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Abstract

Unlike traditional graph processing applications, graph-based learning algorithms like Belief
Propagation and Multimodal Learning require complex data such as feature vectors and
matrices residing on graph vertices and edges, and employ vector/matrix operations on this
data. GPU-based high-performance graph processing frameworks utilize clever techniques
to mitigate the effect of random global memory accesses arising from irregular graph
structure, and also perform efficient load balancing. However, these frameworks are oblivious
to algorithm-specific details like the nature of operations involved and the vertex/edge
property types used, hence generating unnecessary random global memory accesses. Moreover,
traditional graph processing frameworks constrain the user to follow a strict sequence of
operations, ignoring the nuances of different control flows in graph-based learning algorithms.

In this thesis, we present Onyx, a feature-aware framework for graph-based learning
algorithms on the GPU. Onyx employs a feature-aware processing model where each
vertex property is collectively computed by a group of threads. This allows accesses to be
coalesced into fewer global memory transactions, improving memory utilization. Onyx also
incorporates dynamic vertex activation to perform sparse computations as vertex properties
stabilize over time. The user expresses computations in the form of parallel operations on
vertex and edge features, providing flexibility for custom control flows that support different
kinds of graph-based learning algorithms.

To extract high performance, Onyx automatically folds multiple parallel vertex- and edge-
feature operations into a single kernel at compile-time. This eliminates the overhead of
repeated kernel launches, and permits the use of low-latency shared memory as intermediate
storage. We utilize GPU instructions to efficiently perform collaborative operations across
vertex and edge features such as normalization, reduction and feature-level change detection.
Finally, as feature-aware processing reduces the computation done per thread, we organized
the critical path in Onyx as pipelined steps to minimize expensive dependency stalls.

Our evaluation shows Onyx’s feature-aware processing decreases atomic transactions while
increasing global load efficiency. Together with change-driven computation this results in up
to 20.3× speedup. We also implemented the graph-based learning algorithms on state-of-
the-art GPU graph frameworks, and observe that Onyx outperforms them by up to 51.2×.
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Chapter 1

Introduction

There has been increasing interest in efficient graph analytics, as well as GPGPU computing.
GPUs are capable of a higher instruction throughput and memory bandwidth than a similarly-
priced CPU [2]. Therefore, several high-performance graph processing frameworks [34, 22,
14, 10, 11, 5, 20, 32, 8, 26, 35] employ the GPU’s massively parallel capabilities to accelerate
graph computations. These solutions develop clever techniques to reduce the impact of
the graph structure irregularity on the symmetric GPU architecture for traditional graph
computations like PageRank, shortest paths, connected components, etc. Recent works
like [27] point out several interesting graph-based computations including graph-based
learning algorithms like Graphical Model Inference [9] and Collaborative Filtering [37], that
present new challenges due to the complexities involved.

Similar to traditional graph computations, graph-based learning algorithms like Belief
Propagation [9], Alternating Least Squares [37] and Multi-Manifold Ranking [33] compute
vertex properties iteratively in super-steps, and in each super-step, vertex properties are
computed based on the values of neighboring vertices and adjacent edges. However, these
algorithms require complex data residing on graph vertices and edges, and perform complex
operations during each super-step which are uncommon in traditional graph processing
algorithms. For instance, Alternating Least Squares performs matrix inverse and matrix-
vector operations on vertices and edges, and Multi-Manifold Ranking [33] performs Hadamard
inverse and Hadamard vector product. Existing GPU-based graph processing systems like
[10, 28, 22, 34, 14] do not capture the nuances in graph-based learning algorithms, and hence
are limited in terms of the performance they deliver and the programmability they offer.

Performance

Existing graph processing frameworks are designed to be oblivious to the algorithm-specific
details like the nature of operations involved and the type of properties on vertices and
edges. As a result, GPU threads in such frameworks end up computing each vertex or
edge value in isolation. While this design delivers efficiency in traditional graph algorithms,
it does not take advantage of the GPU’s processing capabilities for complex operations.
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Therefore, these frameworks, when used for graph-based learning algorithms, increase the
GPU global memory transactions (both, reads and atomic writes) and underutilize global
memory bandwidth. While graph processing typically involves a high number of random
memory accesses due to the irregular graph structure (well known in prior research), such
additional inefficiencies resulting from global memory transactions further exacerbates the
overall performance for graph-based learning algorithms.

Programmability

Existing graph processing frameworks provide strict programming models that restrict the
number of vertex and edge operations that can be invoked in each iteration, along with
the order in which these operations get invoked. Graph-based learning algorithms, however,
often have multiple sub-operations to be performed on vertices and edges, hence demanding
custom algorithm-specific control flow for operations over vertices and edges. Moreover,
expressing operations in a change-driven manner to leverage incremental processing further
adds its own complexity. Thus, shoehorning graph-based learning algorithms into existing
frameworks requires carefully considering each operation in the algorithm, which makes
the job of expressing complex algorithms more difficult, and sometimes even impossible for
certain cases.

1.1 Contributions

In this thesis, we develop Onyx, a feature-aware graph processing system. We expose the
feature information from vertex and edge properties to the underlying runtime, which allows
Onyx to treat features as first class elements across all of its modules.

1.1.1 Efficient Feature-Aware Processing

Onyx employs the compact CSR (Compressed Sparse Row) representation [25] to maximize
graph size that can reside in the GPU global memory, and uses AOS (Array of Structures)
format for vertex and edge properties to enable easier programmability. With this layout,
Onyx maps threads to computations in a feature-aware manner. Specifically, each vertex (and
edge) property is collectively computed using a group of threads such that consecutive threads
operate on consecutive features of vertex (and edge) properties; since these features reside
next to each other in global memory, their accesses get coalesced leading to efficient global
memory bandwidth utilization. For efficient processing, the runtime eliminates redundant
computations by incorporating vertex activation, where vertices and their outgoing edges get
skipped if their property values do not change. To minimize warp divergence arising from
the dynamically changing set of active vertices and edges, Onyx performs dynamic load
balancing in feature-aware manner.
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1.1.2 Flexible Feature-Guided Programming

Onyx employs a flexible programming model that does not enforce a strict control flow, and
computations are expressed as parallel operations over features of vertex or edge properties;
we call these operations Feature-Guided Computations. Programmers express their custom
control flow in the form of ordering over the feature-guided computations. This allows writing
different kinds of complex algorithms in form of the (mathematical) sub-steps involved,
making it intuitive for domain experts. Furthermore, by focusing on individual sub-steps
one at time, each operation can be easily expressed in change-driven fashion where changes
in incoming feature values are used to directly change the outgoing feature values, hence
enabling incremental processing.

1.1.3 Retaining High Performance

Developing feature-aware processing along with flexible feature-guided programming (as
described above) poses several challenges from the performance standpoint, which we
overcome using the following key techniques.

Kernel Folding to Minimize Operation Overheads

As complex algorithms get expressed in form of multiple sub-steps, the overheads from
repeatedly rebalancing the same set of active vertex and edge properties can slow down the
overall processing. To avoid this, we develop kernel folding, a technique that automatically
combines (or folds) multiple sub-steps together (at compile time) so that their execution
does not lead to repeated iteration and load balancing work. The folded kernels also allow
utilizing shared memory across multiple operations to achieve higher efficiency, which would
not be possible with separate kernel executions.

Efficient Feature-Aware Collaborative Operations

Since our algorithms rely on complex operations, we develop feature-aware collaborative
operations in Onyx (e.g., normalization, reduction, feature-level change detection, stan-
dard matrix/vector operations), where a group of threads operating on different features
of the properties cooperatively perform the operation. Our collaborative operations use
GPU hardware instructions (e.g., ballot and shfl) and efficient strategies like tree-based
reduction.

Pipelining for Instruction-Level Parallelism (ILP)

Decomposing the edge computations at the feature-level leads to dependency stalls since
the edge function does not provide sufficient instruction-level parallelism (ILP) to hide the
memory and execution latencies incurred during load balancing. We increase the ILP by
unrolling one of our key loops and by dividing the sub-operations in pipelined steps.
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1.2 Results

Our evaluation shows that Onyx’s feature-aware processing decreases the number of atomic
transactions and simultaneously increases global load efficiency; together with change-driven
computation, this results in up to 20.3× faster execution. Furthermore, we implemented our
graph-based learning algorithms on state-of-the-art graph processing frameworks including
Tigr [22], SIMD-X [14] and Gunrock [34], and observed that Onyx outperforms them by up
to 17×, 6.8× and 51.2× respectively.

1.3 Outline

This dissertation is organized as follows. Chapter 2 gives an overview of graph-based
learning algorithms and motivates the need for feature-aware design. Chapter 3 discusses
existing works on GPU-based graph processing. This is followed by a description of Onyx’s
programming model in Chapter 4 and processing model in Chapter 5 together with the
optimizations. Chapter 6 describes Onyx’s method of folding kernels. Finally, Chapter 7
presents the evaluation of Onyx to study its performance, and Chapter 8 concludes this
dissertation.
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Chapter 2

Background and Motivation

In this chapter, we will first briefly discuss GPU architecture and the CUDA programming
model, and then describe the graph-based learning algorithms that we consider in this work.
Finally, we will motivate the need for an efficient solution to handle graph-based learning
algorithms by observing the limitations of existing graph frameworks.

