
Deep Learning Applications in
Non-Intrusive Load Monitoring

by

Alon Harell

B.Sc. (Physics), Tel Aviv University, 2012
B.Sc. (Electrical and Electronics Engineering), Tel Aviv University, 2012

Thesis Submitted in Partial Fulfillment o f the
Requirements for the Degree of

Master of Applied Science

in the
School of Engineering Science
Faculty of Applied Sciences

 ©Alon Harell 2020
SIMON FRASER UNIVERSITY

Summer 2020

Copyright in this work rests with the author. Please ensure that any reproduction 
or re-use is done in accordance with the relevant national copyright legislation.



Approval

Name:

Degree:

Title:

Examining Committee:

Date Defended:

Alon Harell

Master of Applied Science (Electrical Engineering)

Deep Learning Applications in Non-Intrusive Load 
Monitoring

Chair: Ljiljana Trajković
Professor

Ivan V. Bajić
Senior Supervisor
Professor

Stephen Makonin
Supervisor
Adjunct Professor

Daniel C. Lee
Internal Examiner
Professor
School of Engineering Science

August 19, 2020

ii



Abstract

In today’s increasingly urban society, the consumption of power by residential customers
presents a difficult challenge for the energy market, while also having significant environmen-
tal implications. Understanding the energy usage characteristics of each individual house-
hold can assist in mitigating some of these issues. However, this is very challenging because
there is no simple way to measure the power consumption of the different appliances within
a home without installation of many individual sensors. This process is prohibitive since it
is highly intrusive and not cost-effective for both users and providers.

Non-Intrusive Load Monitoring (NILM) is a technique for inferring the power consumption
of each appliance within a home from one central meter (usually a commercial smart-
meter). The ability to obtain such information from widely spread existing hardware, has
the potential to overcome the cost and intrusiveness limitations of power usage research.

Various methods can be used for NILM, including hidden-Markov-models (HMMs), and
integer-programming (IP), with deep learning gaining popularity in recent years. In this
thesis, I will present three projects using novel deep learning approaches for solving NILM
- two preliminary works, and one major project. First, I will present a proof of concept
that using temperature data can improve the performance of simple, easily deployable deep
neural networks (DNNs) for NILM. The second preliminary project is a state-of-the-art
NILM solution based on the WaveNet architecture named WaveNILM.

Both of these projects, along with the majority of prior NILM research, are highly reliant on
diverse and accurate training data, which is currently expensive and very intrusive to obtain.
The main project presented in this thesis will attempt to address the data limitation using
the first truly synthetic appliance power signature generator for NILM. This generator,
which I name PowerGAN, is trained using a variety of Generative Adversarial Networks
(GAN) techniques. I present a comparison of PowerGAN to other data synthesis work in
the context of NILM as well as demonstrate that PowerGAN is able to create truly synthetic,
realistic, appliance power signatures.

Keywords: Deep learning; generative adversarial networks; NILM; load disaggregation;
sustainability; neural networks
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Chapter 1

Introduction

1.1 Nonintrusive Load Monitoring - NILM

As the price of energy continues to rise, both economically and environmentally, the im-
portance of understanding end-user power consumption characteristics grows. Specifically,
it is of great interest to know how individual appliances are used, and how much power
they draw from the grid. This can be beneficial for both sides of the energy market, the
consumer as well as the provider. The consumer can use this data to better understand
their energy bill - “Which appliance is costing me money? Are there cheaper alternatives
to this appliance? Can I change my habits to reduce my costs?” The last point will become
increasingly important as variable energy prices will come into effect in the near future [1].
From the power providers’ perspective, understanding appliance usage characteristic can
help better anticipate future consumption, prevent brown-outs [2], and maintain consumer
satisfaction through reducing unnecessary costs.

Currently, this data cannot be obtained without either replacing all appliances to smart
appliances, replacing all plugs to smart-plugs, or installing a slew of current and voltage
sensors. Nonintrusive load monitoring [3], first proposed by Hart in 1992, is one approach
to allow both end-users and energy providers simple, cheap, and less obstructive access to
such data. While NILM can apply to industrial, commercial, and residential scenarios, this
thesis will mainly deal with residential settings, unless otherwise directly mentioned.

In its most simple formulation, nonintrusive load monitoring (NILM), also known as
power disaggregation, attempts to solve the following equation:

pH =
A∑
i=1

pi + ε (1.1)

where pH is the total power consumed by the household (sometimes also known as mains
power or aggregate) and is the known variable; pi is the power consumed by the i-th appli-
ance, which is unknown; ε is measurement noise; and A is the number of appliances, which
may be known or unknown. Eq. (1.1) represents an ill-posed inverse problem as it contains
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Figure 1.1: Non-intrusive load monitoring as first shown in [3]. The figure shows the total power consumption
a house with specific notation for the appliance responsible for each of the changes in power level

far more variables than equations, sometimes even an unknown amount of variables. For this
reason, it is beneficial to formulate NILM as the following maximum a posteriori problem:

p̂i = arg max
pi

(
ρ (pi | pH)

)
(1.2)

where ρ (pi | pH) is the posterior distribution of pi conditioned on the current total power
pH . Of course, when designing a NILM solution, this distribution is unknown. Estimating
this distribution is the main challenge in NILM research, and is often solved using maximum
likelihood methods.

Because of the large and possibly unknown number of appliances, solving either of the
two formulations requires some additional knowledge about pi or pH . In the most com-
mon case, this additional information exists in the time dependence and stationarity of the
appliances’ power consumption. Each appliance’s power draw at a given time is highly de-
pendent on its power draw at previous (and subsequent) times, and it is common to observe
appliance “power signatures”. Given the above observations, we can revise the maximum a
posteriori formulation of NILM in one of the following ways:

p̂i(t) = arg max
pi(t)

(
ρ
(
pi(t) | pH(t)

))
(1.3)

p̂i(t) = arg max
pi(t)

(
ρ
(
pi(t) | pH(t), p̂(τ )

))
(1.4)

where t represents a single time step, t = {t0, t1, ..., tN}, τ = {τ0, τ1, ...τM}, represent a
series of time steps and p̂ = {p̂1 p̂2, .. , p̂A} represents previously estimated solutions for
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each pi. Note that there is no requirement for the sets t and τ to represent the same time
or even be comprised of the same number of samples.

Eq. (1.3) simply states that when solving the maximum a posteriori problem for the
current time step of pi, we may use samples of the measured aggregate power from several
time-steps. Notably, in many NILM solutions, these time-steps are not required to be in the
past, meaning NILM is often not solved in a causal manner. In Eq. (1.4) we further condition
the posterior distribution upon our previous estimates of the appliance’s consumption. Note
that here too, “previous” is only in the sense of the order of calculation, and not necessarily
the chronological order of samples.

Furthermore, most appliances have a finite set of operating states (more on this in
section 1.1.1). These states, in many cases, define the power consumption exclusively. Thus,
we can first solve for the appliance state, and then, if desired, continue to solve for the
actual energy consumption. We can express this formally in the following manner:

pi(t) = arg max
pi

ρ
(
pi|ŝi(t)

)
, ŝi = arg max

si

(
Pr
(
si (t) | pH (t) , ŝ (τ )

))
(1.5)

where si(t), ŝi(t) are the state of appliance i at time t, and its estimate, respectively; and
ŝ is a vector of all appliance state estimates. Note that ρ has been replaced with Pr since
we are now dealing with discrete probabilities as opposed to continuous densities.

Having established the basic formulation of NILM, we can begin to appreciate its dif-
ficulty. Inherently, we are solving one equation with a great and often unknown number
of variables. In order to achieve this, we must obtain significant statistical insight into the
appliances and the aggregate. When attempting to gain such understanding, we are faced
with a few major challenges:

• Variety - Different homes use a different set of appliances, and these appliances are
generally from a different make or model. For example, some homes may have electrical
heating while others may use gas heating or no heating at all; Common television
technologies such as LCD, OLED, and Plasma greatly differ in power consumption,
and there is even further difference between different models and manufacturers within
each technology.

• Data collection - In order to collect enough appliance data from real world scenarios,
we must do the exact thing NILM attempts to solve - install a great amount of sensors
in various households. Since this process is expensive and intrusive, the data collected
for NILM is done primarily by research groups (more on this in section 2.2) and the
characteristics of each dataset vary greatly, making it difficult to combine data from
different sets.

• Real-Time calculations - In order to make NILM a viable tool for many households
it is important to get the dissaggregated power measurements relatively quickly. This

3



means NILM solutions need to strive to be causal, relying as much as possible on
past samples, or at the very least, incurring only a finite delay in samples for cal-
culation. Furthermore, to remain financially viable, NILM solutions must achieve the
aforementioned real-time performance on simple, widely available hardware platforms.

• Generalization - NILM solutions, trained or designed using finite amounts of data
must be able to generalize to other scenarios. This can be achieved within the original
solution, or through some online learning method. As a result of the data collection
challenges and the great variety of appliances, generalization remains the single most
difficult aspect of the NILM problem.

One of the ways to overcome some of these challenges is through understanding the
different types of appliances, how we can divide them into groups and how those effect our
ability to model them.

1.1.1 Appliance Types

One of the major challenges in solving NILM is the great variety of appliances available
in the market and in households. One of the ways to mitigate this difficulty is through
grouping appliances by the characteristics of their power signature. In his paper [3], Hart
noted that appliances can be roughly divided into three categories. In a later paper [4], Kim
et al. built upon Hart’s work and recognised a fourth useful type of appliance. Including
this, the four appliance types are as follows:

• Type 1 - On\Off. These simple appliances have a binary state, they are either on or off.
This category includes many appliances such as lights, toasters, kettles, etc. Fig. 1.2(a)
shows the power used by a simple 20 Watt light, which is a type 1 appliance.

• Type 2 - Finite State Machine (FSM). These appliances have finite, and discrete set of
operating states. The transition between these states can be user controlled, such as
in a blow-dryer with multiple heat and fan settings, or automatic, such as in a dryer
or washing machine operating cycle. Fig. 1.2(b) shows the power used by a lamp with
3 possible light intensities, which is a type 2 appliance.

• Type 3 - Continuously variable. These appliances have a component whose power
consumption can change on a continuous scale, rather than jump between discrete
states. In some cases these appliances are also members of the previous two groups.
For example, a light with a dimmer switch, will have a variable load as the user may
change its intensity, yet it will still generally be switched on and off by the user. In
other cases, the variable load may be present in one of the states of a multiple state
appliance. For example, in Fig. 1.2(c) we can see that the spin cycle, which represents
one of the many states of a washing machine, has a continuously varying power draw,
dependent on the spinning frequency.
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Figure 1.2: Examples of the power signatures of various appliances types. (a) is a simple 20 Watt light,
controlled by a standard switch; (b) is a lamp with 3 user controlled intensity settings; (c) is a washing
machine, note the continuously variable load during the machine’s spin cycle; (d) is a fridge, always left on,
automatically cycling between cooling and standby states as the fridge’s internal temperature changes

• Type 4 - Always On\Cyclical - These appliances have a periodic nature and will
remain on extensively or even permanently, switching between their internal states.
For example a fridge will generally always be on, and it will alternate between cooling
and standby cyclically. Here too, there may be some overlap with the other appliance
types. For example, an electric heater, will be controlled by the user (or by a pre-
programmed thermostat), but once activated, will remain on for extended periods
of time, periodically changing between heating the room until reaching the desired
temperature, and moving to standby as the room cools. Fig. 1.2(d) shows the periodic
nature of the power draw of a fridge, which is a Type 4 appliance.

Understanding the different types of appliances can help in many algorithms for solving
NILM, and it is crucial in any solutions based on modelling the appliances. For example,
when modelling type 1 and 2 appliances we can focus on the state machine, because the
power given each of the states is quite well known. On type 3 appliances on the other hand,
we must model a continuous stochastic process of some sort. Type 4 appliances can some-
times be modeled similarly to periodic waveforms. Even when not modelling the appliance
directly, understanding the various appliance types is crucial for any NILM researcher.

1.1.2 The Complex Power Signal

Generally, all household electrical power comes from the grid in the form of alternating
current (AC) electricity. Notable exceptions to this are home batteries and solar pannels,
which produce direct current electricity, but today they still provide only a minor portion
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of the power used by the average household. Because of its oscillating nature, AC electricity
power can be momentarily negative (power is returning from the household to the grid).
For this reason, when discussing AC energy consumption, we separate the power into two
main types: active power (P ) and reactive power (Q).

Active power represents the portion of the power that gets physically dissipated in the
household, and is usually the only quantity monitored by utility companies for residential
customers. This kind of power is dissipated by appliances converting electric energy into
work or heat. In some cases, active power is consumed by design, for example in a simple
electric heater which uses a resistor to transform electricity to heat; or in a fan which
converts power to kinetic energy. In other cases, the active power consumption is a result of
an unwanted resistive component of a complex appliance’s load. This usually represents an
undesired, yet unavoidable, conversion of power to thermal energy, such as when a computer
heats up during its operation.

Reactive power, on the other hand, is the portion of the power that is only temporarily
stored in an appliance. Conceptually, a load, such as a perfect capacitor, can be completely
reactive, meaning it will not dissipate energy at all. In practice however, no such loads
exist (thanks to the second law of thermodynamics), and even near-perfect reactive loads
are uncommon since they do not serve a functional purpose. Instead, common household
appliances are generally composed of a combination of active and reactive load components.

Mathematically, active power results from in-phase voltage and current, whereas reactive
power results from out-of-phase voltage and current. Apparent power S, sometimes referred
to as total power, is simply the combination of real and active power, and is often an
easier quantity to calculate. The relationships between all of the aforementioned qualities
are detailed below:

S = I · V, P = S · cos(θ), Q = S · sin(θ), (1.6)

where I and V are current and voltage RMS values respectively, and θ is the phase of voltage
relative to current. Fig. 1.3 demonstrates the the active and reactive power components of
a simple sinusoidal waveform.

It is important to note that in larger industrial settings, the reactive power does, in fact,
contribute to significant costs and thus is generally monitored. Although predominantly
reactive loads do not consume power themselves, they require the transmission of large
amounts of energy over electrical lines. This requires the grid to meet higher generation and
transmission demands. Additionally, as power transmission is always imperfect, a proportion
of the energy will always get dissipated en-route to the end-user, generating additional costs
for the provider.

