
Learning Camera Localization via Dense Scene
Matching

by

Shitao Tang

B.Sc., University of Nottingham, Ningbo, China

Thesis Submitted in Partial Fulfillment of the

Requirements for the Degree of

Master of Science

in the

School of Computing Science

Faculty of Applied Sciences

© Shitao Tang 2021
SIMON FRASER UNIVERSITY

Summer 2021

Copyright in this work is held by the author. Please ensure that any reproduction or re-use
is done in accordance with the relevant national copyright legislation.

Declaration of Committee

Name: Shitao Tang

Degree: Master of Science

Thesis title: Learning Camera Localization via Dense Scene Matching

Committee: Chair: Jiangchuan Liu
Professor, Computing Science

Ping Tan
Supervisor
Associate Professor, Computing Science

Yasutaka Furukawa
Committee Member
Associate Professor, Computing Science

Mo Chen
Examiner
Assistant Professor, Computing Science

ii

Abstract

This thesis presents a method for camera localization. Given a set of reference images with known

camera poses, camera localization aims to estimate the 6 DoF camera pose for an arbitrary query

image captured in the same environment. It might also be generalized to recover the 6 DoF pose

of each video frame of an input query video. Traditional methods detect and match interest points

between the query image and a pre-built 3D model, and then solve camera poses accordingly by

the PnP algorithm combined with RANSAC. The recent development of deep learning has moti-

vated end-to-end approaches for camera localization. Those methods encode scene structures into

the parameters of a specific convolutional neural network (CNN) and thus are able to predict a dense

coordinate map for a query image whose pixels record 3D scene coordinates. This dense coordinate

map can be used to estimate camera poses in the same way as traditional methods. However, most

of these learning-based methods require re-training or re-adaption for a new scene and have diffi-

culties in handling large-scale scenes due to limited network capacity. In this thesis, We present a

new method for scene agnostic camera localization which can be applied to a novel scene without

retraining. This scene agnostic localization is achieved with our dense scene matching (DSM) tech-

nique, where a cost volume is constructed between a query image and a scene. The cost volume is

fed to a CNN to predict the dense coordinate map to compute the 6 DoF camera pose. In addition,

our method can be directly applied to deal with query videoclips, which leads to extra performance

boost during testing time by exploring temporal constraint between neighboring frames. Our method

achieves state-of-the-art performance over several benchmarks.

Keywords: Camera localization; deep learning; 3D vision

iii

Acknowledgements

I would like to thank my supervisor Dr. Ping Tan, for his great guidance. I’m also deeply grateful

to Dr. Chengzhou Tang, for his wonderful ideas and supports. In the end, I want to thank to Dr. Rui

Huang and Dr. Siyu Zhu for their advices.

iv

Table of Contents

Declaration of Committee ii

Abstract iii

Acknowledgements iv

Table of Contents v

List of Tables vii

List of Figures viii

1 Introduction 1

2 Preliminary 4
2.1 Camera Localization Preliminary . 4

2.2 Related Work . 6

2.2.1 Regression-based localization . 6

2.2.2 Structure-based localization . 7

2.2.3 Video Localization . 9

2.2.4 Cost Volume . 9

3 Methods 11
3.1 Overview . 11

3.2 Feature and Coordinate Pyramid . 11

3.3 Dense Scene Matching . 12

3.3.1 Cost Volume Construction . 12

3.3.2 Coordinate Regression . 15

3.3.3 Confidence Estimation . 15

3.4 Archtecture of Netcoords and Netconf . 15

3.5 Training loss. 15

4 Experiments 18
4.1 Experiment Settings . 18

v

4.2 Localization Accuracy . 18

4.3 Scene coordinate accuracy . 23

4.4 Efficiency . 23

4.5 Ablation Study . 23

5 Conclusion 28
5.1 Discussions . 28

5.2 Conclusion . 29

Bibliography 30

vi

List of Tables

Table 4.1 Performance comparison in terms of rotation errors (◦) and translation errors

(m). (*) indicates scene-specific methods. 19

Table 4.2 Comparison of single frame based localization and video-based localization.

For 7scenes, we use common threshold (5◦, 0.05m) to calculate accuracy. We

can see video-based has significantly lower mean errors and higher accuracy. 19

Table 4.3 Efficiency comparison of SANet and DSM. 23

Table 4.4 Pose accuracy with/without top K correlation sorting. The estimated pose

accuracy improves by correlation sorting consistently on all sequences. . . . 25

Table 4.5 Pose accuracy with respect to the number of scene images. The network is

trained and tested with the corresponding number of scene images except the

one with 10 scene images. The notation (?) means we train the network with

5 scene images instead of 10 scene images. 25

Table 4.6 Pose accuracy with respect to different image resolutions. In our implemen-

tation, We resize all images to resolution of 384 × 512 for better efficiency

and performance. 26

Table 4.7 The statistical comparison of median rotation and translation errors of Cam-

bridge landmarks with or without fine-tuning. 26

Table 4.8 Localization accuracy under different . 26

vii

List of Figures

Figure 1.1 Overview of our framework. Our method predicts dense coordinate maps

in a coarse-to-fine manner. The DSM module receives a query image fea-

ture map, some scene image feature maps and the corresponding scene co-

ordinates to predict a dense coordinate map for the query image. These pre-

dicted scene coordinates are then used to solve camera poses with RANSAC

and PnP algorithms. 3

Figure 2.1 Pinhole camera model. 5

Figure 2.2 Pipeline of common structure-based localization 7

Figure 2.3 Correspondence visualization. 8

Figure 2.4 Visualization of coordinate maps. 9

Figure 3.1 Illustration of Dense Scene Matching (DSM) module. For a specific pyra-

mid level l, DSM takes 1) query image feature maps Fl
q,t at time t and

Fl
q,t−1 at time t − 1; 2) scene image feature maps Fl

s with corresponding

scene coordinates; 3) initial coordinate maps D̂l. Then the DSM module

predicts a coordinate map Dl by cost volume construction and coordinate

regression. In the figure, N , H , W is the number of scene images, image

heights and image weights respectively. K is the number of scene coordi-

nates selected for regression and d is the window size of candidate scene

coordinates. 12

Figure 3.2 Demonstration of correlation fusion process. For a specific pixel q in Fl
q,t,

we obtain its scene correlation by projecting its corresponding 3D coordi-

nate predicted in D̂l to a searching space of a d × d window in retrieved

N scene feature maps Fl
s. Temporal correlation is obtained by projecting

the scene coordinates within the searching space in Ml to Fl
q,t−1. Finally,

a N × d× d correlation tensor is formed for each query pixel. 14

Figure 3.3 Archtecture of Netconf and Netcoords. We use residual block for Netconf

and dense block for Netcoords . 16

viii

Figure 4.1 The comparison of camera trajectories between the single frame (first row)

and video localization (second row) via the proposed dense scene matching

network. The visualized results are respectively Redkitchen and Stairs in 7-

scenes dataset, and St. Mary’s Church sequence in Cambridge Landmarks

dataset. In the first row, the outliers are shown in the red circles. 20

Figure 4.2 The comparison of cumulative distribution functions of scene coordinate

errors between different localization approaches. 21

Figure 4.3 Coordinate map visualization for SANet, DSAC++ and DSM. 22

Figure 4.4 The average scene coordinate errors of the k-th selected coordinates with

respect to ground truth. 24

Figure 4.5 Examples fail in single-frame localization, but succeed in video localiza-

tion. From the top left, top right, bottom left to the bottom right samples,

the error of pose estimation reduces from single-frame localization (30.2◦,

0.53m) to video localization (2.2◦, 0.06m), (10.4◦, 0.34m) to (2.2◦, 0.04m),

(19.4◦, 0.05m) to (0.5◦, 0.02m), (15.6◦, 0.53m) to (1.4◦, 0.07m) respectively. 27

ix

Chapter 1

Introduction

Humans are capable of inferring location and viewpoint from visual information. Given an image

of the Statue of Liberty, it is easy to recognize that the picture is taken in New York and predict

what viewpoint the picture is taken from. In recent years, localization has become increasingly

popular in the research community due to the increasing demand for applications. In order to address

the problem, many solutions have been proposed with different sensors and algorithms. Common

localization systems can use a variety of inputs, such as WiFi, beacon, or inertial sensors. The most

used system is Global Positioning System (GPS), a satellite-based radio navigation system. It can

position a GPS receiver anywhere on the Earth. However, GPS-based localization systems alone

cannot provide the level of accuracy that the aforementioned applications demand. On the other

hand, the supply of large geo-localized image databases and the proliferation of embedded visual

acquisition systems, such as smartphone cameras, in recent years make the research community

focus on visual localization problems.

Compared to the GPS localization system that can only obtain positions of GPS receivers with

large errors, visual localization is able to get the orientations of camera sensors and reach much

higher localization accuracy. Thus, it can support a wide range of applications that GPS cannot,

such as SLAM, robot navigation, argument reality, etc. In a visual localization system, database

images are collected beforehand with RGB or RGBD cameras and the 6 degree-of-freedom camera

poses, describing orientations and translations, of those images are obtained using 3D reconstruction

algorithms [59, 30] under a world coordinate system. Given a query image, this system aims to

recover the camera poses of it with respect to those database images.

Traditional methods adopt the Structure-from-Motion (SfM) [59] algorithm to reconstruct a 3D

scene from a set of overlapping 2D database images, which depicts the same scene from different

viewpoints. The reconstructed 3D model consists of 3D points with image features and the camera

poses of the source imagery. Then, the image features of 3D points are directly matched against

those of query images. After obtaining 2D-3D correspondences, the query image poses can then be

solved by the perspective-n-point (PnP) [26] algorithms.

