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Abstract

Being able to track appliances energy usage without the need of sensors can help occupants
reduce their energy consumption. Non-intrusive load monitoring (NILM) is one name for
this topic. One of the hardest problems NILM faces is the ability to run unsupervised –
discovering appliances without prior knowledge – and to run independent of the differences
in appliance mixes and operational characteristics found in various countries and regions.
This thesis showcases two filters that are used to denoise power signals, which results in
better clustering accuracy for NILM event based methods. Both filters show to outperform
a state-of-the-art denoising filter, in terms of run-time. A fully unsupervised NILM solution
is presented, the algorithm is based on a hybrid knapsack problem with a Gaussian mixture
model. Finally, a novel metric is developed to measure NILM disaggregation performance.
The metric shows to be robust under a set of fundamental test cases.

Keywords: non-intrusive load monitoring; filtering; unsupervised; Gaussian mixture model;
knapsack problem
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Notes

At various points in this thesis, previously published work will be leveraged. The relevant
sections/subsections for each of these are listed as follows:

• Hybrid knapsack-GMM: Section 3.2. Published [1].

• Steady-state block filter: Section 2.2. Published [2].
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Chapter 1

Introduction

1.1 The Non-Intrusive Load Monitoring Problem

Non-Intrusive Load Monitoring (NILM) is a research field focused on breaking down the
composed appliances that contribute to a total aggregate signal. The process is performed
using only the aggregate signal, which is also known as appliance disaggregation. NILM
is carried out using a building’s smart meter to track or sense appliance usage (see Fig-
ure 1.1) [3]. The first peer-reviewed NILM publication [3] was in 1992 and with the recent
release of publicly available datasets [4, 5, 6, 7, 8] there is a resurgence in interest in solving
NILM.

0 kW

2 kW

3 kW

5 kW

6 kW

0 kW

2 kW

3 kW

5 kW

6 kW

NILM

Figure 1.1: Sensing appliance power usage and consumption without sensors [1].

The task of disaggregating appliances in a system is not simple, due to the fact that
appliances in residential buildings often overlap significantly [9]. The NILM problem can
be formulated as solving for each y

(m)
t

yt =
M∑

m=1
y

(m)
t + ϵ, (1.1)

where y
(m)
t is the power consumption at time t associated with appliance m out of a total

of M appliances that constitute the total power aggregate yt, and ϵ is some measurement
noise. Although there exists several methods which attempt solving NILM, in general the
workflow consists of gathering data which, later, is processed in order to extract relevant
features essential for appliance identification, and used to infer or approximate y

(m)
t . The

first attempt for solving NILM was the seminal work presented in [3]. Since then, the NILM

1



research community has been tremendously active. The publications vary from methods to
solve the problem to the recollection of data for its future release.

A typical architecture [9, 10, 11, 12, 13, 14, 15] for solving NILM is shown in Figure 1.2.
Here, the aggregate yt is composed of M ground-truth appliances y

(m)
t . Later, the aggregate

signal is passed through a filtering process in order to remove noise and transient behaviour,
we denote ŷt to the filtered aggregate signal. Once power values are more consistent due to
the steady-state filter, a source separation algorithm (typically consisting of an unsupervised
clustering algorithm) extracts the edges from the filtered signal ŷt and separates it into N

disaggregated signals ŷ
(n)
t . Then, disaggregation performance is evaluated by comparing the

source separator’s behaviour, this is typically carried out by measuring the error between
the ground-truth signals and the disaggregated signals. Finally, labels are applied to the
disaggregated signals, which can be achieved via deep learning [9].

Appliance
Labelling...

+ Filtering
Disaggregation/ 

Source
Separation ...

Fridge

Clothes
Dryer

Dish
Washer

...

Performance
Metrics

Chapter 2 Chapter 3 Chapter 4 

Figure 1.2: A typical NILM architecture.

Solving NILM is not an easy task. This is mainly due to the next reasons [16, 17]:

1. Multiple, simultaneous load events: Appliances switching ON/OFF or changing
states can cause a system to miss-classify active loads. E.g., if we have two 100 Watts
lights and one 200 Watts blender, turning the two lights ON simultaneously could
lead to the system classifying the event as a the blender.

2. Noisy power signals: Electrical systems are noisy in nature. Less noisy power
readings will result in a more accurate disaggregation system (see Section 2.1).

3. Dynamic and changing usage: The number of appliances in a home can increase
or decrease over time. Also, the appliances can be replaced (i.e., an old fridge gets
replaced with a newer and more energy efficient model). Furthermore, the occupant-
home interaction significantly varies from one home to another. Therefore, a NILM
system might have trouble when trying to generalize over data from different homes
or other periods of time.
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1.2 Previous Attempts for Solving NILM

NILM solutions can be categorised into supervised and unsupervised learning methods [18].
Supervised learning methods require labeled data from individual appliances in order to
be trained [19, 20, 21]. Although these methods may show promise, they require a large
amount data to train the models and sometimes having access to the data is not available
or does not exist. Unsupervised learning methods, on the other hand, do not require indi-
vidual appliance data. Moreover, these methods are more robust than supervised learning
techniques due to the fact that they do not depend on the number of appliances and they
can be further adapted in time (i.e., if a new appliance is added or an appliance is removed).
Figure 1.3 shows a comparison between supervised and unsupervised learning techniques.

It is clear that at best, NILM is a semi-supervised method as labelled data is needed to
properly identify what appliances have been disaggregated [9, 10]. By setting the labelling
problem aside, one could potentially solve the disaggregation problem via a supervised or an
unsupervised learning algorithm. Thus, an unsupervised NILM method refers to performing
disaggregation by using aggregate data only. From now on, the scope of this thesis will be
on the unsupervised learning methods.

Training
sets 

Appliance M

Appliance 1
Source

Modelling
NILM

Algorithm

Appliance 1

Appliance M

Aggregate

a) Supervised Learning Methods

NILM
Algorithm

Appliance 1

Appliance M

Aggregate

Source
Modelling

b) Unsupervised Learning Methods

Figure 1.3: Comparison of supervised and unsupervised learning techniques, adapted
from [18].
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1.3 Our Contributions

This thesis attempts to solve NILM (leaving the labelling problem aside) with the workflow
presented in Figure 1.2. First, we filter the aggregate signal yt using a steady-state filter (see
Chapter 2). Later, we attempt blind source separation to reconstruct the ŷ

(m)
t disaggreg-

ated signals (See Chapter 3). Finally, we measure the disaggregator performance (Chapter
4). Finally, Chapter 5 summarizes the work in this thesis and highlights motivations for
future work. We present three significant contributions that further advance the field of
disaggregation. These are listed below.

• Contribution 1: We show the importance of advanced filtering techniques in event-
based NILM methods with low sampling frequency (≤ 1 Hz). Chapter 2 presents two
filtering approaches (see Subsections 2.2.2 and 2.2.3) to remove steady-state informa-
tion and noise from aggregate signals. The first proposed filter is motivated by change
point (CP) detection theory. Kalman filters and the Cumulative Sum (CUSUM) al-
gorithm are the core of the second approach.

• Contribution 2: Another area that we have examined and published about is how to
leverage the information of aggregate power signals when two or more appliances turn
ON/OFF simultaneously. Chapter 3 is devoted to the development of an unsupervised
clustering algorithm that does not require labelled individual appliance data. Once the
raw aggregate data is passed through any of the filters in Chapter 2, the unsupervised
algorithm is in charge of clustering appliances’ activations/deactivations and later,
it attempts to recover the disaggregated individual appliances that contribute to the
aggregate. The unsupervised method is based on a hybrid Gaussian Mixture Model
(GMM) and the Knapsack Problem (KP).

• Contribution 3: Our final contribution is our novel metric based on quadratic pro-
gramming QP. In Chapter 4, the proposed metric assesses source separation perform-
ance in NILM. The metric shows to be robust under several fundamental test cases that
are present in NILM architectures such as the one shown in Figure 1.2. Moreover, it
automatically matches ground-truth signals with their respective inferred signals (the
number and ordering between ground-truth signals and inferred signals is not always
the same).

4



Chapter 2

Steady-State Filtering for NILM

This chapter presents a summary of the previous attempts for extracting steady-state in-
formation from aggregate data in order to allow for better clustering for appliance dis-
aggregation. Further, we describe the methodology and implementation of three filtering
approaches to remove steady-state information and noise from aggregate signals. The first
filtering method is based on a combination of edge-preserving filters arranged sequentially.
The second steady-state proposed filter is motivated by change point filter theory consists
of a change point detection mechanism based on rolling statistics of the aggregate data.
Lastly, the Kalman filter and the CUSUM algorithm are used together in order to detect
changes in the aggregate signal to later remove transient or noise information.

2.1 Denoising Power Signals - A Review

Power signal noise considerably affects NILM algorithms’ performance, in either of the
two NILM sub-divisions: event-based or state-based [22, 23, 10, 24, 18, 25]. Event-based
NILM methods rely on edge detection. A supervised or unsupervised clustering algorithm
is applied to the detected edges. Ultimately, these activations (positive edges) are paired
with their corresponding deactivations (negative edges). If the events or edges are not as
consistent as possible, the event-based methods suffer from mis-classifying appliances that
operate in a similar power range [23, 22, 10]. On the other hand, the performance of state-
based NILM methods depends on the quality of the initialization of appliance state models.
This means that either the a priori knowledge has to be very accurate or there has to be a
large amount of data to train the models [26, 27].

There has been some work performed on denoising power signals. Below, we present
what we consider to be some of the most relevant works in the context of denoising power
signals.

An event-based detection NILM algorithm was proposed in [28]. The approach per-
formed data preprocessing before performing disaggregation. The authors claimed that

5



they used seven signal processing algorithms in order to get rid of disaggregation noise.
However, the implementation and the code are unavailable.

The authors in [29] developed an appliance energy model generator based on regression
models. Their approach relied on a “software based electricity metering solution”. They
assumed the appliances are equipped with network interfaces and otherwise they suggest to
use additional sensors (e.g,. microphones) to record data. Prior to feeding the data to the
regression algorithms, the measured power values were pre-processed (in order to obtain
smoother power traces) with “finite impulse response FIR filters with a rectangular kernel
function” and different filter window sizes (2 to 10).

In [30], the authors presented a NILM approach based on edge detection. Before per-
forming NILM, the method required to filter the powers signal due to oscillations and noise.
The authors implemented mean, median, and Gaussian filters with different window sizes
(3, 5, 60, 70, 100). They concluded that the best filter size was 5. The authors determined
this was the best parameter for their application due to the trade-off between removing noise
from the signal and being able to recognize small loads. The median, mean, and Gaussian
filters are well-known filters in the signal processing area [31, 32, 33], these filters are good
for noise removal and edge preserving (in the case of the median and mean filters). On the
other hand, the Gaussian filter removes noise components, but it smooths the signal. This
has a negative effect when a NILM algorithm relies on sharp edges for event detection [23].

The authors in [27, 34] presented variations of the Hidden Markov Model (HMM) for an
unsupervised approach. A preprocessing step needs to be carried out before feeding the data
to the NILM system, this was achieved using a median filter. In [34], the method was based
on a particle filter in order to approximate the posterior density of the HMM. Although the
median filter removes outliers and can smooth the signal, it does not successfully sharp the
signal’s edges.

From the literature review carried out in this work, several NILM researchers perform
a denoising step prior to disaggregation. Nevertheless, they rely on basic smoothing filters
such as the mean, median, Gaussian filters. More advanced filters that have the character-
istics of smoothing the signals and preserving edges can be found in the image processing
literature [33] and have been used for several decades. Some examples of these filter are:

• Anisotropic diffusion filter [35, 36]. This edge-preserving filtering technique was ini-
tially developed for images. The filter was proposed as a better solution to the Gaus-
sian kernel, which has the disadvantage of being unable to select the important regions
to remove in a signal. Anisotropic diffusion is able to remove noise while preserving
important information such as edges in the image. This filter requires an iterative
solver [37].

• Bilateral filter. This filter was developed to be able to smooth images while preserving
edges. The procedure is non iterative. Furthermore, the method relies on a nonlinear

6



combination of nearby image values. The bilateral filter is an alternative to the
anisotropic filter [36]. The latter, involves the solution of partial differential equations.
Despite the fact that the filter was first developed for images, it can be applied to
one-dimensional signals 1.

• Domain transform for edge-aware image and video-processing [37]. The new approach
was developed as an enhancement of the anisotropic diffusion and bilateral filters for
video and images. The filter has the characteristic of preserving the edges while
being considerably less computationally complex than the anisotropic diffusion and
the bilateral filters.

To our knowledge, the authors in [23] were one of the first researchers to introduce more
advanced filtering techniques before performing disaggregation, where a NILM approach
via graphical signal processing (GSP) was developed. Two filters based on GSP were im-
plemented: total variation regularization and a bilateral filter. In order to succeed at the
event classification task, primarily, edge detection should be correctly performed. Therefore,
an edge sharpening procedure was implemented. The edge sharpening method consists of
merging neighbouring peaks on the differential signal that exceeds a predetermined value.

