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Abstract

The goal of precision oncology is to make accurate predictions for cancer patients via some
omics data types of individual patients. Major challenges of computational methods for drug
response prediction are that labeled clinical data is very limited, not publicly available, or
has drug response for one or two drugs. These challenges have been addressed by generat-
ing large-scale pre-clinical datasets such as cancer cell lines or patient-derived xenografts
(PDX). These pre-clinical datasets have multi-omics characterization of samples and are
often screened with hundreds of drugs which makes them viable resources for precision
oncology. However, they raise new questions: how can we integrate different data types?
how can we handle data discrepancy between pre-clinical and clinical datasets that exist
due to basic biological differences? and how can we make the best use of unlabeled samples
in drug response prediction where labeling is extra challenging? In this thesis, we propose
methods based on deep neural networks to answer these questions. First, we propose a
method of multi-omics integration. Second, we propose a transfer learning method to address
data discrepancy between cell lines, patients, and PDX models in the input and output
space. Finally, we proposed a semi-supervised method of out-of-distribution generalization
to predict drug response using labeled and unlabeled samples. The proposed methods have
promising performance when compared to the state-of-the-art and may guide precision

oncology more accurately.

Keywords: Deep Neural Networks, Transfer Learning, Drug Response Prediction, Pharma-

cogenomics, Multi-Omics Integration, Semi-Supervised Learning, Domain Generalization.
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Chapter 1

Introduction

After the completion of the first draft of a human genome sequence in 2003, clinical
fellows have anticipated a data-driven transformation in medicine and healthcare. This
transformation, now recognized as precision medicine, provides better diagnoses, more
rational treatment, and early prevention of disease. Precision medicine promises improved
health outcomes by providing the right treatment for the right patient, at the right time,
in the right dosage via taking into account individual variability in genes, environment,
and lifestyle. From the scientific and bio/medical point of view, precision medicine has
transformed healthcare for the past decades and will continue to have noticeable impacts
in the coming decade as it expands through numerous key areas including acquiring huge
and interpretable longitudinal cohorts, gathering data and employing artificial intelligence
(AI), utilizing routine clinical genomics, phenomics and environment testing, and eventually
returning values (e.g., omics data) across diverse populations [1].

From an industrial point of view, in the current era of precision medicine fortified with
digital technologies such as Al, drug discovery and development face tremendous opportuni-
ties for product and business model innovation. This means fundamentally changing the
traditional approaches to drug discovery, development, and marketing. The pharmaceutical
industry requires adoption of these new technologies in the drug development process,
meaning transition from traditional approaches to a data-driven medicine. Such a paradigm
shift needs translation and precision, leading to a modern transnational precision medicine
approach to drug discovery and development. Transnational precision medicine consists of key
areas such as multi-omics profiling of patients, digital biomarker discovery, and model-based
data integration and Al [2]. Therefore, it is not far-fetched to imagine that the advancement
of AI (or machine learning) is having a significant impact on precision medicine.

The use of machine learning, in particular the deep neural networks (DNNs) field, has
been enabled by the availability of big data, as well as enhanced computing power and cloud
storage, across all sectors including industrial and academic. In medicine DNNs have positive

impacts at three levels, clinicians via rapid and accurate interpretation of the data; health



systems via improving workflow and potentially reducing medical errors; and finally patients,
via providing them with the opportunity to process their own data to promote health [3].

For a disease like cancer which is the main cause of death worldwide, the combination of
precision medicine by interrogating multi-omics data and computational analysis via machine
learning, e.g. DNNs, has emerged the field of precision oncology [4]. Precision oncology is
the use of omics data to tailor therapy for an individual cancer patient. However, response
to a cancer treatment—chemotherapy or targeted drugs—is a complex phenotype and often
depends on multiple factors especially the omics profile of the patient [5]. Presently only
5% of patients benefit from precision oncology [6, 7, 8]. Although there are many reasons
underlying this modest success rate, improved drug response prediction will significantly
increase the number of patients who benefit from targeted therapy [8] or chemotherapy, and
avoid adverse side effects [9, 10].

Various in vitro or pre-clinical studies of cancer cell lines and Patient-Derived Xenograft
animal models (PDX) [11] have created datasets such as Genomics of Drug Sensitivity in
Cancer (GDSCv1l and GDSCv2) [12, 13], The Genentech Cell Line Screening Initiative
(gCSI) [14, 15], The Cancer Therapeutics Response Portal (CTRPv2) [16, 17], Cancer Cell
Line Encyclopedia (CCLE) [18], and PDX Encyclopedia (PDXE) [11]. These datasets often
provide researchers with multi-omics profiles — consisting of genomic (somatic mutation
and Copy Number Aberration or CNA), transcriptomic, proteomic, and methylomic data —
together with the response to a large number of targeted and chemotherapy drugs compared
to clinical trial datasets. This is different from patient datasets, which record the response
only to one or a few drugs that have been administered to a patient. These pre-clinical
datasets enable researchers to investigate response to a drug at a large scale, in particular
for many drugs, and all the way from various types of pre-clinical models to patients [13, 18].
Complementing pre-clinical studies, in silico or computational studies have aimed at building
computational methods that analyze the cumulative effects of single- or multi-omics data to
accurately predict drug response [19, 20]. These studies usually measure the drug response
as the drug concentration that reduces viability by 50% (IC50) or the Area Above/Under
dose-response Curve (AAC/AUC) [21].

There are three main questions this thesis aims to answer:

1. Multi-omics data promise better characterization of complex biological processes, the
question is how can we integrate different omics data types to make more accurate

drug response predictions from cell lines to patients?

2. Training a computational model on cell lines and testing it on patients violates the
assumption that train and test data are from the same distribution, the question is
how can we use both cell line and patient datasets together to build a better model

for patients?



3. The Cancer Genome Atlas (TCGA) has provided researchers with a lot of clinical data
without the drug response outcome, the question is how can we utilize resources like
TCGA along with cell line datasets to alleviate the need for the valuable clinical data

with drug response during training?

The goal of this thesis is to answer these questions by employing DNNs [22] which have
demonstrated state-of-the-art performance in different problems, ranging from computer

vision and natural language processing to genomics [23] and medicine [3].

1.1 Multi-omics integration in drug response prediction

A critical challenge in drug response research is the clinical utility, i.e. whether the outcome
of the study is translatable to actual patients [19, 24]. Ideally to achieve translatability,
a computational method should be trained on in wvivo data, however available in wvivo
datasets such as TCGA datasets [25] do not have enough patient records with drug response
information and in particular, unlike cell line datasets such as GDSCvl, they do not report
responses to multiple drugs. For in silico drug response prediction, translatability in the
simplest case can be interpreted as a model with good performance (e.g., high prediction
accuracy) on in vitro data, trained on more samples compared to in vivo data, and should
also have good performance on in vivo data.

The majority of studies suggest that gene expression data is the most effective data
type for drug response prediction [13, 19, 26, 27]. Geeleher et al. [19] showed that a ridge
regression model trained on GDCSv1 gene expression data is translatable to Docetaxel,
Cisplatin, Erlotinib, and Bortezomib clinical trial data. They also showed that, for Docetaxel,
including non-breast cancer cell lines in model training increased the predictive power of
the final model compared to the model only trained on breast cancer cell lines. This ridge
regression-based pipeline on gene expression also imputed the drug response for The Cancer
TCGA [25, 24]. Despite the predictive power of gene expression, adding other omics data
types can further increase the predictive power especially in pan-cancer models [13, 28].

Multi-omics data provide a machine learning model with different views of the same
sample and promise better characterization of biological processes [29, 30]. Multi-omics data
have been exploited for different problems such as driver gene identification [31, 32, 33, 34],
patient stratification [35], survival prediction [36], subgroup discovery [37], and drug response
prediction [20]. For the drug response prediction, Ding et al. [20] proposed a method that
concatenates mutation, CNA, and gene expression data and applies autoencoders to learn
features for the concatenated multi-omics cell line data. The learned features were used as
the input of an elastic net classifier which predicts the binarized IC50 values. We note that
the classifier was validated only on CCLE cell lines without studying its translatability to
patients or PDX models.



A critical challenge in multi-omics data analysis is how to integrate different data types.

There are two major approaches to multi-omics integration:
1. Early integration [38, 39|
2. Late integration [38, 39]

In early integration, all omics data types available for a sample are first concatenated,
and then an integrated representation of the sample is created by applying some feature
learning method, such as autoencoders [22], to that representation. Early integration has
three disadvantages. First, it disregards the unique distribution of each omics data type.
Second, it requires proper normalization to avoid giving more weight to the omics data type
with more dimensions. Third, it further increases the dimensionality of the input data which
often is already a challenge for single-omics input data [38]. In late integration, features are
learned separately for each omics data type, and these features are then integrated into one
unified representation to be used as the input for a classifier or a regressor. The advantage
of this approach is that it works with the unique distribution of each omics data type, it
can employ single-omics normalization for each data type, and it does not increase the
dimensionality of the input space. However, there is no late integration method based on
deep neural networks to predict drug response and a need exists to develop a method for

this problem.

1.2 Transfer learning in drug response prediction

In our driving application, drug response prediction [21], the goal is to predict response
to a cancer drug given the gene expression data or other omics data types. Since clinical
datasets in pharmacogenomics (patients) are small and hard to obtain, many studies have
focused on large pre-clinical pharmacogenomics datasets such as cancer cell lines as a proxy
to patients [18, 13]. A majority of the current methods are trained on cell line datasets and
then tested on other cell line or patient datasets [40, 19]. However, cell lines and patients
data, even with the same set of genes, do not have identical distributions due to the lack of
an immune system and the tumor microenvironment in cell lines [41]. Moreover, in cell lines,
the response is often measured by the IC50 or AAC, whereas in patients, it is often based on
changes in the size of the tumor and measured by metrics such as response evaluation criteria
in solid tumors (RECIST) [42]. This means that drug response prediction is a regression
problem in cell lines but a classification problem in patients. Therefore, discrepancies exist
in both the input and output space in pharmacogenomics datasets and a need exists for a
computational method to bridge this gap.

DNNs often require a large number of samples for training, which is challenging and

sometimes impossible to obtain in the real world applications. Therefore, many studies have

4



employed transfer learning [43] to bridge the gap between relevant large and small datasets
and use them together to achieve a better performance on the small dataset.

Transfer learning [43, 44, 45] attempts to solve this challenge by leveraging the knowledge
in a source domain, a large data-rich dataset, to improve the generalization performance on
a small target domain. Training a model on the source domain and testing it on the target
domain violates the Independent and identically distributed (i.i.d) assumption that the train
and test data are from the same distribution, which is similar to the cell line and patient
datasets challenges. The discrepancy in the input space decreases the prediction accuracy on
the test data, which leads to poor generalization [46]. Many methods have been proposed to
minimize the discrepancy between the source and the target domains using different metrics
such as Jensen Shannon Divergence [47], Maximum Mean Discrepancy [48], and correlation
alignment for deep domain adaptation (CORAL) loss [49]. While transductive transfer
learning (e.g. domain adaptation) uses a labeled source domain to improve generalization
on an unlabeled target domain, inductive transfer learning (e.g. few-shot learning) uses a
labeled source domain to improve the generalization on a labeled target domain where label
spaces are different in the source and the target domains [50].

Adversarial domain adaptation has shown great performance in addressing the discrep-
ancy in the input space for different applications [51, 52, 53, 54, 55, 56, 57, 58], however,
adversarial adaptation to address the discrepancies in both the input and output spaces has
not yet been explored which indicates that available methods cannot address the unique
challenges in drug response prediction from the transfer learning point of view and a need

exists to develop a new method.

1.3 Domain generalization in drug response prediction

Various methods of transfer learning have been proposed in the context of drug response
prediction. These methods either address existing discrepancies implicitly [40, 59, 60], or
explicitly which means they assume that the model has access to the target domain during
training or fine-tuning [61, 41, 62, 63, 64, 65]. However, in the real-world we do not have
access to the target domain(s) while training the model on the source domain, e.g., we do
not know future patients that may walk into a clinic. Nevertheless, the trained model should
generalize to the target domain and be able to make predictions for samples encountered
during the deployment time. Since generating large high-quality labeled pre-clinical datasets
is an expensive and time-consuming process and we do not know response to a given drug
in the target domain (e.g., future patients), there is a need for a computational method
that takes not only labeled but also unlabeled source domain data as input and learns
a representation that generalizes to a future target domain. This problem is known as

out-of-distribution generalization or domain generalization, where the target domain is



not accessible during training [66, 67, 68]. Out-of-distribution generalization is particularly
important for biomedical applications [69].

Domain generalization aims at learning an invariant representation given input data from
a single or multiple domains. However, the main difference is that in domain generalization
the target domain is not available during training. This is a much harder scenario compared
to domain adaptation or inductive transfer learning for which the target domain is available
during training [64, 67]. A domain generalization method should extract invariant represen-
tations only using source domains. This is highly important because it is very similar to the
real world for which no information is available about unseen data. For example, in medical
imaging, different hospitals with different equipment and patients can be separate domains
and domain generalization aims at making accurate predictions for unseen hospitals and/or

patients [70]. There are two main approaches to out-of-distribution generalization:
1. Generalizing via learning domain-invariant features [67]
2. Generalizing via learning hypothesis-invariant features [71, 72]

In domain-invariant, the most common approach, the goal is to map the input domains
to a shared feature space in which the features of all domains are aligned, i.e. look similar
to each other. [70, 73, 74, 75, 76]. However, forcing different domains to have very similar
features is not always feasible because different domains may have unique characteristics,
and completely aligning them ignores these unique characteristics. The second approach
does not align the features but rather the predictions across domains. The idea is that if the
extracted features of input domains are similar enough for an accurate predictor to make
similar predictions, forcing the features to be more similar is not required anymore. [71, 67].
However, a recent benchmark study demonstrated that simple Empirical Risk Minimization
(ERM) methods outperform state-of-the-art methods of domain generalization [66]. ERM
methods employ simple standard supervised loss functions and are trained on all of the
available source domains.

In drug response prediction, given some pre-clinical or clinical datasets from different
domains as input, a method of domain generalization should learn an invariant representation
capable of making predictions for unseen clinical and pre-clinical datasets as output. The
advantage of domain generalization is that it does not need valuable but limited patient
data with drug response available to learn such representations. The input can consists of
both pre-clinical and clinical resources where for the former labeled cell line datasets are
available and for the latter, large unlabeled resources such as TCGA are available. The
main advantage of using resources like TCGA is that they are much larger compared to
clinical trial datasets and therefore more suitable for representation learning. However, the
disadvantage is that there is no drug response information available for the majority of the
TCGA patients. This poses an extra challenge on domain generalization because state-of-the-

art methods of this area are not designed to take unlabeled data as input. Similarly, ERM
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methods that demonstrated competitive performance for out-of-distribution generalization
cannot take unlabeled samples as input. A recent study aimed at tackling semi-supervised
domain generalization [77], however, the proposed method is only applicable for classification
problems while drug response prediction can be both regression and classification. Therefore,
there is a need for a semi-supervised domain generalization method that takes both labeled
and unlabeled samples from different domains and learns an invariant representation with

generalization capability to unseen target domains.



Chapter 2

Background and Related Work

The general assumption in traditional machine learning models is that train and test data
are from the same distribution. However, this is not a valid assumption in many real-world
problems including precision oncology. In precision oncology, pre-clinical resources such as
cell lines do not have tumor microenvironment and/or an immune system. Therefore, they
are from a different distribution than patients. So, how can we use both large pre-clinical
and small clinical, i.e. patient, datasets together to train a more accurate model for patients?

Transfer learning attempts to answer this question by leveraging the knowledge in a large
data-rich resource, source domain, to improve the prediction performance on a small dataset
that we are interested in, target domain. For example, in precision oncology pre-clinical
data is the source domain and patient data is the target domain. The reason that transfer
learning matters in precision oncology is that not only patient datasets are small, but also
they are high-dimensional which poses an extra challenge on model development.

There are three questions in transfer learning [50]:

1- When to use transfer learning?

2- What to transfer between source and target domain?

3- How to transfer knowledge between source and target domain?

Transfer learning should happen when source and target domain are relevant. Although
there is no formal definition for two relevant domains, a domain expert knowledge can be
utilized to select related source and target domain. In precision oncology, cell lines and PDX
resources are related source domains for patient data as a target domain. The goal of the first
question is to avoid negative transfer which not only does not improve the generalization
performance, but also decreases it.

After figuring out whether or not transfer learning is going to be useful, it is important
to decide what to transfer between a source domain and a target domain. The reason is that
some knowledge might be domain-specific and some knowledge might be domain-invariant
and more suitable to be transferred. There are four types of knowledge that can be transferred

between source and target domains:



1. Instance-transfer (sample-transfer)
2. Parameter-transfer

3. Feature-representation-transfer

4. Relational-knowledge-transfer

In instance-transfer certain samples in the source domain which are relevant to the target
domain are transferred. In parameter-transfer certain trained parameters from a model
trained on the source domain are transferred to another model to be trained on the target
domain. In feature-representation-transfer certain knowledge encoded in learned feature
representation is transferred between these domains. In relational-knowledge-transfer certain
relational knowledge in the source domain is being employed to learn similar relational
knowledge for the target domain. Finally, after knowing when to use transfer learning and
what to transfer, the question is how to actually perform the transfer which will be the main
focus of this report.

Generally, methods of transfer learning can be categorized into three categories:
1. Unsupervised transfer learning
2. Transductive transfer learning
3. Inductive transfer learning.

Before defining these categories, it is important to define transfer learning in a more formal
way. Following the notation of [50], a domain like DM is defined by a raw input feature space!
X', a probability distribution p(X) and a corresponding dataset X = {x1, xo, ..., z,,} with x;
€ X. A task T = {Y,F(.)} is associated with DM = {X,p(X)} and is defined by a label space
Y € Y and a predictive function F(.) which is learned from training data (X,Y) € X x Y.
A source domain is defined as DMg = {(s,,Ys, ); (Ts5,Ysz)s s (Ts,g» Ys, )} and a target
domain is defined as DMy = {(2t,, Y, ), (Tts, Yt ), s (Tt s Yt )}, Where x5 € Xg, 2 € X,
ys € Yg, and y; € Y. Since ny << ng and it is challenging to train a model only on the
target domain, transfer learning aims to improve the generalization on a target task Tr using
the knowledge in DMg and DMy and their corresponding tasks Tg and T7. In unsupervised
transfer learning, there is no label in the source or target domain. In transductive transfer
learning, source domain is labeled but target domain is unlabeled, domains can be either
the same or different (domain adaptation), but source and target tasks are the same. In
inductive transfer learning, target domain is labeled and source domain can be either labeled
or unlabeled and domains can be the same or different, but in this category tasks are always
different [50].

!This is different from features learned by a deep neural network



It is been known that in DNNs, first-layer features are general and last-layer features are
specific towards the objective of the network. Yosinski et al. [78] quantified this transition
from general to specific features in image classification. They showed that initial layers of
DNNS5s capture more general and invariant features than the last layers and this transition
happens in middle layers. To show that, they trained two 8-layers DNNs, denoted by A and
B, respectively, on half of ImageNet dataset (1000 classes per sample which was splitted into
two 500 class labels). After training A and B, to study how transferable these features are,
they copied the first n € {1,2,..,7} layers (trained parameters) according to two scenarios:
1) a Selfer scenario where n layers are transferred from A to itself (or B to itself), and 2)
a Transfer scenario, where n layers are transferred from A to B. The transferred layers
were fine-tuned or kept frozen in each scenario and the rest of n — 8 layers were initialized
randomly. Using these scenarios, the authors observed that first, the Transfer scenario along
with fine-tuning improves generalization while only transferring decreases the performance
due to moving from general to specific features as n increases. Second, Performance drops
due to fragile co-adaptation between nodes in two consecutive layers (mostly in the last
layers), however, fine-tuning decreases these co-adapted interactions. Finally, Performance
drops due to representation specificity and this transition occurs in middle layers. Random
split of the ImageNet dataset for A and B makes the domains similar. To study the impact of
dissimilar domains, ImageNet was splitted into natural and man-made images. As expected,
the performance decreased more compared to the previous experiments with similar domains.
This indicates the need for at least fine-tuning or a much more sophisticated approach of
transfer learning.

Back to the three main questions in transfer learning (when? what? how?), this study
used transfer learning in two similar and dissimilar situations, they transferred the trained
parameters, and applied fine-tuning as a way to adapt the source and target domains. This
study established the foundation of transfer learning in DNNs for image classification and
many other papers used its results to employ pre-trained DNNs and then fine-tune the last
layers of these networks towards their desired objectives.

While Yosinski et al. [78] showed that fine-tuning on the target domain improves the
prediction performance, another recent study [79] suggests that the learned parameters on
the source domain should act as both a starting point for the target domain and also as
a reference to avoid deviating too much from them in the fine-tuning process. This means
that regularization and fine-tuning is better to happen together and this study investigated
different regularizations to reduce the gap between the source domain learned parameters
and those being fine-tuned on the target domain. Obtained results showed a better prediction
performance compared to fine-tuning and regularizing parameters (to shrike their values)

without considering the initial learned values on the source domain.
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2.1 Transductive transfer learning

Transductive transfer learning aims to improve the performance of the target task using the
knowledge in the source domain and source task, where source and target tasks are the same
but the target domain is unlabeled [50]. This problem is also known as unsupervised domain
adaptation. It is unsupervised because of the lack of labels in the target domain and it needs
adaptation because source and target domains are from different distributions. Early works
in this area used different metrics such as Maximum Mean Discrepancy (MMD) to minimize
the discrepancy between source and target domain. Later these metrics were incorporated
into Deep Neural Networks (DNNs) to learn features which are both domain-invariant and
predictive of the class labels in the source domain. Recently, domain adaptation methods
based on adversarial learning showed better performance in different problems [47]. The
minimax objective function of adversarial learning closely resembles domain adaptation
because in domain adaptation we want to minimize the discrepancy between domains and
at the same time maximizing the performance on the source domain. Most of the available
methods adapt a single source domain and a single target domain. However, recent methods
have been proposed to adapt multiple domains (multiple source domains or multiple target
domains) [80, 58]. This section presents state-of-the-art of single and multiple domain

adaptation. Table 2.1 summarizes the methods of this category.

2.1.1 Single domain

Given a source domain Dy = {(xf,y])};*; with ng labeled samples and a target domain

Dy = {(2%)}**, with n; unlabeled samples, the goal is to minimize the error on the target
domain via jointly minimizing the source domain error and the domain discrepancy between
the source and target domain.

