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Abstract: Estimating applied force using force myography (FMG) technique can be effective in human-
robot interactions (HRI) using data-driven models. A model predicts well when adequate training
and evaluation are observed in same session, which is sometimes time consuming and impractical. In
real scenarios, a pretrained transfer learning model predicting forces quickly once fine-tuned to target
distribution would be a favorable choice and hence needs to be examined. Therefore, in this study a
unified supervised FMG-based deep transfer learner (SFMG-DTL) model using CNN architecture
was pretrained with multiple sessions FMG source data (Ds, Ts) and evaluated in estimating forces in
separate target domains (Dt, Tt) via supervised domain adaptation (SDA) and supervised domain
generalization (SDG). For SDA, case (i) intra-subject evaluation (Ds 6= Dt-SDA, Ts ≈ Tt-SDA) was
examined, while for SDG, case (ii) cross-subject evaluation (Ds 6= Dt-SDG, Ts 6= Tt-SDG) was examined.
Fine tuning with few “target training data” calibrated the model effectively towards target adaptation.
The proposed SFMG-DTL model performed better with higher estimation accuracies and lower errors
(R2 ≥ 88%, NRMSE ≤ 0.6) in both cases. These results reveal that interactive force estimations via
transfer learning will improve daily HRI experiences where “target training data” is limited, or faster
adaptation is required.

Keywords: force myography technique; applied force estimation in dynamic motion; transfer
learning; pretrained model; domain adaptation; domain generalization

1. Introduction

Force myography is a contemporary, non-invasive, wearable technology like the
traditional surface electromyography (sEMG) and can read muscle contractions without
requiring skin preparations or precautions. This technology is based on force sensing resis-
tors (FSRs) that detect resistance changes when pressure is applied to them. An FMG band
donned around a limb on the upper or lower extremities can be used to detect underlying
muscle contractions during activities, and these signals can be interpreted using machine
learning (ML) techniques [1]. Although sEMG technology has been around for several
decades, the measured electrical activities of underlying muscles during movements of
limbs are faint, requiring substantial and costly signal processing units and skin prepara-
tion for electrode placements [2]. In contrast, FMG technique is cost effective, repeatable,
electrically robust, and requires minimal signal processing and optional feature engineer-
ing [3]. In addition, FMG technique was found effective, like sEMG, in several research
studies [4–7] as an emerging technology and has been studied in similar applications of
gesture recognition, prosthetic control, activities of daily life, rehabilitation, and human
machine interactions (HMI) [8–13]. However, there are very few studies on FMG-based
deep transfer learning (DL) techniques in human robot interactions (HRI). In a recent study,
transfer learning for hand gesture classification using convolutional neural network (CNN)
via FMG signals was investigated [14]. Authors in [15] showed improved gesture recogni-
tion accuracy via FMG-based transfer learning by incorporating multiple source domains

Sensors 2022, 22, 211. https://doi.org/10.3390/s22010211 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s22010211
https://doi.org/10.3390/s22010211
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0002-7313-3969
https://orcid.org/0000-0002-2309-9977
https://doi.org/10.3390/s22010211
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s22010211?type=check_update&version=1


Sensors 2022, 22, 211 2 of 15

from other persons. Only in one study on FMG-based pHRI, researchers implemented an
FMG-based recurrent neural network (RNN) model to classify whether a hand movement
pattern in a collaborative task with an industrial robot was user intended or random [16].