Given the understanding of the different power components of AC electricity, we can
surmise that additional information regarding the appliance exists in the differences between
its active and reactive power signatures. This is confirmed by observing actual appliance
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Figure 1.3: The different components of a AC power. For this figure θ = 0.3π

power signatures, as can be seen in the example, taken from the AMPds2 dataset [5],
appearing in Fig. 1.4. Using this insight we can further reformulate our NILM problem as
follows:

pi (t) = arg max
pi

ρ
(
pi|ŝi (t)

)
, ŝi = arg max

si

(
P
(
si(t) | pH(t), ŝ(τ )

))
(1.7)

where pH (as opposed to pH) represents a set of the different measured electrical attributes
of the home, such as active, reactive, and apparent power, voltage, current, and phase.

Figure 1.4: Active and reactive power signatures for the dishwasher and clothes washer from AMPds2 [5].
The two appliances have complex and somewhat similar signatures in active power, but far simpler and more
distinct signatures in reactive power.
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Figure 1.5: The growth in deep learning publications, as published in [7]. Note the comparison with Moore’s
law for microprocessors, that emphasises the incredibly rapid growth of the popularity of deep learning in
the research community.

Before continuing to review the current work in the field of NILM, I dedicate the fol-
lowing section to the main method used in my own research of NILM - Deep Learning.

1.2 Deep Learning

There currently is no single agreed upon definition of deep learning, instead many different
definitions exist, all sharing similar underlying ideas. Some of the many different definitions
currently available were summarised in [6]. In general, all definitions agree that deep learn-
ing involves extracting a hierarchical structure of features, abstractions or representations,
directly from data. In recent years, deep learning has quickly become a tremendously pop-
ular field of research with the number of publications more than doubling every two years,
as can be seen in Fig. 1.5, taken from [7].

Because of its huge popularity, and broad definition, the term deep learning has grown
to encompass a great variety of different machine learning algorithms. However, in its most
common usage, deep learning refers to algorithms for training and deploying deep neural
networks, and that is how it will be used for the remainder of this thesis.

1.2.1 Deep Neural Networks

Artificial neural networks are an attempt to mathematically represent the processing meth-
ods of the human brain. In the brain, a neuron is stimulated by incoming signals, and then
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according to some internal properties it either passes an electric impulse onward, known as
firing, or not. Similarly, an artificial neuron receives a variety of inputs, performs a simple
calculation on them and then “fires” an output. Originally, the output of artificial neurons
was binary, imitating the biological neurons.

The first artificial neuron was introduced by McCulluch-Pitts [8] in 1943, and the first
algorithm for training an artificial neuron from data, the perceptron, was introduced by
Rosenblatt in 1958 [9]. Mathematically the first artificial neuron was modeled in this manner:

y =
1 + sgn

(
wTx+ b

)
2 =

1 if wTx+ b > 0

0 otherwise
(1.8)

where x are the neuron’s inputs, y is the output, w are the neuron’s weights, and b is the
bias or threshold of the neuron. For convenience of calculation it is sometimes preferable
to replace 1+sgn(wTx+b)

2 with simply sgn
(
wTx+ b

)
, thus changing the possible outputs to

±1. The update rule for the neuron’s weights, as suggested in the perceptron [9] algorithm
is:

w ←− w + (yj − dj)xj
2 (1.9)

where d is the correct output label, and j ∈ {1, 2, ..., N} is the sample index. This update
rule is performed on each of the N samples of the dataset, and often, several runs over the
entire dataset, also known as epochs, are required.

While these algorithms created the foundations for today’s deep learning methods, they
were still very simplistic and could only be applied to straightforward binary classification
problems. In order to tackle more complex tasks, artificial neurons, also known as nodes,
can be combined to create artificial neural networks (ANN). In an ANN, much in the same
way as in the brain, the output from certain artificial neurons is used as input to others,
allowing more complex calculations. Additionally, other output functions, also known as
activations, other than sgn allow for better update algorithms. Some common functions
include the sigmoid σ(x) = 1 − e−x, hyperbolic tangent tanh(x) = ex−e−x

ex+e−x , rectified linear
unit ReLU(x) = (x+ |x|)/2, and more.

A simple and common structure for an ANN is known as the multi-layer perceptron
(MLP), and its basic structure includes an input (or input layer), followed by layers of
hidden neurons, and finally a layer of output neurons. In the general case, an MLP may
contain more than one hidden layer, with each layer’s output serving as the next layer’s
input, see Fig. 1.6 for a visualization of the basic structure of an MLP.

The added complexity of the MLP compared with the simple artificial neuron requires
a different learning algorithm. One simple approach is to use the Newton-Raphson method,
i.e., to update weights using small increments in the opposite direction of the gradient of the
error with respect to each weight. However, in order to do this we must be able to calculate
the gradient of the error, which is generally unknown, and is instead approximated by using
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Figure 1.6: The example structure of a multi layer perceptron with two hidden layers and a single input
node. Green nodes are inputs, blue nodes are neurons in the hidden layers and the blue node is the output,
connecting lines represent weights

samples from the dataset. In practice, we generally do this using a small subset of the
dataset each time. This method is known as stochastic gradient descent.

Furthermore, as more layers are added to the MLP, the calculation of the derivative
itself becomes more complex due to the chain rule. In order to overcome this problem, it is
helpful to notice that if we know the gradient with respect to all subsequent layer weights,
the current derivative is relatively simple. This principle is used to calculate the gradients
sequentially using an algorithm known as back-propagation [10]. Finally, in many cases it
is beneficial to observe a function of the error, known usually as a cost function or loss
function, instead of the error directly.

Combining all of the above methods, we get one of the first major algorithms in modern
deep learning - the stochastic gradient descent with back propgation [11], shown in Al-
gorithm 1.1. Although stochastic gradient descent (SGD) with back propagation has been
around for a long time, it is still the main underlying concept in the vast majority of modern
deep-learning algorithms, such as SGD with momentum [12], RMSProp [13], ADAM [14],
and more.

MLP-style DNNs can be used to achieve good performance on several interesting tasks,
in fields such as computer vision and natural language processing. However, the simple MLP
architecture has two major flaws: the number of learned parameters, and overfitting.

The number of parameters in an MLP grows as O(In ·Wd2 ·De) where In is the number
of input nodes, Wd is the width of the hidden layers, and De is the number of hidden
layers. This growth rate can be prohibitive in training the network because it requires huge
computation and memory resources. Though initially very significant, with the increase of
computational power in recent years, this problem has become secondary to overfitting.
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Algorithm 1.1 Stochastic Gradient Descent with back-propagation
Input: An MLP y(x) with De layers, weights wl ∈ {w1,w2, ...,wDe}, and an activation

function a(x); A dataset of samples, x ∈ {x1,x2, ...xN} and labels d ∈ {d1, d2, ...dN};
A loss function L(y, d); A learning rate η, and a stopping criterion.

Output: Updated MLP weights {w1,w2, ...,wDe}
1: while stopping criterion hasn’t been met do
2: Select a mini-batch of M samples {x̃1, x̃2, ..., x̃M}
3: Set yi0 = x̃i

Perform forward pass:
4: for l= 1,2,...,De; i=1,2,...,M do
5: yil = a

(
wT
l y

i
l−1 + b

)
6: L̂ = 1

M

∑M
i=1 L(yiDe, di)

7: end for
Perform backward pass:

8: for l=De,De-1,...,1 do
9: Obtain gradients of L̂ w.r.t layer weights, ∇Lwl

, using back-propagation
10: wl ← wl − η∇Lwl

11: end for
12: end while
Stopping criteria can be simply a number of training epochs, or it can include some form
of regularization, such as diminshed performance gains, or evaluation on a validation set.

The large number of parameters necessary to allow an MLP to make meaningful insights
also leads to a solution that is overly tailored to the training set. This is partially because
each node is highly localized and dependent on the order of the input nodes. For example,
shifting all pixels in an image by one pixel in any direction completely changes the weight
by which each pixel is multiplied. This means that in practice, MLP nodes have to be
dedicated to specific subset of samples in the training set, and are very sensitive to any
change in those samples.

1.2.2 Convolutional Neural Networks

In many tasks where DNNs are used, such as computer vision, many traditional algorithms
are heavily reliant on convolution. Convolution is useful because it is computationally effi-
cient and is agnostic to small changes such as shifting. Having analyzed the shortcomings
of MLPs, LeCun et al. [15], realized that it is possible to use these properties of convolu-
tions in DNNs as well, by using a specific weight sharing method among nodes. Under the
weight sharing method proposed, the operation of a node on its input becomes, in practice,
a convolution with a small kernel of weights. This new convolutional weight sharing helps
with both overfitting and the number of parameters.

This discovery was instrumental in the growth and acceptance of neural networks for use
in a wide variety of applications, and led to what is, to this day, the most commonly used
building block in deep-learning - the convolutional neural network (CNN). In a convolutional
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Figure 1.7: The network architecture of LeNet-5 -the godfather of all modern convolutional neural networks,
taken from [16], as permitted by IEEE copyright rules.

neural network the operation of a node changes from Eq. (1.8) to become:

y = a (w ∗ x+ b) (1.10)

where ∗ is the convolution operation, w is the node’s weight kernel (filter), and a(x) is an
activation function. Note that because the node now performs convolution, it’s output y is
no longer a scalar value but rather a tensor, with the same number of dimensions as the
input x. This new output is generally known as a feature, and similarly, the output of an
entire convolutional layer is known as a feature map.

In practice, the convolution performed in CNNs is generally a linear combination of
convolutions either in one, two, or three dimensions (for time-series, images, and videos
respectively). This means weights are shared across spatiotemporal dimensions of the input
but not across different features, assigning each input feature it’s own convolutional kernel.
In addition, each subsequent stage of the network (that may include one or more convolu-
tional layers) will often include a reduction in the spatiotemporal dimension of the feature
map, and a corresponding increase in the number of features. This reduction in dimension-
ality can be done through averaging, choosing the maximal value in a certain neighborhood
(max-pooling), simply using strided convolutions, and more. Fig. 1.7 shows the architecture
of LeNet-5 [16], which is widely considered the godfather of all modern CNN architectures.

Following the success of LeNet-5 on such problems as handwritten digit recognition [17],
the popularity of neural networks began to grow. As new technology improved computa-
tional capabilities, CNNs were solving increasingly complex problems. Notably, in 2012 the
ImageNet Large Scale Visual Recognition Challenge (ILSVRC) [18] was first won by a CNN,
named AlexNet [19], ushering in a new age for deep neural networks. Since then, CNNs using
the same basic concept have been used in the majority of modern deep learning applications,
and the ILSVRC has been won by a CNN every year. Some notable examples of modern
CNN architectures are YoLo [20], ResNet [21], VGG [22], Inception [23] and many more.
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Figure 1.8: (a) - The basic structure of a recurrent neural network. Note the feedback of the state h(t). (b) -
The unfolding through time of the RNN. In this case we replace the recursion with passing the state onward
to the next instance of the RNN block, which shares its weights. This representation allows us to calculate
the gradients use back-propagation through time [25], but must be run on an input of finite length T or
truncated to a certain length to prevent infinite recursion

1.2.3 Recurrent Neural Networks

While convolutional neural networks were, and still are, immensely successful in many tasks,
they are not without their limitations. Because of the finite weight kernels used in the convo-
lutional layers, a CNN can only obtain features that are within a certain distance (whether
spatial, temporal, or both), known as a receptive field. In traditional signal processing,
this is the equivalent of using only finite impulse response filters (FIR). Moreover, FIR fil-
ters generally require many more taps (or weights, in our case) than their infinite impulse
response (IIR) equivalents, though IIR filters have other considerations such as stability,
startup times and more.

To avoid FIR-like limitations, recurrent neural networks were devised by Rumelhart et
al. in 1985 [24]. In a recurrent neural network, each node performs calculations not only
on its input (usually the output of a previous node) but also on it’s own output from the
previous timestep, often known as its state. This recursion separates RNNs from other
networks including MLPs and CNNs, generally known as feed-forward networks. Fig. 1.8
shows the basic structure of such a neural network.

Mathematically we can write this as a variation on the basic artificial neuron, as follows:

y(t) = ay
(
wyh (t)

)
(1.11)

h (t) = ah
(
wxx (t) +whh (t− 1) + bh

)
(1.12)

where h(t) is the network’s state at time t, and the underscript y, x, h separates between
activations and weights of the various components. By using recursion, an RNN has, in
theory, an infinite receptive field, and can represent connections over long period of time.
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In practice, when attempting to train an RNN using SGD or any of its variants, we
immediately notice that the gradient with respect to the network weights is significantly
more complex. This is because the term h(t− 1) is itself dependent on both wx and wh. In
fact, this dependence is recursive, meaning that for each sample we would have to continue
with composition derivatives until the beginning of the input x and internal state h. In
practical applications this can mean thousands of samples, or more. A visual interpretation
of this issue, known as “unfolding” the RNN, can be seen in Fig. 1.8.

In order to handle such calculations, we can use the same insight as for back-propagation.
Given the gradient of all past samples with respect to a weight, the gradient of the current
sample is straightforward. For this reason, it is once again possible to calculate the gra-
dient sequentially, this time using an algorithm known as back-propagation through time
(BPTT) [25]. In practice, even when using back-propagation through time, it is necessary
to limit the length of RNN input signals and recursion for tractable calculations.

While back-propagation in time allows us to effectively calculate the gradients, it still
does not solve the problems of vanishing (or exploding) gradients. Vanishing gradients result
from the derivative of most common activation functions, which are always smaller than
one (if they are larger than one we get instead the exploding gradients). This problem is not
unique to RNNs, and can also occur in very deep feed forward networks. In RNNs however,
along with depth, vanishing gradients can be exacerbated greatly by the often very long
chain rules required for BPTT.

The vanishing gradient problem of simple RNNs hinders their ability to effectively hold
meaningful connections over a long period of time. In order to tackle this issue and enable
RNNs to achieve their original goal, several modified architectures exist, of which the most
widely adopted are the long-short-term memory (LSTM) [26], and the gated recurrent unit
(GRU). In both cases the solution involves updating the network state only when certain
conditions are met. This allows most gradients in time to be close to 1, preventing the
vanishing (or exploding) gradients, and allowing the networks to be trained with longer
temporal connections in practice. Fig. 1.9 shows the basic units of the LSTM and GRU
networks.