With the development of deep learning, learning-based camera localization has drawn attention

in the computer vision community. Recent camera localization methods can be broadly catego-

1

rized as regression-based and structure-based. Earlier methods [33, 31, 32, 64] directly regress the

camera poses from images through a convolutional neural network. This approach is faster and ef-

fective in obtaining coarse poses, but recent research shows that its performance is limited by the

nature of image retrieval and generally less accurate [56]. In comparison, structure-based meth-

ods [5, 58, 7, 51, 72, 54, 62] gradually become the trend. and solve the problems in two stages:

first, establishing the correspondences between the 2D query image pixels and the 3D scene points

with deep learning methods; second, estimating the desired camera pose by PnP [26] combined with

different RANSAC [18] algorithms.

According to how they establish the 2D-3D correspondences, the structure-based methods can

be further categorized into two classes: 1) sparse feature matching [51, 53, 54, 62]; 2) scene coor-

dinate map regression [5, 58, 7, 72, 36]. The sparse feature matching methods first retrieve a set

of similar database images via image retrieval approaches [1, 21]. The interest point detection and

matching are performed between query images and retrieved scene images via handcrafted [39] or

CNN-based [15, 53] features. One of the benefits of sparse feature matching is that it can handle

arbitrary scenes. On the other hand, coordinate map regression methods predict dense 3D coordi-

nates at all image pixels from a random forest [60] or a convolutional neural network (CNN) [5, 58].

The estimated dense coordinate maps can be effectively applied to augmented reality and robotics

applications, e.g. virtual object insertion or obstacle avoidance. But these methods are often limited

to the scene where the random forests or CNN is trained.

Therefore, in this thesis, we focus on the coordinate map regression approach. Most of the dense

coordinate regression methods are scene-specific, which means the models are typically learned

from images and 3D data for a specific scene and require retraining or adaptation before they can be

applied to a novel scene. As a result, it is unknown how such a model can be quickly adapted to a

different scene, which limits their applications when the scene is novel or progressively updated. Re-

cently, instead of encoding specific scene information in network parameters [60, 5, 58], Yang et al.

propose the first dense coordinate regression network, SANet, for arbitrary scenes [66]. The SANet

extracts a scene representation from some scene images and corresponding 3D coordinates by 2D-

3D matching. In this way, it can be applied to different scenes without re-training or re-adaption.

However, due to the irregular nature of a scene, SANet randomly selects coordinates within a region

using ball query and leverages PointNet [46] to regress per-pixel 3D coordinates. This operation

undermines the pose accuracy and is computationally heavy because a shared PointNet is required

to make prediction on each pixel individually.

In order to address this problem, we present a new scene-agnostic camera localization network

exploiting dense scene matching (DSM), which matches each query image pixel with the scene via

a cost volume. With end-to-end training, the cost volume explicitly enforces more accurate scene

points to have a higher correlation with the input query pixel. Since the scene structure is irregular,

which makes the number of query-scene correlations different for each image pixel, we propose

a simple yet effective solution to unify the size of all cost volumes: sorting and selecting the best

K candidates and feed them to a convolutional neural network for dense coordinate regression.

2

RANSAC+PnP

Query Image t-1

Image Feature

Query Image t

Image retrieval

Scene Image

D
SM

D
SM

D
SM

D
SM

Scene coords. map

Figure 1.1: Overview of our framework. Our method predicts dense coordinate maps in a coarse-to-
fine manner. The DSM module receives a query image feature map, some scene image feature maps
and the corresponding scene coordinates to predict a dense coordinate map for the query image.
These predicted scene coordinates are then used to solve camera poses with RANSAC and PnP
algorithms.

The cost volume can be further fused with temporal correlations between consecutive query images

during inference, so that our method can be extended to video localization.

We have evaluated our method on several benchmark datasets including indoor scenes, 7scenes [60]

and large-scale outdoor scenes, Cambridge [33]. We have shown DSM achieves state-of-the-art per-

formance among scene-specific methods including DSAC++ in terms of both pose accuracy and

coordinate accuracy, and outperforms scene-agnostic methods, e.g. SANet, by a large margin.

3

Chapter 2

Preliminary

2.1 Camera Localization Preliminary

Pinhole camera model. We first introduce the pinhole camera model, which serves as the founda-

tion of the camera localization problem. As shown in Fig. 2.1, the pinhole camera model establishes

a one-to-one mapping between points on the 3D object and the plane. The result is that the plane

gets exposed by an “image” of the 3D object by means of this mapping. Let p = [xw, xw, xw, 1]T

be a point on some 3D object under a world coordinate system W visible to the pinhole camera,

then it is mapped to x = [u, v, 1]T . The notation p is the homogenous coordinate of a 3D scene

point and x is the image coordinate. They satisfy the following equation,

x ∼ KTp, (2.1)

T = [R|t], (2.2)

where K is the 3 × 3 camera intrinsic matrix and T is the six degree of freedom camera transfor-

mation matrix. The notation ∼ implies that the left and right hand sides are equal up to a non-zero

scalar multiplication. The translation t is a 3×1 vector describing the camera position. The rotation

R is a 3× 3 matrix describing the camera orientation and satisfying the following equation,

RRT = I, (2.3)

where I is a 3 × 3 identity matrix. The transformation matrix, also called extrinsic matrix, first

transforms the world coordinate of p to the camera coordinate. It is external to and do not depend

on the camera, describing the camera position. On the other hand, The camera intrinsic matrix is

unique and inherent to a given camera and relate to essential properties of the camera, such as its

manufacturing.

Problem formulation. Given a query image Iq and a known camera intrinsic matrix K, camera

localization aims to estimate the camera pose C = [R−1,−R−1t], represented by rotation R and

translation t, as shown in Eq. 2.2, under some world coordinate systemW in a known environment.

4

p = [xw, yw, zw,1]T

x = [u, v,1]T

Camera center

Figure 2.1: Pinhole camera model.

We can see that the camera pose C and the transformation matrix T can be computed if the other is

known.

In this environment, prior knowledge is provided and exploited, through a 3D scene model. The

3D models are represented by a set of RGB or RGBD images with known 6 DoF camera poses

in world coordinate system W obtained by 3D reconstruction algorithms, such as structure from

motion [59] for RGB images or Kinectfusion [43] for RGBD images.

Previous method. In the following, we denote the query image as Iq and the database image as

Is. The traditional way to address this problem is first building correspondences between a query

image and each database image through key-point detection and matching [39], as shown in Fig.2.3.

Suppose the correspondences are represented by a set of 2D positions {xi
q|i ≥ 0} in Iq and those

{xi
s|i ≥ 0} in Is. Each image position xi

q corresponds to a position xi
s. xi

q and xi
s are normalized

image coordinates. To obtain the camera pose underW , two methods are explored. If depth infor-

mation of database images is not provided, we can compute the relative pose between the query

image and the database image by using epipolar geometry. If xi
q and xi

s correspond to the same 3D

point in the scene, they must satisfy the following equation,

(xi
q)T Exi

s = 0, (2.4)

where E is the 3 × 3 essential matrix. Since each xi
q and xi

s is known, E can be estimated by the

5 point algorithm [44] or the 8 point [24] algorithm and thus the relative pose can be recovered

from the essential matrix E. The global camera pose of Iq is obtained by multiplying the relative

5

camera pose with the global pose of Is. If the depth maps of database images are provided, the 3D

coordinates of xi
s inW can be recovered by back projection, as following,

pi
s = CsdsK−1xi

s, (2.5)

where pi
s is the 3D coordinate in W , Cs is the camera pose of the image Iq and ds represents

the depth. Therefore, we can solve Eq. 2.1 by perspective-n-point algorithms [35] with known 2D-

3D correspondences. Compared with relative pose estimation, this method can leverage 3D points

across multiple images.

Recently, deep learning based approaches regress the 6 degree of freedom global camera poses

C directly from RGB images with convolutional neural network. The input to the network is single

images, while the output is the global positions and orientations of query images.

C = F(Iq) (2.6)

Where F is the function parametrized by CNN. These networks are trained in a supervised manner

on database RGB images with known ground truths by a regression loss of pose errors.

Broadly, the camera localization describes the relationship between the sensor observations and

map, by matching a query image or view against a pre-built model, and returning an estimate of the

global pose.

2.2 Related Work

This section introduces related works: 1) Regression-based localization; 2) Structure-based local-

ization; 3) Video localization and 4) Cost volume.

2.2.1 Regression-based localization

Regression-based localization regresses the camera pose of an image against a 3D map. Such 3D

map is explicitly built by a geo-referenced database or implicitly encoded in a neural network. This

can be further classified into 2 categories: 1) direct pose regression and 2) relative pose regression.

Direct Pose Regression. The well-known PoseNet [33] and its variants [33, 32, 8, 31] regress the 6

DoF absolute poses directly from RGB images with convolutional neural network. The input to the

network is single images, while the output is the global position and orientation of query images.

These networks are trained in a supervised manner on database RGB images with known ground

truths by a regression loss of pose errors. It is noted that one network can only be trained for one

scene and fails to generalize to other scenes without retraining. Intuitively, these methods train a

network to memorize the poses of all RGB images in a database. It has been demonstrated in the

work [56] that direct pose regression yields results similar to pose approximation via image retrieval

and the pose accuracy is usually inferior to the structure-based approaches.

6

1)	Global
Matching

2)	Local
Matching

3)	6-DoF	
pose

Hierarchical	
Localization

Direct	
Matching

Retrieved

Query

Query

Sparse	3D	model

opt2

Figure 2.2: Pipeline of common structure-based localization

Relative Pose Regression. The relative pose regression methods use a coarse-to-fine strategy which

first finds similar images in the database through image retrieval [25, 1] and then computes the rel-

ative poses w.r.t. the retrieved images [2, 34]. One problem here is how to find suitable image

descriptors for image retrieval. Deep learning based approaches [1, 25] are based on a pre-trained

convolutional neural network to extract visual features, and then use these features to evaluate the

similarities against other images. The images with the top K highest similar values are considered

as the retrieved ones. In order to obtain more accurate poses of the query image, additional relative

6 DoF pose estimation with respect to the retrieved image is desired. Traditionally, this is achieved

by epipolar geometry, by using 2D-2D correspondences determined by local descriptors [39]. In

contrast, deep learning approaches regress the relative poses straightforwardly from image pairs.