As an established technology, sEMG has been well studied in implementing deep
transfer learning in HMI, HRI, and other applications. Like FMG, this signal is affected
by electrode placement on the limb, electrode shift, intensity, and variability in muscle
contraction during intra-/inter-session evaluation, limb motion, or postures during in-
teractions [17]. Despite the transient nature of the signal, studies conducted on model
generalization and domain adaptation showed impressive results [18,19]. Researchers
trained a model with inductive and supervised transductive transfer learning for gesture
classification using a random forest (RF) algorithm; the model was fine-tuned with short
calibration data from an unseen participant and evaluated successfully with a humanoid
Pepper robot [20]. High-density sEMG (HD-sEMG) signals were used for a deep domain
adaptation framework and were found to improve inter-session gesture detection for
unlabeled test data or fine-tuning of labelled calibration data [21]. Electrode shifts and day-
to-day variability through adaptive transfer learning were investigated thoroughly [22,23].
Moreover, periodic recalibration with a small amount of training data was found effective
in multiple days usage for prosthetic control by applying transfer learning [24]. In [25], the
domain shift between data in each training trial (source domain) was evaluated for cross-
subject elbow EMG-torque models and calibration data acquired from a new subject (target
domain) using feature correlation. In [26], authors proposed supervised covariate shift
adaption method using a small calibration set only. Furthermore, a recent study showed
that aggregating source distributions from multiple users with deep transfer learning in
gesture recognition enhanced the model’s performance [27]. Among the sEMG-based pHRI
studies in the literature, few approached applied force and torque in dynamic motion
because of complexities with regressions when calibrations were required. Since the FMG
signal has similar characteristics, and there is a gap in the literature using transfer learning
for the pHRI regression problem, this study focuses on force estimation using multiple
session data sets via transfer learning.

In most industrial human-robot collaborative activities, applied hand forces are re-
quired to carry on certain tasks. Traditional force/torque (FT) sensors can read the applied
force precisely although these are bulky, require special signal processing units, and are
uncomfortable as a worn device. Estimating isometric or dynamic hand force/torque using
FMG signals via FSRs were found favorable to FT sensors [28–30]. Recently, measuring
force via FMG bio signals during physical human robot interactions (pHRI) between human
participants and a linear robot was found effective for intra-session evaluation using tradi-
tional ML algorithms [31]. However, intra-session FMG-based pHRI required collecting
adequate labelled training data, which was biased and impractical in real scenarios. In
addition, each session data was affected by transient, instantaneous signals, sensor position
shift, physiological changes, limb motions, and postures each time an FMG band was
donned. Such domain shifts and lack of adequate data severely limited inter-session or
inter-participant performance evaluations. In a recent study, inter-participant domain gen-
eralization via traditional support vector regressor (SVR) was investigated [32] although
this study did not investigate deep transfer learning or intra-session evaluations when a
participant interacted with a robot on regular basis.

Therefore, this study conducted a major investigation for feasibility of FMG-based
HMI and HRI applications via deep transfer learning where interactions were expected to
occur on regular basis. Transductive transfer learning (few target data available/seen) via
supervised domain adaptation (SDA) for inter-session evaluation and inductive transfer
learning (target data not available/unseen) via supervised domain generalization (SDG)
for inter-participant evaluation was investigated to overcome limitations of intra-session
evaluation [33–35]. Domain adaptation reuses part of a model pretrained with large pools
of source domains to predict different but related target domain where both domains have
same feature spaces with different distributions. On the other hand, domain generalization
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uses a pretrained model with source domains and attempts to predict unseen target data.
It is particularly beneficial to mitigate gaps between different domains where knowledge
about the target domain is absent [36,37]. These methods have been successfully applied
in image processing, but there are very few studies in bio-signal-based pHRI because of
transient and dynamic nature of bio feedback and hence needs to be investigated. In a
repetitive FMG-based pHRI application between a participant and a robot, previous intra-
sessions data could contribute building a large dataset. Due to the transient signal, sensors
shift, and dynamic interactive environment, each session’s data were unique even when
the task (applied force in certain motion) was the same. Therefore, the focus of this study
was to investigate whether these multiple-source data could improve the user experience
in daily interactions utilizing domain adaptation by pretraining a model and fine-tune
via transfer learning. We further investigated the impact of domain generalization for a
different pHRI task between the robot and several other participants (applied interacting
force in another motion) using the same pretrained model. Such cross-subject evaluation
became more challenging due to signal variability between the target distribution and the
multiple intra-sessions source distributions. Fine-tuning the pretrained model via transfer
learning could leverage the gap between the source and target domain. For both SDA and
SDG, few calibration data (target training data) was used for fine-tuning the model to adapt
instantaneous state of the signal captured during the dynamic interactions.

