if payoffs are accumulated whereas only b=N when averaged. Hence for averaged payoffs an A type hub provides a benefit to
each leaf at a fraction of the costs while A type leaves provide a fraction of the benefits to the hub. This means that the leaves and the hub are
playing different games. More specifically, the cost-to-benefit ratio of A leaves is Nc=b while it is c=(Nb) for an A hub. For most of the population (the
leaves), this ratio is much larger than for accumulated payoffs where the cost-to-benefit ratio is c=b. As a consequence cooperation is much more
challenging if payoffs are averaged rather than accumulated.
doi:10.1371/journal.pcbi.1003567.g004
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Equations (17) through (19) yield the conditions under which

type A or B has an evolutionary advantage. For star graphs, the

fixation probabilities, rA and rB, can be derived based on the

transition probabilities to increase or decrease the number of

mutants by one and hence the results can be easily applied to any

update rule [47]. For the imitation dynamics A types are favoured

under weak selection if and only if

averaged : �rr
avg
A w�rr

avg
B u

N{1

2N
wT{S ð21aÞ

accumulated :

mA�rraccu
A wmB�rraccu

B u
2N(Nz1)

N2z4N{1
wT{S

ð21bÞ

and in the limit of infinite populations, N??, the conditions

reduce to

averaged : �rr
avg
A w�rr

avg
B u

1

2
wT{S ð21cÞ

accumulated : mA�rraccu
A wmB�rraccu

B u2wT{S ð21dÞ

A detailed derivation of the different fixation probabilities is

provided in the Materials and Methods Section.

In order to determine whether a mutant is favoured or not (see

Eq. (16)), we first need to determine the fixation probabilities rAA

and rBB. Naturally, those fixation probabilities again depend on

whether the ancestor is located in the hub or one of the leaves.

Let us first consider a monomorphic B population. The fixation

probability of a B located in the hub, rBBDH , or in one particular

leaf, rBBDL, can be derived from the fixation probabilities rBDH

and rBDL by setting fi~1 (see Materials and Methods), which

yields

rBBDH~
1

2
ð22aÞ

rBBDL~
1

2N
: ð22bÞ

Intuitively, the hub individual becomes the common ancestor

with probability 1=2 because any leaf individual updates its

strategy to the hub’s with a probability of 1=2 and the hub keeps

its strategy also with probability of 1=2 but both probabilities are

independent of the size of the population. Conversely, a leaf

individual must first be imitated by the hub, which is 1=N times

less likely than the reverse. On average we then obtain (insert into

Eq. (17)):

�rrBB~
1

Nz1
: ð23Þ

Note that in a monomorphic B population the payoffs are zero

regardless of the selection strength, d, location (hub and leaves) or

the payoff accounting. Again, this is a consequence of our

particular choice of payoff matrix (Table 1), and thus, Eq. (23)

holds for both averaged as well as accumulated payoffs and is, in

fact, the same as the neutral fixation probability r0. Note that the

fixation probabilities in (22a) through (23) corroborate the

approximation results of [23] and the analytical results of [21].

Let us now turn to the monomorphic A population and

determine rAA. If d~0 then everything is the same as in the

monomorphic B population above and �rrAA~1=(Nz1). Howev-

er, for any non-zero selection, dw0, the situation becomes more

interesting. If payoffs are averaged, all individuals have the same

(non-zero) payoffs and a mutant is equally likely to appear in the

hub as any particular leaf (c.f. Eq. (18)) and hence �rrAA~1=(Nz1)
still holds. However, if payoffs are accumulated the hub has a

higher fitness. The fixation probabilities that an A on the hub or

one of the leaves becomes the common ancestor are rAADH and

rAADL (see Materials and Methods) and, on average we obtain

�rraccu
AA ~

1

Nz1
{

1

2

N{1

Nz1

� �2

dzO d2
� �

: ð24Þ

Now we are able to derive the conditions under which an A and/

or B mutant is beneficial, c.f. Eq. (16):