Previous work attempt to solve this problem by designing a two part objective function: 1)
the first part is a task-specific loss (for example classification loss) on the source domain
and the second part is a loss related to the measure of discrepancy between the source and
the target. For example, Tzeng et al.[81], proposed to use MMD as the domain loss. In their
method, a convolutional DNN, denoted by f(z), is trained on the source domain with a
classification loss which shares its parameters with the target domain samples. The features
extracted by this backbone for the input domains are further regularized by the MMD which
is the difference between means of extracted features for the source and target samples. A
similar approach was employed by the Correlation Alignment for Deep Domain Adaptation
(CORAL) loss to align the covariance matrices of the extracted features of the source domain
and the target domain. CORAL aligns both the mean and the correlation of the extracted
features [49].
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2.1.2 Adversarial learning

Adversarial domain adaptation has shown great performance in addressing the discrepancy
in the input space for different applications [51, 52, 53, 54, 55, 56, 57, 58] and showed better
performance compared to discrepancy metrics such as MMD. Adversarial domain adaptation
is achieved by recent advances in Generative Adversarial Networks (GANs). GANs [82]
attempt to learn the distribution of the input data via a minimax framework where two
networks are competing: a discriminator D and a generator GG. The generator tries to create
fake samples from a randomly sampled latent variable that fool the discriminator, while
the discriminator tries to catch these fake samples and discriminate them from the real
ones. Therefore, the generator wants to minimize its error, while the discriminator wants to

maximize its accuracy:

MmMaxV G,D) Z log|D(z)] + Z log[l — D(G(z))] (2.1)

r~data zr~noise

Various methods have been proposed for adversarial domain adaptation in different applica-
tions such as image segmentation [57, 55|, image classification [58, 56|, speech recognition
[52], domain adaptation under label-shift [83], partial domain adaptation [84]. The idea of
these methods is that features extracted from source and target samples should be similar
enough to fool a domain discriminator [58] and/or class-wise discriminators [57].

Tzeng et al. [58], proposed Adversarial Discriminative Domain Adaptation (ADDA) for
this problem. ADDA has three steps: 1) a feature extractor, denoted by fs(z), and a classifier,

denoted by C, are trained on the source domain as follows:

Lys = — Z Z 1 k== =Yy ZOQ[ (fs(zs))]v (2'2)

rs~Xs k=1

where L. is the classification loss on the source domain.

2) With a frozen source domain feature extractor backbone, another feature extractor,
denoted by fi(x), is trained on the target domain using adversarial learning. In this step, a
domain discriminator is trained to learn domain-invariant features by training the target
domain feature extractor to learn features close enough to those of the source domain feature
extractor to fool the domain discriminator. The objective function of this step to train a

domain discriminator D is as follows:

advD = Z lOg fs ms Z log 1 - ft(xt))] (23)

zs~Xs T~ Xy

and the objective function to train f;(z) is as follows:

advT = Z lOg ft xt )} (24)

[L'tNXt
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Finally, 3) in the last step, the trained target domain feature extractor and the trained
source domain classifier are utilized to make prediction for the target domain samples.

In addition to a domain discriminator (also known as global discriminator), other studies
employed global and class-wise discriminators to learn domain-invariant features. The goal is
to learn these features with respect to specific class labels such that they fool corresponding
class-wise discriminators. A class-wise discriminator receives source and target samples from
the same class label and should not be able to predict the domain accurately [57, 85]. But the
challenge for this approach is that class labels are not available in the target domain to assign
target samples to their corresponding discriminators. To tackle this challenge, one solution
is to use predicted labels for the target samples provided by the classifier trained on the
source domain [57]. This approach sends target samples to their corresponding discriminators
but the drawback is that predictions can be uncertain. To address this, Another approach,
named Multi-Adversarial Domain Adaptation (MADA), used target samples as the input
of all of the class-wise discriminators but weighted their importance by the probability of
belonging to that class [85]. This is achievable because the source domain classifier assigns a
probability distribution over all of the classes to each target domain sample. The general

form of the objective function for these methods is as follows:
J = Lcls +A Z LadvDia (25)
i

where, LadvDi is the adversarial loss for the class-wise discriminator 7.

Although these methods showed that adaptation based on the output of the feature extractor
backbone is a reliable approach, Tsai et al. [55] claimed that one level adaptation may not
adapt lower level features particularly in complex tasks such as image segmentation. In their
proposed method, the objective function is similar to the previous work: one task-specific loss,
in this case image segmentation, and a domain discriminator loss. However, the difference is
that they applied this objective function to multiple layers and showed better performance
compared to single layer adaptation methods.

Leveraging GANs with cycle consistency constraint, which enforces accurate reconstruc-
tion of mapping of source domain samples to the target domain and then back to the source
domain and vice versa, Hosseini et al [52] proposed Augmented cycle-GAN (ACAL) which
replaces the reconstruction loss with task-specific losses on mapped samples from source to
target domain and then back to the source domain and vice versa. This method can work with
both labeled and unlabeled target domain. The general idea is that it first pre-trains source
classifier on the source domain data. Then, the source model is fine-tuned on the source
data and the target data mapped to the source domain. Similarly, the target model is also
trained on the target data and the mapped source samples to the target domain. The source
and target discriminators should not be able to accurately discriminate a true target/source

sample from a mapped one and feature extractors should learn domain-invariant features.
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2.1.3 Multiple domains

In this category, we are given multiple domains either as multiple source domains or as
multiple target domains. In the first scenario, given N source domains Dy = {D7, D3, ..., D%/}
with collections of i.7.d labeled samples for each source domain and a target domain
Dy = {(2%)}*, with n; unlabeled samples, the goal is to minimize the error on the target
domain via jointly minimizing the source domain errors and the domain discrepancy between
the source domains and target domain. In the second scenario, given a source domain
Dy = {(zf,y5)}Is, with ny labeled samples and N target domains D, = {D}, D}, ..., DY}
with collections of 7.7.d unlabeled samples for each target domain, the goal is to minimize
the error on the target domains via jointly minimizing the source domain error and the

domain discrepancy between the source domain and target domains.

2.1.4 Multiple source domains

Generally the first scenario, i.e, having multiple source domains, is more common. Deep
Cocktail Network (DCTN) [86] used the weighted combination of the source domains to
achieve a better performance in the target domain. Similar to the previous single domain
methods, DCTN employs a feature extractor, denoted by f(z), to learn a representation for
the source domains and the target domain. It also has N domain-specific classifiers to be
trained on their corresponding source domains. The extracted features of the source and
target domains go to N domain discriminators such that D;(f(x)) receives samples from
the j — th source domain and the target domain and should not be able to discriminate
them. The learned features of the target samples are input to the IV classifiers. Since the
labels in the target domain are not available, DCTN utilizes a perplexity score, denoted by
S(x; f, Dj), base on the loss of a target sample z; in a domain discriminator D; to weight

the classification prediction and determine high confidence predictions as follows:
S(xi; f, Dy) = —log[l = Dj(f(z0))] + ay, (2.6)

where «a; is obtained by averaging the performance of D; on the source domain Dy;. This
constant shows how good this discriminator is in general.

The challenge is that source domains can also have different feature distributions among
themselves. Therefore, to achieve a better performance on the target domain, a method
should minimize the discrepancy between source domains and target domain and also between
pairs of source domains. To address this issue, Peng et al. [87], adapted the distribution of
the target domain and multiple source domains using the first and the second moment of
the extracted features — the first moment is the mean and the second moment is the mean
of the square of each samples in the corresponding domain. In addition, they used the same

moments to adapt pairs of source domains as well. The Moment Distance (MD) loss is as
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follows:

2 N -1N-1 N
MD =% (1/NZ IE(DE,) = E(Df)|l2 + <2> > IIEDE) - E(ij)!b) :
k=1 i=1 i i
(2.7)

other than the MD loss, the objective function of this method also has N classification loss
terms obtained from the source domains. For classifying target samples, they proposed two
approaches: 1) based on the average of the predictions from the classifiers, and 2) based on a
weighted average obtained by the normalized accuracy of each classifier on the corresponding
source domain. This method showed better performance compared to DCTN. But what if
the input domains are not all labeled and they have overlapping but distinct labels? meaning
that a fraction of unlabeled samples comes from extra classes, i.e. classes with no labeled
samples within that domain.

MULAAN (Multi-domain Learning Adversarial Neural Network) [88] addressed this
problem by introducing Known Unknown Discriminator (KUD) modules. Given N labeled
input domains from C' classes where N’ of them have unlabeled samples for a subset of the
classes, MULAAN uses a feature extractor backbone to learn features for these domains,
then it employs a classifier to make prediction for C classes. Furthermore, it also utilizes a
global domain discriminator to discriminate the features learned for these N domains. The
classifier assigns labels to the N’ domains with missing labels. These samples are further
ranked based on the entropy of their classification results. A KUD module receives the top
p% of these unlabeled samples with label ”0” meaning they are most likely unknown and
also receives labeled samples from that domain with label ”1” meaning they are known and
should be able to predict known/unknown status accurately. A KUD module is essentially a
binary cross-entropy loss. Therefore, the objective function of MULAAN has three terms:
a classification loss, an adversarial loss of the global domain discriminator, and the KUD
losses. The driving application of this method is automated microscopy images of cell after
being exposed to known and unknown drugs, where each dataset has its own experimental

bias.

2.1.5 Multiple target domains

Moving to a single source domain and multiple target domains, the challenge is that the target
data has mixed domains and class-irrelevant features lead to negative transfer [50], especially
when the target domain is highly mixed. DADA (Deep Adversarial Disentangled Autoencoder)
[80] employs adversarial learning and Variational Autoencoder (VAE) [89] to disentangle
domain-invariant features from class-irrelevant and domain-specific features. DADA first
uses a feature extractor to learn features for the source domain and the target domains.
Then a Disentangler module extracts domain-invariant, class-irrelevant, and domain-specific

features from the feature generator. The features learned by the Disentangler should be
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Table 2.1: Overview of methods of transductive transfer learning

Method When? What?  How? #domain dataset

MMD |[81] image classification features MMD loss single Office-31

CORAL [49] image classification features CORAL loss single Office-31

GRL [47] digit classification features gradient reversal single MNIST, SVHN, GTSRB

ADDA [58] digit classification features adversarial learning single MNIST, USPS, SVHN

Chen et al. [57] image segmentation features f;:i;:fo adversarial single Cityscapes, SYNTHIA
=1

weighted class-wise

MADA [85] image classification features . . single Office-31, ImageCLEF-DA
adversarial learning

Tsai et al. [55]  image segmentation features adversarial learning single Cityscapes, SYNTHIA, GTA5

ACAL [52] digit classification features augmented cycle GAN single MNIST, USPS, SVHN

DCTN [86] image classification features welghted. Class—w%se multi Office-31, ImageCLEF-DA
adversarial learning

M3SDA [87] image classification features matching first and multi DomainNet
second moments

MULAAN [88]  cell microscopy image features adversarial learning multi CELL dataset

DADA [80] image classification features VAE and adversarial learning multi DIGITS5, Office-10, DomainNet

rich enough for a Reconstructor to reconstruct the original features learned by the feature
extractor. Disentangler-Reconstructor are the encoder-decoder of a VAE. Furthermore, to
ensure disentanglement, DADA minimizes the mutual information of domain-invariant and
class-irrelevant as well as domain-invariant and domain-specific features. Adversarial learning
adapts the source domain and the target domains in the domain-invariant feature space.
Moreover, a classifier C' is trained on the labeled source domain to predict the class labels

and also to adversarially extract class-irrelevant features.

2.1.6 Summary

Back to the original transfer learning questions, the methods of this category employed trans-
fer learning for variety of applications ranging from image classification and segmentation to
speech analysis (when?). All of the discussed methods were based on feature-representation-
transfer (what?) and most of them utilized different approaches based on adversarial learning
(how?). Table 2.1 summarizes these methods. A simple implementation trick in adversarial
learning to tackle minimax optimization is employing gradient reversal layer which changes
the sign of gradients between discriminator and feature extractor [47]. Based on the label
space of source and target domain, domain adaptation can be closed set, partial [90], open
set [91], or universal [84]. In the closed set domain adaptation, the label spaces of source
and target domain are identical. In partial domain adaptation, source domain has private
classes to target domain. In open set domain adaptation, both source and target domains
can have private class to each other. Finally, in the universal domain adaptation there is no

prior knowledge on the label space of the target domain.
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2.2 Inductive transfer learning

Inductive transfer learning aims to improve the performance of the target task using the
target domain and its task as well as the knowledge in the source domain and source task,
where these tasks are different and the target is labeled [50]. There are three approaches
to inductive transfer learning: 1) deep metric learning, 2) few-shot learning, and 3) weight
transfer [92]. Deep metric learning methods are independent of the number of samples in
each class of the target domain, denoted by k, meaning that they work for small and large
k values. Few-shot learning methods focus on small k values ( < 20) and weight transfer
methods require large k values (k > 100 or k& > 1000) [92]. This section does not review
the weight transfer category because it follows the same line of work as discussed in the
Introduction section [78, 79].

In the inductive transfer learning, the learning process starts by randomly sampling a
support set and a query set from the source domain. The goal is to mimic limited sample
size in the target domain and also select different subsets of class labels to mimic different
tasks. The model is trained on the support set and evaluated on the query set [93]. The
target domain is similarly sampled into support and query sets. Recent evidence indicate
that fine-tuning the trained model on the source domain using the support set of the target
domain improves the performance [92]. The fine-tuned model is eventually tested on the
query set of the target domain. Each of these support and query sets is called an episode. In
addition to emphasizing on role of fine-tuning, Scott et al. [92] also provided a systematic
comparison between these categories and suggested that solely focusing on k& may not be the
best approach to study inductive transfer learning. For example, they showed that few-shot
learning methods can also perform well for larger values of k£ or metric learning methods
which are known to be agnostic to & works well only for a range of k. Nonetheless, they
showed that fine-tuning the train model on the support set of the target domain leads to a
better performance.

Chen et al. [94] did a similar comparative study but with a specific focus on few-shot
learning methods for £ = 1 and k = 5. They observed that having a deeper backbone to
extract features reduces the performance gap between state-of-the-art of few-shot learning.
Another interesting observation of this paper was that the performance of state-of-the-art
drops significantly under domain discrepancy between input domains such that even two
simple baselines can achieve a competitive/better performance compared to complex state-
of-the-art few-shot learning methods. These baselines had a feature extractor followed by
a standard classifier trained on the source domain. Then, the feature extractors of the
baselines remained frozen and a new classifier was re-trained on the target domain. For the
first baseline the classifier had a linear layer with a softmax activation and for the second
baseline it used the cosine distance between the input feature and the learned weight vectors

representing each class to find the class label [94]. The next two sections present an overview
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of deep metric learning methods and few-shot learning methods. Table 2.2 summarizes the

methods of this category.

2.2.1 Deep metric learning

In this category, a DNN is trained on the source domain and task with an aim of learning
a representation which samples of the same class are closer to one another and those of
different classes are far apart. Then, this DNN can further be fine-tuned on the target
domain and its task or simply use a nearest neighbor approach based on the obtained
representations. Various methods with different objective functions have been proposed to
learn such representations [95, 96, 97].

For example, The triplet loss function was introduced in FaceNet [95] for learning the
representation from a space of face images to a Euclidean space where the difference between
learned features is correlated with the similarity among identities. The idea is that for the
image of a given person’s face, the distance between the learned features of the given image
and those of another image with the same identity should be smaller than the distance
between that image’s learned features and the learned features of an image with a different
identity. For T" given triplets in the form of (Anchor, Positive, Negative), where the Anchor
and Positive have the same class labels and Negative has a different class label, and a
feature extractor backbone, denoted by f(.), the following condition must hold:
d(f(Anchor;), f(Positive;)) < d(f(Anchor;), f(Negative;)),
where d(.) is an arbitrary distance function — the Euclidean distance was used in the original

study. If we move the right hand-side to the left, we obtain:
d(f(Anchor;), f(Positive;)) — d(f(Anchor;), f(Negative;)) <0 (2.8)
In order to avoid the trivial zero solution, a margin ¢ > 0 is required:
d(f(Anchor;), f(Positive;)) — d(f(Anchor;), f(Negative;)) + & <0 (2.9)

We want the distance of the Anchor and the Negative to be larger than the distance of the
Anchor and the Positive. Thus, the value of the triplet loss function for the ¢ — th triplet is:

%"m'plet = maz[d(f(Anchor;), f(Positive;) — d(f(Anchor;), f(Negative;)) + £,0]  (2.10)

and the total triplet loss for T triplets is:

T

LT”plet = Z L%“'riplet (211)
=1

There are two approaches to select triplets for the triplet loss function, 1) offline selection

and 2) online selection. The offline selection builds the triplets based on the class labels
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before training and the online approach selects the triplets from samples during the training.
Triplets also can be built based on all possible combinations of the input samples/mini-
batches, called soft selection, or based only on those with highest triplet loss value which
is called hard selection. Soft selection provides more triplets for training but the network
might rely too much on easy cases, and as a result may be unable to perform well on hard
examples [95]. The hard selection approach solves this problem by only relying on the hard
cases in the train data to build the triplets, however, it provides fewer triplets for training.
In the inductive transfer learning experiment of FaceNet source and target domain were
from the same distribution but the identities were disjoint meaning that the tasks in the

source and target were different.

2.2.2 Few-shot learning

A human learns new concepts with very few samples of a new object, for example, a child
can recognize an apple from a couple of pictures, however, state-of-the-art DNNs need
hundreds or even thousands of samples to achieve the same goal. This observation motivates
few-shot learning, meaning learning a class from a few labeled examples [98]. Few-shot
learning involves training a classifier to recognize new classes, provided only a small number
of examples from each of these new classes in the training data [93]. Based on the number of
k labeled samples for each C classes, the problem is called C-way k-shot — zero-shot means
zero samples of that class are available during training and one-shot means only one sample is
available. Various methods have been proposed for few-shot learning [92, 93, 94, 97, 98]. Few-
shot learning methods employ simple approaches with few parameters to avoid over-fitting
because of limited data for each class in the target domain.

One of the first work in this area is the Matching Networks (MatchingNet) [98]. Match-
ingNet aims at defining a probability distribution over class labels for a target sample x;
given a small support set of k£ source domain samples. To achieve this goal, MatchingNet
extract features from support and query sets via two separate networks denoted by g(x) and

f(x), respectively. MatchingNet computes the predicted output as follows:
= Za(a:q,xi)yi, (2.12)
i=1

where x; and y; are labeled samples from the support set and a is an attention mechanism

exp((c(f(xq), 9(xi))))
S exp((e (f(aq), 9(27)))

where c is the cosine similarity distance. Although MatchingNet showed great performance,

as follows:

a(zq, 7;) = (2.13)

it was outperformed by Prototypical Networks (ProtoNet) [93]. ProtoNet constructs pro-
totypical representatives by taking the average of the learned features for samples of the

support set in each class. In other words, a prototype for class ¢ is the mean vector of the

19



learned representation of the support set samples belonging to class ¢. Therefore, a prototype

P, for class ¢ is calculated as follows:

P.=1/ng > f(xs) (2.14)

rs~Xg€Ec
After constructing the prototypes, ProtoNet assigns labels to the query set samples based on
a softmax over the Euclidean distance, denoted by d(.), between the target domain learned

features and the prototypes (class representatives):

exp(—d(f(zq), Fe)
S5 cap(=d(f(xy), Py)

p(y = clzg) = (2.15)
Learning the representation is obtained by minimizing the negative log-probability on the

querry set as follows:
J(©) = —log,(y = c|zq), (2.16)

where © is the set of parameters of the employed DNN, denoted by f(z). In ProtoNet,
training episodes (mini-batches) are constructed by random sampling of a subset of classes
from the training data. A subset of the selected samples are used as the source domain to
build the prototypes (support set) and the subset of the remainder samples are used as the
target domain (query set). ProtoNet showed better performance on image classification [93]
compared to the MatchingNet.

RelationNet [99] had a similar idea, but instead of utilizing a fixed distance metric, it
employs a learnable mapping that maps the learned features of source and target domains to
a relation score. A relation score ; ; between a source domain sample ¢ and a target domain

sample j is defined as:
rig = glf(x:) ® f(x;)] (2.17)

where x; is from the support set, x; is from the query set, r; ; is the relation score between x;
and z;, @ is the concatenation operator, f(z) is a feature extractor obtained by a DNN, and
g(.) is another DNN with the Sigmoid activation in the last layer to generate the relation

score. The learning proceeds by minimizing the following objective function:

J(O,8)=>"

=11

'(Tz',j — 1(y; == y;))* (2.18)

m n
=J

where © and ® are parameters of f(.) and g(.), respectively, m and n are number of samples
in the support and query sets, respectively, and 1 denotes an indicator. RelationNet showed

better performance compared to ProtoNet in image classification.
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Table 2.2: Overview of methods of inductive transfer learning

Method ‘When? What?  How? #domain dataset
FaceNet [95] image recognition features triplet loss function single Labeled Faces in the Wild, Youtube Faces DB
HistLoss [96] image classification features histogram loss single CUB200-2011, CUHKO03, Market-1501, Online Products
Siamese Net [97]  image recognition  features Z;le;; l:’:olr(:t?i:tlfe loss single MNIST, Omniglot
MatchingNet [98]  image classification features {;"V;Zliozoﬁi?;i‘iémcc single Omniglot, mini-ImageNet
. . few-shot learning

ProtoNet [93] image classification features by the Euclidean distance single Omniglot, mini-ImageNet
RelationNet [99]  image classification features few-shot 1e§rnmg . single Omniglot, mini-ImageNet

by calculating relation score
Scott et al. [92] image classification features ;;?::gif\d::lea;?;iyl::rﬁj::()ds of single MNIST, Omniglot, mini-ImageNet, Isolet

g arative s v of methods of single .
Chen et al. [94] image classification features comparative study of methods of - single CUB-200-2011, mini-ImageNet

few-shot learning

2.2.3 Summary

Back to the original transfer learning questions, the methods of this category employed
transfer learning mostly for image classification (when?). All of the discussed methods were
based on feature-representation-transfer (what?) and they used metric learning or few-shot
learning to learn features (how?). Table 2.2 summarizes these methods. Other areas that are
highly entangled with inductive transfer learning are meta-learning, zero-shot, and one-shot
learning but this thesis did not study these areas and other applications such as Natural

Language Processing.

2.3 Out-of-Distribution Generalization

Out-of-distribution generalization or domain generalization attempts to learn an invariant
representation given input data from multiple domains [73]. However, unlike domain adapta-
tion, in domain generalization the target domain is not available during training. This is a
much harder scenario compared to domain adaptation where the target domain is available
during training [70]. A domain generalization method should extract a domain-invariant
representation only using source domains. Learning such a representation is important
because it is similar to most real-world tasks for which no information is available about the
unseen data (the target domain) [100, 101, 102, 103, 70, 104, 105, 73, 74, 75, 76]. If we focus
on the label space of source domain and the unseen target domain, domain generalization
can be categorized into two types: homogeneous and heterogeneous. In the homogeneous
category, a shared label space exists between source domains and unseen target domains
[103, 70, 105, 73, 74, 75, 76], however, in the heterogeneous category these label spaces are
disjointed [102, 104].