An FMG-based convolutional neural network (FMG-CNN) architecture was proposed
to investigate pHRI between several human participants and a linear robot/stage via
domain adaptation and generalization. This architecture was used as a nonlinear regression
model to map applied forces from instantaneous FMG signals during interactions, as
shown in Figure 1. For transfer learning, multiple source distributions were used to
pretrain a unified supervised FMG-based deep transfer learner (SFMG-DTL) model during
the training phase. These multiple sources of FMG distributions (source distribution: Ds)
were collected in several sessions during regular pHRI activities between one human
participant and the linear robot while the participant applied hand forces in a certain
dynamic SQ-1 motion (source task: Ts). The SFMG-DTL model was assessed on separate
cases during the evaluation phase on target domain 1 for supervised domain adaptation
(case i: SDA) and on target domain 2 for supervised domain generalization (case ii: SDG).
In case i, inter-session target domain 1 (Dt-SDA) was evaluated where the same participant
(intra-subject) interacted with the linear robot in SQ-1 motion (Tt-SDA). While in case ii, inter-
participant target domain 2 (Dt-SDG) was assessed separately for five (5) other participants
(cross-subject) interacting with the linear robot in SQ-2 motions (Tt-SDG). In the beginning
of evaluation for both cases, a few calibration data (target training data) were collected to
fine-tune the pretrained model in recognizing target distribution. Intra-session evaluations
on target domains (target training and target test data) were conducted using FMG-CNN
architecture for comparing performances of SDA and SDG cases. Several machine learning
algorithms, such as support vector regression (SVR) and multi-dimensional support vector
regression (MSVR), were also used for performance comparison in domain adaptation.

Major contributions of this study were:

• Investigating feasibility of deep transfer learning technique in repetitive FMG-based
pHRI applications utilizing inter-session FMG data for the first time;

• Proposing a unified transfer learner for both supervised domain adaptation and
domain generalization;

• Leveraging periodical calibration as needed with less data than normally required;
and

• Proposing a nonlinear FMG-CNN regression architecture for mapping applied force
from FMG signals without requiring biomechanical modelling of the human arm.
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Figure 1. The proposed SFMG-DTL transfer learning model for estimating applied force during pHRI
on a planar workspace with a linear robot.

The rest of this article is organized as follows: Section 2 describes the materials and
methods, where methodology, experimental setup, and protocol used are explained. Results
are discussed in Section 3. Performance evaluations of the proposed framework is discussed
in Section 4, while Section 5 concludes this article.

2. Materials and Methods
2.1. Problem Statement
2.1.1. Source and Target Domain

In this study, multiple source domains, Dsi = {i = 1, 2, 3}, were used for pretrain-
ing a deep transfer learning model. Source domain Dsi = {χsj, Ysj} had data matrix
χsj ∈ RNsj × SC such that i ∈ {1, 2, 3}, j ∈ {1, 2, ..., NS}, SC = {c1, ..., c32} (c: 32 FMG
channels, SC = dimensionality of feature vectors, and NS: number of samples), and labels
Ysj = {Fsjx, Fsjy, f (·)} [f (·) was a predictive function, and Fsjx, Fsjy were label space of applied
forces in X and Y dimensions such that f: χsj → Fsj-x and f : χsj → Fsjy]. All distributions
were homogenous and balanced. Target domain Dt = {χt} had data matrix χt ∈ RNt ×
SC [SC: dimensionality of feature vectors, and Nt: number of samples in target domain].
Calibration data, Cd ∈ {Xc, Yc} [Yc = {Fcx, Fcy, f (·)}], a small subset of Dt, was used as target
training data. A transfer learner pretrained with Dsi and fine-tuned with Cd predicted force
label spaces, Yt = {Ftx, Fty, f (·)}, from target test distribution: {χt