For example, NN-Net [34] leverage convolutional neural networks to estimate the pairwise relative

poses between the query images and the scene images, so that the absolute query pose can be natu-

rally calculated by multiplying the relative poses with the scene image poses. They do not memorize

the scene geometry and are thus scene-agnostic. However, similar to direct pose regression, they are

not accurate.

2.2.2 Structure-based localization

These methods first build 2D-3D correspondences (2D pixels and 3D points), as shown in Fig. 2.2,

and compute the global poses with respect to the 3D models. The poses are then solved by PnP

algorithms [19] combined with RANSAC [18]. In the following section, two types, sparse feature

matching and dense coordinate regression of Structure-based localization are introduced.

7

Figure 2.3: Correspondence visualization.

Sparse Feature Matching. These methods adopt a coarse-to-fine methodology [51, 62, 52, 42].

They first retrieve similar images with depth information from databases using image retrieval meth-

ods [25, 1]. Then, as shown in Fig. 2.3, between query images and retrieved images, 2D-3D cor-

respondences are built [11, 55, 51, 62, 41, 41] by interest point detection [39, 15, 17, 4, 23, 42]

and local descriptor matching [51, 15, 53, 17, 39, 9]. The other methods generally focus on im-

proving the capability of local feature detectors [15, 17, 57, 70], descriptors[3, 71, 15, 17, 70] and

correspondence matching[53]. A recent work along this direction is SuperGlue [53] and it achieves

strong pose accuracy, especially in large-scale outdoor scenes. However, as limited by local fea-

ture descriptors, those methods tend to fail on scenes with textureless regions or repeated patterns.

Instead, by leveraging global contexts, our method shows better robustness on those scenes. Addi-

tionally, our method can generate dense coordinate maps which are important to various robotics

and augmented reality applications.

Dense coordinate regression. Different from match-based methods that establish 2D-3D corre-

spondences before calculating pose, these methods directly regress the dense 3D scene coordinates

in world coordinate system of the query image and obtain the final camera pose by dense 2D-3D

correspondences [5, 6, 72, 7, 60, 36]. Fig. 2.4 is the visualization of coordinate maps. It can be

viewed as learning a transformation from the query image to the global coordinates of the scene.

Shotton et al. [60] propose to regress the scene coordinates using a Random Forest. Along this

direction, DSAC [5] and DSAC++ [6] employ convolutional neural networks to predict a dense co-

ordinate map from a single RGB image. Notably, all of those methods are scene-specific and cannot

be generalized to arbitrary novel scenes, which limits their applications in scenarios requiring quick

adaption to novel scenes. SANet [66] is the first network proposed to regress coordinates in a scene-

agnostic manner. However, it selects feature matches using ball query and uses Point-Net [46, 47] to

regress 3D scene coordinates, which largely decreases coordinate accuracy and network efficiency.

Our method is also scene agnostic, and we employ cost volumes to evaluate feature matches and

8

Figure 2.4: Visualization of coordinate maps.

compute 3D scene coordinates, which outperforms recent scene-specific and scene-agnostic meth-

ods including DSAC [5], DSAC++ [7] and SANet [66].

2.2.3 Video Localization

Many works have extended single frame localization to video localization. [12, 48, 63, 65, 72]. Vid-

Loc [12] performs batch relocalization offline for fixed-length video-clips by long short term mem-

ory [27]. Coskun et al. refine camera poses by integrating LSTM units in the Kalman filters [13].

VLocNet [63] and VLocNet++ [48] propose to learn the visual odometry and pose regression jointly

and achieve significant improvement over single frame localization. LSG [65] combines LSTM with

visual odometry to further exploit the spatial-temporal consistency. Since all the methods are exten-

sions of PoseNet, their accuracies are fundamentally limited by the retrieval nature of PoseNet. In

contrast, KFNet is the first structure-based method for video localization. Specifically, a recurrent

network named KFNet is proposed in the context of Bayesian learning by embedding coordinate

regression into the Kalman filter within a deep learning framework. It achieves the top performance

on both single frame and video localization tasks. However, KFNet is still scene specific since it

regresses dense coordinate maps in the same way as DSAC++ [6].

2.2.4 Cost Volume

The proposed method in this thesis is inspired by the ideology of cost volume which has been widely

adopted in computer vision tasks, e.g. optical flow[16, 61, 29, 49], stereo matching [10, 40, 45] and

multi-view stereo [67, 22, 69]. Recent learning-based methods for optical flow or stereo matching

extract feature pyramid, build cost volumes and make predictions in a coarse-to-fine manner [61,

10]. For example, flownet [29] constructs a cost volume that stores the matching costs for associating

a pixel with its corresponding pixels at the next frame. The cost is computed using the following

equations.

cost(x1,x2) = 1
N

f1(x1)T f2(x2) (2.7)

Where x1 and x2 are two pixel localization of two different images, c1 and c2 refer to the feature

maps and N is their channel dimensions. The matching cost can be considered as a similarity mea-

surement between two image pixels. After building costs for each pixel pairs, they are arranged into

9

a H × W × (H × W) regular cost volume for convolutional neural networks to process. Simi-

lar to optical flow estimation, stereo matching adopts the same strategy. Since stereo matching or

optical flow construct the cost volumes between image pairs, the number of costs for each pixel

is fixed and can be arranged into a regular volume. On the other hand, multi-view stereo (MVS)

builds a dense 3D regular cost volume between images and the 3D space, with respect to a fixed

number of depth or disparity hypothesis planes. However, the 3D dense cost volume used in MVS

is infeasible to construct in our problem since it requires to sample a large number of hypothesis

points, which makes the cost volume too large to process. Therefore, to build a regular cost volume

between a query image and a 3D scene efficiently, we propose a straightforward sorting strategy.

The final dense coordinate maps are then obtained from the constructed cost volume. Thanks to the

cost volume based formulation, we can easily fuse temporal information to deal with video input.

10

Chapter 3

Methods

3.1 Overview

The overall framework of our system is illustrated in Fig.1.1. The pipeline takes a single image or a

video sequence as query input. For each query image, we first retrieve N nearest scene images with

corresponding coordinate maps via deep image retrieval [21]. Next, we extract a L-level feature

pyramid for each query and scene image via the Feature Pyramid Network [37]. In a coarse-to-fine

manner, we then design a Dense Scene Matching (DSM) module at each pyramid level to regress

the dense coordinate maps of gradually higher resolution and accuracy. In DSM, the correlations

between query pixels and scene points are calculated and arranged into a regular cost volume for

a convolutional neural network to process. Finally, the camera pose is estimated from the finest

coordinate map by the standard RANSAC+PnP algorithm.

3.2 Feature and Coordinate Pyramid

Given one query image Qt at time t and multiple reference scene images {Si|i = 1, ..., n}, we gen-

erate a L-level pyramid of feature maps {Fl|l = 1, ..., L} for each of them by ResNet50-FPN [37].

We denote the query feature maps as Fl
q and the scene feature maps as Fl

s. The feature vectors in

Fl
q are referred as f l

q, and those in Fl
s are f l

s. The spatial size of feature maps at level l is H l ×W l.

For each scene image with known 3D coordinates, we also build a L-level coordinate pyramid

{Ml|l = 1, ..., L}. The spatial size of each coordinate map is the same as that of the feature map

Fl
s. In order to deal with scenes at different scales, we transform the 3D scene coordinates to a local

coordinate system, where the coordinates are normalized to zero-mean and unit standard deviation

at all x, y, z channels.

We estimate the coordinate map in a coarse-to-fine manner. After initializing the coarsest level,

the coordinate map D̂l at level l is initialized by upsampling from Dl+1.

11

Fl
q,t

Fl
q,t−1

Sorting &
selection

Cost volume

Netcoords

Confidence
estimation

Correlation
calculation

&fusion H

W

𝐾

3𝐾

Coordinate volume

W

H

Netconf

Pixel coordinatesFl
s

H
W

𝑁
× 𝑑 × 𝑑

Correlation tensor

D̂l

Ml

Figure 3.1: Illustration of Dense Scene Matching (DSM) module. For a specific pyramid level l,
DSM takes 1) query image feature maps Fl

q,t at time t and Fl
q,t−1 at time t− 1; 2) scene image fea-

ture maps Fl
s with corresponding scene coordinates; 3) initial coordinate maps D̂l. Then the DSM

module predicts a coordinate map Dl by cost volume construction and coordinate regression. In the
figure, N , H , W is the number of scene images, image heights and image weights respectively. K
is the number of scene coordinates selected for regression and d is the window size of candidate
scene coordinates.

3.3 Dense Scene Matching

The overview of the DSM module is shown in Fig. 3.1. At a specific level l, the input of DSM

module includes: 1) query image feature maps Fl
q,t at time t and Fl

q,t−1 at time t − 1; 2) scene

image feature maps Fl
s and corresponding scene coordinate maps M l; 3) initial coordinate maps

D̂l upsampled from Dl+1. The DSM module predicts the coordinate map Dl with more details

from the initial D̂l. Specifically, DSM consists of two steps, namely cost volume construction and

coordinate regression. It first constructs a cost volume which measures the correlations between 2D

query pixels and scene points (with known coordinates). It then regresses a dense coordinate map

of the query image from the cost volume.

3.3.1 Cost Volume Construction

This section explains the details of cost volume construction, which involves two processes, namely

the scene correlation and temporal correlation. The scene correlation measures similarity between

query image pixels and scene points, while the temporal correlation measures the similarity between

query image pixels from two neighboring frames in the query video clip. Our network only uses

scene correlation in training, and fuses both correlations at testing time.