2.1 GPU Architecture and Programming Model

We provide an overview of the GPU architecture and the CUDA programming model.

2.1.1 GPU Architecture

The GPU comprises an array of streaming multiprocessors (SMs) that can execute many
threads concurrently depending on the hardware capabilities of the GPU, with 2048 being a
typical limit. The SM uses the SIMT (Single Instruction Multiple Threads) model to handle
this large number of threads. In this model, the SM manages and schedules threads in groups
of 32 called warps that execute the same instruction in lock-step. Each thread of a warp is
called a lane. The warp scheduler selects a warp to execute from those that are ready to run.
As soon as an executing warp is blocked on memory, execution or some other dependency
it is scheduled out and another is scheduled in. Branching is performed by executing each
path while deactivating threads not on that path. This results in inactive threads uselessly
participating in warp execution. Thus, thread divergence – having threads of a warp take
divergent paths – reduces efficiency.

2.1.2 CUDA Programming Model

The CUDA programming model [2] is heterogeneous and allows a program running on a
host (CPU) to launch multi-threaded code on a device (GPU). In this model, the host and
device have separate memory spaces. This requires the use of APIs that enable the host to
manage memory allocations in the device space and data transfer.
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CUDA extends C++ with kernels, i.e., functions that are executed by many threads in
parallel instead of just once. The CUDA threads that execute kernels are organized into
thread blocks, each with an identifier of upto 3 dimensions. Thus, a kernel is launched as a
grid of threads in 1, 2 or 3 dimensions. A thread can be identified within its block with a
local identifier and within the grid by its global identifier that is a combination of the block
identifier and its local identifier. This allows natural indexing into various kinds of data,
including areas and volumes. All threads of a block are executed on the same processor core
and share the limited resources of that core. Threads of the same block can synchronize
between themselves and share memory.

When a kernel is invoked by a CUDA program on the host, the blocks of the grid are
distributed to SMs that have available capacity. Each thread block is executed on a single
SM and all its threads share the hardware resources of that SM. These resources include
registers partitioned between the warps and shared memory that is partitioned between
blocks. An SM may execute multiple thread blocks concurrently, subject to SM resources.
As blocks terminate and free up resources, other blocks can be launched on the SMs that
now have resources available.

2.1.3 Memory Model

CUDA threads are permitted to access a hierarchy of memory. First, each thread has its
own local memory that is private. Next, each thread block provides shared memory that can
be accessed by all the threads in the block and has the same lifetime as the block. Global
memory can be accessed by all threads.

The GPU memory model maps naturally to the CUDA memory hierarchy. Global memory
is present on the device, and can be accessed by all threads. The host program manages
allocations in this memory space, and can copy data into and out of this space. On-chip
memory has higher bandwidth and lower access times than global memory, making it a
natural fit for scratchpad memory. This memory is shared by the threads in a block and is
referred to as shared memory. Thread-local memory is implemented in GPU registers. Apart
from these read-write memory areas, the GPU provides read-only constant memory that
is served from the constant cache. Hits in this cache are served at a throughput similar to
register accesses, while cache misses are serviced at a throughput of device memory. This
memory is used to pass kernel arguments and can also be used for limited read-only data.
Global memory is of the order of gigabytes, while shared memory and constant memory are
much more limited. Shared memory varies from 48-100KB per SM depending on the GPU
model, and constant memory is fixed at 64KB for the entire device respectively.

Global memory is accessed at a 32-byte granularity that corresponds to the GPU L2 cache
line size. The GPU hardware coalesces global memory accesses by warp threads into memory
transactions of the cache line size. Therefore, memory accesses that are correctly aligned and
fully coalesced result in maximum efficiency since they use a minimum number of transactions.
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If, however, scattered memory locations are accessed, the number of transactions increases
leading to a lower effective bandwidth.

Atomic instructions are useful in serializing operations across threads to provide con-
sistent results. The GPU provides instructions to perform atomic addition (atomicAdd()),
subtraction (atomicSub()), compare-and-swap (atomicCAS()) and boolean operations
(atomicAnd(), atomicOr(), atomicXor()).

CUDA provides several annotations to enable the programmer to tailor the application
to the GPU architecture. A function marked with the __global__ keyword is compiled
into a kernel that can be launched with multiple threads on the GPU. __device__ and
__host__ functions are compiled into device (GPU) and host (CPU) code respectively.
Variables annotated with the __shared__ keyword are allocated in shared memory, while
the __constant__ keyword specifies that a variable is to be allocated in constant memory.

2.1.4 Profiler Metrics

The GPU vendor provides profiling tools to guide programmers in obtaining high performance.
The nvprof tool is used to collect metrics from the GPU to provide insight into the behavior
and performance of a CUDA application. The global load efficiency metric is the ratio of
requested global memory load throughput to required global memory load throughput
expressed as a percentage [2]. A global load efficiency of 100% means that the required load
throughput is the same as the requested throughput, i.e., only requested bytes are loaded
from global memory. The atomic transactions metric is a count of the number of memory
transactions generated by atomic operations. Atomic operations, too, follow coalescing rules
for global memory. Therefore, a coalesced access pattern during atomic operations results in
fewer atomic transactions performed than a scattered access pattern. Hence this metric can
be used as a measure for memory coalescing during atomic writes.

2.1.5 Warp-Centric Programming

The GPU’s SIMT architecture leads naturally to the warp-centric programming paradigm [7]
that uses the warp as a cooperative unit. This is further promoted by the use of efficient
hardware instructions that allow information sharing between warp threads. The __shfl()

hardware instruction and its variants allow a thread to read a register from another thread
in the same warp. The __ballot() instruction provides a bitmask of a boolean condition for
each thread in the warp while the __any() instruction returns true if a boolean condition is
true for any thread of the warp. The caveat here is that threads can only read data from
other active threads in the warp participating in the exchange.

The massive number of GPU threads can be leveraged to compute aggregates, for
instance, a sum, using a tree-based reduction. Instead of one thread reducing the inputs to
a single value, a number of threads cooperatively reduce the value using a tree structure.
The data can be exchanged using the __shfl() instructions described above (for intra-warp
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reduction), or using shared memory or global memory (for reduction using more threads).
This method reduces the time of the aggregation operations from O(n) to O(log n), and has
been used in many works [11, 14, 34] to improve performance.

2.2 Graph-based Learning: Details & Observations

While there has been plenty of research in developing efficient support for graph processing
applications [7, 5, 10, 28, 4, 11, 22, 34, 14, 20, 21], none of them focus on the graph-
based learning algorithms that we consider in this work. Hence we briefly discuss the core
computation in graph-based learning algorithms, and contrast them with the traditional
graph processing applications.

2.2.1 Definitions & Notations

Graph-based learning algorithms primarily compute values residing on vertices, and in
some cases also residing on edges. We call these vertex properties and edge properties, and
refer to their values as property values. For example, in PageRank algorithm (a standard
graph processing benchmark) shown in Figure 2.1f, pr(v) is the property of vertex v while
pri(v) is the value of pr property for vertex v at iteration i. Most of the properties in our
algorithms are vector types, and each element within the vector is called a feature. Apart
from vertex/edge properties, there may be constants for each edge or vertex (e.g., edge
weight, scaling factor, etc.) whose values do not change throughout the execution; we call
them weights and we use w(u, v) to denote the weight of edge u to v. We use N−(v) and
N+(v) to indicate the set of incoming and outgoing neighbors of vertex v. Throughout the
paper, we use k to denote the number of features per vertex or edge property.

2.2.2 Graph-based Learning Algorithms

Figure 2.1 shows the key computation in several graph-based learning algorithms: Belief
Propagation [9] (BP), Collaborative Filtering using Alternating Least Squares [37] (ALS),
Multimodal Learning [30] (MML), Label Propagation [38] (LP), Multi-Manifold Ranking [33]
(MMR). We also show PageRank [23] (PR) in Figure 2.1f which is a standard graph processing
benchmark in order to contrast the different complexities involved in graph-based learning
algorithms.

The algorithms progress iteratively in Bulk Synchronous Parallel (BSP) [31] manner,
where property values in a given iteration get computed only after all the property values
for the previous iteration get fully computed. Hence, in each iteration (superscripted with
i), vertex property values (marked with red squiggles) get computed based on property
values from previous iteration (superscripted with i − 1) residing on the neighboring vertices.
Operations like

∑
and © perform aggregation of property values coming from neighboring

vertices along with edge weights, and hence, they translate into parallel edge operations
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mi
uv =

(
bi−1(u) ◦ (mi−1

vu )◦−1
)
·Ψ(u, v)

aggr(v) = ©
u∈N−(v)

mi
uv

bi(v)
:::

= normalize(φ(v) ◦ aggr(v))

(a) Belief Propagation (BP)

sc(v) =
∑

u∈N−(v)

(
w(u, v) · lf i−1(u)

)
IC(v) =

∑
u∈N−(v)

(
lf i−1(u)

T
· lf i−1(u)

)
lf i(v)
:::

=
(
IC(v) + λI

)−1
· sc(v)

(b) Alternating Least Squares (ALS)

waggr(v) =
∑

u∈N−(v)

w(u, v) ◦mmi−1(u)

haggr(v) =
∑

u∈N−(v)

w(u, v))◦−1

mmi(v)
:::::

= α.waggr(v) ◦ (haggr(v) + (1− α).mm0(v)

(c) Multi-Manifold Ranking (MMR)

∀p ≤ P :

aggrp(v) =
∑

u∈N−(v)

(
wp(u, v) · lpi−1(u)p

)
n_aggrp(v) = normalize(aggrp)

probp(v) = α · n_aggrp + (1− α) · lpi−1(v)p

lpi(v)p
::::

= normalize(probp(v))

(d) Label Propagation (LP)

AGGR(v) =
∑

u∈N−(v)

(w(u, v)
T
·mmodei−1(u))

mmodei(v)
:::::::

= α ·AGGR(v) + (1− α� 1).mmode0(v)

(e) Multimodal Learning (MML)

aggr(v) =
∑

u∈N−(v)

pri−1(u)
|N+(u)|

pri(v)
:::

=
1− α
|V |

+ α · aggr(v)

(f) PageRank (PR)

Figure 2.1: Core computation in Graph-based Learning Algorithms (a-e), and in PageRank
(f) for comparison (shown in mathematical form for brevity). Vector types are represented
using an overline (e.g., sc(v)), while matrices are represented in uppercase (e.g., IC). The
red squiggly underlines indicate the vertex properties to be computed. Operators �, ◦ and
◦−1 indicate dot product of two row vectors, Hadamard (element-wise) product of two

vectors/matrices, and Hadamard (element-wise) inverse of a vector.