For example, Dou et al. [70] proposed model-agnostic learning of semantic features
(MASF), a method based on meta learning to perform global and local alignment between
domains in the homogeneous setting. This method used a class-specific mean and Kull-
back—Leibler (KL) divergence in the global alignment step and a triplet loss for the local

alignment between input domains. The role of meta learning is to utilize episodic training to
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generalize better under domain shifts. Tseng et al. [102] proposed a model agnostic feature-
wise transformation layer to enforce learning more diverse features and to avoid over-fitting to
the input domains in the heterogeneous setting. They employed a meta learning approach to
optimize the hyper-parameters of the feature-wise transformation layer and showed that such
layers can be incorporated to the feature extractor of state-of-the-art meta learning methods
and generalize better to unseen domains with discrepancy. Another study named Domain
generalization via semi-supervised meta learning (DGSML) [77] employed an entropy-based
pseudo-labeling approach to assign labels to unlabeled samples in source domains and then
utilized a discrepancy loss to ensure that class centroids before and after labeling unlabeled
samples are close to each other. To learn a domain-invariant representation, DGSML utilized
an alignment loss to ensure that the distance between pairs of class centroids, computed
after adding the unlabeled samples, is preserved across different domains. This method was
also trained by a meta learning approach to mimic the distribution shift between the input
source domains and unseen target domains. However, this method is only applicable for
classification problems because it is based on the class centroids.

Meta-learning is closely related to out-of-distribution generalization because of the
episodic training of this approach that can be designed in a way to mimic the distribution
shift between source domains and unseen target domains. Meta learning attempts to learn
how to train a model when a few labeled examples are available per class (or task) [102,
98, 106, 94, 92, 93]. An episode is a core idea of meta learning where each episode has a
support set and a query set [106]. The model is trained on the support set and then evaluated
on the query set. Common approaches to meta learning are initialization-based methods
and metric-based methods. In initialization-based methods, the idea is to provide a good
initialization for the parameters such that the model generalizes to new classes with limited
available samples as well as a few gradient steps. Model-agnostic meta learning (MAML)
[106] is a well-known example of this category. In metric-based methods, the idea is to employ
similarity metrics such as the Fuclidean distance to guide the model to learn a representation
for which samples of the same class cluster closer to each other and farther from those of
the other classes. Prototypical Network (ProtoNet) [93] is a well-known example of this
category that uses class centroids and the Euclidean distance to assign class labels. Although
methods of meta learning have shown great performance within domain generalization, the
performance of these methods drops significantly under domain discrepancy [94].

Out-of-distribution generalization has two common benchmarks for image classification.
PACS benchmark [107] includes four domains: Photo, Sketch, Cartoon, and Art. Each
domain has seven common categories: dog, elephant, giraffe. guitar, horse, house, and person.
The total number of images is 10046. Photo has 1683 images, Sketch has 3942 images,
Cartoon has 2357 images, and Art has 2061 images. VLCS benchmark [108] aggregates four
domains: Caltech-101 [109], PASCAL VOC 2007 [110], LabelMe [111], and Sun09 [112]. The

total number of images is 10765. Each domain has five common categories: bird, car, chair,
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dog, and person. Caltech has 1424 images, PASCAL has 3385 images, Labelme has 2665
images, and Sun has 3291 images.

From the feature representation point of view, there are two main approaches to out-of-
distribution generalization: 1) generalizing via learning domain-invariant features [67], and 2)
generalizing via learning hypothesis-invariant features [71, 72]. In domain-invariant, the most
common approach, the goal is to map the input domains to a shared feature space in which
the features of all domains are aligned, i.e. look similar to each other. [70, 73, 74, 75, 76].
However, forcing different domains to have very similar features is not always feasible because
different domains may have unique characteristics, and completely aligning the extracted
features from them ignores these unique characteristics. The second approach does not align
the features but rather the predictions across domains. The idea is that if the extracted
features of input domains are similar enough for an accurate predictor to make similar
predictions, forcing the features to be more similar is not required anymore. [71, 67].

A recent study investigated inconsistencies between different out-of-distribution gen-
eralization methods in terms of experimental conditions such as datasets, architectures,
and model selection approach [66]. They proposed DOMAINBED, a Pytorch testbed for
out-of-distribution generalization that includes seven image classification/object recognition
datasets with multiple domains, nine baseline methods, and three model selection approaches.
One major finding of this study was that under comparable implementation and experimental
design, methods of empirical risk minimization (ERM) achieve state-of-the-art performance
and outperform the majority of the baseline methods. Methods of ERM are trained in a
fully supervised fashion by pooling and aggregating all labeled samples across input source
domains. Moreover, the results showed that the CORAL loss which was originally pro-
posed for domain adaptation also achieves a competitive performance for out-of-distribution
generalization.

In terms of the model selection approach, this study suggested three approaches including,
1) Training-domain validation set approach by splitting each training domain into training
and validation subsets. Then, the validation subsets are pooled together to create an overall
validation set. The best model is the one maximizing the accuracy on the overall validation
set. 2) Leave-one-domain-out cross-validation approach by using one source domain entirely
for validation. Models are evaluated on their held-out domain, and averaged over all held-out
domains. The best model is the one maximizing this average accuracy and is retrained using
all domains. 3) Test-domain validation set (oracle) approach by maximizing the accuracy on
a validation set that has the same distribution as the target domain. This approach allows
limited queries per method (one query per choice of hyper-parameters in a random search),
meaning that there is no early stopping based on the validation set. Instead, all models are
trained for the same fixed number of steps and consider only the final results [66].

In drug response prediction, source domains can be different omics data types from

clinical and pre-clinical resources and target domains can be a new patient that the model
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encounters during deployment. This can be formulated as both homogeneous and heteroge-
neous because we can assume that measure of drug response is the same for source domains
and future target domains or we can consider different measures of drug response for them.
To the best of our knowledge, there is no method of out-of-distribution generalization for

drug response prediction.

2.4 Drug Response Prediction
2.4.1 Pre-clinical and clinical samples

Broadly categorizing, there are two types of resources available in drug response prediction,
clinical resources and pre-clinical resources. Clinical resources contain information about
individual patients diagnosed with cancer. These resources can be labeled or unlabeled with
respect to a cancer treatment, meaning that an individual patient may have received a
specific treatment. Clinical resources especially with drug response available (labeled) are
often small or not publicly available for privacy reasons.

Pre-clinical resources are utilized as proxy to clinical data. These resources are often
larger and publicly available. Throughout this thesis, we refer to pre-clinical samples and
the information they contain as pre-clinical resources. There are three types of pre-clinical

resources [113]:

e Cancer cell lines: cancer cell lines are the most common pre-clinical resources. These cell
lines are obtained from patient tumor biopsies, which are placed in plastic dishes and
treated with different factors to immortalize the cancer cells, meaning to allow them
to grow without interruption. Although cell lines have contributed to cancer research
tremendously, they have some drawbacks. For example, they need comprehensive
adaptation to be able to grow in a dish. Some cell lines may have gone through
substantial changes and no longer recapitulate the original tumor. More importantly,
they do not have the stroma or tumor microenvironment which is known to be a key

player in different cancers.

o Patient-derived Xenograft (PDX) samples: PDX samples are the most common pre-
clinical resources based on animals. To create a PDX sample, tissues or cancer cells
are obtained from a tumor via biopsy and then engrafted into immunodeficient mice.
The same tumor can be passed from mouse to mouse (this is called passaging). PDX
samples provide the biological characteristics of human tumor much better than cell
lines. However. establishing a PDX sample is a time and resource consuming process
and more expensive compared to cell lines. Moreover, an engrafted tumor may undergo

mouse related evolution.
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e Organoids: The technology to create organoids as a pre-clinical resource has emerged
recently (initiated in 2009) based on stem cells that can grow indefinitely and produce
other cells. Organoids replicate much of the complexity of human organs and they have
demonstrated promising results for drug discovery and drug screening in cancer research.
Although they are less resource consuming compared to PDX samples, generating

large-scale pharmacogenomics datasets based on organoids is still at the infancy stage.

In cell lines, the lack of an immune system results in downregulation of immune related
pathways compared to primary tumors. Modeling the microenvironment of tumors is crucial
to investigate the anti-cancer role of immune checkpoint inhibitors. Similar to cell lines,
organoids often do not preserve the microenvironment. While PDX samples preserves tumor
microenvironment, they are dependent on mice with deficient immune systems. A major
concern is when PDX samples do not resemble cancers that usually initiate in an immune-
competent host. Moreover, PDX samples in immune-deficient mice may be a poor model to

study the effects of immunotherapy on the tumor microenvironment [114].

2.4.2 Omics data types

In 2001, The Human Genome Project sequenced almost 92% of a human genome and paved
the way for tremendous number of discoveries [115]. 20 years later in 2021, the remaining 8%
was sequenced to have the complete human genome landscape [116]. The Human Genome
Project established genomics as the first omics data type which resulted in crucial steps
towards the advancement of medicine [117]. However, numerous realizations such as having
different phenotype or disease outcomes with the same genomic features demonstrated a
need for investigating other omics data types [118]. Some of the most common biological

entities that can be characterized using omics data types are as follows [117, 118]:

e Genome: A genome is like a library that contains necessary information of an organism,
i.e., the complete set of DNA (including all of its genes). This information is required
to build and maintain functions of that organism. Human genome consists of 3 billion
DNA base pairs and is stored inside the cellular nucleus, organized in 23 pairs of
chromosomes. A small fraction of DNA is also located in mitochondria. Only a very
small fraction of human DNA encodes proteins. Just about 1% of the human genome
consists of protein-coding genes. Genes consist of coding and non-coding parts known
as exons and introns, respectively. Exons are of the most interest because mutations
in these regions can change protein sequences and are more likely to be pathogenic.
However, some mutations in introns or intergenic regions are also associated with
human diseases including different cancers [119, 120] such as prostate cancer [121].
Whole genome sequencing (WGS) and whole exome sequencing (WES) at bulk levels
are common approaches to obtain the omics data type associated with the genome.

Comparing a sequenced sample (via WGS or WES) to a reference genome provides
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information on variants of that genome. These variants can be small such as somatic
point mutations (one base substitution), insertions or deletions, copy number aberration

(CNA), or other larger structural variants.

o Transcriptome: High-throughput transcriptome sequencing (also known as RNA-seq)
provides the abundance of RNA from each gene. The abundance of RNA indicates
activity of it and is closer to the phenotype compared to the genome. The amount of
RNA transcribed from each gene is one way to measure expression value of that gene
(also known as gene expression). Microarray is another (older) technology to obtain

gene expression data which is based on pre-defined short sequences.

e Proteome: Proteome is the set of proteins that can be expressed by a genome. The
omics data type associated with these proteins quantifies the levels of expression of
proteins in a given sample. Protein expression is closer to the phenotype compared to
gene expression and the concordance between gene expression and protein expression
is often low [122]. The most common approach to obtain this omics data type is via
mass spectrometry technology that can now quantify thousands of proteins in a single
sample. The other common approach proteomics data is the reverse phase protein

array (RPPA) which is highly sensitive and can detect low-abundance proteins [123].

o Epigenome: Epigenome characterizes potentially heritable chemical modifications to
DNA (DNA methylation) and histone proteins. Histones enhance chromatin structure
and regulate genome function which affects gene expression during different develop-
mental stages and progression of different diseases. Epigenetic alterations can be used

as markers for cancer detection, diagnosis, and prognosis.

¢ Metabolome: Metabolome is the collection of small molecules known as metabolites
which illustrates the energy status as well as metabolism of a living organism. The

omics data type associated with metabolome is another product of mass spectrometry.

e Microbiome: Microbiome provides the genome of the microbes living in individuals.
"They have essential functions in regulating growth and homeostasis and contribute to a
significant fraction of our metabolome Emerging evidence suggests that the composition
of a person’s microbiome is a combination of innate immunity, introduction to organisms

early in life, diet, and exposure to antibiotics and other environmental factors.” [117].

Omics data is often obtained before treatment, but there are also resources and methods
that can take omics data before and after treatment [124] also known as drug perturbation
studies. The focus of this thesis is only on resources that obtained omics data before

treatment.
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2.4.3 Cancer treatment

According to the National Cancer Institute (https://www.cancer.gov/about-cancer/

treatment/types), cancer treatment can be broadly categorized into the following categories:

e Surgery: surgery is a local treatment which is directed at a specific part of the patient’s
body. Surgery is helpful when tumor is only present in that specific area, or when

removing one part of the tumor helps other treatments or ease distress for the patient.

« Radiation: Radiation or radiotherapy is utilizing radiation to destroy cancer cells. This
can be done externally using an external device which aims at a specific part of the
body (locally), or internally which is done by putting the source of radiation inside
patient’s body which can be solid or liquid. Radiation can also be helpful to shrink

the size of tumor for surgery or other form of treatments.

e Chemotherapy: chemotherapy is a systematic treatment that travels in the body to
kill cancer cells. Chemotherapy drugs are toxic and can cure or slow down cancer
progression by killing cancer cells. The side effect of chemotherapy is that they also

destroy normal cells and cannot distinguish between normal and cancer cells.

e Targeted therapy: Targeted drugs are the foundation of precision oncology. They
are designed to kill specific cancer cells with less harm to normal cells compared to
chemotherapy drugs. Targeted drugs target specific molecules (such as proteins) on
cancer cells or inside them and this is possible due to differences that cancer cells and

normal cells have.

e Immunotherapy: Our immune system is designed to fight infections and different

diseases. The idea of immunotherapy is to fortify the immune system to fight cancer.

In this thesis, we employed and overviewed resources that utilized chemotherapy and targeted

drugs.

2.4.4 Measures of drug response

Pharmacogenomics studies combine omics data of cancer cell lines or PDX samples with
high throughput screening for drug response where samples are treated with a given drug (or
drugs). For each drug-cell pair investigated in a dataset, cell viability at several increasing
doses (concentrations) of the drug is measured and compared to an untreated control, to
obtain % viability values. To learn predictors of drug response, it is desirable to obtain a
single number summarizing a particular cell line’s sensitivity to a drug treatment (which
can then be used as a label in training computational models from the omics features).
Two common summary measures are the Area Above the Curve (AAC) and the half

maximal inhibitory concentration (IC50). Both of these measures are derived by first fitting
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a sigmoidal curve to the dose-response data. The AAC is the area above the curve, integrated
from the lowest to highest measured concentration, normalized to the concentration range.
The IC50 is the concentration at which the curve crosses 50% viability. Some curves estimated
in the data never cross this 50% threshold, and therefore the IC50 does not exist for many
experiments where the AAC can be calculated [21] (Figure 2.1-A). Other common measures
of drug response are Area Under does-response Curve (AUC), Emax which is the maximum
response, and EC50 which is the concentration of the drugs that achieves half of the maximum
response.

The AAC can be interpreted as measuring an average of potency and maximal efficacy,
or as a measure of the mean viability across the concentrations tested [125]. While the
IC50 is easily interpretable and is an absolute metric (unlike the AAC, which depends on
the concentration range tested), the IC50 has some technical drawbacks which may make
it difficult to use in training machine learning models. AAC/AUC is a normalized value
between zero and one, but IC50 (the concentration) is not necessarily bounded and can be
very small (close to zero) when samples are highly sensitive to a given drug or very large
when they are highly resistant to a given drug. These issues make preprocessing of 1C50
critical.

The measures like AAC and IC50 are applicable to cell lines, however they are not
applicable to patients or animal models because they are obtained by increasing the doses
several times. For PDX samples or patients, a common approach is to use change in tumor
volume before and after treatment as the measure of drug response. One common approach
for this measure is response evaluation criteria in solid tumors (RECIST) [42] that categorizes
the response to four categories of complete response, partial response, stable disease, and
progressive disease (Figure 2.1-B). The complete response indicates disappearance of all
tumor lesions, the partial response indicates reduction of > 30% in tumor volume after
treatment, the stable disease indicates reduction of < 30% or growth of < 20%, and the

progressive disease indicates growth of > 20% or occurrence of new lesions.

2.4.5 Pharmacogenomics datasets

Generating pharmacogenomics datasets (Table 2.3) began with the NCI-60 cell lines [126, 127]
in 1986-1990 and major discoveries have been achieved via these 60 cell lines most notably
Bortezomib, the treatment for multiple myeloma [4]. In 2012, the Cancer Genome Project
(CGP) and the Cancer Cell Line Encyclopedia (CCLE) screened more cell lines with different
drugs. CGP later evolved into the Genomics of Drug Sensitivity in Cancer (GDSCv1-2016)
and CCLE evolved into The Cancer Therapeutics Response Portal (CTRPv1-2013 and
v2-2015) where more drugs were screened across more cancer types. In 2015, The Genentech
Cell Line Screening Initiative (gCSI) was created and at the same time the Patient-Derived
Xenograft Encyclopedia (PDXE) introduced the first and only large-scale PDX dataset.
Since GDSCv1 utilized the Syto60 drug screening assay but other large-scale datasets
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A) Measure of drug response in cell lines B) Measure of drug response based on tumor volume (RECIST)
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Figure 2.1: Measures of drug response based on drug concentration in cell lines and tumor
volume such as RECIST in PDX samples

Table 2.3: Characteristics of pharmacogenomics datasets

Dataset Type #Drugs #Samples F#Tissues Omics

NCI60 Cell line 22,257 60 7 Multi-omics
GDSCvl Cell line 250 1109 28 Multi-omics
GDSCv2 Cell line 190 328 27 Multi-omics
CTRPv2 Cell line 544 821 25 Multi-omics
gCSI Cell line 16 754 22 Multi-omics
CCLE Cell line 22 1061 25 Multi-omics
PDXE PDX 36 440 16 Multi-omics

such as CTRPv2 and gCSI utilized the CellTiter Glo assay, in 2020, GDSCv2 dataset was
introduced that screened a subset of GDSCv1 cell lines with the CellTiter Glo assay to be
more comparable with the CTRPv2 and gCSI.

Due to the complexity of generating pharmacogenomics datasets, discrepancies can even
exist across cell line datasets and this has been a source of controversy in this field [14, 128,
129, 130, 131, 132, 133]. Recent efforts such as the PharmacoDB project (pharmacodb.ca)
[21], the ORCESTRA platform (orcestra.ca) [134], and CellMinerCDB [127] aimed at
standardizing, and integrating different pre-clinical pharmacogenomics datasets to improve
downstream machine learning modeling. These methods often take gene expression as input
and predict the area above/under the dose-response curve (AAC/AUC) or half-maximal
inhibitory concentration (IC50), the concentration of the drug that reduces the viability of
cells by 50%.
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2.4.6 Methods

The data-rich nature of pre-clinical pharmacogenomics datasets have paved the way for
the development of machine learning approaches to predict drug sensitivity in vitro and
in vivo [4, 135, 136]. These computational approaches range from simple linear regression
models [19, 24] Lasso [137], and Elastic Net [26] to Random Forest [138], kernel-based
models [28, 139, 41, 62], highly non-linear models based on Deep Neural Networks [20, 124,
140, 40, 61, 59, 60, 64], and most recently, reinforcement learning [141], few-shot learning
[63], and multi-task learning [142]. We categorized the state-of-the-art predictors of drug
response based on their input, output, and the pharmacogenomics datasets that they used
for training and test (Figure 2.2). Gene expression was the most common input data
type to predict drug response as it was determined to be the most effective data type in
multiple studies [13, 135, 26, 28]. However, some studies based on multi-omics data also
demonstrated that adding other omics data types can improve the prediction performance
[20, 40]. For drug response, IC50 was the most common measure used. The cross-domain
training approach was more common compared to the within-domain approach. Moreover,
the majority of these methods were trained on GDSCvl gene expression data. We also
observed that incorporating drug structure, such as the Simplified molecular-input line-entry
system (SMILES) representation of the drug molecule, is an emerging trend in the field.
Other aspects of employing drugs as input can be drug interaction,or adverse reaction and
for simplicity of illustration we labeled all of them under broad categories of “drugs” and

similarly for clinical data we labeled it as “patients”.

2.4.7 Transfer learning methods

While machine learning for pharmacogenomics is a promising direction [4], existing guide-
lines are based on a single pharmacogenomics dataset [143] or based on benchmarking
different methods without considering technical differences between molecular profiles or
drug screening assays across different datasets [135]. We consider two common machine
learning paradigms for drug response prediction (Figure 2.2): within-domain analysis and
cross-domain analysis. In within-domain analysis, models are trained and tested on the same
dataset via cross-validation which means train and test data are from the same distribution.
In cross-domain analysis, models are trained and tested on different cell line datasets to
investigate generalization capability. The cross-domain analysis offers investigating trans-
latability of models on clinical datasets but it creates a need for transfer learning to address
data discrepancies between pre-clinical and clinical resources.

Various methods of transfer learning have been proposed in the context of drug response
prediction [40, 59, 60, 61, 41, 62, 63, 64, 65, 144]. These methods either address existing
discrepancies implicitly, or explicitly which means they assume that the model has access to

the target domain during training or fine-tuning. Among these methods, Velodrome is the
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Figure 2.2: Some of the published studies for drug response prediction. Gene expression is
the most common molecular profile and IC50 is the most common pharmacological profile,
but AAC/AUC has become more common in recent studies. GDSCv1 (originally named
CGP) is the most common training dataset and the use of drug information for training has
been more frequent in recent years. The cross-domain training approach denoted by “c” was
more common compared to the within-domain approach denoted by “w”. When a method

employs both of them, we denote it by “cw”.
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Table 2.4: Overview of methods of transfer learning in drug response prediction

Method What? How? #domain pharmacogenomics dataset

MOLI [40] samples triplet loss function single GDSCvl1, PDXE, clinical trials

BDKANN [59] relational knowledge standard supervised single CTRPv2, GDSCv2

DrugCell [60] relational knowledge DNN single CCLE, DeepSynergy

AITL [61] features adversarial multi-task learning single GDSCv1, PDXE, clinical trials

PRECISE [41] features kernel learning single GDSCvl, PDXE, TCGA

TRANSACT [62] features kernel learning single GDSCvl, PDXE, TCGA, Hartwig Medical Foundation
Ma et al. [63] parameters few-shot learning single GDSCvl, CCLE, PDX

Zhou et al. [64] parameters fine-tuning single GDSCvl, CCLE, CTRPv2, gCSI

Celligner [65] features kernel learning multiple ~ CCLE, TCGA, TARGET, Treechouse

TUGDA [144] features multi-task domain adaptation single GDSCvl, TCGA, PDXE

Velodrome features out-of-distribution generalization multiple =~ CTRPv2, GDSCv2, gCSI, TCGA, PDXE, clinical trials

only method that does not require access to the target domain during training or fine-tuning.
MOLI [40] is also the only method that performs transfer learning in the form of transferring
relevant samples between source domain and target domain (see section 3.2.4). MOLI is
also the only multi-omics methods, however, other studies such as [64] take drug structure
(SMILES) as input as well. BDKANN [59] and DrugCell [60] are based on transferring
relational knowledge of REACTOME (https://reactome.org) and gene ontology terms,
respectively to design the architecture of the DNN model. TRANSCACT [62] is non-linear
domain adaptation method based on kernel learning and a follow-up version of [41] which is
based on linear kernel learning. Table 2.4 summarizes these methods with respect to the
three main questions in transfer learning. We did not consider when to transfer in this table

because all these methods were proposed for drug response prediction.

