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Abstract 

Humans can learn to move optimally. For many movements, we have a control strategy—or 

control policy—that optimizes some objective. In walking, we prefer the combination of step 

widths, step lengths, and speeds that optimizes the amount of energy we need. In familiar 

contexts, we have had many opportunities to establish this optimal control policy. But in new 

contexts, the nervous system must quickly learn new control policies in order to continue to 

move optimally. Our lab has recently demonstrated that humans can continuously optimize 

energetic cost during walking. This is an impressive feat given that the nervous system has 

tens of thousands of motor units at its disposal, and it can coordinate these motor units over 

millisecond timescales, which results in countless combinations of motor unit coordination. 

The goal of this thesis is to determine how the nervous system navigates this combinatorial 

problem to learn new energy optimal control policies in new walking contexts. I used three 

distinct studies to accomplish this goal. For the first two studies, I designed and implemented 

a simple mechatronic system that applies energetic penalties in the form of walking incline 

as a function of gait. This creates a new relationship between gait and energetic cost—or new 

cost landscape—that shifts the energy optimal gait. For the third study, I used exoskeletons 

that apply assistive torques to each ankle at each walking step to shift the energy optimal gait. 

The first study tested whether previous findings that people can learn to adapt their control 

policy when the energy optimum is shifted along step frequency generalize to a different gait 

parameter and to a different experimental setup. I found that, like step frequency, people can 

learn to adapt their control policy when the energy optimum is shifted along step width. The 

second study tested if and how energy optimization extends to multiple gait parameters at 

the same time. I found that, when the energy optimum is shifted along step width and step 

frequency, people are limited in their ability to optimize both gait parameters. The third study 

asked how people learn in which ways to optimize their policy. I found that general variability 

leads to specific adaptation toward optimal policies. Taken together, these findings provide 

insight into the mechanisms that underlie energy optimization in walking, as well as the 

limitations of this optimization. 

Keywords: energetics; optimization; locomotion; motor learning; motor variability; 

reinforcement learning 



v 

Acknowledgements 

I would first like to thank my supervisor, Dr. Max Donelan. Max, thank you for your support 

and guidance over the years. I am grateful for the countless hours of your time that you have 

devoted to the projects in this thesis and to my development as a scientist. I am continually 

inspired by your passion and curiosity. You have taught me to ask thoughtful questions and 

to clearly communicate these questions. More importantly, you have taught me to prioritize 

lifelong learning, as well as experiences and relationships with colleagues, friends, and family. 

I would next like to thank my committee members: Dr. Faisal Beg and Dr. Jessica Selinger. 

Faisal, thank you for showing me the beauty of linear systems theory years ago, and for your 

encouragement in the time since. Jess, thank you for your friendship and mentorship. You are 

an empowering presence in my life and career. You have taught me about breaking biases 

and stereotypes and have shown me what it looks like to be a strong woman in science. I am 

grateful for our many stimulating conversations over the years. 

To my friends and labmates, thank you for the memories—the highs and lows of graduate 

school make for a special bond. I am grateful for our support system. I have enjoyed our 

regular coffees, as well as the occasional conference abroad. 

A special thank you to the volunteers that participated in my experiments. 

Thank you to my funding sources for providing me with many opportunities over the years. 

These funding sources include the National Sciences and Engineering Research Council of 

Canada, the Vanier Canada Graduate Scholarship, Simon Fraser University, and the Michael 

Smith Foreign Study Supplement. The Michael Smith Foreign Study Supplement provided me 

the opportunity to travel to the Biomechatronics Lab at Stanford University as a visiting 

researcher. I would like to thank Dr. Steve Collins for welcoming me into the Biomechatronics 

Lab, and Dr. Katherine Poggensee for kindly sharing her dataset with me. 

Most importantly, I would like to thank my family. To my parents, Marion and Dan, you have 

given me the tools for life and have been there every step of the way, despite the distance. To 

my sister and brother, Vanessa and Derek, you have set high standards and shown me that 

they can be achieved. To my partner, Ian, you have been my light over the years, and I cannot 

wait for our future. Thank you all for your endless love and support. 



vi 

Table of Contents 

Declaration of Committee ....................................................................................................................................... ii 
Ethics Statement ....................................................................................................................................................... iii 
Abstract ..........................................................................................................................................................................iv 
Acknowledgements.................................................................................................................................................... v 
Table of Contents .......................................................................................................................................................vi 
List of Figures ........................................................................................................................................................... viii 
Glossary.......................................................................................................................................................................... ix 
Published Studies ...................................................................................................................................................... xi 

Chapter 1. Introduction ...................................................................................................................1 
1.1. Human motor control .................................................................................................................................. 2 

1.2. Motor learning in new contexts .............................................................................................................. 5 
1.3. Computational models of motor learning .......................................................................................... 9 
1.4. Energy optimization in human locomotion .................................................................................... 11 
1.5. Aims.................................................................................................................................................................. 14 

Chapter 2. Energy optimization is a major objective in the real-time control of step 
width in human walking ......................................................................................................... 16 

2.1. Abstract .......................................................................................................................................................... 16 
2.2. Introduction .................................................................................................................................................. 17 
2.3. Methods .......................................................................................................................................................... 19 

2.3.1. Experimental design............................................................................................................... 19 

2.3.2. Experimental protocol........................................................................................................... 21 
2.3.3. Analysis ........................................................................................................................................ 23 

2.4. Results ............................................................................................................................................................. 24 
2.5. Discussion ...................................................................................................................................................... 26 

Chapter 3. Limited energy optimization along multiple gait parameters in human 
walking  .......................................................................................................................................... 30 

3.1. Abstract .......................................................................................................................................................... 30 
3.2. Introduction .................................................................................................................................................. 31 
3.3. Methods .......................................................................................................................................................... 33 

3.3.1. Experimental design............................................................................................................... 33 
3.3.2. Experimental protocol........................................................................................................... 35 
3.3.3. Analysis ........................................................................................................................................ 38 

3.4. Results ............................................................................................................................................................. 41 
3.5. Discussion ...................................................................................................................................................... 45 

Chapter 4. General variability leads to specific adaptation toward optimal 
movement policies .................................................................................................................... 49 

4.1. Abstract .......................................................................................................................................................... 49 

4.2. Introduction .................................................................................................................................................. 50 



vii 

4.3. Results ............................................................................................................................................................. 52 
4.3.1. A general increase in variability upon initial exposure to new contexts ........ 54 
4.3.2. A general decrease in variability with increased experience ............................... 55 
4.3.3. Adaptation occurs along specific variables and these changes correlate with 

reduced energetic cost .......................................................................................................... 57 
4.3.4. Variability decreases quickly for quickly-adapting variables .............................. 59 

4.4. Discussion ...................................................................................................................................................... 61 
4.5. Methods .......................................................................................................................................................... 67 

4.5.1. Experimental design............................................................................................................... 67 
4.5.2. Experimental protocol........................................................................................................... 69 
4.5.3. Analysis ........................................................................................................................................ 71 

Chapter 5. Discussion .................................................................................................................... 76 
5.1. Summary ........................................................................................................................................................ 76 
5.2. Limitations .................................................................................................................................................... 78 
5.3. Implications and future directions ..................................................................................................... 79 
5.4. Concluding remarks .................................................................................................................................. 83 

References ................................................................................................................................................ 84 

Appendix.   Supplementary figures .......................................................................................... 96 



viii 

List of Figures 

Figure 1.1: Motor control............................................................................................................................. 10 

Figure 1.2: Motor learning .......................................................................................................................... 11 

Figure 2.1: Experimental setup and design ......................................................................................... 21 

Figure 2.2: Experimental protocol........................................................................................................... 23 

Figure 2.3: Original and new energetic cost landscapes ................................................................ 25 

Figure 2.4: Timescale of adaptation ........................................................................................................ 26 

Figure 3.1: How the nervous system can represent its search space ...................................... 33 

Figure 3.2: Experimental setup and design ......................................................................................... 35 

Figure 3.3: Experimental protocol........................................................................................................... 37 

Figure 3.4: Original and new energetic cost landscapes ................................................................ 42 

Figure 3.5: Behaviour upon first exposure to the new energetic cost landscape ............... 43 

Figure 3.6: Behaviour with experience in the new energetic cost landscape ...................... 44 

Figure 3.7: Timescale of adaptation ........................................................................................................ 45 

Figure 4.1: Experimental design and protocol ................................................................................... 53 

Figure 4.2: Changes in variability with experience with exoskeleton assistance ............... 56 

Figure 4.3: Changes in magnitude of variables that reduce energetic cost ........................... 58 

Figure 4.4: Timescales of changes in variability and changes in magnitude ........................ 60 

Figure 4.5: Differences in timescales between variables .............................................................. 60 

Figure 4.6: Changes in variability in response to the new context of split-belt walking . 63 

 



ix 

Glossary 

Action The way in which the nervous system interacts with the 
environment. The nervous system sends motor commands 
to the motor units of muscles, which are the actuators of the 
body. It has hundreds of muscles and even more motor 
units at its disposal, and it can vary each motor unit’s 
activity many times per second. 

Adaptation The process of modifying a control strategy in response to a 
new situation. A new situation can result from changes to 
the body, task, or environment. 

Control policy A mapping between an estimate of the state of the body at a 
given time and an action for the next moment in time. This 
term is used interchangeably with the term control strategy. 

Cost landscape The relationship between gait and energetic cost. In this 
thesis, we alter this relationship to achieve a new 
relationship that shifts the energetic cost optimum. 

Dimension A parameter that the nervous system considers in its 
control policy. The total number of parameters is the 
dimensionality of the control policy. 

Energetic cost The amount of metabolic energy that the body consumes. 
This can be approximated by measuring rates of oxygen 
consumption and carbon dioxide production. This term is 
used interchangeably with the term metabolic cost. 

Exoskeletons Exoskeletons are wearable devices that seek to emulate and 
assist the body. In this thesis, exoskeletons apply assistive 
torques to each ankle at each walking step. 

Exploration Searching among candidate control policies to discover new 
optimal policies. In this thesis, exploration is approximated 
by the variability in the signal that is not considered noise. 

Objective function A function that assigns a cost to each movement. This 
function may consist of multiple terms, and the relative 
importance of these terms may depend on the situation. 
The optimal movement is one that minimizes the objective 
function. 

Optimization The iterative process of minimizing some objective 
function. How the nervous system converges on the 
optimum depends on the nature of its algorithms. 

Reinforcement learning An algorithm in which the nervous system interacts with its 
environment to learn an optimal or near optimal policy that 
maximizes the reward signal. 
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Reward The signal that is maximized in reinforcement learning. An 
action selected by a control policy is considered good or 
bad according to the measured reward. The control policy 
can then be modified to improve future reward. 

Reward prediction error The difference between the predicted and the measured 
reward signal. A positive reward prediction error is when 
the reward signal is greater than predicted, and negative 
otherwise. 

State The nervous system’s estimate of the state of the body or 
environment given its sensory inputs. The nervous system 
can take actions that affect its state. 
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Chapter 1.  
 
Introduction 

The control of movement is complex, yet humans can learn to adapt their control strategies 

in various situations. For example, we adapt our walking speed according to the distance we 

need to travel and the time we have to do so, and we transition from walking to running to 

sprinting as our speed increases. In familiar situations, we have had many opportunities to 

learn which control strategies are successful. Perhaps we walk down the same driveway each 

morning to get the mail—we would do so roughly ten thousand times from age twenty to age 

fifty. But we also face new situations with changes to our environment, such as icy terrain, as 

well as changes to our body, such as muscle fatigue, in which we should adapt our control 

strategy to remain successful. Adapting to new situations becomes even more difficult when 

we consider the complexity of our nervous system’s motor control. We have great flexibility 

in how we coordinate tens of thousands of motor units to walk from one point to another—

there are many more combinations of motor unit coordination than there are moves on a 

chessboard. How does the nervous system navigate this combinatorial complexity to learn 

new control strategies? This can be viewed through the lens of optimization—the nervous 

system has an objective function for movement and optimizes this objective function in 

response to changes to our body, task, and environment. 

One framework for motor learning is the combination of a fast process that reflects prediction 

and a slow process that reflects optimization. This framework can explain the coordination 

of many different movements such as reaching and walking [1–4]. A fast predictive process 

relies on feedforward control to rapidly select near optimal solutions, whereas a slow 

optimization process relies on feedback control to iteratively converge on more optimal 

solutions. Optimization may be ineffective given its relatively slow response times and large 

computational costs. But on the other hand, it may lead to the discovery of new optimal 

solutions in new contexts. The focus of this thesis is to better understand the nervous 

system’s optimization algorithms. 

The question of if and how humans learn new optimal control policies has been the focus of 

many decades of research. In this thesis, I use the term control policy to refer to the mapping 

between states and actions taken in those states. The nervous system’s actions are the motor 
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commands it sends to muscle motor units, whereas its states are more ambiguous—it may 

estimate states ranging from lengths of individual muscles to walking speeds. A control policy 

can be considered optimal in terms of an objective function, where this objective function can 

include many terms that differ in their relative importance. For example, one term in the 

objective function for reaching might be target error—reaching for a cup of coffee with large 

error might result in spilling the coffee [5]. For walking, one term might be stability—walking 

with decreased stability can result in falling, which can have serious consequences especially 

for older adults [6]. Another term might be energy—for our human ancestors, calories were 

often scarce and conserving energy was important for survival [7–10]. These and many other 

candidate terms can combine to form an objective function that the nervous system optimizes 

for movement. To determine whether a control policy is optimal in some sense, we can begin 

by investigating one movement objective for one movement variable. We can vary this 

variable while measuring this objective to map this relationship, and then determine where 

people’s preferences lie on this relationship. To determine whether the nervous system can 

continuously optimize this movement variable for this objective, we can artificially change 

this relationship and measure how people adapt their preferences. 

The general aim of this thesis is to determine how the nervous system learns new optimal 

control policies. In this introduction, I will first provide a background of our understanding 

of the nervous system’s control of movement. I will then discuss our understanding of how 

the nervous system adapts its control of movement and how we can develop computational 

models that predict this adaptation. Lastly, I will reframe these concepts in terms of a model 

system of energy optimization in human walking. 

1.1. Human motor control 

Humans use skeletal muscles to perform movements. Muscles can generate forces and these 

forces can move our limbs. In this section, I will briefly describe how muscle generates force, 

and then how force can be sensed and controlled. A muscle’s architecture is the basis of force 

generation. A muscle is composed of many muscle fascicles; a muscle fascicle is composed of 

many muscle fibres; and a motor unit is an ensemble of muscle fibres that are innervated by 

the same motor neuron. Any given muscle fibre is innervated by only one motor neuron. An 

average sized muscle can be controlled by roughly 100 motor neurons [11]. 
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Muscles are diverse and specialized in both structure and function. They can function as 

struts, brakes, or motors depending on the task [12]. They are classified as brakes when they 

produce negative power and as motors when they produce positive power. Here, I will 

describe how a muscle contracts to act as a motor because this is most relevant to motor 

adaptation. A muscle fibre is composed of many sarcomeres and each sarcomere is composed 

of thick (myosin) and thin (actin) filaments that attach by way of cross bridges [13]. A cross 

bridge is formed when the myosin head binds to the actin filament. The sliding filament 

theory proposes that actin filaments slide past myosin filaments in an attach, pull, detach 

process to shorten the muscle fibres and generate a contractile force—a process powered by 

energy from the hydrolysis of adenosine triphosphate (ATP) to adenosine diphosphate (ADP) 

[14,15]. Muscle structure can also vary between muscles and across tasks. For example, 

muscle fibres are composed of organelles such as mitochondria, i.e., energy supply, and their 

proportion changes between slow and fast muscle fibre types as well as between species [16]. 

These slow and fast muscle fibres exhibit low and high maximal shortening velocities and can 

be recruited for different tasks where they operate at their optimal velocity—for instance, 

faster fibres in the medial gastrocnemius are preferentially recruited as pedaling cadence 

increases in cycling [17,18]. 

The diverse and specialized nature of muscle lies not only in its structure and function, but 

also in how it is controlled. The nervous system interacts with muscle at the neuromuscular 

junction, where motor neurons and their axons meet muscle fibres [11]. The nervous system 

can send a signal that travels along an axon to the neuromuscular junction to generate an 

action potential, which causes an increase in calcium levels in a muscle fibre. This calcium 

release is needed for the myosin heads to bind to the actin filaments and generate a muscle 

contraction. The nervous system’s control can differ in which muscle fibres are recruited, 

how this recruitment is modulated over time, and how this recruitment is coordinated with 

other muscles, all of which likely depend on the task at hand [19]. The nervous system faces 

a difficult problem—it has tens of thousands of motor units at its disposal, and it can vary 

each motor unit’s activity many times per second. Several studies have proposed that muscle 

synergies may simplify this problem. They found that muscle activation patterns can be 

explained by a limited set of muscle synergies—muscle activation patterns with consistent 

spatial and temporal characteristics [20–23]. However, it is still unclear whether the nervous 

system considers motor units, muscles, groups of muscles, or even whole-body parameters 

in its control of movement. 
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The nervous system must be able to sense movement to control movement. The nervous 

system has sensors that estimate the state of our muscles, joints, and limbs, and receives 

many different sensory signals many times per second [11]. For example, visual signals make 

measurements that help estimate the location of our limbs in our environment [24]. Muscle 

spindles can help estimate a muscle’s length and velocity, and Golgi tendon organs can help 

estimate the force generated by a muscle [25]. These and other sensory signals are carried by 

sensory neuron axons to the central nervous system to be processed [11]. The nervous 

system may need to combine sensory signals to form an estimate of a particular state, or even 

estimate a state that is not directly sensed [26,27]. The process of combining sensory signals 

with a copy of motor commands to form an estimate of how motor commands affect states is 

known as state estimation. Over the past 50 years, researchers have used both computational 

and experimental approaches to help understand how the nervous system implements state 

estimation. A well-known model for this is the Kalman filter, which is well-suited for time-

varying systems like human movement [28]. A Kalman filter seeks to reduce the contribution 

of two features of sensory signals—noise and delay. It uses a forward model of body dynamics 

to predict how motor commands might affect states, compensating for time delays in sensory 

feedback signals. It also uses a forward model of sensors to predict sensory feedback and then 

compare this to measured sensory feedback. It compensates for signal noise using a weighted 

combination of predictions and measurements [29]. This model is supported by evidence of 

state estimation of hand position [30] and human postural balance [31]. The nervous system 

can estimate any given state using these methods—as previously mentioned, this could range 

from lengths of muscles to walking speeds—to then select the appropriate motor commands. 