(similar to ‘Advance’ in Gunrock [34], a popular GPU-based graph processing framework).
Other operations like addition, multiplication, transpose and inverse that are computed on
intermediate property values for vertices translate into parallel vertex operations (similar to
‘Compute’ in Gunrock).

Key Observations

We observe that graph-based learning algorithms involve several important details that are
absent in traditional graph analytics applications. These details can be categorized into two
main classes, as described below.

• Complex Data Types: The data types of vertex/edge properties and weights are often
complex. For example, vertex properties are of vector types, and edge weights are a mix
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Figure 2.2: Example of an execution on traditional graph processing system, where each
vertex property has 4 features (shown in different colors). Since traditional systems remain
oblivious to the underlying vertex/edge property types, they generate spatially separated

memory accesses resulting in an increase in memory transactions.

of scalars (ALS and LP), vector types (MML and MMR), and also matrix types (BP).
In comparison, vertex properties in PageRank are scalars, and edges are unweighted 1.

• Complex Computations: The operations involved in these algorithms are complex as
well; in fact, the computations often include multiple sub-steps, each of which are
non-trivial. For example, they use operations like vector multiplication (BP), matrix
inverse and matrix-vector operations (ALS), and Hadamard (element-wise) inverse
(MMR). On the other hand, PageRank is computed using simple operations like scalar
addition and multiplication.

2.3 Limitations of Existing Solutions

None of the existing graph processing solutions efficiently handle complex graph-based
learning algorithms mainly because they remain oblivious to the underlying vertex/edge
property types and the nature of computation involved. Furthermore, they often use strict
programming models with fixed control flow that disallows easily expressing complex graph-
based learning algorithms. Next, we discuss both of these problems in detail.

1Other traditional graph processing benchmarks like shortest paths have integer scalars as edge weights.
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Figure 2.3: Performance of MMR on Tigr [22] and SIMD-X [14] as the
number of features increase. SIMD-X uses pull mode which avoids atomic

transactions, while Tigr’s push mode incurs atomic transactions.

2.3.1 Performance

Since our graph-based learning algorithms primarily operate on non-scalar properties contain-
ing multiple features, performing vertex and edge computations by treating their properties
as a single black box unit leads to inefficient usage of GPU global memory. As shown in
Figure 2.2, when threads operate on consecutive edge or vertex properties, they process the
individual features one-by-one. This causes consecutive threads to generate memory accesses
that are spatially separated by k features. Since global memory read/write transactions
are performed in 32-byte blocks, this spatial separation results in an increase in memory
transactions that are scattered in different locations, resulting in lower effective memory
bandwidth. To verify this behavior, we implemented and profiled the MMR algorithm
(Figure 2.1c) on Tigr [22] and SIMD-X [14], two recent graph processing systems using
the Hollywood2009 (HW) and SocLiveJournal (LJ) graph datasets (details available in
Table 7.1). The results for both Tigr and SIMD-X, Figure 2.3 shows a decline in global load
efficiency as properties become large, which means the amount of non-coalesced memory
accesses increases as number of features increase. Furthermore, Tigr uses a push-based model
with atomic operations which are expensive (SIMD-X avoids atomic operations using pull
mode); as shown in Figure 2.3, the atomic transactions increase quickly with features per
property.

Non-coalesced memory accesses decrease global memory throughput and performance [2].
While graph processing typically involves high number of random memory accesses due
to the irregular graph structure (well known in prior research), such increase in inefficient
memory accesses (both, reads and atomic writes as shown above) further exacerbates the
overall performance of our graph-based learning algorithms.
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Terminology Explanation
Vertex/Edge Property Value residing on a vertex/edge

Feature An element of the vector property on each vertex/edge
Vertex Activation Selectively processing vertices and/or their adjacent edges

Push Computation Mode Vertex values are propagated over outgoing edges from a vertex
(usually involves atomic writes to destination vertices)

Pull Computation Mode Vertex values are propagated over incoming edges to a vertex
(usually involves reading from source vertices)

Incremental Computation Computing values by incrementally adjusting them based on new values,
instead of recomputing the whole value

Change-Driven Processing Propagating changes in values instead of entire values,
and incrementally computing using the changes

Bulk Synchronous
Parallel (BSP) model Processing model that computes property values in iterations

Thread Block A cooperative group of threads executing on the same GPU processor core
Warp A group of 32 threads executing in lock-step on the GPU

Global Memory On-device GPU memory accessible by all GPU threads
Shared Memory On-chip GPU high-bandwidth memory accessible by block threads

Memory Transactions Memory operations to read/write memory into/from GPU L2 cache
Memory Coalescing Conversion of simultaneous warp thread memory accesses into multiple

memory transactions by the GPU
Kernel A function processed by threads in parallel on the GPU

Kernel Fusion Combining multiple kernels into a single kernel

Table 2.1: A summary of terminologies used in this thesis.

2.3.2 Programmability

Since our graph-based learning algorithms involve multiple complex operations, the strict
nature of existing programming models makes it difficult to express these algorithms
efficiently.

To understand this issue, consider the ALS algorithm shown in Figure 2.1b. Each iteration
involves two different aggregations across incoming edges of a vertex (sc and IC), and then a
transformation to compute the final vertex property (lf i). This is different from programming
models used in traditional graph graph processing systems where each iteration involves
a single operation over edges and a single operation over vertices. Furthermore, different
algorithms perform different number of operations in each iteration: for example contrary to
ALS, the LP algorithm shown in Figure 2.1d performs only a single aggregation over the
edges, and then performs three transformation steps to compute the final vertex property
(lpi). Forcing all different algorithms to follow a strict programming model requires carefully
examining each algorithm separately, and possibly rewriting certain operations to fit in the
available functions/ callbacks. This makes expressing complex graph algorithms difficult,
especially since the sub-operations involved (e.g., matrix inverse, normalization, etc.) are
themselves not trivial.

Moreover, the strict programming model hinders development of efficient programs
that could result in faster processing. For example, incremental processing is a popular
technique to optimize graph-based computations, which is achieved by propagating changes

12



in property value across the edges, and updating the property values incrementally using
the propagated changes [29, 19, 17, 16]. Such incremental processing requires expressing
computations in change-driven fashion, which is not an easy task for complex algorithms like
the ones considered in this work. A strict programming model only increases the difficulty
to express such incremental computations.

The above limitations justify the need for a better design that can efficiently handle the
nuances of graph-based learning algorithms.

2.4 Summary of Terminologies

Table 2.1 gives a summary of graph processing and GPU terminologies we use in this thesis
for easy reference.
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Chapter 3

Related Work

Several solutions have been proposed to efficiently process irregular graph computations on
GPUs.

3.1 Graph Processing Systems

These works focus on traditional graph analytics benchmarks (e.g., PageRank, shortest paths,
etc.), and address several important issues like irregular (non-coalesced) memory accesses,
load imbalances, underutilization, kernel launch overheads, and many others. However, none
of these works focus on the graph-based learning algorithms that we consider in our work,
and hence, their processing models remain oblivious to the feature-level information for such
algorithms. Moreover, several works utilize fixed programming models tailored for graph
analytics benchmarks, making it difficult to express different control flows as required by
our graph-based learning. Below we summarize the key contributions of these works.

[7] proposed the virtual warp programming method that balanced edge work across
groups of warp threads (called virtual warps). CuSha [10] uses shards to represent the
edges, so that edges in the shard get processed cooperatively by block threads which enables
coalesced memory accesses. KiTES [11] uses the CSR representation [25] where warps
cooperatively process edges incident on the vertices, and load balancing is achieved using a
dynamic thread assignment strategy. Gunrock [34] proposes an Advance-Filter-Compute
abstraction for graph analytics workloads. It implements scheduling strategies at CTA-, warp-
and thread-level to load balancing, workload management and memory efficiency. Tigr [22]
develops node-splitting transformations to reduce graph irregularity for load balancing, and
enables coalesced memory accesses for its edge array. Totem [5] proposes a hybrid CPU-GPU
graph processing engine, and explores partitioning strategies to allocate workloads matching
to the strengths of the processing elements they get allocated to. Mapgraph [4] dynamically
chooses among different scheduling strategies (CTA-, warp- and thread-level) depending on
the frontier size and the size of the adjacency lists for vertices in the frontier. SIMD-X [14]
utilizes an Active-Compute-Combine programming model, and develops different filtering
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mechanisms to assemble the frontiers (active worklists). It also uses a push-pull based kernel
fusion technique to reduce kernel call overheads. SEP-graph [32] develops a hybrid execution
mode to switch between synchronous v/s asynchronous, push v/s pull and data-driven
v/s topology-driven processing, and uses CTA scheduling, warp cooperation instructions,
and priority scheduling for algorithms. GSwitch [20] provides a Filter-Expand processing
model and uses a machine learning based algorithmic auto-tuner to dynamically choose the
processing mode suitable for the graph algorithm.