�rr
avg
A w�rr

avg
BB u

(4N2{3N{1)z(14N2{3Nz1)Sw(10N2z3N{1)T
ð25aÞ

�rr
avg
B w�rr

avg
AA u

(8N2{9Nz1)z(10N2z3N{1)Sv(14N2{3Nz1)T
ð25bÞ

for averaged payoffs and, for accumulated payoffs,

�rraccu
A w�rraccu

BB u

(4N2{3N{1)z(5N2z9N{2)Sw(N2z15N{4)T
ð25cÞ

�rraccu
B w�rraccu

AA u

(8N2{9Nz1)z(N2z15N{4)Sv(5N2z9N{2)T :
ð25dÞ

The parameter region which delimits the region of evolutionary

success of A and B types is illustrated in Figure 5.

We can analyze Eqs. (21a)–(21d) and (25a)–(25d) in terms of the

additive prisoner’s dilemma game by substituting S~{c=(b{c)
and T~b=(b{c). For simplicity, we restrict attention to the case

N?? and since in the additive prisoner’s dilemma game a

strategy is favoured if and only if it beneficial we need only

consider Eqs. (21a)–(21d). We have

averaged : �rr
avg
A w�rr

avg
B u

b

c
v{3 ð26aÞ

accumulated : mA�rraccu
A wmB�rraccu

B u
b

c
w3 ð26bÞ

If we suppose b,cw0, then Eq. (26a) is never satisfied. That is,

averaging rather than accumulating the payoffs altogether

removes the ability of the star graph to support cooperation.

Note that for additive, or equal-gains-from-switching, games

(games that satisfy SzT~1) and for weak selection the condition

rAwrBB implies both rBvrAA and rBB~rAA~1=(Nz1),
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regardless of the accounting of payoffs. This extends results

obtained for homogenous populations [8,10].

Stochastic Interactions and Updates
As we have seen, when payoffs are averaged, members of a

heterogeneous population are possibly playing different games,

while if they are accumulated, all individuals play the same game.

Therefore, only accumulating payoffs allows for meaningful

comparisons of different heterogeneous population structures. A

common simplifying assumption is that each individual interacts

once with all its neighbours, see Figure 3. For heterogeneous

populations this assumption means that those individuals residing

on higher-degree vertices are interacting with their neighbours at a

higher rate than those on lower-degree vertices. This leads to a

separation of time scales, where interactions occur on a much

faster time scale than strategy updates.

Realistically, all social interactions require a finite amount of

time and hence the number of interactions per unit time is limited.

Figure 5. Criteria for evolutionary success on the star graph for accumulated (left column) and averaged (right column) payoffs for
weak selection, d%1. The range for which A is advantageous (top row, c.f. Eq. (15)) depends on the population size, N , and is shown in the limit
N?? (solid line) and for N~5 (dashed line). Below the respective lines A is favoured. Similarly, the range for which A and B mutants are beneficial
(c.f. Eq. (16) also depends on N . B mutants are beneficial above the red lines, while A mutants are beneficial below the blue lines (solid for N??;
dashed for N~5). Additive games (or equal-gains-from-switching) satisfy SzT~1 (dotted line).
doi:10.1371/journal.pcbi.1003567.g005
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This constraint already affects the evolutionary process in

unstructured populations [48] but becomes particularly important

in heterogenous networks where, for example, in scale-free

networks some vertices entertain neighbourhood sizes that are

orders of magnitude larger than that of other vertices. For those

hubs it may not be possible to engage in interactions with all

neighbours between subsequent updates of their strategy or the

strategies of one of their neighbours. In order to investigate this we

need to abandon the separation of the timescales for interactions

and strategy updates.