The process of sensing a particular state and commanding the appropriate action requires 

the interaction of signals from our sensory system and motor system. This interaction is 

referred to as sensorimotor control. The nervous system can process signals in two ways—

some signals travel only to the spinal cord, whereas others travel through the spinal cord to 

the brain [11]. The sensory signals that travel to the spinal cord but not the brain are called 

short-latency reflexes, and the sensory signals that travel through the spinal cord to the brain 

are called long-latency reflexes [32–34]. A short-latency reflex is useful because it provides a 

fast response to a stimulus—the monosynaptic stretch reflex provides direct communication 

between the sensory neuron and motor neuron. Still, the time between a stimulus and peak 

muscle force is relatively long—about 120 milliseconds for muscles at the ankle, which is 

about the total amount of time the foot is in contact with the ground during sprinting [35]. 
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Long-latency reflexes add even more time [34]. However, with this added time, the nervous 

system can process feedback signals for adaptive control. 

1.2. Motor learning in new contexts 

The nervous system may have to modify motor behaviour in response to changes to our body, 

task, and environment. Changes to our body, for example, can occur over long timescales such 

as evolution and development, as well as over short timescales such as the onset of fatigue. 

In this thesis, I will focus on changes that occur over short timescales—that is, over seconds, 

minutes, hours, or days—that require we adapt our previously learned control policy to learn 

new optimal policies. The process by which the nervous system learns new optimal policies 

is of great interest for facilitating and accelerating learning, and it is still being understood. 

In this section, I will present candidate processes that drive the nervous system’s learning, as 

well as possible challenges faced by the nervous system. 

Adaptation refers to the process of modifying motor behaviour [36]. This has been studied in 

tasks such as eye movements [37], reaching movements [38,39], and locomotion [40]. We can 

experimentally alter these tasks in such a way that requires people to adapt their movement. 

For example, we can study adaptation by applying forces that distort reaching or walking 

[38,41]. We can also apply forces to the knee [42], or alter the relative speeds at which the 

left and right legs travel when in contact with the ground [40,43]. We can then investigate the 

mechanisms that underlie the observed adaptation. One theory is that adaptation arises from 

the nervous system updating an internal model. Wolpert et al. (1995) define an internal 

model as a relationship between input and output that mimics a natural process [30]. It is 

generally accepted that internal models take two forms: forward models and inverse models. 

Forward models predict the sensory consequences of motor commands [44], and the nervous 

system may use these models when estimating the state of its body and environment [26,45]. 

It may also use forward models for adaptation, updating its predicted sensory consequences 

in response to movement errors [39]. However, new evidence challenges this view and 

proposes that forward models are not responsible for adaptation as they do not plan future 

motor behaviour [46]. Inverse models, on the other hand, do plan future motor behaviour by 

selecting actions, or motor commands, that achieve the desired state from the current state, 

which is also the function of a control policy [44]. It is important to note that this thesis does 

not seek to study learning in terms of forward models and inverse models. It also does not 
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attempt to dissociate the two. Rather, the aim of this thesis is to determine how the nervous 

system adapts its control policy—a mapping between states and actions—to learn new 

optimal policies. It is useful to understand how this approach fits with prominent theories 

such as internal models. 

Our understanding of the signal that drives adaptation in certain situations continues to be 

developed. Here, I will focus on two theories of motor adaptation that involve two different 

signals: error-based learning and reward-based learning. Hermann von Helmholtz (1867) 

was one of the first to study error-based learning [47]. He used prism glasses to shift the 

visual input by a certain degree, which gives rise to movement errors for basic tasks—when 

reaching to a target with the shift in the leftward direction, we overshoot reaches in that same 

direction. But we can learn to adapt our reach direction to compensate for movement errors 

with practice. And when the prism glasses are removed, we produce movement errors in the 

opposite direction [48]. This behaviour is indicative of sensorimotor remapping—we don’t 

immediately recall past movement strategies when the prism glasses are removed. Further 

evidence of error-based learning came from the task of walking on a split-belt treadmill [40]. 

The split-belt treadmill creates a difference between the speeds at which the left and right 

legs travel when in contact with the ground. When initially walking on a split-belt treadmill, 

we exhibit longer steps on the slow-moving belt and shorter steps on the fast-moving belt—

the comparison between the two step lengths is referred to as step length asymmetry. The 

nervous system selects its preferred motor commands and expects a symmetric gait but 

receives feedback that the gait is asymmetric. Like the task of reaching with prism glasses, 

we can learn to adapt our step lengths to near zero step length asymmetries with practice. 

And when the belt speeds are again matched, we produce step length asymmetries in the 

opposite direction. This evidence is consistent with the hypothesis that the nervous system 

uses a sensory prediction error between predicted and measured sensory signals to adapt 

the motor commands [39,43]. 

Reward-based learning relies on a signal that indicates whether a movement is good or bad. 

The notion of good or bad can be formalized in many different ways such as success or failure; 

pleasure or pain; or more or less economical. An alternative view of split-belt walking is that 

people adapt to be more economical, i.e., reduce metabolic cost [49]. In terms of error-based 

learning, it is not immediately clear why the nervous system would seek to reduce step length 

asymmetry when this increases step time asymmetry [50]. New evidence on prolonged split-
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belt walking suggests that people learn to adopt positive asymmetries with foot placement 

further forward on the fast belt rather than near zero asymmetries [51,52]. Such a strategy 

takes advantage of the positive work performed by the treadmill—due to one belt moving 

faster than the other—and reduces the work performed by the legs as well as metabolic cost. 

The collective findings of adaptation in split-belt walking provide a more unified framework 

for understanding the signal that drives this adaptation. For many other real-world tasks, 

there is not a clear error signal that indicates in which direction we should adapt. The nervous 

system may instead use a reward prediction error, or difference between predicted and 

measured reward, as a teaching signal for learning new movement strategies [53]. We can 

experimentally manipulate the reward associated with a particular feature of movement, 

such as reach direction and curvature, and then study how people adapt this feature [54]. For 

example, people can learn to adapt their movements in response to binary reward feedback 

that indicates success or failure [55]. People can also learn to adapt their movements in order 

to maximize variable feedback in the form of monetary reward [56]. The nervous system may 

have some internal representation of reward to adapt its movement in this way. For example, 

it may have a subjective measure of utility or usefulness of motor commands [57]. It may also 

use the same processes but consider the opposite of reward, i.e., penalty or cost [56]. In this 

thesis, I study reward-based learning in terms of metabolic energy cost. The nervous system 

may have some measure of energy cost, compare this against its predicted cost, and then 

adapt its movement to minimize this cost. 

While it is not the focus of this thesis, it is essential to probe neural mechanisms of processes 

such as error-based learning and reward-based learning. In error-based learning, there is 

evidence that supports the involvement of the cerebellum in computing sensory prediction 

errors. This has been shown in humans and other animals, as well as for various tasks [26,39]. 

A useful approach is to study adaptation in humans with cerebellar damage. For example, 

Morton and Bastian (2006) showed that, in the task of split-belt walking, cerebellar damage 

disrupts predictive feedforward processes but not reactive feedback processes [40]. This is 

also the case in reaching tasks [58]. In reward-based learning, there is evidence that supports 

the involvement of the basal ganglia in computing reward prediction errors. Dopamine is a 

neurotransmitter that is involved in reward processing, and the axons of dopamine neurons 

appear to convey signals to brain areas involved in learning and decision making such as the 

basal ganglia [53]. This has been shown in the response of dopamine neurons when monkeys 

reach to a bin that does or does not contain food—they experienced a reward prediction error 
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when the food outcome was different from what they expected [59]. Another useful approach 

for studying reward-based learning is in Parkinson’s patients where there is degeneration of 

dopamine neurons. It is important to note that these studies point to the involvement rather 

than the role of specific brain areas in these processes. Even with sophisticated techniques  

such as neuroimaging, it is difficult to probe neural mechanisms [60]. 

The process of optimizing a control policy faces several challenges. This is in large part due 

to complexity of the nervous system’s control. This complexity was realized almost a century 

ago by Nikolai Bernstein—one of the first to study the control of multi-joint movements [61]. 

To understand this complexity, consider musculoskeletal models such as OpenSim [62]. Even 

with high computing power, sophisticated algorithms, and fewer muscles than humans, it is 

difficult for these models to recreate human movement, and even more difficult to learn to 

adapt movement [63]. One challenge associated with learning new optimal control policies is 

the explore-exploit dilemma [64]. Exploration is risky but can lead to more optimal solutions, 

while exploitation is safe but can be suboptimal. Such trade-offs are ubiquitous in learning 

and decision-making problems. A second challenge is the curse of dimensionality [53]. As the 

size of the control policy increases incrementally, the space in which we explore for new 

optimal policies increases rapidly. A third challenge is the credit assignment problem [65]. 

When the nervous system receives some change in a reward signal, it must determine which 

of countless parameters is responsible for this change and then adapt this parameter in order 

to achieve larger reward in the future. 

How does the nervous system overcome such challenges to learn new optimal policies? I will 

focus on two mechanisms that the nervous system may rely on: structural learning and use-

dependent learning. Structural learning refers to accelerated learning in a new situation with 

shared features of previously experienced situations. For example, in a reaching task where 

the visual input is rotated to some variable angle at each reach, participants more quickly 

learn a novel rotation [66]. They also appear to use prior assumptions about the structure of 

the task, and rely on explicit strategic resources to do so [1,67]. This can narrow the nervous 

system’s search space in new situations. Use-dependent learning refers to biases in future 

movements that are due to previous movements. For example, when participants passively 

experience a strategy, i.e., initial reach angle of some degree, while achieving the task goal of 

reaching to the target, they adopt this arbitrary strategy in future movements [68]. This can 

also narrow the nervous system’s search space in new situations. The nervous system may 
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also rely on contextual cues. One study showed that, in learning two opposite visual rotations, 

an implicit contextual cue, such as the wrist performing the counter-clockwise learning and 

the arm performing the clockwise learning, may be more effective than an explicit one, such 

as a verbal or color cue [69]. The nervous system has more degrees of freedom than needed 

for most tasks, and it may need to use these and other strategies to manage the complexity 

and redundancy in its control of movement. 

1.3. Computational models of motor learning 

We can use computational models to develop a more unified theoretical framework for motor 

control. The goal of any model is to make predictions about the behaviour of a given system. 

Optimal control models have had great success in predicting the control of human movement 

[70]. These models are attractive because they can predict various movements using a cost 

function, where the optimal control policy minimizes this function. However, there is no one 

cost function for movement—the specific costs that govern movement differ between tasks, 

and their relative importance change between conditions. Optimal control models have two 

categories: feedforward and feedback (Figure 1.1). Optimal feedforward control models plan 

the optimal sequence of motor commands while ignoring online sensory feedback. Optimal 

feedback control models take into account online sensory feedback to learn optimal motor 

commands, allowing for flexible behaviour. One theory of motor control that is based on 

optimal feedback control navigates the abundance of possible solutions by choosing the best 

possible solution while making little effort to correct for behaviour that does not affect task 

performance. This hypothesis has been quantified using a method known as the uncontrolled 

manifold and directly addresses the challenges highlighted above in Section 1.2. It has been 

supported with evidence in movements such as reaching [71], and can explain coordination 

among groups of muscles, or muscle synergies [20–22]. But it does not speak to the process 

by which the nervous system learns new optimal control policies. 
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A central objective in human walking is to minimize metabolic energetic cost. Walking can be 

varied in a number of ways that influence this cost. For example, energetic cost increases with 

increases in both walking speed and running speed [78,79]. When considering the energetic 

cost to travel a unit distance, or cost of transport, the relationship with speed is bowl-shaped 

and people prefer to walk at an intermediate speed that minimizes this cost of transport [7]. 

Energetic cost is also dependent upon other gait parameters, such as step frequency and step 

width, where these relationships are similarly bowl-shaped. For example, at any given speed, 

people prefer to walk with a step frequency that minimizes energetic cost [10]. People also 

prefer to walk near the energetically optimal step width, avoiding high step-to-step transition 

costs at wide widths, as well as high lateral limb swing at narrow widths [80]. This previous 

understanding of preferred gait was that it is energetically optimal in familiar contexts, but it 

did not provide insight into the timescale by which this preference is established. To test this, 

Selinger and colleagues used robotic knee exoskeletons to reshape the relationship between 

gait and energetic cost, making abnormal gaits energetically optimal, and found that people 

discover these gaits within seconds and prefer to walk with them [42]. They demonstrated 

that preferred gait arises not just through evolution and development, but that the nervous 

system can continuously optimize energetic cost during walking [42]. 

The nervous system appears to have the necessary physiological systems to perform energy 

optimization. Humans and other animals implement algorithms that are strikingly similar to 

reinforcement learning algorithms [53]. In fact, many aspects of reinforcement learning are 

influenced by neuroscience. To implement these algorithms, the nervous system must have 

some representation of states, rewards, and actions. To estimate the state of the body, the 

nervous system may need to combine many sensory signals that are both noisy and delayed 

with a copy of motor commands [28]. There is evidence that the nervous system is capable of 

this sort of state estimation of hand position [30] and human postural balance [31]. But it is 

unclear exactly which states the nervous system estimates. For example, it may estimate a 

muscle’s length and velocity from muscle spindles, or the force that is generated by a muscle 

from Golgi tendon organs [25]. The nervous system also needs to estimate reward, or in this 

case energetic cost. To do so, it may use sensory signals from blood gas receptors—which are 

sensitive to oxygen and carbon dioxide [81]—or group III and IV muscle afferents—which 

are sensitive to the byproducts of muscle metabolism [82]. Like estimating the state of the 

body, the nervous system may need to combine many sensory signals to estimate energetic 

cost. Lastly, the nervous system needs to evaluate these states and rewards in order to select 
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the appropriate actions. According to reinforcement learning theory, reward prediction error 

can drive action selection for learning. There is compelling evidence that the nervous system 

tracks reward prediction error, or difference between predicted and measured reward [74]. 

The first evidence of this came in the 1990s from Wolfram Schultz, where he measured the 

response of dopamine neurons in monkeys while they reached to a bin that either did or did 

not contain food—they experienced an error when the food outcome was different from what 

they predicted [59]. The axons of these dopamine neurons appear to convey this error signal 

to brain areas involved in learning and decision making such as the basal ganglia [53]. New 

research continues to shape our understanding of these signals and their functions, as well 

as where they are implemented in the brain. 

While we have evidence that people can continuously optimize energetic cost during walking, 

it is unclear exactly how the nervous system achieves this. To further study specific aspects 

of the nervous system’s optimization algorithms, Selinger and colleagues again used knee 

exoskeletons to alter the relationship between gait and energetic cost and create a new cost 

landscape [73]. They found that people with high natural gait variability can spontaneously 

initiate optimization, whereas people with low natural gait variability required experience 

with a low energetic cost to initiate optimization. Once optimization was initiated, people 

converged on a new energy optimal control policy and learned to predict this policy. Lastly, 

they modeled energy optimization as reinforcement learning and found that this model can 

predict people’s behaviour. A different study used the same knee exoskeletons to create new 

cost landscapes and test for energy optimization in overground walking rather than treadmill 

walking [83]. Contrary to the hypothesis that increased natural gait variability in overground 

walking can spontaneously initiate optimization, they found that people did not adapt their 

gait in the new cost landscape. One reason for this may be that it is difficult for the nervous 

system to determine which aspects of gait to adapt in overground walking as it faces a credit 

assignment problem—changes in energetic cost can be due to many aspects of gait such as 

step frequency or speed, which is not the case in other studies where speed is constrained in 

treadmill walking. The initiation of optimization depends on several factors, and these factors 

do not act in isolation. One factor is the variability about the preferred gait. A second factor is 

the cost gradient about the preferred gait. Both influence the range of cost savings that the 

nervous system experiences. In another study, Simha and Donelan built a new system to test 

whether the nervous system relies on the energy cost gradient to initiate optimization [84]. 

This system applies forces to the user’s torso to create new cost landscapes with steep or 
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shallow cost gradients. Contrary to the hypothesis that a steeper cost gradient can initiate 

optimization, we found that people did not spontaneously initiate adaptation in response to 

any of the gradients [85]. Instead, they all required enforced experience with a lower cost gait 

to initiate adaptation. These studies use a number of experimental setups to ask if and how 

the nervous system optimizes energetic cost during walking. They seek to uncover features 

of the nervous algorithms and provide the foundation for others to test additional hypotheses 

about energy optimization. 

1.5. Aims 

The overall aim of this thesis is to better understand the principles that govern human 

locomotion. To accomplish this, I use energy optimization in walking as a model system for 

learning. Like other model systems, the findings are meant to generalize to other situations: 

objective functions other than simply energetic cost and movements other than walking. 

Decades of research have provided evidence that humans prefer to move in energy optimal 

ways [7,8]. More recently, our lab has demonstrated that this preference arises not just over 

evolutionary and developmental timescales, but that the nervous system can continuously 

optimize energetic cost during walking [42,84,86]. Optimizing a control policy faces several 

challenges such as the explore-exploit dilemma and curse of dimensionality [53]. The specific 

aims of this thesis seek to determine how the nervous system overcomes such challenges to 

learn new optimal control policies in new contexts. 