*} ∈ Dt. In case of domain
adaptation, source and target domains were different, but source and target tasks of applied
force estimations in SQ-1 motion were same (Ds 6= Dt, Ts = Tt) {Ts, Tt: applied interactive
forces in SQ-1 motion}). While in domain generalization, both source and target domains
and tasks were different (Ds 6= Dt, and Ts 6= Tt, where Ts: applied forces in SQ-1 motion
and Tt: applied force in ‘SQ-2′ motion). Acronyms used in this article are listed in Table 1.



Sensors 2022, 22, 211 5 of 15

Table 1. Acronyms used.

Acronyms Meaning Acronyms Meaning

SDA Supervised domain
adaptation SQ-1 Interaction force in square motion with

variable sizes in domain adaptation

SDG Supervised domain
generalization SQ-2 Interaction force in square motion in

domain generalization

Ds Source domain Dt-SDA, Tt-SDA
Target domain and target task in
inter-session SDA

Dt Target domain Dt-SDG, Tt-SDG
Target domain amd target task in
inter-participant SDG

Ts Source task Dsi Multiple source domains

Tt Target task Fxt
’ Estimated applied forces in X dimension

Cd Calibration data Fyt
’ Estimated applied forces in Y dimension

2.1.2. Applied Interaction Force Estimation

At an instant of time, t, instantaneous raw input target test signals SC arriving at the
model (with a δ of µ parameter set) with a probability Pt (St

C) mapped estimated applied
force Fxt

’ and Fyt
’ (forces in X and Y dimensions) in a dynamic motion such that:

fx(·) = F′xt = δ,
(

sC
t , µ1

)
(1)

fy(·) = F′yt = δ,
(

sC
t , µ2

)
(2)

To find best parameter space µ, loss function was computed:

µ1 = L
(

F′xt − Fxt
)
= argmin

µ1

t

∑
k=1

(
Fxk − F′xk

)2 (3)

µ2 = L
(

F′yt − Fyt

)
= argmin

µ2

t

∑
k=1

(
Fyk − F′yk

)2
(4)

Mean square error (MSE) was used to calculate average squared difference between
estimated and real value. MSE for a single observation was:

MSEx =
R

∑
k=1

(
Fxk − F′xk

)2

R
(5)

MSEy =
R

∑
k=1

(
Fyk − F′yk

)2

R
(6)

where R was the number of responses; Fxk, Fyk were the target output; and Fxk’, Fyk’ were
the network’s prediction for response k.

2.2. Experimental Setup

FMG-based pHRI was investigated where a human participant collaborated with
a linear robot/biaxial stage, as shown in Figure 2. Interactions occurred by applying
force at the end-effector of the robot. Two FMG bands (32 feature space) using FSRs
(TPE 502C, Tangio Printed Electronics, North Vancouver, BC, Canada) were used to read
muscle contractions during interactions using data acquisition systems (NI DAQs 6259,
6341, National Instruments, Austin, TX, USA). These bands were wrapped around the
forearm and upper arm muscle belly. A customized linear robot or a cartesian planar
robot had two perpendicular linear stages (X-LSQ450B, Zaber Technologies, Vancouver, BC,
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Canada) in the X and Y dimensions on the planar workspace with a customized gripper
on top as the end-effector. The true label of applied force was recorded with a 6-axis FT
sensor (Mini45, ATI Industrial Automation, Apex, NC, USA) that was mounted inside
the gripper. Compliant collaboration was implemented via admittance control where the
applied force was converted proportionally to the motor displacements of the linear stages.
Therefore, the gripper would slide along the workspace, following the same trajectory of
the human-applied force in dynamic motion and direction. The linear robot was fixed
firmly on a table for interactions. An HP Zbook laptop (Intel core i7, 16GB RAM) was used
for data collection via Labview interface and for model evaluations via Matlab scripts.
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Figure 2. Setup used for data collection and evaluation of SFMG-DTL: (a) linear robot with gripper
and end-effector on top, (b) two FMG bands, (c) interaction force in square motion SQ-1 with variable
sizes in domain adaptation, (d) interaction force in square motion SQ-2 in domain generalization,
and (e) participant P1 interacting with the robot by applying force in dynamic SQ-1 motion.