Several works enable out of GPU memory and multi-GPU graph processing. Medusa [36]
is a multi-GPU graph framework that uses the Edge-Message-Vertex processing model
develops techniques including a cost model guided to reduce cross-GPU data transfer and
overlapping computation with data transfer to hide transfer latencies. Merrill et al. [21]
proposes a degree-dependent parallelization strategy with thread+warp+CTA scheduling.
Lux [8] is a distributed multi-GPU system that exploits locality and aggregates memory
bandwidth on GPUs. It provides push and pull execution modes, and proposes a dynamic
graph repartitioning strategy to enable well-balanced workload distribution across GPUs. It
provides an implementation of SGD algorithm that uses CTAs to load vertex features into
shared memory, but the burden of extracting coalesced memory accesses using feature-level
information is left on the user. Furthermore, it uses a single thread to process all the
features of a given vertex and so loses the opportunity to cooperatively compute vector
and matrix operations. GTS [12] maintains updateable attribute data in GPU memory and
loads read-only graph topology data from the disk. It uses a slotted page format to handle
differing vertex degrees, and overlaps computation and data transfer. GraphReduce [28]
uses frontiers to transfer graph subsets containing active vertices/edges to the GPU, and
provides a gather-apply-scatter programming abstraction. Graphie [6] proposes renaming
algorithms for efficient shared memory usage and tracking partitions that should be copied
to the GPU. Garaph [15] uses a replication scheme to handle differing vertex degrees, and
utilizes a pull model for the GPU and a notify-pull model on the CPU. Subway [26] extracts
active subgraphs from the CSR list to reduce the amount of graph data to be transferred
to GPU. DiGraph [35] proposes a path-based asynchronous execution model that enables
faster state propagation and a dependency-aware path dispatching on multi-GPUs.
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Chapter 4

Programming Model

Inspired by the programming flexibility in Ligra [29], Onyx allows expressing graph com-
putations as parallel operations over edges and vertices. Onyx also provides advanced
programming support including: (a) an API to enable the automatic kernel folding (dis-
cussed later in Chapter 6); and, (b) a rich set of feature-aware collaborative implementations
for standard operations like normalization, feature-level change detection, matrix/vector
operations, etc. (discussed later in Chapter 5).

Figure 4.1 shows Onyx’s key edge-parallel edgemap() and vertex-parallel vertexmap()

API, and Figure 4.2 shows the ALS algorithm (from Figure 2.1b) expressed in Onyx. The
vertexmap and edgemap (lines 43-45) invoke the user-defined functions on the features of
‘active’ vertex and edge properties respectively. The number of features k is captured statically
via template argument to vertexmap and edgemap. The active vertices are identified using
the active bit-vector whereas active edges are identified as outgoing edges of vertices
marked in the active bit-vector. Both functions also return the set of vertices whose values
get changed by marking them in the bit-vector (2nd argument on line 45). This allows
dynamically operating on the changing values by chaining edgemaps and vertexmaps.

Since Onyx does not enforce a strict control flow across vertexmaps and edgemaps,
programmers can easily construct custom control flows for different algorithms. As shown
in lines 43-45, the different steps of ALS are expressed as separate parallel operations over

1 <int k, typename udata>
2 void vertexmap(bitvec∗ active_in, bitvec∗ active_out,

graph<udata>∗ g,
bool vfunc(uint, uint, udata∗));

3 <int k, typename udata>
4 void edgemap(bitvec∗ active_in, bitvec∗ active_out,

graph<udata>∗ g,
bool efunc(uint, uint, uint, uint, udata∗));

Figure 4.1: Key APIs of Onyx.
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5 template<int k>
6 __device__ bool compute_ic(uint fIdx, uint u, uint v,

uint edgeIdx, udata∗ d) {
7 __shared__ float m1[blockDim ∗ k];
8 __shared__ float m2[blockDim ∗ k];
9 float ∗my_lf_prev = d−>lf_prev[u];

10 float ∗my_lf_curr = d−>lf_curr[u];
11 float ∗my_M1 = &m1[(blockTID − fIdx) ∗ k];
12 float ∗my_M2 = &m2[(blockTID − fIdx) ∗ k];
13 vec_trans_mul<k>(fIdx, my_M1, my_lf_prev, my_lf_prev);
14 vec_trans_mul<k>(fIdx, my_M2, my_lf_curr, my_lf_curr);
15 float ∗my_IC = &d−>IC[v];
16 for (int i = 0; i < k; i++) {
17 atomicAdd(&my_IC[i∗k + fIdx],

my_M2[i∗k + fIdx] − my_M1[i∗k + fIdx]);
18 }
19 return true;
20 }

22 template<int k>
23 __device__ bool compute_sc(uint fIdx, uint u, uint v,

uint edgeIdx, udata∗ d) {
24 float rating = d−>rating[edgeIdx];
25 float lf_change = d−>lf_curr[u][fIdx] − d−>lf_prev[u][fIdx];
26 atomicAdd(&mySC[fIdx], rating ∗ lf_change);
27 }

29 template<int k>
30 __device__ bool compute_lf(uint fIdx, uint v, udata∗ d) {
31 /∗ Skipped: Compute my_lf_new[fIdx] using IC & sc ∗/
32 d−>lf_prev[v][fIdx] = d−>lf_curr[v][fIdx];
33 d−>lf_curr[v][fIdx] = my_lf_new[fIdx];
34 bool my_updated = (fabs(d−>lf_curr[v][fIdx] −

d−>lf_prev[v][fIdx]) > EPSILON);
35 return any_feature_updated<k>(fIdx, my_updated);
36 }

38 void main(void) {
39 /∗ Skipped: Load graph data on GPU ∗/
40 bitvec active;
41 initialize(&active, true); // Allocate and fill on GPU
42 do {
43 edgemap<4>(&active, NULL, &cf_data, d_compute_sc);
44 edgemap<4>(&active, NULL, &cf_data, d_compute_ic);
45 vertexmap<4>(NULL, &active, &cf_data, d_compute_lf);
46 sync_device_with_host();
47 } while (!is_converged(active));
48 }

Figure 4.2: ALS algorithm implemented on Onyx. The d_compute_ic, d_compute_lf and
d_compute_sc are lambda wrappers to invoke compute_ic, compute_lf and compute_sc
device functions respectively. Onyx calls are highlighted in color; the orange calls are

Onyx’s feature-aware collaborative operations (discussed in Section 5.3).
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Figure 4.3: Vertex properties laid out in AOS format enabling coalesced memory accesses.

edges and vertices. While the two edge computations (d_compute_ic and d_compute_sc)
with separate edgemap calls appear inefficient at first glance, in Chapter 6 we will see how
they get combined together to retain high performance.

4.1 Expressing Feature-Guided Computations

To express the vertex/edge features to the Onyx runtime, we design a feature-guided
programming model. Here, computations over edges and vertices are expressed at the feature-
level. Hence, the feature values read from and written to the global memory get correctly
addressed based on the properties being computed.

The array of structures (AOS) layout, shown in Figure 4.3, colocates features of each
edge/vertex in a structure that is straightforward for the user. However, SIMT performance
often benefits from rearranging data into separate arrays for each edge/vertex feature,
which is called the structure of arrays (SOA) layout [1]. While SOA layout is recommended
for efficiency, it requires the users to carefully map the computations correctly in order
to enjoy its performance benefits. In comparison, the AOS layout places lesser burden
on programming, and hence Onyx allows the user to use the intuitive AOS layout while
retaining performance.

With the AOS layout, consecutive threads in a warp operate on different features of
the same property (details about how Onyx maps feature-level computations to threads
will be discussed in Chapter 5). The underlying runtime ensures that all the features of a
given property get processed by threads within a single warp; this simplifies programming by
eliminating the burden of enforcing inter-warp coordination. Furthermore, the runtime passes
an index referring to the feature within the property (uint fIdx) as the first argument to
the user-defined edge and vertex functions; this allows easy feature-level addressing. In our
ALS program, compute_ic() reads the relevant information for the current feature (using
fIdx) from IC, lf_prev and lf_curr, and then writes to the vector corresponding to the
feature in the IC matrix (lines 15-18).

4.2 Expressing Change-Driven Computations

Onyx’s vertex activation allows computations to be skipped on certain vertices and their
outgoing edges, based on an input bit vector. This improves performance by not recomputing
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vertices and edges that have already stabilized. However, computing over a dynamically
changing set of edges can end up generating different results on BSP algorithms if performed
naively, especially when the underlying runtime operates in push-mode (i.e., when values
are pushed out by source to destination, instead of being pulled in by destination from the
source). Hence, frameworks like Tigr [22] and SIMD-X [14] disable vertex activations for
such algorithms and compute all graph edges in each iteration.