Aim 1: Determine if the nervous system’s optimization algorithms generalize. Our lab 

previously found that people can continuously optimize step frequency in response to new 

energetic cost landscapes. The purpose of this first study was to generalize these findings to 

another gait parameter—step width—and another experimental setup. I selected step width 

because this gait parameter influences energetic cost and people prefer to walk with a step 

width that is near the energy optimal width in familiar contexts. But this does not necessarily 

mean that energy drives the nervous system’s real-time control of step width in new contexts. 

I hypothesized that, like step frequency, the nervous system controls step width to optimize 

energetic cost. To test this hypothesis, I built a device that applies energetic penalties in the 

form of walking incline as a function of step width, creating new cost landscapes that shift the 

energy optimal step width to wider widths. I determined whether participants adapted their 
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step width toward the new energy optimal width spontaneously, and then after being given 

enforced experience in the new cost landscape. 

Aim 2: Determine if and how the nervous system’s optimization algorithms scale. How 

its algorithms scale from optimizing one gait parameter to optimizing two gait parameters 

may provide insight into how it defines the control policy search space. The nervous system 

may need to define a low dimensional search space to overcome challenges associated with 

searching a high dimensional space. In this second study, I combined computational models 

with human experiments to gain insight into how the nervous system defines its search space. 

I used simple reinforcement learning models to quantify how shifting the energy optimum in 

one vs. two gait parameters influences the search space and timescale of adaptation. I next 

compared these model predictions to human experiments. I used the device from Aim 1 to 

test if people learn to adapt their control policy when the energy optimum is shifted along 

both step width and step frequency, and how the timescale of adaptation changes when the 

energy optimum is shifted along one gait parameter compared to two gait parameters. 

Aim 3: Determine how the nervous system learns which ways to optimize. One strategy 

for learning which ways to optimize is to explore. In this third study, I collaborated with the 

Stanford Biomechatronics Lab to ask how the nervous system explores through variations in 

its control policy to identify more optimal policies in new contexts. I created new contexts 

using exoskeletons that apply assistive torques to each ankle at each walking step and then 

gave participants experience with this context over multiple days. I tested three hypotheses. 

First, the nervous system initially explores by increasing general variability—where general 

variability refers to variability across many or all aspects of gait—to identify variables that 

improve its objective. Second, the nervous system selectively decreases variability to refine 

its control policy search space with experience. And third, the nervous system learns to adapt 

the magnitude of specific variables and exploit a new control policy that reduces energetic 

cost. 

These findings provide insight into how the nervous system navigates the space of control 

policies to learn new optimal policies in new contexts. 
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Chapter 2.  
 
Energy optimization is a major objective in the 
real-time control of step width in human walking 

2.1. Abstract 

People prefer to move in energetically optimal ways during walking. We recently found that 

this preference arises not just through evolution and development, but that the nervous 

system can continuously optimize step frequency in response to new energetic cost 

landscapes. Here we tested whether energy optimization is also a major objective in the 

nervous system’s real-time control of step width using a device that can reshape the 

relationship between step width and energetic cost, shifting people’s energy optimal step 

width. We accomplished this by changing the walking incline to apply an energetic penalty as 

a function of step width. We found that the people did not spontaneously initiate energy 

optimization, but instead required experience with a lower energetic cost step width. After 

initiating optimization, people adapted, on average, 3.5 standard deviations of their natural 

step width variability towards the new energy optimal width. Within hundreds of steps, they 

updated this as their new preferred width and rapidly returned to it when perturbed away. 

This new preferred width reduced energetic cost by roughly 14%, however, it was slightly 

narrower than the energetically optimal width, possibly due to non-energy objectives that 

may contribute to the nervous system’s control of step width. Collectively, these findings 

suggest that the nervous systems of able-bodied people can continuously optimize energetic 

cost to determine preferred step width. 
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2.2. Introduction 

When we walk, we tend to prefer a particular step width and execute this preference with 

remarkably small variability. For young healthy walkers, preferred step width is about 12 cm 

and varies between steps by less than two centimeters [80,87]. However, this preference can 

be influenced by walking context. For example, increases in speed result in decreases in step 

width and increases in its variability [88]. Another context is stability—preferred width and 

its variability decrease with external lateral stabilization [87,89] and increase with visual 

field perturbations [6,90,91]. Step width has also been found to increase with both age and 

obesity [92–94]. One way to understand how the nervous system controls step width is to 

identify the relative importance of different walking objectives in response to changes in 

walking contexts. 

One well established objective of the nervous system is to optimize metabolic energetic cost. 

Decades of research show that people prefer to move in energetically optimal ways [7,8,95]. 

In the case of step width, people prefer to walk near the energetically optimal width, avoiding 

high step-to-step transition costs at wide widths, as well as high lateral limb swing and active 

lateral stabilization costs at narrow widths [80,87,96–98]. When steps become wider, step-

to-step transition costs increase because of increases in the mechanical work required to 

redirect the center of mass velocity from one step to the next [96]. Whereas when steps 

become narrower, active lateral stabilization costs increase because of increases in the 

control required to remain stable [87]. And when steps become narrower than the width of 

the foot, lateral limb swing costs increase because of the mechanical work required to 

laterally move the swing leg to avoid the stance leg [98]. These individual costs, and as a 

consequence, the energetically optimal step width, depend upon many factors including some 

that change with everyday circumstances. For example, the energetically optimal step width 

may differ with each shoe change as a result of the shoe compliance reshaping the transition 

cost, and the shoe width and mass reshaping the limb swing cost. 

Although the preferred width is near the energy optimal width in familiar walking conditions, 

this does not necessarily mean that energy optimality drives the nervous system’s real-time 

control of width. First, this preference may arise from long time-scale processes such as 

evolution and development [95,99–102]. For example, recent evidence suggests that narrow 

step widths are more feasible in humans compared to our closest living relatives, 
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chimpanzees, as a result of adaptations to our hips and knees [102]. Second, the nervous 

system likely considers objectives other than energy in determining preferred step width. As 

one example of a step width objective function, the nervous system may seek to 

simultaneously optimize energy, stability, and maneuverability [103]. These objectives may 

be independently weighted, and their weightings may depend upon walking contexts. For 

example, the priority for stability may be increased when the consequences of falling are 

more severe [104,105]. Some objectives may also be treated as constraints, such as walking 

on stepping stones where only some widths result in stepping on the stones. We can gain 

insight into if and how the nervous system represents the real-time control of step width as 

a multi-term optimization by determining how changes in individual objectives, relative to 

all other objectives, influence the control of width. If the nervous system weights other 

objectives higher than energy in its control of step width, then we expect people to persist at 

or near their original preferred width when the energetic context changes. 

The purpose of this study was to test if energy optimization is a major objective in the real-

time control of step width. Our lab previously found that people adapt their step frequency 

to converge on new energy optima, demonstrating that energy is indeed a major objective in 

the real-time control of some aspects of walking [42]. It is not clear, however, that this finding 

will apply to step width as the nervous system’s control of these two gait parameters is 

typically thought of differently [6,97]. And while there is evidence that both the preferred 

frequency and width are energetically optimal [80,106], a common alternative view is that 

step width is primarily determined by stability [107]. Here we hypothesize that step 

frequency and width are similarly controlled to optimize energy. To test this hypothesis, we 

shifted the energy optimal width and observed the nervous system’s response. To accomplish 

this, we built a custom device that applies energetic penalties, in real-time, as a function of 

measured step width. With this study, we aim to test the generality of energy optimization by 

using a second method of applying energetic penalties and by studying a different gait 

parameter. 
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2.3. Methods 

2.3.1. Experimental design 

After Simha and Donelan [84], we built a simple mechatronic system to shift people’s energy 

optimal step width. In this system, participants walked on an instrumented split-belt 

treadmill at 1.25 m/s (FIT, Bertec Corporation, Columbus, OH, USA). To shift people’s energy 

optimal width, we commanded the treadmill incline based on the desired energetic penalty 

for the step width measured from the previous step (Figure 2.1A). We implemented this 

closed loop control of incline based on measured step width using Simulink Real-Time 

Workshop running at 200 Hz (Simulink Real-Time Workshop, MathWorks Inc., Natick, MA, 

USA). We first filtered measured forces and moments using a second-order, low-pass, one-

way, digital Butterworth filter (15 Hz cut-off), and then calculated the left and right lateral 

centers of pressure by dividing the left and right lateral moments by their vertical forces 

[108]. We identified foot contact events from the measured ground reaction forces and 

moments at the beginning of double support, and estimated step width by taking the 

difference between the lateral centers of pressure for consecutive steps. The incline changes 

were limited to 0.5 degrees per second, equating to a shift in vertical position under the 

participant of approximately 8 mm per second. This change was subtle, and no participants 

reported feeling destabilized. 

To eliminate the concern that participants may be adapting their width to achieve level 

walking rather than to optimize energy, we first modified our design to have them always 

walking at an incline, and then decided to compensate for this additional energetic penalty 

above level walking with a forward horizontal force that acted as an energetic reward. The 

combination of controllable walking incline with a near constant forward horizontal force 

added a degree of novelty to the experimental design, perhaps making it more likely that the 

nervous system would search for a new optimal width rather than rely on a prediction of the 

preferred width. To apply the forward horizontal force, we connected a tensioned cable in 

series with long rubber tubing to a hip belt worn by the user—the long and compliant rubber 

tubing allowed for small changes in the walking position on the treadmill without large 

changes in the applied horizontal force. We adjusted the tension to apply a 10% body weight 

force, on average, and monitored the applied horizontal force with a load cell mounted on a 
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hip-belt (LCM201, Omega Engineering, Norwalk, CT, USA). This forward horizontal force did 

not depend upon step width or incline and remained nearly perpendicular to the ground. 

We used this system to reshape the relationship between step width and energetic cost by 

providing energetic penalties as a function of step width. We define the relationship between 

gait and total energetic cost as cost landscape and the relationship between gait and energetic 

penalties as control function. We simulated our new cost landscape (red; Figure 2.1C) by 

adding literature values for energetic costs associated with walking at different step widths 

(grey; Figure 2.1C) with our control function (Figure 2.1D). We designed our control function 

(Figure 2.1D) by solving for the walking incline (Figure 2.1E) [109], combined with a 10% 

body weight forward horizontal force (Figure 2.1F) [110], to achieve an energetic penalty of 

1 W/kg at a step width of 3 standard deviations (SD) narrower than initial preferred, 

decreasing with a constant slope to 0 W/kg at the new energy optimal width of 3 SD wider 

than initial preferred: 

 𝐼𝑛𝑐𝑙𝑖𝑛𝑒 = {
−0.49 ∗ 𝑠𝑤 + 5.16 𝑠𝑤 ≤ 3
−0.49 ∗ 3 + 5.16 𝑠𝑤 > 3

 (2.1) 

where step width (𝑠𝑤) is in units of standard deviations from preferred. We normalized step 

width by the variability in width to allow us to distinguish between a shift in step width 

occurring as a result of energy optimization, and a shift occurring by random chance. We 

chose to shift the energy optimal width wider than that initially preferred in order to be in 

the opposite direction of people’s tendency to narrow their step width as they become more 

comfortable walking on a treadmill [111]. 



Figure 2.1: Experimental setup and design

2.3.2. Experimental protocol



22 

treadmill incline control or forward pulling force. We calculated initial preferred width as the 

average width during the final three minutes of this 12-minute baseline trial. We calculated 

each participant’s width variability as the standard deviation during the same averaging 

window. For each participant, we used their initial preferred width and width variability to 

design the control function. 

Next, we turned the incline controller on, applied the forward horizontal force, and measured 

whether participants adapted their step width towards the new energy optimal width. First, 

we measured whether participants would adapt their width spontaneously, calculated as the 

average width during the final three minutes of the first six minutes after the controller was 

turned on (pre; Figure 2.2B). We estimated that six minutes would be sufficient to test for 

spontaneous energy optimization of step width as we have previously observed a time 

constant of roughly 66 seconds in step frequency optimization [73]. Second, we measured 

whether participants would adapt their width when given enforced experience in the new 

cost landscape. This enforced experience consisted of eight perturbations—each 

perturbation included a five-minute hold at either higher costs (6 SD narrower than initial 

preferred) or lower costs (6 SD wider than initial preferred), followed by a five-minute 

release, during which participants self-selected their widths (Figure 2.2B). During each hold, 

we instructed participants to keep the real-time calculated step width, normalized to the 

commanded width, within small bounds about 1 presented visually on a computer monitor. 

When the visual feedback targets disappeared, we instructed them to walk however they 

liked, with any step width. We did not provide participants with any information about how 

the controller worked. We calculated the change in preferred width after each perturbation 

as the average width during the final three minutes of the five-minute release. We calculated 

the final preferred width as the average width during the final three minutes of this 

experience period (post; Figure 2.2B). 

Lastly, participants completed a cost mapping trial with the incline controller on and forward 

horizontal force applied. We used visual feedback to enforce steady-state walking at different 

widths (in random order) for five minutes each (Figure 2.2C). We used respiratory gas 

analysis (Vmax Encore Metabolic Cart, ViaSys, Conshohocken, PA, USA) to measure rates of 

oxygen consumption and carbon dioxide production. Participants walked at widths both 

about the initial preferred width (-2, 0, +2 SD from initial preferred) and about the final 

preferred width (-2, 0, +2, +6 SD from final preferred). We measured energetic cost at these 



Figure 2.2: Experimental protocol
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landscapes. We calculated the uncertainty in these minima as the standard deviation of the 

fitted minima across participants. We used a one-tailed paired Student’s t-test to test if the 

new energy optimal widths were wider than initial preferred widths in each cost landscape. 

We tested for adaptation towards the energy optimal width throughout the protocol. We used 

one-tailed paired Student’s t-tests to determine if each participant’s self-selected width 

during each release was wider than their initial preferred width. To determine the rate of 

adaptation, we averaged self-selected widths across participants during the release periods 

after optimization was initiated and then used a first-order exponential to determine the time 

constant. We used two-tailed paired Student’s t-tests to test for differences in the final 

preferred widths compared to the new energy optimal widths, as well as for differences in 

the costs of these widths. We calculated the cost of each participant’s final preferred width 

by commanding this width during the cost mapping trial, and the cost of each participant’s 

energy optimal width as the minimum metabolic power of the fitted new cost landscape. 

2.4. Results 

Our control system successfully shifted the energy optimal step width wider than that 

initially preferred (p = 1.3 x 10-5; Figure 2.3). In the previously collected original cost 

landscape, the average energy optimal width (0.10 ± 0.05 m; mean±SD) was 1.1 ± 3.5 SD 

narrower than the initial preferred width (0.12 ± 0.01 m) [80]. In our new cost landscape, the 

average energy optimal width (0.24 ± 0.03 m) was 4.9 ± 1.1 SD wider than the initial preferred 

width (0.15 ± 0.04 m). 



Figure 2.3: Original and new energetic cost landscapes
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Figure 2.4: Timescale of adaptation

2.5. Discussion



27 

Our experiment has several limitations. One concern is that, while walking at an incline or 

with a forward horizontal force, people may naturally prefer to walk with a wider width and 

thus may be adapting in response to our setup rather than to minimize energy. However, 

others have found that step width changes minimally within the range of inclines that 

participants experience in our study [114]. And in pilot experiments, we found no clear 

adjustments to step width in response to either constant incline or constant forward 

horizontal force. Another concern may be that the incline controller perturbs walking 

participants and that this causes participants to increase width. Indeed, some studies that 

perturb level walking with changes in terrain do find that people spontaneously widen their 

step widths [115]. However, we suspect that this does not explain our results for several 

reasons. First, this is not a universal finding as others find no systematic effect of changing 

terrain on step width [116,117]. Second, as we describe in the methods section, our incline 

control is not a large perturbation—the incline changed slowly, and no participants reported 

feeling destabilized. Finally, our participants did not spontaneously widen their step width in 

response to the incline control—they first required experience with lower cost step widths. 

Another concern is that participants may be adapting their width to achieve level walking 

rather than to optimize energy. We partially addressed this by making the minimum incline 

occur at a non-zero treadmill slope (~4°), however, the minimum incline is still the energy 

optimal incline. Thus, we cannot distinguish between a nervous system objective of walking 

at the shallowest incline from an objective of minimizing energy. Experiments like ours can 

never entirely rule out other possible explanations—it is always possible that the nervous 

system has some other objective that happens to produce a gait that is the same as the new 

energy optimal gait. 

The nervous system’s criteria for initiating step width optimization in this experiment, and 

the process used to converge towards energy optimal widths, is consistent with what we have 

previously observed for step frequency optimization using knee exoskeletons. The first 

similarity between studies is that perturbations towards lower cost gaits initiated the 

optimization process [42,73]. Experience with this lower cost gait may cue the nervous 

system to explore the new cost landscape by indicating that its preferred gait is now 

energetically suboptimal. The second similarity between studies is that the nervous system 

learned to predict the energetically optimal width and rapidly returned to it when perturbed 

away [42,73]. These similarities suggest that continuous energy optimization is a dominant 
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and general objective of nervous systems in young healthy walking, and that our observed 

behaviors are common characteristics of the nervous system’s energy optimization. 

There are, however, some differences in experiment findings. One difference is that no 

participants in our current experiment spontaneously optimized their step width, whereas a 

small subset of people spontaneously optimize step frequency [73]. One candidate 

explanation for this difference is that the general population does have spontaneous step 

width optimizers, but by chance, we did not have any in our random sample. A more 

mechanistic candidate explanation is that the nervous system is not primed to identify 

differences in energetic cost with step width because they are normally relatively small due 

to the shallowness of the cost landscape around the preferred width. The second difference 

is that participants converged on the energy optimum slower in our step width study 

compared to our step frequency study. In our step width study, people gradually converged 

on the energy optimal width with a time constant of 248 seconds (Figure 2.4B). Others have 

found similar rates of adaptation (i.e. hundreds of seconds) in converging on energy optimal 

movements in both split-belt walking and reaching paradigms [49,118]. However, in our step 

frequency study, people converged on the new energy optimal frequency with a time constant 

of 11 seconds once optimization was initiated [42]. One explanation may be that the nervous 

system takes longer to learn the new step width cost landscape because of the slow rate of 

change of our incline controller. This can result in an error between what we design the new 

cost landscape to be and what the nervous system senses. Simple reinforcement learning 

models also predict these different rates of adaptation, ranging from tens to hundreds of 

seconds, given a change to the learning rate [73]. Given this flexibility, we do not consider the 

differences in rates to be evidence against a shared adaptation process. 