Although they have many advantages, recurrent neural networks remain challenging to
train, due to the computational cost of back-propagation through time. For this reason, un-
like CNNs, RNNs have remained more limited in their application, and are most commonly
used in natural language processing, and some time-series analysis (such as NILM).

1.2.4 Generative Adversarial Networks

Creating realistic synthesized signals is both a challenging task in and of its own, as well as
an important tool for solving problems where data is limited, such as NILM. Unfortunately,
under the training methods presented so far, neither a CNN nor an RNN is capable of
synthesizing new data realistically. For example, a CNN may be able to classify whether
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Figure 1.9: The basic structure of the LSTM and GRU variants of recurrent neural networks. Both archi-
tectures vary from a standard RNN by only updating the internal state when the input and current state
dictate doing so. Taken with permission from [27].

an image contains a face or not, but it will not be able to generate a new, unseen face; an
RNN might be able to translate a sentence between languages, but it will not be able to
compose a new sentence.

However, given the complex feature extraction capabilities of DNNs, it is reasonable to
expect that under the correct training algorithm, synthesis of new data will be possible.
In [28], Goodfellow et al. designed a training algorithm that accomplishes that very goal,
and named it generative adversarial networks (GAN). In a GAN setup, we replace the
optimization problem of minimizing a loss function, with a game for which we try to find an
equilibrium. The two players in this game are both neural networks, known as the generator
and the discriminator.

The generator takes in random noise as input, and attempts to generate a realistic
signal at its output. The discriminator, on the other hand, receives a signal as an input and
attempts to conclude whether or not the signal was real or generated by the generator. The
underlying assumption of a GAN is that an equilibrium will be reached when the generator
produces completely realistic examples. Note that, although the discriminator can be useful
in some contexts, the main objective of training a GAN is to obtain a strong and realistic
generator. See Fig. 1.10 for a visualization of a simple GAN.

Because GANs represent a game rather than an optimization problem, they cannot
simply be trained by gradient descent. Instead they are trained using an alternating method
in which at each point either the generator or the discriminator is frozen while we perform
a gradient descent step on the other. Algorithm 1.2 shows the basic method for training a
GAN.

GANs have been hugely successful in a variety of generative tasks, predominantly on
images, as can be seen in Fig. 1.11. Despite ther great success, simple GANs, known also
as vanilla GANs, remain challenging to train. The reasons for this difficulty are a subject
of much research, and have lead to a development of many GAN variants. Two notable

15



Figure 1.10: The general structure of GAN training. The discriminator is trained to assign generated signals
the label 0 and real signals the label 1. Simultaneously, the generator is trained to generate images from a
random latent code, that are assigned a 1 label, that is, signals classified as real

(a) High resolution images of
human faces generated using

progressively growing GANs, taken
from [34]

(b) Realistic photographs of
objects in a variety of classes
generated by BigGAN, taken

from [35] (c) Sketch to photo translation
performed by CycleGAN, from [36]

Figure 1.11: Examples of the success of generative adversarial networks

issues are the vanishing gradient of the basic GAN loss (the binary cross entropy) which
was addressed in [29, 30], and the lack of use of class labels for data, addressed in [31, 32].
Due to their effectiveness, GANs have been utilized in an immense assortment of tasks and
are the subject of more publications than ever before [33].

Beyond GANs, RNNs, and CNNs, there are many more important variations of DNNs
as well as training algorithms that this thesis is too short to elaborate on. Some impor-
tant ones include the attention mechanism [37], transformers [38], batch normalization [39],
WaveNets [40], and many more. In the following chapters, when required, each project will
be preceded by the necessary additional deep-learning background.
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Algorithm 1.2 Training algorithm for generative adversarial networks
Input: a generator G (z); A discriminator D(x); A dataset of real samples, xr ∈
{xr1,xr2, ...xrN}; a latent code distribution ρ(z); A cost function L(x, d); A learning
rate η; an optimizer; and a stopping criterion.

Output: Updated Generator and Discriminator
1: while stopping criterion hasn’t been met do
2: for Desired discriminator repetitions do

Discriminator update step:
3: Select a mini-batch of M samples: {xr,1,xr,2, ...,xr,M}
4: Sample M latent code vectors using ρ: {z1, z2, ...,zM}
5: Generate "fake" signals such that xg,i = G (zi)
6: Perform one optimizer step on D using LD = L(xr,1) + L(xg,0)
7: end for
8: for Desired Generator repetitions do

Generator update step:
9: Sample M latent code vectors using ρ: {z1, z2, ...,zM}
10: Generate "fake" signals such that xg,i = G (zi)
11: Perform one optimizer step on G using LG = L(xg,1)
12: end for
13: end while
The optimizer is any method to update network weights, and generally refers to variants of
SGD. Similarly, the loss can be any classification loss, but is often binary crossentropy.
In the original GAN algorithm both the generator and discriminator only take 1 step each.

1.3 Thesis Outline

The thesis is organised according to the following outline. Up to this point, in Chapter 1, I
have established the necessary foundation and background for the rest of the thesis. Next,
in Chapter 2, I will review some previous work on nonintrusive load monitoring, as well
as review currently available datasets for NILM. After establishing the current state of
the field, Chapter 3 will describe two initial projects undertaken during research for this
thesis: (1) A proof-of-concept project examining the use of weather data to improve NILM
performance, as well as the feasibility of implementation of NILM on a raspberry pi; and
(2) WaveNILM - a state-of-the-art solution to low-frequency causal NILM using the entire
complex power signal. These two initial projects, though successful in their own right,
serve mostly as motivation for the central project of this thesis: PowerGAN - generative
adversarial networks for synthesising truly random appliance power signatures, which will
be described in Chapter 4. Finally, Chapter 5 will summarize the thesis, and review some
promising avenues for future research that emerge from the presented work.

The language in this thesis is presented in the first person singular when referring to my
own individual writing, mostly in the context of this thesis. In all other scenarios, where I
worked with the help of other researchers, including my supervisors, the first person plural
is used. Unless otherwise mentioned, all deep neural network training and inference was

17



performed on a Linux server, running an Intel Core i7-4790 CPU @ 3.60GHz, with 32GB of
RAM, and a Titan XP GPU with 12GB of RAM. The following publications resulted from
the research described in this thesis:

1. A. Harell, S. Makonin, and I. V. Bajić, ”A recurrent neural network for multisensory
non-intrusive load monitoring on a Raspberry Pi," In IEEE MMSP’ 18, Vancouver,
BC, Aug. 2018. demo paper, electronic proceedings

2. A. Harell, S. Makonin, and I. V. Bajić, ”WaveNILM: A causal neural network for
power disaggregation from the complex power signal” in 2019 IEEE International
Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE, 2019, pp.
8335–8339

3. A. Harell, R. Jones, S. Makonin, and I. V. Bajić, ”PowerGAN – a truly synthetic
appliance power signature generator,” IEEE Transactions on SmartGrid, 2020. [Sub-
mitted]
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Chapter 2

Previous Work

Since its proposal in 1992 [3], the field of NILM has garnered significant research interest as
well as commercial attention. Nowadays, there is a vast amount of published work on the
topic, in addition to a variety of companies working in the field. For this reason, I do not
presume to cover the entirety of the work on NILM, but rather present an overview of the
current approaches to the problem. In this chapter I will showcase some of the successful
methods used for NILM, as well as review the current state of NILM data. In subsequent
chapters, I will expand as necessary on work that is directly relevant for comparison with
each of the presented projects.

2.1 NILM Solutions

In his seminal paper on the subject, Hart [3] suggested solving NILM (which at the time,
he named Nonintrusive appliance load monitoring - NALM), using appliance typical steady
state values of real and reactive power. He presents two alternative methods for obtaining
these values, an unsupervised method dubbed manual setup NALM (MS-NALM) and a
supervised method named automatic setup NALM (AS-NALM). In both methods, values
for appliance steady-state consumption of both real and reactive power are determined in
a setup phase. Using these values, a graph of possible power transitions is compiled. Once
the graph is complete, any change in the overall power measurement is matched with one
possible transition from the graph to determine to which appliance it belongs. Hart’s method
remains the inspiration for all modern NILM techniques, which have since surpassed it in
terms of performance.

Since Hart’s original paper, although there have been several attempts at solving NILM
in an unsupervised manner [41, 42, 43, 44], the majority of NILM approaches remain super-
vised. There are many possible ways to examine the many supervised methods for solving
NILM. For obvious reasons I choose to focus more on solutions related to deep learning.
Nevertheless, I will also review some important NILM works that do not involve neural net-
works, such as hidden Markov models, integer programming, and more. Another important
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aspect in which NILM solutions vary greatly, is the metrics used for evaluating the solution.
For a review of the many metrics commonly in use, see [45].

2.1.1 Supervised Methods Other than Deep Learning

Building upon [3], several papers attempt to improve the solution of NILM through direct
signature matching. In [46, 47, 48] the improvements are focused on modifying the power
signature collection procedure, giving better targets for signature matching. In [49] authors
include the energy transient signatures in addition to steady state values, to improve the
signature matching procedure. They do this using an ANN, though it only contains one
hidden layer, and thus is not considered deep learning. In [50] the authors suggest including
V-I trajectories, which can also be obtained directly from a smart meter to improve signature
matching, and [51] propose using the same trajectories to identify appliances, for algorithms
that do not independently assign a label to disaggregated data.

Another common approach for solving NILM involves the use of hidden Markov models
(HMM), and their many variants. In the context of NILM, HMMs can be viewed as solving
equation (1.4) under the assumption of Markovity in the state transitions of the appliances.
This concept was first proposed in [52], who hand designed the underlying Markov chains
based on recorded data, and then fine-tuned it during disaggregation. One disadvantage of
HMMs is that the number of possible states describing a house grows exponentially with
the number of appliances to be disaggregated. For this reason, Soton et al. [52], limited
their solution to 3 appliances only.

Future iterations of HMMs attempted to tackle the exponentially growing number of
states in numerous ways. In [53], the simple HMM is replaced with an additive factorial
hidden Markov model (AFHMM) in which each appliance is considered to be governed by its
own HMM, which is independent of all other appliances. In practice this helps make HMMs
tractable for a larger amount of appliances, but fails to take into account correlation between
appliances. For example, it is clear that a clothes dryer’s activations are highly correlated
with the washing machine, a fact that is ignored by AFHMMs. A similar approach was
taken in [54], and later expanded in [55] by including reactive power as an additional input
to the AFHMM.

An alternative method for mitigating the growing number of states is to use the inherent
sparsity of appliance state transitions. Generally, no more than one or two appliances change
their internal state at the same time. This means that, although the number of states grows
exponentially, the number of non-zero transition probabilities does not. This idea was first
used in [56] and then expanded on in [57], using what the authors named a superstate
hidden Markov model (SSHMM). By exploiting the aforementioned sparsity, Makonin et al.
were able to train and solve an HMM for over 20 appliances, and perform highly accurate
inference in real-time for low sampling rate data.
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One more approach to solving NILM is using integer programming (IP). In [58], the
authors first use IP for load disaggregation in the following manner. They assume that the
total current is comprised of a linear combination of pre-determined current signatures.
The authors then measure the current signatures, one for each operating state of each
appliance. Finally, disaggregation is performed by optimizing the mean squared error of the
total current, under the constraint that all coefficients of the linear combination must be
non-negative integers. In order to aid convergence, the authors also include some additional,
hand-crafted, constraints on coefficient values, for example preventing one appliance from
being in two states simultaneously. Although Suzuki et al. [58] use current signatures, IP
can be easily adapted to any other electrical measure. While promising, IP in its original
form requires identifying each appliance state individually, and does not take advantage of
any relationship between states, other than in the form of hand-crafted constraints.

In [59], Bhotto et al. expand this concept in several ways, naming their solution aided
linear integer programming (ALIP). First, they add additional constraints to avoid ambigu-
ities in IP solutions, including taking advantage of an appliance state machine formulation.
Secondly, they introduce median filtering to avoid unrealistic IP solutions such as rapid
switching of certain appliances. And finally, the authors refine the results using linear pro-
gramming, without integer constraints, to account for possible transient energy signatures.
This last modification means that AILP is in fact a form of mixed-integer linear program-
ming (MILP).

Further building upon this work, [60] suggest solving the MILP problem on an entire
window of samples at once. This allows for the inclusion of new constraints related to the
temporal behaviour of appliance state machines. Additionally, the authors solve the MILP
problem on both active and reactive power concurrently, building upon the foundation set by
Hart [3]. One more notable adaptation of IP for NILM is [61] in which integer programming
is used as a measure to improve the solution of FHMM disaggregation.

2.1.2 Deep Learning Methods

Deep neural networks, with their capacity to solve complex classification or regression prob-
lems, are natural candidates for solving NILM. The first attempt to utilize DNNs for dis-
aggregation was performed in [62], where Kelly et al. compare three alternative solutions: a
denoising autoencoder [63] and a bi-directional LSTM [64] for direct disaggregation; and a
“rectangle” regression network to estimate the start, end, and average power of each activa-
tion. The solutions presented in [62] represent an initial attempt at using deep learning for
NILM, and as such have several problems. The solutions use simple architectures, and train
an independent DNN for each appliance, requiring repeated meticulous selection of archi-
tecture and training parameters. Furthermore, the networks require tremendous amount of
trainable parameters - up to 150 million parameters per appliance. Since [62], there has been
a proverbial explosion in publication of NILM solutions using deep learning. Unfortunately,
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many of these papers, such as [65, 66, 67, 68] offer no significant improvement or novelty
when compared with [62].

LSTMs, and other RNNs, are directly designed to model temporal dependencies in
signals, and thus are a common choice for deep learning solutions for NILM. Building upon
the bidirectional LSTM presented in [62], Kim et al. use a handcrafted input to a LSTM
network to improve disaggregation results [4]. The aggregate power is first smoothed out
using a single pole auto-regressive filter. The first order difference of the smoothed signal is
then included as an additional input to an LSTM network for disaggregation.

In [69], a gated recurrent unit (GRU) was used in place of an LSTM. The GRU archi-
tecture chosen by Le et al. was limited in size and complexity, and thus in performance
as well. However, the introduction of GRUs for NILM served as a basis for future works.
In [70], the author included a regularization using dropout [71] to both LSTM and GRUs,
and observed an improvement in performance on houses both seen in training and unseen.
Our earlier work [72], which is presented in more detail in Chapter 3, also utilizes an LSTM
for disaggregation.

