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Abstract:  
 
The current trends in climate change and global warming are expected to have a profound 
effect on the cattle industry. Availability of good quality water in sufficient amounts is 
one aspect in cattle operations that can be adversely affected by such climate 
phenomenon. Water is an essential nutrient playing a pivotal role in maintaining critical 
physiological functions in cattle. The gastrointestinal microbial community of ruminants 
such as cattle are central to the digestion of plant material, production of volatile fatty 
acids, and the production of microbial crude protein essential in replenishing the nutrient 
requirement of the animal. Factors such as dietary composition, host genetics, production 
environment, age, sex etc. have been associated with significant changes in the gut 
microbiome of cattle. However, the effect of water restriction on the gut microbial 
dynamics of cattle is yet to be extensively studied. Hence, we used rumen and fecal 
samples from feedlot cattle collected during ad libitum water intake and at 50% water 
restriction) to reconstruct rumen and fecal microbial communities using 16S rRNA V4 
gene amplicon sequencing and whole metagenome sequencing. The amplicon sequencing 
data summarized at genus level revealed significant differences (p<0.05) in the overall 
species composition of rumen and fecal microbiomes during water restriction. Genera 
such as Methanobrevibacter, Rikenellaceae_RC9_gut_group and 
Prevotellaceae_UCG_003 showed significant differences in their relative abundance 
when subjected to water restriction. The fecal microbiome exhibited the most prominent 
changes due to water restriction where genera such as Turicibacter, 
Clostridium_sensu_stricto_1, Christensenellaceae_R_7_group, Romboutsia, and 
Paeniclostridium showed significant differences (p<0.05) in their relative abundance in 
comparison to ad libitum water intake. Christensenellaceae_R_7_group, 
Paenoclostridum, Rombutsia, Clostridoides, Akkermansia and Lactobacillus were 
identified as biomarkers in animals that performed significantly better (p<0.05) under 
water restricted conditions. Metagenome sequencing data summarized at species level 
showed a significant decrease (p<0.05) in the abundance Ruminococcaceae bacterium 
P7, Methanosphaera sp BMS, and Methanobrevibacter millerae in the fecal microbiome 
during water restriction. A multitude of biologically significant metabolic pathways in the 
rumen/fecal microbiome, pertaining to amino acid biosynthesis, methanogenesis, 
pyruvate fermentation etc. differed significantly (p<0.05) in pathway abundance during 
water restriction. 
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CHAPTER I 

LITERATURE REVIEW 
 

1.1 The ruminant animal 

The first grasses appeared on the face of earth nearly 60 to 55 million years ago and 

started to evolve into the dominant form of flora. Another 5 million years down the 

evolutionary timeline, the first ruminants started to co-evolve as land (forest) dwelling 

animals in the form of small omnivores that has the ability to consume and effectively 

digest, the lignified plant material provided by the grasses (Kellogg, 2001; Weimer et al., 

2009; Hackmann and Spain, 2010). 

 

A ruminant can be defined as any member of the order Artiodactyla (belonging to class 

Mammalia) that possess a rumen, reticulum, omasum and abomasum. A total of 200 

ruminant species that belongs to 6 families have been identified so far, out of which only 

9 are domesticated. The wild ruminants are highly diverse in their phenotype, ranging 

from a bodyweight of less than 5kg to more than 800kg. The population of ruminants 

both wild and domesticated combined was a staggering 3.5 billion in 2010, out of which 

only an approximate 75 million are found in the wild. All domesticated ruminants belong 

to the family Bovidae, except the reindeer, whereas ruminants belonging to the other 5 
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families (Antilocapridae, Cervidae, Giraffidae, Moschidae and Tragulidae) remain in the 

wild (Hackmann and Spain, 2010).The typical diet of a wild ruminant can include natural 

forages such as grass, browse and fruits. Based on their differences in diet, ruminants can 

be divided into three main categories. The browsers, the grazers and the intermediate 

feeders. Grazers are animals who feed almost exclusively on grass, browsers on the other 

hand depend on a diet of twigs, tree leaves and herbs or forbes. The intermediate feeders 

feed on both grass and browse or change their preference based on the season. This 

difference in their dietary habits are reflected in the rumen morphology as well, even 

though it is still unclear whether the morphological adaptations actually represent the 

dietary differences, due to the lack of properly structured studies to address this particular 

aspect (Clauss et al., 2010). 