The nervous system likely determines step width by optimizing energy simultaneously with 

other objectives such as stability and maneuverability [6,89,107,119–122]. Our study 

suggests that, in the present walking conditions, the relative contributions of other objectives 

are small as people converged on a final preferred width that was near the new energy 

optimal width. However, it is possible that differences in the adaptation rates we observed 

between our step frequency and step width experiments reflects differences in the 

complexity of the optimization problem—the addition of other objectives in determining step 

width may slow the nervous system’s refinement of energy. And although the preferred 

widths are near their energy optimal widths, they do not perfectly coincide, and the influence 
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of other objectives may explain these small differences. In everyday walking, the contribution 

from energy and non-energy objectives to the real-time control of gait will depend not only 

on biomechanics, but also on how heavily the nervous system weights their individual 

importance. 
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Chapter 3.  
 
Limited energy optimization along multiple 
gait parameters in human walking 

3.1. Abstract 

Humans can learn new optimal control policies for complex movements. In walking, they can 

learn to adapt their control policy when the energy optimum is shifted along a particular gait 

parameter such as step width or step frequency. But it is unknown how the nervous system 

searches through and discovers these new optimal policies—it may recognize what needs to 

be learned and search for new optimal policies in this way, or it may search for new optimal 

policies in many ways irrespective of what needs to be learned. How the nervous system’s 

optimization algorithms extend to multiple gait parameters may reveal how it represents its 

search space. Here, we tested if and how humans adapt their control policy when the energy 

optimum is shifted along both step width and step frequency. We previously demonstrated 

that they can do so when the energy optimum is shifted along either gait parameter. Now, we 

shift the energy optimum using a device that applies energetic penalties of walking incline as 

a function of both of these gait parameters. We find that participants spontaneously increase 

variability and initiate adaptation along step frequency but not step width. They adapt step 

frequency for cost savings of about 7%. They do not adapt step width despite potential for 

larger cost savings and experiencing conditions previously shown to initiate its adaptation. 

That exploratory variability and adaptive changes are limited to one gait parameter suggests 

that the nervous system recognizes to some extent what needs to be learned and searches for 

new optimal policies in this way. 
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3.2. Introduction 

Humans can learn new optimal movement coordination strategies. This is an impressive feat 

given that the nervous system has tens of thousands of motor units that it can coordinate over 

millisecond timescales—it faces a high dimensional learning problem. In many situations, it 

need not search within this entire space of coordination strategies for new optimal strategies. 

And it may not be realistic to do so within a reasonable amount of time. One way to mitigate 

this high dimensional problem is to represent only a low dimensional search space of control 

policies. The term control policy refers to a mapping between states and actions taken in those 

states, and the term search space refers to a space within which the nervous system searches 

through and evaluates new control policies. Here we seek to gain insight into how the nervous 

system represents its control policy search space. 

Humans can learn to adapt their control policy for walking to optimize metabolic energy cost. 

That is, they prefer to walk with the combination of step widths, step frequencies, and speeds 

that optimizes energy cost [7,10,80,106]. And they can learn to adapt this control policy when 

the energy optimum is shifted to a new step width or new step frequency [42,84,86]. Energy 

optimization in walking can serve as a model system for learning because metabolic energy 

cost is one of the nervous system’s major objectives that we can both directly measure and 

manipulate. It also has several hallmarks that can provide insight into the nervous system’s 

mechanisms for learning [73]. First, high natural gait variability can spontaneously initiate 

adaptation. Second, enforced experience with lower energy cost gaits can initiate adaptation. 

And third, adaptation leads to new predictions of energy optimal gaits. But there are some 

conditions where people do not initiate adaptation—increasing the saliency of energy cost 

savings through the cost gradient does not initiate adaptation [85], nor does increasing the 

natural gait variability through overground walking [83]. 

The size of the search space can affect learning. As the number of states and actions increases, 

the number of candidate control policies increases exponentially. This expansion of the space 

of control policies can affect learning as searching through and evaluating many policies takes 

time—a challenge known as the ‘curse of dimensionality’ [123]. The way in which the nervous 

system overcomes this challenge to learn new energy optimal policies is presently unclear. 

One possibility is that it identifies a lower dimensional search space. In past studies, we found 

that enforced experience with lower energy cost gaits can initiate adaptation [73,85,86]. This 
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experience may inform a lower dimensional search space by indicating to the nervous system 

that the energy optimal control policy has shifted, and along which dimensions these shifts 

have occurred. 

Humans appear to identify the relevant dimensions by learning the structure of the task. One 

example of structural learning is in a reaching task where the visual input is rotated to some 

random angle every few reaches, and participants learn the structure (rotation) rather than 

the parameter (angle) [66]. When later presented with a new context, they explore and adapt 

along this structure. In a different reaching task, participants learn to adapt their movements 

to compensate force fields of varying temporal structure [1]. When later presented with a 

new context, they rely on previous experience to make assumptions about its structure. In 

both of these tasks, participants learn faster when presented with the new context. Structural 

learning is one instance where the nervous system may use a lower dimensional search space. 

How does the nervous system represent its search space? To generate competing hypotheses 

and design experiments that distinguish between possibilities, we began by modeling energy 

optimization as reinforcement learning. Our previous work shows that simple reinforcement 

learning models can predict hallmarks of energy optimization [73]. We built on this work by 

simulating two possible cases: a low dimensional search space and a high dimensional search 

space (See Methods). In a low dimensional search space, the learner recognizes what needs 

to be learned and attempts to adapt its control policy along these dimensions. Alternatively, 

in a high dimensional search space, the learner attempts to adapt its control policy along 

many dimensions irrespective of what needs to be learned. How it optimizes its control policy 

for tasks of increasing complexity (where the energy optimum is shifted along one and two 

dimensions) can reveal the nature of its search space. When a task increases in complexity, 

there are at least two possibilities that would suggest a low dimensional search space. The 

first possibility is that the learner optimizes more slowly (red vs. green case 1; Figure 3.1A). 

The second possibility is that it does not optimize completely—its low dimensional search 

space is insufficient to converge on the new optimum (red vs. green case 2; Figure 3.1A). And 

there is at least one possibility that suggests a high dimensional search space—it optimizes 

tasks of increasing complexity with similar time constants of adaptation (red vs. green; Figure 

3.1B). We used energy optimization in walking to test these model predictions. 



Figure 3.1: How the nervous system can represent its search space

(𝑑11)
(𝑑12 𝑎𝑛𝑑 𝑑22)

walking incline and does so as a function of people’s real

3.3. Methods

3.3.1. Experimental design
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We measured ground reaction forces and moments while participants walked on an 

instrumented split-belt treadmill at a constant speed of 1.25 m/s (FIT, Bertec Corporation, 

Columbus, OH, USA). We used these ground reaction forces and moments to calculate the 

center of pressures by dividing the left and right moments by their vertical forces. We 

identified foot contact events as the rapid fore-aft translation in center of pressure during 

double support, and then quantified step frequency as the inverse of time between 

consecutive foot contact events. We quantified step width as the difference in lateral center 

of pressures between consecutive foot contact events. The closed-loop control system 

calculated the desired energetic penalty based on the step width and step frequency from the 

previous step, and then commanded the appropriate walking incline. We implemented this 

system at 200 Hz using MATLAB Simulink (Simulink Real-Time Workshop, MathWorks Inc., 

Natick, MA, USA). This system was inherently limited by the treadmill’s ability to change 

incline, which was about 0.5 degrees per second. This meant that participants experienced 

the appropriate energetic penalty with small step-to-step changes in step width or step 

frequency but did not immediately experience the appropriate energetic penalty with large 

step-to-step changes. This apparent limitation may have prevented participants from feeling 

perturbed or identifying the behaviour of the control system. In a brief survey collected after 

the experimental protocol, we asked participants whether they realized the behaviour of the 

control system—that the way they walked had control over the treadmill incline. 

We created a cost landscape that shifts the energy optimal step width and step frequency. We 

use the term cost landscape to refer to a relationship between gait parameters and energetic 

cost, and control function to refer to a relationship between gait parameters and energetic 

penalties of walking incline: 

 𝐼𝑛𝑐𝑙𝑖𝑛𝑒(𝑠𝑤, 𝑠𝑓) = {
−0.92(𝑠𝑤) + 5.3 𝑠𝑤 ≤ +3
−0.06(𝑠𝑤) + 2.4 𝑠𝑤 > +3

, {
0.91(𝑠𝑓) + 5.3 𝑠𝑓 ≥ −3

0.12(𝑠𝑓) + 2.6 𝑠𝑓 < −3
 (3.1) 

where 𝑠𝑤 is step width and 𝑠𝑓 is step frequency. We simulated the new cost landscape by 

adding the original cost landscape to the energetic costs associated with the control function. 

The original cost landscape is the relationship between gait parameters and energetic cost 

when the controller is turned off, and the new cost landscape is this relationship when the 

controller is turned on. We designed the new cost landscape to shift the energy optimal step 

width to three standard deviations wider than the initial preferred width and energy optimal 

step frequency to three standard deviations lower than the initial preferred frequency. We 



participant’s initial preferred value from each step’s measured 

Figure 3.2: Experimental setup and design

3.3.2. Experimental protocol
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We used a baseline period to determine each participant’s initial preferred step width and 

step width variability, as well as their initial preferred step frequency and step frequency 

variability. We measured these baseline values while participants walked on a treadmill at a 

constant speed of 1.25 m/s and at a constant incline of zero. In this period, they experienced 

the original cost landscape with the controller turned off. We calculated each participant’s 

initial preferred step width and initial preferred step frequency as the average of each signal 

during the final three minutes of a 20-minute baseline period (Figure 3.3A). We calculated 

baseline variability as the standard deviation of each signal during the same time window. 

We used an experience period to determine whether participants adapt step width and step 

frequency in the new cost landscape. We turned the controller on at the beginning of the 90-

minute experience period, and it remained on for all but the final five minutes of this period 

(Figure 3.3B). Prior to this period, we informed participants that they would need to “match 

step width to visual feedback and step frequency to audio feedback when the feedback was 

turned on”. We also informed them that they “did not need to continue to walk in the same 

way when the feedback was turned off”. We did not give them any further instructions about 

how to walk and did not inform them of the behaviour of the control system. Participants self-

selected steps for the first five minutes of this period, and we used this time window to test 

for spontaneous increases in variability as well as changes in magnitude of gait parameters. 

Participants then alternated between five-minute enforced experience periods with feedback 

and five-minute releases without feedback. During the first enforced experience period, we 

commanded a narrower step width (-6 SD) and higher step frequency (+6 SD) than initially 

preferred, resulting in a higher energetic cost. During the second enforced experience period, 

we commanded a wider step width (+6 SD) and lower step frequency (-6 SD) than initially 

preferred, resulting in a lower energetic cost. We alternated between enforcing high and low 

energetic costs for a total of eight enforced experience periods. During enforced experience 

periods, participants matched their real-time step width signal to be within small bounds of 

a steady-state step width signal displayed on a screen, and their real-time step frequency to 

a metronome playing a steady-state tempo (Figure 3.2B). Participants successfully matched 

commanded step widths with an error of 0.012 ± 0.0088 m and commanded step frequencies 

with an error of 1.5 ± 1.3 steps per minute. After each enforced experience period, they self-

selected steps during a five-minute release where we tested for changes in magnitude of gait 

parameters. 



participant’s resting metabolic power 

We then measured each participant’s metabolic power at 

—

energy optimum while limiting each participant’s total walking time

Figure 3.3: Experimental protocol
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Each participant completed the baseline period and the experience period. Some of these participants 
also completed the cost mapping periods with the controller turned off and controller turned on. Here 
we present a representative participant’s time series data for step width (top row) and step frequency 
(bottom row). The shaded regions illustrate time windows during which we analyzed step width and 
step frequency. (A) In the baseline period, we determined each participant’s preferred step width and 
step width variability, as well as their preferred step frequency and step frequency variability, with 
the controller turned off. (B) In the experience period, we turned the controller on and determined 
whether participants adapted toward the new energy optimum spontaneously and then after enforced 
experience with different combinations of step width and step frequency in the new cost landscape. 
Participants experienced either high energetic costs (narrow step widths and high step frequencies) 
or low energetic costs (wide step widths and low step frequencies) during periods with the yellow 
horizontal lines, and self-selected steps during periods without the yellow horizontal lines. (C) In cost 
mapping, we measured each participant’s energetic cost while they walked at combinations of step 
widths and step frequencies. We turned the controller off to measure the original cost landscape and 
(D) turned the controller on to measure the new cost landscape. 

3.3.3. Analysis 

To determine whether our controller effectively shifted the energy optimum, we estimated 

the energetic cost of combinations of step width and step frequency for each cost landscape. 

For each these combinations, we fit an exponential model to two minutes of breath-by-breath 

metabolic power measurements and calculated the steady-state value as the asymptote of the 

model [124]. We calculated each participant’s resting metabolic power by averaging their 

metabolic power across the final three minutes of the six-minute quiet standing period. We 

calculated net metabolic power by subtracting resting metabolic power from the steady-state 

value and dividing by each participant’s mass. We then used these combinations to fit a two-

dimensional second-order polynomial of the form: 

 𝑌(𝑠𝑤, 𝑠𝑓) = 𝑎(𝑠𝑤)2 + 𝑏(𝑠𝑓)2 + 𝑐(𝑠𝑤)(𝑠𝑓) + 𝑑(𝑠𝑤) + 𝑒(𝑠𝑓) + 𝑓 (3.2) 

where 𝑠𝑤 is step width, 𝑠𝑓 is step frequency, and model output 𝑌(𝑠𝑤, 𝑠𝑓) is energetic cost. 

For each participant, we estimated coefficients {𝑎, 𝑏, 𝑐, 𝑒, 𝑑, 𝑓} using least squares regression. 

We then estimated their energy optimal step width and energy optimal step frequency as the 

minimum of the two-dimensional polynomial. For each cost landscape, we used these values 

to calculate the group mean and standard deviation of the energy optimal step width and 

energy optimal step frequency. We used a one-tailed paired Student’s t-test to determine 

whether the energy optimum was shifted in the right direction, i.e., the energy optimal step 

width shifted wider, and the energy optimal step frequency shifted lower, in the new cost 

landscape compared to the original cost landscape. We wrote custom MATLAB scripts to 
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process the data, perform the statistical comparisons, and generate the figures included in 

this manuscript. 

We analyzed changes in variability as well as changes in magnitude of each gait parameter. 

We quantified the variability of each gait parameter by high-pass filtering its signal to include 

changes over less than 30 steps, and then calculating the standard deviation of this filtered 

signal. This method filtered out the relatively slow signal changes that we associate with 

adaptive changes in magnitude, but not the relatively rapid signal changes that occur from 

step to step and over several steps that we associate with exploratory variability [125]. We 

calculated variability during the last three minutes of the 20-minute baseline period in the 

original cost landscape, and during the last three minutes of the first five minutes of the 

experience period in the new cost landscape. We used a one-tailed paired Student’s t-test to 

determine whether each participant’s variability in the new cost landscape was higher than 

their baseline variability in the original cost landscape. The reason for this comparison is that 

baseline variability can provide an estimate of variability that reflects noise rather than 

exploration—people likely have an established control policy for walking in the original cost 

landscape and need not explore. Any increase in variability relative to baseline variability 

might therefore reflect exploration of the new cost landscape rather than noise. We next 

quantified the magnitude of each gait parameter by averaging its signal during the last three 

minutes of each five-minute release throughout the experience period. For each release, we 

used a one-tailed paired Student’s t-test to determine whether participants adapted their gait 

in the direction that we shifted the energy optimum. We tested whether step width was wider 

than their initial preferred width and step frequency was lower than their initial preferred 

frequency. 

We compared the time constants of adaptation in new cost landscapes where we shifted the 

energy optimum along one or two gait parameters. In our past study (n = 8), we shifted the 

energy optimum along step width [86]. In a pilot study (n = 5), we shifted the energy optimum 

along step frequency using the same methods as in our past studies [42,84]. In our present 

study, we shifted the energy optimum along both step width and step frequency. We analyzed 

the time constant of adaptation for gait parameters along which we observed adaptation. For 

each of these gait parameters, we modeled the timing of adaptation as an exponential change 

from an initial value to a final steady-state value: 
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 𝑌(𝑡) = 𝑎(𝑒−𝑡/𝜏) + 𝑏 (3.3) 

where 𝑡 is the amount of time during which participants self-selected steps and model output 

𝑌(𝑡) is either step width or step frequency. We used a mixed-effects model with a single time 

constant (𝜏) shared between participants and individual participant offsets (𝑏). We then used 

nonlinear optimization to estimate these coefficients [126]. We calculated the median and the 

interquartile range, which we define as the difference between the 75th and 25th percentiles, 

for each time constant of adaptation. We tested for differences in time constants of adaptation 

between studies where we shifted the energy optimum along one gait parameter and studies 

where we shifted the energy optimum along two gait parameters. We used a Kruskal–Wallis 

one-way ANOVA to test for these differences because these time constants did not follow a 

normal distribution (Anderson–Darling test: p = 5.0 𝗑 10-4). 

We used simple reinforcement learning models to generate competing hypotheses about how 

the nervous represents its control policy search space. This builds off previous work showing 

that reinforcement learning can predict experimental behaviour in energy optimization [73]. 