Scene correlation. The scene correlation is defined as cosine similarity between the features of

query pixels and the ones of 3D scene points. We adopt a coarse-to-fine strategy in order to avoid the

computation between all 2D-3D pairs. For the coarsest level, we compute the correlation between

each query pixel and every 3D scene point since its initial depth is unknown. For the other levels,

as shown in Fig.3.2, for an pixel q in the query feature map Fl
q,t−1, we obtain its 3D coordinate

from the initial coordinate map D̂l. After that, we project the 3D coordinates to each scene image.

Suppose the projected position is p, we consider a d× d search window centered at p and compute

the cosine similarity between the feature vector at q and those feature vectors for the pixels within

12

the search window, as shown in Eqn. 3.3.1. In this way, we obtain a correlation vector of size d× d
at the query pixel at q. We initialize the correlation value as 0 if the corresponding position is out

of the image. Given N reference scene images, we obtain a N × d× d scene correlations per pixel,

which aggregate to a H l ×W l × (N × d× d) tensor, named correlation tensor.

Corrs =
Fl

q,t(q) · Fl
s(p)

||Fl
q(q)|| · ||Fl

s(p)|| (3.1)

Temporal correlation. If the query input is a video sequence, we can leverage the result at the pre-

vious frame and the correlation between neighboring video frames to enhance the result. Basically,

if the camera pose is known, we can project a scene point p into the query video frame Qt−1 at p′.
Then the correlation between p and the query pixel q in video frame Qt can be evaluated by the

correlation between the two query pixels p′ and q, as shown in Eqn. 3.3.1

Specifically, we project all scene points to the query image Qt−1 according to the camera pose

at t − 1. Subsequently, we can compute the correlation between the feature vector at a query pixel

in Qt and the feature vectors of these projected pixels in Qt−1. In this way, for each query pixel, we

also obtain a correlation vector of size N × d× d by temporal correlation.

Corrt =
Fl

q(q) · Fl
q,t−1(p′)

||Fl
q(q)|| · ||Fl

q,t−1(p′)||
(3.2)

Correlation fusion. The final correlation score between a query pixel and a scene point is then com-

puted from the scene correlation and the temporal correlation by the equation, Corr = αCorrs +
(1 − α)Corrt, where Corrs stands for scene correlation and Corrt is the temporal correlation.

The parameter α balances Corrs and Corrt. The hyper-parameter α is derived from the confidence

score by α = min(s + 0.4, 1), s is the confidence score, which will be introduced in Sec. 3.3.3.

Note that the fusion is applied to each of the N reference scene images. At the end of this fusion,

we obtain a fused correlation tensor of size H l ×W l × (N × d× d).

Cost volume. We construct a cost volume by sorting the correlation values in descending order.

After sorting, we apply non maximum suppression (NMS). We drop coordinates whose distance

to a selected coordinate is smaller than a threshold. Although the sorting operation is not differen-

tiable, the gradients can still be passed by the correlation values in the backward propagation during

training. Intuitively, a higher correlation score means a more accurate match between query pixels

and scene points.

After sorting, we obtain a cost volume of size H l ×W l ×K. We further concatenate this cost

volume with the 3D scene coordinates of corresponding scene points to form a H ×W × 4K (1

for correlation and 3 for scene coordinates) cost-coordinate volume. This cost-coordinate volume is

then processed by CNN to produce a dense coordinate map.

13

Fl
q,t

C8

C7

C6

C5

C4

C3

C2

C1

P4

P3

P2

P1

P8

P7

P6

P5

CP

q

q p

Temporal fusion

Scene pointQuery point Temporal point

Scene correlation

Searching space

Temporal correlation

Coordinates

Projection

Cost

Fl
s

Fl
q,t−1

D̂l

p’

Figure 3.2: Demonstration of correlation fusion process. For a specific pixel q in Fl
q,t, we obtain

its scene correlation by projecting its corresponding 3D coordinate predicted in D̂l to a searching
space of a d× d window in retrieved N scene feature maps Fl

s. Temporal correlation is obtained by
projecting the scene coordinates within the searching space in Ml to Fl

q,t−1. Finally, a N × d × d
correlation tensor is formed for each query pixel.

14

3.3.2 Coordinate Regression

We design a network namely Netcoords to estimate the final scene coordinate map by taking the

input of cost volume, coordinate volume and image features. The cost-coordinate volume is first fed

into a network consisting of 1× 1 convolutional layers and produce a coordinate feature map. This

coordinate feature map is concatenated with the image feature map and fed into another network

consisting of 3× 3 convolutional layers to predict the final coordinate map.

3.3.3 Confidence Estimation

In order to fuse the temporal correlations and scene correlations, we estimate a confidence value s

as the weighting parameter, as discussed in Sec. 3.3.1. We predict a certainty score for each pixel,

which measures how accurate the coordinate prediction is. As illustrated in Fig.3.1, after predicting

the coordinate map from only scene correlation, we concatenate it with the corresponding 2D pixel

coordinates (the pixel positions in images) and feed to Netconf which outputs certainty scores. We

treat the certainty score estimation as a ranking problem. Coordinates with higher certainty scores

are supposed to have smaller reprojection errors. This relation can be measured by the average

precision metric. Therefore, we label each pixel as correct if its reprojection error of the estimated

coordinate is smaller than a threshold (1 pixel in implementation) or incorrect otherwise and use

average precision loss [50] to optimize Netconf . The final confidence s is the average certainty

score over all pixels, and then the fusion score α can be computed. After fusing scene correlation

and temporal correlation, we still use Netcoords to predict the final coordinate map.

3.4 Archtecture of Netcoords and Netconf .

Fig. 3.3 shows the architecture ofNetconf andNetcoords. The input ofNetcoods is aH l×W l×4K
(K = 16 in implementation) cost-coordinate volume formed by concatenating the cost volume with

3D scene coordinates. As shown in Fig. 3.3, Netcoords consists of 3 residual blocks [25] and one

denseblock [28]. The residual blocks consist of 1 × 1 convolutional layer. It takes the input of

cost-coordinate volume and generates a H l × W l × 64 coordinate feature map. Then, the scene

coordinate map is estimated by the denseblock, which takes the concatenation of image features,

coordinate features and the initial coordinate map up-sampled from the last layer (if applicable). On

the other hand, Netconf consists of 5 residual blocks with context normalization [68]. It takes the

concatenation of the estimated scene coordinate map with the corresponding 2D pixel coordinate

map and estimates a confidence score for each pixel.

3.5 Training loss.

The total loss is the summation of the regression loss, Lregress, for coordinate regression and the

average precision loss [50], LAP , for training certainty scores. For coordinate regression, we use L1

15

Image feat.
Hl × Wl × 256

Concatenate

NetconfNetcoords

In: 128(+3)
out: 64

In: 192(+3)
out: 64

In: 256(+3)
out: 64

In: 320(+3)
out: 64

In: 384(+3)
out: 64

Conv 1 × 1
Conv 3 × 3

Initial coords.
Hl × Wl × 3

Pixel coords.
Hl × Wl × 2

ResBlock,
in: 128, out: 128

1 × 1

ResBlock,
in: 128, out: 128

1 × 1

ResBlock,
in: 128, out: 128

1 × 1

In: 128,
out: 1

In: 5,
out: 128

Uncertainty
Hl × Wl × 1

ResBlock,
in: 128, out: 128

1 × 1

ResBlock,
in: 128, out: 128

1 × 1

ResBlock,
in: 64, out: 64

1 × 1

Cost-coordinate volume
Hl × Wl × (16 × 4)

In: 448(+3),
out: 3

Scene coords.
Hl × Wl × 3

In: 256
out: 64 × 3

Figure 3.3: Archtecture of Netconf and Netcoords. We use residual block for Netconf and dense
block for Netcoords

16

distance errors between predicted coordinates and ground truth coordinates as training loss.

Lregress = ||Ycoords −Ycoords||

L = LAP + 1
n

n∑
i=0

(Lregress)

Where Ycoords is the absolute coordinate predicted from Netcoords, Y stands for the ground truth

and n is the number of query pixels.

17

Chapter 4

Experiments

4.1 Experiment Settings

Dataset. We evaluate our method on both the indoor dataset 7scenes [20] and the outdoor dataset

Cambridge Landmarks [33]. For 7scenes, it contains 7 different scenes with raw RGB-D video

sequences captured by a handheld Kinect RGB-D camera. It also provides camera poses and a dense

3D model for each scene generated by KinectFusion [30]. Cambridge Landmarks dataset contains

6 different outdoor scenes with RGB video frames labelled with full 6-DOF camera poses. We train

our network using ScanNet dataset [14], which is a RGB-D video dataset consisting of 2.5M views

in 1513 scenes annotated with 3D camera poses and dense depth maps.

Data processing. All the images of the 7scenes [20], Cambridge Landmarks [33] and ScanNet [14]

datasets are downsized to 384 × 512. To form the training data, we first randomly sample about

160k images from ScanNet dataset as query images. For each query image, we retrieve 5 and 10
corresponding scene images in the same video sequence for training and testing respectively by the

learning-based image retrieval approach [21]. In order to encourage query-scene image pairs with

different viewing angles, we only keep the scene images of the same video sequence that are at least

50 frames away from a given query image. We follow the multi-view stereo reconstruction method

adopted in the DSAC [5] to obtain dense 3D coordinates of the Cambridge Landmarks.

Training. We only use Scannet as training data for the inference on 7scenes dataset. As for a spe-

cific scene of the outdoor dataset Cambridge Landmarks, we fine-tune our pretrained model with the

other 5 scenes. ResNet50-FPN [37] is regarded as our backbone network for all the following ex-

periments. Our model is trained with an AdamW optimizer [38], whose base learning rate is 0.0005,

and a batch size of 16 in a single RTX TITAN GPU for 50000 iterations.