The key to correctly utilizing vertex activation is to perform change-driven computations
as performed in CPU-based graph systems like [29, 17, 16], which enables capturing the right
subset of edges on which computations get invoked. Hence, we use change-driven programming
in Onyx where values are computed incrementally by incorporating the new changes in
previously computed values. We use a similar strategy as PageRank-Delta from [29] where
the aggregated values (i.e., result of sum, product, etc.) from incoming neighbors are saved on
vertices, and then the changes in incoming neighbors’ property values incrementally adjust
the saved aggregated values. As shown in Figure 4.2, compute_ic incrementally adjusts IC

using changes from lf_prev and lf_curr.
Due to the complexities in our algorithms, the change in value is often computed in two

steps: first computing the old value and new value (e.g., my_M1 and my_M2 on lines 13-14),
and then computing the difference between them using basic operators like add/subtract or
multiply/divide (e.g., atomicAdd on line 17). For certain algorithms like Belief Propagation
(BP shown in Figure 2.1a), the change itself cannot be directly expressed from the old
and new values alone; for such cases, first the old value is incrementally removed from the
aggregation value, and then the new value is incrementally added, resulting in two separate
atomic operations.

After the final feature value gets incrementally recomputed in the vertexmap, it is
compared with the previous value to identify whether any feature value changed significantly
(line 34). Then, our feature-aware collaborative operation any_feature_updated() is used
to identify changes across all features within the vertex property (line 35), based on which
the runtime automatically activates the vertex in the bit-vector.
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Chapter 5

Feature-Guided Processing Model

Onyx performs feature-aware processing which maps threads to vertex and edge features. We
first show how this mapping is achieved efficiently in presence of change-driven computations,
and then discuss the feature-aware collaborative operations provided by Onyx.

5.1 Thread Mapping & Dynamic Load Balancing

Figure 5.1 shows how feature-aware processing happens in edgemap and vertexmap func-
tions.Each vertex and edge property is collectively computed by a group of parallel threads
such that threads with consecutive identifiers operate on contiguous features (as shown in
Figure 5.2). Since features of vertices/edges are stored in an AOS layout, this results in
coalesced memory accesses. For features less than the warp size, this maps naturally to warp
threads that execute in lock-step, and each warp may compute several edges or vertices
simultaneously. For more features, an entire thread block is used to collectively process a
single vertex or edge.

With change-driven computations, only active vertices (i.e., the ones whose properties
change) and their edges are processed. The active_in bit-map is used to identify the active
vertices and prune out computations resulting from unchanged properties. However, naively
disabling computations on inactive edges leads to warp underutilization as some threads
operate on active edges while other threads that get mapped to inactive edges perform no-op.
To eliminate this underutilization, we use a load balancing strategy where computations for
active edges get dynamically mapped to available warp threads, as described next.

5.1.1 Balancing Feature Computations for Edges

We take inspiration from load balancing strategies in works like [11] where threads get
assigned to active edge computations only. Here, the prefix sum of the degrees of the active
vertices assigned to the group (warp or block) are calculated. Then, the edges are distributed
uniformly over the group of threads. Each thread computes the end points of the edge
assigned to it using a binary search into the prefix sum array. Since this strategy does not
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49 template<int k, typename udata>
50 void edgemap(bitvec∗ active_in, bitvec∗ active_out, graph<udata>∗ g, bool

efunc(...)) {
51 /∗ spawn g−>n / warpSize warps on the GPU ∗/
52 for w in 0 to g−>n / warpSize − 1 in parallel {
53 __shared__ volatile uint scan[blockDim];
54 uint vertex = globalTID;
55 v_active = is_active(active_in, vertex);
56 vertexDegree = v_active ? v_degree : 0;
57 /∗ Write the exclusive prefix scan into scan[] array. scan[] becomes an

index to the edge lists of vertices assigned to the warp.∗/
58 numEdges = prefix_scan(scan, w, vertexDegree);
59 for (e = laneId; e < numEdges; e += warpSize) {
60 /∗ Per−edge phase ∗/
61 (edgeIdx,edgeSrc,edgeDest) = binary_search(e,scan,w);
62 /∗ Per−feature phase ∗/
63 for(lane=laneId/k; lane<warpSize; lane+=warpSize/k) {
64 eIdx = __shfl(edgeIdx, lane);
65 u = __shfl(edgeSrc,lane); v= __shfl(edgeDest,lane);
66 int fIdx = laneId % k;
67 ret = efunc(fIdx, u, v, eIdx, g−>data);
68 if (active_out) {
69 uint warpUpdated = __ballot(ret);
70 if (fIdx == 0 && (warpUpdated & kMask(laneId, k)))
71 atomicOr(&active_out[v / warpSize], mask(v));
72 }
73 }
74 }
75 }
76 }

78 template<int k, typename udata>
79 void vertexmap(bitvec∗ active_in, bitvec∗ active_out, graph<udata>∗ g,

bool vfunc(...)) {
80 // spawn g−>n / warpSize warps on GPU
81 for warp w in 0 to g−>n / warpSize − 1 in parallel {
82 uint myVertex = globalTID; bool vUpdated = false;
83 for (i = laneId / k; i < warpSize; i += warpSize / k) {
84 uint v = w ∗ warpSize + i;
85 bool ret = false;
86 if (is_active(active_in, v)) {
87 int fIdx = laneId % k;
88 ret = vfunc(fIdx, v, g−>data);
89 }
90 warpUpdated = __ballot(ret);
91 vUpdated=vUpdated || warpUpdated & vMask(laneId,i,k);
92 }
93 warpUpdated = __ballot(vUpdated);
94 if (active_out && laneId == 0)
95 active_out[myVertex / warpSize] = warpUpdated;
96 }
97 }

Figure 5.1: Feature-aware EdgeMap and VertexMap.
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Figure 5.2: Memory accesses with feature-aware mapping (number of features = 4).
Consecutive threads read and write consecutive feature values of vertices, causing the

accesses to be coalesced. GPU coalesces memory at the quarter-warp level (i.e., 8 threads).

consider vertex properties as collections of features, we develop a feature-aware dynamic
load balancing strategy in Onyx where warp threads get assigned to individual feature
computations corresponding to active vertices and edges.

To map threads on features of active edges, we compute the exclusive prefix sum of the
degree of each active vertex in the warp, and perform a binary search across the prefix sum
array, after which threads iterate over individual features of the assigned edges. The binary
search operation is a tight loop that cannot be pipelined since every iteration depends on
the result of the previous one, which causes significant stalls due to execution dependencies.
To avoid these expensive stalls, our feature-aware load balancing is performed in two phases:
a per-edge phase followed by a per-feature phase.

During the per-edge phase (lines 60-61), the edge index and its corresponding source and
target vertices get computed using a single binary search per edge. Then, in the per-feature
phase (lines 62-73), these edges and their features are re-distributed cooperatively over the
warp: each thread reads the results of the binary search from other threads that are computed
in the per-edge phase (using __shfl() on lines 64-65). By doing so, the expensive binary
search operation is performed only once for each active edge, and the final mapping results
in consecutive threads assigned to consecutive features of each edge. We observed further
stalls due to the binary search and reduced edge computation code, which we describe in
Section 5.2.

If the feature size is greater than the warp size, all threads in a warp compute the features
of the same vertex or edge simultaneously. Therefore, the warp threads do not diverge in
such cases and so we switch off the dynamic thread assignment.
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Figure 5.3: Pipelining the sub-operations in EdgeMap by unrolling the loop. The results of
binary search are computed in the current iteration and used in the next iteration to avoid

stalls.

5.1.2 Balancing Feature Computations for Vertices

Feature-aware load balancing for computations on vertex features is simpler since they are
invoked directly once the active vertex gets identified (i.e., no need to iterate over edges).
As shown in lines 83-92, threads in each warp cooperatively process the features of active
vertices, and each feature computation is directly performed by the thread responsible for it.

5.1.3 Capturing Active Vertices

For change-driven computation, the active_out bit-vector captures the active vertices as
ones whose values get updated. This is determined based on the return value of user functions
efunc and vfunc. Since these functions operate at feature-level, their return values get
aggregated at edge-/vertex-level using the __ballot() hardware instruction (lines 69 and
90). For features greater than the warp size, we require an extra write into shared memory for
the result of each warp. The active vertex is then marked directly in vertexmap(), whereas
it is marked using atomicOr() hardware instruction in the edgemap() (line 71) to avoid
concurrent overwrites from multiple edges.

5.2 Pipelining for Instruction-Level Parallelism (ILP)

By decomposing the edge computations at feature-level, the user-defined edge function
becomes smaller. This leads to dependency stalls since the edge function does not provide
sufficient ILP to hide the memory and execution latencies incurred during load balancing.
Furthermore, due to aliasing constraints, the compiler is also unable to extract ILP by
reordering code across global writes [18].
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(a) Collaborative update detection
(number of features = 4).
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(b) Collaborative tree-based reduction (number
of features = 4).

Figure 5.4: Feature-aware collaborative operations in Onyx.