One dimensional CNNs, with large enough receptive fields, may also be an appropriate
tool for disaggregation. Zhang et al. [73] suggest replacing the autoencoder from [62], which
they dub a sequence-to-sequence (seq2seq) disaggregator, with a CNN with a single point
output. They name their technique sequence-to-point (seq2point), and find that it improves
disaggregation. The use of a seq2seq solution gives multiple possible values for each timestep,
due to overlapping input windows. Zhang et al. claim this reduces performance, and that
using one point output effectively chooses the optimal solution instead of the mean of sub-
optimal solutions. Furthermore, one can postulate that some of the improvement is due to
the edges of the disaggregated window, where seq2seq disaggregation is forced to pad the
input with zeros.

In [74], Valenti et al. build upon the denoising autoencoder architecture used in [62], by
including a longer convolutional network in both the encoder and decoder side. In addition,
they demonstrate that the use of reactive power as an additional input to a neural network
can improve performance, building upon Hart’s original method.

In order to increase the receptive field, [75] use dilated one-dimensional convolutions,
a concept also used in [76]. In a dilated convolution, also known as atrous convolution,
the weight kernel is stretched by a dilation factor, with the new values filled with zeros.
Effectively this is the same as convolving the weight kernel with every K-th sample of the
input, yet without actually downsampling the output. The dilation of the kernels allow
CNNs to better model long-term appliance time dependencies without a significant increase
in parameter size. Reference [75] used dilated convolutions in a residual architecture [21],
while [76], which was developed for industrial NILM applications concurrently with my own
publication [77], takes advantage of a WaveNet [40] architecture.
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The use of a WaveNet architecture combines the advantages of CNNs with those of
recurrent neural networks by incorporating the output of the current sample as an input for
future disaggregation. Reference [78], published after both [77, 76], uses a two-tiered CNN
to obtain a similar hybrid of recurrent and convolutional neural networks, while also taking
advantage of multiple electrical measurements as inputs: active, reactive, and apparent
power, as well as current.

Generative models, such as GAN and variational autoencoders (VAE) [79] can also be
used to solve NILM by using a heavily conditional setting. Reference [80] uses the aggregate
as an input to the encoder side of a VAE, and use the decoder side to perform generative
disaggregation of each appliance. The resulting disaggregation performs well, although it suf-
fers from oversmoothing the generated appliance signatures, a common problem with VAEs.
Recently, [81, 82] used GAN frameworks to fine-tune NILM by requiring the GAN discrimi-
nator to evaluate the realism of disaggregation outputs. EnerGAN [81] uses this mechanism
to improve a seq2seq disaggregator, achieving minor improvements. Reference [82] uses a
similar technique and combines seq2seq with seq2point, creating a sequence to subsequence
disaggregator, which achieves good performance.

One challenge common to all of the mentioned supervised solutions, both deep-learning
and otherwise, is the ability to generalize to unseen data. This problem is especially difficult
when the data is taken from a different dataset entirely. In [83], Murray et al. tackle this
problem directly. They simplify network architectures as well as halt training early to avoid
overfitting. They explore this concept for both convolutional and recurrent neural networks,
training on one dataset and testing on others. They argue that using this technique, although
it reduces in-distribution performance somewhat, greatly contributes to generalization to
out-of-distribution data.

2.2 Datasets

When examining the various methods for NILM, it is important to also understand the
current state of data available to NILM researchers. Because of the complexity and cost of
collecting appliance power consumption data, no two datasets are alike. This is unavoidable
due to the many variables that go into collecting such a dataset, and a lack of standard
setting in the community.

Commonly, a NILM dataset will contain a central, or aggregate, measurement, which
will cover an entire household, as well as individual appliance measurements. For practical
reasons, appliances can not always be measured completely individually, in which case a
dataset will hold measurements of sub-sections of the house known as sub-meters. Each
of the aforementioned measurements includes a time stamp along with some electrical at-
tributes such as voltage, current, real power, reactive power, etc. In general, real power is
the most commonly measured and used electrical attribute for NILM.
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In addition to the measured quantities, datasets often differ in the following: sampling
frequency, usually as a result of differences in measurement equipment; total measurement
duration, either because of access constraints to measured houses, or storage and publi-
cation limitations; number of measured sub-meters, often limited by cost and complexity
of attaching a specific sensor for each individual appliance; and finally location, which in
turn means big differences in available appliances, grid characteristics, weather and more.
An overview of existing datasets, including their various characteristics, is presented in Ta-
ble 2.1. The data in this table was compiled based on [84], and updated directly from each
dataset whenever possible.

Table 2.1: Overview of various nonintrusive load monitoring datasets

Datasets with Aggregate & Sub-meter Data

Dataset Sampling
Frequency

Duration No. of
Houses

Location Attributes

UK-
DALE [85]

16KHz -
1Hz

Up to 4
years

6 (3 at
16KHz)

United
Kingdom

P, S,Q, Utility

REDD [86] 16.5KHz -
1Hz

Several
Months

6 United
States

P, V, I

BLUED [87] 12KHz -
1Hz

1 Week 1 United
States

P,Q, V, I

Dataport [88] 1Hz - 1
Minute

More than
4 years

1200 + United
States

P

SMART* [89] 1Hz 3 Months 3 United
States

P, S, V, I,
Ambient,
Occupancy

AMPds2 [5] 1 Minute 2 years 1 Canada P, S,Q, V, I,
Utility,
Weather.

DRED [90] 1Hz - 1
Minute

6 months 1 The
Nether-
lands

P , Occupancy,
Ambient

RAE [91] 1Hz 1 year 2 Canada P , Energy,
Ambient

iAWE [92] 1Hz 73 days 1 India P, V, I, φ, ω,
Ambient,
Utility

HES [93] 2 minutes 1 year - 1
month

251 United
Kingdom

Energy

REFIT [94] 8 seconds 2 years 20 United
Kingdom

P

ECO [95] 1Hz 8 months 6-45 20 United
Kingdom

P, V, I, φ,
Occupancy

RBSA [96] 15 Minute 27 months 101 United
States

Energy
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LIT-
Dataset [97]

15KHz 30s -
several
hours

26 Brazil V, I

Datasets with Appliance Data Only

Dataset Sampling
Frequency

Duration No. of Ap-
pliances

Location Attributes

PLAID [98] 30KHz 5 seconds 55 United
States

V, I

WHITED [99] 44KHz 5 seconds 9 Germany,
Austria,
Indonesia

V, I

Tracebase [100] 1Hz 1 day 158 United
States

P

COOLL [101] 100KHz 6 seconds 12 France V, I

Synthetic Datasets

Dataset Sampling
Frequency

Duration No. of Ap-
pliances

Published
as

Attributes

ANTgen [102] 1 N/A 12 Simulator P

SmartSim [103] 1Hz 1 Week 25 Simulator
& Dataset

P

SynD [104] 5Hz 180 days 21 Dataset P

Utility meters include water, gas, and energy meters (or some of the above). Ambient parameters include
things such as internal indoor and outdoor temperature, humidity, wind-speed etc. Weather data includes
similar parameters but is based on data from a nearby weather station. All other notations are consistent
with Section 1.1.2. Note that datasets for industrial or commercial NILM have been excluded from this table,
as the focus of this thesis is the residential setting.

While this list is not entirely exhaustive, it presents a good picture of the data available
for NILM researchers. It is immediately noticeable that NILM datasets vary immensely
from one another, creating a difficulty in building industry standards for evaluation and
comparison of NILM work.

When attempting to deal with these limitations of collected data, one method is to
develop unsupervised [41, 42, 43, 44], or weakly supervised [105] methods for NILM. An-
other approach, examples of which are listed at the end of Table 2.1, is to generate data
synthetically. More information on appliance data synthesizers appears in Chapter 4. The
fragmented state of NILM data, along with reasons that will be explained in the following
chapters, lead me to choose reliable data synthesis as the main focus of this thesis.
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Chapter 3

Preliminary Work

Material presented in this chapter is heavily based on my previously published works [72, 77].

3.1 Proof of Concept

3.1.1 Motivation

As a first step in exploring deep-learning based solutions for NILM, I wanted to explore
the benefits of using multi-sensory data for improving disaggregation. At the same time,
I attempted to demonstrate that a DNN-based solution can be feasibly implemented on a
ubiquitous, cheap, and relatively modest computational platform such as a Raspberry Pi.

As part of the publication of the AMPds2 dataset [5], the authors also included weather
data from a nearby weather station at the Vancouver International Airport (YVR). Fur-
thermore, in the accompanying paper to the dataset, Makonin et al. demonstrate a strong
correlation between the overall power consumption and temperature, as seen in Figure 3.1.
Building upon this insight, it is reasonable to hypothesize that such a correlation exists also
within specific sub-meters.

Figure 3.1: Correlation between overall power consumption and outside temperature. Taken with permission
from [5]

In order to validate the intuition that the correlation with weather exists also in the
sub-metered data, we first calculate the correlation between outside temperature and each
sub-meter included in AMPds2. The results of this evaluation, shown in Table 3.1, provide
further motivation to examine the benefits of including temperature data in improving
NILM performance.
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Table 3.1: Correlation coefficient between sub-meter power measurement and temperature in AMPds2 [5]

Sub-meter Temp. Corr Sub-meter Temp. Corr
RSE 0.036 UTE 0.046
GRE 0.008 WOE 0.019
B1E -0.0044 B2E -0.076
BME -0.0019 CDE 0.002
CWE 0.0022 DNE 0.006
DWE 0.002 EBE -0.025
EQE 0.117 FGE 0.087
FRE -0.085 HTE 0.0003
HPE -0.104 OUE 0.003
OFE 0.059 TVE 0.002

3.1.2 Proposed Method

Long Short Term Memory

Recurrent neural networks (RNNs) have been a common tool in deep learning NILM al-
gorithms. In most cases, however, a variant on the basic RNN architecture is used, with
long short term memory (LSTM) being the most common [62, 4, 70]. As briefly explained
in Chapter 1, LSTMs introduce a concept known as cell state. As opposed to the standard
state variable from regular RNNs, the cell state is not necessarily updated at each time
step. Instead, the cell state is updated in two steps. First, the cell is multiplied by the result
of the “forget” gate, allowing the LSTM to forget the state if needed. Then, the new input
and current state determine a value to be added to the cell state (the “input” gate). This
architecture allows LSTMs to hold long-term memory while also adapting quickly when
appropriate.

A graphical illustration of an LSTM is shown in Figure 3.2, and the following equations
describe an LSTM network operation:

f(t) = σ
(
wfxx(t) +wfhh(t− 1) + bf

)
(3.1)

i(t) = σ
(
wixx(t) +wihh(t− 1) + bi

)
(3.2)

o(t) = σ
(
woxx(t) +wohh(t− 1) + bo

)
(3.3)

c(t) = f(t) ◦ c(t− 1) + i(t) ◦ tanh
(
wcxx(t) +wchh(t− 1) + bc

)
(3.4)

h(t) = o(t) ◦ tanh
(
c(t)

)
(3.5)

The operator ◦ denotes the Hadamard product, t refers to the time step, and the variables
are as follows:
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• x: input vector to the LSTM unit

• f : output vector of the "forget gate"

• i: output vector of the "input gate"

• o: output vector of the "output gate"

• h: final output vector of the LSTM unit

• h: cell state vector of the LSTM unit

• w, b: weight matrices and bias vector. The first subscript relates the weights or biases
to the activation, whereas the second subscript (for weights) relates to the input. and
.

Figure 3.2: A visual interpretation of a long-short-term-memory network. Taken from [27] with permission

Network Architecture

When observing solutions to NILM, as presented in Chapter 2, two significant categories
of performance metrics emerge. Some metrics, such as F1 score, are derived from classi-
fication problems. This means they are used to evaluate NILM as a multiclass-multilabel
classification problem wherein the main concern is what state each appliance is currently in.
Other metrics, such as estimated accuracy [45], are measures of the numerical error in the
power estimation, meaning they are used to evaluate NILM as a regression problem (the
full equations for F1 and estimated Accuracy can be found in Section 3.1.4). This duality
in the metrics led us to approach NILM as a hybrid problem containing a regression part
and a classification part.

The first stage of the architecture is a standard LSTM [26] layer consisting of 128
nodes. The next layer is fully connected with a sigmoid activation function which serves
as the classifier output of the network. This output is concatenated with the output of
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Figure 3.3: Proposed network architecture

the first LSTM and is used as an input to a secondary standard LSTM. Finally, another
fully connected layer performs the regression using a linear activation function. A visual
description of the network can be found in Figure 3.3.

Both the classifier and regression layer output are taken into account in loss calculation,
resulting in dual task learning. This hybrid architecture not only allows us to optimize
the two different metrics simultaneously but also improves performance by introducing the
classifier output as useful information for the final regression layer.

In order to demonstrate the usefulness of multisensory data for NILM, we compare the
performance of two such neural networks on a limited disaggregation scenario. One network
will use only the total power as an input, while the other will also incorporate temperature
readings. By comparing the performances of the two networks, we are able to obtain an
understanding on how the inclusion of temperature data effects NILM performance.

3.1.3 Experimental Setup

Data

Continuing along with the motivation of this project, we use the data from AMPds2 [5],
which contains measurements from 20 sub-meters, in one house in Canada, taken at one
minute intervals over two years. The dataset also includes weather data from the nearby
YVR airport weather station. Because the weather data is sampled at a lower frequency,
once every hour, we first upsample it using simple first order hold (linear extrapolation).

Being a proof of concept project, we limit the experiments to a simplified version of
NILM. First, we use a denoised scenario as defined by [57], in which aggregate data are
manually created by aggregating the data from desired sub-meters. Secondly, we limit our-
selves to two sub-meters, which we select according to their correlation with temperature
and one another. The sub-meters selected – the heat pump (HPE) and the office (OFE)
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– showed opposite correlation to temperature (see Table 3.1) and almost no correlation to
one another.

To perform the aforementioned experiments, we divide the dataset into training, vali-
dation, and test sets. Training was performed using 600 days (500 for training and 100 for
validation), and testing was conducted using the subsequent 100 days. For simplicity, and
to avoid over-fitting, training was limited to 200 epochs for each network. Additionally, the
networks’ learning rate was decreased after a plateau in validation loss and training was
halted after three such plateaus.