A unified time scale on which interactions and strategy updates

occur can be introduced as a stochastic process where a randomly

chosen individual i initiates an interaction with probability v with

a random neighbour j and reassesses its strategy with probability

1{v by comparing its payoff to that of a random neighbour

according to Eq. (9). Interactions alter the payoffs pi,pj of both

individuals (and hence their fitnesses, fi,fj , see Eq. (1a)) according

to the game matrix in Table 1. If individual i adopts the strategy of

its neighbour, then its payoff (and interaction count) is reset to

zero, pi~0, regardless of whether the imitation had resulted in an

actual change of strategy. Simulation results for various v are

shown in Figure 6.

For small v%1 few interactions occur between strategy

updates and in the limit v?0 neutral evolution is recovered

because no interactions occur. Conversely, in the limit v?1

many interactions occur between strategy updates, which

allows individuals to garner large payoffs as well as build up

large payoff differences. The average number of interactions

initiated by any individual between subsequent reassessments

of the strategy is v=(1{v), the relative ratio of the time scales

of game interactions versus strategy updates. However, the

distribution of the number of interactions is biased: individuals

with a large number of interactions tend to score high payoffs

and hence are less likely to imitate a neighbours’ strategy,

which in turn results in a further increase of interactions. On

heterogenous graphs and scale-free networks, in particular, this

bias is built in by the underlying structure because highly

connected hubs engage, on average, in a much larger number

of interactions than vertices with few neighbours. Moreover,

hubs are more likely to serve as models when neighbours are

reassessing their strategy – simply because hubs have many

neighbours. Thus, hubs are not only more resilient to change

but also have a stronger influence on their neighbourhood.

When v=(1{v) this ratio begins to get large, interactions

dominate strategy updates and the resulting game dynamics on

heterogeneous and homogeneous graphs becomes indistin-

guishable.

Interestingly, a similar bias in interaction numbers sponta-

neously emerges on homogenous graphs, lattices in particular.

Since all vertices have the same number of neighbours, no

Figure 6. Average fraction of strategy A for different ratios between interactions and strategy updates in homogenous (top row)
and heterogeneous (middle row) populations and the difference between them (bottom row) as a function of the game parameters
S and T (c.f. Figure 3). Interactions occur with probability v and strategy updates with 1{v. For example, for v~0:9 each individual has, on
average, initiated 9 interactions between strategy updates but only an average of 1=9 interactions for v~0:1. For small v effects of heterogenous
population structures have little chance to manifest themselves and the results are closer to those for averaged payoffs (c.f. Figure 3). In contrast, for
large v heterogeneity plays an important role: for scale-free networks it is guided by the structural heterogeneity whereas in homogenous
populations another form of heterogeneity spontaneously emerges in the number of interactions. Even on lattices, stochastic differences in the
number of interactions get amplified by the dynamics because an increased number of interactions reduces the chances that an individual updates
its strategy (c.f. Figure 7). As a consequence the results for lattices and scale-free networks become increasingly similar but scale-free networks keep
promoting A types to a greater extend. Parameters and averaging technique are as in the caption to Figure 3.
doi:10.1371/journal.pcbi.1003567.g006

Evolutionary Dynamics in Heterogenous Populations

PLOS Computational Biology | www.ploscompbiol.org 12 April 2014 | Volume 10 | Issue 4 | e1003567



vertices are predisposed to achieve more interactions than

others but some inequalities in interaction numbers occur

simply based on stochastic fluctuations. As above, those

vertices that happen to engage in more interactions tend to

have higher payoffs and hence are less likely to imitate their

neighbours and keep aggregating payoffs. This positive

feedback between interaction count and resilience to change

spontaneously introduces another form of heterogeneity, which

becomes increasingly pronounced for larger v. In fact, for

large v it rivals the structurally imposed heterogeneity of scale-

free networks, see Figure 7.