To increase ILP, we manually unroll the edge loop (lines 59-74), as summarized in
Figure 5.3. We divide the edge loop into steps: the first step performs the binary search to
identify base addresses, and the second step performs the feature-level computation. These
two steps are pipelined such that instructions for the second step (over a given edge) are
interleaved with the instructions for the first step (over the next edge). By doing so, the code
size increases which allows the compiler to improve ILP by optimizing across larger code.

5.3 Feature-Aware Collaborative Operations

Computing features for a given property is not always embarrassingly parallel, and it
often requires reading other features in the same property. For example, the normalization
operation (used in Label Propagation, Figure 2.1d) reads all the feature values in a given
property and scales them to a well-defined range. For such computations, we develop feature-
aware collaborative operations in Onyx, where a group of threads operating on different
features of the same property cooperatively perform the operation.

Our collaborative operations include: normalization, reduction, and any_feature_updated()

(used in Figure 4.2 on line 35) which identifies whether the vertex should be active based on
changes in its features.

These operations are implemented using warp-level hardware instructions like __shfl_up(),
__shfl_down() and __ballot() to retain maximum efficiency (summarized in Figure 5.4c-
d). As described in Section 2.1.1, these hardware instructions allow threads in the same warp
to share data. Thus, threads read feature information from other threads simultaneously
when processing the same vertex/edge. When processing features greater than the warp size,
we require temporary storage in order to exchange data between threads. For this we allocate
a user-defined size of on-chip shared memory, which avoids the more expensive global memory
accesses. In order to increase efficiency, our implementation uses warp-level instructions
wherever possible before synchronizing the entire thread block. The implementations of these
operations serve as a template to develop custom collaborative computations.
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Onyx also provides collaborative feature-aware implementations for traditional opera-
tions like matrix-vector multiplication and matrix inverse that are performed on property
vectors and matrices (useful for various algorithms, as seen in Figure 2.1).
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Chapter 6

Kernel Folding for Performance

While our vertexmap and edgemap abstractions allow easily expressing complex graph
algorithms in form of the sub-steps involved, executing the sub-steps separately one-by-one
would cause repeated work of iterating through and rebalancing the same set of active
vertex and edge properties. We instead automatically combine multiple sub-steps together
into a single kernel. Thus, our form of kernel fusion, that we term kernel folding, retains
easier expressivity of complex computations in the form of sub-steps while still extracting
high performance at runtime. Furthermore, our kernel folding technique allows advanced
programmers to express computations in an optimized manner, that would have not been
possible with separate kernels. We first define the semantics of kernel folding to understand
the properties that are guaranteed by the resulting folded kernels, and then present how
folded kernels get generated at compile time.

6.1 Kernel Folding Semantics

We introduce the foldmap() abstraction to express the operations that must be folded into
a single kernel. foldmap accepts a variable number of device functions, which can be a mix of
vertex functions and edge functions. Figure 6.1 shows two functions from our ALS example
(see Figure 4.2) getting invoked using foldmap.
The execution of folded kernels retains three key properties:

• Ordering: The edge and vertex functions within the folded kernel get executed in the
same order as the order in which the user specifies them in foldmap. This allows easier
development of complex algorithms using step-by-step (or ordered) operations.

• Progress: A given edge or vertex function within the folded kernel gets executed only if
its predecessor function (i.e., the function within the folded kernel immediately before
this function) returns true. Hence, if any function within the folded kernel returns
false on a given vertex or edge, then the rest of the functions in the folded kernel do
not get executed on that vertex or edge. This allows skipping computations that will
not lead to any value changes.
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98 foldmap<4>(&active,NULL,&cf_data,d_compute_sc,d_compute_ic);

Figure 6.1: Kernel folding in ALS program. Line 98 replaces lines 43-44 in Figure 4.2.

• Activation: Execution of the first function in the folded kernel on any given vertex/edge
is determined by the input bit-vector, and the return value of the last function that
gets executed is used to activate vertices in the output bit-vector.

6.1.1 Discussion

Kernel fusion improves performance by merging the vertex function with edge function.
In frameworks such as [34] the fused vertex function is performed in the edge traversal
sequence. This means that the vertex function may be performed multiple times requiring
the user to ensure correctness by duplication-tolerant techniques like atomic instructions.
[14] maintains barriers between the two functions, i.e., the vertex function gets called only
after edge function has executed on all the edges. Onyx on the other hand aims to efficiently
fuse multiple vertex and edge functions without synchronization using expensive barriers.
Since the fused functions are not synchronized, the execution for vertices/edges in different
warps may overlap each other. However, the ordering of these functions are retained at a
single edge and vertex level.

6.2 Generating Folded Kernels

Kernel folding ensures that all the user-defined vertex/edge functions on a given vertex
or edge feature get executed by the same GPU thread. To infer the user-defined function
types (either edge function or vertex function), Onyx generates folded kernels at compile
time (sample shown in Figure 6.2). During compilation, the user-defined functions get
grouped into lists depending on their types (either vertex function or edge function) while
still retaining the ordering specified in foldmap. This happens by repetitively finding the
maximal continuous sub-sequence of same function type and putting those functions in a
separate group. For each group, a call to folded_edgemap() or folded_vertexmap() is
placed inside the folded kernel (lines 103-109) with the functions in that group statically
passed in those calls.

As shown in Figure 6.3, the folded_edgemap function is similar to the edgemap function,
except that it processes a list of edge functions. It statically captures (using variadic
templates) the list of user-defined functions, and invokes them in order. It performs the
feature-aware load balancing only once for the entire group which eliminates the redundant
work, and then it invokes the edge functions one by one on active edges. folded_vertexmap

similarly processes a list of vertex functions.

27



99 template<int k, typename udata>
100 void folded_kernel(bitvec∗ active_in, bitvec∗ active_out, VFunc vfunc1,

VFunc vfunc2, ...EFunc efunc1, EFunc efunc2, ...EFunc efuncp) {
101 // spawn g−>n / warpSize warps on GPU
102 for warp w in 0 to g−>n / warpSize − 1 in parallel {
103 /∗ folded edgemaps and vertexmaps in order ∗/
104 ...
105 folded_vertexmap<k>(active_in,NULL, vfunc1, vfunc2, ...);
106 folded_edgemap<k>(active_in, NULL, efunc1, efunc2, ...);
107 ...
108 /∗ active_out is only updated by last group ∗/
109 folded_edgemap<k>(active_in, active_out, efuncp, ...);
110 }
111 }

Figure 6.2: Folded kernel generated at compile time.

112 template<int k, typename udata, typename... EFuncs>
113 __device__ void folded_edgemap(bitvec∗ active_in, bitvec∗ active_out,

EFuncs... efuncs) {
114 /∗ Feature−aware load balancing (lines 59-65 from Figure 5.1)∗/
115 int fIdx = laneId % k;
116 for (each efunc in efuncs...) {
117 ret = efunc(fIdx, u, v, eIdx, d_graph_data−>data);
118 if (!ret)
119 break;
120 }
121 /∗ Update active_out (lines 68-72 from Figure 5.1) ∗/
122 }

Figure 6.3: Folded variant of Feature-aware EdgeMap.

6.2.1 Shared Memory Caching via Kernel Folding

Since folded kernels process multiple user functions in a single kernel, threads within a GPU
block remain alive throughout the execution of the folded kernel. This allows threads to
utilize block shared memory and avoid global memory round-trips. For example, in ALS
(Figure 2.1b), the lf i−1 vectors are loaded to compute sc and IC values in their respective
kernels; when these kernels get folded into a single kernel, the lf i−1 vectors can be loaded in
the shared memory to enable faster access for subsequent read requests. During runtime,
the folded kernel allocates shared memory space at the beginning of its execution (before
running the first folded_edgemap() or folded_vertexmap()), and releases the space at the
end of its execution (after the last folded_edgemap() or folded_vertexmap() finishes).
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Chapter 7

Experimental Evaluation

In this chapter, we evaluate Onyx to answer the following key questions.

1. How well does feature-aware processing perform with and without change-driven
computations?

2. Do the benefits of feature-aware processing improve as the number of features increase?

3. How well do folded kernels bridge the performance gap between unfolded kernels and
optimized kernels written by hand?

4. How does the performance of Onyx compare with traditional graph processing systems?

7.1 Methodology

To separate out the benefits of our feature-aware processing model from the effects of
change-driven computation, we thoroughly evaluate the following variants of Onyx:

• Onyx-NFA/NCDOnyx-NFA/NCD: This is Onyx without feature-aware processing and change-driven
computation (NFANFA = No Feature-Aware ; NCDNCD = No Change-Driven). With both of
these key features disabled, the approach becomes similar to existing graph processing
frameworks.

• Onyx-FA/NCDOnyx-FA/NCD: This is Onyx with feature-aware processing, but without change-
driven computation (FAFA = Feature-Aware Enabled). This allows us to measure the
effectiveness of feature-aware processing in isolation, without the benefits from change-
driven computation.