 

The evolutionary history of ruminants suggest that they have predominantly been 

browsers throughout. Even today, the majority of them are classified as browsers and 

only a quarter are considered as grazers (Hackmann and Spain, 2010). Until recently, the 

popular consensus has been that both grazers and intermediate feeders evolved from 

browsers however, recent studies suggest that intermediate feeders were the more likely 

predecessor of both grazers and browsers (Clauss et al., 2010). In the context of domestic 

ruminants, cattle and sheep are well known grazers even though sheep are considered to 

be more selective than cattle. Goats on the other hand are mostly considered as 

intermediate feeders who rely on a mixed diet of grass, browse and forbs (Ferreira et al., 

2017). 
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1.1.2 Importance of ruminants and rumen function 

Ruminants are often considered to be superorganisms due to the prominent symbiotic 

relationship it maintains between the rumen microbiota and the cells of the host animal. 

This synergistic relationship comprises of interactions where the host animal provides 

food, heat and moisture to the rumen microbiota, in return the microorganisms provide 

the host with proteins and volatile fatty acids (VFAs) (Matthews et al., 2019). 

 

The rumen is essentially a large pre-gastric fermentation chamber that is home to a 

complex ecosystem (comprising of anaerobic bacteria, methanogenic archaea, fungi, 

protozoa and phages) tailored to break down lignified plant material that are impossible 

for humans to digest. The domestication of ruminants possessing this unique ability to 

produce human consumables such as meat, milk, hides and wool from plant cellulose, has 

been the basis of animal agriculture for many generations (Weimer et al., 2009; Huws et 

al., 2018). 

 

Milk in particular is a vital source of energy, enriched with vitamins, minerals and 

proteins, thus playing a pivotal role in food security.  A 2012 world agriculture revision 

done by the Food and Agriculture Organization of the United Nations (FAO) estimated 

that, in order to meet the rising demand for animal proteins worldwide, a 76% increase in 

meat production and a 63% increase in milk production is required globally by 2050. In 

depth understanding of the rumen and its function, especially the rumen microbiome, is 

essential in devising new strategies to meet this demand.  Studies on altering rumen 

function via the manipulation of the rumen microbiome through animal breeding and 
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dietary interventions, have gained momentum in the recent years with the ultimate goal of 

increasing milk and meat production and production efficiency, in order to cater to this 

growing demand (Huws et al., 2018). 

 

Ruminants and the rumen function is also important as a potent source of methane, 

generated exclusively by the rumen archaea often referred to as the methanogens. Even 

though methanogens play an important role in maintaining the efficiency of the 

fermentation process, once the resulting methane is emitted to the environment via 

eructation, it becomes a source of atmospheric pollution (Matthews et al., 2019). 

 

1.1.3 Structure and function of the bovine rumen 

By 2010 the worldwide ruminant livestock population amounted to a staggering 3,612 

million with sheep and cattle accounting for 95% of it. The sheer abundance of these 

domesticated ruminants makes ruminant fermentation the largest commercialized 

fermentation process in the world that breaks down lignocellulose, the most plentiful 

carbon polymer in the world (Weimer et al., 2009; FAO, 2013; Matthews et al., 2019). 

 

At the heart of this process is the unique structure and function of the rumen, the largest 

of the four compartments that make up the complex stomach of cattle. The other three 

compartments are reticulum, omasum and abomasum. The rumen, reticulum and the 

omasum collectively forms the forestomach, where the brunt of the digestion of plant 

material takes place before it is passed on to abomasum, the smallest of the four 

compartments (Frandson et al., 2019). 
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The rumen, often called as the ruminoreticulum, due to being closely related to the 

reticulum both structurally and functionally, is divided into two compartments by 

muscular pillars. These are called dorsal and ventral sacs, the dorsal sac being the larger 

of the two sharing a dorsal space with the reticulum. The inner lining of the rumen is a 

mucous membrane made up of squamous epithelium that is both none-glandular and 

stratified. Both compartments of the rumen and the reticulum are lined with finger-like 

protrusions called papillae used for the absorption of nutrients such as VFAs (DePeters 

and George, 2014; Frandson et al., 2019). 