Regardless of the structure, the positive feedback between

payoff aggregation and the diminishing chances to change strategy

(and hence reset payoffs) means that a small set of nodes forms an

almost static backdrop of the dynamics and hence has a

considerable effect on the evolutionary process. This set is a

random selection on homogenous structures and consists of the

hubs on heterogenous structures. As a consequence, the initial

Figure 7. Distributions of the number of interactions on lattices (black 0) and scale-free networks (blue D) with a few interactions
between updates (v~0:02 or, on average, &0:02 interactions) and b many interactions between updates (v~0:98 or, on average, 49
interactions). For small v the heterogeneity of scale-free networks results in a pronounced tail at higher numbers of interactions compared to the
approximately exponential distribution for lattices. This tail is responsible for the reduction of cooperation in scale-free networks observed in Figure 6:
as interactions dominate, some vertices almost never update their strategies. This ‘‘static network’’ emerges in both lattices and scale-free graphs and
prevents the complete proliferation of the rare strategy. Nevertheless, most of the individuals in the population experience essentially the same
number of interactions. The distributions look different for large v but the main difference remains that scale-free networks produce a more
pronounced tail. More importantly, however, for most of the population the distributions are actually very similar and hence the heterogeneities very
similar. On lattices, the skewed distribution is caused by stochastic variations and the positive feedback between the number of interactions and the
resilience to changing strategy.
doi:10.1371/journal.pcbi.1003567.g007

Figure 8. Impact of the time scale relation v on the equilibrium fractions of cooperators in the Sv-plane for additive prisoner’s
dilemma games (T~1{S): a lattices and b scale-free networks. The limit v?0 recovers the neutral process (no interactions) whereas for
v?1 individuals hardly update their strategies. Thus, in both of the two limiting cases the fraction of cooperators remains at the initial value of 0:5.
For both types of population structures there exists an intermediate v that leads to an optimal level of cooperation. On lattices the support for
cooperation is strongest if interactions and strategy updates occur at equal rates, v~0:5, but on scale-free networks more frequent updates than
interactions are even more beneficial, v&0:25. Parameters and averaging technique are as in the caption to Figure 3.
doi:10.1371/journal.pcbi.1003567.g008
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configuration of the population has long lasting effects on the

abundance of strategies.

A more detailed view on the effects of v on the evolutionary

process is provided by restricting attention to the prisoner’s

dilemma and additive payoffs, c.f. Table 2. This can be

accomplished by setting T~1{S with Sv0. The equilibrium

levels of cooperation in the Sv-plane are shown in Figure 8 for

lattices and scale-free networks.

Altering the relative rates of interactions versus strategy updates

has interesting effects on the evolutionary outcome. For lower rates

of interaction (v%1), scale-free networks outperform lattices in

their ability to promote cooperation. As interaction rates increase

and strategy updates become more rare (v&1), scale-free

networks and lattices become virtually indistinguishable in their

ability to support cooperation. For both lattices and scale-free

networks an optimal ratio between strategy updates and interac-

tions exist: for lattices this is roughly v~1=2, suggesting that

lattices support the greatest amount of cooperators when

interactions occur at the same rate as strategy updates, whereas

for scale-free networks the optimum lies around v&0:25, which

suggests that scale-free networks provide the strongest support for

cooperation if there are roughly three updates per interaction.

Discussion

Evolutionary dynamics in heterogenous populations, scale-free

networks in particular, have attracted considerable attention over

recent years. Somewhat surprisingly, the underlying microscopic

processes and their implications for the macroscopic dynamics and

the corresponding biological interpretations have received little

attention.

Here we have shown that established criteria to measure success

in evolutionary processes make different kinds of implicit

assumptions that do not hold in general for heterogenous

structures. Instead, for such structures it becomes imperative to

reconsider, revise and generalize these criteria, which was done in

the Criteria for Evolutionary Success section. If errors arise in

imitating the strategic type of other individuals, or mutations occur

during reproduction, then mutations are more likely to arise in

some locations than in others. For example, on the star graph

mutants likely occur in the leaf nodes for birth-death updating and

imitation processes but in the hub for death-birth processes.

Moreover, in heterogenous populations the fixation probabilities

generally depend on the initial location of the mutant and hence

even the fixation probability of a neutral mutant may no longer

simply be the reciprocal of the population size but rather

intricately depend on the population structure.