4.2 Localization Accuracy

In this section, we mainly compare our approach with two classes of methods, namely sparse fea-

ture matching [54, 62, 51] and dense coordinate regression methods [5, 58, 72, 66]. We measure

localization accuracy in terms of median errors in translation and rotation. As shown in Table. 4.1,

18

7scenes (Indoor) Chess Fire Heads Office Pumpkin Kitchen Stairs

Sp
ar

se Active Search 1.96◦, 0.04m 1.53◦, 0.03m 1.45◦, 0.02m 3.61◦, 0.09m 3.10◦, 0.08m 3.37◦, 0.07m 2.22◦, 0.03m
InLoc 1.05◦, 0.03m 1.07◦, 0.03m 0.16◦, 0.02m 1.05◦, 0.03m 1.55◦, 0.05m 1.31◦, 0.04m 2.47◦, 0.09m
HLoc 0.79◦, 0.02m 0.87◦, 0.02m 0.92◦, 0.02m 0.91◦, 0.03m 1.12◦, 0.05m 1.25◦, 0.04m 1.62◦, 0.06m

D
en

se

DSAC(*) 0.7◦, 0.02m 1.0◦, 0.03m 1.3◦, 0.02m 1.0◦, 0.03m 1.3◦, 0.05m 1.5◦, 0.0.5m 49.4◦, 1.9m
DSAC++(*) 0.5◦, 0.02m 0.9◦, 0.02m 0.8◦, 0.01m 0.7◦, 0.03m 1.1◦, 0.04m 1.1◦, 0.04m 2.6◦, 0.09m

KFNet(*) 0.65◦, 0.02m 0.9◦, 0.02m 0.82◦, 0.01m 0.69◦, 0.03m 1.02◦, 0.04m 1.16◦, 0.04m 0.94◦, 0.03m
SANet 0.88◦, 0.03m 1.10◦, 0.03m 1.48◦, 0.02m 1.03◦, 0.03m 1.32◦, 0.05m 1.4◦, 0.04m 4.59◦, 0.16m

Ours (Single) 0.71◦, 0.02m 0.85◦, 0.02m 0.85◦, 0.01m 0.84◦, 0.03m 1.16◦, 0.04m 1.17◦,0.04m 1.33◦, 0.05m
Ours (Video) 0.68◦, 0.02m 0.80◦, 0.02m 0.80◦, 0.01m 0.78◦, 0.03m 1.11◦, 0.04m 1.11◦,0.03m 1.16◦, 0.04m
Cambridge (outdoor) Great Court King’s College Old Hospital Shop Facade St. Mary’s Church Street

Sp
ar

se Active Search 0.6◦, 1.20m 0.6◦, 0.42m 1.0◦, 0.44m 0.4◦, 0.12m 0.5◦, 0.19m 0.8◦, 0.85m
InLoc 0.62◦, 1.20m 0.82◦, 0.46m 0.96◦, 0.48m 0.50◦, 0.11m 0.63◦, 0.18m 2.16◦, 0.75m
HLoc 0.21◦, 0.38m 0.31◦, 0.17m 0.39◦, 0.23m 0.37◦, 0.07m 0.29◦, 0.10m 1.32◦, 0.62m

D
en

se

DSAC(*) 1.5◦, 2.8m 0.5◦, 0.30m 0.6◦, 0.33m 0.4◦, 0.09m 1.6◦, 0.55m
DSAC++(*) 0.2◦, 0.40m 0.3◦, 0.18m 0.3◦,0.2m 0.3◦, 0.06m 0.4◦, 0.13m

KFNet(*) 0.21◦, 0.42m 0.27◦, 0.16m 0.28◦, 0.18m 0.35◦, 0.05m 0.35◦, 0.12m
SANet 1.95◦, 3.28m 0.42◦, 0.32m 0.53◦, 0.32m 0.47◦, 0.10m 0.57◦, 0.16m 12.64◦, 8.74m

Ours (Single) 0.23◦, 0.44m 0.36◦, 0.19m 0.39◦, 0.24m 0.38◦, 0.07m 0.35◦, 0.12m 1.71◦, 0.68m
Ours (Video) 0.19◦, 0.43m 0.35◦, 0.19m 0.38◦, 0.23m 0.30◦, 0.06m 0.34◦, 0.11m 1.53◦, 0.61m

Table 4.1: Performance comparison in terms of rotation errors (◦) and translation errors (m). (*)
indicates scene-specific methods.

Single frame localization Video localization
Acc. thresh Median Mean Acc. Median Mean Acc.

Chess 5◦, 0.05 0.713◦, 0.021 0.824◦, 0.024 94.5 0.684◦, 0.020 0.795◦, 0.023 96.1 (+1.6)
Fire 5◦, 0.05 0.856◦, 0.021 1.025◦, 0.027 93.8 0.802◦, 0.020 0.878◦, 0.020 94.5 (+0.7)

Heads 5◦, 0.05 0.846◦, 0.013 1.369◦, 0.023 96.4 0.802◦, 0.013 0.957◦, 0.016 99.5 (+3.1)
Office 5◦, 0.05 0.843◦, 0.028 0.983◦, 0.037 82.3 0.782◦, 0.026 0.937◦, 0.034 84.2 (+1.9)

Pumpkin 5◦, 0.05 1.164◦, 0.043 2.224◦, 0.112 57.0 1.113◦, 0.043 1.823◦, 0.083 57.2 +(0.2)
Kitchen 5◦, 0.05 1.165◦, 0.038 3.145◦, 0.082 68.7 1.115◦, 0.034 1.358◦, 0.044 69.2 (+0.5)
Stairs 5◦, 0.05 1.356◦, 0.045 3.424◦, 0.197 53.9 1.157◦, 0.037 1.553◦, 0.069 69.9 (+16.0)

Great Court 5◦, 1.0 0.209◦, 0.444 6.043◦, 5.624 68.5 0.193◦,0.428 4.023◦, 4.017 76.7 (+8.2)
King’s College 5◦, 0.5 0.358◦, 0.194 0.574◦, 0.424 82.9 0.353◦, 0.188 0.522◦, 0.367 84.6 (+1.7)
Old Hospital 5◦, 0.3 0.388◦, 0.243 0.387◦, 0.502 41.2 0.382◦, 0.228 0.372◦, 0.498 43.7 (+2.5)
Shop Facade 5◦, 0.2 0.375◦, 0.074 0.623◦, 0.131 84.2 0.303◦, 0.061 0.574◦, 0.112 86.4 (+2.2)

St. Mary’s Church 5◦, 0.3 0.353◦, 0.118 1.146◦, 0.374 91.4 0.342◦, 0.111 0.845◦, 0.264 93.7 (+2.3)
Street 5◦, 2.0 1.711◦, 0.684 22.551◦, 27.111 62.2 1.523◦, 0.609 20.756◦, 25.862 64.8 (+2.6)

Table 4.2: Comparison of single frame based localization and video-based localization. For 7scenes,
we use common threshold (5◦, 0.05m) to calculate accuracy. We can see video-based has signifi-
cantly lower mean errors and higher accuracy.

19

St. Mary’s Church Redkitchen Stairs

Figure 4.1: The comparison of camera trajectories between the single frame (first row) and video
localization (second row) via the proposed dense scene matching network. The visualized results
are respectively Redkitchen and Stairs in 7-scenes dataset, and St. Mary’s Church sequence in Cam-
bridge Landmarks dataset. In the first row, the outliers are shown in the red circles.

the proposed DSM approach achieves state-of-the-art performance among both sparse matching and

dense regression methods.

Compared with sparse matching methods, the pose accuracy of our approach is superior to

that of Active Search [54] and InLoc [62]. HLoc [51], upgraded with SuperPoint [15] for feature

detection and Superglue [53] for feature correspondence matching, is considered and such upgrade

brings higher relocalization accuracy compared with the original HLoc approach [51] as reported

in the work [53]. We can see that DSM outperforms HLoc in 7scenes, and it is slightly inferior

to HLoc in outdoor Cambridge Landmarks dataset which contains much more salient texture for

sparse feature matching.

When comparing with scene-specific dense coordinate regression methods, the proposed scene-

agnostic approach DSM outperforms DSAC [5] by a large margin and obtains slightly superior

performance than DSAC++ [6]. Even for KFNet [72] with the top performance on single frame and

video localization tasks, our approach achieves comparable performance. In comparison with the

scene-agnostic SANet [66], DSM shows obvious superior performance.

Table.4.2 shows the detailed comparison of metrics of median errors, mean errors and the pose

accuracy falling within a certain accuracy threshold (Acc. thresh) between single frame localization

and video localization methods. As shown, after applying the temporal fusion, the localization ac-

curacy notably increases indeed. In addition, Fig. 4.1 shows the trajectories of Redkitchen and Stair

sequence of 7-scenes dataset and St. Mary’s Church sequence of Cambridge dataset. We can see that

the trajectories of our single frame localization contain some outliers while our video localization

is able to remove most of them.

20

0.0 10.0 20.0 30.0 40.0 50.0
Threshold of coordinate euclidean distance error (cm)

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

DSAC++
DSAC
SANet
Ours (Single frame)
Ours (Video)
Mesh projection (HLoc)

Figure 4.2: The comparison of cumulative distribution functions of scene coordinate errors between
different localization approaches.

21

(a) Query (b) SANet (c) DSAC++ (d) DSM (e) G.T.

Figure 4.3: Coordinate map visualization for SANet, DSAC++ and DSM.

22

Run time GPU memory usage
SANet 0.33s 5GB
Ours 0.21s 2.7GB

Table 4.3: Efficiency comparison of SANet and DSM.

4.3 Scene coordinate accuracy

In terms of scene coordinate accuracy, we compare our method with SANet [66], DSAC [5],

DSAC++ [58] and HLoc [51] on the whole 7scenes dataset. Since HLoc cannot directly output

a dense coordinate map, we first get dense depth maps by projecting reconstructed mesh to its pre-

dicted poses and compute coordinates by back-projection. We calculate the coordinate accuracy

under different euclidean distance error threshold and plot the cumulative distribution function in

Fig.4.2. We can see that the accuracy of coordinate maps from our network outperforms SANet,

DSAC and DSAC++ by a large margin. More specifically, we surpass SANet by 16% and DSAC++

by 20% when the threshold is set to 10 cm. The projected coordinates of HLoc is more accurate

than DSAC, DSAC++ and SANet, but is under-performed by DSM. In addition, our temporal-based

coordinate map regression boosts accuracy compared with our single frame prediction.