• Onyx-NFA/CDOnyx-NFA/CD: This is Onyx without feature-aware processing, but with change-
driven computation (CDCD = Change-Driven Enabled). This allows us to measure the
effectiveness of change-driven computation in isolation, without the benefits from
feature-aware processing.
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Graph Vertices Edges Size (k = 4 / k = 8)
(CP) CitPatents 3.8M 16.5M 1.1 / 2.1 GB

(RC) RoadCentral 14.1M 16.9M 2.8 / 4.8 GB
(RU) RoadUSA 23.9M 28.9M 4.7 / 8.2 GB

(D24) DelaunayN24 16.8M 50.3M 3.9 / 7.0 GB
(HW) Hollywood2009 1.1M 56.4M 3.0 / 5.6 GB
(LJ) SocLiveJournal1 4.8M 68.5M 3.9 / 7.3 GB
(KN) KronG500L21 2.1M 91.0M 4.9 / 9.1 GB

(OK) SocOrkut 3.0M 106.3M 5.8 / 10.7 GB

Table 7.1: Input datasets (acquired from [13, 3, 24]). Since the memory footprint depends
on the number of features (k) in the vertex and edge properties, the maximum size across

all of our algorithms is reported for 4 and 8 features.

• Onyx-FA/CDOnyx-FA/CD: This is Onyx with feature-aware processing and change-driven compu-
tation.

Kernel folding is enabled across all of our experiments, and in Section 7.7 we will evaluate
kernel folding by comparing its performance with the case when it is disabled.

7.2 Graph-based Learning Algorithms

We evaluate the performance of Onyx on the graph-based learning applications shown
in Figure 2.1, and compare the results with the state-of-the-art high performance graph
processing systems: Tigr [22], Gunrock [34] and SIMD-X [14]. Since none of these systems
natively provide implementations for graph-based learning algorithms, we implemented each
of our graph-based learning algorithms in them.

7.3 Graph Datasets

Table 7.1 lists the real-world graphs that we use in our evaluation. These graphs are a mix of
social network graphs and road networks covering different densities. Since the graph-based
learning applications primarily maintain vector of values on vertices and edges (as opposed
to just a single scalar value), they have a much larger memory footprint compared to the
traditional graph processing algorithms like PageRank. For example, the largest OK graph
with 4-8 features takes 5.8-10.7GB space, which ends up occupying majority of the available
GPU memory. Unless otherwise stated, our experiments use 4 features per vertex/edge; in
Section 7.6 we will also study the performance as the number of features per vertex/edge
changes.

7.4 Evaluation Platform

All experiments were conducted on Tesla P4 GPU with 7612MB GDDR5 device memory. The
GPU is connected to a host machine (Google cloud N1 4 core, 96GB RAM) via PCIe 3x16
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Graph Onyx
NFA/NCD FA/NCD NFA/CD FA/CD

LP

CP 1170.6 ms 2.4× 3.4× 7.3×
RC 2440.3 ms 1.5× 3.2× 5.2×
RU 1954.9 ms 1.4× 1.9× 3.1×
D24 2660.3 ms 1.4× 2.2× 3.5×
HW 1989.7 ms 1.5× 6.7× 10.1×
LJ 10349.6 ms 1.8× 9.3× 16.4×
KN 2783.8 ms 1.2× 4.2× 5.1×
OK 9026.9 ms 2.2× 5.0× 10.4×

ALS

CP 723.4 ms 2.6× 3.8× 6.7×
RC 260.1 ms 1.4× 1.5× 2.0×
RU 371.4 ms 1.2× 1.4× 1.8×
D24 531.3 ms 1.7× 1.8× 2.5×
HW 1189.9 ms 2.6× 5.6× 12.3×
LJ 1644.5 ms 2.7× 3.6× 9.0×
KN 4058.8 ms 1.5× 6.5× 9.0×
OK 6407.6 ms 3.2× 7.6× 20.3×

BP

CP 517.5 ms 2.2× 3.0× 4.2×
RC 196.5 ms 1.4× 1.2× 1.8×
RU 349.5 ms 1.7× 1.1× 1.9×
D24 572.1 ms 2.0× 1.4× 2.2×
HW 857.6 ms 1.8× 2.0× 2.5×
LJ 6496.3 ms 1.9× 1.1× 2.7×
KN 2051.5 ms 1.7× 2.7× 2.9×
OK 2244.8 ms 1.4× 2.4× 2.9×

MMR

CP 1331.3 ms 3.2× 3.2× 8.5×
RC 2173.1 ms 2.0× 4.0× 4.9×
RU 1213.2 ms 1.2× 1.7× 2.1×
D24 1114.6 ms 1.2× 1.3× 1.6×
HW 921.0 ms 1.3× 4.2× 5.9×
LJ 8468.5 ms 2.8× 6.2× 14.2×
KN 3806.1 ms 2.3× 3.0× 6.6×
OK 10106.5 ms 2.9× 4.4× 13.1×

MML

CP 1057.7 ms 2.9× 3.6× 8.4×
RC 685.7 ms 1.6× 3.3× 4.4×
RU 692.4 ms 1.3× 2.3× 2.8×
D24 878.2 ms 1.3× 2.3× 3.0×
HW 1151.6 ms 1.7× 3.8× 6.3×
LJ 4159.6 ms 2.0× 3.8× 8.0×
KN 3609.4 ms 2.2× 3.5× 6.0×
OK 6876.2 ms 3.2× 3.4× 8.7×

Table 7.2: Performance of Onyx. Absolute numbers for execution times are shown for
Onyx-NFA/NCD, which forms the baseline for all other relative numbers. Speedups in bold

text are the highest among the different variants.

link with 15.754 GB/s. The system ran 64-bit Ubuntu 18.10 and programs were compiled
using the CUDA 10.1 toolchain with -O3 optimization enabled. GPU metrics were collected
using the nvprof tool in the CUDA toolkit.
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Figure 7.1: Global load efficiency and number of atomic transactions for Onyx-FA/CD
normalized w.r.t. Onyx-NFA/CD. Absolute numbers are shown for atomic transactions on

Onyx-FA/CD, and for global load efficiency on Onyx-NFA/CD.

7.5 Performance of Feature-Aware Processing

Table 7.2 shows the performance of Onyx’s feature-aware processing. Comparing Onyx-
FA/NCD v/s Onyx-NFA/NCD shows the benefits of feature-aware processing when change-
driven computation is disabled, whereas comparing Onyx-FA/CD v/s Onyx-NFA/CD shows
the benefits of feature-aware processing with change-driven computation.

7.5.1 Feature-Awareness with Change-Driven Computation

Onyx-FA/CD improves the overall performance by 1.6-20.3× compared to Onyx-NFA/NCD.
The change-driven computation is effective in eliminating redundant computation for vertex
and edge values that do not change, and hence it alone speeds up the processing by 1.1-9.3×.
Feature-aware processing further boosts the performance by 1.1-3.0×, as seen by comparing
Onyx-FA/CD v/s Onyx-NFA/CD.

To reason about the performance improvements, we studied how memory gets accessed
during both load and store operations through GPU metrics provided by the profiling
tool nvprof. Since atomic write operations heavily influence the overall performance, we
measured the amount of Atomic Transactions performed throughout the execution. While
the total number of atomic updates invoked by the application remains exactly the same,
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Figure 7.2: Global load efficiency and number of atomic transactions for Onyx-FA/NCD
normalized w.r.t. Onyx-NFA/NCD. Absolute numbers are shown for atomic transactions on

Onyx-FA/NCD, and for global load efficiency on Onyx-NFA/NCD.

the number of atomic transactions is expected to vary depending on the nature of memory
accesses; for example, coalesced memory writes would result in fewer atomic transactions
(which is favorable), whereas non-coalesced (or irregular) writes would cause more atomic
transactions (which is expensive). As shown in Figure 7.1, the number of atomic transactions
reduces by 2.0-3.4× with feature-aware processing, mainly because of its improved memory
coalescing while updating the vertex feature values.

We also measured the Global Load Efficiency GPU metric, which is defined as the ratio
of requested global memory load throughput to required global memory load throughput
expressed as percentage [2]. This metric captures how efficiently the global memory bandwidth
is utilized during load operations (higher value is better). As shown in Figure 7.1, the global
load efficiency increases by 1.0-3.2× with feature-aware processing, again due to fewer
memory transfers resulting from coalesced memory accesses. The amount of coalescing
achieved during execution is mainly dependent on the graph algorithm and the input graph
structure.

7.5.2 Feature-Awareness without Change-Driven Computation

For executions without change-driven computations, feature-aware processing achieves 1.2-
3.2× speedup, as observed in Table 7.2 by comparing Onyx-FA/NCD v/s Onyx-NFA/NCD.
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Figure 7.2 shows the number of atomic write transactions and the global load efficiency ratio
for Onyx-FA/NCD normalized w.r.t. Onyx-NFA/NCD; again, the atomic write transactions
decrease by 2.4-3.4× while load efficiency increases by 1.1-3.0× with feature-aware processing,
mainly due to coalesced memory accesses.

7.5.3 Performance Summary

Both of our techniques, feature-aware processing and change-driven computation, individually
contribute to the performance improvements. Since these techniques are orthogonal to each
other (optimizing for memory accesses v/s optimizing for computation), they complement
each other well: together, these techniques result in 1.6-20.3× performance improvement.

7.6 Sensitivity to Number of Features

The number of features in the graph algorithm directly impacts its performance, simply
because the amount of computation increases with the number of features: for example,
an algorithm with 8 features will roughly perform twice the amount of computation and
memory accesses compared to the same algorithm with 4 features (assuming all other
dynamic characteristics like vertex stabilization are same across the two executions). Since
our feature-aware processing is aimed to improve performance in presence of features, we
study its performance as number of features varies.