Jones et al. [2] developed a novel filter that extracts steady-state information from ag-
gregate data. The filter removes measurement noise and transient behaviour. Furthermore,
the approach is capable of preserving sharp edges which allows for a more accurate cluster-
ing. Nevertheless, the filter relies on seven parameters, which hinders optimization tasks [2,
9]. The work performed by Jones et al. [2] was motivated by our filter pipeline method (see
Subsection 2.2.1). Later, Jones et al. method served as a stepping stone and motivation to
our two proposed methods for removing noise from NILM signals, the Change Point filter
and the CUSUM Kalman filter.

2.2 Steady-State Filters

This section describes the methods implemented in order to preserve steady-state informa-
tion from power signals. The methods we will focus on are: the filter pipeline, the CP filter
and the CUSUM Kalman filter.

Although the filter pipeline showed promising results, its computational time was in-
tractable which allowed us to develop better approaches such as the CUSUM Kalman filter
and the CP filter show to be better alternatives. However, we decided to include some
results as these series of filters arranged sequentially served as a motivation to what we
consider is an important part of this thesis and NILM.

1The Python code for the 1-D bilateral filter can be accessed via: https://gitlab.com/snippets/16327
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2.2.1 Filter pipeline

As discussed previously, each of the filtering approaches cannot accomplish to clean a signal
that results into a sharp-edge and steady-state signal. Therefore, we propose to use a filter
pipeline (see Figure 2.1) for denoising purposes. The filter pipeline exploits each of the
benefits that the state-of-the-art methods cannot exploit individually. A standard median
filter built into Matlab or Python/Numpy (or see [30, 34, 27, 38]) was used as the first step
to remove large spikes (e.g., from fridge compressor start-up). Then, the result is sent to
a bilateral filter [39], followed by an anisotropic diffusion filter [36]. Next, we adapted the
work in [37] in order for the filter to process one-dimensional signals. The final step consists
of applying edge sharpening as in [23]. Figures 2.2 and 2.3 show the 1Hz raw aggregate
signal and the resulting aggregate respectively. For further details, Figure 2.4 shows the
sequential inputs and outputs to the filter pipeline (starting with the median filter and
finishing with the edge sharpening filter. The same workflow from Figure 2.1).

Although the filter pipeline method manages to remove transients and preserves edges,
its computational time grows as the number of filters in the pipeline increases. Moreover,
the filter in [37] results in a computational burden as it is much slower relative to the other
filters (this will be discussed in Section 2.4). The filter pipeline was a good first iteration
in terms of transient and noise removal. However, its computational speed results in a
huge burden, which makes it undeployable for real-time applications. Our next task was to
investigate filters that could provide similar noise removal and at the same time being able
to denoise raw aggregate rapidly.

Median Filter Bilateral Filter

Anisotropic
Diffusion

Edge -
Preserving

Filter

Edge
Sharpening 

Input
Signal

Output
Signal

Figure 2.1: The series of filters used in our proposed filter pipeline. The order in which these
filters are placed throughout the pipeline can be permuted.Filters can be added/removed.

8



0 1000 2000 3000 4000 5000
Time (s)

0

1000

2000

3000

4000

5000

Po
we

r (
W

at
ts

)

Figure 2.2: Raw 1Hz aggregate signal
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Figure 2.3: Output of our filter pipeline (Figure 2.1)

2.2.2 Change Point Filter

We want to detect when an appliance in the aggregate signal y change its state, e.g., it is
turned ON/OFF or if it changes its operational mode. Hence, in this section, we develop
a filter that is inspired by the idea of hypothesis testing [40]. We detect changes in the
aggregate signal between time samples. When the change is large enough, we mark change
points which we use to reconstruct the final filtered signal.
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Figure 2.4: The consecutive inputs and outputs of the filter pipeline shown in Figure 2.1.
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Let us suppose we have the aggregate signal y. The signal is corrupted with additive
white Gaussian noise, i.e., the noise values at any pair of times are independent and identic-
ally distributed (i.i.d.) Gaussian zero-mean. Moreover, we assume the aggregate signal y
is piece-wise constant.

In order to detect the values of the piece-wise function y we need to determine what
are the time instants where the aggregate signal changed. In other words, we seek the time
instants where the probability of the next sample yt+1 coming from the same distribution
of the past w samples is extremely low.

Let us introduce the moving average µt and the moving standard deviation σt of the
aggregate signal y. The moving average is given by

µt = 1
w

w−1∑
i=0

yt+i. (2.1)

On the other hand, the standard deviation can be calculated as

σt =

√√√√ 1
w − 1

w−1∑
i=0

(yt+i − µt)2. (2.2)

A predetermined threshold n ∈ R+ is set, and if the distance (in terms of standard
deviations) between the next sample yt+1 and the moving average µt exceeds the threshold,
then an alarm is set. Mathematically, this can be expressed as

|yt+1 − µt|
σt

> n, (2.3)

or equivalently, we could split the expression in (2.3) into two inequalities

yt+1 > µt + nσt, (2.4)

yt+1 < µt − nσt. (2.5)

An example of the idea is depicted in Figure 2.5. Here, the aggregate signal is composed
of two cycles of the fridge. It can be observed how the right hand side of the inequalities
from (2.4) and (2.5) form an envelope around the signal. However, when a sudden change
occurs, the signal satisfies one of the two inequalities. Once the sudden changes in the signal
have occurred, the time indexes where the events happened can be stored in a D × 1 vector
that we will denote f .

Although the approach of verifying when the difference between the signal yt+1 and the
moving average µt significantly increases, and recording the time where the sudden changes
occurred is simple and seems promising for event detection. Problems occur when we have a
group of events that happen closely and the first event’s wattage is considerably larger than
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Figure 2.5: Example of a power signal. The right hand side of the inequalities in (2.4) and
(2.5) form an envelope around the aggregate signal.

the preceding events. Therefore, the consecutive events will not be detected as the signal at
that particular time will not exceed any of the two thresholds. Figure 2.6 shows an example
of a fridge event that is not detected. The aggregate for this test case was composed of the
fridge and the clothes dryer. It can be observed that when the clothes dryer turned ON
approximately around t = 240 (peak of ≈ 5600 Watts), it caused the threshold to increase.
Later, the fridge (which was already ON) turned OFF around t = 275. However, due to
the high threshold that the clothes dryer event created, the fridge event did not manage to
satisfy any of the two inequalities from the expression in (2.3).
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Figure 2.6: Example of a power signal with its respective upper and lower thresholds de-
scribed in (2.4) and (2.5).

Errors occur when events are not detected due to large variances that may accompany
former events. A first approach for solving this problem is to modify the window size w or
the number of standard deviations n that we will consider for our threshold.

12



If there is a sudden change and the window size has a small value, the sample where the
event happened will have a large contribution to the moving mean and the moving standard
deviation and thus, the threshold. On the other hand, if the window size is chosen to be
larger, the sample where the event occurred will have a smaller contribution to the mean
and the standard deviation will also be smaller.

The parameter n determines the number of standard deviations the two inequalities
from (2.4) and (2.5) will take into consideration, the smaller we choose it to be, the smaller
the difference between the signal and the moving mean need to be, in order to satisfy any
of the two inequalities. Hence, more changes in the signal will be considered as events. On
the other hand, larger values of n will enlarge the absolute values of the thresholds and
changes in the aggregate signal will not exceed the thresholds with easiness.

We can observe how the choice of the values for w and n has on detecting changing points
in the signal. The number of detected events is a trade-off between these two parameters.
However, these parameters are signal dependent, i.e., events in aggregate signals that change
abruptly, might not be detected if the window size is large. On the other hand, if the window
size is set to a smaller value, there will be changes in the signal that can be labeled as events
and those events in the samples could be due to sensor noise (that we aim to remove).

To avoid missing events due to the memory problem that calculating moving statics
carries, we calculate the moving mean and moving standard deviation from the aggregate
signal y backwards. Meaning that instead of calculating the moving average and standard
deviations starting from t = 1, the computation begins from sample t = N, N −1, N −2, . . .

all the way to sample t = 1. This can be performed similarly to the expressions in (2.1)
and (2.2). The times of detected events are stored in a K × 1 vector denoted b.

Figure 2.7 shows the test case presented in Figure 2.6 with the moving statistics com-
puted backwards and thus, it can be observed how the negative event (fridge turning OFF)
is accurately detected.
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Figure 2.7: Example of an aggregate signal with moving statistics computed backwards (the
event that could not be detected in Figure 2.6 is now detected).
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Once the associated time indexes for the detected events are stored in f and b. The
vectors can be concatenated and sorted in ascending order and stored in a new vector
denoted e. Later, e is used to find regions between events or change points. Let us suppose
that the vector e = [1500, 2300], the regions in the vector are: region1 = 1 to 1499,
region2 = 1500 to 2299, and region3 = 2300 to N . Figure 2.8 depicts an example of the
aggregate signal with its respective change points or events.
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Figure 2.8: Example of an aggregate signal with its corresponding detected events (i.e.,
change points)
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Figure 2.9: Example of a raw aggregate signal and the filtered output.

Finally, we calculate the mean between these regions to obtain our filtered signal. For
example, let us suppose that the raw aggregate signal exceeded any of the inequalities in
(2.4) or (2.5) at the times t = 1500 and t = 2300. We would calculate the mean between the
samples t = 1 to t = 1499, t = 1500 to t = 2499, and t = 2300 to t = N . The raw aggregate
y with its respective change points is displayed in Figure 2.8. It can be observed that only
a few samples are considered to be events. Of course, the number of events detected will
depend on the values of w and n. Although these parameters can be chosen heuristically,
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later, we provide a discussion of one method to select the appropriate parameters by defining
a loss function of the Root-Mean-Square Error (RMSE) and the Hoyer sparsity between the
raw and filtered aggregates (see Section 2.3 for more details).

The filtered version of y, denoted as ŷ is shown in Figure 2.9. The change point filter
was able to remove transients and noise sensor. Moreover, the signal ŷ has sharp edges. All
these signal properties will allow methods such as the one presented in [9] to cluster more
accurately as the edge values are significantly more consistent across appliance activations.

2.2.3 CUSUM Kalman Filter

Our third noise and transient removal filter consists of fusing the idea of the Kalman filter
and the CUSUM algorithm 2.

The Kalman filter, a recursive estimator, is widely employed in numerous applications,
ranging from change detection, tracking moving targets, communication systems, guiding
and navigation, and biomedical signal processing [41, 42, 43]. Intuitively, the Kalman
filter helps us to keep track of the aggregate signal variations. Here the state transition
matrix (which for the one-dimensional case is a scalar) is assumed to be one. Thus, the
prediction step, more specifically equation (A.7) assumes that the aggregate signal is piece-
wise constant. On the other hand, the CUSUM algorithm is in charge of accumulating the
error between the previous output of the Kalman filter, denoted x̂t−1 and the current the
current measurement yt. Once this accumulation of errors exceed certain threshold h, the
CUSUM algorithm “fires” an alarm, indicating that there has been an abrupt change in the
signal. Figure 2.10 shows an example of the activations/deactivations detection using the
CUSUM Kalman filter. It can be observed that when the absolute value of the accumulation
error gt surpasses the threshold h (or in other words, when |gt| > h), an alarm is fired and
we consider that as a change point or event.

Similarly to our previous steady-state filter (see Subsection 2.2.2), we store the time
indexes when the CUSUM algorithm detects a change point. Later, we find the regions
between these change points. Finally, the mean between these regioans is calculated in
order to obtain our filtered signal. Figure 2.11 displays an example of the final result after
applying the CUSUM Kalman filter to an aggregate signal composed of a fridge, furnace, and
dishwasher signals from the RAE dataset. Contrary to the change point filter presented in
2.2.2, the CUSUM Kalman filter does not need information from the future, it only requires
information from the past and the present.

2The reader is referred to Appendix A.3, for an extensive understanding of the Kalman filter theory and
the CUSUM algorithm
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Figure 2.10: Example of change point detection in the CUSUM Kalman filter.
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Figure 2.11: Output CUSUM Kalman filtered signal.

2.3 Experimental Setup

The most direct evaluation of the filters presented in this chapter, would be by examining
the filtered signal relative to the raw signal. Nevertheless, for a steady-state filter to be
performing successfully in NILM, the most reasonable criterion is disaggregation perform-
ance using a metric that is directly related to edge clustering such as the methods presented
in [1, 9]. However, trying to optimize such types of metrics can be unfeasible due to the
large state-space associated with the filter parameters. Jones [9] proposed a more relaxed
objective function based on the RMSE and the Hoyer sparsity [44], given by

F = RMSE(y, ŷ) − λS(ŷ), (2.6)
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where RMSE(·) is the root mean squared error (4.5) between the aggregate signal y and
the filtered aggregate ŷ, λ is the term controlling the importance of the Hoyer sparsity loss
S, which is

S =

√
T − ||∆ŷ||1

||∆ŷ||2√
T − 1

. (2.7)

Here, T is the number of samples of the filtered aggregate, ∆ŷ is the discrete first-differences
of the filtered signal, whereas ||∆ŷ||1 and ||∆ŷ||2 are their ℓ1- and ℓ2-norms, respectively.