We also visualize coordinate map in Fig.4.3 for DSM, SANet and DSAC++. In general, the

coordinate map produced by DSM has higher quality and preserves more details than SANet and

DSAC++. SANet randomly samples coordinates from search space with ball query, and the best

match may be dropped due to this operation. As a result, its coordinate maps contain a large number

of artifacts. DSAC++ is able to produce a coordinate map with more details, but artifacts exist in

some regions as well.

4.4 Efficiency

Table.4.3 shows the running time and GPU memory usage to localize a single query frame with 5

scene images. We list the statistics of SANet since it is the only localization pipeline that predicts

dense coordinate maps for arbitrary novel scenes. Here, the image retrieval time is not included.

Compared with SANet, Our network reduces the time consumption by 33% and memory consump-

tion by 46%. The efficiency can be further improved by adopting light-weight backbones.

4.5 Ablation Study

This section provides an analysis of DSM. All the experiments are conducted on 7scenes dataset.

The data processing and training process are the same as described above. We use the following

testing setting if not specified: at the inference time, 1 out of every 10 frames for each sequence is

used to calculated pose accuracy, the percentage of predicted poses falling within the threshold (5◦,

5cm).

23

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
k-th Selected Coordinates

0

20

40

60

80

100

120

140

160

Eu
cli

de
an

 D
ist

an
ce

 E
rro

r (
cm

)

Single frame
Video

Figure 4.4: The average scene coordinate errors of the k-th selected coordinates with respect to
ground truth.

24

Chess Fire Heads Office Pumpkin Kitchen Stairs
No sorting 0.82 0.74 0.85 0.72 0.43 0.58 0.05

Sorting 0.96 0.95 1.0 0.88 0.53 0.72 0.66

Table 4.4: Pose accuracy with/without top K correlation sorting. The estimated pose accuracy im-
proves by correlation sorting consistently on all sequences.

Num. Chess Fire Heads Office Pumpkin Kitchen Stairs
1 0.87 0.85 0.87 0.71 0.45 0.63 0.17
3 0.90 0.94 0.91 0.79 0.46 0.67 0.20
5 0.94 0.94 0.94 0.80 0.54 0.68 0.24

10 (?) 0.96 0.95 1.0 0.88 0.53 0.72 0.66

Table 4.5: Pose accuracy with respect to the number of scene images. The network is trained and
tested with the corresponding number of scene images except the one with 10 scene images. The
notation (?) means we train the network with 5 scene images instead of 10 scene images.

Analysis of correlation. Our proposed approach assumes that high query-scene correlations lead to

more accurate corresponding scene coordinates for query pixels. To verify this argument, we evalu-

ate the relationship between the correlation and scene coordinate errors with respect to ground truth.

For each pixel in the query image, we select the top K scene coordinate candidates in 5th level of the

coordinate pyramid. Then for each ranking index k, we take the average of the euclidean distance

error between selected scene coordinates and ground truths over all query pixels. Finally, We define

the kth average scene coordinate error as ek = 1
n

∑n
i=1

√
||Y i

k − Y ||2, where n is the number of

pixels in a query image, for the ith query pixel, Y i
k is the kth corresponding scene coordinate and

Y is the ground truth. We summarize the statistics in 7scenes dataset and plot ek in Fig.4.4. It can

be seen that the scene coordinate error gradually becomes larger when correlation becomes smaller.

In other words, high correlation stands for more accurate scene coordinate selection for a specific

query pixel. In addition, we also include the evaluation for a temporal-based model, which obtains

consistently lower euclidean distance errors than the single frame model, indicating that correlation

fusion further improves the accuracy of selected scene coordinates.

Effects of correlation sorting. As described in Sec.3.3.1, one of the procedures in cost volume

construction is sorting and selecting top K coordinates for each pixel from the correlation tensor.

The motivation behind this operation is two-fold. Firstly, as the number of retrieved scene images

varies, the top K selection results in a cost volume with a fixed size. Secondly, a sorted cost volume

leads to a more accurate estimated coordinate map. To verify the effectiveness of correlation sorting,

we fix the scene image number to 5 and directly use the correlation tensor as the cost volume for

coordinate map regression. The results are shown in Table. 4.4. It can be seen that the estimated

pose accuracy improves by correlation sorting consistently on all sequences. Moreover, since top K

sorting and selection results in a fixed-size cost volume, we can use different scene image numbers

for training and testing. During the training process, the scene image number can be fixed for better

efficiency while for inference we can leverage more scene images for higher accuracy.

Importance of scene depth accuracy We also study the performance of DSM under noisy scene

depths. We add some random noises to the ground truth scene depth map and calculate the localiza-

25

Reso. Chess Fire Heads Office Pumpkin Kitchen Stairs
192× 256 0.92 0.84 0.89 0.78 0.49 0.64 0.23
384× 512 0.96 0.95 1.0 0.88 0.53 0.72 0.66

Table 4.6: Pose accuracy with respect to different image resolutions. In our implementation, We
resize all images to resolution of 384× 512 for better efficiency and performance.

S. Facade S.M Church K. College O. Hospital GreatCourt
w/o F.T. 0.53◦, 0.09m 0.57◦,0.16m 0.43◦,0.26m 0.46◦, 0.24m 0.40◦,0.62m
w F.T. 0.31◦, 0.06m 0.41◦, 0.13m 0.36◦, 0.22m 0.42◦, 0.22m 0.35◦, 0.44m

Table 4.7: The statistical comparison of median rotation and translation errors of Cambridge land-
marks with or without fine-tuning.

tion accuracy. The noises are sampled from a standard Gaussian distribution multiply by a factor θ.

Fig. 4.8 shows the overall localization accuracy under different noise values θ. We can see the local-

ization accuracy drops when the noise value increases. The accuracy becomes 0 when θ is enlarged

to 1.25.

Number of scene image. To show the effects of scene image number N , we change N from 1 to 10

to evaluate the pose accuracy. The model is re-trained with respect to the corresponding scene image

number for N = 1, 3, 5. Since training with more than 5 scene images leads to unacceptable GPU

memory consumption, we still use 5 scene images in training when testing with 10 scene images.

As shown in Table 4.5, increasing N from 1 to 5 results in higher pose accuracy. In addition, we

can see that 10 scene images obtain higher performance than 5 scene images. This indicates that

even if the model is trained with fewer scene images, leveraging more scene images leads to better

performance. Considering the trade-off between performance and efficiency, we set N = 10 in the

main paper.

Image resolution. We test our model using 2 different image resolution size 192× 256 and 384×
512. As shown in Table. 4.6, we can see the resolution of 384 × 512 outperforms 192 × 256. A

higher resolution than 384 × 512 could consume more GPU memory and lead to slower running

time. Therefore, we resize all the images to 384× 512 in our system for better efficiency.

Failure case analysis on single-frame localization. In Figure.4.5, we show some examples which

are successful in video localization, but fail on single-frame localization. We can see that the query

and scene images have small overlaps, featureless regions, repetitive texture patterns and large illu-

θ Chess Fire Heads Office Pumpkin Kitchen Stairs
0.00 0.96 0.95 1.0 0.88 0.53 0.72 0.66
0.25 0.75 0.77 0.66 0.68 0.44 0.53 0.34
0.5 0.46 0.31 0.18 0.38 0.23 0.33 0.17
0.75 0.27 0.15 0.12 0.18 0.13 0.16 0.11
1.00 0.17 0.08 0.06 0.10 0.05 0.08 0.07
1.25 0.04 0.02 0.01 0.03 0.00 0.00 0.00

Table 4.8: Localization accuracy under different

26

'

C
ase 4: Sm

all
overlap

C
ase 1: Featureless

region

C
ase2: R

epetitive
 pattern

C
ase 3: Illum

ination
C

hange

Query Image Scene Image Query Image Scene Image

Figure 4.5: Examples fail in single-frame localization, but succeed in video localization. From the
top left, top right, bottom left to the bottom right samples, the error of pose estimation reduces from
single-frame localization (30.2◦, 0.53m) to video localization (2.2◦, 0.06m), (10.4◦, 0.34m) to (2.2◦,
0.04m), (19.4◦, 0.05m) to (0.5◦, 0.02m), (15.6◦, 0.53m) to (1.4◦, 0.07m) respectively.

mination differences. In such cases, scene correlations have lower weights while temporal correla-

tions contribute more to the cost volume and lead to better performance.

Finetuing on Cambridge landmarks As shown in Table 4.7, we show that fine-tuning on Cam-

bridge improves the performance.

27

Chapter 5

Conclusion

5.1 Discussions

Localization metrics. The common evaluation metrics are median errors of rotations and transla-

tions. These metrics measure errors in 3D space, so their absolute values depend on the scales of

scenes. As a result, for small scale scenes, the improvement seems not obvious if looking at the

absolute values. For example, in the scene Chess, which is a small room, DSM has 0.20◦, 0.01m
lower errors than SANet while in the scene Street, which is a large street, DSM has 11.11◦, 8.05m
lower errors. Median errors of rotations and translations are not consistent for scenes under different

scales. In order to address this problem, a more reasonable metric would be the reprojection errors:

the errors of projections of 3D points with ground truth poses and estimated poses in the image

plane, as shown in the following equation,

E = 1
N

N∑
i

KTgtpi −KTpredpi, (5.1)

where K is the intrinsic matrix, Tgt and Tpred is the ground truth camera pose and estimated

camera pose respectively, pi is a 3D point of the image and N is the number of 3D points of the

image.