 

The cyclic contractions of the ruminoreticulum facilitates the inoculation of plant 

material with microorganisms, the absorption of digestion end-products by papillae and 

the passing of digesta to the omasum. The gasses produced during the anaerobic 

fermentation process inside rumen gets passed into the esophagus, trachea and ultimately 

into the lunges which is then respired out to the atmosphere in a quiet process known as 

eructation (DePeters and George, 2014). 

 

A healthy rumen pH is considered to be between 6 and 7. However, this may vary 

depending the on the type of diet the animal consumes. The buffering of the rumen pH 

largely happens via the enormous amount of saliva produced and swallowed by the 

animal, especially during cud chewing, and by the ammonia that gets produced during the 

anaerobic fermentation process. Maintaining a healthy rumen pH is important for its 



6 
 

proper function since it can affect rumen microbial activity and VFA production 

(Matthews et al., 2019). 

 

1.2 US beef cattle industry 

1.2.1 History 

The first group of cattle imported into the US was by Christopher Columbus during his 

second trip in 1493. Records indicate that some Portuguese traders also imported beef 

cattle into North America in 1550s. However, the first large group of imported beef cattle 

were brought into the Jamestown Colony in 1611 by the British settlers. Early settlers 

from Spain, France, Netherlands, England and Sweden, all brought in cattle with them 

and pioneered the industry in states like Virginia, New York, Massachusetts, Delaware, 

and New Jersey. In the southwest, the first cattle are thought to have grazed around 1525, 

they were Spanish Longhorns brought in from Mexico, and by 1840 they were wide 

spread in states like Texas and New Mexico (Bowling, 1942; Wilson et al., 1965). 

 

However, it would have been hard to fathom for the early European settlers how the beef 

industry in North America would grow in scope and size. A continuous paradigm shift 

has allowed the North American beef industry to expand itself from being a mere 

commodity to a more consumer driven business with increased value addition via science 

and technology innovations. The scope of modern US beef industry ranges from 

breeding, and raising beef cattle to processing, marketing, and merchandising of the end 

product to consumers (An Overview of the U.S. Beef Industry) 
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Records indicate a rapid increase in cattle numbers from early 1900s to 1975 where it 

peaked at 132 million. From 1975 onwards, there has been an overall decline in the 

annual cattle numbers in the US and despite the herd rebuilding process initiated in 2014, 

the 2015 cattle inventory indicated a total of 90 million and is expected hover around 89 

to 93 million heads going forward (An Overview of the U.S. Beef Industry). 

 

1.2.2 The economic impact of US beef cattle industry 

By January 2020 the US cattle numbers stood at 94.4 million out of which 80 million was 

in beef production. According to USDA, in 2017, total sales pertaining to the U.S beef 

cattle industry stood at a staggering $77.2 billion, in 2019 it was $66.6 billion amounting 

to 18% of the total forecasted cash receipts for agricultural commodities in the United 

States. At the beginning of 2020, the beef production in the U.S. was predicted to be 27.5 

billion pounds, essentially maintaining its 2019 numbers which stood at 27.15 billion 

with 33.6 million cattle being slaughtered (Derell, 2020; USDA ERS - Sector at a Glance, 

2018). 

 

For 2016, the annual cash receipts from agricultural products was expected to be an 

approximate $367.5 billion, with an expected contribution of $190 billion from livestock 

and livestock products and $74 billion (20.13%) of that coming from beef cattle. In terms 

of state wise contributions, 19 states had cash receipts greater than 1 billion USD, as per 

2015 USDA agricultural statistics (An Overview of the U.S. Beef Industry). 
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Other than direct cash flows into the economy, many other industries that brings in 

billions to the U.S. economy such as finance, equipment, marketing etc., are supported by 

the beef cattle industry. One prominent example is the animal health products sector 

which recorded sales of about $2 billion USD in 2015. It is estimated that annual U.S 

beef industry income has a $3 to $5 multiplier effect on the overall U.S. economy (An 

Overview of the U.S. Beef Industry)  

 

1.2.3 Current perspective 

The United States is the largest consumer of beef, and is home to the world’s largest fed-

cattle industry, thus making it the most impactful livestock industry for the country’s 

economy. 