Intuitively, we want to achieve the least possible variability between the filtered signal
and the aggregate signal, while at the same time, we aim to recreate the signal with least
possible edges. This idea can be achieved by minimizing the expression in (2.6). By min-
imizing the RMSE we will approximate the filtered signal as close as possible to the raw
aggregate or in other words, will penalize large deviations. On the other hand, the term
λS(ŷ) acts as a penalizing term, restricting the filtered signal to have less edges or activa-
tions/deactivations. The λ term governs the importance of the sparsity loss. Note that a
filtered signal with a large amount of activations/deactivations will make S(ŷ) to be close
to 1. Oppositely, a filtered signal with fewer activations will result in S(ŷ) being close to 0.
Note how the range of the function in (2.6) is [−λ, RMSE].

Contrary to [9], we opted for minimizing the loss function in (2.6) using the grid search
method for the CP filter and the CUSUM Kalman filter 3. This is because oppositely to [9],
the parameter space for these filters is considerable smaller than in Jones’s method. Con-
sidering we only have two parameters for each of the steady-state filters, i.e., The CP filter
is governed by the parameters w and n, while the CUSUM Kalman filter can be operated
using the parameters h and d. We varied the two parameters for each of the filters and
evaluated the loss function in (2.6) at each of the parameters. The lower and upper bounds
for the parameter searching were chosen by inspection. E.g., we know that for the CP filter,
setting n to a small value will allow do detect a large number of activations/deactivations
in the aggregate signal. Therefore, if λ is small in (2.6) (meaning that the metric will not
penalize if the filtered signal also contains a large number of activations/deactivations), a
good minimum of the loss function will be for small n. Oppositely, if λ has a large value
(we are restricting the filtered signal to be composed of less activations/deactivations), a
good minimum of the loss function will be for a large n.

3Although the Kalman filter depends on designing parameters such as the process noise covariance Qt,
the measurement noise Rt (see Appendix A.1), there is no evidence in order to choose the parameters
heuristically. Therefore, for this work we decided to set Q = 1 × 10−4 and Rt = 1 × 10−4 and decided to
optimize the designing parameters for the CUSUM algorithm h and d. Although it could be claimed that the
parameters Qt and Rt are important for the Kalman filter, there is no intuitive sense of how to select these
values. Optimizing these extra parameters for the CUSUM Kalman filter might lead up to more accurate
results (see 2.4) for denoising signals. This is left to future work.
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We performed the parameter optimization of the CP, CUSUM Kalman and steady-state
block filters [2] for the whole RAE dataset which is sampled at 1 Hz. The optimization was
performed on the “mains” submeter of both house 1 and 2 (which contains the aggregate
signals). House 1, block 1 contains ∼ 9 days worth of data, whereas House 1, block 2 and
House 2, block 1 contain ∼ 63 days per block.

2.4 Experimental Results

This sections presents a discussion of the results obtained from our two filtering approaches:
the CP filter and the CUSUM Kalman filter. Further, the two filters are compared against
a state-of-the-art filter presented in [2].

Figure 2.12 depicts the aggregate signal with its respective filtered signals: the CP
filter, the CUSUM Kalman filter, and the steady-state block filter [2]. Figures 2.13 and 2.14
present a more detailed examination of Figure 2.12. Figure 2.13 shows the filters acting
on a clothes dryer activation, it can be observed that the three filters were able to detect
the activation. However, the Kalman filter detected an extra deactivation (∼ 320) seconds,
whereas the steady-state block filter [9] and our proposed CP filter have a similar behaviour.
Later, around the sample 415, the furnace was activated, both the CP filter and the Kalman
filter were able to detect the change. Finally, Figure 2.14 depicts the cycle of the fridge.
Here, the three filters were able to detect the activation and deactivation, correctly.
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Figure 2.12: Visual comparison between our two steady-state filters and the steady-state
block filter [2].
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Figure 2.13: Zoom to Figure 2.12. Filters acting on a clothes dryer activation (∼ 310
seconds), followed by the furnace activation (∼ 415 seconds).
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Figure 2.14: Zoom to Figure 2.12. Filters acting on a fridge activation (∼ 310 seconds).

Figure 2.15 shows an example of the loss function surface in (2.6), with λ = 1000. The
error surface was computed using the CP filter over the mains of house 1, block 1 of the
RAE dataset (∼ 9 days).

Tables 2.1, 2.2, and 2.3 summarize the CP filter parameters after minimizing the metric
in expression (2.6), the parameters were computed with different λ weights on the Hoyer
loss. It can be observed that the larger the λ weight, the more “abrupt” the filter acts
on the aggregate signal. Also, the larger the λ weight, the larger the parameters n and w
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resulted. This suggests that if we aim to have less activations/deactivations in our filtered
aggregate signal, the values of w and n should be enlarged. A visual comparison of filtered
aggregate signals using the optimum parameters for the CP filter in the Table 2.1 can be
observed in Figure 2.16.

Figure 2.17 displays a visual comparison for the CUSUM Kalman filter local optimum
parameters (in terms of the RMSE and Hoyer sparsity function) shown in Table 2.4. As
expected, larger λ weights in the Hoyer sparsity impose a stronger or more abrupt filtering
in the aggregate. Therefore, the filtered signal will have less activations/deactivations which
can be beneficial in some scenarios. E.g., appliances like the clothes dryer or heat pump
which have large power values and remain ON for large time intervals. However, on cases
where the appliances change their power draw abruptly (e.g., the dish washer), a filter
optimized with large λ weights will not be able to keep track of these abrupt changes in
the signal. Tables 2.5 and 2.6 summarizes the CUSUM Kalman filter parameters after
performing the minimization for the equation in (2.6). We can observe how increasing λ

weights suggest the enlargement of the d threshold. This is not surprising as only large
activations would exceed d.

Tables 2.7, 2.8, and 2.9 show the resulting “optimal” parameters for the loss function
in (2.7). The optimization was performed using the dual_annealing library from the
scipy.optimize package (see [9] for more details).

Table 2.10 shows a comparison of the run-times for our two proposed approaches (the CP
and the CUSUM Kalman filter versus the approach in [2]). The run-times were averaged over
100 trials. It can be observed how the CP filter and the CUSUM Kalman filter outperformed
the steady-state block filter in terms of run-times for the three houses in RAE. Although
the “mains” from RAE house 1, block 2 and house 2, block 1 are composed of the same
amount of data (∼ 63 days), it can be seen how the run-times for the three filters are lower
for house 2, block 1. This could be due to the varying complexity of aggregate signals
from both houses. Moreover, it can be observed that for house 1, block 2, the steady-state
block filter [9] runs at least ∼ 7× slower than ther CP and the CUSUM Kalman filters.
Which suggests that the greater the complexity in the aggregate signal from the house, the
steady-state block filter [2] faces with more challenge (in terms of running time) in order to
operate.
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Figure 2.15: Surface of loss function in (2.6) for the CP filter. House 1, block 1 (∼ 9 days).
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Figure 2.16: Example of various “optimized” filtered outputs (CP filter), for increasing λ
weights. Mains from House 1, block 1 (∼ 9 days).
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Figure 2.17: Example of various “optimized” filtered outputs (CUSUM Kalman filter), for
increasing λ weights. Mains from House 1, block 1 (∼ 9 days).

Table 2.1: CP filter: Optimal parameters for the loss function in (2.6). RAE House 1, block
1 (∼ 9 days).

λ w n min F(y, ŷ)

100 5 1.6 -27.4
500 18 2.5 -368.5
1000 28 2.9 -840.7
1500 39 4 -1315.3

Table 2.2: CP filter: Optimal parameters for the loss function in (2.6). RAE House 1, block
2 (∼ 63 days).

λ w n min F(y, ŷ)

100 5 1.6 -34.4
500 18 2.5 -384.2
1000 26 3.6 -854.3
1500 30 3.9 -1332.3
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Table 2.3: CP filter: Optimal parameters for the loss function in (2.6). RAE House 2, block
1 (∼ 63 days).

λ w n min F(y, ŷ)

100 5 1.7 -64.2
500 18 2.9 -441.0
1000 26 3.7 -916.6
1500 30 4 -1406.1

Table 2.4: CUSUM Kalman filter: Optimal parameters for the loss function in (2.6). RAE
House 1, block 1 (∼ 9 days).

λ h d min F(y, ŷ)

100 64 0 9.7
500 74 2 -368.0
1000 111 3.5 -845.5
1500 124 4.5 -1320.6

Table 2.5: CUSUM Kalman filter: Optimal parameters for the loss function in (2.6). RAE
House 1, block 2 (∼ 63 days).

λ h d min F(y, ŷ)

100 64 0.5 0.3
500 74 1.5 -378.9
1000 111 4 -858.0
1500 120 4 -1333.4

Table 2.6: CUSUM Kalman filter: Optimal parameters for the loss function in (2.6). RAE
House 2, block 1 (∼ 63 days).

λ h d min F(y, ŷ)

100 58 0 -31.5
500 66 1.5 -416.5
1000 85 5 -899.0
1500 174 2 -1381.6
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Table 2.7: Steady-state block filter [2] in (2.6). RAE House 1, block 1 (∼ 9 days).

λ τbase md sd me sa fp fh min F(y, ŷ)

100 21.7 152.0 19.7 2164.0 59.3 0.4 0.8 -18.4
500 30.9 116.5 19.2 4957.8 75.3 0.8 0.9 -394.7
1000 48.9 217.2 34.1 4792.0 92.3 0.9 0.3 -865.5
1500 47.3 105.1 20.7 4880.7 22.5 0.4 0.8 -1340.7

Table 2.8: Steady-state block filter [2] in (2.6). RAE House 1, block 2 (∼ 63 days).

λ τbase md sd me sa fp fh min F(y, ŷ)

100 15.0 142.4 16.1 4083.0 32.2 0.1 0.05 -6.8
500 13.5 183.0 14.5 3528.5 18.0 0.2 0.0 -372.6
1000 15.0 211.7 21.7 1200.0 18.0 0.2 0.0 -832.2
1500 15.0 193.0 22.9 1200.0 18.0 0.1 0.0 -1292.9

Table 2.9: Steady-state block filter [2] in (2.6). RAE House 2, block 1 (∼ 63 days).

λ τbase md sd me sa fp fh min F(y, ŷ)

100 32.7 167.7 38.2 4543.8 25.0 0.6 0.8 -68.4
500 36.1 159.7 34.3 4649.1 53.3 0.8 0.9 -453.1
1000 31.6 193.0 28.8 1965.9 37.8 0.4 0.9 -934.6
1500 41.6 170.6 24.2 4221.1 11.0 0.9 0.9 -1416.5

2.5 Discussions

In general, the CP filter is a good alternative to filtering method proposed by Jones et
al. [2]. It achieves results as good as the steady-state block filter (in terms of the loss
function defined in equation (2.6)). Moreover, it only depends on two parameters which
allow optimization tasks to be easier and faster. Furthermore, the computational time of
the CP filter is proven to be ∼ 8 times faster than the steady-state block filter. On the
other hand, the CUSUM Kalman filter output depends only on past and present inputs.
Therefore, it is a good alternative as it offers similar run-times to the ones achieved by the
CP filter and can be used in systems that require processing in real-time. However, it does
not offer low loss values as the ones provided by the CP and steady-state block filters.
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Table 2.10: Experimental run-times: RAE dataset

RAE-House 1, Block 1 (∼ 9 days)

Filtering Method Run-time
(seconds)

CP filter 5.2826
CUSUM Kalman filter 4.0520
Steady-state block filter [2] 12.8397

RAE-House 1, Block 2 (∼ 63 days)
CP filter 30.0079
CUSUM Kalman filter 28.6012
Steady-state block filter [2] 222.5080

RAE-House 2, Block 1 (∼ 63 days)
CP filter 16.20378
CUSUM Kalman filter 25.39075
Steady-state block filter [2] 53.94789
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Chapter 3

NILM - Unsupervised Learning

This chapter focuses on unsupervised learning methods for NILM. Section 3.1 provides a
summary of the state-of-the-art unsupervised algorithms applied to the appliance disag-
gregation field. Later, we describe our proposed unsupervised method for decomposing
aggregate power signals into a series of uni-modal set of appliances.

3.1 Related Methods

The following section is a summary of the related NILM unsupervised methods. Some of
the methods described here, were motivating work for our proposed method described in
Section 3.2. Further, our proposed method based on a hybrid KP-GMM was a stepping
stone for the work presented by Jones in [9].

Jones in [9] proposed an unsupervised clustering algorithm based on non-parametric
GMMs. The algorithm grouped appliances’ activations/deactivations (events). Later, the
author developed an efficient method to pair each activation with its corresponding deac-
tivation in order to decompose the aggregate as uni-modal appliances. The algorithm does
not require prior information of the number of clusters. It is acknowledged that the work
developed by Jones is leveraged throughout this thesis.

The work in [45] describes how NILM can be solved using the KP and a genetic al-
gorithm. Despite the idea seems simple and promising, it has some drawbacks: genetic
algorithms suffer from a long execution time [46] and it is impossible to guarantee that they
find the solution to the problem we are trying to solve [43]. Another disadvantage of using
the approach proposed by Egarter et al. is mainly the assumption of the aggregate signal
being perfectly rectangular-shaped and this is far from reality in electrical signals.

In [47], the authors presented a source separation NILM approach based on Non-negative
Matrix Factorization (NMF). First, the method performs NMF so that the most important
features can be extracted. Finally, the disaggregation is performed via factorizing the
associated matrix, where the models previously learned need to be consider. The authors
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used Source Separation Via Tensor Factorization ([sic] STMF), which is a technique that
exploits further information regarding dependencies among the appliances.