Future work. Although DSM has achieved remarkable performance over 7scenes and Cambridge

dataset, there are still deficiencies. Firstly, compared with feature matching methods, DSM requires

dense depths of reference images, which are usually obtained by depth cameras or multi-view

stereo algorithms. However, depth cameras only work in small-scale indoor scenes, while inac-

curate depths from multi-view stereo algorithms may largely decrease the localization performance.

This limits the usage of DSM to large-scale scenes, where accurate dense depths are hard to obtain.

Secondly, DSM uses all 2D-3D pairs of an image to estimate 6 DoF camera poses. However, some

of the scene coordinate predictions are not reliable since DSM can not find matches for those pixels

in reference images. Including those pairs have a negative impact on localization performance. This

problem is serious in sparse-sampled environments like InLoc [62]. The database images of InLoc

are cropped from the original panorama images and the overlaps between two consecutive images

28

are small. Thirdly, our generalization to video localization leverages confidences estimated from a

single frame and the errors of the previous frame is not considered. Therefore, if localization on the

previous frame fails, temporal fusion could result in a worse performance.

To address the above problems, potential future work includes: 1) Leveraging sparse point

clouds, which can be obtained by Lidar or triangulation conveniently, instead of dense depths to

regress coordinates. 2) Using only accurate scene coordinate predictions to estimate the 6 DoF cam-

era poses. 3) Designing a better temporal fusion module considering errors of both the current frame

and the previous frame.

5.2 Conclusion

In this thesis, we present dense scene matching (DSM) for visual localization. DSM is able to es-

timate dense coordinate maps for arbitrary novel scenes. First, DSM builds a cost volume between

a query image and a scene by sorting and selecting the top K highest correlations per pixel. Then,

the cost volume with the corresponding coordinates is feed into a CNN for dense coordinate re-

gression and a temporal fusion module is introduced to further improve the accuracy of the dense

coordinate map. Finally, the camera poses are then estimated by the PnP together with RANSAC

algorithms. We demonstrated the effectiveness of DSM on both indoor and outdoor datasets. This

scene-agnostic method yields comparable accuracy among all scene-specific methods and outper-

forms scene-agnostic methods in terms of both localization and coordinate accuracy.

29

Bibliography

[1] Relja Arandjelovic, Petr Gronat, Akihiko Torii, Tomas Pajdla, and Josef Sivic. Netvlad: Cnn
architecture for weakly supervised place recognition. In Proceedings of the IEEE conference
on computer vision and pattern recognition, pages 5297–5307, 2016.

[2] Vassileios Balntas, Shuda Li, and Victor Prisacariu. Relocnet: Continuous metric learning
relocalisation using neural nets. In Proceedings of the European Conference on Computer
Vision (ECCV), pages 751–767, 2018.

[3] Vassileios Balntas, Edgar Riba, Daniel Ponsa, and Krystian Mikolajczyk. Learning local fea-
ture descriptors with triplets and shallow convolutional neural networks. In Bmvc, volume 1,
page 3, 2016.

[4] Herbert Bay, Tinne Tuytelaars, and Luc Van Gool. Surf: Speeded up robust features. In
European conference on computer vision, pages 404–417. Springer, 2006.

[5] Eric Brachmann, Alexander Krull, Sebastian Nowozin, Jamie Shotton, Frank Michel, Stefan
Gumhold, and Carsten Rother. Dsac-differentiable ransac for camera localization. In Proceed-
ings of the IEEE Conference on Computer Vision and Pattern Recognition, pages 6684–6692,
2017.

[6] Eric Brachmann and Carsten Rother. Learning less is more-6d camera localization via 3d
surface regression. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, pages 4654–4662, 2018.

[7] Eric Brachmann and Carsten Rother. Expert sample consensus applied to camera re-
localization. In Proceedings of the IEEE International Conference on Computer Vision, pages
7525–7534, 2019.

[8] Samarth Brahmbhatt, Jinwei Gu, Kihwan Kim, James Hays, and Jan Kautz. Geometry-aware
learning of maps for camera localization. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pages 2616–2625, 2018.

[9] Michael Calonder, Vincent Lepetit, Christoph Strecha, and Pascal Fua. Brief: Binary robust
independent elementary features. In European conference on computer vision, pages 778–792.
Springer, 2010.

[10] Jia-Ren Chang and Yong-Sheng Chen. Pyramid stereo matching network. In Proceedings of
the IEEE Conference on Computer Vision and Pattern Recognition, pages 5410–5418, 2018.

[11] Wentao Cheng, Weisi Lin, Kan Chen, and Xinfeng Zhang. Cascaded parallel filtering for
memory-efficient image-based localization. In Proceedings of the IEEE International Confer-
ence on Computer Vision, pages 1032–1041, 2019.

30

[12] Ronald Clark, Sen Wang, Andrew Markham, Niki Trigoni, and Hongkai Wen. Vidloc: A
deep spatio-temporal model for 6-dof video-clip relocalization. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, pages 6856–6864, 2017.

[13] Huseyin Coskun, Felix Achilles, Robert DiPietro, Nassir Navab, and Federico Tombari. Long
short-term memory kalman filters: Recurrent neural estimators for pose regularization. In
Proceedings of the IEEE International Conference on Computer Vision, pages 5524–5532,
2017.

[14] Angela Dai, Angel X Chang, Manolis Savva, Maciej Halber, Thomas Funkhouser, and
Matthias Nießner. Scannet: Richly-annotated 3d reconstructions of indoor scenes. In Proceed-
ings of the IEEE Conference on Computer Vision and Pattern Recognition, pages 5828–5839,
2017.

[15] Daniel DeTone, Tomasz Malisiewicz, and Andrew Rabinovich. Superpoint: Self-supervised
interest point detection and description. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition Workshops, pages 224–236, 2018.

[16] Alexey Dosovitskiy, Philipp Fischer, Eddy Ilg, Philip Hausser, Caner Hazirbas, Vladimir
Golkov, Patrick Van Der Smagt, Daniel Cremers, and Thomas Brox. Flownet: Learning opti-
cal flow with convolutional networks. In Proceedings of the IEEE international conference on
computer vision, pages 2758–2766, 2015.

[17] Mihai Dusmanu, Ignacio Rocco, Tomas Pajdla, Marc Pollefeys, Josef Sivic, Akihiko Torii, and
Torsten Sattler. D2-net: A trainable cnn for joint detection and description of local features.
arXiv preprint arXiv:1905.03561, 2019.

[18] Martin A Fischler and Robert C Bolles. Random sample consensus: a paradigm for model
fitting with applications to image analysis and automated cartography. Communications of the
ACM, 24(6):381–395, 1981.

[19] Xiao-Shan Gao, Xiao-Rong Hou, Jianliang Tang, and Hang-Fei Cheng. Complete solution
classification for the perspective-three-point problem. IEEE transactions on pattern analysis
and machine intelligence, 25(8):930–943, 2003.

[20] Ben Glocker, Shahram Izadi, Jamie Shotton, and Antonio Criminisi. Real-time rgb-d cam-
era relocalization. In 2013 IEEE International Symposium on Mixed and Augmented Reality
(ISMAR), pages 173–179. IEEE, 2013.

[21] Albert Gordo, Jon Almazán, Jerome Revaud, and Diane Larlus. Deep image retrieval: Learning
global representations for image search. In European conference on computer vision, pages
241–257. Springer, 2016.

[22] Xufeng Han, Thomas Leung, Yangqing Jia, Rahul Sukthankar, and Alexander C Berg. Match-
net: Unifying feature and metric learning for patch-based matching. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition, pages 3279–3286, 2015.

[23] Christopher G Harris, Mike Stephens, et al. A combined corner and edge detector. In Alvey
vision conference, volume 15, pages 10–5244. Citeseer, 1988.

[24] Richard I Hartley. In defense of the eight-point algorithm. IEEE Transactions on pattern
analysis and machine intelligence, 19(6):580–593, 1997.

31

[25] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. In Proceedings of the IEEE conference on computer vision and pattern recogni-
tion, pages 770–778, 2016.

[26] Joel A Hesch and Stergios I Roumeliotis. A direct least-squares (dls) method for pnp. In 2011
International Conference on Computer Vision, pages 383–390. IEEE, 2011.

[27] Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural computation,
9(8):1735–1780, 1997.

[28] Gao Huang, Zhuang Liu, Laurens Van Der Maaten, and Kilian Q Weinberger. Densely con-
nected convolutional networks. In Proceedings of the IEEE conference on computer vision
and pattern recognition, pages 4700–4708, 2017.

[29] Eddy Ilg, Nikolaus Mayer, Tonmoy Saikia, Margret Keuper, Alexey Dosovitskiy, and Thomas
Brox. Flownet 2.0: Evolution of optical flow estimation with deep networks. In Proceedings
of the IEEE conference on computer vision and pattern recognition, pages 2462–2470, 2017.

[30] Shahram Izadi, David Kim, Otmar Hilliges, David Molyneaux, Richard Newcombe, Pushmeet
Kohli, Jamie Shotton, Steve Hodges, Dustin Freeman, Andrew Davison, et al. Kinectfusion:
real-time 3d reconstruction and interaction using a moving depth camera. In Proceedings of
the 24th annual ACM symposium on User interface software and technology, pages 559–568,
2011.

[31] Alex Kendall and Roberto Cipolla. Modelling uncertainty in deep learning for camera relo-
calization. In 2016 IEEE international conference on Robotics and Automation (ICRA), pages
4762–4769. IEEE, 2016.

[32] Alex Kendall and Roberto Cipolla. Geometric loss functions for camera pose regression with
deep learning. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recog-
nition, pages 5974–5983, 2017.

[33] Alex Kendall, Matthew Grimes, and Roberto Cipolla. Posenet: A convolutional network for
real-time 6-dof camera relocalization. In Proceedings of the IEEE international conference on
computer vision, pages 2938–2946, 2015.