Implementation on Raspberry Pi

The use of a low frequency dataset permits using a network that is able to run at real-
time or faster speeds even on a computationally limited platform such as the Raspberry Pi.
However, the large amount of data and computational complexity of BPTT both require
that training be conducted on a stronger machine. Both networks were trained on an Intel
Core i9-7980XE CPU with 256GB of RAM, using Keras version 2.0 Python package [106]
with a TensorFlow [107] backend.

After the training was completed, both networks were loaded onto a Raspberry Pi (RPi)
3 computer (model B V1.2) for testing. In order to run the model trained on a PC on the
RPi, an RPi specific build of TensorFlow [108] was installed, as well as the appropriate Keras
wrapper. Even though the RPi has limited computational capabilities, both networks (with
and without temperature input) were able to run at faster than real-time speed. A working
demo of this implementation, using pre-recorded data to simulate the smart-meter input,
was presented at the 2018 IEEE International Workshop on Multimedia Signal Processing
(MMSP’18) [72].

3.1.4 Evaluation

Metrics

The two metrics chosen for this paper are commonly used in evaluating NILM perfor-
mance [45]. F1 score is calculated using precision and recall coefficients obtained from a
classification confusion matrix [109]:

F1 = 2
1

recall + 1
precision

= 2 · precision · recall
precision+ recall

(3.6)

Note that F1 score is calculated in this manner both for binary-class and multi-class prob-
lems; any necessary adaptations are dealt with in deriving recall and precision.
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Estimated accuracy (Est.Acc.) is a measure of the absolute error in the estimate of a
regressed parameter, in our case, power. The equation for estimation accuracy is:

Est.Acc. = 1−
2 ·

T∑
t=1

A∑
m=1
|ŷ(m)
t − y(m)

t |

T∑
t=1

A∑
m=1

y(m)
(3.7)

where t denotes the timestep, (m) denotes the appliance, and T and A are the total time
and the total number of appliances, respectively. Note that the calculation above yields total
estimated accuracy; if needed, the summation over A can be removed creating an appliance
specific estimation accuracy.

Results

Having both the classification and total power estimate at the output allows us to compare
the two networks using both the F1 score and Estimation Accuracy [45]. As seen in Table 3.2,
the inclusion of temperature in the input data improves the performance in both metrics,
especially for OFE.

Table 3.2: F1-Score and Estimation Accuracy Results

Input Sub-meter F1-Score Est Acc
HPE 0.9997 0.966

Power OFE 0.790 0.535
Overall 0.865 0.912
HPE 0.9996 0.976

Power + Temperature OFE 0.847 0.688
Overall 0.903 0.939

3.1.5 Summary

In this proof-of-concept project, we examined the benefits of using multisensory data for
NILM, as well as the feasibility of implementing NILM on a cheap ubiquitous platform such
as the Raspberry Pi. We have proven both concepts, showing improved performance by
using temperature data in NILM, as well as better than real-time inference time on a RPi.
The combination of low frequency data and better than real-time performance on a simple
machine indicate that similar solutions can easily be deployed on a large scale in the future.
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3.2 WaveNILM

3.2.1 Motivation

Although the work in [72] had successfully explored the use of external weather data for
improving NILM, its architecture was overly simplistic and not appropriate for a full-scale
NILM solution. Because of this, my next step was to design and train a full NILM solution
based on deep learning. It is important to note that this section was developed in late 2018
and all references to recent or current solutions should be taken with respect to that time.

When reviewing previous deep-learning solutions for NILM (see Section 2.1.2), we notice
that the majority of such disaggregators only use one electrical measurement as an input
(usually active power or current). One exception to this is [74], which explores the use of
reactive power as well, similarly to Hart’s original algorithm. Furthermore, many of the
architectures proposed, such as denoising autoencoders (also known as seq2seq) [74, 62]
and bi-directional recurrent neural networks [62, 110] are non-causal. These networks use
future data in order to disaggregate the current sample or disaggregate an entire sequence
at once. In practical applications this means significant delay in disaggregation, effectively
preventing real-time use.

When exploring possible approaches, we noticed that the field of audio analysis, where
deep learning is heavily employed, has several similarities to NILM. It deals with time-
series data, and blind source separation, a central problem in audio analysis, is closely
related to disaggregation. For this reason, neural network architectures used in audio may
prove useful for NILM. One such architecture, designed for generating audio in a causal
manner, is WaveNet [40]. WaveNet has been a direct inspiration for this work, and many of
its basic building blocks are directly used here, as will further be explained in Section 3.2.2.

These previous attempts at NILM, combined with conclusions from our own previous
work [72], lead us to explore a solution that will make use of multiple input signals, including
the entire complex power signal (see Section 1.1.2), as well as weather data. Additionally,
we require our solution to be efficient and causal, so that it may be used in real-time
applications of NILM. Finally, we use building blocks taken from WaveNet, in order to
create our proposed method: “WaveNILM: a causal neural network for power disaggregation
from the complex power signal” [77].

It is important to note that concurrently with our own work, another model under
the name of “WaveNILM” was developed. This model, presented in [76], was published
slightly before ours, but after ours had been submitted for review. While both our model
and the one in [76] are derived from WaveNet [40], they are quite distinct. Firstly, [76]
uses WaveNet as is, without adaptation, training a separate model for each disaggregated
appliances, while we make adaptations to WaveNet and train one model to perform the
entire diaggregation task. Secondly, [76] is designed for industrial loads, while our solution
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Figure 3.4: Causal standard (left) and dilated (right) convolution stacks. Both have 4 layers, each with filter
length 2. The dilation factor is increased by a factor of 2 with each layer. Colored nodes represent how output
is calculated. Choices of colour simply differentiate one network from another and have no other significant
meaning.

is targeted at a residential setting. This difference in scenario is also the reason no direct
comparison with [76] will appear in this section.

3.2.2 Proposed Solution

Dilated causal convolutional neural networks

Maintaining causality is important in NILM as it allows for disaggregated data to be made
available to users in real time. This is especially true in a dynamically priced power grid,
where a user might turn on a high energy appliance at a time when power is expensive. If
given a real-time notification, the user may choose to defer the task to a later time, saving
money and reducing the load on the network at peak time [111].

Causal convolutional neural networks (CNNs) differ from standard CNNs by using only
samples from previous time-steps to calculate the current output. A stack of standard causal
convolution layers requires long filters or very deep structures in order to achieve sufficiently
large receptive fields. One way to address this problem is dilated causal convolution, as
introduced in WaveNet [40]. In a dilated causal convolution with x[n] as the input, dilation
factor M and length N with kernel ck, the output y[n] is:

y[n] =
N−1∑
k=0

ck · x[n−M · k]. (3.8)

Note that the receptive field of y is of size M · (N − 1) + 1, even though it only has k
parameters. By stacking dilated causal convolutions with increasing dilation factors we can
achieve large receptive fields with a limited number of parameters, while still maintaining
causality, sampling rate, and using all available inputs. Figure 3.4 provides a visualization
of dilated convolution stacks.
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Figure 3.5: WaveNILM network architecture

Proposed network structure

The basic building block of WaveNILM is a gated version of the dilated causal convolutional
layer, also inspired by WaveNet [40]. Samples from the current and past time steps are used
as inputs to the dilated casual convolutions. Then, the output of each convolutional layer
is used as an input to both a sigmoid activation (the relevance estimator or “gate”) and a
rectified linear activation (the regressor). The two activation values are then multiplied, and
used as the output of the block. Each block output is then duplicated, one part being used
as an input to the next layer, while the other (the “skip connection”) skips all subsequent
convolutions and is used in the final layers of WaveNILM. Each of these layers also contains
a dropout of 10%.

In order to determine the appropriate architecture for WaveNILM, we first examined the
size of the receptive field, which relates to the length of meaningful temporal relationships
in the data. We found the appropriate length to be 512 samples, which is approximately 8.5
hours with 1-minute sampling. We then examined various possibilities for the number of
layers and the layer size (number of filters) to arrive at the WaveNILMmodel architecture. In
the final configuration (Figure 3.5), the inputs are first fed into a 512-node time-distributed
fully connected layer (with no connections between separate time samples), followed by a
stack of 9 gated building blocks with 512, 256, 256, 128, 128, 256, 256, 256, 512 filters each.
Skip connections from each layer of the stack are then concatenated, followed by another
fully connected layer with tanh activation used as the output mask. Because WaveNILM
uses multiple inputs, we multiply the mask only by the input relating to the quantities
we wish to disaggregate. In total, WaveNILM contains approximately 3,250,000 trainable
parameters, though this can vary slightly depending on input and output dimensionality.
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3.2.3 Experimental Setup

Data

As detailed in Section 2.2, there are many different options when choosing between datasets
for NILM, e.g. [85, 5, 86]. Each with different properties such as sampling frequency, dura-
tion, location, etc. Similarly to our previous work, we chose to focus on AMPds2 [5], a low
frequency dataset (1-minute sampling), taken from one house in Canada over two years.
The main reason for choosing AMPds2 is that for each time-step, both the aggregate and
sub-meter data include a measurement of current, apparent power, active power, and reac-
tive power; as well as relevant weather data from the nearby YVR airport weather station.
AMPds2 is an extension of a previous dataset known as AMPds [112], which contained the
same measurements, but only for the first year.

Deferrable loads were defined by [57] as large loads that the user could choose to run
at lower levels or at off-peak hours. Successfully disaggregating these appliances is of sig-
nificant importance to both users, in reducing power cost, and to suppliers, in helping to
prevent brownouts by reducing peak time power consumption (known as peak shaving [2]).
In AMPds2 these appliances are the HVAC system, the heat pump, the wall oven, the
clothes dryer, and the dishwasher.

When disaggregating only a subset of all loads, the aggregate signal contains many
signals from other loads, as well as the desired signals. We consider these signals from other
loads to be the measurement noise (with respect to the desired loads) and consider both
noisy and denoised cases. In the noisy case, the inputs are actual aggregate measurements
whereas in the denoised case the inputs are the sum of all target appliance measurements
(ground truth signals). On average, a given aggregate reading in AMPds contains about
60% noise when trying to disaggregate deferrable loads [57]. Figure 3.6 contains an example
of the diffrences between the noisy and denoised scenarios.

Other work using AMPds or AMPds2 uses only denoised scenarios [60] or achieves
significantly inferior results [74]. For these reasons, we consider [57], which is based on a
sparse super-state HMM (SSHMM), to be the current state-of-the-art for AMPds and use
it for comparison with WaveNILM. At the time of publication of [57], AMPds2 had not
yet been available, meaning [57] was based on AMPds. To avoid giving ourselves an unfair
advantage, in any comparison with [57], WaveNILM was trained and tested on the same
data and scenarios as [57], while any exploratory steps were performed on the full AMPds2
dataset and are reported separately.

Comparison of Possible Input Signals

In order to determine which inputs achieve the best results for disaggregation, we consider
all available inputs in AMPds2. Of those inputs, four are electrical measurements: current
(I), active/real power (P ), reactive power (Q), and apparent power (S). An additional
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Figure 3.6: A comparison of the noisy and denoised disaggregation scenarios. In both figures, the aggregate
signal is presented along with sub-metered. Both figures describe the same time window.

seven input candidates are taken from weather data attached to the AMPds2 dataset, and
upsampled in the same manner described in Section 3.1.3. Because of the large number
of possible combinations of these inputs, we separate the task and explore electrical and
weather data separately.

First off, in order to isolate the effect of weather data, we choose a fixed set of electrical
inputs (P and I) and output (I). We then compare the performance of WaveNILM with
each individual weather parameter (after normalization) as an additional input. This com-
parison is done using the noisy scenario on defferable loads. Unfortunately, as can be seen in
Section 3.2.4, the additional weather inputs did not improve disaggregation and thus were
left out of further experiments.

Next, in order to compare the usefulness of electrical inputs, we compare the performance
of each input used individually, as well as using a combination of two inputs (P and Q), and
finally using all four inputs. Household power cost is based, in general, only on active power
P . For this reason, whenever P was available in the scenario, it was used as the output
unless otherwise needed for comparison to previous work. These exploratory scenarios were
examined using the entire AMPds2 dataset, on the noisy scenario, both for deferrable loads
and a complete disaggregation of all 20 sub-meters.

Finally, we use the optimal setting, as found in the exploratory stages, to compare
with the previous state-of-the-art, SSHMM [57] on AMPds on both the noisy and denoised
scenarios.
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Training and testing

Training was performed on one day samples (1440 time-steps) with a batch size of 50
samples. Electrical data was normalized by the next power of 2 to the maximum of the
aggregate data. This can be thought of as scaling the entire meter range to [0, 1]. Weather
data was normalized in a similar way, Because the receptive field of WaveNILM is 512
samples, disaggregating the present measurement requires the 511 previous samples. To
avoid training the network on incomplete data, loss was computed for samples 512-1440.
This required creating overlap in the training samples so that all available data was used
for both training and testing.

Training was conducted using 90% of the data and testing on the remaining 10%. Full
disaggregation and deferrable load scenarios were trained for as many as 500 and 300 epochs,
respectively, allowing for longer training on the more complex problem.

3.2.4 Results

Because WaveNILM is a regression network, we focus on the error in disaggregated power,
as opposed to classification error in the state of the appliances. As explained in section 3.1.4,
a common, well accepted [45], metric for evaluating disaggregated power is Estimated Ac-
curacy (Est.Acc.), defined by Johnson and Willsky [113]. We use the full Est.Acc. metric
when evaluating waveNILM, as shown in (3.7).

Comparison of Possible Input Signals

The first exploratory stage involved using active power and current, along with one ad-
ditional weather data input from AMPds2. All combinations are trained and tested on
identical scenarios including, data, learning rates, epochs, etc. As can be seen in Table 3.3,
no significant improvement in performance was obtained by using weather data, and on
some occasions performance was in fact noticeably diminished. For this reason, we do not
use weather data as input for further experiments.

Table 3.3: Effect of weather data on disaggregation

Type of weather input Estimated Accuracy
No weather data 92.7%
Temperature 92.45%
Dew Point 92.49%

Relative Humidity 92.00%
Wind Direction 92.02%
Wind Speed 92.34%
Visibility 91.78%
Pressure 91.16%
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Figure 3.7: Convergence speed for single vs. multiple inputs. Note that the on the deferrable loads case (left),
the training with P & Q and training with all inputs produce almost identical curves.