In these models (Figure 1.2), the learner iteratively updates a value function (𝑄), which we 

define to be the predicted relationship between gait and energetic cost, or the cost landscape. 

At each step (𝑖), the learner chooses an action (𝑎) from all possible actions (𝐴) in agreement 

with its control policy (𝜋). That is, it chooses the action that optimizes its value function—the 

energy optimal action. We define the set of all possible actions to range between -15 and +15 

standard deviations from initial preferred gait. We assume that the nervous system cannot 

execute this action perfectly and therefore add execution noise to each action. We determine 

the execution noise for each action by sampling from a Gaussian distribution with zero mean 

and standard deviation of 1.0, similar to that which we experimentally observed. The learner 

then measures a reward (𝑟), or in this case energetic cost. We assume that the nervous system 

cannot measure energetic cost perfectly and add measurement noise to each reward, again 

sampling from a Gaussian distribution with zero mean and standard deviation of 0.02, which 

we determined in our previous work [73]. And because these measurements are imperfect, 

the learner updates its value function with only a fraction (𝛼 = 0.5) of this reward: 

 𝑄(𝑎𝑖) = 𝑄(𝑎𝑖) + 𝛼(𝑟 − 𝑄(𝑎𝑖)) (3.4) 

We initialized the value function to be the original cost landscape with the controller turned 

off and the optimum at 0 standard deviations from initial preferred gait: 
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 𝑄𝑜𝑓𝑓(𝐴𝑑) = 10 (
𝐴𝑑

100
)

2
+ 1 (3.5) 

where 𝐴 is the set of all possible combinations of actions across all dimensions, and 𝐴𝑑 is the 

subset of actions along each dimension (𝑑). We simulated 1200 steps, or roughly 10 minutes 

of walking, in the new cost landscape with the controller turned on and the optimum at +3 

standard deviations from initial preferred gait: 

 𝑄𝑜𝑛(𝐴𝑑) = 10 (
𝐴𝑑

100
−

3

100
)

2
+ 1 (3.6) 

We simulated two possible cases: low dimensional search space and high dimensional search 

space. The dimensionality of the search space is defined by the size of the value function. In a 

low dimensional search space, the learner recognizes what needs to be learned and then only 

attempts to adapt the control policy along these dimensions—the value function is 𝑄𝐴𝑥1 when 

the energy optimum is shifted along one dimension, and 𝑄𝐴𝑥2 when shifted along two. In a 

high dimensional search space, the learner attempts to adapt the control policy along many 

dimensions irrespective of what needs to be learned—the value function is always 𝑄𝐴𝑥5. We 

selected only 5 dimensions because of the computational resources needed to search among 

all possible combinations of these dimensions. We tested how increasing the task complexity 

(shifting the energy optimum along one and two dimensions) influences the search space and 

time constant of adaptation in each case. We quantified the search space as the actions that 

the learner selects. We quantified the time constant of adaptation using Equation 3.3 to fit an 

exponential to actions and calculating the time constant of this fitted exponential. How the 

nervous system optimizes its control policy for tasks of increasing complexity, and how this 

compares to model predictions, may reveal the nature of its search space. 

3.4. Results 

Our device successfully shifted the energy optimum along two gait parameters. We calculated 

each participant’s initial preferred step width (0.16 ± 0.043 m) and step width variability 

(0.013 ± 0.0037 m), as well as initial preferred step frequency (109.6 ± 5.6 steps per minute) 

and step frequency variability (1.1 ± 0.28 steps per minute), during the baseline period. We 

used each participant’s baseline values to shift the energy optimal step width to wider widths 

and energy optimal step frequency to lower frequencies. In the original cost landscape, the 

energy optimal step width was +1.8 SD from initial preferred (IQR [+0.42, +1.9]; Figure 3.4A 



Figure 3.4: Original and new energetic cost landscapes
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Figure 3.5: Behaviour upon first exposure to the new energetic cost landscape
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Figure 3.6: Behaviour with experience in the new energetic cost landscape



Figure 3.7: Timescale of adaptation
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parameter. That is, we created a new cost landscape with an energy optimum shifted to wider 

step widths and lower step frequencies and tested for spontaneous initiation of adaptation 

as well as initiation of adaptation after enforced experience with combinations of step width 

and step frequency that resulted in high or low energetic costs. We found that participants 

did not learn to adapt step width despite experiencing the conditions previously shown to 

initiate its adaptation. However, they did learn to adapt step frequency—they spontaneously 

increased variability and initiated adaptation along this gait parameter, where adaptation 

resulted in a new control policy that reduced energetic cost. Participants gradually adapted 

one of two gait parameters over several minutes, similar to that which we observed when the 

energy optimum was shifted along only one gait parameter. That changes were limited to one 

gait parameter suggests that the nervous system’s search space is low dimensional. 

Our study has three main limitations. One limitation is that we cannot distinguish between 

adaptation that is due to minimizing the objective of energetic cost and adaptation that is due 

to minimizing the objective of walking incline. To partly address this limitation, we designed 

the new energy optimum to be at a non-zero walking incline so that participants did not adapt 

to reach zero walking incline. We also designed the incline controller so that participants did 

not become aware of the relationship between gait and incline. The rate of change of incline 

was small—about 0.5 degrees per second. And the range of incline given participants’ step-

to-step variability was also small—about one degree. Participants did, however, experience 

large walking inclines of about 10 degrees and small walking inclines of about 2 degrees 

during enforced experience periods, but survey responses suggest that they were unaware of 

the relationship between changes in gait and incline. This is in line with a previous study that 

used a dual-task to demonstrate that energy optimization can be a primarily implicit process 

that requires minimal attention and strategy [127]. A second limitation is that preferred step 

width and preferred step frequency may change with changes in walking incline—adaptation 

may be due to our experimental setup rather than due to the nervous system optimizing 

energetic cost. However, previous studies have found that changes in step width and step 

frequency are minimal within the range of walking inclines that participants experience in 

our study [114,128]. A third limitation is that participants may not be able to adapt step width 

while adapting step frequency due to biomechanical coupling or constraints. That they can 

walk with the combinations of step width and step frequency during enforced experience 

periods suggests that they can walk with the step width and step frequency at the new energy 

optimum. However, because participants use visual feedback and audio feedback to achieve 
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the enforced combinations, we cannot completely rule out the possibility that they cannot 

freely adapt step width and step frequency at the same time. 

The nervous system appears to define a control policy search space that is low dimensional. 

Depending on the nature of its algorithms, searching within a low dimensional space could 

take seconds, minutes, or even hours when the optimum is shifted along one gait parameter. 

This could also be the case when searching within a high dimensional space. To gain insight 

into how the nervous system defines its control policy search space, we determined how its 

energy optimization algorithms extend to multiple gait parameters. If the nervous system 

were to search within a high dimensional space, its optimization would likely not be affected 

by whether the optimum is shifted along one or two gait parameters. On the other hand, if the 

nervous system were to search within a low dimensional space, it might (1) optimize two gait 

parameters more slowly than one gait parameter, or (2) optimize only a subset of these two 

gait parameters (Figure 3.1). Our finding that people adapt one of two gait parameters is in 

line with the hypothesis that the nervous system searches within a low dimensional space. 

This can help reduce the complexity of the optimization problem to learn new energy optimal 

policies within a reasonable amount of time—time duration appears to be included in the 

nervous system’s processes [129,130]. However, this can also restrict learning—the nervous 

system may not recognize the extent of what can be learned. Here, searching within a low 

dimensional space may help reduce the complexity of the problem but at the expense of cost 

savings. 

Why does the nervous system initiate adaptation along step frequency but not step width? 

One candidate possibility is that the nervous system is primed to vary step frequency given 

our past walking experiences [131,132]. We walk at different speeds in different situations. 

And for each speed, we select a different step frequency that minimizes energetic cost [133]. 

Unlike step frequency, step width does not change considerably with speed, and thus the 

nervous system may not be primed to vary this gait parameter [134]. This is in line with our 

finding that people increase variability and initiate adaptation along step frequency but do 

not increase variability or initiate adaptation along step width. Another candidate possibility 

is that the nervous system cannot distinguish between energy cost savings due to step width 

and due to step frequency, and thus arbitrarily chooses one gait parameter to optimize. Two 

features of our experimental design and protocol may have added to this problem. First, we 

gave enforced experience using different forms of feedback for different gait parameters—
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visual feedback for step width and audio feedback for step frequency. Future work should 

identify the type of enforced experience, both in terms of statistical structure and origin, that 

the nervous system can use for motor learning. Second, we gave enforced experience along 

two gait parameters at the same time. That the nervous system learns to adapt one gait 

parameter suggests that it can solve this problem to some extent. That it did not learn to adapt 

the other gait parameter suggests that it did not solve it completely. Future work should also 

determine how we can tailor this experience to facilitate learning. 

How the nervous system learns new energy optimal control policies in the face of increasingly 

complex problems can advance our understanding of its algorithms for movement. Our intent 

was to determine if and how the nervous system’s algorithms extend to optimizing energetic 

cost along multiple gait parameters—this may reveal how it defines its control policy search 

space. We found that the nervous system is limited in the number of gait parameters that it 

can simultaneously optimize, suggesting that it defines a low dimensional search space. This 

new understanding of the nervous system’s control policy search space can benefit coaches 

who seek to design effective training protocols, as well as therapists who seek to design 

effective rehabilitation protocols. It is also important to understand the limitations of the 

nervous system’s algorithms for applications in both healthy and impaired individuals. 
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Chapter 4.  
 
General variability leads to specific adaptation 
toward optimal movement policies 

4.1. Abstract 

Our nervous systems can learn optimal control policies in response to changes to our bodies, 

tasks, and movement contexts. For example, humans can learn to adapt their control policy 

in walking contexts where the energy optimal policy is shifted along variables such as step 

frequency or step width. But it is unclear how the nervous system determines which ways to 

adapt its control policy. Here we asked how human participants explore through variations 

in their control policy to identify more optimal policies in new contexts. We created new 

contexts using exoskeletons that apply assistive torques to each ankle at each walking step. 

We analyzed four variables that spanned the levels of the whole movement, joint, and muscle: 

step frequency, ankle angle range, total soleus activity, and total medial gastrocnemius 

activity. We found that, across all of these analyzed variables, variability increased upon 

initial exposure to new contexts, and then decreased with experience. This led to adaptive 

changes in the magnitude of specific variables and these changes were correlated with 

reduced energetic cost. The timescales by which adaptive changes progressed and variability 

decreased were faster for some variables than others, suggesting a reduced search space 

within which the nervous system continues to optimize its policy. These collective findings 

support the principle that exploration through general variability leads to specific adaptation 

toward optimal movement policies. 

  



50 

4.2. Introduction 

Humans are adept at learning optimal control policies. We use the term control policy to refer 

to the nervous system’s mapping from states to the actions taken in those states [53]. The 

nervous system’s actions are realized through motor commands, and its perceived states may 

range from the lengths of individual muscles to its estimate of the unevenness of the terrain. 

A control policy can be adapted to optimize an objective function, and when adaptation can 

no longer improve the objective, we refer to this as the optimal control policy. The objective 

function may consist of multiple terms, and the relative importance of these terms may 

depend on task and context. For example, in the task of reaching, people can adapt their 

control policy to optimize an objective function consisting of error and effort [5]. In walking, 

studies have shown that the nervous system’s objective function includes metabolic energetic 

cost among other terms and constraints such as stability or risk of falling [6,105]. When we 

measure the relationship between energetic cost and step frequency, we find that it is bowl-

shaped and that people prefer to walk with a step frequency that coincides with the minimum 

of this bowl [10,106]. And when we reshape this relationship to shift the energy optimal step 

frequency, we find that people adapt their step frequency to optimize energetic cost [42]. This 

same objective appears to influence the nervous system’s control of other gait parameters 

such as step width, suggesting that the nervous system’s continuous learning of optimal 

control policies for walking is a general phenomenon [80,86]. 

Optimizing a control policy involves several steps. One step is to select a more optimal control 

policy from amongst candidate policies. Studies suggest that the nervous system greedily 

selects local solutions that improve on the underlying objective function [41,75]. Prior to 

selecting the next policy, the nervous system must first evaluate a set of candidate policies. 

One way to do so is to locally explore. Songbirds, for example, exhibit variability in vocal 

control which appears to enable optimization of song performance [135–137]. Similar 

mechanisms underlie human vocal control [138]. That is, variability is not just an undesirable 

outcome of noise in the nervous system’s control, but also a means to explore and discover 

better outcomes [64,131]. However, variability can be costly—deviating from the previously 

optimal policy in contexts where the optimal policy has not shifted yields suboptimal 

behaviour. Even in contexts where the optimal policy has shifted, variability that is not in the 

same direction as the shift is suboptimal. It seems conceivable that the nervous system has 

some understanding of which aspects of its control policy to explore and adapt given prior 
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experience. For example, in reaching arm movements, some people exhibit increases in 

baseline variability along aspects that are relevant to the task, and these selective increases 

in variability appear to enable faster learning [132]. But it is useful to consider an alternative 

perspective where the nervous system has minimal prior experience that it can draw from 

and may need to vary many aspects of its control policy in order to learn which aspects give 

rise to better outcomes. When learning to walk with an assistive device, for example, the 

nervous system may need to determine which aspects of its control policy to adapt—it is a 

new context that introduces a control system external to that of the nervous system. 

How the nervous system explores the space of control policies may influence how quickly it 

learns new optimal policies. Exploration faces a challenge—as the number of possible states 

and actions increases, the number of candidate control policies increases rapidly. This 

expansion of the space of control policies can impede learning as searching through and 

evaluating many policies takes time—a challenge known as the ‘curse of dimensionality’ [53]. 

The nervous system might overcome this challenge of the combinatorial complexity of the 

policy space by reducing the dimensionality of the policy space that it searches so it has fewer 

dimensions along which to explore for new optimal control policies [139]. How the nervous 

system does this is presently unknown. 

Here we determined how the nervous system explores through variations in its control policy 

to learn new optimal policies in new contexts. To accomplish this, we performed a post-hoc 

analysis of data from our recent study where we gave participants experience with ankle 

exoskeleton assistance over six non-consecutive days [140]. This recent study found that 

people arrive at new energy optimal policies when given sufficient experience with 

exoskeleton assistance [140]. But the nervous system’s mechanisms for converging on this 

new optimal policy are still unclear. Here we tested three hypotheses about learning in new 

contexts: (1) the nervous system first explores by increasing general variability—where 

general variability refers to variability across many or all aspects of gait—to identify 

variables that improve its objective, (2) with experience, the nervous system selectively 

decreases variability to refine its control policy search space, and (3) the nervous system 

learns to adapt the magnitude of specific variables and exploit a new control policy that 

reduces energetic cost. 
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4.3. Results 

We created new contexts using ankle exoskeletons. We applied assistive torques to each 

ankle at each walking step by transmitting forces through a Bowden cable that was attached 

to an ankle lever on an ankle exoskeleton. High-powered off-board motors generated the 

forces that were transmitted through the cables, and high-frequency controllers commanded 

the motors to generate the desired torques. All participants experienced two main contexts 

while walking on an instrumented treadmill: without-assistance and with-assistance. In the 

without-assistance context, participants walked without the ankle exoskeletons (Figure 

4.1A) or while wearing the ankle exoskeletons but with slack cables and minimal applied 

torques (Figure 4.1B). In the with-assistance context, participants walked with the ankle 

exoskeletons while they generated torques that acted to extend each ankle during its stance 

phase. Figure 4.1C illustrates the general pattern of the applied torque, which was 

determined by a predefined control law that applied a constant magnitude of peak torque, 

while rise time, peak torque time, and fall time were constant percentages of the stride time. 

To study the nervous system’s learning mechanisms in new contexts, we gave participants 

experience with walking with exoskeleton assistance. On each day over six non-consecutive 

days, all participants walked without the ankle exoskeletons, with the ankle exoskeletons 

providing minimal applied torques, and with the ankle exoskeletons providing assistive 

torques. Participants completed these three conditions twice for six minutes each. The three 

conditions were first completed in random order, and then again in that same order, but 

reversed (e.g., CABBAC; Figure 4.1D and E). Participants completed additional exoskeleton 

assistance trials from the second day onwards (Figure 4.1E), but we did not include these 

trials in our current analyses as they were designed to test the effect of different training 

protocols [140]. In these additional trials, some participants (n = 5) repeatedly experienced 

the predefined control law described above. Other participants (n = 5) experienced this 

predefined control law interspersed between human-in-the-loop optimization, where we 

used real-time measures of energetic cost to customize the control law parameters (Figure 

A.1). Despite differences in these additional trials, all participants achieved similar reductions 

in energetic cost in response to the predefined control law that they repeatedly experienced 

on each day for six days (p = 0.62) [140]. We therefore grouped participants (n = 10) and 

restricted our analyses to changes in response to the predefined control law that we define 

above as the with-assistance context. When accounting for the amount of experience with 
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some of the nervous system’s control policy parameters—

Figure 4.1: Experimental design and protocol
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All participants experienced two main contexts: without-assistance and with-assistance. In the 
without-assistance context, participants (A) walked without the ankle exoskeletons or (B) walked 
while wearing the ankle exoskeletons with minimal applied torques via slack cables. In the with-
assistance context, participants (C) walked while wearing the ankle exoskeletons which used a 
predefined control law to generate assistive ankle torques at each walking step. (D) On day 1, all 
participants completed these three conditions twice. (E) On days 2-6, all participants completed 
additional trials which were followed by the original three conditions twice. 