2.4.8 Summary

This section described the elements of drug response prediction such as the definition of
pre-clinical and clinical resources (patients, cell lines, PDX samples), the definition of differ-
ent omics data types (the input for computational methods) that we can obtain from these
resources. Moreover, this section discussed different measures of drug response (the output
of computational methods) obtained from available treatments for cancer patients. Finally
this section provided a brief overview of existing datasets, methods, and transfer learning

approaches for drug response prediction.

2.5 Semi-supervised learning

Semi-supervised learning attempts to leverage unlabeled data during training. Common
approaches to semi-supervised learning are consistency regularization [145] and pseudo-
labeling [146]. In consistency regularization, the model predicts labels for the unlabeled
samples and these predictions should be consistent for the perturbed version of the same
samples. Mean Teacher [147] is a well-known example of consistency regularization methods

where a student model and a teacher model are being trained jointly based on a supervised
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loss on the predictions of the student model and a consistency loss on the predictions of the
student and the teacher model. The parameters of the teacher model are being optimized
as an exponential moving average of the parameters of the student model but student and
teacher apply different noises (augmentations) to the input images to benefit more from the
consistency loss. In pseudo-labeling, the idea is to utilize the predicted labels by the model
for unlabeled samples with high confidence (e.g. above a certain threshold) and use those
samples and their predicted pseudo-labels in retraining the model.

A recent study showed that combining both consistency regularization and pseudo-
labeling improves the state-of-the-art performance in semi-supervised learning benchmarks
[148]. Moreover, incorporating pseudo-labeling in meta learning in semi-supervised ProtoNet
has shown that utilizing both labeled and unlabeled data improves the performance of the
models trained on only the labeled data [149]. This method assigns labels based on the
Euclidean distance to the class centroids obtained from the labeled data. These centroids
are then updated using the pseudo-labels assigned to the unlabeled data.

Another study explored methods of semi-supervised learning from the imbalanced classes
point of view [150]. This is particularly important for drug response prediction because
pharmacogenomics datasets are often imbalanced. This study demonstrated that if labeled
and unlabeled data are relevant to each other (for example most of samples are from the
same classes), semi-supervised learning will be beneficial even when the unlabeled samples
are very imbalanced themselves. However, if labeled and unlabeled samples are irrelevant
(they are mostly from disjoint classes), then self-supervision will be more beneficial compared
to semi-supervised learning. Applying self-supervision even when it is only on the labeled
examples provides the model with strong initial values for the parameters that can be utilized

as a pre-trained model for the ultimate task.
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Chapter 3

Multi-omics Integration

This chapter is adapted based on a published article [40] under license CC BY-NC.

3.1 Problem definition

Given a training data with k different modalities {X7,...,X}}, where X; € RM*N and
YiM x1 ¢ {0, 1} meaning that each modality has M samples, N features, and binary labels,
the goal is to predict Y accurately by integrating the input modalities. In the area of
pharmacogenomics, the training data has multi modals (also known as multi-omics in the
driving application) including the gene expression, mutation, and CNA obtained from the

cell lines, and the training label is the drug response in the form of binarized IC50 values.

3.2 MOLI: Multi-Omics Late Integration

MOLI [40] is a deep neural network that predicts the drug response for a given sample,
represented by its multi-omics profile, and for a given drug. MOLI assumes that values for the
same genes are provided for each omics data type. MOLI’s network consists of the following
subnetworks. It has multiple feed forward encoding subnetworks, one for each input omics
data type. Each encoding subnetwork receives its corresponding omics data and encodes
it into a learned feature space. The learned features from the encoding subnetworks are
integrated into one representation by concatenation. The concatenated representation serves
as input for a classification subnetwork, which predicts the drug response. The entire network
is trained in an end-to-end fashion using an objective function combining a classification
loss and a triplet loss. Figure 3.1 shows MOLI’s components during training and model

development, while Figure 3.2-A shows the application of MOLI for external validation.
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Figure 3.1: Schematic overview of MOLI (A) preprocessing mutation, CNA, and gene
expression data. (B) Each encoding subnetwork learns features for its omics data type and
the learned features are concatenated into one representation. (C) MOLI objective function
consists of a triplet loss and a classification loss, obtained from the classifier subnetwork
that uses the multi-omics representation to predict drug response.

3.2.1 Learning features by encoding subnetworks

To learn features for each omics data type in the input, we design separate encoding feed
forward subnetworks to map the input space to the feature space. We focus on mutation, CNA,
and gene expression data. X7, Xg, and X¢o denote mutation, CNA, and gene expression
data, respectively, each of which are of dimensionality N x D, where N is the number of
samples and D is the number of genes. We note that the proposed approach can be extended
for any number of omics data types. Each encoding subnetwork has a fully connected layer
with Relu activation functions. In addition, each subnetwork employs dropout to regularize
the model and batch normalization to enhance the training process. The input of each
encoding subnetwork is one omics data type and the output is the learned features for that
omics (Figure 3.1- B). We denote these subnetworks as fa(Xnr), fo(Xe), and fr(XEg),

respectively.

3.2.2 Integrating learned features by late integration

In the integration step, we utilize a late integration approach and concatenate the learned
features of the different single-omics data types to obtain one multi-omics representation.

For example, if the outputs of three encoding subnetworks are three M x N feature matrices,
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Figure 3.2: (A) Using MOLI to make predictions for PDX /patient inputs during external
validation. (B) Combining targeted drugs that target the same pathway or molecule to make
a pan-drug training dataset for MOLI

after concatenation, the output will be one M x 3N representation matrix. The integrated
representation is further smoothed through a [2 normalization layer. We denote MOLI’s
integration, receiving multi-omics data as input and returning the integrated representation,

as follows:
F(Xu, Xo, Xg) = fu(Xu) @ fo(Xe) @ fe(XE), (3.1)

where, @ denotes the concatenation operator.

3.2.3 Optimizing the learned features by the combined objective function

The learned features will be used by a classifier that predicts the drug response. Therefore,
the last subnetwork of MOLI is a classification layer with the Sigmoid activation function,
using dropout and weight decay for regularization (Figure 3.1-C). We denote this classifier
as g(.). Since the MOLI network will be used for classification, i.e. drug response prediction,
the objective function used for training must include a term that measures the difference
between the predicted drug response and the ground truth drug response. We choose the
binary cross-entropy classification loss, one of the most common classification losses, defined

as follows:

LClassifier = _[Y logg(F(XnyMvXC)) + (1 - Y) lOg(l - g(F(XEa XM7XC’))]7 (32)
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where, Yy «1 denotes the binarized IC50 which is used as measure for the drug response.
We add a triplet loss to the objective function to impose a further constraint that is
necessary for accurate classification. This constraint forces responders to be more similar
to each other than to non-responders. The triplet loss function was introduced in FaceNet
[95] for optimizing the mapping from a space of face images to a Euclidean space where the
difference between learned features is correlated with the similarity among faces. The idea
is that for the image of a given person’s face, the distance between that image’s learned
features and the features of another image of the same person should be smaller than the
distance between that image’s learned features and the learned features of the image of some
other person. In our context, we employ the triplet loss function as follows. For T given
triplets in the form of (Anchor, Positive, Negative), where the first two are (the multi-omics
data of) responder cell lines to a given anti-cancer drug and the last one is (the multi-omics
data of) a non-responder to that drug, we require the following condition:
d(F(Anchor;), F(Positive;)) < d(F(Anchor;), F(Negative;)), where d(.) is an arbitrary
distance function—we used the Euclidean distance.

If we move the right hand-side to the left, we obtain:
d(F(Anchor;), F(Positive;)) — d(F(Anchor;), F(Negative;)) < 0 (3.3)
In order to avoid the trivial zero solution, a margin ¢ > 0 is required:
d(F(Anchor;), F(Positive;)) — d(F(Anchor;), F(Negative;)) + £ < 0 (3.4)

We want the distance of the Anchor and the Negative to be larger than the distance of the
Anchor and the Positive. Thus, the value of the triplet loss function for the i-th triplet is:

%«Mplet = mazx[d(F(Anchor;), F(Positive;) — d(F(Anchor;), F(Negative;)) + &,0] (3.5)

and the total triplet loss for T triplets is:

T
Lryiplet = Z LiTriplet (3.6)

i=1
Generally, there are two approaches to select triplets for the triplet loss function: offline
selection and online selection. The offline selection builds the triplets based on the value of
the labels (in this case the drug response) before training the model. The online selection
selects the triplets from samples in each mini-batch during the training. We adopted the
online approach. Triplets can be built based on all possible combinations of the input
samples/mini-batches (soft selection) or based only on those triplets with high triplet loss
value (hard selection). Soft selection provides the model with more training triplet examples

but the network might rely too much on easy cases, and as a result may be unable to perform
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well on hard examples [95]. Hard selection solves this problem by only relying on the hard
cases in the train data to build the triplets, but this approach may suffer from having fewer
training triplets especially in the case of small unbalanced datasets. We adopted the soft
selection approach.

Therefore, the combined cost J is defined as follows:

J = LClassifier + ’VLTriplet (37)
where v is a regularization term for the triplet loss.

3.2.4 Transfer learning for targeted drugs

For targeted drugs, we use transfer learning and train MOLI with a new pan-drug input. This
pan-drug input consists of multi-omics profiles and drug responses for a family of targeted
drugs that target the same pathway or molecule. Such drugs are expected to produce highly
correlated responses in cell lines. One MOLI model is trained for a family of drugs instead
of one separate model for each individual drug. This approach increases the training dataset
size, since the set of the screened cell lines and the obtained responses are similar but not
identical for the drugs of one family. In our experiments, we evaluate transfer learning
for EGFR pathway inhibitors due to the availability of external validation data, but the
approach is applicable to any family of targeted drugs. Figure 3.2- B illustrates the idea of

transfer learning for targeted drugs.

3.2.5 Predicting drug response for TCGA patients

To study MOLI’s performance, similar to [24], we employ the model trained on the pan-drug
input for the EGFR inhibitors to predict the drug response for patients in several TCGA
datasets for which there was no drug response recorded. Since these drugs target EGFR
pathway, we expect the expression status of the genes of this pathway to be strongly corre-
lated with the predicted drug response. We obtain the list of genes in EGFR pathway from
REACTOME. To study the correlation, we employ multiple linear regression between the
predicted responses and the level of expression. We obtain p-values for each gene and correct

them for multiple comparison, using Bonferroni correction (o = 0.05).

3.3 Experimental results
3.3.1 Datasets

We use four main resources for multi-omics integration:

o Genomics of Drug Sensitivity in Cancer (GDSCv1) cell lines dataset [13]
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o Patient-Derived Xenograft Encyclopedia (PDXE) dataset [11]
o TCGA patients with the drug response available in their records [26]
o TCGA patients without the drug response [25]

The GDSCv1 dataset [151, 13] has created a multi-omics dataset of more than a thousand
cell lines from different cancer types, screened with 265 targeted and chemotherapy drugs.
We use GDSCv1 as the training dataset due to a high number of screened drugs. Multi-omics
profiles and drug responses for GDSCv1 are retrieved from ftp://ftp.sanger.ac.uk/pub/
project/cancerrxgene/releases/release-7.0/.

We use the other publicly available multi-omics datasets for external validation as follows:

1. We apply PDX Encyclopedia mice models published by [11]. This dataset has more
than 300 PDX models for different cancer types, screened with 34 targeted and
chemotherapy drugs. Response in terms of RECIST was binarized so that Complete
Response and Partial Response were considered as sensitive and Stable Disease and
Progressive Disease are considered as resistant, moreover, Unstable Responses were

excluded as well as response to combination treatments.

2. TCGA [25] data including profiles of tumor samples collected from more than ten
thousand patients with different cancer types, downloaded from Firehose Broad
GDAC (https://doi.org/10.7908/C11GOKM9, http://gdac.broadinstitute.org/
runs/stddata__2016_01_28/). For TCGA datasets, we use clinical annotations of
the drug response for some patients which were obtained from supplementary material
of [26]. Similar to PDX response, Complete Response and Partial Response were
considered as sensitive and Stable Disease and Progressive Disease are considered as

resistant, moreover, combination treatments were excluded.

3. We also use TCGA patients for breast (BRCA), bladder (BLCA), pancreatic (PAAD),
lung (LUAD), kidney (KIRP), and prostate (PRAD) cancers. These patients are

without the drug response in their records.

We note that we used only those genes which are in common for all of the omics data types
in both training and external validation datasets for each drug.

Table 3.1 provides the characteristics of each dataset such as type of drug, the number
of samples, and the number of genes. After the preprocessing, we have the same number of
genes for the training and the external validation datasets and for each of the three omics

data types. We only consider samples for which all three omics data types are available.

Gene expression profiles

Raw intensities obtained from ArrayExpress (E-MTAB-3610) for GDSCv1 dataset were
RMA-normalized (Robust Multi-Array Average) [152], log-transformed and aggregated to
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Table 3.1: List of the studied drugs from the used resources with multi-omics profiles

available.

Drug Type Resource Number of samplest Number of genest™t Usage

Afatinib Targeted GDSCvl 828 (NR:678, RS:150) 13081 Training
Cetuximab  Targeted GDSCvl 856 (NR:735, RS:121) 12346*/13081** Training
Cetuximab ~ Targeted PDX 60 (NR:55, RS:5) 12346*/13081** External validation
Cisplatin Chemotherapy GDSCv1l 829 (NR:752, RS:77) 15493 Training

Cisplatin Chemotherapy TCGA 66 (NR:6, RS:60) 15493 External validation
Docetaxel Chemotherapy GDSCv1l 829 (NR:764, RS:65) 15016 Training
Docetaxel Chemotherapy TCGA 16 (NR:8, RS:8) 15016 External validation
Erlotinib Targeted GDSCvl 362 (NR:298, RS:64) 12325* /13081** Training

Erlotinib Targeted PDX 21 (NR:18, RS:3) 12325* /13081** External validation
Gefitinib Targeted GDSCvl 825 (NR:710, RS:115) 13081 Training
Gemcitabine Chemotherapy GDSCvl 844 (NR:790, RS:54) 12067* /15381 Training
Gemcitabine Chemotherapy PDX 25 (NR:18, RS:7) 12067 External validation
Gemcitabine Chemotherapy TCGA 57 (NR:36, RS:21) 15381 External validation
Lapatinib Targeted GDSCvl 387 (NR:326, RS:61) 13081 Training
Paclitaxel Chemotherapy GDSCv1l 389 (NR:363, RS:26) 12482 Training
Paclitaxel Chemotherapy PDX 43 (NR:38, RS:5) 12482 External validation
pan-drug Targeted GDSCvl 3258 (NR:2747, RS:511) 13081 Training

NR: Non-resonder; RS: Responder; *:Number of screened samples with all three omics data
types available; TT: Number of genes in common between the train data and the external
validation data for each drug; *: Number of genes for the drug-specific experiments ; **:
Number of genes for the pan-drug experiments

the level of genes. Gene expression values of PDX and all TCGA datasets are converted
to Transcripts Per Million (TPM) [153] and log-transformed. To make expression profiled
by different platforms comparable, we standardize gene expression and perform pairwise
homogenization procedure, as described in [154, 19]. Also, in each dataset we exclude the

5% of genes with lowest variance assuming them to be not informative.

Somatic copy number profiles

We remove unreliable segments from genome segmentation files for TCGA datasets and
assign every gene a value corresponding to the intensity log-ratio of the segment it overlaps.
If the gene overlaps more than one segment, we keep the most extreme log-ratio value.
Different from TCGA, the GDSCv1 and PDX datasets provided gene-level estimates of total
copy number. In order to make these data comparable with TCGA, we compute for every
gene the logarithm of its copy number divided by the ploidy of copy-neutral state in the
sample. Finally, for all four datasets we binarize gene-level copy number estimates assigning

zeros to copy-neutral genes and ones to all genes overlapping deletions or amplifications.

Somatic point mutations

Similarly with previous work [13, 20], we assign ones to genes carrying somatic point

mutations and zeros to all others.
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3.3.2 Experimental design
In our experiments, we investigated the following questions:

1. Does MOLI outperform single-omics and early integration baselines in terms of predic-
tion Area Under the Receiver Operating Characteristic curve (AUROC) and the Area
Under the Precision-Recall curve (AUPR) on PDX and patient data?

2. Does transfer learning work for targeted drugs, i.e. does MOLI trained on pan-drug

data outperform MOLI trained on drug-specific (single drug) data?

3. Finally, for the targeted drugs, does the predicted response by MOLI have associations
with the target of that drug?

We trained MOLI on GDSCv1 cell lines screened with Docetaxel, Cisplatin, Gemcitabine, Pa-
clitaxel, Erlotinib, and Cetuximab. We chose these drugs based on availability of PDX /patient
multi-omics data for these drugs which is necessary for external validations. We trained all
of the baselines for the same drugs and compared them to MOLI in terms of prediction
AUROC.

We compared MOLI against early integration via deep neural networks inspired by [20]
and early integration via non-negative matrix factorization (NMF) [155, 156], against the
single-omics (gene expression) ridge regression method proposed by [19], against an ordinary
feed forward network with classification loss trained on the expression data, and against
a version of MOLI trained only on the gene expression data. To test whether the triplet
loss contributes to improve the performance, we compared MOLI to a late integration feed
forward network with an architecture similar to MOLI but using only a classification loss.

Finally, to study transfer learning for the targeted drugs, we focused on drugs that target
the EGFR pathway because we have Cetuximab and Erlotinib that target this pathway in
the PDX dataset utilized for external validations. In addition, GDSCv1 was screened with
numerous drugs that target EGFR including: Afatinib, Cetuximab, Erlotinib, Gefitinib, and
Lapatinib. We used multi-omics data of all of these drugs in GDSCv1 and created a large
training set (>3,000 samples). We trained MOLI on this pan-drug data and compared the
results to MOLI which was trained on the drug-specific inputs.

We used 5-fold cross validation in most of the experiments to tune the hyper-parameters
of the deep neural networks based on the AUROC. The hyper-parameters tuned were number
of nodes in the hidden layers, learning rates, mini-batch size, weight decay, the dropout rate,
number of epochs, and margin and regularization term (only for the triplet loss). The ranges
considered for each hyper-parameter are as follows: Mini-batch size = [8, 16, 32, 64].
Number of nodes = [2048, 1024, 512, 256, 128, 64, 32, 16].

Margin = [0.5,1,1.5,2,2.5,3,3.5].
Learning rate = [0.1,0.5,0.01, 0.05,0.001, 0.005, 0.0001, 0.0005, 0.00001, 0.00005].
Number of epochs = [5, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 150, 200].
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Dropout rate = [0.3,0.4,0.5,0.6,0.7,0.8].
Weight decay = [0.1,0.01,0.001,0.1,0.0001].
Gamma = [0.1,0.2,0.3,0.4,0.5, 0.6].

Finally, the network was re-trained on the obtained hyper-parameters on the entire dataset
for that drug (train and validation). We used Adagrad for optimizing parameters in all of the
deep neural networks [157]. We used the Pytorch framework to implement all deep neural
networks codes. For the ridge regression pipeline, we downloaded the implemented pipeline
with leave-one-out cross validation provided by the original authors [19] and applied it to
our datasets. To make sure that both the downloaded pipeline and the way we preprocessed
the gene expression data is correct, we evaluated it on the datasets from the original paper
and got AUROCs for Docetaxel and Bortezomib comparable to those of [139]. For early
integration via NMF, we first concatenate the omics data types, and then train a NMF on the
the resulting matrix to learn the latent factors. Finally we train the [19] method (using the
learned factors as features) to predict the drug response. The final selected hyper-parameters
for MOLI are as follows:

PDX Paclitaxel:

64 (mini-batch size), 512, 256, 1024 (number of nodes in expression, mutation and CNA
subnetworks), 0.0005 (expression learning rate), 0.5 (mutation learning rate), 0.5 (CNA
learning rate), 0.5 (classifier learning rate), 0.4 (expression dropout), 0.4 (mutation dropout),
0.5 (CNA dropout), 0.0001 (weight decay), 0.3 (classifier dropout), 0.6 (gamma for regular-
ization), 10 (epochs), 0.5 (margin)

PDX Gemcitabine:

13 (mini-batch size), 256, 32, 64 (number of nodes in expression, mutation and CNA subnet-
works), 0.05 (expression learning rate), le—5 (mutation learning rate), 0.0005 (CNA learning
rate), 0.001 (classifier learning rate), 0.4 (expression dropout), 0.6 (mutation dropout), 0.3
(CNA dropout), 0.01 (weight decay), 0.6 (classifier dropout), 0.3 (gamma for regularization),
5 (epochs), 1.5 (margin)

PDX Erlotinib:

32 (mini-batch size), 64, 64, 64 (number of nodes in expression, mutation and CNA sub-
networks), 0.5 (expression learning rate), 0.5 (mutation learning rate), 0.1 (CNA learning
rate), 0.1 (classifier learning rate), 0.5 (expression dropout), 0.5 (mutation dropout), 0.5
(CNA dropout), 0.01 (weight decay), 0.5 (classifier dropout), 0.5 (gamma for regularization),
5 (epochs), 1 (margin)

PDX Cetuximab:

30 (mini-batch size), 256, 512, 128 (number of nodes in expression, mutation and CNA
subnetworks), 0.0001 (expression learning rate), 0.0005 (mutation learning rate), 0.0005
(CNA learning rate), 0.0005 (classifier learning rate), 0.3 (expression dropout), 0.8 (mutation
dropout), 0.8 (CNA dropout), 0.01 (weight decay), 0.4 (classifier dropout), 0.2 (gamma for

regularization), 10 (epochs), 2 (margin)
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TCGA Gemcitabine:

13 (mini-batch size), 16, 16, 16 (number of nodes in expression, mutation and CNA subnet-
works), 0.001 (expression learning rate), 0.0001 (mutation learning rate), 0.01 (CNA learning
rate), 0.05 (classifier learning rate), 0.5 (expression dropout), 0.5 (mutation dropout), 0.5
(CNA dropout), 0.001 (weight decay), 0.5 (classifier dropout), 0.6 (gamma for regularization),
10 (epochs), 2 (margin)

TCGA Docetaxel:

8 (mini-batch size), 16, 16, 16 (number of nodes in expression, mutation and CNA subnet-
works), 0.0001 (expression learning rate), 0.0005 (mutation learning rate), 0.0005 (CNA
learning rate), 0.001 (classifier learning rate), 0.5 (expression dropout), 0.5 (mutation
dropout), 0.5 (CNA dropout), 0.001 (weight decay), 0.5 (classifier dropout), 0.4 (gamma for
regularization), 10 (epochs), 0.5 (margin)

TCGA Cisplatin:

15 (mini-batch size), 128, 128, 128 (number of nodes in expression, mutation and CNA
subnetworks), 0.05 (expression learning rate), 0.005 (mutation learning rate), 0.005 (CNA
learning rate), 0.0005 (classifier learning rate), 0.5 (expression dropout), 0.6 (mutation
dropout), 0.8 (CNA dropout), 0.1 (weight decay), 0.6 (classifier dropout), 0.2 (gamma for
regularization), 20 (epochs), 0.5 (margin)

3.3.3 Results

Table 3.2 reports the performance of MOLI and the baselines in terms of AUROC.