In the next step, we studied the performance of WaveNILM with a variety of electrical in-
put signals. When using only one input, the same electrical quantity was used as the output.
When using several inputs, we choose active power P or current I as the output. In order
to study the significance of input and output signals, we compare partial-disaggregation
on the deferrable loads with real aggregate input (noisy case), as well as the full 20-load
disaggregation.

Examination of the results, as summarized in Table 3.4, shows the significant improve-
ment in performance with the use of multiple inputs. In addition to the final accuracy,
convergence time was also greatly improved when using additional inputs, as seen in Fig-
ure 3.7. In both aspects, the main benefit is achieved when introducing reactive power Q
as an input, with subsequent additions providing marginal improvement. Note that Q as
a sole input provides excellent results, however since domestic consumers are not charged
for it, it’s disaggregation alone does not help achieve the goals of NILM as explained in
Section 1.1.2.

Comparison with SSHMM

When comparing with SSHMM [57], only the first year of AMPds2 (i.e., AMPds) was used
and the results were all 10-fold cross-validated. This means we repeated each experiment
ten times, changing the test set for each iteration, and finally, averaged the performance
over all ten tests. Both noisy and denoised cases are examined, as explained in Section 3.2.3.
For each case, the output is the current I, as in [57]. The input is either I, as in [57], or
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Table 3.4: Noisy case results with various inputs, AMPds2

Input Signal All loads Deferrable loads
I 85.6% 92.0%
P 82.6% 90.9%
Q 91.1% 94.4%
S 86.7% 88.9%

P and Q 87.5% 93.9%
All 4 (output: P ) 88.4% 94.2%
All 4 (output: I) 90.2% 95.0%

all four signals I, P,Q, S. Denoised case results are shown in Table 3.5, with the best result
indicated in bold. As seen in the table, the performance on denoised aggregate signals was
near perfect. We consider this problem largely solved.

Table 3.5: Denoised case results on deferrable loads, AMPds

Disaggregator Input Output Est. Acc.
WaveNILM I I 99.0%
WaveNILM I, P,Q, S I 99.1%
SSHMM [57] I I 99.0%

Next we consider the noisy case, where the actual aggregate measurement was used
as an input. Again we compare the same configurations of WaveNILM as in the denoised
case, and all experiments were 10-fold cross-validated. As seen in Table 3.6, when compared
with SSHMM [57], WaveNILM performs slightly worse when using only I as an input, and
slightly better when using all four inputs. Run times, though difficult to compare because
of hardware differences, are also improved. WaveNILM, run on a Nvidia Titan XP GPU,
completes disaggregation of one sample in under 150µs for all configurations, while the
SSHMM required approximately 4.55ms, running on CPU only. It’s important to note
however, that both are more than adequate for real-time disaggregation. More importantly,
the run time (and storage space) of WaveNILM increases only marginally when increasing
the number of loads, the difference between the simplest configuration (1 input, 5 loads)
and most complicated (4 inputs, all 20 loads) being under 20µs.

Table 3.6: Noisy case results on deferrable loads, AMPds

Disaggregator Input Output Est. Acc.
WaveNILM I I 92.3%
WaveNILM I, P,Q, S I 94.7%
SSHMM [57] I I 94.0 %

Finally, upon conducting a visual inspection of the results, as seen in Figure 3.8, an issue
arises. WaveNILM achieves better than state-of-the-art overall performance, but it appears
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Figure 3.8: WaveNILM disaggregation results. Note that the clothes dryer (CDE) and heat pump (HPE)
follow the ground truth almost perfectly for both the noisy and denoised scenarios. The dishwasher however,
is assigned no power in the noisy scenario

that the dishwasher’s output value is always 0. This likely a result of the sparse nature of
the use of dishwashers in general, and more specifically, in the AMPds household. Because
we chose not to balance the data manually, most training windows seen by WaveNILM do
not contain any power draw from the dishwasher. As a result of this, the model learns that
it is best to always assign the dishwasher no power.

Such sparsely used sub-meters could potentially be accommodated by balancing the
input data around activation windows of each sub-meter, or through a modified loss function.
We find that such solutions may hurt the disaggregation in a natural scenario where the
dishwasher (and potentially other appliances) is in fact only used sparsely. Instead, we argue
that because WaveNILM never provides a false-positive activation for the dishwasher, we
can simply disaggregate it separately. Such disaggregation could be performed itself by a
WaveNILM architecture, albeit trained on different data, using the suggested workarounds.

3.2.5 Conclusions

We presented WaveNILM, a flexible and causal CNN for load disaggregation. One of its
greatest advantages over existing NILM solutions is the ability to easily add various inputs
to help improve disaggregation. WaveNILM requires only 512 new parameters for each new
input signal, and only 3,072 parameters for each added output (load). This is of particular
benefit when attempting to add further inputs to WaveNILM, which we have demonstrated
to be beneficial.
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Reactive power has been shown to be of particular benefit to NILM, providing most of
the performance benefit, with apparent power and current only adding marginal improve-
ment. As far as data collection is concerned, we believe the results presented here should
encourage the recording of as many electrical signals as possible, with active and reactive
power being the most significant. Reactive power is not currently reported by most smart
meters, yet it can be calculated within the meter. This means that reactive power is, in
principle, an available measurement, and could be more accessible in future generations of
smart meters.

While unfortunately we could not obtain an improvement in disaggregation through the
use of weather data, we still believe it can be useful in general. We have shown it to be useful
in Section 3.1.4 and [114] has shown similar improvement using time-of-day as input. We
believe that the reason no such improvement was achieved here is due to the significantly
different nature of weather data when compared to electrical data. As such, in order to best
utilize it, we suggest future researchers consider a hybrid network architecture, in which
both inputs are handled separately until some mid-point of the network. After this point
the features can be combined, before performing the final disaggregation.
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Chapter 4

PowerGAN: A Truly Synthetic
Appliance Power Signature
Generator

The work in this chapter is heavily based on [115], which has been submitted for publication
and is currently undergoing review.

4.1 Motivation

With the completion of both preliminary studies described in the previous chapter, it be-
came clear that disaggregation on a given datasets can be successfully solved using NILM.
As a result of this, I began addressing the next challenge of NILM - generalization over
multiple datasets. This was directly addressed by [83], through simplification of both net-
work architectures and training procedure. While this approach showed promise, it comes
with an inherent reduction in performance, which lead me to explore data augmentation
methods instead. I began by attempting manually designed augmentation methods such as
stretching in time and amplitude and adding random activations. After brief experimen-
tation with such methods, I concluded that these solutions are insufficient and wanted to
explore training on more data instead.

As described in Section 2.2, there are many challenges in collecting data for NILM, which
leads to a fragmented collection of datasets. This, in turn, leads to a difficulty in training
an algorithm on more than one dataset, as well as great challenges in comparing different
works. One approach to dealing with such discrepancies in the data is to create appliance
trace synthesizers. Until this point, there have been several previous efforts to generate
synthetic data for NILM, varying in sophistication and scope, which will be detailed in
the following section. After reviewing the existing methods, I decided to design a new,
deep-learning based method for data synthesis using a deep generative model.

Generative adversarial networks (GANs) are a deep-learning framework that allows data-
driven synthesis of new signals, and thus serve as excellent candidates for generating NILM
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data. As explained in Section 1.2.4, basic GANs, sometimes known as vanilla GANs, have
achieved impressive results but remain difficult to train. In an effort to improve both the
final outcome as well as increase the stability of GAN training, many variations on the
GAN framework have been published. Goodfellow et al. [116] suggested label smoothing,
historical averaging, and minibatch discrimination. Arjovsky et al. [29, 30] showed that
KL divergence between real and fake sample outputs of the discriminator, the commonly
used loss function in GAN training, suffered from vanishing gradients, and suggested using
the Wasserstein distance instead. The corresponding GANs are referred to as Wasserstein
GANs (WGANs). Gulrajani et al. [30] presented the gradient penalty as a way to increase
the stability of WGAN training.

Furthermore, the original GAN framework is a form of unsupervised learning, since no
knowledge on the desired signals is used in training the models. The introduction of su-
pervised training algorithms allowed a variety of improvements in GANs. First, by using a
conditional generator, based on class labels, [31, 32] were able to get better overall perfor-
mance, as well as allow a more controlled generation of images, though the two differ slightly
in the mechanism for achieving the conditioning. Later, by conditioning the generator on
an input signal, [36] was able to use GANs to transform images, for example converting a
sketch into a realistic photograph. Many more variation on GANs currently exist and we
recommend the GitHub repository “GAN-Zoo” [33] for further reading on current GAN
publications.

As mentioned above, vanilla GANs are limited in performance, as well as difficult to
train. This makes such GANs insufficient for the challenging task of representing the true
distributions of appliance level power signatures. When approaching the development of
our own GAN model, we considered two specific versions of GAN – Progressively growing
GAN [34], and EEG-GAN [117], both of which use the WGAN loss with gradient penalty
as the underlying GAN loss.

Karras et al. [34] have shown that it is beneficial to train GANs in stages. At first,
coarse structure is learnt by training a GAN on highly downsampled signals. After sufficient
training, the next stage of the GAN is added and the signal resolution is doubled. At this
stage the weights that had previously been learnt are kept and additional layers are added.
On the generator side, the layers are added at the end; whereas, on the critic side they are
added at the beginning.

In [117] Hartmann et al. present EEG-GAN, an adaption of [34] for the generation of
electroencephalogram signals. The training algorithm closely resembles that of [34], with
modified architectures for generating 1-D time-series data instead of images. Despite the
similarity in training, the authors do present several modifications in EEG-GAN, the com-
bination of which was novel at the time of publication. One of particular importance to
PowerGAN is the weighted, one-sided gradient penalty, which is adopted by PowerGAN
and expanded on in Section 4.3.1.
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4.2 Previous Work on Power Data Synthesis

The challenges presented by the available long-term NILM datasets have motivated several
efforts to generate synthetic data for NILM. We begin by reviewing these effors, which vary
in sophistication and scope.

To the best of our knowledge, SmartSim [103] was one of the first such power data
synthesizers. In SmartSim, Chen et al. attempt to synthesize realistic, user-specified aggre-
gate signals by combining device energy models with a human behavioural usage model.
In determining the energy model, the authors provide four general classes of appliances:
ON-OFF, ON-OFF with growth/decay, stable min-max, and random range models. Each
of these classes generated a signal through user-controlled parameters. Values for each ap-
pliance model’s parameters were extracted by the authors from real instances of the specific
appliances in the Smart* dataset [89]. Usage models are meant to encode the frequency,
time-of-day, and total run-time of the relevant appliances, so as to reflect the way humans
utilize each appliance. The direct estimation of appliance signatures using real data, taken
from the Smart* dataset, inherently limits SmartSim’s ability to generate new, unseen ap-
pliance traces and usage patterns.

The Automated Model Builder for Appliance Loads (AMBAL) [118] and its recent it-
eration, ANTgen [102], approach appliance models similarly. They employ the same four
general appliance classes with the addition of compound model types. Compound models are
combinations of the four basic models, and are generally a better fit to real-world appliances.
Model parameters are determined using the ECO [95] and Tracebase datasets [100], where
active segments of each appliance are broken up according to possible internal state changes.
Rather than deciding a priori the model class for a particular appliance, AMBAL/ANTgen
selects the model fit that minimizes the mean absolute error percentage. Another impor-
tant contribution of AMBAL/ANTgen is its flexible modelling of user behaviour, allowing
customized appliance scheduling based on realistic user profiles.

SynD [104] is a similar effort that instead categorizes appliances as either autonomous
or user-operated. Autonomous appliances include constantly-on loads (such as a router)
or appliances that are cyclic in their operation patterns (such as a fridge). User-operated
appliances can involve single-pattern operation (such as a kettle) or multi-pattern operation
(such as a dishwasher or programmable oven). On the appliance level, power traces for SynD
were measured directly by the authors and stored as templates. When layering the traces for
building the aggregate signal, the authors determine usage patterns based on the GREEND
dataset [119].

The extraction of appliance models directly from real data restricts the ability of these
generators to provide novel, appliance-level traces. This is, in actuality, a direct result of
their purpose, which is to synthetically expand the space of realistic aggregate signals -
an important contribution to NILM research in its own right. In contrast, our work fo-
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cuses on appliance-level modeling, moving past maximum-likelihood parameterization of
pre-specified appliance models, and instead making use of the rapidly developing GAN
framework to elucidate entire distributions over appliance behaviour.

SHED [120] is an additional notable recent method, which is focused on the generation
of synthetic data for commercial buildings rather than residential ones. For this reason, we
exclude it from comparison. It is also important to note that GANs have been used for NILM
in [121, 81, 82]. In [121] a pretrained GAN generator is used to replace the decoder side of a
denoising autoencoder based disaggregator. In [81, 82], GANs were heavily conditioned on
aggregate data and simply used as a refinement method for supervised disaggregation using
convolutional neural networks. However, none of these works use GANs for the purpose of
generating new data, evaluate their models using conventional GAN metrics, or made their
models publicly available, and as such are not comparable with PowerGAN.

4.3 Methodology

4.3.1 PowerGAN

Both progressive growing of GANs and EEG-GAN introduce novel methods of training
GANs, with a variety of techniques for improved performance and reliable convergence.
However, neither of the two methods takes advantage of class labels. Inspired by [32, 31],
we extend EEG-GAN by conditioning both the generator and the critic on the specific
appliance label. We name our framework PowerGAN - a conditional, progressively growing,
one dimensional WGAN for generating appliance-level power traces.

The basic architecture of PowerGAN is similar to the EEG-GAN adaptation of [34].
PowerGAN contains six generator and critic blocks, each comprised of two convolutional
layers and an upsampling, or downsampling layer respectively. Details of PowerGAN’s ar-
chitecture are shown in Table 4.1. Following the process in [117, 34], we perform a fading
procedure each time a new block is added. During fading, the output of a new block of
layers is scaled by a linearly growing parameter α and added to the output of existing
layers, which is scaled by 1 − α. All layers remain trainable throughout the process and
the corresponding dimensionality discrepancies are resolved by a simple 1× 1 convolutional
layer. An illustration of this process is shown in Figure 4.1.