4.3.1. A general increase in variability upon initial exposure to new 
contexts 

We quantified variability within each variable by high-pass filtering its signal to include 

timescales of 30 steps or less, and then calculating the standard deviation of this filtered 

signal during the last three minutes of each six-minute trial (see Methods). This method 

filtered out the relatively slow signal changes that we associate with adaptive changes, but 

not the relatively rapid changes that occur from step to step and over several steps that we 

associate with exploration. For most variables, we quantified each participant’s without-

assistance variability from the condition where they were not wearing the ankle 

exoskeletons. The exception was ankle angle range where we applied identical calculations 

but to the condition where participants were walking while wearing the ankle exoskeletons 

but with the devices applying minimal torques. The reason for this exception was that we 

needed the exoskeleton sensors to calculate ankle angle. We refer to the without-assistance 

variability averaged across the two trials on the first day as baseline variability. We use this 

baseline variability to normalize with-assistance variability. 

Upon initial exposure to the exoskeleton assistance context, participants walked with 

increased variability across all variables that we analyzed. This was evident when comparing 

with-assistance variability averaged across the two first day trials to without-assistance 

baseline variability, with increases ranging from 21% to 279% (mean ± standard deviation, 

paired t-test; step frequency: +56.2 ± 27.6%, p = 2.0 𝗑 10-4, Figure 4.2A; ankle angle range: 

+278.8 ± 85.0%, p = 6.8 𝗑 10-7, Figure 4.2B; total soleus activity: +21.1 ± 25.3%, p = 0.026, 

Figure 4.2C; total medial gastrocnemius activity: +46.0 ± 19.6%, p = 1.7 𝗑 10-5, Figure 4.2D; 

representative participant: Figure 4.2E). 
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4.3.2. A general decrease in variability with increased experience 

As participants walked with exoskeleton assistance over multiple days, we determined how 

variability changed with this increased experience. We found that, as experience increased, 

participants walked with decreased variability across all variables that we analyzed. This was 

evident when comparing with-assistance variability measured on the last day to that 

measured on the first day, with decreases ranging from -18% to -39% (mean ± standard 

deviation, paired t-test; step frequency: -38.5 ± 9.8%, p = 4.9 𝗑 10-5, Figure 4.2A; ankle angle 

range: -26.3 ± 22.8%, p = 6.5 𝗑 10-3, Figure 4.2B; total soleus activity: -18.3 ± 21.2%, p = 0.013, 

Figure 4.2C; total medial gastrocnemius activity: -19.7 ± 13.2%, p = 1.5 𝗑 10-3, Figure 4.2D). 

By the last day, participants’ with-assistance variability was indistinguishable from their 

baseline variability for step frequency (-5.1 ± 17.3%, paired t-test: p = 0.32) and total soleus 

activity (-3.3 ± 26.9%, paired t-test: p = 0.39), but remained elevated for ankle angle range 

(+166.2 ± 52.5%, paired t-test: p = 6.7 𝗑 10-6) and total medial gastrocnemius activity (+15.8 

± 15.8%, paired t-test: p = 0.020). That is, the nervous system returned variability towards, 

and in some cases to, baseline variability with increased experience. 



Figure 4.2: Changes in variability with experience with exoskeleton assistance

variable’s variability across two six
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4.3.3. Adaptation occurs along specific variables and these changes 
correlate with reduced energetic cost 

We use the term adaptation to refer to changes in the magnitude of a variable that occurs 

with experience. We quantified each variable’s magnitude by averaging its signal during the 

last three minutes of each six-minute trial. People appear to have an established policy for 

without-assistance contexts—we observed minimal changes in the magnitude of variables 

when comparing the first and last days of without-assistance walking (mean ± standard 

deviation, paired t-test; step frequency: -0.78 ± 2.6%, p = 0.38; ankle angle range: 5.6 ± 7.2%, 

p = 0.046; total soleus activity: -2.7±8.1%, p = 0.22; total medial gastrocnemius activity: -4.0 

± 6.5%, p = 0.074). We refer to the without-assistance magnitude averaged over the two trials 

on the first day as the baseline value. We use this baseline value to normalize the measured 

with-assistance magnitudes. We estimated the energetic cost of each trial in the standard 

manner—using respiratory gas analysis of the last three minutes of each six-minute trial (see 

Methods). We normalized energetic cost during all with-assistance trials to each participant’s 

energetic cost averaged over two without-assistance trials—when walking with the ankle 

exoskeletons applying minimal torques—on the first day. We used linear mixed-effects 

regression to estimate the slope of the relationship between a variable and energetic cost. 

This mixed-effects model used a single slope for each variable to estimate the relationship 

that is shared between participants while allowing for individual energetic cost intercepts 

(see Methods). 

Participants learned to adapt three of four variables and these three variables correlate with 

energetic cost. We found relatively strong and significant relationships between energetic 

cost and step frequency (slope = 2.2, 95% CI [1.5, 2.8], p = 3.4 𝗑 10-9; Figure 4.3A), total soleus 

activity (slope = 0.69, 95% CI [0.44, 0.94], p = 2.9 𝗑 10-7; Figure 4.3C), and total medial 

gastrocnemius activity (slope = 0.36, 95% CI [0.18, 0.54], p = 1.7 𝗑 10-4; Figure 4.3D). The 

relationship between ankle angle range and energetic cost was weaker and not significant 

(slope = 0.069, 95% CI [-0.030, 0.17], p = 0.17; Figure 4.3B). As participants gained experience 

with walking with exoskeleton assistance, variables that correlated with energetic cost 

adapted in the direction that reduced cost. Comparing the first and last days of with-

assistance trials, we found changes in step frequency (-3.5 ± 3.4%, paired t-test: p = 9.8 𝗑 10-

3, Figure 4.3E), total soleus activity (-10.4 ± 11.0%, paired t-test: p = 0.023, Figure 4.3G), and 

total medial gastrocnemius activity (-13.4 ± 12.4%, paired t-test: p = 5.4 𝗑 10-3, Figure 4.3H), 



𝗑

Figure 4.3: Changes in magnitude of variables that reduce energetic cost

participant’s energetic cost during without —
—on the first day. We normalized each variable’s with

participant’s without

—two per day for six days. To better illustrate a variable’s relationship with energetic 
effects model, we subtracted each participant’s random



4.3.4. Variability decreases quickly for quickly-adapting variables



Figure 4.4: Timescales of changes in variability and changes in magnitude

magnitude and variability to each participant’s without

— —
— —

each participant’s random

Figure 4.5: Differences in timescales between variables
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(A) Time constants of adaptation and (B) time constants of variability for step frequency, total soleus 
activity, and total medial gastrocnemius activity during with-assistance trials (blue). We did not 
observe adaptation in ankle angle range during stance and therefore excluded this variable from this 
analysis. The central mark indicates the median, the bottom edge of the box indicates the lower quartile 
(25th percentile), and the top edge of the box indicates the upper quartile (75th percentile). Error bars 
extend to the most extreme data points not considered outliers, which we define as more than 1.5 
times the interquartile range away from the edges of the box. Asterisks indicate statistically significant 
differences between variables using the notation: *** for p<0.001. 

4.4. Discussion 

We provide insight into how the nervous system navigates a space of control policies to learn 

new optimal policies in new contexts. We created new contexts using ankle exoskeleton 

assistance and studied learning as energy optimization in human walking. We analyzed two 

processes—variability and adaptation—across four variables—step frequency, ankle angle 

range, total soleus activity, and total medial gastrocnemius activity. We found that, with 

minimal experience in new contexts, variability increased across all variables that we 

analyzed. And with increased experience, variability decreased across all variables. This 

appeared to lead to adaptive changes in the magnitude of specific variables—those which 

were associated with reductions in energy cost. Variability decreased and adaptation 

progressed quickly for some variables but slowly for others, suggesting that the nervous 

system can independently control these variables, and that it may optimize in a manner that 

reduces its control policy search space over time. 

These findings generalize to other movement variables. We a priori selected four variables 

based on our understanding of how walking can take advantage of ankle exoskeleton 

assistance and without knowledge of how these variables changed over time or how these 

changes were associated with energetic cost. These four variables are only a subset of our 

measured dataset—which includes stride parameters, ground reaction forces, joint 

kinematics, and muscle activity—enabling us to test whether the conclusions we arrive at 

from our first analysis generalize to other variables. Toward this, we sampled four additional 

variables: step width, peak ankle extension angle (which occurs during swing), total rectus 

femoris activity (a knee extensor and hip flexor muscle), and total biceps femoris activity (a 

knee flexor and hip extensor muscle). These four additional variables do not directly take 

advantage of ankle exoskeleton assistance but in the same way capture learning at the levels 

of the whole movement, the joint, and the muscle. Our additional analysis revealed that 

participants first increased and then decreased variability across three of these four 
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variables: peak ankle extension angle, total rectus femoris activity, and total biceps femoris 

activity (Figure A.2). Participants learned to adapt along specific variables and these variables 

were associated with reductions in energetic cost (Figure A.3). Some variables adapted faster 

than others, and this adaptation was accompanied by decreases in variability (Figure A.4). 

We interpret these collective findings as supporting the principle that general variability 

leads to specific adaptation toward optimal control policies. Our data and code are open 

access, allowing others to test additional variables for the generalizability of these 

conclusions. 

These findings generalize to other movement contexts. Split-belt walking is another 

movement context in which people learn to take advantage of external assistance and reduce 

their energetic cost. That is, people learn to adapt their foot placement to take advantage of 

the positive work performed by the treadmill—due to one belt moving faster than the other—

and reduce the work performed by their legs. Learning to take advantage of external 

assistance from a split-belt treadmill is different from learning to take advantage of external 

assistance from ankle exoskeletons—the difference in belt speeds is constant whereas the 

assistive ankle torque is controlled as a function of stride time at each walking step. Here we 

used a split-belt walking dataset to ask how our findings generalize to other movement 

contexts [52]. We analyzed step length asymmetry, which is commonly reported in split-belt 

walking studies. We found that variability in step length asymmetry increased upon initial 

exposure to the new context of split-belt walking compared to tied-belt walking (p = 9.2 𝗑 10-

10; Figure 4.6). Variability then decreased by the end of 45 minutes of split-belt walking 

compared to initial variability (p = 1.2 𝗑 10-4; Figure 4.6). During this time, participants 

learned to adopt positive asymmetries—with foot placement further forward on the fast 

belt—and reduce metabolic cost [52]. Thus, our conclusions that general variability leads to 

specific adaptation toward optimal control policies generalize not only to other movement 

variables but also to other movement contexts. 



Figure 4.6: Changes in variability in response to the new context of split-belt 
walking

system’s control policy parameters—it is unlikely that the nervous system’s

the nervous system’s control policy search space.
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candidate control policies to evaluate [123]. If the nervous system reduces the number of 

variables along which it explores, it has fewer combinations of states and actions to try and 

can therefore employ a more directed optimization for selecting more optimal control 

policies from amongst candidate policies [41,75]. This understanding can be applied to the 

optimization of any cost function. For example, a multi-objective cost function might provide 

a more general view of optimization during non-steady-state walking by including terms such 

as energy, or stability, or some weighted combination of these and other terms [6,86]. A 

recent study has provided a theoretical basis for how people learn new optimal policies in 

new contexts such as walking with exoskeleton assistance and walking on a split-belt 

treadmill—they found that prioritizing stability over short timescales and improving energy 

expenditure over long timescales, as well as using exploratory variability to estimate 

gradients, can explain learning in these contexts [146]. This notion that the nervous system 

uses exploration to first evaluate a set of candidate policies is similar to what we find in our 

current study. In contrast to general exploration during learning of a new policy, learned 

policies often appear to have a low-dimensional structure. In motor coordination, for 

example, muscle activation patterns can be explained by a limited set of muscle synergies—

or muscle activation patterns with consistent spatial and temporal characteristics 

[20,21,23,147]. And in neural systems such as the motor cortex of a monkey, relatively 

complex responses from individual neurons can be explained by relatively simple responses 

from a population of neurons [148,149]. Our findings show that, in new contexts, the nervous 

system can arrive at such a low-dimensional structure of control after first benefiting from 

general exploration. An interesting and open question is what elicits adaptation and why 

adaptation occurs quickly for some variables, and more slowly for others. There are several 

factors—which do not act in isolation—that can influence adaptation. Two factors may be the 

level of exploratory variability and the cost gradient—both can influence the range of cost 

savings that the nervous system experiences. Another factor may be how the biomechanical 

variables relate to the nervous system’s control policy parameters—a variable that we 

measure may reflect one or many parameters that the nervous system optimizes, and the 

level of complexity may influence the timescale of adaptation that we observe. 

Not all variability is exploration. We must first differentiate exploration from other 

contributors to measured biomechanical variability, such as that arising from unintentional 

noise in the nervous system’s control, variability in the forces that muscles produce, or 

unpredicted changes in the environment [70]. Müller and Sternad sought to do so in a 
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throwing task, where participants could influence their performance of hitting a target by 

varying two parameters: angle and velocity at release [150]. They decomposed variability 

along these two parameters into components that differentiated task-relevant variability 

from stochastic noise. Here we propose that baseline levels of variability in familiar contexts 

may mostly represent unintentional noise, either from the nervous system’s control or some 

other source (i.e., stochastic noise in Müller and Sternad’s terminology). This can then be used 

as a benchmark against which variability in new contexts is compared. We found that, upon 

first exposure to a new context, variability increased above baseline levels across all variables 

that we analyzed. With experience in the new context, variability gradually decreased and 

then plateaued across all variables that we analyzed, converging on baseline levels for some 

variables. We interpret variability as exploration when it is information seeking. That 

variability decreased as people learned to adapt the magnitude of specific variables—and 

that these two processes occurred over similar timescales for each variable—suggests that 

variability may reflect exploration. As in other studies that aim to determine how variability 

relates to intentional exploration, we recognize that we can never entirely rule out the 

alternative hypothesis that variability is unintentional. However, this alternative hypothesis 

seems less likely based on theory—a key concept in reinforcement learning is that 

exploration improves learning of new optimal policies—and evidence—higher levels of 

motor variability appear to enable faster learning of new optimal policies [53,132]. 

Plateauing of variability may indicate that the nervous system has settled on a new policy and 

has shifted from exploring candidate policies to exploiting the new preferred one. That 

variability remained elevated above baseline levels for some variables may reflect that the 

nervous system is still refining aspects of the control policy or, as we suspect, it may simply 

be additional variability introduced by imperfect torque control by the exoskeleton, which 

was not present when we established baseline levels. 

A deeper understanding of the nervous system’s mechanisms for learning can be used to both 

facilitate learning and customize training. We might facilitate learning by encouraging 

general exploration. That is, we might increase variability across many variables—through 

strategies such as biofeedback—and then decrease variability along specific variables as 

people learn to adapt, reducing the nervous system’s policy search space. We might also give 

experience with specific variables that affect energetic cost, indicating to the nervous system 

which variables are relevant to optimize [73]. To improve on the design of the present study, 

future studies should seek to determine the energetic cost landscape of walking with ankle 
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exoskeleton assistance by mapping the relationship between energetic cost and 

biomechanical variables. Future studies should also seek to develop methods for estimating 

energetic cost with increased time resolution to determine how variability in biomechanical 

variables relates to changes in energetic cost for energetic cost optimization. This can benefit 

those who seek to design wearable systems—such as orthoses, exoskeletons, and 

prosthetics—by facilitating learning, and then evaluating people’s optimal responses to a 

range of designs. We also might customize training time by using baseline levels of variability 

as a benchmark to indicate when the nervous system initiates exploration, and when it shifts 

to exploiting a new policy. Participants in this study had roughly nine hours of experience 

walking in this new context [140]. Determining the onset and termination of learning would 

be useful for coaching athletes who would benefit from knowing at which point they should 

transition to learning new skills in order to maximize their high capacity for training. And 

knowing when to terminate experience is especially important for rehabilitating those with 

mobility disorders who have a limited capacity for training.  
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4.5. Methods 

4.5.1. Experimental design 

Participants walked on an instrumented treadmill while wearing a bilateral, tethered ankle 

exoskeleton emulator that applied assistive torques to each ankle at each walking step. This 

system is described in more detail in our previous work [140,151]. In brief, we used an off-

board controller to command the desired force to an off-board electric motor via a motor 

driver [152]. This force was then transmitted through a Bowden cable to the end of the ankle 

lever on the exoskeleton, which in turn applied an ankle plantarflexion torque to the 

participant. This ankle plantarflexion torque was achieved by the tension in the cable, 

combined with the moment arm of the ankle lever on the exoskeleton, producing forces on 

the body where it interfaces with the exoskeleton—the heel, the shank, and the toe [151]. 

Our control system produced desired torque patterns as a function of the user's stride time. 

As detailed in [140], we used a high-speed controller running at 1000 Hz to achieve the 

predefined torque pattern (Speedgoat, Liebefeld, Switzerland). This controller sampled from 

sensors, calculated time since heel strike as well as desired force at that time, and then 

commanded that force to the motor. We used contact switches on each heel to measure heel 

strikes and calculate stride time as the difference in time between consecutive heel strikes 

with the same leg (Pololu, NV, USA; McMaster-Carr, IL, USA). We used strain gauges to 

measure the tension in each cable and calculate torques by multiplying tension with the 

moment arm of the ankle lever on the exoskeleton (Omega Engineering, CT, USA). The 

combination of real-time measured stride times and torques allowed for accurate torque 

tracking that was a function of time since heel strike, normalized to average stride time. We 

used average stride time as a filter for large, perhaps inaccurate, changes in stride time that 

may result in undesirable torques. We calculated average stride time as: 

 𝜏𝑎𝑣𝑔 = 𝑡𝑎𝑣𝑔(1 − 𝜇) + 𝑡𝑠𝑡𝑟𝑖𝑑𝑒𝜇 (4.1) 

where 𝜇 = 0.9. Our controller was also designed to include many features that prioritized the 

user’s comfort [140]. For example, at the beginning of all walking periods with exoskeleton 

assistance, the peak torque was slowly increased from zero to that of the predefined torque 

pattern to ensure that participants were not perturbed by the assistance. During each swing 

phase, the controller initiated a ‘swing mode’ where the cable tracked the ankle angle with 



68 

added slack. And during each stance phase, the torque was slowly increased from zero after 

heel strike and decreased to zero before toe-off as prescribed by the parameterization of the 

control law. 