First, we compared the complete MOLI (MOLI trained on multi-omics data and using
its combined objective function) to the early integration baselines. MOLI achieved better
performance in six out of seven external validation datasets compared to early integration
via deep neural networks. Moreover, MOLI also achieved better performance in all of the
external validation datasets compared to early integration via NMF. These results indicate
that multi-omics late integration outperforms multi-omics early integration.

Second, we compared MOLI trained on multi-omics data with two deep neural network
scenarios trained only on the gene expression data (one of them was MOLI itself). MOLI
trained on multi-omics data showed better performance in four out of seven external
validation datasets and tied in another dataset. These results indicate that deep neural
networks trained on multi-omics data achieve better performance than those trained on
single-omics data.

Third, we compared MOLI with MOLI without the triplet loss, both trained on multi-
omics input. MOLI with its combined objective function obtained better performance in five
out of seven external validation datasets and tied in another one. These results demonstrate
the contribution of the triplet loss to improving the prediction performance.

Finally, we compared MOLI against a single-omics non-deep neural networks baseline

which is the only published method for drug response prediction [19] that had been tested
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Table 3.2: Performance of different versions of MOLI compared to the baselines in terms of
prediction AUROC across two targeted therapeutics and five chemotherapy agents.

Method PDX PDX PDX PDX TCGA TCGA TCGA Input
P

Drug Paclitaxel Gemcitabine Cetuximab Erlotinib Docetaxel Cisplatin Gemcitabine omics
[19] 0.52 0.59 0.58 0.67 0.59 0.62 0.53 Expression
Early integration (NMF) 0.24 0.56 0.53 0.28 0.39 0.40 0.58 Multi
Early integration (DNNs)did not converge 0.66 did not converge did not converge 0.52 did not converge 0.59 Multi
Feed Forward Net 0.68 0.48 0.43 0.37 0.69 0.44 0.65 Expression
MOLI complete 0.69 0.52 0.51 0.39 0.63 0.75 0.64 Expression
MOLI with classifier did not converge 0.55 0.46 did not converge 0.58 0.6 0.69 Multi
MOLI complete 0.74 0.64 0.53 0.63 0.58 0.66 0.65 Multi
MOLI pan-drug not targeted not targeted 0.80 0.72 not targeted not targeted not targeted Multi

on patient data. MOLI achieved better performance in four out of seven external validation
datasets and tied with this baseline in another one. These experiments show the substantial
gain in predictive performance resulting from the combination of using multi-omics data,
deep neural networks, and the proposed objective function.

MOLI when trained on the pan-drug input (only applicable for targeted drugs), had
significantly better performance compared to itself when it was trained on the drug-specific
inputs for Erlotinib and Cetuximab. The majority of the baselines had either poor per-
formance or did not converge for Paclitaxel and Erlotinib. This means that during either
cross validation or final re-training with the obtained hyper-parameters the cost and/or
AUROC curves were fluctuating. This may be due to the small number of samples, because
both of these drugs had the fewest number of cell lines (~400). Also, we observed the lack
of convergence in the early integration baseline for four drugs which may be due to the
concatenation at the beginning because it increased the dimensionality substantially, which
makes feature learning harder for the autoencoder and later the classifier in this method.

MOLI achieved an AUROC of greater than 0.7 for four drugs (Paclitaxel, Cetuximab,
Erlotinib, and Cisplatin) which may be beneficial for precision oncology particularly for the
targeted drugs (Cetuximab and Erlotinib).

We also studied the area under precision-recall curve for MOLI and the main baselines
including the early integration methods and the [19] method (Figure 3.3). Compared to the
early integration methods, MOLI achieved better performance in four out of seven external
validation datasets and tied in two other datasets. Compared to the [19] single-omics baseline,
MOLI had better performance in six out of seven external validation datasets. We also
investigated the area under precision-recall curve for the pan-drug training data. MOLI
trained on pan-drug data had better performance in one external validation dataset and had
competitive performance in another one compared to MOLI trained on the drug-specific

input. All these results again suggest that MOLI may be beneficial for precision oncology.

Transfer learning for targeted drugs improves performance significantly

We observed that for the targeted drugs (in our experiment, EGFR inhibitors), MOLI trained
on the pan-drug multi-omics inputs achieved significantly better performance than MOLI
trained on drug-specific inputs. Pan-drug MOLI achieved an AUROC of 0.8 for Cetuximab
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Figure 3.3: Performance of MOLI and the baselines in terms of prediction AUPR, Red line
illustrates random predictors performance
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and 0.72 for Erlotinib which were significantly higher than the drug-specific performance
(Figure 3.4 for AUPR performance). This suggests that transfer learning can improve the

prediction performance for the targeted drugs.
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Figure 3.4: Performance of MOLI and the Pan-Drug MOLI in terms of prediction AUPR,
Red line illustrates random predictors performance

Predictions for TCGA patients by MOLI have associations with EGFR genes

We applied MOLI (trained on the pan-drug input for EGFR inhibitors) to multi-omics
data without drug response downloaded from TCGA (breast, bladder, pancreatic, lung,
kidney, and prostate cancers) and predicted the response for these patients. According to the
p-values obtained from multiple linear regression, there are a number of strong associations
between EGFR genes and the responses predicted by MOLI. For breast cancer, we observed
statistically significant associations between the level of expression in AP2A1 (P = 0.007),
CALM2 (P = 0.01), CLTA (P = 0.0002), EGFR (P =1 x 107%), PIK3CA (P = 0.007), and
UBA52 (P =3 x 1076) genes and the predicted responses. For prostate cancer, we found
that the predicted responses have statistically significant associations with the expression
of AKT1 (P =0.02), CDK1 (P = 0.01), RICTOR (P = 0.0002), CREB1 (P = 0.02), and
CSK (P = 0.01). In kidney cancer, expression of EGFR (P = 0.04) gene had association
with the predicted response. In lung cancer, we observed significant associations for CDC42
(P =0.04), EGFR (P = 3 x 107°), and PRKAR2A (P = 0.01) genes. However, for bladder

and pancreatic cancers, we did not observe any significant associations.

3.4 Discussion

We proposed MOLI, a Multi-Omics Late Integration method based on deep neural networks

to predict drug response. MOLI integrates somatic mutation, CNA, and gene expression data
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and predicts the drug responses. To the best of our knowledge, MOLI is the first end-to-end
method for multi-omics late integration with deep neural networks that utilizes a combined
objective function. Our experiments showed that MOLI with its combined objective function
can achieve better performance than single-omics and early integration multi-omics methods
based on deep neural networks. We also observed that transfer learning for targeted drugs
improves the prediction performance compared to drug-specific inputs. To the best of our
knowledge, this is the first method to use transfer learning with a pan-drug approach for
targeted drugs. Finally, we analyzed MOLI’s predictions for drugs targeting the EGFR
pathway on breast, kidney, lung, and prostate cancer patients in TCGA. We showed that
MOLI’s predictions have statistically significant associations with the level of expression for
some of the genes in the EGFR pathway, including the EGFR gene itself, for breast, kidney,
and lung cancers. We would like to point out the following directions for future research:

Although we used only somatic mutation, CNA, and gene expression data in our ex-
periments, MOLI can be extended for integrating other omics data types. For example,
proteomics data can be a good candidate because it has been shown to be a contributing
factor in pan-cancer drug response prediction [158] and is known to be in concordance with
the other omics data types [159, 160]. We performed experiments on transfer learning only
for the drugs that target EGFR, but this approach is also applicable for other families of
targeted drugs if multi-omics data is available for external validation. Another advantage
of the pan-drug approach is that there is no need to train separate pan-drug models for
each EGFR inhibitor, and one model can be validated on different external datasets. In
the drug-specific approach, we trained one model on Cetuximab data and another one
on Erlotinib data, and could not validate them on each other’s external validation data.
However, in the pan-drug approach, we trained one model for all of the EGFR inhibitors
and validated it on both Cetuximab and Erlotinib data.

While we studied only the triplet loss for optimizing the concatenated representation, we
note that this loss function can be replaced by other similar losses such as the contrastive loss
function which was used in the Siamese network [161]. We trained separate MOLI models
for different drugs, but it is an interesting direction for future research to utilize multi-task
learning [162] and predict the outcome for multiple drugs at the same time. Unlike areas
such as medical imaging, transfer learning is yet to be explored in genomics, especially cancer
genomics [163]. While in this thesis we explored transferring related samples (also known as
instance-transfer), other aspects of transfer learning such as relational-knowledge-transfer
[43] should be explored in the future.

In all of the experiments and utilized datasets, we used pan-cancer inputs. The advantage
of using pan-cancer multi-omics input is that it can address, to some degree, the challenge
of intertumor heterogeneity [164]. However, these datasets are not suitable for addressing
intratumor heterogeneity, which would require other resources such as single cell data.

Geeleher et al. [19] showed that training on non-breast cancer cell lines in addition to breast
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cancer cell lines leads to improved prediction accuracy. However, predictions were tested
only on breast cancer clinical trial cohort data and only for Docetaxel, a primary treatment
for breast cancer. Because some drug-cancer event associations are specific to the tissue of
origin and are less detectable in pan-cancer settings [13], we believe that further research in
this area is required to study the performance of pan-cancer versus cancer-specific training
data for a more diverse range of cancer types and for more drugs. We would like to point

out the following limitations of this study:

1. The datasets used were from different resources were not in the same format and
required substantial preprocessing and standardization. For example, different studies
used different pipelines to detect CNA and reported different estimates of copy number
which could not be compared directly. A similar issue was also observed for the drug
response. While the GDSCv1 cell lines used IC50 as the response measure, the majority
of datasets used other metrics to measure the response. For example, the PDX dataset
used tumor volume based on RECIST criteria to define responders and non-responders.
Therefore, lack of standardization on both the input and the output side adds extra

challenges to the drug response prediction task.

2. In this study we focused on monotherapy and did not explore the effect of the

combination of drugs.

3. We did not discriminate between driver and passenger events in the somatic mutation
and CNA data and treated all of them similarly. However, in reality, the majority of
these genomic alterations seem to have no impact on cancer development [165] and
might appear just by chance. Therefore, in future work, we plan to use another format

for these data types to distinguish between potential driver and passenger events.

4. All of the datasets used suffered from severely unbalanced class distributions, since
the number of responders was much smaller than the number of non-responders. We
addressed this problem by oversampling the minority class. However, this approach
often causes overfitting particularly for deep neural networks with many parameters.
We reduced overfitting with strong regularization such as high dropout rate and weight
decay. Moreover, using triplets as input of the network increased the number of samples
and led to a more stable network, due to the large number of different combinations

for triplets.

5. As a first investigation of late integration, we did not consider interactions between
genes in different omics data types in MOLI or the compared baselines. In reality,
genes do not function in isolation and work in biological networks and interact with
each other. Recently, [166] have shown that incorporating biological domain knowledge

from the Gene Ontology leads to more interpretable neural networks with performance

48



comparable to those of purely data-driven neural networks. Therefore, incorporating
domain expert knowledge to multi-omics late integration via deep neural networks is a

promising future direction.
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Chapter 4

Input and Output Space
Adaptation

This chapter is adapted based on a published article [61] under license CC BY-NC.

4.1 Problem definition

Given a labeled source domain DMg with a learning task Tg and a labeled target domain
DMy with a learning task Tr, where T # Tg, and p(X7) # p(Xs), where Xg, X7 € X, we
assume that the source and the target domains are not the same due to different probability
distributions. The goal of Adversarial Inductive Transfer Learning (AITL) is to utilize the
source and target domains and their tasks in order to improve the learning of Fr(.) on
DMry.

In the area of pharmacogenomics, the source domain is the gene expression data obtained
from the cell lines, and the source task is to predict the drug response in the form of IC50
values. The target domain consists of gene expression data obtained from patients, and the
target task is to predict drug response in a different form — often change in the size of tumor
after receiving the drug. In this setting, p(X7) # p(Xg) because cell lines are different from
patients even with the same set of genes.

Additionally, Y7 # Yg because for the target task Y € {0,1}, drug response in patients
is a binary outcome, but for the source task Yg € R™, drug response in cell lines is a

continuous outcome.

4.2 AITL: Adversarial Inductive Transfer Learning

Our proposed AITL method [61] takes input data from the source and target domains, and
achieves the following three objectives: first, it makes predictions for the target domain

using both of the input domains and their corresponding tasks, second, it addresses the
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discrepancy in the output space between the source and target tasks, and third, it addresses

the discrepancy in the input space. AITL is a neural network consisting of four components:

e The feature extractor receives the input data from the source and target domains and

extracts salient features, which are then sent to the multi-task subnetwork component.

e The multi-task subnetwork takes the extracted features of source and target samples
and maps them to their corresponding labels and makes predictions for them. This
component has a shared layer and two task-specific towers for regression (source task)
and classification (target task). Therefore, by training the multi-task subnetwork on
the source and target samples, it addresses the small sample size challenge in the
target domain. In addition, it also addresses the discrepancy in the output space by
assigning cross-domain labels (binary labels in this case) to the source samples (for

which only continuous labels are available) using its classification tower.

o The global discriminator receives extracted features of source and target samples and
predicts if an input sample is from the source or the target domain. To address the
discrepancy in the input space, these features should be domain-invariant so that
the global discriminator cannot predict their domain labels accurately. This goal is

achieved by adversarial learning.

e The class-wise discriminators further reduce the discrepancy in the input space by
adversarial learning at the level of the different classes, i.e., extracted features of source
and target samples from the same class go to the discriminator for that class and this
discriminator should not be able to predict if an input sample from a given class is

from the source or the target domain.

The AITL objective function consists of a classification loss, a regression loss, and global
and class-wise discriminator adversarial losses and is optimized end-to-end. An overview of

the proposed method is presented in figure 4.1.

4.2.1 Feature extractor

To learn salient features in lower dimensions for the input data, we design a feature extractor
component. The feature extractor is a one-layer fully-connected subnetwork with batch
normalization and the Rectified Linear Unit (ReLU) activation function that receives both

the source and target samples as input. We denote the feature extractor as f(.):

where Z denotes the extracted features for input X which is from either the source (S) or
the target (T') domain. In our driving application, the feature extractor learns features for

the cell line and patient data.
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Figure 4.1: Schematic overview of AITL First, the feature extractor receives source
and target samples and learns feature for them. Then, the multi-task subnetwork uses
these features to make predictions for the source and target samples and also assigns cross-
domain labels to the source samples. The multi-task subnetwork addresses the discrepancy
in the output space. Finally, to address the input space discrepancy, global and class-wise
discriminators receive the extracted features and regularize the feature extractor to learn
domain-invariant features.

4.2.2 Multi-task subnetwork

After extracting features of the input samples, we want to use these learned features to 1)
make predictions for target samples, and 2) address the discrepancy between the source and
the target domain in the output space. To achieve these goals, a multi-task subnetwork with
a shared layer ¢(.) and two task-specific towers Mg(.) and Mrp(.) is designed, where Mg is

for regression (the source task) and My is for classification (the target task):

The performance of the multi-task subnetwork component is evaluated based on a binary-
cross entropy loss for the classification task on the target samples and a mean squared loss

for the regression task on the source samples:

Lpce(Xr,Yr, f,9, Mr) = — > [yt log T + (1 — y¢) log(1 — )] (4.3)
(@e,ye)~(X7,YT)

LMSE(X57YS>f7gaMS) = 1/”5 Z (%—95)2 (44)
(xsays)N(XS’YS)
Where Yg and Y7 are the true labels of the source and the target samples, respectively,

ng denotes the number of samples in the source domain, and Lgcg and Ly;gg are the
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corresponding losses for the target and the source domains, respectively. The multi-task
subnetwork component outputs 1) the predicted labels for the target samples, and 2) the
assigned cross-domain labels for the source samples. The classification tower in the multi-task
subnetwork makes predictions for the source samples and assigns binary labels (responder
or non-responder) because such labels do not exist for the source samples. Therefore, the
multi-task subnetwork adapts the output space of the source and the target domains by
assigning cross-domain labels to the source domain. The multi-task subnetwork has a shared
fully-connected layer with batch normalization and the ReLU activation function. The
regression tower has two layers with batch normalization and the ReLLU activation function.
The classification tower also has two fully connected layer with batch normalization and
the ReLU activation function in the first layer and the Sigmoid activation function in the
second layer. In our driving application the multi-task subnetwork predicts IC50 values for
the cell lines and the binary response outcome for the patients. Moreover, it also assigns

binary labels to the cell lines which is similar to those of the patients.

4.2.3 Global discriminator

The goal of this component is to address the discrepancy in the input space by adversarial
learning of domain-invariant features. To achieve this goal, a discriminator receives source
and target extracted features from the feature extractor and classifies them into their
corresponding domain. The feature extractor should learn domain-invariant features to fool
the global discriminator. In our driving application the global discriminator should not be
able to recognize if the extracted features of a sample are from a cell line or a patient. This
discriminator is a one-layer subnetwork with the Sigmoid activation function denoted by

D¢ (.). The adversarial loss for Dg(.) is as follows:

Laavpe(Xs, X1, Da) = — > [log D(f(zs)] — > [log(l — Da(f(z)))]  (4.5)

zs~Xg e~ X

4.2.4 Class-wise discriminators

With cross-domain binary labels available for the source domain, AITL further reduces
the discrepancy between the input domains via class-wise discriminators. The goal is to
learn domain-invariant features with respect to specific class labels such that they fool
corresponding class-wise discriminators. Therefore, extracted features of the target samples
in class 7, and those of the source domain which the multi-task subnetwork assigned to class

i, will go to the discriminator for class i. We denote such a class-wise discriminator as DCj.
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The adversarial loss for DC; is as follows:

Laawpc,(Xs,Ys, X1, Yr, DC;) = — > [log DC;(f(ws))]
(ISWS)N(XS»YS)
— > g1~ DCi(f(a)))] (4.6)

(ze,y¢)~(XT,YT)

In our driving application the class-wise discriminator for the responder samples should not
be able to recognize if the extracted features of a responder sample are from a cell line or a
patient (similarly for a non-responder sample). Similar to the global discriminator, class-wise
discriminators are also one-layer fully-connected subnetworks with the Sigmoid activation

function.

4.2.5 Objective function

To optimize the entire network in an end-to-end fashion, we design the objective function as

follows:
J = Lpce + Luse + A\aLadvpg + Apc Y, Ladvpe, (4.7)

7
Where, A\g and Apc are adversarial regularization coefficients for the global and class-wise

discriminators, respectively.

4.3 Experimental results
4.3.1 Datasets

In our experiments, we used the following datasets (See Table 4.1 for more detail):

o The Genomics of Drug Sensitivity in Cancer (GDSCv1) cell lines dataset, consisting
of a thousand cell lines from different cancer types, screened with 265 targeted and

chemotherapy drugs. [13]

o The Patient-Derived Xenograft Encyclopedia (PDXE) dataset, consisting of more
than 300 PDX samples for different cancer types, screened with 34 targeted and
chemotherapy drugs. [11]

o TCGA [25] containing a total number of 117 patients with diverse cancer types, treated
with Cisplatin, Docetaxel, or Paclitaxel [26].

o Patient datasets from nine clinical trial cohorts containing a total number of 491
patients with diverse cancer types, treated with Bortezomib [167, 168], Cisplatin
[169, 170], Docetaxel [171, 172, 173], or Paclitaxel [171, 174, 175]. For the categorical

measures of the drug response such as response evaluation criteria in solid tumors
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Table 4.1: Characteristics of the datasets utilized in AITL method

Dataset Resource Drug Usage Sample Size
GSE55145 [167] clinical trial Bortezomib target 67
GSE9782-GPL96 [168] clinical trial Bortezomib target 169
GDSCv1 [13] cell line Bortezomib source 391
GSE18864 [169] clinical trial Cisplatin target 24
GSE23554 [170] clinical trial Cisplatin target 28
TCGA [26] patient Cisplatin target 66
GDSCv1 [13] cell line Cisplatin source 829
GSE25065 [171] clinical trial Docetaxel — target 49
GSE28796 [172] clinical trial Docetaxel — target 12
GSE6434 [173] clinical trial Docetaxel — target 24
TCGA [26] patient Docetaxel  target 16
GDSCv1 [13] cell line Docetaxel ~ source 829
GSE15622 [175] clinical trial Paclitaxel ~ target 20
GSE22513 [174] clinical trial Paclitaxel — target 14
GSE25065 [171] clinical trial Paclitaxel ~ target 84
PDX [11] animal (mouse) Paclitaxel — target 43
TCGA [26] patient Paclitaxel ~ target 35
GDSCv1 [13] cell line Paclitaxel ~ source 389

(RECIST), we consider complete response and partial response as responder (class 1)

and consider stable disease and progressive disease as non-responder (class 0).

o the Cancer Genome Atlas (TCGA) cohorts including, breast (BRCA), prostate (PRAD),
lung (LUAD), kidney (KIRP), and bladder (BLCA) cancers that do not have the drug

response outcome.

The GDSCv1 dataset was used as the source domain, and all the other datasets were used as
the target domain. For the GDSCv1 dataset, raw gene expression data were downloaded from
ArrayExpress (E-MTAB-3610) and response outcomes from https:/www.cancerrxgene.org
release 7.0. Gene expression data of TCGA patients were downloaded from the Firehose
Broad GDAC (version published on 28.01.2016) and the response outcome was obtained
from [26]. Patient datasets from clinical trials were obtained from the Gene Expression
Omnibus (GEO), and the PDX dataset was obtained from the supplementary material of
[11]. For each drug, we selected those patient datasets that applied a comparable measure of
the drug response. For preprocessing, the same procedure was adopted as described in the
supplementary material of [40] for the raw gene expression data (normalized and z-score
transformed) and the drug response data. After the preprocessing, source and target domains

had the same number of genes.
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4.3.2 Experimental design

We designed our experiments to answer the following four questions:

1. Does AITL outperform baselines that are trained only on cell lines and then evaluated
on patients (without transfer learning)? To answer this question, we compared AITL
against [19] and MOLI [40] which are state-of-the-art methods of drug response
prediction that do not perform domain adaptation. The [19] is non-deep learning
method based on ridge regression and MOLI is a deep learning-based method. Both of

them were originally proposed for pharmacogenomics.