Figure 7.3 shows the performance of Onyx-FA/CD v/s Onyx-NFA/CD and Onyx-
FA/NCD v/s Onyx-NFA/NCD when the number of features increases from 1 to 128. As
expected, the execution times increase with increase in features; however, the increase in
execution times with feature-aware processing is gradual (as shown with Onyx-FA/CD and
Onyx-FA/NCD) whereas the execution times without feature-aware processing increase
rapidly. This trend is mainly due to the improved coalescing of memory accesses with
feature-aware processing; as seen in Figure 7.3 the increase in atomic transactions follows a
similar gradual trend for feature-aware processing as opposed to a faster increasing trend for
processing without feature-awareness. Overall, our feature-aware processing with 128 features
ends up performing up to 7.7× faster compared to the execution without feature-awareness.

7.7 Effectiveness of Kernel Folding

We study how automatic kernel folding improves performance by comparing the execution
times of our folded kernels with the unfolded kernels in Figure 7.4. We also show the
performance of the hand-optimized variant for each case where the kernels are manually
folded and optimized to achieve the best performance. The results for BP and LP algorithms
are shown in order to cover folding of both, edge and vertex functions (edge functions get
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Figure 7.3: Execution times in milliseconds (on left y-axis) and number of atomic
transactions (on right y-axis) for varying number of features. The X indicates executions

that ran out of GPU memory.

folded in BP, while vertex functions get folded in LP). Both of our techniques, feature-aware
processing and change-driven computation, are enabled in this experiment.

As seen in Figure 7.4, folded kernels perform 1.2-1.7× faster than unfolded kernels.
This is mainly because folded kernels eliminate repeated iteration and load balancing work,
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= with manual folding and optimizing. The X indicates BP with unfolded kernels ran out of

memory since it has to rely on global memory for intermediate data.

while also enabling shared memory caching across multiple operations. Furthermore, shared
memory caching eliminates the need to use global memory for intermediate results, and
hence, folded kernels have a smaller memory footprint compared to the execution with
unfolded kernels; this is why BP with unfolded kernels could not run on KN and OK
graphs, whereas it ran successfully with folded kernels. Finally, the performance of folded
kernels is close to the hand-optimized variants for BP mainly because both of these variants
perform the same amount of global and shared memory accesses. On the other hand, the
hand-optimized variants perform faster for LP; this is because the hand-optimized variants
reuse intermediate results in registers, whereas our automatically folded kernels utilize shared
memory for intermediate results, which ends up limiting the number of thread blocks that
can run in parallel in each GPU SM.

7.8 Feature-Aware v/s Traditional Graph Processing

We compare the performance of Onyx with three state-of-the-art traditional graph processing
systems: Gunrock [34], Tigr [22] and SIMD-X [14].

None of these systems provide implementations for graph-based learning algorithms;
hence, we implemented the algorithms on each of the system for this evaluation. In doing so,
for each system we selected the processing mode that gave the best performance for that
system. Gunrock provides vertex activations, hence we selected push mode with change-
driven computation for Gunrock. Tigr does not provide vertex activations and implements
algorithms in push mode, so we used push mode without change-driven processing on Tigr.
SIMD-X provides vertex activations for certain algorithms such as shortest paths. However,
its callback implementations are not suitable for BSP algorithms, which are implemented
in pull mode without vertex activations. Hence, we implemented our algorithms on SIMD-
X in the same style: pull mode without change-driven computations. Also, none of the
systems provide an easy way for users to allocate temporary memory as scratch space across
different functions. Hence, as part of our best effort to report their best performance without
modifying the underlying system, we were able to use shared memory for Tigr and global
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System Computation Mode Change-Driven Processing Shared Memory
Gunrock Push Y N

Tigr Push N Y
SIMD-X Pull N N

Table 7.3: Summary of implementation choices for Gunrock, Tigr and SIMD-X systems.

Graph Gunrock Tigr SIMD-X Onyx

LP

CP 1345.4 1160.9 394.6 159.6
RC 5700.7 2632.2 2412.2 472.3
RU 7677.7 2106.7 3223.6 630.7
D24 8282.2 3206.1 3860.5 767.9
HW 741.8 1566.2 895.6 197.6
LJ 5085.0 10754.1 3979.0 630.2
KN 3449.6 5232.3 1131.5 542.1
OK 5884.8 8406.8 2671.7 865.4

ALS

CP 5515.3 509.3 447.0 107.8
RC 5941.4 423.2 391.8 132.2
RU X 675.1 697.6 205.7
D24 X 781.4 1252.5 214.8
HW 3122.4 585.7 471.9 96.6
LJ 6633.0 1029.9 729.3 182.8
KN 13199.5 6449.0 1511.5 448.8
OK 10550.3 3414.8 1711.8 315.8

BP

CP 433.6 470.9 775.2 122.9
RC 451.9 232.1 415.4 111.1
RU X 506.1 820.4 186.5
D24 X 617.9 1709.0 275.8
HW 570.7 903.5 1206.7 349.0
LJ X 9807.1 11324.6 2425.5
KN X 1687.7 X 700.8
OK X 3463.8 X 761.0

MMR

CP 537.7 1509.8 445.3 156.7
RC 927.7 2594.7 828.8 447.2
RU 1289.6 1548.6 1064.5 582.9
D24 1620.1 2357.8 1976.7 694.8
HW 245.9 833.4 1063.5 155.4
LJ 1697.4 8715.8 3819.6 594.8
KN 1816.3 5113.4 1512.6 579.0
OK 2610.1 9745.6 3377.7 773.1

MML

CP 832.0 903.5 229.0 126.2
RC 597.1 720.2 327.6 157.3
RU 987.6 741.4 560.4 244.4
D24 1041.1 966.5 641.6 288.1
HW 403.9 728.1 316.5 183.8
LJ 2807.1 3723.4 1143.9 521.3
KN 3704.1 3463.8 634.3 598.2
OK 5062.2 7335.8 1139.6 792.6

Table 7.4: Execution times (in milliseconds) for Onyx, Gunrock, Tigr and SIMD-X.
An X indicates the execution ran out of memory.

memory for Gunrock and SIMD-X. Table 7.3 summarizes the implementation choices for
each of the systems we compare against.
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As shown in Table 7.4, Onyx outperforms all the other systems mainly because of its
feature-aware processing model. Tigr’s node split transformations reduces load imbalance
while SIMD-X’s pull-based processing eliminates the expensive atomic writes, which allows
these systems to outperform Gunrock. Nevertheless, Onyx is up to 17× faster than Tigr and
up to 6.8× faster than SIMD-X because Onyx achieves higher memory coalescing for both
read and write transactions: the global load efficiency for Onyx is up to 5.6× higher than
Tigr and 5.7× higher than SIMD-X, and Onyx performs 2.3-3.8× lesser atomic transactions
compared to Tigr.
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Chapter 8

Conclusions & Future Directions

8.1 Conclusion

We presented Onyx, a feature-aware graph processing system for complex graph-based
learning algorithms. Onyx provides a feature-aware processing model where each vertex
property gets collectively computed by a group of threads. This coalesces the memory
accesses generated and reduces the memory transactions (both, atomic writes and reads).
To further improve performance Onyx utilizes vertex activations along with change-driven
computations that avoid recomputing vertices after convergence. To reduce the potential
performance loss from warp divergence, Onyx performs dynamic load balancing that reduces
warp divergence. For programmability, we designed a feature-guided programming model
that provides the user full flexibility in defining custom control flows. This enables expressing
complex graph-based learning algorithms directly in terms of the mathematical steps involved.
In order to eliminate repeated load-balancing stages, we develop a kernel folding technique
that combines multiple vertex and edge functions into a single kernel that preserves the
properties of ordering, progress and activation. For efficiency, Onyx also provides feature-
aware collaborative operations that employ GPU hardware instructions and cooperative
tree-based strategies. Further, we pipelined load-balancing stages which hides the latency by
increasing the instruction-level parallelism.

Our evaluation of Onyx showed that feature-aware processing delivers a speedup of up
to 3.2×. When combined with change-driven processing, we observed a speedup of up to
20.3×. Onyx’s kernel folding strategy generates folded kernels that perform 1.7× faster than
regular kernels. Finally, Onyx is significantly faster than state-of-the-art graph processing
frameworks: up to 51.2× over Gunrock, up to 17× over Tigr, and up to 6.8× over SIMD-X.

8.2 Future Directions

As part of future work, we plan to scale out Onyx to enable feature-aware processing across
a multi-GPU setup in order to harness the processing power of multiple GPUs and scale
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to larger datasets. Consider a cluster of machines, each with multiple GPUs connected by
NVlink interconnects, and fast RDMA between machines. Processing graph-based learning
algorithms on such a setup will involve transferring k times more data over the network
compared to traditional graph processing algorithms, which can significantly limit the
performance gains of utilizing the computation power of multiple GPUs.

The challenges here include partitioning data between machines to reduce network
communication, and also synchronization between machines.

• The decision of whether to replicate data on each machine or stream from a ‘master’
must be based on the network bandwidth as well as how often the data is updated.
In addition, since each machine has multiple GPUs, the interconnect bandwidth will
decide whether data can be shared between such GPUs.

• BSP algorithms require synchronization between super-steps. However, instead of
synchronizing at every super-step, partial aggregates can be calculated, and then
synchronized at intervals. This comes at the cost of memory capacity, which is a
limited resource on GPU chips.

Each of these factors needs to be considered in the framework design, and a tradeoff must
be evaluated for performance.
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