We parameterized the control law to achieve a range of customized torque profiles, as well 

as one predefined torque profile. Because our original study was designed to test the relative 

benefits of training with a predefined control law and a customized control law [140], some 

participants received training with repeated exposure to the predefined control law, whereas 

other participants received training with human-in-the-loop optimization of the control law 

and only periodic exposure to the predefined control law. All control laws were defined by 

four parameters: magnitude of peak torque (Nm), timing of peak torque (% stride), rise time 

(% stride), and fall time (% stride). We defined the magnitude of peak torque to be a function 

of each participant’s body mass. We determined the predefined control law in a pilot 

experiment prior to the main experiment [140]. In this pilot experiment, ten participants—

which were not the participants in our main experiment—completed one day of habituation 

with the bilateral ankle exoskeletons followed by one day of human-in-the-loop optimization 

of the control law. The predefined control law for the main experiment was defined as the 

average optimized parameters from this pilot study: magnitude of peak torque was 0.54M 

where M is participant’s mass in kilograms, timing of peak torque was 52.9% of stride, rise 

time was 26.2% of stride, and fall time was 9.8% of stride. 

We measured ground reaction forces, joint kinematics, and muscle activity to quantify 

variables that people may optimize. First, we measured ground reaction forces and moments 

while participants walked on an instrumented split-belt treadmill (Bertec, Columbus, OH, 

USA). We used ground reaction forces and moments to calculate the center of pressure and 

identify foot contact events as the rapid fore-aft translation in center of pressure during 

double support. Second, we measured ankle angle in all trials with the exoskeleton using a 

rotary magnetic encoder mounted on the ankle joint of the exoskeleton (Renishaw, 

Gloucestershire, UK). We zeroed the encoder during standing on each day, and calculated 

ankle flexion and extension as the angle from neutral position in the sagittal plane. Third, we 

collected electromyography (EMG) data from medial gastrocnemius, lateral gastrocnemius, 

soleus, tibialis anterior, rectus femoris, vastus medialis, biceps femoris, and semitendinosus 

using surface electrodes on each muscle for both legs, and during all walking trials (Delsys, 

Boston, MA, USA). For the muscles that we considered in our analyses, we inspected EMG data 
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to exclude channels with poor signal quality. Lastly, we used a respiratory gas analysis system 

to measure rates of oxygen consumption and carbon dioxide production (Cosmed Quark 

CPET, Rome, Italy). We calculated gross metabolic power using the standard Brockway 

equation, and then subtracted each participant’s resting metabolic power measured on the 

same day to obtain net metabolic power [112]. We calculated resting metabolic power as the 

average metabolic power during the final three minutes of a six-minute standing resting 

period at the beginning of each day of testing. We collected EMG at 1000 Hz and all other 

measures at 500 Hz. 

4.5.2. Experimental protocol 

We included a total of ten participants (mean ± SD; age: 24 ± 2 years; body mass: 68.3 ± 11.1 

kg; height: 1.7 ± 0.094 m; sex: 4 females, 6 males) in our study. To investigate the nervous 

system’s learning mechanisms, we required that participants included in our study learned 

to reduce their energetic cost of walking with exoskeleton assistance. These ten participants 

consisted of two groups, which we randomly assigned participants to prior to the experiment. 

Each group of five participants completed similar protocols but with slight differences in 

additional trials that they completed from the second day onwards. Our previous study found 

that, despite these slight differences, these two groups learned to reduce their energetic cost 

of walking in response to a general pattern of assistive ankle torque on the last day compared 

to the first day (group 1: p = 0.016; group 2: p = 0.005). They also achieved similar reductions 

in energetic cost (p = 0.62) [140]. We therefore grouped participants (n = 10) and restricted 

our analyses to changes in response to this general pattern of assistive ankle torque. We 

excluded a third group of five participants as they did not meet our requirement of learning 

to reduce their energetic cost of walking on the last day compared to the first day (group 3: p 

= 0.73) [140]. This was perhaps due to the nature of their additional trials, where they 

experienced many different patterns of assistive ankle torques. All participants were healthy 

and had no known gait or cardiopulmonary abnormalities. The Stanford Institutional Review 

Board approved the study protocol, and all participants gave their written, informed consent 

before participating in the study. 

The protocol consisted of a testing session on each day for a total of 6 days. During all testing 

sessions, participants walked on an instrumented treadmill at a constant speed of 1.25 m/s. 
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For conditions that involved exoskeleton assistance, we instructed participants to “walk 

comfortably” and to “let the device do the work for you”. 

We gave participants experience with walking with exoskeleton assistance over multiple 

days. On each day, participants experienced at least 3 conditions: walking without the ankle 

exoskeletons (Figure 4.1A), walking with the ankle exoskeletons providing minimal applied 

torques via slack cables (Figure 4.1B), and walking with the ankle exoskeletons with the 

predefined control law generating assistive ankle torques at each walking step (Figure 4.1C). 

Some participants had an additional walking condition from the second day onwards, where 

they experienced the final control law from human-in-the-loop optimization during 

additional trials on that same day. Participants completed these conditions twice for six 

minutes each. The conditions were first completed in random order, and then again in that 

same order, but reversed (e.g., CABBAC; Figure 4.1D and E). When comparing between 

conditions or days, we averaged a given variable over the final three minutes of each six-

minute trial, and then across the two repeated six-minute trials on each day. 

Participants completed additional trials which altered the training that each group received. 

We did not include these trials in our analyses as they were designed primarily to test the 

effect of different training protocols in our previous study [140]. They were also designed to 

increase participants’ experience with the predefined control law. Participants completed 

these trials from the second day onward, prior to the main six-minute trials (Figure 4.1E). In 

brief, one group (n = 5) repeatedly experienced the predefined control law at each walking 

step over 72 minutes (Figure A.1). A second group (n = 5) experienced two minutes of the 

predefined control law followed by 16 minutes of human-in-the-loop optimization and 

repeated this four times resulting in 72 minutes of training (Figure A.1). During periods of 

human-in-the-loop optimization, participants experienced a series of eight control laws for 

two minutes each. We selected these control laws based on our estimate of the optimal 

control law, which was determined by an algorithm that ranked previously experienced 

control laws by their respective energetic cost measurements. The process of human-in-the-

loop optimization is described in more detail in our previous work [140,151]. 
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4.5.3. Analysis 

We wrote custom MATLAB scripts to process and analyze the data, as well as perform 

statistical comparisons and generate figures included in this manuscript. 

We quantified the variability and magnitude of step frequency. This variable can influence 

exoskeleton assistance through the timing of the assistive torque pattern because rise time, 

peak torque time, and fall time were all expressed as percentages of stride time in our control 

law parameterization. We calculated step frequency by identifying foot contact events and 

then taking the inverse time difference between consecutive steps. We determined the 

variability within step frequency by applying a third-order, high-pass, bi-directional digital 

Butterworth filter with a cut-off frequency of 0.033 steps-1 (period of 30 steps), and then 

calculated the standard deviation of this filtered signal during the last three minutes of each 

six-minute trial. We used MATLAB’s filtfilt command to perform zero-phase digital filtering. 

We determined the cut-off frequency to be 0.033 steps-1 based on previous studies of 

variability in human walking [125], as well as visual inspection of the power spectrum. We 

calculated the magnitude of step frequency as the average of this signal during the last three 

minutes of each six-minute trial. 

We quantified the variability and magnitude of ankle angle range during stance. This variable 

can influence the power and work that the exoskeleton applies to the ankle by changing the 

angle over which the torque is applied. We calculated ankle angle range during stance by first 

time-locking ankle angle to heel strike events, and then calculating the difference between 

the maximum and minimum ankle angles during stance. We determined the variability within 

ankle angle range by applying a high-pass filter with a cut-off frequency of 0.033 steps-1 

(third-order Butterworth), and then calculated the standard deviation of this filtered signal 

during the last three minutes of each six-minute trial. We calculated the magnitude of ankle 

angle range as the average of this signal during the last three minutes of each six-minute trial. 

We quantified the variability and magnitude of total ankle extensor muscle activity. The 

nervous system may learn to accept assistive torques at the ankle by lowering the 

contribution to the total ankle torque provided by the extensor muscles. We selected two 

variables at the level of the muscle as there are two primary ankle extensor muscles—soleus 

and gastrocnemius. For each muscle on each leg, we applied a high-pass filter with a 20 Hz 

cut-off (third-order Butterworth), rectified the signal, and then applied a low-pass filter with 
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a 6 Hz cut-off (third-order Butterworth) [153]. We next time-locked the signal to heel strike 

events, divided each stance phase into 100 evenly spaced segments, and normalized each 

muscle’s activity for each participant to their same day average peak activation while walking 

without the ankle exoskeletons. We calculated total soleus activity and total medial 

gastrocnemius activity by integrating each muscle’s activity during stance at each walking 

step. Similar to our previous analyses, we quantified the variability of total soleus activity and 

total medial gastrocnemius activity by applying a high-pass filter with a cut-off frequency of 

0.033 steps-1 (third-order Butterworth), and then calculated the standard deviation of each 

filtered signal during the last three minutes of each six-minute trial. We calculated the 

magnitude of each muscle’s total activity as the average of its signal during the last three 

minutes of each six-minute trial. 

We analyzed four additional variables: step width, peak ankle extension angle, total rectus 

femoris activity, and total biceps femoris activity. We calculated step width by identifying foot 

contact events and then taking the difference between the lateral centers of pressures—

which we determined by dividing the left and right lateral moments by their vertical forces—

for consecutive steps. We calculated peak ankle extension angle by first time-locking ankle 

angle to heel strike events, and then calculating the peak angle during the stride. Similar to 

our previous analysis of muscle activity, we calculated total rectus femoris activity and total 

biceps femoris activity by first applying a high-pass filter, rectifying the signals, and then 

applying a low-pass filter. We next time-locked the signals to heel strike events and 

normalized each muscle’s activity to its average peak activation while walking without the 

ankle exoskeletons on the same day. We calculated total muscle activity by integrating each 

muscle’s activity during stance at each walking step. Lastly, we quantified the variability and 

magnitude of each additional variable in the same way as our original four variables. That is, 

we calculated the variability of each variable by applying a high-pass filter with a cut-off 

frequency of 0.033 steps-1 (third-order Butterworth), and then calculated the standard 

deviation of this filtered signal during the last three minutes of each six-minute trial. We 

calculated the magnitude of each variable by averaging its signal during the last three minutes 

of each six-minute trial. We analyzed these additional variables and reported these additional 

results in Figures A.1, A.2, and A.3. 

Our choice of high-pass filter cut-off frequency makes an assumption about the timescale of 

changes in variability. We performed a sensitivity analysis of this high-pass filter cut-off 
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frequency to determine the effect of this assumption. In our main analysis, we used a high-

pass filter cut-off frequency of 0.033 steps-1 (period of 30 steps). Here, we performed the 

same analysis but with high-pass filter cut-off frequencies of 0.1 steps-1 (period of 10 steps) 

and 0.02 steps-1 (period of 50 steps). This sensitivity analysis revealed that changes in 

variability over timescales ranging from 10-50 steps do not impact our findings of general 

variability. That is, across all variables that we analyzed, we observed increases in with-

assistance variability on the first day compared to without-assistance baseline, and then 

decreases in with-assistance variability on the last day compared to the first day. We 

summarized these results in Table A.1. 

We compared variability in the with-assistance condition to variability in the without-

assistance condition for each variable. We refer to variability in the without-assistance 

condition averaged across the two six-minute trials on the first day as baseline variability. For 

most variables, we quantified each participant’s baseline from the condition where they 

walked without the ankle exoskeletons. For ankle angle range, we instead used the condition 

where participants walked with the ankle exoskeletons but with the devices applying 

minimal torques as we needed the exoskeleton sensors to calculate ankle angle. We 

calculated with-assistance variability on the first day by averaging variability across the two 

six-minute trials where participants walked with the ankle exoskeletons with the predefined 

control law generating assistive ankle torques at each walking step. For each variable, we 

used a one-tailed paired Student’s t-test to determine whether with-assistance variability on 

the first day was higher than baseline variability. In all statistical analyses, we used a 

significance level of 0.05. 

We determined how participants modified with-assistance variability along each variable as 

they gained experience walking with exoskeleton assistance. We calculated with-assistance 

variability on the last day by averaging variability across the two six-minute trials. For each 

variable, we used a one-tailed paired Student’s t-test to determine whether with-assistance 

variability on the last day was lower than the first day. We used a two-tailed paired Student’s 

t-test to determine if with-assistance variability on the last day had converged on baseline 

variability. Lastly, we normalized each participant’s with-assistance variability in each six-

minute trial to their baseline variability. 
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We determined how participants adapted the magnitude of each variable as they gained 

experience walking with exoskeleton assistance. We calculated the magnitude of each 

variable on the first day and the last day by averaging magnitude across the two six-minute 

with-assistance trials on each day. We used a two-tailed paired Student’s t-test to determine 

whether participants adapted the magnitude of each variable on the last day compared to the 

first day. We normalized the magnitude of each variable in each six-minute with-assistance 

trial to each participant’s baseline value. We calculated the baseline value by averaging the 

magnitude of each variable across the two six-minute without-assistance trials on the first 

day. 

We estimated the slope of the relationship between a variable and energetic cost. We used 

each variable’s normalized values during all with-assistance trials and their respective 

metabolic costs. For each six-minute trial, we calculated steady-state metabolic cost by 

averaging net metabolic power during the final three minutes. We normalized metabolic cost 

during all with-assistance trials to each participant’s metabolic cost during without-

assistance trials on the first day, which we calculated by averaging metabolic cost over the 

two six-minute trials of walking with ankle exoskeletons applying minimal torques. We used 

a linear mixed-effects regression model to estimate participants’ shared relationship 

between a given variable and energetic cost, while allowing for individual differences in their 

energetic cost intercepts. When plotting this linear model with individual participant data, 

we subtracted each participant’s random effects term (offset) from their data to better 

illustrate the fixed effects term (slope) that was the focus of this analysis. For each variable, 

we used a Student’s t-test to test if the slope of the linear model was different from zero. 

We modeled the timing of adaptive changes, as well as the timing of decreases in variability, 

for each variable as an exponential decrease from an initial value to a final steady-state value. 

We used nonlinear mixed-effects regression of the form: 

 𝑌(𝑡) = 𝑎 × 𝑒
−𝑡

𝜏 + 𝑏 (4.2) 

where 𝑡 is the experience calculated as the total amount of walking time with exoskeleton 

assistance and 𝑌(𝑡) is the model output, which is the magnitude or variability of a given 

variable. We determined the total amount of walking time with exoskeleton assistance as the 

time spent walking in the with-assistance trials that we analyzed, as well as the time spent 

walking in the additional trials where participants experienced assistive ankle torques in 
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human-in-the-loop optimization. We estimated the time constant (𝜏), amplitude (𝑎), and 

offset (𝑏) model parameters using nonlinear optimization. We used a mixed-effects model to 

estimate a single time constant (𝜏) that is shared between participants while allowing for 

individual participant offsets (𝑏). When plotting this exponential model with individual 

participant data, we subtracted each participant’s random effects term (offset) from their 

data to better illustrate the fixed effects term (time constant) that was the focus of this 

analysis. 

We compared time constants between variables. First, we used bootstrapping to estimate the 

dispersion of each time constant [154,155]. We used the model output from Equation 4.2 to 

calculate each participant’s residuals as the difference between their data points and the 

model output at these time points. We sampled from each participant’s residuals with 

replacement, and then added each participant’s residuals to the model output at these time 

points to simulate 10 new participants. We fit the exponential model to 10 new participants 

to simulate a new experiment and estimate a new time constant, and then repeated this 

process 10000 times for the time constants of adaptation, as well as for the time constants of 

variability, for each variable. For each time constant, we report the median and interquartile 

range (IQR), calculated as the difference between 75th and 25th percentiles. We did not 

observe adaptation in ankle angle range during stance and therefore excluded this variable 

from this analysis. Next, we tested for differences in time constants of adaptation between 

step frequency, total soleus activity, and total medial gastrocnemius activity. We used a 

Kruskal–Wallis one-way ANOVA to test for differences in time constants of adaptation 

between variables—the bootstrapped time constants did not follow a normal distribution 

(Anderson–Darling test; p = 5.0 𝗑 10-4)—and then performed a multiple comparison test 

(Dunn–Šidák correction) of the time constants. We repeated the same analysis but for time 

constants of variability. We report p-values for total soleus activity versus total medial 

gastrocnemius activity, total soleus activity versus step frequency, and total medial 

gastrocnemius activity versus step frequency. 
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Chapter 5.  
 
Discussion 

5.1. Summary 

In this thesis, I used energy optimization in walking to investigate how the nervous system 

learns new optimal control policies in new contexts. I selected this model system because 

metabolic cost of walking is one of the nervous system’s major objectives that I could both 

directly measure and manipulate. Chapter 1 and Chapter 2 used the same experimental 

setup to study energy optimization in the face of increasingly complex problems. In Chapter 

2, I tested the generality of previous findings from our lab—that people can continuously 

optimize step frequency in response to new energetic cost landscapes. I designed and 

implemented a device that creates new energetic cost landscapes by applying energetic 

penalties in the form of walking incline as a function of people’s real-time measured step 

width. This device applied a different form of energetic penalties and studied a different gait 

parameter than that in previous work [42,84]. I found that, like step frequency, people can 

continuously optimize step width, demonstrating that energy optimization is one of the 

general principles in the nervous system’s control of walking. In Chapter 3, I tested how 

energy optimization extends to multiple gait parameters. Given that people can learn to adapt 

step frequency and step width when the energy optimum is shifted along either parameter, I 

next used this device to shift the energy optimum along both parameters. I found that people 

increase variability and initiate adaptation along step frequency but not step width, 

suggesting that the nervous system searches within a low dimensional space and that this 

search space limits energy optimization. 