2. Does AITL outperform baselines that adopt adversarial transductive transfer learning
and non-deep learning adaptation (without adaptation of the output space)? To answer
this question, we compared AITL against ADDA [58] and the method of [57], state-of-
the-art methods of adversarial transductive transfer learning with global and class-wise
discriminators, respectively. For the non-deep learning baseline, we compared AITL to
PRECISE [41], a non-deep learning domain adaptation method specifically designed

for pharmacogenomics.

3. Does AITL outperform a baseline for inductive transfer learning? To answer this
question, we compared AITL against ProtoNet [93] which is a state-of-the-art inductive

transfer learning method for small numbers of examples per class.

4. Finally, do the predicted responses by AITL for TCGA patients have associations with
the targets of the studied drug?

Based on the availability of patient/PDX datasets for a drug, we experimented with four
different drugs: Bortezomib, Cisplatin, Docetaxel, and Paclitaxel. It is important to note that
these drugs have different mechanisms and are being prescribed for different cancers. For
example, Docetaxel is a chemotherapy drug mostly known for treating breast cancer patients
[173], while Bortezomib is a targeted drug mostly used for multiple myeloma patients [167].
Therefore, the datasets we have selected cover different types of anti-cancer drugs.

In addition to the experimental comparison against published methods, we also performed
an ablation study to investigate the impact of the different AITL components separately.
AITL—AD denotes a version of AITL without the adversarial adaptation components, which
means the network only contains the multi-task subnetwork. AITL—D¢g denotes a version of
AITL without the global discriminator, which means the network only employs the multi-task
subnetwork and class-wise discriminators. AITL—DC denotes a version of AITL without the
class-wise discriminators, which means the network only contains the multi-task subnetwork
and the global discriminator.

All of the baselines were trained on the same data, tested on patients/PDX for these drugs,

and eventually compared to AITL in terms of prediction Area Under the Receiver Operating
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Characteristic curve (AUROC) and the Area Under the Precision-Recall curve (AUPR).
Since the majority of the studied baselines cannot use the continuous log(IC50) values in the
source domain, binarized log(IC50) labels provided by [13] using the Waterfall approach [18]
were used to train them. Finally, for the minimax optimization, a gradient reversal layer was
employed by AITL and the adversarial baselines [176] which is a well-established approach
in domain adaptation [46, 56, 84].

We performed 3-fold cross validation in the experiments to tune the hyper-parameters of
AITL and the baselines based on the AUROC. Two folds of the source samples were used
for training and the third fold for validation, similarly, two folds of the target samples were
used for training and validation, and the third one for the test. The reported results refer to
the average and standard deviation over the test folds.

The hyper-parameters tuned for AITL were the number of nodes in the hidden layers,
learning rates, mini-batch size, the dropout rate, number of epochs, and the regularization
coeflicients. We considered different ranges for each hyper-parameter. The selected hyper-
parameters for AITL are as follows:

Bortezomib:

1024 (number of nodes in the layer of the feature extractor), 1024 (number of nodes in the
shared layer of the multi-task subnetwork), 1024 (number of nodes in the hidden layer of the
regression tower), 0.0005 (learning rate), 0.2 and 0.4 (regularization for global and class-wise
discriminators), 16 and 16 (mini-batch size for the source and target domains), 0.4 (dropout
rate), 10 (epoch).

Cisplatin:

512 (number of nodes in the hidden layer of the feature extractor), 16 (number of nodes
in the shared layer of the multi-task subnetwork), 16 (number of nodes in the hidden layer
of the regression tower), 0.05 (learning rate), 0.3 and 0.3 (regularization for global and
class-wise discriminators), 32 and 8 (mini-batch size for the source and target domains),
0.15 (dropout rate), 25 (epoch).

Docetaxel:

256 (number of nodes in the hidden layer of the feature extractor), 512 (number of nodes in
the shared layer of the multi-task subnetwork), 512 (number of nodes in the hidden layer
of the regression tower), 0.0001 (learning rate), 0.8 and 0.6 (regularization for global and
class-wise discriminators), 32 and 32 (mini-batch size for the source and target domains),
0.5 (dropout rate), 35 (epoch).

Paclitaxel:

1024 number of nodes in the layer of the feature extractor), 1024 (number of nodes in the
shared layer of the multi-task subnetwork), 1024 (number of nodes in the hidden layer of the
regression tower), 0.0001 (learning rate), 0.9 and 0.3 (regularization for global and class-wise
discriminators), 32 and 32 (mini-batch size for the source and target domains), 0.5 (dropout
rate), 20 (epoch).
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Table 4.2: Performance of AITL and the baselines in terms of prediction AUROC

Method/Drug Bortezomib Cisplatin Docetaxel Paclitaxel

Geeleher et al. [19]  0.48 0.58 0.55 0.53

MOLI [40] 0.57 0.54 0.54 0.53

PRECISE [41] 0.54 0.59 0.52 0.56

Chen et al. [57] 0.54£0.07 0.60£0.14  0.52£0.02  0.58+0.04
ADDA [58] 0.51£0.06 0.56£0.06  0.48+£0.06  did not converge
ProtoNet [93] 0.4940.01 0.40£0.003 0.40£0.01 did not converge
AITL-AD 0.69+0.03 0.57£0.03  0.57£0.05  0.58£0.01
AITL—Dg 0.69£0.04 0.62+0.1 0.48+0.03 0.62+0.02
AITL-D¢ 0.69+0.03 0.54+0.1 0.59£0.07  0.5940.03

AITL 0.74+0.02 0.66+0.02 0.64+0.04 0.61£0.04

Finally, each network was re-trained on the selected settings using the train and validation
data together for each drug. We used Adagrad for optimizing the parameters of AITL
and the baselines [157] implemented in the PyTorch framework, except for [19] which was
implemented in R. We used the author’s implementations for [19], MOLI, PRECISE, and
ProtoNet. For ADDA, we used an existing implementation from https://github.com/
jvanvugt/pytorch-domain-adaptation, and we implemented the method of [57] from

scratch.

4.3.3 Results

Table 4.2 and Figure 4.2 report the performance of AITL and the baselines in terms of
AUROC and AUPR, respectively. To answer the first experimental question, AITL was
compared to the baselines which do not use any adaptation (neither the input nor the
output space), i.e. [19] and MOLI [40], and AITL demonstrated a better performance in
both AUROC and AUPR for all of the studied drugs. This indicates that addressing the
discrepancies in the input and output spaces leads to better performance compared to
training a model on the source domain and testing it on the target domain. To answer the
second experimental question, AITL was compared to state-of-the-art methods of adversarial
and non-deep learning transductive transfer learning, i.e. ADDA [58], the method of [57],
and PRECISE [41], which address the discrepancy only in the input space. AITL achieved
significantly better performance in AUROC for all of the drugs and for three out of four
drugs in AUPR (the results of [57] for Cisplatin were very competitive with AITL). This
indicates that addressing the discrepancies in the both spaces outperforms addressing only
the input space discrepancy. Finally, to answer the last experimental question, AITL was
compared to ProtoNet [93] — a representative of inductive transfer learning with input space
adaptation via few-shot learning. AITL outperformed this method in all of the metrics for

all of the drugs.
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Figure 4.2: Performance of AITL and the baselines in terms of prediction AUPR

We note that the methods of drug response prediction without adaptation, namely
[19] and MOLI, outperformed the method of inductive transfer learning based on few-
shot learning (ProtoNet). Moreover, these two methods also showed a very competitive
performance compared to the methods of transductive transfer learning (ADDA, the method
of [57], and PRECISE). For Paclitaxel, ADDA did not converge in the first step (training a
classifier on the source domain), which was also observed in another study [40]. ProtoNet
also did not converge for this drug.

We observed that AITL, when all of its components are used together, outperforms
additional baselines with modified versions of AITL. This indicates the importance of both
input and output space adaptation. The only exception was for the drug Paclitaxel, where
AITL—D¢ outperforms AITL. We believe the reason for this is that this drug has the
most heterogeneous target domain (see Table 3.1), and therefore the global discriminator
component of AITL causes a minor decrease in the performance. Our ablation study showed
that the global discriminator and the class-wise discriminators are not redundant and, in fact,
each of them plays a unique constructive role in learning the domain-invariant representation.

All these results indicate that addressing the discrepancies in the input and output spaces
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between the source and target domains, via the AITL method, leads to a better prediction

performance.

AITL predictions for TCGA patients have significant associations with
target genes

To answer the last experimental question, we applied AITL models (trained on Docetaxel,
Bortezomib, and Paclitaxel) to the gene expression data without known drug response from
TCGA (breast, prostate, lung, kidney, and bladder cancers) and predicted the response for
these patients separately. Based on the corrected p-values obtained from multiple linear
regression, there are a number of statistically significant associations between the target
genes of the studied drugs and the responses predicted by AITL.

For example, in breast cancer, we observed statistically significant associations in MAP4
(P < 1 x 1071%) for Doxetaxel, BLC2 (P = 1.7 x 107%) for Paclitaxel, and PSMA4
(P = 4.7 x 107%) for Bortezomib. In prostate cancer, we observed statistically significant
associations in MAP2 (P < 1 x 10719) for Docetaxel, TUBB (P < 1 x 1071) for Paclitaxel,
and RELA (P = 2.2 x 107%) for Bortezomib. For bladder cancer, NR112 (P = 0.04) for Doc-
etaxel, MAP4 (P < 1 x 10719) for Paclitaxel, and PSMA4 (P = 0.001) for Bortezomib were
significant. In kidney cancer, BLC2 (P = 5.4 x 1078) for Docetaxel, MAPT (P < 1 x 10710)
for Paclitaxel, and PSMD2 (P = 1 x 107°) for Bortezomib were significant. Finally, in lung
cancer, MAP4 (P < 1 x 1071) for Docetaxel, TUBB (P < 1 x 107!0) for Paclitaxel, and
RELA (P < 1 x 10719) for Bortezomib were significant.

4.4 Discussion

The obtained results from the association study are in concordance with previous studies.
For example, we observed that Microtubule-Associated Proteins (MAPs) were significant
for Docetaxel and Paclitaxel in the studied cancers which aligns with previous research on
this family of proteins [177, 178, 179]. For Bortezomib, we observed significant associations
for different proteasome subunits such as subunit alpha (PSMA) and beta (PSMB). These
subunits have been shown to be key players across different cancers [180, 181, 182]. We also
observed significant associations for RELA (also known as Transcription Factor p65) in all
of the studied cancers which aligns with its oncogenic role across different cancers [183], and
moreover, with its reported associations with Bortezomib in breast cancer [184], prostate
cancer [185], and lung cancer [186].

AITL can be quite sensitive to the selection of hyper-parameters, especially to the
learning rate, number of training epochs, and the dropout rate. We observe that lower
learning rates tend to yield better performance for the AITL models. In addition, a smaller

number of training epochs also tends to produce better results, which makes sense because
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we have limited amounts of training data, and training with higher epochs would overfit
the model. Lastly, we observe that dropout rates of around 0.4 — 0.5 result in the highest
performing AITL models.

To our surprise, ProtoNet, and ADDA could not outperform [19], MOLI, and PRECISE.
For ProtoNet, this may be due to the depth of the backbone network. A recent study
has shown that a deeper backbone improves ProtoNet performance significantly in image
classification [94]. However, in pharmacogenomics, employing a deep backbone is not realistic
because of the much smaller sample size compared to an image classification application.
Another limitation for ProtoNet is the imbalanced number of training examples in different
classes in pharmacogenomics datasets. Specifically, the number of examples per class in the
training episodes is limited to the number of samples of the minority class as ProtoNet requires
the same number of examples from each class. For ADDA, this lower performance may be
due to the lack of end-to-end training of the classifier along with the global discriminator
of this method. The reason is that end-to-end training of the classifier along with the
discriminators improved the performance of the second adversarial baseline [57] in AUROC
and AUPR compared to ADDA. Moreover, the method of [57] also showed a relatively better
performance in AUPR compared to [19] and MOLL

In pharmacogenomics, patient datasets with drug response are small or not publicly
available due to privacy and /or data sharing issues. We believe including more patient samples
and more drugs will increase generalization capability. In addition, recent pharmacogenomics
studies have shown that using multi-omics data works better than using only gene expression
[40]. In this work, we did not consider genomic data other than gene expression data due
to the lack of patient samples with multi-omics data and drug response data publicly
available; however, in principle, AITL can be extended to work with such data by adding
separate feature extractors for each omics data type. This approach is particularly crucial
if the different data types have different dimensionalities. Last but not least, we used
pharmacogenomics as our motivating application for this new problem of transfer learning,
but we believe that AITL can also be employed in other applications.

For example, in slow progressing cancers such as prostate cancer, large patient datasets
with gene expression and short-term clinical data (source domain) are available, however,
patient datasets with long-term clinical data (target domain) are small. AITL may be
beneficial to learn a model to predict these long-term clinical labels using the source
domain and its short-term clinical labels [187]. Finally, although we designed the multi-task
subnetwork for a regression task on the source domain and a classification task on the target
domain, in principle, AITL can easily be modified to incorporate different types of outputs.

We observed that predictions for TCGA samples tend to have a low variance. We believe
the reason for that is first, we created target domains by pooling together samples from
different patient datasets treated with the same drug; however, in reality each dataset has

its own discrepancies compared to the other datasets within each target domain. Second,
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we trained the model using pan-cancer cell lines, however, the patient samples were cancer
specific due to the lack of pan-cancer patient data with drug response which makes the
trained model less applicable for pan-cancer resources such as TCGA.

For future research directions, we believe that the TCGA dataset consisting of gene
expression data of more than 12,000 patients (without drug response outcome) can be
incorporated in an unsupervised transfer learning setting to learn better features that are
domain-invariant between cell lines and cancer patients. The advantage of this approach is
that we can keep the valuable patient datasets with drug response as an independent test
set and not use it for training/validation. Another possible future direction is to incorporate
domain-expert knowledge into the structure of the model. A recent study has shown that
such a structure improves the drug response prediction performance on cell line datasets

and, more importantly, provides an explainable model as well [59].
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Chapter 5

Out-of-distribution Generalization

This chapter is adapted based on a published article [188] under license CC BY-NC.

5.1 Problem definition

A domain DM is defined by a raw input space X, a probability distribution p(X) and a
corresponding dataset X = {z1,x2,...,zn} with z; € X. A task T = {Y,F(.)} is associated
with DM = {X,p(X)} and is defined by a label space Y € Y and a predictive function F(.)
which is learned from training data (X,Y) € X x Y. In our case, Y € [0, 1], which makes
drug response prediction a regression problem.

Given multiple labeled and unlabeled source domains denoted by DM* = {DM}}!, and
DMY = {DM #}7%,, the goal is to learn the predictive function F(.) which is implemented
through a neural network. F(.) consists of a shared (across all source domains) feature
extractor Fy(X) parameterized by 6, which maps X to latent features Z, and domain-specific
predictors sti parametrized by ¢;, which takes Z; (the extracted features of DM;) as input
and makes predictions (of the drug response) Y; for this source domain. 6 and ¢;;, are being
optimized using an objective function J(DM%*, DMY 0, {¢;}iL,) = (DML, 0,{¢;} ) +
QDML DMY 0,{¢;},), with a supervised loss [(.) and some regularization terms €(.).

In drug response prediction, we have access to labeled source domains such as cell line
datasets and unlabeled source domains such as cancer patients in the Cancer Genome Atlas
(TCGA) and the goal is to learn a model that makes accurate predictions on patients,
Patient-derived Xenografts (PDXs), or other cell lines as target domains that it may see dur-
ing deployment. This is similar to out-of-distribution generalization (also known as domain
generalization), where the goal is to optimize parameters of the model (0 and {¢;};",) in
order to make the model generalizable and predictive of unseen domains. Out-of-distribution
generalization assumes that there exists a d-dimensional latent feature space Z € R? that is

invariant, predictive, and generalizable to seen and unseen domains in this given space.
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5.2 Velodrome

The proposed Velodrome method [188] takes gene expression and AAC of cell line datasets
(Genomics of Drug Sensitivity in Cancer— GDSCv2 and The Cancer Therapeutics Response
Portal-CTRPv2) as well as gene expression of patients without drug response (TCGA
dataset) and learns a predictive and generalizable representation. To achieve this, Velodrome
employs a shared feature extractor, which takes the gene expression of CTRPv2 and GDSCv2
samples and maps them to a shared feature space, and domain-specific predictors (e.g. one for
CTRPv2 and one for GDSCv2), which take the feature representation of the gene expression
and predicts the drug response.

The parameters are optimized using a novel objective function consisting of three loss
components. 1) a standard supervised loss to make the representation predictive of drug
response, 2) a consistency loss to exploit unlabeled samples in learning the representation,
and 3) an alignment loss to make the representation generalizable. The idea of the standard
supervised loss is to make the representation predictive of the drug response via a mean-
squared loss.

To incorporate unlabeled patient samples, we add a consistency loss. The idea is to
first extract features from patient samples using the feature extractor and then assign
pseudo-labels to them by utilizing the predictors associated with CTRPv2 and GDSCv2. The
consistency loss takes the pseudo-labels (i.e., predictions) from the predictors and regularizes
the parameters of the feature extractor and the predictors by the 12distance between the
predictions of CTRPv2 predictor and those of the GDSCv2 predictor.

Finally, to make the feature representation generalizable, we add an alignment loss that
regularizes the parameters of the feature extractor. This alignment loss takes the extracted
features of any two input domains (eg., CTRPv2 and TCGA or CTRPv2 and GDSCv2)
and minimizes the difference between the covariance matrices of those domains. Figure 5.1

illustrates the schematic overview of the Velodrome method.

5.2.1 Shared feature extractor

To map the raw input gene expression data to the latent space, Velodrome utilizes a feature

extractor which is shared across all labeled and unlabeled source domains:
7! = Fy(X)),j € {l,u},i € DM/, (5.1)

where, Zij denotes the features extracted by the feature extractor Fy(.) from X f , the samples
obtained from the i — th domain of type j (labeled or unlabeled). These extracted (latent)

features will be provided as input to the domain-specific predictors.
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Figure 5.1: The schematic overview of the Velodrome method with three source
domains (two labeled and one unlabeled). (A) At training time, the feature extractor
receives data from different source domains and extracts high-level abstract features. The
extracted features of each labeled domain (cell line dataset) are input to the corresponding
domain-specific predictor. Predictions are used to optimize the parameters of the predictors
and the feature extractor via a standard supervised loss function. The extracted features of
the unlabeled domain (patient dataset) are input to both predictors, and the predictions are
used to optimize the parameters of predictors and the feature extractor via a consistency loss
function. The extracted features of all source domains are used to optimize the parameters
of the feature extractor via an alignment loss function. (B) At test time, the trained
Velodrome model receives samples from different target domains, extracts features and makes
predictions using the trained predictors. The predictions are then averaged to generate the
final predictions for each sample.

5.2.2 Domain-specific predictors

To make predictions for the samples in the source domains, Velodrome utilizes n; domain-
specific predictors, meaning the number of domain-specific predictors that Velodrome utilizes

is the same as the number of labeled source domains. These predictors are formulated as
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follows:
Yl =G (2), (5.2)

where, Y;l denotes the predictions for the ¢ —th labeled source domain obtained from predictor
Gsz() associated with the ¢ — th labeled source domain and parameterized by ¢;. These
predictions will be utilized to optimize the parameters of the feature extractor and the i — th

predictor.

5.2.3 Supervised loss

To make the extracted latent features predictive of the drug response, Velodrome utilizes a

standard supervised loss as follows:
n; .
(DM, 0, {oi}iy) = 1/m Yy |IY] = Y11, (5.3)
i=1

where, [(.) denotes a standard supervised loss function in the form of the mean squared error
(MSE). It is important to note that the parameters of the feature extractor are optimized by
the total supervised loss but the parameters of the ¢« — th predictor are optimized only by
the MSE of predictions of the 7 — th predictor.

5.2.4 Alignment loss

Optimizing the parameters of the Velodrome model using only the supervised loss is likely
to lead to overfitting to the labeled source domains. Therefore, we need an additional loss
function to avoid overfitting to the source domains and to make the latent representation
generalizable to unseen domains. To achieve this, Velodrome utilizes the CORAL loss function
that regularizes the covariance matrices across input domains and has demonstrated state-
of-the-art performance for learning invariant representations in computer vision applications
[49, 66]. The CORAL loss is defined as follows:
n nu

CORAL(DM", DMV, 0,{¢:};L,) = > > _IC(Z])) = C(Z!)|[3» (5.4)
j=14i=1

where, C(.) is the covariance operator which receives the extracted features of a source
domain and returns the covariance matrix of those features as follows:
n — [—
C(Z)=1/n) (Xi — Xi)(X; - X))T, (5.5)
i=1

where, n is the number of samples and X denotes the mean vector. Regularizing the
covariance matrices across source domains ensures learning invariant feature vectors. It

is important to note that the objective function of Velodrome requires a combination of
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supervised and alignment loss because optimizing only the alignment loss is likely to lead to

a trivial “zero” solution where all domains are mapped to the same point [49].

5.2.5 Consistency loss

Aligning the extracted features of the different domains imposes a strict constraint on
learning an invariant latent representation because it disregards the unique domain-specific
aspects of different source domains. To alleviate this, Velodrome utilizes a consistency loss
to ensure that it learns a hypothesis invariant representation, i.e. predictions across source
domains are similar when using different predictors. For example, if we have two predictors
Gfm_ and G! . we want them to generate similar predictions for the same unlabeled source

domain. This consistency loss is defined as follows:
CON(DM*.0,{¢:}1L,) = MSE[GL, (2%). G (2")]. (5.6)
where, Z" are extracted features for samples in a given unlabeled source domain.
5.2.6 Objective function
Putting all of the loss functions together, the objective function of Velodrome is as follows:
J(DM*, DMY,0,{¢:}i%,) = (DM",0, {¢:})) + QDM", DM, 0, {¢:}L),  (5.7)
where, the regularization function Q(.) that we defined in the problem definition is given by:
QDM*, DMY,0,{¢:};L,) = (5.8)

ACON(DMY,0,{¢:}7,) + (1 — \)CORAL(DM* , DMV 0, {¢:}1,).

where, A denote the regularization coefficients for the alignment loss and consistency loss. The
Velodrome regularization coefficients enables the model to have a trade-off between learning
domain-invariant and hypothesis-invariant features because the alignment loss ensures
learning domain-invariant features and the consistency loss ensures learning hypothesis-

invariant features.