The U.S. beef cattle industry comprises of several different segments that are connected 

through beef production. These segments can be identified as; 

• Seedstock segment 

• Cow-calf segment 

• Yearling stocker segment 

• Feedlot segment 

• Packing segment 

• Purveyor segment 

• Retail segment 

• Consumer segment 

The seedstock segment is comprised of specialized animal breeders who are responsible 

for the propagation of favorable genetics, with the intention of increasing profitability. 
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This is achieved via selective breeding and selling of animals, genetic information, semen 

and embryos to commercial cow-calf operations. The end product of the cow-calf 

segment is weaned calves which are then sold to yearling-stocker operations (to add more 

weight to weaned calves before they are sold to a feedlot) or feedlot operations. The 

weaned calves may remain in the feedlot for about 240 days, where they are fattened by 

feeding high concentrate diets, before being harvested. The harvesting of cattle usually 

takes place geographically in close proximity to feedlots. Beef packers, purveyors and 

retailers are responsible for the harvesting, processing and distribution of an approximate 

24 billion pounds of beef annually. Beef packing is one of the most regulated businesses 

in the United States (An Overview of the U.S. Beef Industry; Drouillard, 2018). 

 

The U.S. beef cattle industry has often been driven by technology. As a result, it has 

widely employed techniques such as supplementation of forage based diets to replenish 

the requirements of energy, minerals and vitamins for the animals. Furthermore, growth 

promoters are also widely used as feed additives or implants, with the exception of 

manufacturing programs that are branded as organic (non-hormone treated). Ionophore 

antibiotics such as monensin and lasalocid are also widely used in beef production in 

order to increase feed efficiency and prevent coccidiosis in cattle (Drouillard, 2018). 

 

1.2.4 Future trends and challenges 

In 2017, the U.S Food and Drug Administration (FDA) introduced new laws intended 

towards curtailing the use of medically important antibiotics without veterinary oversight. 

Drugs such as tylosin, oxytetracyline and chlortetracycline can now be only administered 
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under a prescription from a veterinarian and is no longer available “over the counter”. 

Important elements of the U.S beef supply chain, such as purveyors and major U.S 

retailers have clearly indicated their intention of moving towards “antibiotic-free” beef 

products and have introduced timelines for the procurement of such products. Major 

commercial beef producers have also implemented strategies that enable them to move 

towards an “antibiotic-free” production system without losing productivity. Therefore it 

is clearly evident that the U.S. beef cattle industry is moving towards an  anti-antibiotic 

era, thus making the stakeholders to rely on scientific research and technological 

advancements to improve production practices in order to face off the inherent challenges 

this movement brings with it (Drouillard, 2018). 

 

The increased use of probiotics can also be identified as an important future trend in the 

industry. It has been estimated that around 60% of the feedlot cattle are fed with 

probiotics at some point, citing reasons such as establishing normal GI tact functions and 

the inhibition of food-borne pathogens. A good example is the recent introduction of the 

bacteria Megasphaera elsdenii to the market, with reported benefits of improved cattle 

performance, prevention of ruminal acidosis, and decreased disease incidence in young 

cattle (Drouillard, 2018). 

 

The tight regulation of antimicrobial drugs has given rise to another growing trend in the 

industry, the use of plant extracts as feed additives. Several plant extracts such as 

cinnamaldehyde, menthol, limonene and eugenol that are known to possess antimicrobial 

properties have been extensively studied, with notable impacts on the gut microbiota in 
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cattle. These studies have also suggested that the plant extracts can generate antibiotic 

resistance in bacteria, similar to conventional antibiotics. Other than plant extracts, heavy 

metal minerals such Zn are also increasingly used as feed additives to fight diseases such 

as respiratory illnesses and foot-rot in cattle (Drouillard, 2018). 