A major novelty in PowerGAN is the introduction of conditioning, both for the generator
and the critic, on the desired appliance label. Following the concepts presented in [31], we
choose to condition our GAN on the input labels by including the class label as an input
to both the critic and the generator. On the generator side this is done by replacing the
standard GAN latent code input zT with Z ∈ RNz×A = [zT1 , zT2 , ...,zTA] such that:

zTi =

z
T i = l

0T otherwise
(4.1)
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Table 4.1: The Layers of the PowerGAN generator and critic

Generator Critic
Layer Activation Output

Shape
Layer Activation Output

Shape
Code – 200 × 1 Signal – 2176 × 1

Class Label – 1 × 5 Class Label – 1 × 5
Rearrange – 200 × 5 Rearrange – 2176 × 6
Linear LReLU 500 × 34 Conv-1 LReLU 600 × 2176

Upsample – 500 × 68 Conv-9 LReLU 100 × 2176
Conv-9 LReLU + TN 100 × 68 Conv-9 LReLU 100 × 2176
Conv-9 LReLU + TN 100 × 68 DS-Conv-2 LReLU 100 × 1088

Upsample – 100 × 136 Conv-9 LReLU 100 × 1088
Conv-9 LReLU + TN 100 × 136 Conv-9 LReLU 100 × 1088
Conv-9 LReLU + TN 100 × 136 DS-Conv-2 LReLU 100 × 544

Upsample – 100 × 272 Conv-9 LReLU 100 × 544
Conv-9 LReLU + TN 100 × 272 Conv-9 LReLU 100 × 544
Conv-9 LReLU + TN 100 × 272 DS-Conv-2 LReLU 100 × 272

Upsample – 100 × 544 Conv-9 LReLU 100 × 272
Conv-9 LReLU + TN 100 × 544 Conv-9 LReLU 100 × 272
Conv-9 LReLU + TN 100 × 544 DS-Conv-2 LReLU 100 × 136

Upsample – 100 × 1088 Conv-9 LReLU 100 × 136
Conv-9 LReLU + TN 100 × 1088 Conv-9 LReLU 100 × 136
Conv-9 LReLU + TN 100 × 1088 DS-Conv-2 LReLU 100 × 68

STD-Map – 101 × 68
Upsample – 100 × 2176 Conv-9 LReLU 100 × 68
Conv-9 LReLU + TN 100 × 2176 Conv-9 LReLU 100 × 68
Conv-9 LReLU + TN 100 × 2176 DS-Conv-2 LReLU 100 × 34
Conv-1 – 1 × 2176 Linear – 1 × 1

LReLU + TN is a leaky rectified linear unit activation with time-step normalization. DS-Conv is a down-
sampling strided convolution with a stride length of 2. The number following each convolution denotes the
length of the convolution kernel.

46



Figure 4.1: The fading procedure proposed by [34] as adapted for one time-series data in [117] and PowerGAN.
In (a) we see the currently stable generator and critic during an intermediate stage of training; note that
generator (critic) contains a upsampling (downsampling) step. The blocks “To Time-Series" and “From
Time-Series" are implemented via 1D convolution. In (b) we see the fading stage. On the generator side,
the output of new blocks is slowly faded in, using a linearly growing parameter α, with an nearest neighbor
upsampling of the output of the stable blocks. Similarly, on the critic side, the features created by the new
block are slowly merged in with previous inputs to the existing critic blocks. Finally, (c) shows the blocks
after the fading is complete and α = 1. In PowerGAN, this fading is performed over 1000 epochs, allowing
for knowledge obtained at earlier steps of training to slowly adapt as new layers are added.
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Figure 4.2: PowerGAN’s method of conditioning the generator and critic. On the generator side (left), the
input latent code and the one-hot class label are both extended and then multiplied. Effectively, this is
equivalent to placing a copy of the latent code in the corresponding column matrix which is zero everywhere
else. On the critic side (right), we perform a similar extension of the class labels, but then simply concatenate
the resulting tensor to the input signal.

where Nz is the latent space dimension, A is the number of different labels in the dataset,
and l is the current label. In practice, this is performed by extending both the latent code
and the one-hot labels to RNz×A and multiplying the resulting tensors. To accommodate
for the added capacity required by the conditional generator, we increase the amount of
features in the input stage by a factor of A compared with the rest of the network. On the
critic side, we simply extend the one-hot labels to RNs×A, where Ns is the current signal
length, and concatenate the resulting tensor to the input signal, as illustrated in Figure 4.2.

In PowerGAN, we also adopt many of the smaller, nuanced, practices proposed in [34,
117]. As suggested in [34], to alleviate growing magnitude issues, we strictly normalize each
time-step in each feature map to have an average magnitude of 1. To improve convergence
during training, we employ on-line weight scaling (instead of careful weight initialization).
To increase the variation of generated signals, we use a simplified version of minibatch
discrimination, as proposed in [34] and modified in [117], wherein the standard deviation
is used as an additional feature for the final layer of the critic. The minibatch standard
deviation is calculated first at each feature, at each time-step, and then averaged across
both features and time to give one single value for the entire batch.

Furthermore, we use the weighted one-sided variation of the gradient penalty, as pro-
posed in [117], and modify it to accommodate the conditional critic and generator. The
gradient penalty’s importance, as noted in [117], depends on the current value of the Wasser-
stein distance DW = Exg [Dα(xg, l)]− Exr [Dα(xr, l)]. When DW is large, it is important to
ensure that the cause isn’t the loss of the 1-Lipschitz constraint. However, when the DW

is low, it is worthwhile to focus on optimizing it directly, and assign a lower weight to the
gradient penalty. In practice, this is achieved by giving an adaptive weight to the gradi-
ent penalty equal to the current DW . It is important to note that this weight is treated
as a constant for gradient purposes, to avoid undesirable gradients. The gradient penalty
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itself is one-sided, meaning that it allows for the critic to have a smaller than 1-Lipschitiz
constraint, as was considered but ultimately not chosen in [30]. In this form the gradient
penalty becomes:

LGP = λ ·max(0, DW ) · Ex̃∼Px̃

[
max

(
0, ‖∇x̃D (x̃, l)‖2 − 1

)2] (4.2)

where DW is the current critic estimate of the Wasserstein distance, D is the critic, and x̃
is a randomly weighted mixture of pairs of real and generated samples, each with the same
label l. Remember that DW here is treated as a constant for back-propagation purposes.

Finally, we use a small loss component to center critic output values around zero, also
introduced in EEG-GAN [117]:

LC = ε ·
(
Exr [D(xr)] + Exg [D(xg)]

)
(4.3)

where ε � 1, and xr, xg are real and generated samples, respectively. This loss helps with
numerical stability as well as interpretation of the loss value during training. Combining all
of the above, the final loss functions of the critic (LD) and the generator (LG) in PowerGAN
are:

LD = Exg [Dα(xg, l)]− Exr [Dα(xr, l)] + LGP + LC (4.4)

LG = −Exg [Dα(xg, l)] (4.5)

Another important difference between PowerGAN and [117] is in the method of re-
sampling the signals. In [117], after comparing various methods, the authors use strided
convolutions for downsampling in the critic, average pooling for downsampling the input
data, and either linear or cubic interpolation for upsampling in the generator. We find that
given the quick switching nature of appliance power traces, it is important to allow for
high frequency changes in the signal, even at the price of some aliasing. For this reason we
downsample the input signals using maxpooling, and perform the upsampling steps in the
generator with nearest-neighbour interpolation. Table 4.1 contains the full details of the
layers comprising the PowerGAN architecture.

4.3.2 Training

The present iteration of PowerGAN was trained using the REFIT [94] dataset. REFIT con-
sists of power consumption data from 20 residential homes, at the aggregate and appliance
level, sampled at 1/8 Hz. The REFIT dataset was prepared by following the prescription of
some recent work to ensure consistent sampling [83]. The authors up-sample the data to a
higher sampling rate according to the UTC date-time index, interpolate any missing values,
and then down-sample to the desired sampling frequency. In this work, we up-sampled the
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data to 1 Hz, filled forward any missing values, and down-sampled to the desired sampling
rate of 1/8 Hz.

Because not all of the 20 houses contain the same appliances, we chose appliances that
were available in multiple houses. We also wanted to ensure these appliances exemplified
each of the four appliance types as defined by [3], and then expanded by [4]: ON/OFF,
Multi-state, Variable Load, and Always-ON (or periodic). Of the appliances available in
REFIT, we selected five that satisfied the above considerations: refrigerators (along with
freezers, and hybrid fridge-freezers), washing machines, tumble-dryers, dishwashers, and
microwaves. Each instance of these five appliances were arranged into windows of 2,176
samples (approximately five hours) centered around the available activations. We located
these activations by first-order differences in the raw signal that were larger than a pre-
specified noise threshold.

Windows were then filtered according to two conditions. First, the energy contained in
the window should be appreciably larger than the “steady-state” contribution to the energy
(taken here to be the sum of the window mean and half the window standard deviation). In
other words, after ignoring the samples less than this value, the remaining energy contained
in the window should be above some threshold, set in our work to be 33.33 [Watt·Hours].
This condition ensures that low energy windows, where the activation was falsely detected
due to sensor noise, are excluded. This condition also filters out windows that may contain
significant energy, but have little useful structural information - mainly windows composed
of a constant level of power.

Secondly, we calculate the Hoyer sparsity metric [122], Sp. For the discrete first-order
differences in each window xi, a vector of length N denoted by δ(xi), the Hoyer sparsity
metric is:

Spδ(xi) =
√
n− ‖δ(xi)‖1

‖δ(xi)‖2√
n− 1 (4.6)

where ‖δ(xi)‖1 and ‖δ(xi)‖2 are the `1- and `2-norms of the first-order differences of the
window xi, respectively. At its extremes, the Hoyer sparsity metric is zero when every
sample in δ(xi) is the same (meaning the `1-norm is larger than the `2-norm by a factor
of
√
n), and unity when there is only one non-zero sample in δ(xi) (i.e., highly sparse). By

requiring the sparsity metric to be larger than 0.5, we ensure that windows are not overly
noisy, further maximizing the structural information contained in them.

After filtering the appliance windows according to energy and sparsity, we ensured a
balanced dataset by forcing a desired number of windows for each appliance, either by cre-
ating randomized repetitions in the case of under-representation, or by randomly dropping
the required number of windows in the case of over-representation. All windows of each
given appliance were then shifted and scaled according to the overall mean and standard
deviation of the entire dataset. This ensures that the training data is balanced in the rep-
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resentation of each appliance class, while at the same time maintaining the importance of
each appliance’s unique power levels.

Finally, before every epoch, each window was shifted randomly in time as a method
of augmenting the data to avoid biasing the network towards specific activation locations
within each window. The shifted window was then downsampled to match the resolution
of the current training stage. We used the same loss criteria as EEG-GAN, including the
weighted, one-sided, gradient penalty as well as the centering loss. We utilized the Adam [14]
optimizer for training PowerGAN, setting lr = 0.001 and β = (0, 0.99). We trained each
stage of PowerGAN for 2,000 epochs, out of which the first 1,000 included fading with
linearly changing weights. See Algorithm 4.1 for full details.

Algorithm 4.1 PowerGAN Training Procedure
Input: Real samples with corresponding labels (xR, l) ∈ XR; Conditional Generator

G(z, l); Conditional Critic D(x, l); optimizers for G,D.
Output: Nb: Number of blocks for G,D; EPb: number of training epochs per block; EPf :

number of fading epochs; R: ratio of critic to generator training iterations.
1: for n = 1, 2, . . . , Nb do
2: Add Block to G,D
3: for ep = 1, 2, . . . , EPb do
4: Set α = min(1, ep/EPf )
5: Set Gα, Dα according to Fig. 4.1
6: Randomize appliance starting points

and downsample XR by 2Nb−n

7: Select a minibatch of real samples and labels: xR, l
8: Generate a mini-batch of samples using

labels: xG = Gα
(
z vN(0, I), l

)
9: LD = Exg [Dα(xg, l)]− Exr [Dα(xr, l)] + LGP + LC
10: Take optimizer step for D
11: if ep == 0 mod R then
12: generate a mini-batch of samples using

labels: xG = Gα
(
z vN(0, I), l

)
13: LG = −Exg [Dα(xg, l)]
14: Take optimizer step for G
15: end if
16: end for
17: end for
All expected value operations are approximated using the sample mean of the minibatch.

4.4 Evaluation

When reviewing the results of PowerGAN, we present both a qualitative analysis of the
generated power traces as well as quantitative evaluation methods, which are adaptations
of commonly used GAN evaluation methods to one-dimensional power traces. We compare
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quantitative metrics with two other appliance power trace synthesizers - SynD [104], and
ANTgen [102]. AMBAL has been excluded from comparison, because ANTgen, which is
based on AMBAL, represents a more up-to-date version of the same underlying framework
for synthetic data generation. SmartSim has been excluded for the reasons mentioned pre-
viously: the published sample data is of insufficient size for accurate comparison with our
method, and the user interface for generating additional data is poorly designed at the
present time.

When generating signals for comparison using PowerGAN, we found it beneficial to add
two simple post-processing steps: we ensure that at any given time-step the generated power
is larger than 0; and we discard any generated signals that do not meet the energy threshold
designated for the training data (and replace them with new generated samples).

Figure 4.3: Examples of appliance power traces generated by PowerGAN, alongside their real counterparts
taken from REFIT. We can see here that the generated signals follow the real data closely, yet without direct
copying, in important attributes such as power levels, overshoot, quick switching, and more.

4.4.1 Quantitative Comparison

Tasks such as segmentation, classification, regression, or disaggregation, are relatively easy
to evaluate because they have a well-defined goal. While there are several different ap-
proaches to evaluating NILM [45], all methods utilize a well-defined ground truth, such as
appliance power consumption or state. Unfortunately, no such immediate goal exists when
attempting to evaluate randomly generated signals. In fact, the attempt to assign a numeri-
cal value to measure the quality of a GAN framework is in itself a significant and challenging
research problem [123]. To evaluate PowerGAN, we choose three commonly used metrics,
and adapt them to be applicable for power trace data.