5.2.7 Velodrome at test time

For a target sample z;,Velodrome makes prediction as follows:
Ui = wiGy, (Fy(x)), (5.9)
i

where, w;denotes the average supervised loss for the predictions of G,, normalized via a

softmax function such that >, w; = 1. This means the final prediction will be a result of a
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weighted average of all predictors, and more accurate predictors will have higher weights.

5.3 Experimental results

A method of domain generalization (out-of-distribution generalization) for drug response
prediction may take pre-clinical or clinical samples during deployment. Therefore, we selected
datasets and designed experiments to investigate Velodrome performance on cell lines, PDXs,
and patients. Moreover, we evaluate the Velodrome performance by comparison to the
state-of-the-art methods of domain generalization, domain adaptation, and semi-supervised

learning.

5.3.1 Datasets

We employed the following resources for domain generalization:

o Patients without drug response: more than 1,500 samples obtained from TCGA [25]

breast cancer, lung cancer, and pancreatic cancer cohorts with RNA-seq data.

o Cell lines with drug response: The Cancer Therapeutics Response Portal (CTRPv2),
The Genomics of Drug Sensitivity in Cancer (GDSCv2), and The Genentech Cell Line
Screening Initiative (gCSI) pan-cancer datasets with a total of more than 2000 samples
with RNA-seq data and AAC as the measure of the drug response across 11 drugs
(in common for the three datasets). These datasets are generated via the same drug
screening assay (CellTiter Glo) and are preprocessed using the PharmacoGx package
[189]. We chose AAC as the measure of drug response because it is shown to be a
better metric compared to IC50 [125, 190]. Similarly, CTRPv2 has been shown to
outperform GDSCvl in training drug response predictors [190]. We focused on the
following drugs for this thesis: Erlotinib, Docetaxel, Paclitaxel, and Gemcitabine. All
datasets were downloaded from ORCESTRA platform [134].

e PDX samples with drug response: PDXE is a collection of more than 300 PDX samples
with RNA-seq data screened with 34 drugs. We use the reported measure of response in
response evaluation criteria in solid tumors (RECIST) [42] for Gemcitabine, Erlotinib,

and Paclitaxel obtained from supplementary material of [11].

o Patients with drug response: 2 cancer-specific datasets with microarray data and
RECIST as the measure of drug response for Docetaxel [171], Paclitaxel [171], and
Erlotinib [191]. Plus, a pan-cancer dataset obtained from TCGA patients treated with
Gemcitabine [26]. We use clinical annotations of the drug response for some patients

which were obtained from supplementary material of [26].
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All gene names were mapped to Entrez gene ids. The expression data is obtained before
treatment and the response outcome after treatment. We reduced the number of genes to
2128 genes obtained from [192]. After the preprocessing, all the available datasets for each
drug had the same number of genes. We focused on these TCGA datasets because they are
the most common cancer types across the available cell line datasets and also the drug for
which we could find clinical datasets with drug response have been reported effective for

them. Table 5.1 provides some characteristics of the employed datasets.

5.3.2 Experimental design

Drug response prediction using multiple labeled and unlabeled domains can be viewed in
three approaches: 1) under the assumption that there is no data discrepancy, it can be viewed
as a semi-supervised learning problem, 2) under the assumption that unlabeled patient
samples are proxies to future patients, it can be viewed as an unsupervised domain adaptation
problem, and 3) under the assumption that a generalizable representation can be obtained
via only labeled domains, it can be viewed as a supervised domain generalization problem.
It is important to note that there is no method of semi-supervised domain generalization for
drug response prediction which is the main contribution of the Velodrome method.

To evaluate the performance of Velodrome, we compared it against the state-of-the-
art methods of each approach. For the first approach, we compared Velodrome to Mean
Teacher [147] which is the state-of-the-art deep neural network for semi-supervised learning
[150]. For the second approach, we compared Velodrome to PRECISE [41] as a non-deep
learning method based on subspace alignment and [193] as a deep learning method based on
adversarial domain adaptation via disagreement between predictors. Finally, for the third
approach, we compared Velodrome to Ridge regression as a non-deep learning baseline and
DeepAll as a deep learning baseline. Both of them are categorized as methods of empirical
risk minimization (ERM). ERM methods achieve state-of-the-art performance for out-of-
distribution generalization [66]. They are trained in a supervised fashion by merging all

available labeled input domains.

Data Preprocessing

We obtained all cell line datasets from the ORCESTRA platform [134] which stores phar-
macogenomics datasets in PharmacoSet (PSet) R objects. Samples with missing values
were removed from both the gene expression and drug response data. The cell line datasets
were generated via the same drug screening assay (CellTiter Glo) preprocessed using the
PharmacoGx package [189]. We also removed all the cell lines originating from non-solid
tissue types from the cell line datasets.

We obtained the TCGA dataset via the Firehose (http://gdac.broadinstitute.org/)
28.01.2016. Expression values were converted to TPM and log2-transformed. The PDX and

clinical trial datasets were preprocessed similar to the approach described in [40]).
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Table 5.1: Characteristics of the datasets utilized in the Velodrome method

Dataset Drug Type Domain Label Tissue # Samples Genes
CTRPv2 Docetaxel Cell line  Source AAC Solid 292 1453
GDSCv2 Docetaxel Cell line Source AAC Solid 234 1453
TCGA-LUAD Docetaxel Patient  Source Unlabeled  Solid 507 1453
TCGA-BRCA Docetaxel Patient  Source Unlabeled  Solid 1051 1453
TCGA-PAAD Docetaxel Patient  Source Unlabeled  Solid 131 1453
gCSI Docetaxel Cell line Target AAC Solid 280 1453
GSE25065D Docetaxel Patient  Target RECIST  Solid 51 1453
CTRPv2 Gemcitabine Cell line Source AAC Solid 514 2080
GDSCv2 Gemcitabine Cell line Source AAC Solid 226 2080
TCGA-LUAD Gemcitabine Patient  Source Unlabeled Solid 507 2080
TCGA-BRCA Gemcitabine Patient  Source Unlabeled Solid 1051 2080
TCGA-PAAD Gemcitabine Patient  Source Unlabeled Solid 131 2080
gCSI Gemcitabine Cell line Target AAC Solid 277 2080
TCGA-Gem Gemcitabine Patient  Target RECIST  Solid 66 2080
PDXE Gemcitabine PDX Target RECIST  Solid 25 2080
CTRPv2 Erlotinib Cell line  Source AAC Solid 607 2066
GDSCv2 Erlotinib Cell line Source AAC Solid 230 2066
TCGA-LUAD Erlotinib Patient  Source Unlabeled Solid 507 2066
TCGA-BRCA Erlotinib Patient  Source Unlabeled  Solid 1051 2066
TCGA-PAAD Erlotinib Patient  Source Unlabeled  Solid 131 2066
gCSI Erlotinib Cell line Target AAC Solid 283 2066
GSE33072 Erlotinib Patient  Target RECIST  Solid 25 2066
PDXE Erlotinib PDX Target RECIST  Solid 21 2066
CTRPv2 Paclitaxel Cell line Source AAC Solid 445 1452
GDSCv2 Paclitaxel Cell line Source AAC Solid 230 1452
TCGA-LUAD Paclitaxel Patient  Source Unlabeled Solid 507 1452
TCGA-BRCA Paclitaxel Patient  Source Unlabeled Solid 1051 1452
TCGA-PAAD Paclitaxel Patient  Source Unlabeled Solid 131 1452
gCSI Paclitaxel Cell line Target AAC Solid 284 1452
GSE25065P Paclitaxel Patient  Target RECIST  Solid 84 1452
PDXE Paclitaxel PDX Target RECIST  Solid 43 1452
TCGA-PRAD Docetaxel Patient  Target Unlabeled  Solid 498 1453
TCGA-KIRC  Docetaxel Patient  Target Unlabeled  Solid 534 1453
TCGA-PRAD Paclitaxel Patient  Target Unlabeled  Solid 498 1452
TCGA-KIRC  Paclitaxel Patient  Target Unlabeled  Solid 534 1452
TCGA-PRAD Gemcitabine Patient  Target Unlabeled  Solid 498 2080
TCGA-KIRC  Gemcitabine Patient Target Unlabeled  Solid 534 2080
TCGA-PRAD Erlotinib Patient  Target Unlabeled Solid 498 2066
TCGA-KIRC  Erlotinib Patient  Target Unlabeled  Solid 534 2066
CTRPv2 Docetaxel Cell line Source AAC Non-solid 62 1453
GDSCv2 Docetaxel Cell line Source AAC Non-solid 69 1453
gCSI Docetaxel Cell line Target AAC Non-solid 50 1453
CTRPv2 Paclitaxel Cell line Source AAC Non-solid 100 1452
GDSCv2 Paclitaxel Cell line Source AAC Non-solid 67 1452
gCSI Paclitaxel Cell line Target AAC Non-solid 50 1452
CTRPv2 Gemcitabine Cell line Source AAC Non-solid 129 2080
GDSCv2 Gemcitabine Cell line Source AAC Non-solid 69 2080
gCSI Gemcitabine Cell line Target AAC Non-solid 50 2080
CTRPv2 Erlotinib Cell line Source AAC Non-solid 135 2066
GDSCv2 Erlotinib Cell line  Source AAC Non-solid 68 2066
gCSI Erlotinib Cell line Target AAC Non-solid 49 2066
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For all of the employed datasets, all gene names were mapped to Entrez gene ids and the
expression data were obtained before treatment and the response outcome after treatment.
We reduced the number of genes to 2128 genes obtained from [194]. After the preprocessing,
all of the available datasets for each drug had the same number of genes (Table 5.1).

Implementation Detail

We considered a wide range of values for each hyper-parameter of the Velodrome model
and optimized these values via a random search separately for each drug. The sets of values
considered are as follows: Epoch= [10, 50, 100, 200]

Learning rate (LR) = [0.0001, 0.001,0.01, 0.0005, 0.005, 0.05]

Dropout (DR) = [0.1,0.3,0.5,0.8]

Weight Decay (WD) = [0.001,0.0001,0.01,0.05,0.005, 0.0005]

A1 =11,0.1,0.2,0.3,0.4,0.5,0.01, 0.05,0.001, 0.005, 0.0001, 0.0005]

Minibatch size (M B) = [17, 33, 65, 129]

We considered separate learning rates and weight decays for the feature extractor and each
predictor, but they all used the same sets of possible values.

We followed the training-domain validation set approach and splitted the labeled cell
line datasets (CTRPv2 and GDSCv2) into train and validation and considered 90% for train
and 10% for validation. We merged the train splits into one training dataset and similarly,
merged the validation splits into one validation set and used the merged validation set to
optimize the values of these hyper-parameters.

For Architecture, we followed previous work and designed predefined architectures (de-
noted by H D) for Velodrome [190, 140]. For the feature extractor, the first architecture has
two hidden layers with the size 512 x 128, the second one has two layers with the size 256 x 256,
the third one has three hidden layers with the size 128 x 128 x 128 and the last architecture has
four hidden layers with the size 64 x 64 x 64 x 64. We considered a batch normalization layer
followed by an activation function (which we considered the Relu, the Tanh, and Sigmoid
functions) as well as a dropout after the activation function for each hidden layer. The predic-
tors have only one layer HD x 1, where H D denotes the size of the last layer in the feature
extractor. The final hyper-parameter and architecture of Velodrome for the studied drugs
are as follows: Drug : Epoch, MB, DR, W D1, W D2, WD3, HD, LR1, LR2, LR3, \1, \o
Docetaxel: 10,65, 0.1,0.05,0.0005, 0.0001, 3,0.001, 0.005, 0.0005, 0.2, 0.8
Gemcitabine: 10,17,0.1,0.0001, 0.005,0.01, 2,0.01, 0.005, 0.05, 0.005, 0.99
Erlotinib: 50,129, 0.1,0.05,0.005,0.0005, 2,0.001, 0.01, 0.001, 0.01, 0.99
Paclitaxel: 50,129,0.1,0.005,0.05,0.005, 2,0.05,0.0005, 0.0001, 0.3, 0.7
W D1, WD2, and W D3 refers to the values we used for the feature extractor, predictor 1,
and predictor 2, respectively (similar for LR1, LR2, and LR3).

For re-running and the ablation study of the trained models, we considered these random
values for the random seed: Seed= [1, 21,42, 84, 168, 336, 672, 1344, 2688, 5376].
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We used 42 for the majority of the analyses (because it’s the answer to life, the universe and
everything!).

We used the same ranges for all of the baseline methods whenever using those values
was applicable. For DeepAll-ERM and Ridge-ERM we used the existing implementations
here: (https://github.com/bhklab/PGx_Guidelines), for PRECISE, we used the existing
implementations here: (https://github.com/NKI-CCB/PRECISE). For Mean Teacher, we
adopted an existing implementation for computer vision and modified it for this problem
here: (https://github.com/CuriousAl/mean-teacher).

All of the deep neural network implementations were in the Pytorch framework and we
employed the Adagrad optimizer to optimize the parameters of Velodrome as well as the
baselines wherever applicable.

For performance evaluation, we employed the Scikit-learn and Scipy Python packages
for the evaluation purposes. To be more specific, we utilized scikit-learn to calculate the
AUROC and AUPR (for PDX samples and Patients) and we utilized the Scipy to calculate
Pearson and Spearman correlations (For cell lines). For the association study, we utilized
statsmodels.api Python package to fit the multiple linear regression and obtain the P-values
and we obtained the list of known associated target genes for each drug by querying the

PharmacoDB resource [21].

5.3.3 Results

Velodrome makes accurate predictions for cell lines

To investigate the generalization of Velodrome to other cell line datasets, we employed the
gCSI dataset as the target domain and reported the performance of Velodrome and the
baselines in terms of the Pearson and the Spearman correlation on this dataset. On average,
DeepAll-ERM achieved the best performance (0.52 + 0.09 for Pearson correlation coefficient
and 0.48+0.09 for Spearman correlation coefficient -Figure 5.2A and D). Velodrome achieved
the second best performance (0.48 £0.09 for Pearson correlation coefficient and 0.45=+0.07 for
Spearman correlation coefficient -Figure 5.2A and D). Ridge-ERM (0.46 £ 0.07- Figure 5.2A
and D) and Mean Teacher (0.430.07- Figure 5.2A and D) had the third best performance
in terms of Pearson and Spearman correlation, respectively. These results indicate that
although Velodrome is not the best performing model, it is fairly competitive on cell lines

and generalizes well.

Velodrome makes accurate predictions for PDXs samples

To investigate generalization of Velodrome to PDX samples, we employed the PDXE dataset
as the target domain and reported the performance of Velodrome and the baselines discussed
above in terms of the AUROC and the AUPR. On average, Velodrom achieved the best
performance compared to the baselines (for 0.69 &+ 0.21 in AUROC and 0.43 £+ 0.26 in
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Figure 5.2: Comparison of Velodrome and state-of-the-art of drug response prediction
methods on cell lines in terms of Pearson and Spearman correlations (A), PDX models in
terms of the Area Under the Receiver Operating Characteristic curve (AUROC) and the
Area Under the Precision-Recall curve (AUPR) (B), and patients in terms of AUROC and
AUPR (C). On average (D), Velodrome has the best or the second best performance on cell
lines, PDX models, and patients compared to the baselines over the studied drugs.



AUPR-Figure 5.2B and D). PRECISE obtained the second best performance in terms of
AUROC (0.67 + 0.14-Figure 5.2B and D) and DeepAll-ERM in terms of AUPR (0.4 + 20.23-
Figure 5.2B and D). Similarly, DeepAll had the third best performance in terms of AUROC
(0.63 £ 0.19-Figure 5.2B and D) and PRECISE had the third best performance in terms of
AUPR (0.41 £ 0.24-Figure 5.2B and D). These results indicate that utilizing both labeled
and unlabeled samples from cell lines and patients improves drug response prediction on
PDX samples.

Velodrome makes accurate predictions for patients

To investigate the generalization of Velodrome to patient samples, we employed the patient
datasets obtained from clinical trials as target domains and reported the performance of
Velodrome and the baselines discussed above in terms of AUROC and AUPR. On average,
Velodrome achieved the best performance compared to the baselines and significantly
outperformed them (0.64 +0.11 in AUROC and 0.77 + 0.19 in AUPR-Figure 5.2C-D). Mean
Teacher obtained the second best performance (0.59 + 0.21 in AUROC and 0.69 & 0.23 in
AUPR-Figure 5.2C-D) and PRECISE had the third best performance (0.54 + 0.1in AUROC
and 0.68 £ 0.18 in AUPR-Figure 5.2C-D).

These results indicate that incorporating unlabeled patient data as well as labeled
data significantly improves the generalization performance on patients because these three
methods take unlabeled samples as input as well as labeled samples as opposed to the
other baselines which only take labeled samples. However, the results also demonstrate the
advantage of learning features that are domain-invariant and hypothesis-invariant for out-of-
distribution generalization, because the PRECISE method only ensures a domain-invariant

representation.

Velodrome outperforms the baselines over multiple independent runs

To maximize the reproducibility, we utilized a fixed random seed for all methods (Velodrome
and the baselines) and found the best settings for the hyper-parameters of each method
with that seed. To investigate the performance of the best trained Velodrome model for each
drug and those of the baselines, we re-trained all of the models from scratch using the same
settings with 10 different random seeds and reported mean=+std for each method (Figure
5.3A).

Although we observed that the average performance (over the studied drugs) of all
methods decreased, Velodrome still achieved the best performance on patients in terms
of both AUROC and AUPR, and also the best performance in terms of both Pearson
and Spearman correlation on cell lines. PRECISE and DeepAll-ERM obtained the best
performance on PDX samples in terms of AUROC and AUPR, respectively (the performance
of these two methods tied on AUPR). Velodrome had the third best performance in terms
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of AUROC and AUPR on PDX samples. Overall, these results indicate that Velodrome is

more accurate and competitive compared to baselines particularly on patients and cell lines.

The complete version of Velodrome demonstrates the best performance

We performed an ablation study to investigate the impact of the different loss components of
Velodrome separately. We studied three scenarios as follows: “Velodrome w/o A” represents
a version of Velodrome without the alignment loss component, which means the neural
network only uses supervised and semi-supervised losses. “Velodrome w/o C” represents a
version of Velodrome without the consistency loss, which means the neural network only
considers the supervised loss and the alignment loss. Finally, “Velodrome w/o AC” represents
a version of Velodrome without both the alignment and the consistency loss, which means
the neural network employed only has a standard supervised loss. Our results on patients
demonstrate that on average (over 10 independent runs), the complete version of Velodrome
outperforms its variants which indicates the added value of both alignment and consistency
losses (Figure 5.3-B). Interestingly, removing the consistency loss from the objective function
had the biggest impact on the Velodrome performance on patients. This may suggest that
hypothesis alignment plays a more critical role than feature alignment for out-of-distribution
generalization, which is compatible with recent observations in computer vision applications

71].

Velodrome generalizes to well-represented tissue types

To evaluate the performance of Velodrome on patients, we followed the experimental design of
previous pharmacogenomics methods and designed an association study based on the known
associated target genes for the investigated drugs [19, 40, 20, 61]. In this analysis, we employed
the TCGA Kidney cancer cohort (TCGA-KIRC) as a tissue type well represented in our cell
line datasets. In GDSCv2 and CTRPv2 combined, more than 3.3% of the samples originated
from this tissue type (Figure 5.4). We trained Velodrome models for each drug (Docetaxel,
Erlotinib, Paclitaxel, and Gemcitabine) and applied them to the gene expression data of the
patients of this cohort to predict their response. Then, we fit a linear regression model to the
level of expression of the known target genes of these drugs and the responses predicted by
Velodrome. Based on the corrected p-values (two-tailed t-test) obtained from this multiple
linear regression using the bonferroni correction method, there are a number of statistically
significant associations between the target genes of the studied drugs and the responses
predicted by Velodrome. For Docetaxel, MAP2 had a statistically significant association
(P < 1075). For Erlotinib, EGFR and ERBB2 had statistically significant associations (both
P < 1079). For Paclitaxel BCL2 and MAP?2 had significant associations (both P < 1079).
Finally, for Gemcitabine, CMPK1 demonstrated a significant association(P < 1076). These
results suggest that the responses predicted by Velodrome are not random but capture

biological aspects of the drug response.
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Figure 5.3: (A) Comparison of the average performance of the Velodrome and the state-of-
the-art of drug response prediction methods over 10 independent runs . (B) An ablation
study of the Velodrome performance on patients.

Velodrome generalizes to under-represented tissue types

To further evaluate the performance of Velodrome, we performed a similar association study
on the prostate cancer cohort in TCGA (TCGA-PRAD). We chose prostate because unlike
kidney, prostate is a tissue type under-represented in our cell line datasets (only 0.3% of the
samples originated from this tissue). Similar to TCGA-KIRC, the Velodrome predictions for
TCGA-PRAD patients demonstrated significant associations with known target genes of the
studied drugs. For Docetaxel, MAP2 showed a statistically significant association (P < 1079).
For Erlotinib, both EGFR and ERBB2 showed statistically significant associations (both
P < 107%). For Paclitaxel, BCL2 (P = 8 x 107%) and MAP2 (P = 10~*) had significant
associations. Finally, for Gemcitabine, CMPK1 demonstrated significant association (P <

1079). These results confirm again that the responses predicted by Velodrome are not random
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and they capture biological aspects of the drug response even for a tissue under-represented

in the source domain.

Tissues
Adrenal Gland 0.1 % B Lung18%
Ampulla of Vater 0.1 % Lymphoid 12.6 %
Biliary Tract 0.5 % . Myeloid 4.6 %
Bladder/Urinary Tract 2.3 % Other 1.1 %
Bone 3.5 % Ovary/Fallopian Tube 4.5 %
Bowel 5.6 % Pancreas 3.6 %
) Breast 5.1 % . Peripheral Nervous System 2.6 %
\ Cervix 1.1 % Pleura 1.5 %
R CNS/Brain 6.5 % . Prostate 0.7 %
Esophagus/Stomach 6 % Skin 5.6 %
Eye 0 % Soft Tissue 1.5 %
Gestational 0 % Testis 0.3 %
Head and Neck 3.6 % . Thyroid 1.4 %
B Kidney 3.3 % Uterus 2.1 %
Liver 2 % . Vulva/Vagina 0.2 %

Figure 5.4: The percentage of tissue types in CTRPv2 and GDSCv2 cell line datasets
combined.