2.3. Proposed FMG-CNN Architecture

Figure 3 shows the proposed FMG-CNN architecture used in this study. Raw FMG
signals were used for training and evaluating SDA and SDG. Two separate models had an
input layer of input size 1 × 32 with “zerocenter” normalization, followed by Model X and
Model Y, used for estimating forces in X and Y dimensions. Both model conv1 and conv2
convolutional blocks. Raw data was preprocessed using minmax scaling before passing
to the input layer. In each convolution block, the conv layer was followed by a Relu and
a batch normalization layer. For Model X, 32 filters were used in the conv1 block, while
64 filters were used for Model Y. The conv2 layer had 16 filters in both models. A fully
connected layer with 20 connections followed the conv layers, and finally, a regression layer
was used to map the instant force. Batch normalization helped to alleviate the internal
covariance shifting present during training, as changes happened in input distributions
of layers due to parameter changes in previous layers. Filters sized 3 × 3 with a stride of
1 and a padding of 1 was used. During evaluation, fine-tuning occurred in the final fully
connected layer. For both pretraining and fine-tuning, stochastic gradient descent (SGD)
was implemented as the optimizer. A learning rate (LR) of 1E-04 and maximum epoch (E)
of 40 were used in pretraining, while LR = 1E-05 with E = 60 was used during evaluation.
MSE loss was used for validation of the training process.
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For transfer learning, a unified framework for SDA and SDG based on the FMG-CNN
architecture was proposed, as shown in Figure 4. In this framework, the model learned
discriminative features of the multiple source domains during pretraining. While fine
tuning, the last three layers of the saved model helped in adapting to converge quickly in
recognizing target distribution.
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2.4. Protocol

A total of 6 participants (P1, . . . , P6) volunteered in this study. All participants were
healthy, right-handed, and their average age was 33 ± 8 years. Informed consents were
obtained from all subjects involved in the study, as approved by Office of Research Ethics,
Simon Fraser University, British Columbia, Canada.

Figure 5 shows the training and evaluation phases followed in this study to investigate
the proposed SFMG-DTL transfer learning model. Both source and target distributions and
model hyper parameters used are summarized in Table 2. During the training phase, source
distributions were collected and used for pretraining the model, while in the evaluation
phase, separate target domains for SDA and SDG were collected and evaluated separately,
as discussed below.
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Table 2. Source and target domains.

Pretraining Phase Evaluation Phase

Source
Domain

Hyper
Parameters

Target
Domain

Hyper
Parameters

Fine
Tuning Target Test Data

Dsi =
{Xs, Ys} {P1},
where,
Dsi = {Ds1 ∪ Ds2 ∪ Ds3}
= 8400 × 32 samples,
TSDA: applied force
in SQ-1 motion

SGD
Epochs: 40
LR: 1E-4

case i. Dt-SDA=
{Xs, Ys} {P1} where
TSDA: applied force in
SQ-1 motion

SGD
Epochs: 60
LR: 1E-5

Cd =
{Xc, Yc}
1200 × 32 samples

Dt =
{Xt, Yt}
400 × 32 samples

case ii. Dt-SDG =
{Xs, Ys} {P2, . . . , P6},
where
TSDG: applied force in
SQ-2 motion

2.4.1. Training Phase
Multiple-Source Data Collection

Multiple training data collection sessions were conducted in three (3) different sessions
during interactions between participant P1 and the linear robot. The collaborative task was
conducted by applying hand force in a dynamic square motion SQ-1 of varying sizes on the
planar surface, as shown in Figure 2. Participant P1 sat in front of the linear robot/biaxial
stage comfortably on a chair locked in position.