 

In a global perspective, beef cattle operations are often flagged for their relatively high 

land occupancy and water usage. Studies suggest that about 8%-12% of energy in feed is 

lost due to methane production during the microbial fermentation process in the rumen, 

the same methane once released to the atmosphere, acts as a greenhouse gas. It has been 

estimated that the global livestock sector (of which beef and dairy cattle operations are 

major contributors) is responsible for about 14.5% of man-made greenhouse gas 

emissions. These, along with a range of other sustainability challenges, such as public 

health and animal welfare, will need to be addressed in a comprehensive manner to 

ensure the sustainability of beef supply chains, an imperative integral part in the drive for 

global food security (Gerber et al., 2015). 

 

1.3 Global warming, climate change and its implications on the cattle industry 

The last century and the years leading up to 2016 has been registered as the warmest on 

record where the modern human civilization has experienced the rise of average global 

temperature by 1.8F0 (1.0C0). This period has given rise to record breaking weather 

extremes such as warmest years on record globally, and the current trend is expected to 

continue into the future as well. Extensive research has revealed the main culprit for this 
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global warming as anthropogenic greenhouse gas emissions world-wide (USGCRP, 

2017). 

 

Other than the rise in global atmospheric temperature, many other aspects of the global 

climate such as surface and atmospheric temperatures, snow and glacier cover, annual 

precipitation levels and the pH balance of sea water are also changing. The global sea 

level has increased about 7 to 8 inches since the beginning of the 20th century, and nearly 

a half of this increase has happened during the last 25 years. The rise of sea level is 

expected to continue into the foreseeable future with an increase of 1 to 4 feet predicted 

at the turn of the century, unless drastic measures are put in place to rectify the current 

global climate issues (USGCRP, 2017). 

 

1.3.1 What’s in store for North America 

The climate changes pertaining to North America and the United States are well 

connected to global climate changes. As such the U.S. have also experienced a spike in 

its annual average temperature. For the period from 1895 to 2016 the increase of surface 

temperature in contiguous United State has been calculated to be somewhere between 

1.2°–1.8°F (0.7°–1.0°C), which also supported by satellite image data that indicates a 

rapid increase of surface temperature from 1979 onwards. Furthermore, the annual mean 

temperature for the U.S is expected to climb in the future as well. For the period of 2021 

to 2050 an increase of 2.5°F (1.4°C) is projected, much steeper rises are predicted for the 

late 21st century where lowest of the estimates would still place it at a 2.8°–7.3°F (1.6°–

4.1°C) increase in the annual average temperature (Vose et al., 2017). 
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Temperature extremes like heat and cold waves have had significant changes as well. 

Compared to early 20th century the U.S. is now experiencing a lesser number of cold 

waves and a higher number of heat waves. Furthermore, compared to historical records, 

the temperatures of the extremely cold and hot days are predicted to increase while the 

total number of days that experience sub-zero temperatures are expected decrease in the 

U.S. Thus pointing towards a climate that is expected to significantly warm up in the 

years to come (Vose et al., 2017). 

 

Even though national precipitation levels have seen an increase of 4% from 1901 and 

future precipitation events are also projected to increase, there are vast regional 

differences that needs to be considered. The West, South West and South East of the 

United States have experienced a decrease in annual precipitation levels while Northeast, 

Northern and Southern Plains and the Midwest have experienced an increase. During 

winter and spring the northern region of the U.S. is projected to experience an increase in 

precipitation levels while opposite is projected for southwestern United States (Easterling 

et al., 2017). 

 

The increasing atmospheric temperatures trigger an increase in the capacity of water 

vapor it can hold, thus increasing the uptake of water vapor from land and water bodies. 

The decline of river flow, driven by the rising atmospheric and surface temperatures, 

have had a significant impact on the hydrologic paradigm of Northwest United States 

thus affecting river basins of Colorado and Rio Grande. Furthermore, recent studies have 

also pointed out river flow declines in the Rocky Mountains and the Missouri river basin 
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thus bringing in to light the expansion of hot droughts and arid conditions across the 

United States. Similar change has been observed in the Southwest as well, where 

declining river flows (since the latter half of the last century) are threatening the water 

supply of nearly a 40 million of its inhabitants and their livelihoods (Overpeck and Udall, 

2020). 