In Chapter 4, I used two different experimental setups to ask how the nervous system learns 

which ways to optimize. I tested the hypothesis that people explore through variations in 

their control policy to learn more optimal policies in new contexts. I created new contexts 

using exoskeletons that apply assistive torques to each ankle at each walking step. I found 

that people initially explore by increasing variability across many variables that span the 

levels of the whole movement, the joint, and the muscle. With experience, they learn to adapt 

some variables and decrease variability along of these variables. Variability decreases quickly 

for quickly-adapting variables, suggesting a reduced space in which the nervous system 
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optimizes its control policy. People in this way learn to exploit a new control policy that 

reduces energetic cost. These findings support the principle that general variability leads to 

specific adaptation toward optimal movement policies. I next asked whether these findings 

extend to different movement contexts such as split-belt walking. I found that people 

similarly increase and then decrease variability as they learn to take advantage of the external 

assistance from the split-belt treadmill and reduce energetic cost. Overall, the findings of this 

thesis provide insight into the algorithms by which the nervous system learns new optimal 

control policies, as well as the limitations of these algorithms. 

How the nervous system searches through and evaluates control policies can influence how 

it learns new optimal policies. My second study built on my first study to test how the nervous 

system represents its search space of control policies. My first study showed that people can 

learn to adapt their control policy when the energy optimum is shifted along step width. My 

second study showed that, when presented with shifts in both step width and step frequency, 

people spontaneously increased variability and initiated adaptation along step frequency but 

not step width. That changes were limited to one gait parameter suggests that the nervous 

system’s search space is low dimensional—the nervous system recognizes one parameter 

that needs to be learned and only attempts to adapt its policy in this way. While such a low 

dimensional search space can accelerate learning along this parameter, it can also restrict 

it—the nervous system may not recognize all that needs to be learned in new contexts. How 

does the nervous system identify which ways to adapt its policy? My third study built on my 

second study to test how the nervous system searches the space of control policies to learn 

which ways to adapt its policy. I found that people spontaneously explore through increases 

in variability across many aspects of gait, and then learn to adapt their control policy along 

specific aspects. Variability decreased as adaptation progressed, and this was rapid for some 

aspects, suggesting that the nervous system reduces its control policy search space over time. 

The findings of my third study differ from the findings of my second study. In my third study, 

the nervous system appears to adopt a high dimensional search space in order to learn a low 

dimensional search space, whereas in my second study, it appears to adopt a low dimensional 

search space that results in limited energy optimization. These differences may be due to 

many factors which do not act in isolation. One factor may be whether the nervous system 

recognizes a change in context and how it interprets this new context. Another factor may be 

the shape of the new energetic cost landscape in this new context. There is opportunity for 

future work to identify conditions in which the nervous system refines its search space for 
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complete optimization. This is relevant to other situations in which there is incomplete 

optimization or even lack of initiation of optimization, such as learning to walk with assistive 

devices or adapt to opposite visuomotor mappings with interference [156]. Together, these 

findings provide insight into the nature of the nervous system’s search space. 

5.2. Limitations 

While these three studies sought to rule out alternative hypotheses in their systematic design, 

they are not without limitations. It is important to note that the limitations of these studies 

are common to many studies in neuroscience that attempt to gain a more mechanistic view 

of the nervous system [60,157]. One such limitation is that correlations between observed 

behaviour and outcome variables do not prove causation. An example of this limitation is in 

studying energetic cost optimization—it is possible that the nervous system optimizes some 

other objective that happens to correlate with behaviour in the same way as energetic cost. 

We can carefully design the new cost landscape to reduce the contribution of these other 

objectives—for example, energetic penalties should not be destabilizing. And we can measure 

the new cost landscape to determine where the new energy cost optimum lies relative to the 

observed behaviour. But we cannot rule out the alternative hypothesis that this behaviour is 

due to the nervous system optimizing some other objective. However, we can consider the 

rationale for optimizing energetic cost and the evidence that supports it—an approach used 

in other studies that came before this thesis [42,84]. First, there is an evolutionary incentive 

to conserve energy—for our human ancestors, food was scarce and movement was required 

for hunting and gathering [9]. Second, a well-established objective of the nervous system is 

optimizing energetic cost—several studies have demonstrated that people prefer to walk 

with the combination of step widths, step lengths, and speeds that optimizes energetic cost 

[7,10,80,106], and that they continuously optimize this cost [42,84,86]. It is useful to consider 

these factors when developing hypotheses as well as when interpreting results. 

There are additional limitations that are ubiquitous in human behavioural experiments. For 

example, we cannot directly measure from the nervous system and thus we cannot determine 

the intent of the nervous system. This limitation is relevant to the third study of my thesis, 

which asks whether motor variability reflects intentional exploration for adaptation. While I 

found that changes in variability progressed over similar timescales as adaptation, it is also 

possible that the nervous system uses some other process to adapt, and that this process 
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happens to occur at the same time as the observed changes in variability. As when reasoning 

whether energetic cost is one of the nervous system’s objectives for movement, I consider the 

theory and the evidence that supports variability as intentional exploration. In reinforcement 

learning theory, a key concept is that exploratory variability can improve learning of new 

optimal control policies [53]. In humans and other animals, motor variability appears to be 

regulated in such a way that enables motor learning [64,131]. In this thesis, I not only tested 

my hypotheses in multiple aspects of gait, but also generalized these findings across multiple 

experimental paradigms. These findings provide evidence supported by strong rationale and 

theory. 

5.3. Implications and future directions 

The findings of this thesis are of fundamental importance and have broad applications. The 

fundamental importance lies in the better understanding the nervous system’s objective for 

walking and how it optimizes this objective. These findings provide insight into the capability 

as well as the limitations of the nervous system’s optimization algorithms. The process by 

which the nervous system optimizes energetic cost can provide insight into how it might 

overcome such limitations. For example, the final study of this thesis demonstrates that the 

nervous system can use general exploration to learn specific aspects of walking to optimize. 

The broad applications extend from training elite athletes to rehabilitating stroke patients, 

and from designing autonomous robots to controlling assistive devices. For elite athletes, 

they devote their lifetime to mastering the motor skills associated with their sport, which is 

typified by a decrease in motor variability [131]. Coaches can monitor this variability to 

determine the onset and termination of learning, which is useful in identifying at which point 

athletes should transition to learning new skills to maximize their high capacity for training. 

Coaches can also routinely encourage athletes to increase general variability in search of new 

optimal solutions—a slight change in context might result in a new cost landscape that shifts 

the optimum. For stroke patients, they may experience an entirely new cost landscape that 

presents challenges for identifying which ways to optimize. In this case, therapists should 

attempt to measure this new cost landscape, and then use bio-feedback to reduce variability 

along aspects of gait that need not be adjusted, narrowing the nervous system’s search space. 

For designing walking robots and assistive exoskeletons, we must understand the nervous 

system’s algorithms for movement to emulate or assist it. Lastly, and more speculatively, how 

our nervous system performs optimization may inspire new approaches to how we optimize 
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businesses, school systems, or even our personal life—we may benefit from purposefully 

exploring many aspects of these situations to learn which aspects to optimize. After all, our 

nervous system appears to solve problems of even greater complexity in how it optimizes 

movement coordination. 

There are situations in everyday walking that can alter the cost landscape and shift the energy 

optimal gait. In my first study, for example, people learned to adapt their control policy when 

the energy optimum was shifted along step width. In order to realize situations in which this 

can occur in everyday walking, we must first consider the determinants of the energetic cost 

of preferred step width [80]. The energetic cost landscape as it relates to step width has large 

contributions from step-to-step transition costs and lateral limb swing costs. Transition costs 

dominate at wide widths and push the optimal step width to narrow step widths [96], while 

swing costs dominate at narrow widths and push the optimal step width to step wider widths 

[98]. Changes in the shape or magnitude of either of these costs can change the cost landscape 

and shift the energy optimal width. One real world situation that can change both of these 

costs is the shoe type. The compliance and damping in the midsole of a shoe may change the 

shape of the transition cost contribution, whereas the width and mass of a shoe may change 

the limb swing cost contribution. Thus, the optimal step width may change with each shoe 

change. Another real-world situation comes not from changing the cost landscape, but from 

constraining the allowable step widths. For example, stepping stones allow some flexibility 

in step width, but not all widths will result in stepping on the stones. If this constraint doesn’t 

allow people to walk with their previously optimal width, there will be a new energetically 

optimal width. This same argument can be made for many other aspects of gait, and future 

studies should seek to further generalize energy optimization in walking. 

Adaptation is needed to recover from changes to our body due to injury or disease. A better 

understanding of adaptation in healthy individuals may be used to inform training protocols 

that facilitate adaptation in impaired individuals. The findings of this thesis suggest that the 

search space of control policies is crucial for learning new energy optimal policies. Thus, 

future work should consider the nervous system’s desire for energy optimal policies and 

examine the search space of patients that do not initiate gait adaptation or exhibit incomplete 

adaptation—it is still unknown why some patients adapt while others do not. Poststroke 

survivors typically exhibit gait abnormalities known as ataxia. A well-established paradigm 

for rehabilitation is split-belt treadmill training, where they learn to improve gait symmetry, 
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and these improvements not only apply to treadmill walking, but also transfer to natural 

situations of overground walking [158]. However, there are also ‘non-responders’ that do not 

adapt gait symmetry in response to this training [158]. Our finding that, in some cases, the 

nervous system uses a low dimensional search space that limits its adaptation may provide 

insight into the lack of initiation of adaptation in these non-responders. Based on our finding 

that general variability leads to specific adaptation, we might use bio-feedback to initially 

increase their search space and elicit their initiation of adaptation. Lastly, our finding that 

variability decreases and then plateaus as adaptation progresses provides a real-time signal 

that therapists may use to design training protocols by identifying the onset and termination 

of learning. This is especially important for those with mobility disorders who have a limited 

capacity for training. 

We can begin to improve human-robot systems by understanding the human nervous system. 

For example, the designs of assistive exoskeletons have been recently improved by drawing 

inspiration from the control strategies of the user’s nervous system—researchers optimize 

exoskeleton assistance, or adjust control parameters, to reduce the user’s metabolic cost in 

real-time, which is referred to as human-in-the-loop optimization [159,160]. The observed 

reductions in metabolic cost may be in large part due to the users adapting to the device. A 

recent study showed that people can learn to further reduce metabolic cost given proper 

training and sufficient time to adapt [140]. An effective strategy for designing exoskeletons is 

to facilitate the nervous system’s learning of new gaits, and then evaluate people’s optimal 

response to a range of designs. In my third study, I showed that people can learn how to adapt 

by initially increasing general variability. One avenue of future research will be to develop 

protocols that intelligently guide people through the new context, encouraging exploration 

and faster learning. Previous research has shown that certain properties of the environment, 

such as how consistent or variable it is, can influence how fast people learn [161–164]. One 

hypothesis is that the nervous system learns faster in more variable environments [161,162]. 

And while some studies provide evidence of this, others have found that more consistent 

environments result in faster learning [163,164]. Human-in-the-loop optimization provides 

a new paradigm to test how the properties of the environment influence the rate of learning—

the nervous system may consider changes in exoskeleton control parameters as variability in 

the environment. 
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More fundamental questions remain about the sensory and neural circuit mechanisms that 

the nervous system uses to implement energy optimization. To gain a more unified view of 

the nervous system’s energy optimization, it is useful to analyze the system at three levels by 

identifying: (1) the objective, (2) the algorithms used to achieve this objective, and (3) the 

systems used to implement these algorithms [165]. The studies in this thesis were designed 

to address the first two levels of analysis [73,85]. However, it is still unclear what sensory 

mechanisms implement energy optimization—the nervous system must be able to sense its 

objective to optimize it. A previous study tested the role of one sensory signal—blood gas 

receptors, which are sensitive to oxygen and carbon dioxide—in energy optimization during 

walking [81]. This study manipulated the concentration of these blood gases as a function of 

step frequency to simulate a new cost landscape. They found that people did not adapt their 

step frequency in response to this new cost landscape, suggesting that blood gas receptors 

are not the primary sensory signal in the nervous system’s energy optimization. Another 

candidate sensory signal that the nervous system may use to estimate energetic cost is group 

III and IV muscle afferents, which are sensitive to the byproducts of muscle metabolism [82]. 

Future research should seek to employ more sophisticated techniques to inhibit specific 

sensory signals [166]. The nervous system may also need to combine many sensory signals 

to form a proxy estimate of energetic cost—there is evidence that the nervous system is 

capable of this sort of state estimation [30]. It is also unclear what neural circuit mechanisms 

implement energy optimization. Energy optimization in walking appears to involve reward-

based learning [73]. One way to probe neural circuit mechanisms is to conduct experiments 

similar to those in this thesis but with impaired populations. That is, we can test for deficits 

in adaptation in individuals with and without impairments to shed light on the signals and 

brain regions involved in energy optimization. For example, we might test for adaptation in 

Parkinson’s patients, where there is degeneration of dopamine neurons that appear to be 

fundamental to reward processing in the brain. It will be critical to identify the systems that 

implement energy optimization algorithms to further understand behaviour, both in healthy 

and impaired individuals. 
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5.4. Concluding remarks 

This collective work advances our understanding of how humans learn to move optimally. It 

demonstrates the generality of energy optimization by studying multiple aspects of walking 

using multiple experimental paradigms. It also demonstrates that energy optimization can be 

limited when the nervous system adopts a lower dimensional search space. To overcome 

such limitations, the nervous system can initially adopt a higher dimensional search space to 

refine its lower dimensional search space. The findings of this thesis provide new insight into 

the structure and role of motor variability for motor learning. They also have applications in 

the design of assistive devices, as well as the design of training and rehabilitation protocols. 

Lastly, optimization is a general and dominant principle of human movement. These findings 

have the potential to apply to objectives other than energetic cost and movements other than 

walking. 
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Appendix.

Supplementary figures

Figure A.1: Detailed experimental protocol



Figure A.2: Changes in variability as participants gain experience with exoskeleton 
assistance.
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Figure A.3: Changes in magnitude of variables that reduce energetic cost

assistance trials to each participant’s energetic 
—

—on the first day. We normalized each variable’s magnitude with
participant’s baseline value without
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Figure A.4: Differences in timescales between variables
—

—
—
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Variable Comparison 10-step cut-off 30-step cut-off 50-step cut-off 

Step frequency 
variability 
(mean ± SD, 
paired t-test) 

baseline vs. day 1 
+57.0 ± 27.2% 
p = 1.9 𝗑 10-4 

+56.2 ± 27.6% 
p = 2.0 𝗑 10-4 

+56.4 ± 28.1% 
p = 1.9 𝗑 10-4 

day 1 vs. day 6 
-39.5 ± 9.7% 
p = 3.1 𝗑 10-5 

-38.5 ± 9.8% 
p = 4.9 𝗑 10-5 

-38.3 ± 10.0% 
p = 5.7 𝗑 10-5 

baseline vs. day 6 
-6.0 ± 18.3% 
p = 0.31 

-5.1 ± 17.3% 
p = 0.32 

-5.0 ± 17.0% 
p = 0.33 

Ankle angle 
range 
variability 
(mean ± SD, 
paired t-test) 

baseline vs. day 1 
+295.5 ± 89.0% 
p = 8.9 𝗑 10-7 

+278.8 ± 85.0% 
p = 6.8 𝗑 10-7 

+277.2 ± 81.8 
p = 5.1 𝗑 10-7 

day 1 vs. day 6 
-29.1 ± 19.7% 
p = 3.1 𝗑 10-3 

-26.3 ± 22.8% 
p = 6.5 𝗑 10-3 

-25.5 ± 24.4% 
p = 7.8 𝗑 10-3 

baseline vs. day 6 
+169.0 ± 53.8% 
p = 1.8 𝗑 10-6 

+166.2 ± 52.5% 
p = 6.7 𝗑 10-6 

+167.5 ± 54.2% 
p = 1.2 𝗑 10-5 

Total soleus 
variability 
(mean ± SD, 
paired t-test) 

baseline vs. day 1 
+15.4 ± 20.6% 
p = 0.040 

+21.1 ± 25.3% 
p = 0.026 

+22.9 ± 26.8% 
p = 0.023 

day 1 vs. day 6 
-16.0 ± 18.5% 
p = 0.013 

-18.3 ± 21.2% 
p = 0.013 

-19.0 ± 21.2% 
p = 0.012 

baseline vs. day 6 
-4.3 ± 24.3% 
p = 0.33 

-3.3 ± 26.9% 
p = 0.39 

-3.0 ± 27.2% 
p = 0.40 

Total medial 
gastrocnemius 
variability 
(mean ± SD, 
paired t-test) 

baseline vs. day 1 
+46.2 ± 21.5% 
p = 3.0 𝗑 10-5 

+46.0 ± 19.6% 
p = 1.7 𝗑 10-5 

+46.5 ± 19.8% 
p = 1.9 𝗑 10-5 

day 1 vs. day 6 
-17.7 ± 14.3% 
p = 3.1 𝗑 10-3 

-19.7 ± 13.2% 
p = 1.5 𝗑 10-3 

-20.5 ± 13.2 
p = 1.3 𝗑 10-3 

baseline vs. day 6 
+18.6 ± 15.9% 
p = 0.0073 

+15.8 ± 15.8% 
p = 0.020 

+15.0 ± 15.1% 
p = 0.021 

 
Table A.1: Sensitivity analysis 
Results from sensitivity analysis of high-pass filter cut-off frequency. We recomputed variability for 
each variable with filter cut-off frequencies of 0.1 steps-1 (period of 10 steps), 0.033 steps-1 (period 
of 30 steps) used in main analysis, and 0.02 steps-1 (period of 50 steps). We recalculated changes in 
variability between conditions and days—baseline vs. day 1, day 1 vs. day 6, and baseline vs. day 6—
and found that statistically significant results remained unchanged. 
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