In [48], the authors presented a NILM approach based on source separation. The pro-
posal is to, instead of supervision, make use of input features for each source signal. Later,
with the aid of convex optimization methods, the authors find estimators of the correlations
between the input features and the unobserved signal decomposition. The results demon-
strate that in order to perform disaggregation accurately, the features for different signals
should be linearly independent.

The authors in [49] presented an blind source separation (BSS) approach. First, clusters
of steady-state changes are created using a genetic K-means algorithm. Later, the original
power signals are recreated by means of a matching pursuit (MP) algorithm which uses the
clusters that were previously found as the sources.

The authors in [50] introduced an unsupervised method for low sampling frequency
power measurements. The work presented four variations of HMMs: Factorial HMM
(FHMM), Conditional FHMM (CFHMM), factorial hidden semi-Markov model (FHSMM),
and conditional factorial hidden semi-Markov model (CFSHMM). The authors concluded
the best variation was CFSHMM. The appliances were modelled as two state (ON/OFF)
appliances. The aggregate signal was composed of appliances such as TV, game consoles,
monitor, home theater, fridge, and laptop. The authors rely on features such as daily
schedule of the occupants which could have negative effects due to the random behaviour
of humans.

The author in [51] presented an unsupervised NILM approach. The method was magnitude-
based and it was built using a standard HMM. The work novelty revolves around the ap-
plication of “segmented” version of the Viterbi algorithm.

In [52], an“unsupervised” approach is presented. The method does not require to col-
lect training data for the individual appliances. However, the approach uses a "one-off"
supervised method which requires priors. Moreover, the method requires an unsupervised
learning method over unlabelled aggregate data that later on will be tuned for an specific
household. More specifically, the approach learns a general appliance behavioural model
which then will generalise to previously unseen households, also known as transferabil-
ity [53].

The authors in [54] presented an unsupervised NILM algorithm based on FHMM and
particle filtering (PF). PF is a technique suitable for tackling nonlinear and non-Gaussian
problems. Due to the nonlinear behaviour of some appliances and non-Gaussian nature of
the NILM noise [23], PF can be used for appliance state estimation. Although methods
such as the Viterbi algorithm are commonly used to compute inference, it no longer can be
used for performing the same task in FHMM.

In [55], the authors presented an unsupervised algorithm based on dynamic time warp-
ing (DTW) for NILM. The approach uses low-resolution time data from the smart meter

27



(greater than 1 Hz). Although the approach is unsupervised, it requires a training phase
(over the aggregate data). Moreover, these training periods are necessary in order to build
a library of appliance signatures to finally, perform pattern matching.

The authors in [12] presented an unsupervised method for load disaggregation based on
Non-parametric FHMM. the approach models the appliances as only two state (ON/OFF)
Gaussian appliances. Furthermore, the authors developed an inference algorithm, the al-
gorithm is able to detect the number of loads from the data and simultaneously, separate
the aggregate power signal.

An unsupervised NILM technique based on GSP was presented in [10]. The approach
does not need any training before NILM and is based on edge detection. once the edges are
detected, the algorithm pairs positive edges with negatives edges exploiting magnitude and
time interval information.

3.2 Hybrid Knapsack-GMM(KP-GMM)

With the aggregate signal filtered, appliance states are now far less challenging to be mod-
elled with Gaussian distributions. Moreover, Egarter et al. [45] showed how the KP can be
mapped to the NILM problem. Figure 3.1 depicts this idea. Intuitively, at each time step
t we have a knapsack with a maximum capacity (the aggregate power) and a set of items
that we can choose from in order to fill-up the knapsack (the possible appliances that could
contribute the best to form that aggregate).

Despite the mapping of the KP to the NILM problem seems straightforward, in reality,
we do not have the perfectly rectangular-shaped signals as the ones depicted in Figure
3.1. The steady-state filters presented in Subsections 2.2.2 and 2.2.3 can provide us with
aggregate signals with no transients and sharp edges. However, the variability in the power
signals, even after applying the filtering step, can still be significant. Therefore, we will not
use the KP to formulate the NILM problem as Egarter et al. [45] did, instead, we leverage
its use for solving a special case that arises when two or more appliances turn ON/OFF
simultaneously.

3.2.1 Modelling the Appliance States

Trying to cluster the differences in the aggregate signal without filtering would be very
challenging as the power values would highly overlap, therefore, leading to miss-classification
in the appliance states. Nevertheless, after filtering the raw aggregate signal with the aid of
a steady-state filter, the differences from the filtered signal are notably more uniform over
appliance activations/deactivations.

The general idea behind the hybrid knapsack-GMM is to model the first-differences or
edges as Gaussian distributions, perform clustering over the edges and update their means
and covariances using the Expectation-Maximization (EM) algorithm. With the aid of the
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Figure 3.1: Basic principle of the KP problem mapped to NILM [45].

KP algorithm we are able to distinguish when multiple appliances turn ON or OFF at the
same time. All of the process is performed in real-time. Moreover, in order to reconstruct
the signals after performing clustering, we pair each activation or positive edge with its
corresponding deactivation.

The first-differences ∆ŷ = ŷt − ŷt−1 are calculated from the filtered signal ŷ. All dif-
ferences whose absolute value exceeds ±50 Watts [10] are considered events for this work.
In simple words, we model these events or changes in the aggregate signal as uni-modal
Gaussian distributions (i.e., the appliances’ states can only have two modes of operation:
ON or OFF) using EM algorithm for GMM (see Appendix for more details). Moreover for
each Gaussian component, the average transient is also calculated, the reason to do so is
to be able differentiate appliance modes with similar power values, as we will address later
throughout this work.

Later, we attempt to pair each of these activations with their corresponding deactivations
to reconstruct the disaggregated signals. The number of Gaussians proportionally grows as
the number of distinct events is discovered. E.g., if an appliance state with an activation
of 150 Watts is discovered, this will be modelled with a Gaussian distribution of N (µ1 =
150, σ1 = 0.05·µ1). We decided to initialize the standard deviation to be the 5% of the mean
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as we thought it was a good starting point based on evidence from house 1, block 1 from
the RAE dataset. Later, if another ON event is discovered with an activation value of 2050
Watts, the appliance state will be modelled with a Gaussian denoted N (µ2 = 2050, σ2 =
0.05 · µ2). However, if a new activation of 155 Watts is discovered, this activation will
belong to the appliance state previously modeled as the N (µ = 150, σ = 0.05 · µ) Gaussian
distribution. The Gaussians’ means and standard deviations are updated based on the EM
described in algorithm 3 1.

For an event to be modelled with a Gaussian distribution, it has to pass a series of
requirements. However, the most important condition for the new event to meet is that
it has to be more than 3 standard deviations away from the mean (i.e., the Mahalanobis
distance [56, 57] has to be more than 3) of each of the previously instantiated Gaussians.
The Mahalanobis distance for a one-dimensional distribution is given by:

DM (∆ŷ) =
√

(∆ŷ − µk)2

σ2
k

, (3.1)

where, µk and σ2
k are the mean and the variance of the k-th Gaussian or appliance state,

respectively.
In order to reconstruct the disaggregated signals based on the events modelled as Gaus-

sian distributions, we need to carry out a pairing of ON events with their respective OFF
events. In principle, we try to pair each ON event with its next OFF event. If the OFF
event is less than 3 standard deviations away from the mean of the possible appliance states
that were ON, then the events are paired and the appliance state absolute value mean is
recalculated between the ON and OFF event’s times.

Makonin [17] identified that most of the researchers assume the Switch Continuity Prin-
ciple (SCP), which states that only one appliance ever changes its state at any given point
in time. However, the findings revealed that the SCP may not hold true.

In order to take into consideration when a set of appliances change their states at
the same time, we make used a modification of the KP problem. I.e., if a new ON event is
discovered and it can be considered a new appliance state, we first verify if there were two or
more previously observed and OFF appliances that could fit in this “knapsack”. Moreover, if
there is a OFF event that we have not observed, we verify if it was not a combination of two
or more appliance states that were ON. E.g., if an a new event of +250 Watts is discovered,
and there were two appliances previously discovered (at the time t of the new incoming
event the two appliances have to be in OFF operational mode) and modelled as Gaussians.
The knapsack capacity (see Appendix A.5) will be ct = 250, here ct denotes the knapsack
capacity at the t time instant. Let us say the first appliance is modelled as N (µ1 = 150, σ1 =
0.05 · µ1) and the second appliance is modelled as N (µ2 = 100, σ2 = 0.05 · µ2), then these

1The reader is referred to Appendix A.4 for a more complete explanation of GMMs and the EM algorithm
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two Gaussians will be considered two “items” that could be packed in the knapsack. Each
appliance or Gaussian has a set of “weights” and “profits”. Let us explore the particular case
for the Gaussian N (µ1 = 150, σ1 = 0.05·µ1) will have a set of weights w1 = {µ1 −|i|}, where
i = round(−σ1), . . . , 0, . . . .round(σ1). Further, the set of profits per appliance was created
so that the maximum profit was equal to 1. Thus, for this particular example p1 = {µ1−|i|

µ1
}.

A similar approach can be taken for creating the weights and the profits for as many
appliances as there appear in the system. E.g., the Gaussian N (µ1 = 150, σ1 = 0.05 · µ1)
will have a set of weights w1 = {µ1 − σ1, . . . , µ1 − 1, µ1, µ1 + 1, . . . , µ1 + σ1} by restricting
the values in the sets of weights to only take integer values. Further, the set of profits
per appliance was created so that the maximum profit was equal to 1. Thus for this
particular example, p1 = {µ1−|σ1|

µ1
, . . . , µ1−|−1|

µ1
, 1, µ1−|+1|

µ1
, . . . , µ1−|σ1|

µ1
}. A similar approach

can be taken for as many appliances as there appear in the system 2.
Finally, even though the steady-state filter greatly alleviates the problem of the ON/OFF

events not being consistent, it is inevitable to not having overlapping power values between
appliance states. For every ON event, the difference between the first 200 samples from
the raw aggregate signal and the filtered signal is computed, and it is stored as an av-
erage. We selected this number of samples as we thought the transient behaviour of an
appliance can be captured within this time span. Having access to transient information
helps to differentiate between appliance states when the activations have similar means.
Therefore, we calculate the similarity between the transient associated to a new activation
denoted τ∆ ,to the running average transient associated to each of the Gaussian compon-
ents denoted τ̄k. We perform the computation of the transients similarity measure with
the matchTemplate function contained in the OpenCV library, which calculates the nor-
malized cross-correlation [58] between the the two transients [59]. When the transients are
“perfectly similar” the value retrieved by the matchTemplate function will be 1. On the
other hand a value close to 0 indicates the transients are distinct. For our work, we chose
a value of 0.9 to include an incoming event to be part of an already instantiated Gaussian
distribution. The value was selected based on the calculation between several transients
of the same appliance. Figure 3.2 shows three different transients for the fridge, furnace,
clothes dryer and the heat pump for the house 1, block 1 of the RAE dataset. The algorithm
1 summarises the hybrid KP-GMM.

3.3 Experimental Setup

We take data from House-1, Block-1, (comprised of nine day’s worth of data) of the RAE
dataset [8] which is sampled at 1Hz. Our disaggregator was coded in Python 3.6. We chose

2The modification to the KP algorithm described here can be found at: ht-
tps://github.com/compsust/FilterDesign/tree/master/APPEEC
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Algorithm 1 The Hybrid KP-GMM Algorithm for appliance disaggregation
Assuming the raw aggregate y has been pre-processed using a steady-state filter from . The
resulting filtered signal denoted ŷ

1: K = 0, where K is the number of discovered appliances/clusters
2: for t = 2, . . . , T do
3: ∆ŷ = ŷt − ŷt − 1
4: if ∆ŷ > 50 then
5: if First event then
6: N (µ1 = ∆ŷ, σ1 = 0.05 · µ1)
7: N (µ1 = ∆ŷ, σ1 = 0.05 · µ1).mode()=ON
8: Store transient τ1 (200 samples)
9: K = K + 1

10: else if
[
argmink(DM (∆ŷ) ≤ 3) && N (µk, σk).mode()==OFF &&

matchTemplate(τ∆, τk) ≥ 0.9
]

∀k ∈ K then
11: Compute EM Algorithm
12: N (µk, σk).mode()=ON
13: Recalculate τ̄k using τ∆
14: else if KP(∆ŷ, N (µk, σk).mode() == OFF) ≥ 90 ∀k ∈ K then
15: N (µk, σk).mode()=ON
16: else
17: K = K + 1
18: N (µK = ∆ŷ, σK = 0.05 · µK)
19: Compute EM Algorithm
20: N (µK , σK).mode()=ON
21: Store transient τ̄K

22: end if
23: end if
24: if ∆y < −50 then
25: if KP(|∆ŷ|, N (µk, σk).mode() == ON) ≥ 90 ∀k ∈ K then
26: N (µk, σk).mode()=OFF
27: Compute EM Algorithm adding |∆ŷ|
28: else if argmink(DM (|∆ŷ|) ≤ 3) ∀k ∈ K then
29: Compute EM algorithm
30: N (µk, σk).mode()=OFF
31: end if
32: end if
33: end for
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Figure 3.2: Examples of different transients captured for the fridge, furnace, clothes dryer
and the heat pump. These transient information helps to identify appliances with similar
power values.