[34] Zakaria Laskar, Iaroslav Melekhov, Surya Kalia, and Juho Kannala. Camera relocalization by
computing pairwise relative poses using convolutional neural network. In Proceedings of the
IEEE International Conference on Computer Vision Workshops, pages 929–938, 2017.

[35] Vincent Lepetit, Francesc Moreno-Noguer, and Pascal Fua. Epnp: An accurate o (n) solution
to the pnp problem. International journal of computer vision, 81(2):155, 2009.

[36] Xiaotian Li, Shuzhe Wang, Yi Zhao, Jakob Verbeek, and Juho Kannala. Hierarchical scene co-
ordinate classification and regression for visual localization. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pages 11983–11992, 2020.

[37] Tsung-Yi Lin, Piotr Dollár, Ross Girshick, Kaiming He, Bharath Hariharan, and Serge Be-
longie. Feature pyramid networks for object detection. In Proceedings of the IEEE conference
on computer vision and pattern recognition, pages 2117–2125, 2017.

32

[38] Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. arXiv preprint
arXiv:1711.05101, 2017.

[39] David G Lowe. Distinctive image features from scale-invariant keypoints. International jour-
nal of computer vision, 60(2):91–110, 2004.

[40] Nikolaus Mayer, Eddy Ilg, Philip Hausser, Philipp Fischer, Daniel Cremers, Alexey Dosovit-
skiy, and Thomas Brox. A large dataset to train convolutional networks for disparity, optical
flow, and scene flow estimation. In Proceedings of the IEEE conference on computer vision
and pattern recognition, pages 4040–4048, 2016.

[41] Sven Middelberg, Torsten Sattler, Ole Untzelmann, and Leif Kobbelt. Scalable 6-dof localiza-
tion on mobile devices. In European conference on computer vision, pages 268–283. Springer,
2014.

[42] Krystian Mikolajczyk and Cordelia Schmid. Scale & affine invariant interest point detectors.
International journal of computer vision, 60(1):63–86, 2004.

[43] Richard A Newcombe, Shahram Izadi, Otmar Hilliges, David Molyneaux, David Kim, An-
drew J Davison, Pushmeet Kohi, Jamie Shotton, Steve Hodges, and Andrew Fitzgibbon.
Kinectfusion: Real-time dense surface mapping and tracking. In 2011 10th IEEE interna-
tional symposium on mixed and augmented reality, pages 127–136. IEEE, 2011.

[44] David Nistér. An efficient solution to the five-point relative pose problem. IEEE transactions
on pattern analysis and machine intelligence, 26(6):756–770, 2004.

[45] Jiahao Pang, Wenxiu Sun, Jimmy SJ Ren, Chengxi Yang, and Qiong Yan. Cascade residual
learning: A two-stage convolutional neural network for stereo matching. In Proceedings of the
IEEE International Conference on Computer Vision Workshops, pages 887–895, 2017.

[46] Charles R Qi, Hao Su, Kaichun Mo, and Leonidas J Guibas. Pointnet: Deep learning on
point sets for 3d classification and segmentation. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pages 652–660, 2017.

[47] Charles Ruizhongtai Qi, Li Yi, Hao Su, and Leonidas J Guibas. Pointnet++: Deep hierarchical
feature learning on point sets in a metric space. In Advances in neural information processing
systems, pages 5099–5108, 2017.

[48] Noha Radwan, Abhinav Valada, and Wolfram Burgard. Vlocnet++: Deep multitask learn-
ing for semantic visual localization and odometry. IEEE Robotics and Automation Letters,
3(4):4407–4414, 2018.

[49] Anurag Ranjan and Michael J Black. Optical flow estimation using a spatial pyramid network.
In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pages
4161–4170, 2017.

[50] Jerome Revaud, Jon Almazán, Rafael S Rezende, and Cesar Roberto de Souza. Learning with
average precision: Training image retrieval with a listwise loss. In Proceedings of the IEEE
International Conference on Computer Vision, pages 5107–5116, 2019.

[51] Paul-Edouard Sarlin, Cesar Cadena, Roland Siegwart, and Marcin Dymczyk. From coarse to
fine: Robust hierarchical localization at large scale. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, pages 12716–12725, 2019.

33

[52] Paul-Edouard Sarlin, Frédéric Debraine, Marcin Dymczyk, Roland Siegwart, and Cesar Ca-
dena. Leveraging deep visual descriptors for hierarchical efficient localization. arXiv preprint
arXiv:1809.01019, 2018.

[53] Paul-Edouard Sarlin, Daniel DeTone, Tomasz Malisiewicz, and Andrew Rabinovich. Super-
glue: Learning feature matching with graph neural networks. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pages 4938–4947, 2020.

[54] Torsten Sattler, Bastian Leibe, and Leif Kobbelt. Improving image-based localization by active
correspondence search. In European conference on computer vision, pages 752–765. Springer,
2012.

[55] Torsten Sattler, Bastian Leibe, and Leif Kobbelt. Efficient & effective prioritized matching
for large-scale image-based localization. IEEE transactions on pattern analysis and machine
intelligence, 39(9):1744–1756, 2016.

[56] Torsten Sattler, Qunjie Zhou, Marc Pollefeys, and Laura Leal-Taixe. Understanding the limi-
tations of cnn-based absolute camera pose regression. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, pages 3302–3312, 2019.

[57] Nikolay Savinov, Akihito Seki, Lubor Ladicky, Torsten Sattler, and Marc Pollefeys. Quad-
networks: unsupervised learning to rank for interest point detection. In Proceedings of the
IEEE conference on computer vision and pattern recognition, pages 1822–1830, 2017.

[58] Greg Schohn and David Cohn. Less is more: Active learning with support vector machines.
In ICML, volume 2, page 6. Citeseer, 2000.

[59] Johannes L Schonberger and Jan-Michael Frahm. Structure-from-motion revisited. In Pro-
ceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pages 4104–
4113, 2016.

[60] Jamie Shotton, Ben Glocker, Christopher Zach, Shahram Izadi, Antonio Criminisi, and An-
drew Fitzgibbon. Scene coordinate regression forests for camera relocalization in rgb-d im-
ages. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,
pages 2930–2937, 2013.

[61] Deqing Sun, Xiaodong Yang, Ming-Yu Liu, and Jan Kautz. Pwc-net: Cnns for optical flow
using pyramid, warping, and cost volume. In Proceedings of the IEEE conference on computer
vision and pattern recognition, pages 8934–8943, 2018.

[62] Hajime Taira, Masatoshi Okutomi, Torsten Sattler, Mircea Cimpoi, Marc Pollefeys, Josef
Sivic, Tomas Pajdla, and Akihiko Torii. Inloc: Indoor visual localization with dense matching
and view synthesis. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, pages 7199–7209, 2018.

[63] Abhinav Valada, Noha Radwan, and Wolfram Burgard. Deep auxiliary learning for visual
localization and odometry. In 2018 IEEE international conference on robotics and automation
(ICRA), pages 6939–6946. IEEE, 2018.

[64] Florian Walch, Caner Hazirbas, Laura Leal-Taixe, Torsten Sattler, Sebastian Hilsenbeck, and
Daniel Cremers. Image-based localization using lstms for structured feature correlation. In
Proceedings of the IEEE International Conference on Computer Vision, pages 627–637, 2017.

34

[65] Fei Xue, Xin Wang, Zike Yan, Qiuyuan Wang, Junqiu Wang, and Hongbin Zha. Local supports
global: Deep camera relocalization with sequence enhancement. In Proceedings of the IEEE
International Conference on Computer Vision, pages 2841–2850, 2019.

[66] Luwei Yang, Ziqian Bai, Chengzhou Tang, Honghua Li, Yasutaka Furukawa, and Ping Tan.
Sanet: Scene agnostic network for camera localization. In Proceedings of the IEEE Interna-
tional Conference on Computer Vision, pages 42–51, 2019.

[67] Yao Yao, Zixin Luo, Shiwei Li, Tian Fang, and Long Quan. Mvsnet: Depth inference for
unstructured multi-view stereo. In Proceedings of the European Conference on Computer
Vision (ECCV), pages 767–783, 2018.

[68] Kwang Moo Yi, Eduard Trulls, Yuki Ono, Vincent Lepetit, Mathieu Salzmann, and Pascal Fua.
Learning to find good correspondences. In Proceedings of the IEEE conference on computer
vision and pattern recognition, pages 2666–2674, 2018.

[69] Jure Žbontar and Yann LeCun. Stereo matching by training a convolutional neural network to
compare image patches. The journal of machine learning research, 17(1):2287–2318, 2016.

[70] Linguang Zhang and Szymon Rusinkiewicz. Learning to detect features in texture images.
In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pages
6325–6333, 2018.

[71] Hao Zhou, Torsten Sattler, and David W Jacobs. Evaluating local features for day-night match-
ing. In European Conference on Computer Vision, pages 724–736. Springer, 2016.

[72] Lei Zhou, Zixin Luo, Tianwei Shen, Jiahui Zhang, Mingmin Zhen, Yao Yao, Tian Fang, and
Long Quan. Kfnet: Learning temporal camera relocalization using kalman filtering. In Pro-
ceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages
4919–4928, 2020.

35

	Declaration of Committee
	Abstract
	Acknowledgements
	Table of Contents
	List of Tables
	List of Figures
	Introduction
	Preliminary
	Camera Localization Preliminary
	Related Work
	Regression-based localization
	Structure-based localization
	Video Localization
	Cost Volume

	Methods
	Overview
	Feature and Coordinate Pyramid
	Dense Scene Matching
	Cost Volume Construction
	Coordinate Regression
	Confidence Estimation

	Archtecture of Netcoords and Netconf.
	Training loss.

	Experiments
	Experiment Settings
	Localization Accuracy
	Scene coordinate accuracy
	Efficiency
	Ablation Study

	Conclusion
	Discussions
	Conclusion

	Bibliography