 

Even though other regions of the country are not expected to experience widespread 

aridification or long lasting droughts, overall sustained dry spells and flash droughts are 

expected to be the norm in the future. The most concerning factor is that this aridifcation 

of North America due to climate change is not expected to be reversible in the near future 

and the only hope lies in getting adapted to this “new normal” while trying to minimize 

anthropogenic greenhouse gas emissions that contribute to global warming (Overpeck 

and Udall, 2020). 

 

1.3.2 Implications on beef cattle 

By now it is a well-accepted norm that increased global warming and climate change is 

going to have extensive adverse effects on the cattle industry and livestock as a whole. 

The current trends justify increased concern about the thermal comfort of livestock 

including cattle, not only in tropical areas but also in areas that have a more temperate 

environment (Bernabucci, 2019). 

 

Drought events has continued to adversely affect the U.S. beef cattle industry during the 

last decade. In 2011 and 2012, droughts affected more than 67% of the U.S. cattle 
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production and more than 70% of the overall livestock and crop production, and it is 

estimated that and approximate 14% of the United States can be affected by a drought at 

any given point in time (Countryman et al., 2016). 

 

Heat stress is known to negatively affect the quality and quantity of milk production in 

dairy cattle, that can undermine the quality of origin cheeses, especially in the European 

region, thus degrading their reputation as niche products that boasts of excellence. Beef 

cattle are known to tolerate heat stress better due to their lower metabolic rates and body 

heat production. However, this tolerance comes at a cost where the increase in body 

temperature is compensated by homeostatic mechanisms and behavioral changes that 

may result in lower growth rates and reduced fertility (Bernabucci, 2019).  Heat stress is 

also known to have a negative impact on the metabolism of glucose and lipids, decrease 

the adsorption of nutrients, alter liver function and create oxidative stress in cattle. 

Furthermore, a combination of reduced feed intake, reduced saliva production and a 

decrease in HCO3
- content in saliva, in a heat stressed animal can make it more 

susceptible to rumen acidosis (Nardone et al., 2010). 

 

Beef cattle that are fatter and with darker coat are particularly susceptible for heat stress 

due to extreme temperatures. It is suggested that the temperature range for beef cattle 

function without any adverse effect on daily weight gain is between 15C0 to 29C0.  Beef 

cattle heat stress is also known to affect the quality of the meat produced, where an 

overall increase in pH and more dark cutting meat has been observed in such animals 

(Nardone et al., 2010). 
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Climate change, global warming and prolonged droughts can also have indirect effect on 

the cattle industry through decreased soil fertility, less availability of water, and increased 

circulation of pathogens other than direct effects such as heat stress.   It is estimated that 

the yearly economic impact of heat stress can be as high as $897 million for dairy cattle 

and $369 million for beef cattle (Summer et al., 2019). 

 

1.4 Beef cattle water intake 

Even though overlooked in many of the nutrient requirement models, water is one of the 

most important nutrients required for the health and wellbeing of beef cattle. Water on 

average, accounts for 50% to 80% of an animal’s body weight (BW) and plays an 

imperative role in feed digestion and maintaining other critical physiological functions. 

Hence, if an animal is deprived of sufficient amounts of the water, its feed intake may 

also drastically decrease, and even bodily functions may fail due to dehydration. 

Providing the animals with good quality water in sufficient amounts has always been a 

challenge for beef cattle production systems, especially during sustained droughts (Dyer 

et al., 2017; Wickramasinghe et al., 2019). 

 

The minimum amount of water required by cattle to properly maintain its physiological 

functions, is determined by growth, water lost due to urinary excretions, sweat, feces and 

evaporation (through lungs or skin). Furthermore, the daily water requirement of an 

animal can be influenced by body weight, ambient temperature, stage of production, diet 

and the type of cattle. It is observed that the water requirement of beef cattle may double 
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when the ambient temperature increases from 50F0 to 95F0 and cattle feeding on hay and 

dry feeds would require a significantly higher water intake than cattle grazing on lush 

green pastures that can be 75% water (Rasby and Walz, 2011; Dyer et al., 2017). 