Python because of its array manipulation capabilities and digital signal processing libraries;
moreover, its convenience when coding rapid prototypes that can get quickly translated to
faster coding languages (e.g., C). All tests ran on a Mac Pro (2017 model) with a 2.3GHz
Intel Core i5 processor and 8GB of memory. Furthermore, we run all our tests in one day’s
worth of data without any prior knowledge.

3.4 Experimental Results

Figures 3.3 and 3.4 show the individual appliances, ground truth and disaggregated respect-
ively. We can observe that the disaggregator detected four appliances (one more appliance
than in the ground truth). Nevertheless, with our proposed “power assignation metric”
from Section 4.2 or with a deep learning method such as the one presented in [9], this two
unlabelled appliances, can be merged together.

Further, the output from the disaggregator (see Figure 3.5), ignored the clothes dryer
from sample 2620 to sample 3220. It was not able to track the approximately 200 Watts
operational state the clothes dryer was running on. Therefore, the disaggregator ignored
this OFF event. Although the system was not able to track this part of the signal, the power
consumption from the clothes dryer at that interval was very small and did not considerably
affect the overall accuracy score.
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To determine energy tracked, we integrate our 1 Hz power (in Watts) samples to energy
measured in kWh, as such:

energy =
∫ T

0

yt × 1
3600

1000 dt. (3.2)

Figure 3.5 depicts both how close the total energy tracked was as compared to the raw
ground truth aggregated signal. The system was able to track from 93.7% to 97.1% of the
total aggregate energy without the use of prior information (see Table 3.1). This accuracy
measure is similar Normalized Disaggregation Error (NDE) [5, 60]. We define the accuracy
measure as:

accuracy = energy(ŷ)
energy(y) × 100. (3.3)

Using the same nomenclature defined in previous sections. Some of the contributing
factored to a lower accuracy for the fridge (87.3%) was due to the fact that the ON-spikes
from the compressor were filtered out by the filter pipeline method. However, the CP filter
and CUSUM Kalman filter are able to remove transient information and at the same time
preserving the energy from the raw aggregate signal. In reality the energy contributions
from these ON-spikes is negligible, but for the small sample period in this case. Lower
accuracy for the furnace may have been caused by the fact that it has a constantly-ON
power reading of 44 Watts.
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Figure 3.3: Ground truth sub-metered appliance signals.
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Figure 3.4: Hybrid KP-GMM algorithm disaggregated appliances.
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Figure 3.5: Comparing the ground truth aggregate to the disaggregated aggregate showing
93.7% accuracy in tracking.
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Table 3.1: Comparison of Energy Truth/Filtered/Tracked (in kWh)

Filter pipeline
Appliance G.Truth Filtered Est/Tracked Truth vs Est
Clothes Dryer 2.753 2.752 2.604 94.5%
Fridge 0.063 0.062 0.055 87.3%
Furnace 0.174 0.149 0.144 82.8%
Aggregate 2.990 2.961 2.803 93.7%

CP filter
Appliance G.Truth Filtered Est/Tracked Truth vs Est
Clothes Dryer 2.753 2.752 2.698 98.0%
Fridge 0.063 0.063 0.061 96.8%
Furnace 0.174 0.174 0.163 93.6%
Aggregate 2.990 2.989 2.922 97.7%

CUSUM Kalman filter
Appliance G.Truth Filtered Est/Tracked Truth vs Est
Clothes Dryer 2.753 2.752 2.695 97.8%
Fridge 0.063 0.063 0.062 98.4%
Furnace 0.174 0.173 0.149 84.8%
Aggregate 2.990 2.988 2.906 97.1%

Steady-state block filter [2]
Appliance G.Truth Filtered Est/Tracked Truth vs Est
Clothes Dryer 2.753 2.751 2.698 98.0%
Fridge 0.063 0.063 0.061 96.8%
Furnace 0.174 0.174 0.165 94.8%
Aggregate 2.990 2.988 2.924 97.8%

3.5 Discussions

Our disaggregation method can decompose aggregate power signals that are conformed of
appliances that periodically turn ON/OFF. E.g., fridge, clothes dryer, heat pump (when it
has a periodical behaviour). However, it suffers from some drawbacks such as mis-classifying
appliances. Some of the mis-assignations are explained as follows: In an aggregate signal,
there could be an ON event of ∆ŷ Watts and if we previously have two appliances modeled
as Gaussians with similar means µ1 and µ2 (both appliances OFF at the time we detected
the ∆ŷ) event. Because both appliances could “fit” in the knapsack, then they will both get
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turned ON and incorrectly classify the appliances. Also, the fact that there is no transient
information for OFF events, could lead to poor disaggregation performance for appliances
with similar power values (e.g., fridge and the furnace), as our proposed method will mix the
pairing for such appliances. Another important case to consider when attempting to pair
ON/OFF events is the fact that an appliance turning ON with a specific power value, let
us say ∆ŷ, does not necessarily translate to the appliance turning OFF with that negative
power value (−∆ŷ). In other words, an appliance switching OFF could be composed of
multiple OFF events (at different times) which their sum approximate the −∆ŷ value.
Although these drawbacks might seem discouraging, they served as stepping stones for
Jones [9] to find a solution to these problems that present when attempting edge-pairing
of clustered events. The author exploited duration and energy conservation information in
order to have more reliable edge-pairing, the method was denoted as “first-edge pairing”
(see [9] for more details).
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Chapter 4

NILM Metrics

This section presents a summary of the most used performance metrics for evaluating NILM.
More specifically, we design a novel metric for evaluating disaggregation performance. The
metric can be helpful in scenarios where NILM is performed with an architecture such as
the one presented in Figure 1.2. Our proposed metric is based on QP [61] and it shows to
be robust under various fundamental test cases where it shows promising results.

4.1 Metrics for NILM evaluation

Since the beginning of energy disaggregation research, performance metrics for evaluating
NILM have been a topic of debate. Some of the most widely used NILM evaluation metrics
will be discussed in a short summary. This will motivate one of our research contributions:
the Power Assignation Metric (PAM), which will be presented later in this chapter. The
performance metrics are borrowed from two previous works [60] and [62], which performed
extensive research and insightful debates for reporting accuracy in NILM systems.

NILM performance metrics can be divided in classification and estimation accuracy.
The classification metrics measure the how accurately NILM algorithms can predict what
appliance is running in each state [60]. On the other hand, the estimation metrics provide
with a measure of how accurately NILM algorithms perform in terms of power estimation.

The authors in [62] concluded that the NILM research community is still far from con-
sensus regarding which metrics should be used to report results. Many of the performance
metrics are adopted from other areas and applied to NILM without a lack of deep under-
standing on the behaviour of the metrics.

According to [62], all the classification metrics assume all the events are equally im-
portant, which is not realistic since all not appliances require the same energy. Thus, we
can already observe how these metrics result problematic as they only contain information
of the state appliances being ON/OFF without providing any power information. On the
other hand, the estimation metrics allow to measure how accurately the disaggregation
algorithm performs by providing overall errors between the ground-truth signals and the
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disaggregated signals. Note how these metrics assume that the matching between the dis-
aggregated signals with their respective ground-truth signals has been previously done. To
our knowledge, this matching is always performed manually.

In the notation that follows, y
(m)
t refers to the ground truth for appliance m at time t,

whereas ŷ
(m)
t refers to the inferred power draw for appliance m at time t. In this section,

we present a number of classification and estimation accuracy metrics. The metrics chosen
to be reported in this work are based on the most cited by several authors. Later, in
Section 4.2, we provide with more detailed examples of were some of the classification and
estimation metrics that are widely used in the NILM literature fail in cases that could be
presented when attempting source separation.

4.1.1 Classification Metrics

The following metrics are based on binary classification. However, they can be extended to
their multi-state form [60]. The terminology used for this part of the works is as follows:
tp is true-positives (correctly predicted that the appliance was ON), fp is false-positives
(predicted appliance was ON but was OFF), fn is false-negatives (appliance was ON by
was predicted OFF), and tn (correctly predicted that the appliance was OFF). It is worth
noting that these measures (tp, fp, fn, tn) are accumulations over a period.

Accuracy
Acc. = tp + tn

tp + fp + fn + tn
(4.1)

Precision
precision = tp

tp + fp
(4.2)

Recall
recall = tp

tp + fn
(4.3)

F1-score
F1 = 2 · precision · recall

precision + recall (4.4)

4.1.2 Estimation Metrics

The following estimation metrics (for m individual appliances) are described as follows:

Root Mean-Square Error

RMSE =

√∑T
t=1

∑M
m=1(ŷ(m)

t − y
(m)
t )2

T
(4.5)
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Normalized Disaggregation Error

NDE =
∑T

t=1
∑M

m=1 |ŷ(m)
t − y

(m)
t |∑T

t=1
∑M

m=1
(
y

(m)
t

)2 (4.6)

Mean Absolute Error

MAE =
∑T

t=1
∑M

m=1 |ŷ(m)
t − y

(m)
t |

T
(4.7)

Estimation Accuracy

Est. Acc. = 1 −
∑T

t=1
∑M

m=1|ŷ(m)
t − y

(m)
t |

2 ·
∑T

t=1
∑M

m=1 y
(m)
t

(4.8)

4.2 Power Assignation Metric

A metric for the NILM problem should have, among others, the following attributes:

1. Tracking power assignation. The metric should be able to measure how well the
output power from each of the disaggregated signals matches the power from their
corresponding ground-truth signal.

2. Output permutation robustness. The metric value should be invariant due to
permutations in the ground-truth and/or disaggregated signals.

3. Input cardinality agnostic. As the number disaggregated outputs does not neces-
sarily match the number of ground-truth signals, the metric should be able to evaluate
somehow the match of each disaggregated signal to a ground-truth appliance.

Given T observations of M appliances {y
(m)
t }M

m=1,Tt=1, the set of ground truth appliances,
and the associated N inferred disaggregated signals {ŷ

(n)
t }N

n=1,Tt=1. We define the following
error measurement

E (y, ŷ) = min
αmn

[ Part 1︷ ︸︸ ︷
T∑

t=1

M∑
m=1

(
y

(m)
t −

N∑
n=1

αmnŷ
(n)
t

)2
+

Part 2︷ ︸︸ ︷
λ

M∑
m=1

N∑
n=1

αmn

]

+ min
βmn

[
T∑

t=1

M∑
m=1

(
y

(m)
t −

N∑
n=1

βmnŷ
(n)
t

)2
]

︸ ︷︷ ︸
Part 3

(4.9)
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subject to
M∑

m=1
βmn = 1 ∀n, (4.10)

αmn, βmn ∈ {0, 1} ∀m, n. (4.11)

The objective is to find the set of coefficients αmn and βmn that minimize the error
expression in (4.9), which can be formulated as a QP problem [61]. The nature of the
problem is of binary assignation.

Intuitively, the αmn coefficients in “part 1” of expression (4.9), are binary indicators to
whether the inferred output signal ŷ

(n)
t should be assigned or not to the ground truth signal

y
(m)
t . We aim to find the minimum error between each of the ground truth signals and the

sum of the disaggregated output signals by assigning each of the output signals to one input
signal.

The term “part 2” of equation (4.9) is a penalizing term. It penalizes appliances that
are disaggregated in their single state components. The term “part 1” will aim to assign
the inferred signals to their corresponding ground-truth signals. However, this comes with
a “cost”, as the term “part 2” will increase as more inferred signals are assigned to the
ground-truth signals. If the parameter λ is set to be very large, all of the terms in “part 1”
and “part 2” will get zeroed out, except for the ground-truth signals y

(m)
t in the term “part

1”. Therefore, the minimization will be the sum of this y
(m)
t terms. On the other hand, if

the parameter λ is set to a value close to zero, it lessens the penalization for disaggregating
multi-state appliances.

The term “part 3” of the expression in (4.9) operates similarly to “part 1” of the minim-
ization problem. The βmn coefficients are binary indicators to whether the inferred output
signal ŷ

(n)
t should be assigned or not to the ground truth signal y

(m)
t . However, the sum

of the βmn over all M the possible ground-truth signals should be equal to 1, for all the
inferred signals. In simple words, we are forcing the ŷ

(n)
t inferred signal to be assigned to

one y
(m)
t ground-truth signal (4.10). In "part 1", we did not have to constrain the αmn

coefficients to have the same condition as the as that would not allow for the regularization
term in “part 2” to perform its task.