Velodrome generalizes to new tissue types

Finally, we trained Velodrome and the baselines only on samples (cell lines and patients)
that originated from solid tissue types because non-solid tissues such as haematopoietic and
lymphoid have different molecular and pharmacological profiles compared to solid ones [190].
Therefore, we wanted to examine the out-of-distribution capability of the Velodrome models
on these tissue types that were completely absent during training. For that, we tested the
trained Velodrome models for the studied drugs on samples originated from non-solid tissues
in the gCSI cell line dataset and evaluated the performance in terms of Pearson correlation
between the predictions and the actual AAC values and reported two-tailed p-value as well.

For Erlotinib and Gemcitabine, Velodrome demonstrated significant correlations of
0.4 (P =5x1073) and 0.39 (P = 4 x 1073), respectively. For Docetaxel and Paclitaxel,
Velodrome did not make accurate predictions and had poor correlations of —0.07 and —0.02,
respectively (both P > 0.05).

As a baseline to compare the Velodrome performance on non-solid tissues, we trained
a Ridge Regression model on samples originated from non-solid tissues in CTRPv2 and
GDSCv2 datasets and tested this predictor on non-solid samples of gCSI dataset. Therefore,

we built a predictor specifically for non-solid samples and the performance of this model

77



should act as an upper bound for the Velodrome. Similar to the Velodrome results, this
predictor also achieved significant correlations of 0.34 (P = 1072) and 0.39 (P =5 x 1073)
for Erlotinib and Gemcitabine and negative correlations of —0.11 (P > 0.05) and —0.4
(P =4 x 1073) for Docetaxel and Paclitaxel, respectively.

These results suggest that Velodrome is as accurate (and even more accurate in the case
of Erlotinib) as a non-solid predictor on these tissues even though it did not utilize them
during training. The poor/negative correlation for Docetaxel and Paclitaxel may be dataset
specific, particularly in the case of Paclitaxel where the non-solid predictor had a significant

negative correlation, and requires further study.

5.4 Discussion

From the biological point of view, we found interesting connections between the known
target genes of the studied drugs and the TCGA cohorts that we investigated (TCGA-
PRAD and TCGA-KIRC). For example, BCL2 has known connections to prostate cancer
progression [195, 196] and survival [197]. More importantly, the expression of BCL2 may
have an antiapoptotic activity against androgen which is a key player in prostate cancer
[195]. Similarly, BCL2 can also act as an oncoprotein in kidney cancer [198] and therapeutics
roles [199]. As another example, Microtubule-Associated Proteins including MAP2 have
also been associated with different cancers including prostate [179] and kidney cancers
[200]. Moreover, Microtubule-targeting chemotherapy agents, Docetaxel and Paclitaxel, have
been used in combination with anti-androgen therapeutics to increase the survival rate in
prostate cancer patients [201]. Prostate cancer progression and lethal outcome have been
associated with metabolic signaling pathways and CMPK1 (it mediates the mechanism of
action for Gemcitabine) was shown to be highly expressed in prostate cancer patients [202].
A combination of Gemcitabine and other chemotherapy agents has shown to be effective
for a subtype of kidney cancer [203]. Finally, EGFR and ERBB2 have been associated with
different cancer types including prostate [204, 205] and kidney [206] and they both showed
therapeutic opportunities and increase in survival [207]).

From the computational point of view, it has been shown that methods of empirical
risk minimization (ERM) are highly competitive for supervised domain generalization [66].
Therefore, it was also expected to see a competitive performance for a semi-supervised
method (Mean Teacher) for the semi-supervised domain generalization setting. Moreover,
Velodrome, PRECISE, and Mean Teacher were designed to take both labeled and unlabeled
samples and, therefore, were expected to achieve better performance on patients than
DeepAll-ERM and Ridge-ERM. On the other hand, these two methods achieved better
performance on cell lines which makes sense since they were trained on cell lines.

We considered only TCGA-BRCA, TCGA-PAAD, and TCGA-LUAD for training, be-

cause these tissue types were well-represented in our cell line datasets (Figure 5.4) and

78



because the four studied drugs were treatment options for these cell lines. This selection
increases the relevancy of labeled (cell lines) and unlabeled (TCGA patients) data. Relevancy
has been shown to improve semi-supervised learning performance even when both labeled
and unlabeled datasets are imbalanced [150], which is the case for drug response prediction.
Although methods of adversarial domain adaptation have shown great performance in
different applications, especially computer vision [47, 81, 57], we did not consider them as
baselines because they were clearly outperformed by PRECISE (which we do use as baseline)
in a recent study [61].

Although gene expression data has been shown many times to be the most effective
genomic data type for drug response prediction [13, 28], in principle Velodrome can be
extended to incorporate other omics data types. Especially promising are proteomics data
[208] and germline variants [209], due to their predictive power. The advantage of proteomics
is that it is closer to the phenotype and gene expression and protein abundance can be quite
discordant. Velodrome can also be extended to incorporate additional information about the
drug, such as the chemical representation, to improve the performance [142].

Finally, we did not discuss the explainability of the Velodrome model, but we note that
the feature extractor of Velodrome can be replaced by a knowledge-based network [59] to
offer explainability and transparency [210]. A major limitation of our work is the output
space discrepancy between cell lines, PDX samples, and patients, because on cell lines the
drug response is measured based on the concentration of the drug but on PDX samples and
patients the response is measured based on the change in the tumor volume after treatment.
A recent method adjusts for this output space discrepancy and improves the prediction
performance [61], but this method requires access to the target domain during training
which violates the assumption of out-of-distribution generalization. In this work, we used
AAC as the measure of drug response in cell line datasets and treated it as a score for
making predictions for patients and PDX samples. However, measuring AAC is dependent on
the tested concentration range which generally differs between different pharmacogenomics
studies. Recent efforts have demonstrated that adjusting concentration ranges across different
datasets improves the prediction performance [125, 211], however, we did not consider this

adjustment because it reduces the sample size substantially.
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Chapter 6

Conclusion

6.1 Summary

In this thesis, we proposed three methods of drug response prediction. These methods
address some of the major challenges in drug response prediction including, multi-omics
integration, input and output discrepancy between cell lines and patients, and out-of-
distribution generalization to unseen samples.

We proposed MOLI, a Multi-Omics Late Integration method for drug response prediction
based on deep neural networks. We trained MOLI on a pan-cancer cell line dataset and
successfully validated it on PDX and patient data for five chemotherapy agents and two
targeted therapeutics.

Our results suggest that MOLI outperforms single-omics (gene expression) prediction
performance in terms of AUROC and area under precision-recall curve. Also, MOLI out-
performs deep neural networks using early integration in terms of AUROC and area under
precision-recall curve. Moreover, MOLI with its combined objective function outperforms
single- and multi-omics baselines with only the classification loss. Moreover, MOLI trained on
the pan-drug inputs, employing transfer learning, outperforms MOLI trained on drug-specific
inputs for targeted therapeutics that target EGFR.

Finally, we analyzed the biological significance of MOLI and found substantial evidence
that the responses predicted by MOLI have statistically significant associations with the
expression level of numerous genes in the EGFR pathway for TCGA patients with breast,
kidney, lung, and prostate cancers.

We also proposed AITL, an Adversarial Inductive Transfer Learning method which, to
the best of our knowledge, is the first method that addresses the discrepancies in both the
input and output spaces. AITL uses a feature extractor to learn features for target and
source samples. Then, to address the discrepancy in the output space, AITL utilizes these
features as input of a multi-task subnetwork that makes predictions for the target samples
and assign cross-domain labels to the source samples. Finally, to address the input space

discrepancy, AITL employs global and class-wise discriminators for learning domain-invariant

80



features. In pharmacogenomics, AITL adapts the gene expression data obtained from cell
lines and patients in the input space, and adapts different measures of the drug response
between cell lines and patients in the output space. In addition, AITL can be employed in
other applications such as predicting long-term clinical labels for slow progressing cancers.

We evaluated AITL on four different drugs and compared it against state-of-the-art
baselines in terms of AUROC and AUPR. The empirical results indicated that AITL
achieved a significantly better performance compared to the baselines showing the benefits
of addressing the discrepancies in both the input and output spaces. Moreover, we analyzed
AITL’s predictions for the studied drugs on breast, prostate, lung, kidney, and bladder
cancer patients in TCGA. We showed that AITL’s predictions have statistically significant
associations with the level of expression of some of the annotated target genes for the studied
drugs.

Finally, we proposed Velodrome, a transfer learning method for drug response prediction
based on gene expression data. Velodrome is the first semi-supervised method of out-of-
distribution generalization. We trained Velodrome on cell line datasets with drug response
(measured in AAC) and patient datasets without drug response (i.e., unlabeled data) as source
domains and successfully validated it on different target domains such as cell lines, PDX
samples, and patient data across three chemotherapy agents and one targeted therapeutic.
Our results suggest that Velodrome outperforms state-of-the-art methods of drug response
prediction and transfer learning in terms of Pearson and Spearman correlations (on cell
lines) and in terms of AUROC and AUPR (on PDX samples and patients).

Moreover, we analyzed the biological significance of the predictions made by Velodrome.
We provided substantial evidence that these predictions have statistically significant asso-
ciations with the expression level of numerous known target genes of the studied drugs.
We performed this analysis for a tissue well-represented in our source domains, i.e. kidney
cancer, and a tissue under-represented in our source domains, i.e. prostate cancer. Finally,
we also demonstrated that Velodrome generalizes to new tissue types that were completely
absent in the source domains. All these results demonstrate the superior out-of-distribution
generalization capability of the Velodrome model and suggest that Velodrome may guide
pharmacogenomics and precision oncology more accurately.

Our experimental results suggest that MOLI, AITL, and Velodrome may have a role in
precision oncology where currently only ~5% of all patients benefit from precision oncology.

Returning to the three main questions in transfer learning (when?, what?, and how?):
1. This thesis explored transfer learning between pre-clinical and clinical resources (when?)

2. MOLI utilized transferring relevant samples and AITL and Velodrome utilized trans-

ferring feature representations (what?)

3. We employed deep metric learning, adversarial multi-task learning, and out-of-distribution

generalization to achieve accurate predictions (how?).
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However, it is also of utmost importance and significance to consider non-technical
aspects of this thesis. Key questions that may arise are how these methods can fit into the
larger problem of precision oncology? What are the impacts of these methods on precision
oncology? Given the described computational methods, what is the right way to administer
treatments? i.e., what medically useful information do clinicians need to make treatment
decisions?

The answers to these or similar questions lies within the three key areas of data, model,
and trust. On the data level, different drugs may have different predictors in terms of omics
data types. The success of these methods for having a meaningful impact requires employing
the right data type. Part of having the right data type comes from wet lab experimental
research to validate biomarkers or omics data types for a specific cancer type or a disease.
The other part comes from obtaining omics data as a routine medical procedures. Obviously,
this requires affordable assays that with reasonable cost provide reliable and accurate
omics data. Finally, the last part is coming from the computational analysis when diverse
omics data types are available but the impacts of them on making accurate predictions
is unknown. Ideally, a computational model should determine the right data type or data
types automatically with respect to the desired output. Moreover, the input data to these
models should be free of biases caused by inequality or the lack of inclusion for certain
demographic groups. This aspect of the data is particularly important because it can have
negative impacts on models in terms of being biased and consequently, diminishing the trust
in these models.

On the model level, the models discussed in this thesis followed the notion of black
box, meaning given the input what is the desired output without further explanation
or interpretation of predictions. This lack of transparency has led to both demands for
explainability from lawmakers, such as the European Union’s General Data Protection
Regulation requirement for transparency and the machine learning community to make
that an active area of research to deconvolute these black boxes. This is particularly more
important for deploying these models for applications like drug response prediction. Offering
an interpretation of the predictions can have direct positive impact on trusting these
models. In addition to data and model, it is important to note that gaining trust in these
computational models also depends on other factors such as uncertainty estimation of
predictions.

Trust is also dependent to other potentially necessary outcomes of a drug response
predictor that can influence a treatment decision such as adverse drug reaction, toxicity,
drug-target interaction, or drug combination predictions. All of these outcomes can be
predicted simultaneously with drug response in a multi-task learning setting to provide
clinicians with as much information as possible to make informed decisions. With these
three key aspects together, computational models can have huge impacts on determining the

most effective treatment options with the reason(s) behind each and the level of uncertainty
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in them. Moreover, such models can also initiate new hypotheses whenever suggesting
novel biological knowledge. Nonetheless such biological knowledge require rigorous wet lab
experimental validations. Finally, trust is also related to patients because ultimately the
clinician provides different options and recommendations to the patient but the patient has
to make the final decision. Therefore, clear communication between computer scientists and
patients is necessary in lay language. One way to moderate these communications is via
grant agencies, for example, the Prostate Cancer Foundation of British Columbia requires
the award winners to present their research to patients as well as the grant panel to inform
them about most recent treatment options and the rationale behind them. Moreover, it is
also highly important to consider privacy of patients in the entire process especially when it
comes to data sharing to assure them that their data cannot be linked to their identities
[212, 213].

In principle, the proposed methods in this thesis can be extended to incorporate these
key aspects. In addition, these models are not limited to drug response prediction and are
applicable to other clinical problems. This chapter introduces some of future directions
that make these models more applicable to drug response prediction in the clinic and other

applications.

6.2 Future directions
6.2.1 Knowledge-based models

Although current methods for drug response prediction are becoming more accurate, there
is still a need to switch from ‘black box’ predictions to methods that offer high accuracy as
well as interpretable predictions. This is of particular importance in real-world applications
such as drug response prediction in cancer patients [59].

A promising future direction is to incorporate domain expert knowledge into deep neural
networks [59, 166]. The advantage of these methods is that having domain expert knowledge
offers transparency and explainability of the predictions which is of utmost importance and
significance for critical applications such as drug response prediction for cancer patients.

We proposed a method called BDKANN, by employing prior biological knowledge in the
form of the hierarchical connections of genes to protein complexes to pathways and finally to
drugs as layers of a neural network. The structure of BDKANN is as follows: 1) in the gene
layer of this network, a node represents a gene for which the expression data is available. 2)
In the protein complex layer, a node represents the complex that genes in the previous layer
can form. 3) In the pathway layer, a node represents a pathway that a protein complex (or
multiple complexes) in the previous layer is (are) a part of. Lastly, 4) in the drug layer, a
node represents a drug that targets a given pathway(s) in the previous layer (Figure 6.1).

We also make an extended version of BDKANN that we call BDKANN+, which has the

added ability to discover new connections in the biological domain knowledge through the
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Figure 6.1: Overview of the structure of BDKANN and BDKANN+ with black connections
that are not supported by domain knowledge but are regularized to give preference to the
green connections that are supported by biological knowledge

use of regularization. We compare both versions of our model to both knowledge-based and
non knowledge-based DNN baselines and find that not only does BDKANN+ outperform
BDKANN and baselines but also allows for meaningful interpretation of those results that
can help us better understand the decisions of the model and help generate hypotheses
relevant to cancer drug response prediction [59].

BDKANN (and BDKANN+) layers can be utilized as the feature extractor of MOLI,
AITL, and Velodrome to offer explainability of the predictions. In MOLI, AITL, and
Velodrome, each model was trained to make predictions for one drug only but BDKANN was
trained to make predictions for more than one drug per model. In principle, the BDKANN
approach is directly applicable for the feature extractors of MOLI, AITL, and Velodrome
models, but the prediction layers of them should be extended to include multiple drugs
(similar to the BDKANN approach). The advantage of this extension is to make explainable
predictions via MOLI, AITL, and Velodrome similar to those of the BDKANN model.
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6.2.2 Other input data types

There are also some promising future directions regarding different input data types that are
beyond the scope of this thesis. One promising area that has recently received attention is
incorporating additional information about the input drug(s) to the model and it has been
shown to improve the prediction performance. This information is often in the form of drugs
chemical structures [60, 64, 141], drug-target interaction or adverse drug reaction [142].

Another promising area is incorporating other omics data types. Although gene expression
has been shown in independent studies to be the most effective data type for drug response
prediction [13, 26, 28], and we demonstrated in MOLI experiments the utility of CNA
and mutation data, proteomics also has been showing promising results in drug response
prediction [214]. Protein expression is closer to the phenotype compared to gene expression
and may offer a better viewpoint for drug response prediction [158]. There is a need for
large-scale pre-clinical datasets with proteomics data which is currently only available for a
few datasets [21, 127]. It is obvious that more proteomics data will be available for both
pre-clinical and clinical samples in the future and we need reliable methods to make the best
use of them as input. Similarly, germline variants can also offer additional information to
the model that somatic mutation and gene expression cannot capture [209]. Currently only
one study offers germline mutation information [209]. More, including drug perturbation
data, meaning measuring gene expression before and after treatment has been shown to
guide drug response prediction more accurately [124].

Finally, recent advancement in single cell technology has provided researchers with
biological data with more calibrated resolutions to capture millions of cells within a single
tissue. Single cell data has brought numerous computational challenges for which some
of them can be addressed via transfer learning [215]. For example, unsupervised domain
adaptation can be utilized for cell type identification across different samples because it
allows the model to identify cell types that are specific to a source domain and cell types that
are specific to a target domain. Similarly, identifying sensitive and resistant cells to a given
drug can be formulated as a transfer learning problem because many pharmacogenomics
datasets are available based on bulk sequencing but such datasets do not exist for single cell
data. Therefore, these resources can be utilized together to identify response to different
drugs across different cell types. Similarly, the same transfer learning settings can be defined
to study the effect of normal tissues on drug response prediction performance. This is
important to study because pharmacogenomics datasets study the impact of drugs on cancer
cells but it is equally important to study the impact of these drugs on normal cells. For this
goal, resources like The Genotype-Tissue Expression (GTEx) that studied gene expression

of healthy individuals can be employed [216].
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6.2.3 Clinical utility

Drug response prediction was the driving application of the proposed methods in this thesis.
However, in principle, these methods are applicable to other problems, especially in clinical
settings. One very relevant problem is metastasis prediction in prostate cancer. For prostate
cancer patients, timing and intensity of therapy are adjusted based on their prognosis.
Clinical and pathological factors, and recently, gene expression-based signatures have been
shown to predict metastatic prostate cancer. Previous studies used labeled datasets, i.e.
those with information on the metastasis outcome, to discover gene signatures to predict
metastasis. Due to steady progression of prostate cancer, datasets for this cancer have a
limited number of labeled samples but more unlabeled samples. In addition to this issue, the
high dimensionality of the gene expression data also poses a significant challenge to train a
classifier and predict metastasis accurately [187].

To address this challenge, we proposed the Deep Genomic Signature (DGS) method to
predict metastasis in prostate cancer patients. DGS is based on Denoising Auto-Encoders
(DAEs) and unsupervised transfer learning. We utilized a DAE to extract the most salient
features of gene expressions from the samples in a large unlabeled dataset, as the source
domain. The learned weights and biases of this DAE were transferred to another DAE,
trained on a smaller but labeled (with metastasis outcome) dataset, as the target domain.
During training of the second DAE, the transferred parameters were frozen, and only the
additional parameters were trained. DGS selects the list of genes with high weights by
employing a standard deviation filter on the transferred and learned weights of the second
DAE. Finally, DGS made predictions via an elastic net logistic regression model [217] on
the labeled target domain, using the expressions of the selected genes as features, to predict
metastasis. Due to the elastic net regularization, only a subset of the selected genes have
non-zero coefficients, and these genes form the DGS gene signature for metastasis in prostate
cancer. We applied DGS to six previously published labeled datasets and one large unlabeled
dataset obtained from the Decipher test of GenomeDx Inc. We compared the accuracy of
the gene signature discovered by DGS against those of the state-of-the-art signatures for
prostate cancer. Figure 6.2 illustrates the schematic overview of the DGS method.

The problem that DGS was developed to address is out-of-distribution generalization from
labeled and unlabeled data to generalize to unseen cohorts from different studies/institutions.
Therefore, Velodrome is completely applicable to this problem. similarly, if multiple omics
data types are available, Velodrome can be extended to multiple omics specific encoding
subnetworks to perform late integration similar to MOLI for metastasis prediction. Finally,
if different clinical annotations are available across different cohorts (e.g. Gleason score in
one cohort and lymph nodes status in another one), the AITL approach will be beneficial to

address output space discrepancy. Therefore, one promising future direction is to extend
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Figure 6.2: Schematic overview of Deep Genomic Signature (A) Training the Source
(a Denoising Auto-Encoder) on the unlabeled data to extract salient features from this
dataset. The Source has one hidden layer. (B) Training the Target (another Denoising
Auto-Encoder) on the labeled data. The T'arget has two hidden layers. Parameters of the
first hidden layer are transferred from the Source which remain frozen and parameters of the
second hidden layer (initialized randomly) are trained. (C) Applying a standard deviation
filter to select genes based on their weights in the Target. These genes are in the tails of
the weight distribution of nodes in the second hidden layer of the T'arget. (D) Training an
elastic net logistic regression model (I; and [y regularization) to predict metastasis. The
DGS gene signature consists of all of the genes with non-zero coefficients in this classifier.

and apply the proposed methods in this thesis to clinical problems similar to metastasis

prediction in prostate cancer.

6.2.4 Drug combination

Generally, a single drug does not provide adequate treatment for a cancer patient. In
this thesis, models were trained to predict the effect of a single drug (also known as
monotherapy). However, machine learning methods have demonstrated promising results for
drug combination prediction as well [60]. Moreover, integrated and standardized resources are
also available for drug combination pharmacogenomics studies [218]. Therefore, a promising

future research for this thesis is to expand the proposed methods for drug combination.

6.2.5 Self-supervision learning

Recently, self-supervision learning has received a lot of attention in the machine learning
community with the aim of training models without providing supervision from humans
[150]. A common approach for self-supervision is to add label-invariant noise to the input

data, meaning a type of noise that does not change the semantic of the sample (for example
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rotating an image) and then training a model to predict the applied noises to each sample.
This network has shown to be a reliable pre-trained model for downstream tasks [150].
However, adding noise to omics data types such as gene expression is not as straightforward
as images because we do not know the impact of that noise with respect to the labels. For
example, it is not clear what type of noise and how much of that noise will not change the
drug response outcome. Therefore, a very promising future direction is to propose a method

of self-supervision learning applicable to omics data types.
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Appendix A

A.1 Research reproducibility

All codes, trained models, and preprocessed datasets to reproduce the experimental results
for MOLI, AITL, and Velodrome are publicly available:

For MOLI, the code and the models are available here:
https://github.com/hosseinshn/MOLI

The preprocessed data is available here:
https://zenodo.org/record/4036592

For AITL, all materials (the code, the trained models, and the preprocessed data) are
available here:
https://github.com/hosseinshn/AITL

For Velodrome, the code is available here:
https://github.com/hosseinshn/Velodrome

The preprocessed data and the trained models are available here:
https://zenodo.org/record/4793442# . YK1HVqhKiUk
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