Another crucial determinant of the evolutionary dynamics in

heterogenous populations is the aggregation of payoffs from

interactions between individuals. Individuals on vertices with a

higher (lower) degree expect to have more (fewer) interactions than

on average. Even though the choice between averaging or

accumulating payoffs may seem innocuous, it has far reaching

consequences. Previous authors [29] have found that averaging

payoffs in a prisoner’s dilemma game on a scale-free network

eliminates such a network’s ability to promote cooperation as

observed in earlier studies [24,25,27,49]. We have extended this

result to general 2|2 games and provide a detailed rationale for

this phenomenon which is summarized as follows. If payoffs are

accumulated, some individuals are capable of accruing more

payoffs than others strictly by virtue of them having more potential

partners. Averaging payoffs removes the ability of hubs to accrue

greater payoffs, but simultaneously makes it difficult to compare

results for different population structures (e.g. lattices versus

scale-free networks) even if their average degrees are the same

because the type of game played depends on the location in the

graph. Hence, accumulating payoffs seems a more natural choice

to compare evolutionary outcomes based on different population

structures because it ensures that everyone engages in the same

game. However, if we assume all interactions are realised then

those individuals with more neighbours interact at a much greater

rate than those with less.

In order to investigate the disparity in the number of

interactions on the success of strategies on heterogenous graphs

we introduced the time-scale parameter v, which determines the

probability that an interaction or a strategy update occurs. When

increasing the rate of strategy updates (small v), heterogeneous

graphs are able to support higher levels of cooperation than

lattices. Conversely, increasing the rate of interactions (large v)

results in small differences between lattices and scale-free

networks; both support roughly the same levels of cooperation.

For imitation processes, individuals with high payoffs are unlikely

to change their strategies and hence are likely to keep accumu-

lating more payoffs. On scale-free networks, hubs are predestined

to become such high performing individuals but on lattices they

spontaneously emerge, triggered by stochastic fluctuation in the

interaction count and driven by the positive feedback between

increasing payoffs and increasing resilience to changing strategies

(and hence to resetting payoffs).

For intermediate v an optimum increase in the level of

cooperation is found: lattices support cooperation most efficiently if

a balance is struck between interactions and strategy updates

(v&0:5), whereas scale-free networks work most efficiently if slightly

more updates occur (v&0:25). For lattices a related observation was

reported for noise in the updating process [50]. If the noise is large,

updating is random but if it is small the game payoffs become

essential. Interestingly, cooperation is most abundant for intermediate

levels of noise – which is similar to having some but not too many

interactions between strategy updates.

Previous work has found that heterogeneous graphs support

coordination of strategies, where all individuals are inclined to adopt

the same strategy, while homogeneous graphs support co-existence

[51,52]. The time scale parameter v introduced in the Stochastic

Interactions and Updates section seems to aid in promoting

coexistence in both types of graphs, based on the large green

region in Figures 3, 6, and 8. Exactly how the time scale parameter

v promotes coexistence is a topic worthy of further investigation.

Naturally there is no correct way of modelling the updating of the

population or the aggregation of payoffs but, as so often, the devil is

in the detail and implicit assumptions originating in traditional,

homogenous models may be misleading or have unexpected

consequences in more general, heterogenous populations.

Materials and Methods

In [47], the authors calculate expressions for the probability that

a single mutant fixes on a star graph. These expressions are in

terms of state transition probabilities. Denote by PXY
i,j the

transition probability from a state with i A individuals on the

leaves and an X individual on the hub to a state with j A

individuals on the leaves and a Y on the hub. With this notation,

the fixation probability of a single A on a leaf vertex is

rADL~
PAA

0,1

PAA
0,1 zPAB

1,1

1

A(1,N)
, ð27Þ
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and for a single A on the hub,