Although the metric error metric in expression (4.9) seems complete (at least mathem-
atically), if suffers from numerical instability. Due to the fact that we are working with
power signals and we have a squared term for “part 1” and “part 3”. Moreover, we are
summing over all the appliances and all the time instants. Therefore, the equation in (4.9)
grows rapidly. In order to avoid numerical instability, we introduced a scaling factor γ.
This scaling factor consists of summing over all the total energy square of each of the y

(m)
t

ground truth signals. The scaling factor is given by
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γ =
M∑

m=1

T∑
t=1

(y(m)
t )2 + ϵ, (4.12)

where ϵ is a small number, for this work it was set to ≈ 1 × 10−3. Therefore, the error
metric described in (4.9) is divided by the scaling factor introduced in (4.12) in order to
allow for numerical stability. Further, due to the numerical solver that was employed (see
Section 4.3) suffers from high computational times for integer constraints, the condition in
(4.11) had to be relaxed for the αmn and βmn coefficients to take values in the interval [0, 1].
Thus, the error metric in (4.9), that we denoted power assignation metric, can be rewritten
(by incorporating the scaling factor in (4.12) and by relaxing the constraint in (4.9)) as

Es (y, ŷ) = min
αmn

[∑T
t=1

∑M
m=1

(
y

(m)
t −

∑N
n=1 αmnŷ

(n)
t

)2

γ

+λ
∑M

m=1
∑N

n=1 αmn

γ

]

+ min
βmn

[∑T
t=1

∑M
m=1

(
y

(m)
t −

∑N
n=1 βmnŷ

(n)
t

)2

γ

]
(4.13)

subject to
M∑

m=1
βmn = 1 ∀n, (4.14)

αmn, βmn ∈ [0, 1] ∀m, n. (4.15)

4.3 Experimental Setup

Our metric was coded and tested in Python 3.7. All tests ran on a Mac Pro (2017 model)
with a 2.3GHz Intel Core i5 processor and 8GB of memory. The software CVXPY [63, 64]
was employed for solving the metric in (4.13), constrained to conditions (4.14) and (4.15)
(4.15). This numerical solver allows to integrate QP with Python. Moreover, it allows
to relax the condition in (4.11), meaning that the αmn and βmn coefficients can now be
0 ≥ αmn ≥ 1, 0 ≥ βmn ≥ 1.

We take data from House-1, Block-1, (comprised of nine day’s worth of data) of the
RAE dataset [8] which is sampled at 1 Hz.

For Section 4.4, the optimizer was fed with signals containing 2300 samples (∼ 40
minutes), no preprocessing was applied to the signals.

For Section 4.5, 12 hours of data (43,200 samples) were selected for three appliances:
the fridge, the clothes dryer and the dishwasher. The data was partitioned in 3 windows of
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4 hours. Each window contained 14,400 samples for each of the appliances. the optimizer
was fed with these windows of data.

4.4 Results of Fundamental Test Cases

We want to test how well the metric introduced in (4.15) performs under several possible
test case scenarios that appear when attempting appliance disaggregation in architectures
such as the one presented in Figure 1.2. Although the signals that were used are composed
of short samples from the RAE dataset (see Section 4.3), they help us to illustrate the
performance of our metric in several fundamental cases in order to test its robustness.

For this section, we will work with two appliances: the fridge and dishwasher. Figure
4.1 displays the power signal of one cycle of the fridge. Figure 4.2 shows the dishwasher
signal, composed of two operational modes (see Figures 4.3 and 4.4).
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Figure 4.1: An example of one cycle of the fridge signal from RAE [8].
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Figure 4.2: An example of two states of the dishwasher appliances from RAE [8]

0 500 1000 1500 2000
Time (sec)

0

100

200

300

400

500

600

700

800

Po
we

r (
W

at
ts

)

Dishwasher - state 1

Figure 4.3: Three cycles of the first operational mode of the dishwasher in Figure 4.2
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Figure 4.4: Two cycles of the second operational mode of the dishwasher in Figure 4.2.

Test Case 1

Let us suppose the aggregate signal yt is composed of two ground-truth appliances y
(1)
t and

y
(2)
t , shown in Figures 4.1 and 4.2 respectively. Later, we perform disaggregation with an

unsupervised algorithm (such as the ones presented in [9, 10, 11] 1) using the architecture
from Figure 1.2 and obtain the inferred signal ŷ

(1)
t which is composed by the sum of the

two ground-truth appliances, as depicted in Figure 4.5. We refer to this disaggregator as
disaggregator 1.

To evaluate how our disaggregator 1 performed, we could be tempted to simply compute
the RMSE. The RMSE value would be zero. Therefore, we could conclude the disaggregator
is performing with no error. However, this is completely misleading, the disaggregator is
just aggregating both input ground-truth signals as shown in Figure 4.6. On the other hand,
the ideal disaggregation would separate the signals as depicted in Figure 4.7. We refer to
this disaggregator as disaggregator 2.

Note that unless specified, the penalizing term λ is set to be equal to 1. Table 4.1 shows
a comparison between the RMSE and our proposed metric computed to both disaggregator
1 and disaggregator 2. Our proposed metric is able to penalize when the disaggregation is

1Note how the following inputs/outputs for the following disaggregators are formulated hypothetically.
This does not mean the referenced works necessarily provide with these results. However a robust metric
should be able to differentiate between these hypothetical test cases.
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performed poorly, something that the RMSE is not able to detect. Moreover, due to the
nature of our error performance metric to be characterized as an assignation problem, the
βmn coefficients can be interpreted later, as to “what disaggregated signal corresponds to
what ground-truth signal”, i.e., our metric automatically assigns the inferred or disaggreg-
ated signals to the ground-truth signals. Further, we can express these βmn coefficients in
a (M × N) matrix. Let us denote this matrix B. The entries for the matrix B are given by

B =


β11 β12 · · · β1N

β21 β22 · · · β2N

...
... . . . ...

βM1 βM2 · · · βMN

 . (4.16)

We now show how B can be interpreted for disaggregator 2. The resulting matrix after
computing the metric in (4.13) can be expressed as

Bdisaggregator 2 =
[
1 0
0 1

]
. (4.17)

where the matrix rows represent the m ground-truth signal and the columns represent the
n inferred signal. For the particular case of disaggregator 2, there are 2 ground-truth signals
and 2 inferred signals. Thus, the β11 = 1 coefficient can be interpreted as “the inferred signal
ŷ

(1)
t can be assigned to the ground-truth signal y

(1)
t ”. Moreover, the coefficient β22 = 1 can

be similarly interpreted as “the inferred signal ŷ
(2)
t can be assigned to the ground-truth

signal y
(2)
t ”. We can see how the coefficients β12, β21 = 0 can be interpreted as “the inferred

signal ŷ
(1)
t cannot be assigned to the ground-truth signal y

(2)
t ” and “the inferred signal ŷ

(2)
t

cannot be assigned to the ground-truth signal y
(1)
t ”, respectively. A similar reasoning can

be applied to different βmn coefficients for different M and N values. From this point of
the thesis, the βmn coefficients will not be written for each of the test cases. Nevertheless,
the reader can assume the inferred signals were matched correctly with their corresponding
input signals. In other words, the βmn coefficients have been assigned correctly. In Section
4.5 we discuss the interpretation of the βmn coefficients for signals composed of larger
number of ground-truth and/or inferred signals.

Table 4.1: RMSE and proposed metric values for disaggregator 1 and disaggregator 2.

Error Metric Disaggregator 1 Disaggregator 2

RMSE 0 0
Proposed 0.08 0
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Figure 4.5: Aggregate signal composed of the fridge and the dishwasher signals (shown in
Figures 4.1 and 4.2, respectively).
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Figure 4.6: An example of poor disaggregation performance. The inferred signal is the same
as the aggregate fed into the disaggregator.
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Figure 4.7: An example of optimal disaggregation. The inferred signals match the ground-
truth signals.

Test Case 2

A metric that evaluates disaggregation should be invariant to the order of the ground-truth
and inferred signals, i.e., the error should be the same if we interchange the order of the
ground-truth and/or the inferred signals. Now, let us suppose that the aggregate signal
is composed of two ground-truths y

(1)
t and y

(2)
t shown in Figures 4.1 and 4.2 respectively.

Later, we perform disaggregation and obtain the inferred signals ŷ
(1)
t and ŷ

(2)
t shown in

Figure 4.7. Note that the disaggregator was previously denoted as disaggregator 2.
Let us denote a new disaggregator (disaggregator 3 ) in which we have the same aggregate

signal as in (disaggregator 2 ), composed by the same ground-truth signals. The inferred
signals ŷ

(1)
t and ŷ

(2)
t are the same as the ones depicted in Figure 4.7. Nevertheless, with the

distinction that the inferred signals are permuted (i.e., ŷ
(1)
t belongs to the dishwasher and

ŷ
(2)
t belongs to the fridge).

Both, disaggregator 2 and disaggregator 3 should have the same error metric, regardless
of order in which the ground-truth/inferred signals appear in the disaggregator system.
Table 4.2 shows the calculation of the proposed error metric for disaggregator 2 and disag-
gregator 3.
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Table 4.2: Proposed metric values for disaggregator 2 and disaggregator 3.

Error Metric Disaggregator 2 Disaggregator 3

Proposed 0 0

Test Case 3

Our metric should be robust and penalize scenarios where the appliances are disaggregated
in their single state components. Let us suppose that we have the same aggregate as the
previous test cases (test case 1 and 2). The aggregate is composed of the two ground-truths
y

(1)
t and y

(2)
t (Figures 4.1 and 4.2). The source separator (now denoted disaggregator 4 )

decomposed the aggregate in three inferred signals: ŷ
(1)
t , ŷ

(2)
t and ŷ

(3)
t . The first inferred

signal ŷ
(1)
t belongs to the fridge (Figure 4.1). The inferred signals ŷ

(2)
t and ŷ

(3)
t , are the

the first and second operational mode of the dishwasher (Figures 4.3 and 4.4), respectively.
Technically speaking, the disaggregator 4 is not performing poorly. However. it is decom-
posing one of the appliances contributing to the aggregate into its two operational modes.
This should be reflected in a metric. Table 4.3 compares the performance of disaggregator 2
and disaggregator 4 with our proposed metric. It can be observed that the disaggregator 4
has a larger error value. The penalizing weight was set to λ = 1×106. The penalizing para-
meter λ can be set according to “how much” we want to emphasize cases where multi-state
appliances are broken into their single operational modes. Note how clustering algorithms
such as the one described in 3.2 or [9, 10, 11] will disaggregate multi-state appliances into
a set of single-state appliances and therefore, it is worth addressing these type of scenarios.

Table 4.3: Proposed metric values for disaggregator 2 and disaggregator 4.

Error Metric Disaggregator 2 Disaggregator 3

Proposed 0.004 0.006

Test Case 4

A disaggregation metric should be power variant; i.e., if a disaggregator decomposes a signal
into a scaled version of the ground-truth signals, a robust error metric should be able to
detect such scaling.

Let us suppose that our aggregate signal is composed of two ground-truth signals y
(1)
t

and y
(2)
t (Figures 4.1 and 4.2, respectively). The aggregate signal is decomposed into a

scaled version of the ground truth signals. Therefore ŷ
(1)
t = s · y

(1)
t and ŷ

(2)
t = s · y

(2)
t ,

where s ∈ R+. For this example, we set s = 0.8. We denote this as the disaggregator 5.
Classification metrics such as F1-score are invariant to cases where the inferred signals are
ON/OFF at the same time instants as their corresponding ground-truth signals, yet the
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power difference between both can be off by a large variation. The inferred signals ŷ
(1)
t

(scaled version of the fridge signal) and ŷ
(2)
t (scaled version of the dishwasher signal) are

depicted in Figure 4.8. Finally, Table 4.4 presents a summary of a comparison between
the performance of the disaggregator 2 and disaggregator 5. We calculated our proposed
metric versus F1-score, showing our method is capable of recognizing power variations.
On the other hand, the F1-score was not able to detect the power differences between the
ground-truth signals and the inferred signals.

Table 4.4: Proposed metric values for disaggregator 2 and disaggregator 5.

Error Metric Disaggregator 2 Disaggregator 5

F1-Score (fridge) 100 % 100 %
F1-Score (dishwasher) 100 % 100 %
Proposed 0 0.06
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Figure 4.8: An example of scaled disaggregation. The inferred signals are a scaled version
of the ground-truth signals.

4.5 Results Using a published NILM Algorithm

We have tested the robustness of our metric for several fundamental cases that could appear
in disaggregation methods with architectures such as the one presented in Figure 1.2. The
next natural step is to test the proposed metric with a state-of-the-art disaggregator using
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more larger and more complex power signals. We chose the method proposed by Jones [9] as
to our knowledge it offers good disaggregation performance in terms of RMSE, F1-Score and
MAE. The disaggregator is a unsupervised clustering algorithm based on non-parametric
GMMs.

We generated a synthetic aggregate composed of 12 hours from: the fridge, the clothes
dryer and the dishwasher signals from house 1, block 1 of the RAE dataset. In order to
asses our metric’s performance, we selected periods were all the appliances were running
simultaneously. Figure 4.9 shows the individual ground-truth appliances that contributed
to the raw aggregate. Later, the raw aggregate passes through a filtering stage (see Figure
1.2), where we selected the CP filter to perform this task (note that we could also use the
CUSUM Kalman filter or the steady-state block filter [2]). Next, the filtered aggregate
signal is fed to Jones’ disaggregator [9] which produces the inferred signals in Figure 4.10.

Finally, we compute our metric for each of the three windows (see Section 4.3). More
specifically, we solve the QP problem from equation (4.13). The computed errors for win-
dows 1, 2 and 3 are summarized in Table 4.6. It can be observed that for about the first 4
days, the disaggregator is able to decompose the fridge, the clothes dryer and the dishwasher
accurately. Therefore, the metric for our first window is low compared to the second and
third window. It can be seen that the disaggregator is not able to reconstruct the fridge
signal for about the final 8 hours. Thus, the metric is larger for the last two windows.
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Figure 4.9: Ground-truth appliances that contribute to the raw synthetic aggregate.
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Figure 4.10: Inferred loads after performing disaggregation via non-parametric GMM [9].
The individual appliances contributing to the aggregate can be observed in Figure 4.9

The inferred appliances were manually matched and compared to the binary βmn coef-
ficients (note that for every window, there are m × n binary coefficients). Table 4.5 shows
the manually matched inferred signals with their respective ground-truths.