Two FMG bands were donned on the forearm and upper arm on the participant’s
dominant right hand (Figures 1 and 2e). A total 14 cycles of data were collected during
these sessions, where 600 × 32 samples of data were collected in a cycle. In each cycle,
participant grasped the gripper and applied interactive force in a dynamic square motion,
defined as the source task (TSDA = applied force in SQ-1 motion). Applying forces in a
non-uniform anti-clockwise square motion with gradually increasing displacement area on
the planar surface (Figure 2c) were repeated continuously to complete one cycle.

Pretraining Deep Learning Model

For domain adaptation and generalization, the proposed FMG-CNN architecture was
used for pretraining the unified SFMG-DTL transfer learner model. The model was trained
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to predict applied forces in X and Y dimensions simultaneously from a distribution. Two
separate models (Model X, Model Y) were generated for estimating forces in X and Y
dimensions and saved as .mat file for use in evaluation sessions.

2.4.2. Evaluation Phase
Case i: Evaluating Intra-Subject/Inter-Session Target Domain (Dt-SDA, Tt-SDA) via Domain
Adaptation (Ds 6= Dt, Ts ≈ Tt)

Inter-session evaluation was investigated to see if multiple session data from a repeti-
tive user (intra-subject/participant) could be useful in practical applications. In this target
task, participant P1 interacted with the linear robot in similar motion speed and pattern
SQ-1 following same source data collection protocol. For domain adaptation, first, a few
calibration data were collected as target training data (1200 × 32 samples) for fine-tuning
and formed target dataset 1. The transfer learner was thus retrained to adapt a new target
domain. It was then evaluated on 400 × 32 samples of target test data.

Case ii: Evaluating Cross-Subject/Inter-Participant Target Domain (Dt-SDG, Tt-SDG) via Domain
Generalization (Ds 6= Dt, Ts 6= Tt)

For domain generalization, five participants (P2:P6) contributed to evaluate the pre-
trained SFMG-DTL model. Target distributions were collected from each participant during
a collaborative task that allowed interaction with the robot applying force in a uniform
square motion (TSDG = applied force in SQ-2 motion), as shown in Figure 2d. For each
participant, a total 4 cycles of target data (400 × 32 samples/cycle) were collected with
similar source data collection protocol, and it was termed as target dataset 2. Leaving
one out cross-validation (LOOCV) was implemented where 3 cycles were used as target
training data for fine-tuning the SFMG-DTL model, and 1 cycle was used as target test data.

2.5. Performance Matrices
2.5.1. Statistical Tools and Tests

Performance of the SFMG-DTL model in estimating force in the dynamic motion was
evaluated using the coefficient of determination (R2) and normalized root mean square
error (NRMSE).

Coefficient of determination (R2) was obtained by:

R2 =
Explained variation

Total variance
(7)

It was used to determine the correlations or dependencies of the dependent variable
on the independent variable. R2 or goodness of fit values varied between 0 and 1.

NRMSE determined the fraction of RMSE (squared root of differences between pre-
dicted and real value) to the observed range of the measured data:

NRMSE =

√
1
n Σi(Ye − Yi)

2

mean(Y)
(8)

where Y was the measured data, n was number of samples, and Ye was the prediction
made by the regression model.

A t-test was performed to evaluate effectiveness of domain generalization. It was
a statistical test to compare the means of two samples to determine the significance in
change [38]. It helped to determine whether performance improvement using transfer
learning with the SFMG-DTL model was statistically significant.