rADH~
PBA

1,1

PBA
1,1 zPBB

1,0

1

A(1,N)
, ð28Þ

where, in both cases,

A(1,N)~1z
XN{1

j~1

PAB
j,j

PAB
j,j zPAA

j,jz1
P

j

k~1

PBB
k,k{1 PAA

k,kz1zPAB
k,k

� �
PAA

k,kz1 PBB
k,k{1zPBA

k,k

� � : ð29Þ

For the imitation process defined by Eq. 9 and accumulated

payoffs we have

PAA
i,iz1~

N{i

Nz1

ed(iz(N{i)S) 1z1=Nð Þ

ed(iz(N{i)S) 1z1=Nð ÞzedT 1z1=Nð Þ ð30aÞ

PAB
i,i ~

1

Nz1

N{i

N

edT 1z1=Nð Þ

ed(iz(N{i)S) 1z1=Nð ÞzedT 1z1=Nð Þ

ð30bÞ

PBA
i,i ~

1

Nz1

i

N

edS 1z1=Nð Þ

ediT 1z1=Nð ÞzedS 1z1=Nð Þ ð30cÞ

PBB
i,i{1~

i

Nz1

ediT 1z1=Nð Þ

ediT 1z1=Nð ÞzedS 1z1=Nð Þ ð30dÞ

and for averaged payoffs,

PAA
i,iz1~

N{i

Nz1

ed((iz(N{i)S)=N)

ed((iz(N{i)S)=N)zedT
ð31aÞ

PAB
i,i ~

1

Nz1

N{i

N

edT

ed((iz(N{i)S)=N)zedT
ð31bÞ

PBA
i,i ~

1

Nz1

i

N

edS

ed(i=N)T zedS
ð31cÞ

PBB
i,i{1~

i

Nz1

ed(i=N)T

ed(i=N)TzedS
: ð31dÞ

These are incorporated into the Eqs. (27) and (28) to yield the

fixation probabilities rADL and rADH . The fixation probabilities rBDL

and rBDH are obtained in a similar way. The averages �rraccu
A,B and

�rr
avg
A,B are then calculated using Eqs. (17), (18), and (19). Finally, a

first-order approximation in d is found for the above. For example,

�rraccu
A ~

1

Nz1
rADHz

N

Nz1
rADL

� 	
d~0

z
d

dd

1

Nz1
rADH z

N

Nz1
rADL

� 	
d~0

dzO(d2)

~
1

Nz1
z

1

Nz1

� �
d

dd
rADH






d~0

z
N

Nz1

� �
d

dd
rADL






d~0

� �
dzO(d2)

~
1

Nz1
z

d

12N(Nz1)
5N2z9N{2
� �

S{ N2z15N{4
� �

T
�

z 4N2{3N{1
� ��

zO(d2)

ð32aÞ

The other fixation probabilities are found in a similar way:

�rraccu
B ~

1

Nz1
{

d

12N(Nz1)2

N3z16N2z11N{4
� �

S{ 5N3z14N2z7N{2
� �

T
�
z 14N3{13N2{2Nz1
� ��

zO(d2)

ð32bÞ

�rr
avg
A ~

1

Nz1
z

d

12N(Nz1)2

14N2{3Nz1
� �

S{ 10N2z3N{1
� �

T
�
z 4N2{3N{1
� ��

zO(d2)

ð32cÞ

�rr
avg
B ~

1

Nz1
{

d

12N(Nz1)2

10N2z3N{1
� �

S{ 14N2{3Nz1
� �

T
�
z 8N2{9Nz1
� ��

zO(d2)

ð32dÞ

Assuming d%1,

and employing the appropriate condition for evolutionary

advantage, yields Eqs. (25a–25d) in the main text.
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50. Szabó G, Vukov J, Szolnoki A (2005) Phase diagrams for an evolutionary
prisoner’s dilemma game on two-dimensional lattices. Physical Review E 72:

047107.
51. Pinheiro F, Pacheco JM, Santos F (2012) From local to global dilemmas in social

networks. PLoS One 7(2): e32114.
52. Pinheiro FL, Santos FC, Pacheco JM (2012) How selection pressure changes the

nature of social dilemmas in structured populations. New Journal of Physics 14:

073035.
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