Table 4.5: Manually matched disaggregated appliances (Figure 4.10) with their correspond-
ing ground-truth appliances (Figure 4.9).

Inferred signals Matched ground-truth

Inferred load 1 Clothes dryer
Inferred load 2 Dishwasher
Inferred load 3 Dishwasher
Inferred load 4 (zero vector) -
Inferred load 5 Dishwasher
Inferred load 6 Fridge
Inferred load 7 Fridge
Inferred load 8 Dishwasher

Let us denote the matrices Bw1 , Bw2 , and Bw3 containing the binary coefficients for
the first, the second, and the third windows, respectively. This can be done for all of
the computed errors for each window. However, we only show the first matrix of binary
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coefficients as an example of how these coefficients can be interpreted as the matches between
inferred and ground-truth signals. Note that for this particular example, M = 3 and N = 8.

It can be seen from the matrix in (4.18) that the first three inferred loads (the first three
columns. Also, the loads with the largest energies), have a binary assignation of B = 1 in
their respective components. The inferred loads 5 and 6 (columns 6 and 7 of the B matrix)
were swapped for the fridge and dishwasher. This is because these two appliances have
operational modes with similar power values. The inferred load 7 has equal weights and
finally, load 8 was assigned correctly. Manually matching the disaggregated appliances with
the ground-truth signals is challenging and due to disaggregator’s behaviour, could lead to
a poor match between the inferred and ground-truth signals.

Table 4.6: Computed errors using the proposed PAM.

Error (window 1) Error (window 2) Error (window 3)

0.009 0.788 0.631

Bw1 =


0 0 0 1

3 0.619 0.352 1
3 0.193

1 0 0 1
3 0.157 0.180 1

3 0.312
0 1 1 1

3 0.224 0.467 1
3 0.495

 . (4.18)

4.6 Discussions

The proposed power assignation metric is a good alternative to the traditional classification
and estimation metrics presented in Section 4.1. Although we presented the metric focusing
on NILM, it can be used for other research areas where source separation is the main
application.

The fact that the βmn coefficients in our metric are not strictly 1 or 0 is due to the
relaxation that was introduced the QP in equation 4.13 in order to allow the cvxpy optim-
izer to work with the problem in a reasonable execution time. Constraining the problem
to the condition in (4.11) would ideally provide with better results for the βmn coefficients
as the analogy of “strictly matching one disaggregated signal to one ground-truth signal”
would be met. This is left to future work. Another potential topic to look after, would be
to explore down-sampling the signals in order to speed up the processing time for solving
the QP problem.

Finally, we can see how algorithms such as the ones presented in [9, 10, 11, 65, 15] (that
use an architecture such as the one presented in Figure 1.2), among others, can get benefited
from our proposed metric. The metric not only proves to be robust under fundamental test
cases, but also automatically assigns the disaggregated signals with their corresponding
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ground-truth signals. Even when the number of disaggregated and ground-truth signals is
not equal.
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Chapter 5

Conclusions

This final chapter provides with a synthesis of the main results from this thesis and discusses
the significance of this work’s contributions (Section 5.1). In Section 5.2 we explore the
limitations of the work we have presented in Sections 2.2, 3.2 and 4.2.

5.1 Significance

This thesis has explored an attempt to solve NILM (leaving the labelling problem aside).
First, we introduced two filters that produce steady-state representations of complex raw
aggregate data. The first filter (Subsection 2.2.2) is inspired by change point detection
theory and hypothesis testing. On the other hand, the second approach (Subsection 2.2.3)
fuses the ideas of the CUSUM algorithm and the Kalman filter. The proposed filters
outperform an existing method in terms of running time. The proposed filters’ parameters
have been optimized based on an objective function defined between the RMSE and the
Hoyer sparsity. The local optimal filter parameters were selected using various sparsity loss
weights. The first filter and the steady-state block filter [2] present a similar performance in
terms of the defined objective function. Despite the fact that the CP filter requires future
samples to operate, NILM is usually performed post-consumption. Therefore, this would
not prevent the filter to be implemented in such systems. Although the CUSUM Kalman
filter did not perform as accurately as the CP filter and the method proposed in [2], due
to the its fixed threshold and due to the fact that the Kalman filter does not depend on
future sample, it can be a good alternative to the CP filter and the steady-state block
filter, especially when real-time processing is required. Although the two proposed filters
are used in the NILM context, they can be used for other digital signal processing (DSP)
tasks where event detection is a crucial task. This is significant because there are areas
such as target tracking and fault detection where detecting events in a fast and accurate
manner is essential. Our hope is that the work presented in this thesis has a broader reach
than just NILM.
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With the aid of the two proposed filters, the aggregate signals have more consistent ac-
tivations/deactivations. Using the firsts differences from the proposed filters, we developed
an unsupervised disaggregator based on a hybrid Knapsack problem and a GMM model.
We showed the idea of how a set of activations and deactivations can be modelled using
Gaussian distributions. Later, we showed how these activations can be paired with their
corresponding deactivations, in order to reconstruct the disaggregated signals as a set of
uni-modal appliances. The KP has proven to be useful when appliances simultaneously
turn ON/OFF. Moreover, a similarity measure between transients was applied in order to
differentiate appliance modes with similar power values. Even though the proposed method
is event-based, we leveraged the transient information.

Finally, a novel metric based on QP was developed, which is significant because the
metric shows to be robust under several fundamental source separation test cases. The pro-
posed metric achieves to detect faulty scenarios where classification or estimation metrics do
not (such as the RMSE and the F1-Score). The power assignation metric demonstrated to
track power differences between ground-truth signals and disaggregated signals, it operates
successfully regardless the mismatch between the number of ground-truth and disaggreg-
ated signals, and it is not fragile to permutations. Further, taking advantage of the binary
assignation nature of quadratic programming problem, the power assignation metric shows
promising potential to automatically match each of the disaggregated signals to their cor-
responding ground-truth signal. The power assignation metric can be used not only for
NILM but in other source separation applications.

5.2 Limitations

Even though we believe in the significance of our work, and this work contributes to helping
solve the NILM problem, there are some limitations that present in it. The CUSUM Kalman
filter from Subsection 2.2.3 has the worst performance from the three compared filters. This
is mainly due to the CUSUM algorithm. The CUSUM algorithm has a fixed threshold and
the largest the value from the threshold, the less events that will get considered events.
Although this type of behaviour might seem like an advantage for large appliances such as
the clothes dryer and the heat pump, other appliances such as the fridge and the furnace
will suffer from this undesired filter behaviour.

The proposed algorithm from Section 3.2 showed promising results in terms of estimated
energy for appliances that have cyclical behaviour for certain times in their operational
modes (clothes dryer, fridge, and furnace). Nevertheless, the algorithm fails when trying to
disaggregate multi-state appliances or more complex aggregate signals. This is mainly due
to undesired KP behaviour, i.e., the KP can miss-classify appliances in certain scenarios
(see Section 3.5 for more details). Further, pairing ON/OFF edges by simply assigning
the next OFF event with the previous ON event is a trivial task. However, it is a poor
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representation of how to model the operational modes of the appliances, which could lead
to poor disaggregation performance.

Finally, the proposed metric from Section 4.2 has been proved to work under various
disaggregation test cases. It showed a robust behaviour and it could potentially be used for
automatically matching ground-truths with their respective disaggregated signals due to its
binary assignation nature. Further, if the ground-truths contain labels, this could be one
way of solving the NILM labelling problem. Nevertheless, we had to relax the problem (see
Section 4.3. Therefore, if the disaggregator’s performance is poor, the binary assignation
or ground-truth/inferred signals matching will also perform poorly due to the relaxation
introduced in expression (4.15).

5.3 Future Work

Our work provides with a solid foundation for continuing research in different areas. The
behaviour of the CUSUM Kalman filter from Subsection 2.2.3 could potentially be improved
in two ways: modifying the threshold from the CUSUM algorithm to be adaptive and
not fixed (e.g., the larger the power values, the larger the threshold), or by replacing the
CUSUM algorithm with a more robust algorithm for change point detection. There is no
clear evidence that suggests how to set the initial values from the process noise covariance
and the measurement noise parameters for the CUSUM Kalman filter, yet, optimizing these
two extra parameters might lead to better results in terms of the objective function defined
for this part of the thesis. This could potentially be achieved with the dual annealing
method proposed in [9].

Another item to look at is to incorporate duration information for the algorithm intro-
duced in Section 3.2. Further examination of the edge pairing in the algorithm suggested
that a more sophisticated pairing method is needed, such as first-n pairing [9]. Moreover,
energy conservation considerations have been proved to lead to better results.

The power assignation metric in the form introduced in (4.11) could be implemented
using a different numerical solver. The metric would be most likely able to perform the
automatic matching regardless of the disaggregator’s performance. In order to avoid nu-
merical instability, the metric was computed in windows of 4 hours (for 1 Hz data). Another
approach that could be looked after is to down-sample the data before computing the er-
ror metric. This could be done with the same sampling frequency over all the signals or
down-sampling on low-frequency parts of the signal.
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Appendix A

Additional Methods and
Algorithms

This appendix contains a more formal description of some of the methods/algorithms that
were used through Chapters 2, 3, and 4. We provide with a short summary of: the Kalman
filter, the CUSUM algorithm, the knapsack problem, and Gaussian mixture models.

A.1 The Kalman Filter

The Kalman filter, a recursive estimator, is widely employed in numerous applications,
ranging from communication systems, tracking moving targets, guiding and navigation,
biomedical signal processing, and change detection. [41, 42, 43]. The Kalman filter belongs
to the Bayesian filter family [41], where the states of a dynamical system are sequentially
estimated. The system state evolution and measurement processes are both assumed to be
Gaussian and linear [41, 66, 67]. The process can be seen as a predict-correct behaviour,
where the Kalman filter computes a prediction of the state at the next time step. Later,
an error term based on a measurement and the prediction is calculated and corrected. This
procedure is repeated iteratively.

On principle, there is a time-varying process that generates a set of outputs corrupted with
noise. The noise is generated from two sources: process noise, and the measurement noise.
Both noise sources are assumed to be Gaussian with zero mean and independent of each
other [41, 56, 66]. Let us consider a state space model in the following form

xt = Ftxt−1 + vt, (A.1)

yt = Htxt + wt, (A.2)
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where xt is the D ×1 state vector at time step t ∈ Z+ , yt is the M ×1 measurement vector,
Ft is the D × D state-transition matrix, vt is a D × 1 Gaussian random state noise vector
with zero mean and covariance matrix Qt, Ht is the M ×D measurement matrix, and wt is
a M ×1 Gaussian random measurement noise vector with zero mean and covariance matrix
Rt. The conditional probability density functions p(xt|xt−1) and p(yt|xt) of the state xt

and measurement vectors yt, respectively, are expressed in terms of Gaussian probability
density functions

p(xt|xt−1) ≡ N (xt | Ftxt−1, Qt), (A.3)

p(yt|xt) ≡ N (yt | Htxt, Rt). (A.4)

We assume the initial state distribution p(x0) is Gaussian. The posterior probability density
function p(xt | Yt) is also Gaussian [66, 41]:

p(xt|Yt) ≡ N (xt | mt | t, Pt | t), (A.5)

where Yt denotes the set of measurements, Yt = {y1, y2 . . . yt}, mt|t and Pt|t refer the
Gaussian posterior mean and covariance at time step t. Moreover, the subscript notation
“t | t” is used to indicate association with the Gaussian probability density function of the
state vector xt at time step t calculated using the measurements up to time step t. Hence,
the Kalman filter boils down to recursively compute the mean mt | t and the covariance
matrix Pt | t of the Gaussian posterior probability density function p(xt | Yt) at each time
step t:

{m0 | 0,P0 | 0}
predict−−−−→{m1 | 0,P1 | 0}

update−−−−→{m1 | 1,P1 | 1}
predict−−−−→......

update−−−−→{mt | t,Pt | t}
predict−−−−→... (A.6)

The Kalman filter equations can be divided in two parts: the prediction and the update.
The prediction equations are given by

mt | t−1 = Ftmt−1 | t−1, (A.7)

Pt | t−1 = FtPt−1 | t−1F⊺
t + Qt, (A.8)

where the expression (A.7) calculates the predicted next step of the system. Further,
equation (A.8) computes the covariance matrix by incorporating the process noise variance
Qt.
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The update equations can be expressed as

St = HtPt | t−1H⊺
t + Rt, (A.9)

Kt = Pt | t−1H⊺
t S−1

t , (A.10)

mt | t = mt | t−1 + Kt(yt − Htmt | t−1), (A.11)

Pt | t = Pt | t−1 − KtHtPt | t−1. (A.12)

The expression in (A.9) computes the system uncertainty. The Kalman gain (A.10) is a real
number between 0 and 1 and it is in charge of partially choosing between the prediction
and the measurement. I.e., it chooses either to “believe more in the prediction or in the
measurement”. Equations (A.11) and (A.12) calculate the state update and the covariance
update, respectively.