2.5.2. ML and DL Algorithms

For performance evaluation of SFMG-DTL model, intra-session evaluations were
conducted on the two target domains using baseline FMG-CNN architecture. For intra-
session evaluation, a baseline SDA and a baseline SDG model were trained with target
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training data and evaluated on the same target test data (as mentioned in Section 2.4.2 and
Table 2). Intra-session evaluation used SGD optimizer and hyper parameters (LR = 1E-4,
E = 60) for comparable performances. A traditional machine learning algorithm, such
as support vector regression (SVR) and its variation multi-dimensional support vector
regression (MSVR), was used for performance evaluation of SDA only. These algorithms
also used the same target training and test data for comparison with SFMG-DTL. The
popular SVR model (nu-SVR with hyper parameters: Cost (c) = 20, Gamma (g) = 1, Epsilon
(ε) = 1) could predict continuous ordered variables either in linear or non-linear way. MSVR
(c = 0.01:0.5:0.09, g = 0.8:0.2:1.5, ε = 0.08) was capable of estimating force in one direction
while considering forces acting in other dimensions. For MSVR, instead of using separate
model estimating force in each dimension, a single model was trained to predict forces.
This model was investigated to determine if higher accuracies could be achieved while
reducing computation resources and time. For both SVR and MSVR, best values for cost (c)
and gamma (g) were obtained by grid searches. Separate models were generated to predict
forces in the X and Y dimensions for SVR, intra-session, and SFMG-DTL, while only one
MSVR model was trained for predicting forces in both dimensions. All models utilized
radial basis function (RBF) kernel.

3. Results

For transfer learning in SDA and SDG, the SFMG-DTL pretrained model was evaluated
with two separated target domains (in both cases, calibration data/target training data
(1200× 32 samples) and target test data (400× 32 samples) were of same amount). Figure 6
shows plots of target domain 1: FMG test distributions and the model’s performance of
force estimations in X and Y dimensions during SDA.
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Figure 6. Target dataset 1 used in SDA: (a) target test FMG data; (b) true forces and estimated forces
in X and Y dimensions estimated by the retrained SFMG-DTL learner.

3.1. Supervised Domain Adaptation

Supervised domain adaptation was investigated for inter-session FMG data for repeti-
tive pHRI application with participant P1. The results obtained for R2 and NRMSE with the
SFMG-DTL model along with other models are reported in Figure 7. The proposed deep
transfer learner (MSE loss ≈ 5.8) outperformed in estimating force in the selected motion
SQ-1 in terms of higher accuracies (R2 ≈ 89%) and lower error (NRMSE ≈ 0.10) than other
algorithms, including intra-session baseline SDA’(FMG-CNN model with target training
data and target test data only). Among these models, MSVR performed poorly (R2 ≈ 52%)
despite using a single model to predict force in both X and Y dimensions. Both baseline
SDA and SVR showed similar results in predicting force (R2 ≥ 81%). Reported values were
averaged for Model X and Model Y in estimation accuracies and losses.
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3.2. Supervised Domain Generalization

Supervised domain generalization was evaluated for inductive transfer learning where
the target distributions were unseen to the pretrained model. An inter-participant/cross-
subject test was carried out for five participants (P2:P6) individually. For comparison,
intra-session baseline SDG, using leave one out cross-validation (LOOCV) with target
training data and target test data, was executed for each participant. The SFMG-DTL model
obtained comparable estimation accuracies (R2 ≥ 88%) similar to the baseline SDG model
(R2 ≤ 86%) across participants. Thus, performance with transfer learning obtained 2.4%
improvement in estimating forces in dynamic SQ-2 motion. Moreover, the SFMG-DTL
model encountered an error in estimation (NRMSE ≈ 0.6) that was 3.75% lower than
the intra-session model across participants (mean MSE loss ≈ 5.14 N). Individual results
of R2 and NRMSE (averaged for Model X and Model Y) are reported in Figure 8 for all
five participants.
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generalization): (a) estimation accuracies (R2) and (b) error in estimation (NRMSE). Averaged values
(Model X and Model Y) are reported for both intra-session and SFMG-DTL.
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4. Discussions
4.1. Viability of Calibration