Inception score (IS) [116] uses a pre-trained DNN based classifier named Inception [23],
to evaluate the quality of generated signals. To calculate IS, a batch of generated samples
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are classified using the pre-trained model. The output of this classifier can be seen as the
probability that a sample belongs to each target class. A good generator is realistic, meaning
we expect low entropy for the output of the classifier. Simultaneously, a good generator is
also diverse, meaning we expect high entropy when averaging out all classifier outputs.
To include both requirements in one numerical measure, Salimans et al. [23] define the
Inception score as:

IS = exp
(
E
[
DKL

(
p (y|x) ‖ p (y)

)])
(4.7)

Because the IS is not an objective metric, it is common to compare the generator’s score
with the score obtained by real data. Because no such classifier is commonly used for power
trace signals, we train our own model, using a one dimensional ResNet [21] architecture.
To avoid biasing the model towards PowerGAN we also include data from ECO [95] and
Tracebase [100], as they were the foundation used for the ANTgen power traces. The real
power traces used as foundation for SynD were not published. We then evaluate the IS in
batches and present the mean and standard deviation for each generator, as well as the real
data, in Table 4.2.

While IS has shown good correlation with human classification of real versus generated
samples, it is not without its flaws. It is highly sensitive to noise and to scale, as well as
mode collapse. For example, if a model can generate exactly one, highly realistic, sample
for every class, it will achieve near perfect IS, without actually being a diverse generator.
To avoid some of these pitfalls [124] introduced the Frechet Inception distance (FID). The
FID uses the same classifier, but instead of measuring probabilities directly, it evaluates
the distributions of features in the final embedding layer of the classifier. FID measures the
Wasserstein 2-distance between the distribution of real and generated image features, under
a Gaussian assumption (which allows a closed form solution). The FID is significantly less
sensitive to mode collapse and noise, yet still struggles with models that directly copy large
portions of the training set. Because FID is a proper distance, its value can serve as a more
objective metric. We evaluate FID using the full set used for training our ResNet classifier,
and generate an equivalent amount of data from each synthesizer.

A similar approach to FID, the sliced Wasserstein distance (SWD) [34] attempts to
evaluate the difference between the distributions of real and generated signals directly.
SWD uses 1-D projections to estimate the Wasserstein distance between two distributions,
taking advantage of the closed form solution for the distance of such projections. In practice,
the SWD is itself approximated using a finite set of random projections. It is common to
evaluate SWD on some feature space, to make it more robust. For our work, we compare
two possible feature sets: the classifier features used for FID, and a Laplacian “triangle”
(a 1-D adaption of a Laplacian pyramid) using a 15-sample Gaussian kernel. Similarly to
FID, we evaluate the SWD on the entire training set, and we use 10 iterations of 1,000
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Table 4.2: Synthesized appliance performance evaluation

Generator IS FID SWD∗Lap SWDCl

Dataset 3.77± .15 0 0 0
ANTgen 3.73± .11 69.63 45± .029 0.31± .017
SynD 3.18± .10 76.09 22± .011 0.33± .015

PowerGAN 3.81 ± .13 43.30 18 ± .088 0.25 ± .011

∗SWDLap values were calculated using Laplacian “triangle" features were scaled by 10−3.
SWDCl values were calculated using the last layer of classifier features, similarly to the
Frechet Inception distance.

random projections each, calculating the mean and standard deviation along the iterations.
Table 4.2 summarizes the results for all the metrics presented above.

Several things stand out when reviewing the quantitative results. First, we notice Power-
GAN receives the highest Inception score, outscoring both SynD and ANTgen in a statisti-
cally significant manner (t-test p ≤ 1e−5). PowerGAN even slightly outscores the real data,
although not in a statistically significant manner (t-test p = 0.38). We believe this is caused
by the existence of some inevitably mislabeled data in REFIT. When collecting sub-meter
data for NILM applications, the wiring of certain houses makes it difficult to avoid having
more than one appliance on each sub-meter. This means that often a sub-meter designated
as one appliance (such as fridge or dishwasher) will contain measurements from a smaller,
or less commonly used appliance (such as a kettle or battery charger). The presence of such
activations may lead to a lower Inception score in the real data, but affects PowerGAN to
a lesser extent.

Secondly, we notice that the diversity of PowerGAN-generated signals is noticeable when
reviewing the more advanced metrics. In both variations of the SWD as well as FID,
PowerGAN outperforms the other two synthesizers in a statistically significant manner (t-
test p ≤ 9e−4). We believe that the combination of these scores shows that PowerGAN is
capable of generating samples that are comparable, in terms of realism, with copying or
hand-modeling real data directly (as done by SynD and ANTgen), while at the same time
creating diverse and truly novel appliance power signatures.

4.4.2 Qualitative Analysis

When assessing the quality of our generated signals, we focus on the traces’ realism as well
as their variety and novelty. We find that PowerGAN is able to generate highly realistic
looking appliance power traces while still avoiding directly copying existing appliances from
REFIT. In addition we notice that the generator’s diversity exists both between classes and
within each class.
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Figure 4.3 shows an example of generated signals from each of the five trained appliances,
along with equivalent real power traces. We can see that the generated signals present highly
comparable behaviours and contain all of the major features of each appliance class. Some
important attributes in the generated signals are shown below, by class:

Figure 4.4: Examples of generated and real fridges. There is diversity in the generated fridges in terms of
frequency, duty cycle, overshoot size, and more. PowerGAN generates some artifacts such as an overshoot
at the end of an activation, as well as some power variations within a given activation.

• Fridges - generated fridge traces maintain the periodic property of real world refrig-
erators. We see small variation in both frequency and duty cycles of the activations,
with minor differences within an activation and larger differences between different
samples. In addition, generated fridges maintain the initial spike in power consump-
tion.

• Washing Machines - generated washing machine traces manage to convey the com-
plicated state transitions of the various washing cycle states. We see quick fluctuations
in power consumption, typical of the machine’s internal heating unit switching on and
off. Additionally, the generator is able to generate the variable load which occurs dur-
ing the washing machine’s spin cycle.

• Tumble Dryers - generated tumble dryer traces are able to maintain the charac-
teristic drop in power consumption that occurs periodically when the dryer changes
direction. Furthermore, PowerGAN is able to capture the usage characteristics of a
dryer, occasionally including more than one activation in a 5-hour window.
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• Dishwashers - generated dishwasher traces manage to maintain the multi-state prop-
erties of the original dishwashers, without incurring significant amount of switching
noise or any major artifacts.

• Microwaves - generated microwave traces portray the low duty cycle of real mi-
crowaves, which are generally only used occasionally for periods of a few minutes at
most. In addition, PowerGAN is able to generate traces that include quick switching
of the microwave oven, which can occur during more advanced microwave modes such
as a defrost program.

While we can say that PowerGAN generates realistic data for the most part, some issues
still arise. The generated signals occasionally contain artifacts that are rare in real signals,
such as an overshoot before deactivation, power fluctuations within a given state, or unlikely
activation duration. When exploring the reason for these artifacts, we note that examples
of such behaviour exist in the real data, although rarely. We believe that these behaviours
appear in PowerGAN because in the training procedure, such artifacts become central in
identifying appliances, leading to them carrying significant gradients to the generator.

In order to demonstrate the diversity of the power traces generated by PowerGAN,
we present six examples of generated and real fridge signals in Figure 4.4. We note that
like the real fridge power traces, the generated signals vary in several important features:
power level, activation frequency, activation duty cycle, overshoot size. In addition, the
generated signals demonstrate some variations in each of the above parameters within an
activation window, similarly to real world fridges. For more examples of appliance traces
see Appendix A.

4.5 Conclusions

After identifying the need for synthetic data generation for NILM, we presented here the first
GAN-based synthesizer for appliance power trace. Our model, which we name PowerGAN,
is trained in a progressive manner, and uses a unique conditioning methodology to generate
multiple appliance classes using one generator. We have also covered some groundwork for
evaluating power trace generators which, as expected, requires more than one single metric,
in order to evaluate the various requirements from synthesizers. Using these metrics, along
with visual inspection of the generated samples, we have shown that PowerGAN is able to
produce diverse, realistic power appliance signatures, without directly copying the training
data.

While the results presented in this paper are based on training on the REFIT dataset
specifically, the presented framework can be used for training on any desired dataset, and
at any sampling frequency. We believe that these properties may help researchers in us-
ing PowerGAN as an augmentation technique for training supervised NILM solutions. The
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PowerGAN generator can be used to randomly replace certain activation windows in the
real data with synthesized ones, with the hope of improving the disaggregator’s out-of-
distribution performance. In order to do this, one can modify the training procedure of
PowerGAN slightly to include the desired activation window sizes, as well as remove the
random time shifting during training, if a well localized activation is preferred for disaggre-
gation.

Finally, we believe there is great potential in using PowerGAN to generate hybrid ap-
pliances through exploration of the label space. In all of the generated samples presented
here, we used a one-hot label, selecting one specific appliance to generate. However, by
inputting a label comprised of real values, we can generate hybrid appliances such as a
“Tumble-Washer” or a “Fridge-Wave”. If we further condition PowerGAN on appliance in-
stances, rather than appliance types, each class will represent a given make and model of an
appliance. We can then use the same label-space exploration to generate new hybrid makes
and models, hopefully representing unseen instances of each appliance that may exist in the
real world.

57



Chapter 5

Summary and Future Work

In this thesis I presented several application of deep-learning in the context of Non-intrusive
load monitoring. I began with exploring the feasibility of real-time NILM on a cheap and
simple hardware platform - Raspberry Pi [72]. I have shown that it is possible to load
a pre-trained model onto such a platform and still perform disaggregation at faster than
real time speeds. I did this without specific hardware adaptations, and using only publicly
available code libraries. In this project I also showed that, at least in a limited scenario,
NILM performance can be improved by using weather data as an additional input.

In the next project, named WaveNILM, I design a modern deep neural network ar-
chitecture for NILM, inspired by WaveNet [40]. In this project I explored the network’s
performance with a variety of input signals, including electrical and weather measurements.
WaveNILM did not show improvements when using weather data, most likely due to dif-
ferences in signal characteristics when compared with electrical measurements, and archi-
tectural limitations. However, using multiple electrical inputs, was shown to significantly
improve disaggregation as well as convergence time. In fact, when using all available electri-
cal data, WaveNILM outperformed previous state-of-the-art work on the AMPds2 dataset.

After the completion of WaveNILM, I wanted to tackle the problem of generalization in
NILM. That is, designing a disaggregation algorithm that will perform well on data unseen
to it during training. While minor improvements can be achieved through network and
training considerations, as shown in [83], a true solution to this problem must include better
data. As reviewed in section 2.2, despite the continuing efforts of several research group,
NILM data remains fragmented. Each dataset has unique characteristics, and combining
data from several sources reliably remains mostly unfeasible. For this reason I decided to
dedicate the main project of this thesis to creating a reliable method for synthesis of new
data.

After a review of the currently available data synthesizers for NILM I concluded that
the greatest need lies in generating novel appliance level traces. This is because existing
synthesizers, such as ANTgen [102], SynD [104], and others, focus on the aggregate signal.
In order to achieve this goal, I chose to turn to generative adversarial networks, as these
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have shown remarkable performance in synthesis of signals in many domains. After review-
ing currently available variants of GAN, I chose to build upon two specific frameworks
in designing my own solution: EEG-GAN [117], which itself is heavily based on [34], and
conditional GAN [31].

By combining techniques from both methods, I was able to design and train Power-
GAN - A truly synthetic appliance power signature generator. In PowerGAN, a single GAN
generator is trained on the REFIT [94] to synthesize power signatures of appliances from
several classes, using an input label to determine the desired appliance. Alternative uncon-
ditional GAN methods, such as EEG-GAN, either offer no control of the signal class or
require training individual GANs for each class. Using PowerGAN I was able to generate
realistic appliance power signatures without directly copying the training data. The latter is
particularly important if PowerGAN is to be used for augmenting data during the training
of a NILM solution, preparing the disaggregator for data from the real world.

Although PowerGAN is an important first step in the synthesis of appliance level power
signatures for NILM, more work can still be done. First, I believe it is still possible to improve
PowerGAN through modifications of training data, such as removing parasitic appliance
activations, denoising, or more careful filtering of applicable data windows. Secondly, I
believe that there is benefit in generating hybrid appliance through label space exploration.
By replacing categorical labels (represented by integers or one-hot vectors) with soft labels
(represented by floats or real vectors) a pre-trained PowerGAN generator can synthesize
hybrid appliances. Furthermore, I believe there is benefit in training PowerGAN appliances
instance labels (i.e. “LG LRFXS2503S Refrigerator”), as opposed to appliance class labels
(i.e. “Refrigerator”). Using such a conditioning scheme, we allow the hybrid appliances,
generated by label space exploration, to represent a well defined appliance class, but an
unknown, unseen, appliance instance.

Finally, another promising avenue for future research would be to use PowerGAN to
perform actual data augmentation when training a NILM algorithm. One possible method
for doing this, is to occasionally replace real activations in the aggregated data with syn-
thetic activations generated by PowerGAN. This can be done using PowerGAN as currently
trained, or using some of the suggested modifications. By doing this, we allow the NILM
algorithm to be exposed to more reliable data during training, without the significant costs
associated with the physical collection of such data.
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Appendix A

PowerGAN Generated Samples

Figure A.1: Examples of dishwasher power traces as generated by PowerGAN. As can be seen, generated
signals vary in power levels, activation duration, and state transitions. We can also see a diversity in the
lower power states in between the higher consumption activations. Some undesired artifacts include slightly
oversmoothed edges as well as perhaps overly frequent activations.
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Figure A.2: Examples of generated and real washing machine power traces. We can see a diversity in the
length of activations as well as power level and state transitions. This is specifically important for washing
machines that may have many different cycles, which dictate many different internal state transitions. We
can see the quick fluctuations representative of the rapid switching of the washing machine’s internal water
heater. Furthermore, the spin cycle which contains a variable load is also generated well. Some of the
downsides of PowerGAN signals include uneven heater fluctuations, as well as fragments of machine cycles
which aren’t necessarily representative of a real cycle.

Figure A.3: Examples of generated and real tumble dryer traces. We can see diversity in the activation
length, switching and power levels of the generated signatures. Of particular note is the quick switching
between full power and a lower intermediate level which is typical of tumble dryers changing direction. This
is well replicated by PowerGAN, including a variation in the power levels and duration of each of the two
states. Some of the less desirable characteristics seen here include noisy power levels, as well as very short
activations. However, the latter can sometimes be seen in real data as well, as can be seen in the top left
figure.
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Figure A.4: Examples of generated and real microwave power signatures fridges. We can see a variety of
different power level for the generated microwaves as well as in successive activations. The latter can be
typical of microwave use, either in a specific pre-programmed mode such as "defrost", or when the food does
not reach the desired temperature after the first heating.
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