A.2 Cumulative Sum Algorithm

Before talking about the cumulative sum algorithm, we would like to point out that although
the previous section was written for the multi-dimensional Kalman filter and we will reuse
some of this theory in the next sections, from this point, we will use the one-dimensional
version or the Kalman filter as this is the version which was used throughout this thesis.

Change detection has the goal of determining a change in the mean model. It can be used for
detecting abrupt changes in a signal [42]. This is the case of the cumulative sum (CUSUM).
The idea is that a signal denoted xt undergoes an rapid change at time t = k, the change
is detected and the procedure starts all over again until another change is detected. The
parameter time-variations can be modelled using:

.xt = xt−1 + vt (A.13)

Here, vt is the Gaussian random noise variable with variance qt. It can be observed that
this is a special case of the expression in (A.1). The state transition matrix is assumed to
be Ft = 1. The core idea is to have a detection method that “fires” an alarm when the
signal xt exceeds a certain threshold h. A convenient method for calculating change in the
mean problem is by computing the residual between the measurement yt and the output of
the Kalman filter which we will denote x̂t−1. This approach should be robust to variance
changes [42]. The residual can be expressed by
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st = yt − x̂t−1. (A.14)

Later, the variable gt is introduced with the purpose of adding up the inputs st until the
additions exceed the threshold h. In order to prevent false alarms, one could subtract a
small drift term d at each time instant. Moreover, in order to prevent a negative drift, the
time to detect a change can be increased. The variable gt is set equal to 0 each time gt < 0.
The CUSUM algorithm can be described as follows

gt = gt−1 + st − d, (A.15)

gt = 0, and k̂ = t if gt < 0, (A.16)

gt = 0, and ta = t and alarm if gt > h > 0, (A.17)

where k̂ is the estimated change time and ta is the alarm time.

A.3 The CUSUM Kalman Change Detector

The CUSUM algorithm, with the aid of the Kalman filter, can be used to develop a robust
change detector due to the fact that the Kalman filter is the optimal estimator in the least
square criterion [66, 42]. Hence, the Kalman filter is in charge of keeping track of the signal
variations and the CUSUM algorithm will set an alarm when it observes that the signal has
exceeded certain threshold. The combination of these two concepts lead to the CUSUM
Kalman filter change detector which is summarised in the following algorithm 1

1It is worth noting that the Algorithm 2 uses a version of the one dimensional Kalman filter. Therefore,
all the supporting theory in Section A.1 reduces to scalar variables (i,e,. the vectors and matrices become
scalars).
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Algorithm 2 CUSUM Kalman Filter Change Detector
1: for t = 1, 2, . . . , T do
2: Initialize the mean and variance of the Gaussian state distribution N (x0 |m0 | 0, P0 | 0)

at time step t = 0.
3: Compute the prediction state

⋄ Predict state as mt−1 | t−1 = mt−1 | t−1

⋄ Predict the state variance using equation (A.8)
4: Compute the estimate x̂t = mt | t of the state xt using the update step

⋄ Calculate the system uncertainty using equation (A.9)
⋄ Calculate the Kalman gain using equation (A.10)
⋄ Update the state using equation (A.11)
⋄ Update the variance using equation (A.12)

5: Calculate the residual st = yt − x̂t−1 using equations (A.14) and (A.11)
6: Compute gt using equation (A.15)
7: Evaluate if an abrupt change in xt occurred
8: if gt > h and gt > 0 then
9: Alarm detected at ta, record ta

10: gt = 0
11: else if gt < 0 then
12: gt = 0
13: end if
14: end for

A.4 Gaussian Mixture Models

Modelling real datasets with the use of one Gaussian distribution can be a poor repres-
entation of the data and suffer from limitations. To work around this problem, a linear
superposition of two or more Gaussian distributions could characterise the data more ac-
curately [43, 68]. These linear superposition of Gaussian distributions are denoted mixture
distributions or mixture Gaussian model (GMM). The main idea is that one could approx-
imate complex densities by having a sufficient number of Gaussian distributions, the means,
covariances, and coefficients in the linear combination of Gaussians have to be adjusted, of
course.

Let us suppose that we have a dataset x = {x1, . . . , xN }, the dataset x consists of N

observations and a D dimension. The goal is to partition the data in K different clusters.
We can achieve our goal by using Gaussian distributions [68].

A superposition of K Gaussian densities is given by

p(x) =
K∑

k=1
πkN (x|µk, Σk). (A.18)
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Each Gaussian density N (x|µk, Σk) is called a component of the GMM. Each of the k

components has its own mean µk and covariance Σk. Further, the parameters πk in (A.18)
are known as the mixing coefficients. Integrating the expression in (A.18) by both sides
with respect to p(x), the following holds

K∑
k=1

πk = 1. (A.19)

Moreover, considering that p(x) ≥ 0 and N (x|µk, Σk) ≥ 0, implies that πk ≥ 0 for all k.
Combining this with equation (A.19), the following condition can be obtained

0 ≤ πk ≤ 1. (A.20)

The marginal density can be computed via

p(x) =
K∑

k=1
p(k)p(x|k), (A.21)

which is equivalent to the expression in (A.18), where p(k) = πk and can be viewed as
the prior probability of picking the k-th component, and p(x|k) = N (x|µk, Σk) is the
probability of x conditioned on k or broadly speaking, the probability that the data x
belongs to the cluster k.

Let us introduce a K-dimensional binary random variable z having a 1-of-K representations,
where a particular element zk is equal to 1 and all other elements equal 0. Therefore,
zk ∈ {0, 1} and

∑
k zk = 1. Moreover, the are K possible states for the vector z according

to which element is nonzero.

We can define the probability of z as

p(z) =
K∏

k=1
πzk

k . (A.22)

The conditional distribution of x given a particular value of z can be written as

p(x|zk = 1) = N (x|µk, Σk). (A.23)

We can rewrite equation (A.23) as
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p(x|z) =
K∏

k=1
N (x|µk, Σk)zk . (A.24)

Thus, the joint probability distribution is given by p(z)p(x|z). The marginal distribution
of x can be obtained by summing the joint distribution over all possible values of z. Which
can be calculated as follows

p(x) =
∑

z
p(z)p(x|z) =

K∑
k=1

πkN (x|µk, Σk). (A.25)

Therefore, the expression (A.25) shows the marginal distribution of x is a Gaussian mixture.
Moreover, if we have more than one observation of x in the form x1, . . . , xN , for every data
point xn there is a corresponding latent variable zn. The fact that we work with the joint
probability p(x, z) rather than working with the marginal probability p(x), will come very
useful when we try to compute the expectation-maximization algorithm (EM) [68, 43].

The conditional probability of p(z) given p(x). The quantity γ(zk) denotes p(zk = 1|x).
This can be computed via

γ(zk) ≡ p(zk = 1|x) = πkN (x|µk, Σk)∑K
j=1 πjN (x|µj , Σj)

. (A.26)

Suppose that there are data observations of the following form {x1 . . . xN }. The goal is to
use a mixture of Gaussians to model the data. The data can be represented as a N × D

matrix X, where the n-th row of the matrix X is given by x⊺
n. The hidden or latent variables

can be expressed by an N × K matrix Z with rows z⊺n. if we assuming the data points are
drawn independently from the distribution. The GMM for this (i.i.d.) dataset can be
expressed with the log of the likelihood function from the equation in (A.25) given by

ln p(X|π, µ, Σ) =
N∑

n=1
ln

{
K∑

k=1
πkN (x|µk, Σk)

}
. (A.27)

Maximizing the expression in (A.27) in the maximum likelihood framework applied to
GMMs is not a trivial task as there is the presence of singularities [68]. Moreover, the
summation over k appearing inside the logarithm. Thus the logarithm does not act directly
on the Gaussian. A closed form solution will cannot be obtained by setting the derivatives
equal to zero. Nevertheless, we can work around this problem by making use of the EM
algorithm, which allows us to find maximum likelihood solutions for models with hidden
variables [68, 43, 69].
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Given a GMM, where the goal is to maximize the likelihood function with respect to the
parameters (the means and the covariances of the components and the mixing coefficients),
the EM algorithm can be expressed as follows:

Algorithm 3 The EM for Gaussian Mixtures
1: Initialize the means µk , covariances Σk and mixing coefficients πk. Evaluate the initial

value of the log likelihood.
2: Expectation step (E step). Evaluate the responsibilities using the current parameter

values
γ(znk) = πkN (xn|µk, Σk)∑K

j=1 πjN (xn|µj , Σj)
(A.28)

3: Maximization step (M step). Re-compute the parameters using the current respons-
ibilities

µnew
k = 1

Nk

N∑
n=1

γ(znk)xn (A.29)

Σnew
k = 1

Nk

N∑
n=1

γ(znk)(xn − µnew
k )(xn − µnew

k )⊺ (A.30)

πnew
k = Nk

N
(A.31)

where

Nk =
N∑

n=1
γ(znk). (A.32)

4: Evaluate the log likelihood and check if the parameters or the log likelihood have con-
verged. If not, return to step 2.

ln p(X|π, µ, Σ) =
N∑

n=1
ln

{
K∑

k=1
πkN (x|µk, Σk)

}
. (A.33)

In simple words, the expectation step (E-step) calculates for each data-point xn, the prob-
ability γ(znk), which can be roughly interpreted as the fraction of the probability that xn

belongs to the cluster k over the probability of xn over all clusters. On the other hand, the
maximization step (M-step) updates the means µk, covariances Σk and mixing coefficients
πk. Where γ(znk) can be loosely interpreted as the fraction of points allocated per cluster
[68, 69].

A.5 The Knapsack Problem

The knapsack problem (KP), an optimization problem, consists of the analogy of having a
knapsack or backpack with a with a limited weight capacity c. Furthermore, there is a set
of N items that one can choose to pack or not in the knapsack xi ∈ {0, 1}. Each of the
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items have an associated weight wi and profit pi. The goal is to choose which item/s to
pack by maximizing the profit without exceeding the backpack capacity [70].

Mathematically, the KP can be formulated as the following linear integer programming
formulation:

maximize
n∑

i=1
pixi (A.34)

subject to
n∑

i=1
wixi ≤ c, (A.35)

xi ∈ {0, 1}, i = 1, . . . , n. (A.36)

The goal is to find the binary coefficients xi that maximize the objective function in (A.34),
given the constraints in (A.35) and (A.36). We will denote the optimal solution vector by
x∗ = [x∗

1, x∗
2, . . . , x∗

n] and the optimal solution by z∗ The most intuitive method to solve the
problem would be to consider profit the weight ratio and try to pack the items with highest
efficiency into the knapsack. This is referred to the greedy method or greedy algorithm [45,
70]. The main issue with the greedy algorithm is that it does not guarantee to provide with
the optimal solution.

A.5.1 Solving KP with Dynamic Programming

As it was previously mentioned, the greedy method for solving the KP problem may not
provide the optimal solution. Moreover, the solution can be far away from the optimal
solution [70]. Therefore, a tool which allow us to solve the KP with a more suitable solution
is needed. Dynamic programming is a general approach and it is broadly used in many areas
of operations research. The reason why dynamic programming can be applied to the KP is
due to the optimal solution consists of a combination of optimal solutions to sub-problems.

Let us consider the optimal solution for the KP. It is clear that removing any item r from
the optimal knapsack packing, the remaining solution set must be an optimal solution to
the sub-problem with capacity c − wr and item set N − {r}. Having this property, which
is called an optimal substructure, we can do the following: Let us assume that the optimal
solution for the KP has already been calculated for a subset of items and all capacities up
to c. Later, one item is added to the subset and check if the optimal solution has to change
when the subset is larger. Using the solutions with smaller capacity is now the method to
inspect, if the optimal solution has to be modified. The computation of the possible change
of the optimal solution needs to be performed again for all the capacities. The procedure of

73



adding an item to the knapsack is repeated over and over until all the items were considered.
Hence, the overall optimal solution is found [70, 71].

We can describe the following sub-problem which consists of the item set {1, 2, . . . , i} and
a knapsack capacity d ≤ c. For i = 1, 2, . . . n and d = 0, 1, . . . , c let us define (KPi(d)) as

(KPi(d)) maximize
i∑

l=1
plxl (A.37)

subject to
i∑

l=1
wlxl ≤ d, (A.38)

xl ∈ {0, 1}, l = 1, . . . , i, (A.39)

with optimal solution value zi(d).

If we know zi−1(d) for all capacity values d = 0, 1, . . . c, then the additional item i can be
considered and calculate the corresponding solution zi(d) via the recursive formula

zi(d) =

zi−1(d) if d < wi,

max{zi−1(d), zi−1(d − wi + pi)} if d ≥ wi.
(A.40)

The dynamic programming for solving the KP is shown in Algorithm 4.

Algorithm 4 The Dynamic Programming Algorithm for KP
1: for d = 1, 2, . . . , c do
2: Initialize z0, z0(d) = 0
3: end for
4: for i = 1, 2, . . . , n do
5: for d = 0, 1, . . . , wi−1 do
6: zi(d) = zi−1(d)
7: end for
8: for d = wi, wi+1, . . . , c do
9: if zi−1(d − wi) + pi then

10: zi(d) = zi−1(d − wi) + pi

11: elsezi(d) = zi−1(d)
12: end if
13: end for
14: end for
15: z∗ = zn(c)
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