The pretrained SFMG-DTL model was further retrained with a few calibration data
sets to adapt to the target domain. The model worked well for both SDA and SDG once
fine-tuned with calibration/target training data. To investigate the effect of calibration
during SDA, the pretrained model was evaluated on target test data without fine-tuning
towards target distribution. It was interesting that the pretrained model without fine-
tuning could predict forces in X dimension with higher estimation accuracy and lower error
(R2 ≥ 89%, NRMSE≈ 0.09%) although it could not estimate well in Y dimension (R2 ≤ 12%,
NRMSE ≥ 8%) with no adaptation to target domain. For SDG, similar trends were observed
in X dimension (R2 ≥ 89%, NRMSE ≈ 0.09%) and Y dimension (R2 ≤ 25%, NRMSE ≥ 6%).
Muscle contractions in extension/flexion (X dimensions) and abduction/adduction (Y
dimensions) could affect FSR readings and model’s performances although this would
require further study. Therefore, it was revealed that fine-tuning with calibration data
was mandatory for estimating forces in 2D planar SQ-1 motion for SDA as well as in SQ-2
motion for SDG.

For compliant collaboration, applied forces in both dimensions were needed to be
estimated well simultaneously. Therefore, the proposed framework would not work
without calibration data. The calibration data represented the instantaneous FMG data of
muscle contraction during interactions, and it was found as an effective way to include
the current state of muscle readings in certain activities during pHRI. Additionally, using
fewer calibration data sets was helpful, as the model was calibrated within few minutes.

4.2. Viability of SDG

In this case, estimation accuracies and errors obtained by SFMG-DTL model were
found comparable with intra-session evaluation of baseline SDG for participants P2 and P6,
while it performed better for P3–P5. Although the overall performance improvement was
limited, it was interesting that the SFMG-DTL model improved accuracies in estimating
force in the Y dimension compared to the baseline SDG model for some participants,
as shown in Figure 9. A t-test was carried out with a 95% confidence level to compare
performances of the intra-session and the SFMG-DTL model. Estimation accuracies (R2)
in Y-dimension via the SFMG-DTL model were found statistically significant. This would
improve designing FMG-based HMI in future practical applications.

Figure 9. Comparing SFMG-DTL model with intra-session evaluation on case ii: target dataset 2
model in estimating forces in X and Y dimensions in domain generalization.
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5. Conclusions

Estimating applied hand force using force myography (FMG) can be effective yet
challenging due to the transient, time-variant nature of the bio signal. Controlling machines
using data-driven models in HMI or pHRI over multiple days are affected by sensor
position shifts and/or physiological effects. This study investigated multiple sessions of
labelled FMG data to overcome such inherent challenges by pretraining a deep learning
model using a CNN algorithm. Calibration data from individual participants allowed the
pretrained model to be fine-tuned towards individual target distribution and to adapt the
target task. The proposed SFMG-DTL model was evaluated in both domain adaptive and
domain-generative transfer learning scenarios and obtained better prediction accuracies
and lower losses. The model obtained estimation accuracies (R2) of 89% and 88.4% in SDA
and SDG, respectively. In both cases, SFMG-DTL outperformed the SVR, MSVR, and intra-
session models. Performance of the pretrained deep transfer model achieved improvements
over the intra-session model for both intra-subject and cross-subject evaluations (6% and
2.4% increase in estimation in SDA and SDG, respectively).

Although SDA and SDG showed potential improvements, achieving these in real-time
situations needs to be examined. In addition, in practical scenarios, collecting labelled
data is not easy or sometimes impossible. Therefore, unsupervised domain adaptations in
challenging situations could be investigated in the future studies. The SFMG-DTL model
performed well for domain generalization but was limited to a certain pHRI collaborative
task. A pretrained model using more diversified source domains would play a vital role
in improving domain generalization and extend to all other possible interactions. Such a
pretrained model can be useful for unseen target domains where the target label data are
scarce or inadequate in real scenarios. Moreover, an FMG-based transfer learner can be
more practical for domain adaptation to implement an FMG-based application either for
one-time or periodic usage by overcoming sensor position shifts on multiple elapsed days.
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