 

Furthermore, it has been observed that introduction of water to new born calves since 

birth, rather than after 17 days of age (which is a common practice among farmers), may 

have asignificant impact in shaping their early gut microbiome. Calves that had access to 

water since birth had a significantly higher abundance of Faecalibacterium prausnitzii, 

and Bifidobacterium breve first 6 weeks of their life. These bacterial species are known to 

be associated with growth improvement in pre-weaned calves (Wickramasinghe et al., 

2020). 

 

1.5 The microbiome – An introduction 
 

The concept of ‘microbiome’ first emerged as an extension of microbial ecology studies. 

It has quickly developed into a multidisciplinary field with applications in food & animal 

science, biomedical science, plant science and human medicine. The breakthroughs made 

in microbiome studies during the past two decades have widened our understanding about 

host-microbiome interactions, and have established the idea that eukaryotes in general are 

meta-organisms who are inseparable from their associated microbiomes, thus implying 

that the host and its microbiome is best considered as a single cohesive unit (Berg et al., 

2020). 
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The definition of the word ‘microbiome’, has been debatable up to now since there is no 

clear consensus to which the experts in the field could agree upon. ‘Microbiota’ and 

‘metagenome’ are also two other words that are often used interchangeably in 

microbiome studies. A most commonly cited definition for the microbiome by Lederberg 

done at the turn of the century, defines the microbiome as the microbial community that 

resides in a host or other environment while exhibiting commensal, pathogenic or 

symbiotic interactions with the host or the external environment. The total microbial 

community residing in a specified environment is best defined as the microbiota, whom 

together with its abiotic environment forms the microbiome. The word ‘metagenome’ is 

often used to describe the total genetic content arising from the microbiota residing in a 

specific environment (Marchesi and Ravel, 2015; Berg et al., 2020). 

 

1.6 The rumen microbiome of cattle 

The microbiota residing in the rumen, known as the rumen microbiome, comprises of a 

highly diverse population of microbes that plays a vital role in breaking down plant 

materials consumed by the animal into essential nutrients for the host (proteins, volatile 

fatty acids) and gases (CO2, NH3 and CH4) that are emitted to the outside environment. 

This process is known as rumen fermentation, and the rumen microbiota plays unique, 

different and synergistic roles in this process (Fouts et al., 2012; Chaucheyras-Durand 

and Ossa, 2014). 

 

The rumen microbiome is characterized by its high microbial density, diversity and 

complexity. It constitutes of a wide array of bacteria, fungi, protozoa and archaea, 
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bacteria being its most abundant component (McSweeney CS; Brulc et al., 2009; Mccann 

et al., 2014). The total biomass of the rumen microbiome is spread across three 

microenvironments; the liquid phase containing 25%, the solid phase containing 70% and 

rumen epithelial cells holding the remaining 5% (Ishler et al., 1996) 

 

1.6.1 Structure and composition 

Whole genomic DNA extraction, coupled with Next Generation Sequencing (NGS) to 

amplify and sequence bacterial marker genes or entire bacterial genomes, have become 

popular in rumen microbiome studies (Matthews et al., 2019). Both 16S rRNA amplicon 

sequencing and whole metagenome sequencing have been used to elucidate the structure 

and function of the rumen microbiome. By 2010, the Ribosomal Database Project (RDP) 

had curated a data base with data to identify an approximate 7000 bacterial species and 

1500 archaeal species living in the rumen. Out of which 56% are Firmicutes, 31% are 

Bacteroidetes and 4% are Proteobacteria, making them the top 3 most abundant phyla. 

The same data at genus level reveals Butyrivibrio, Ruminococcus, Acetivibrio, 

Succiniclasticum, Mogibacterium, Streptococcus and Pseudobutyrivibrio as the 

predominant genera within Firmicutes. Bacteroides and Prevotella had the most database 

sequence read assignments within phylum Bacteroidetes (Chaucheyras-Durand and Ossa, 

2014). In agreement with early seminal work on the rumen microbiome, recent large 

scale surveys such as The Global Rumen Census (GRC) project and the Hungate1000 

project also reveals a rumen micobiome largely dominated by Firmicutes and 

Bacteroidetes, while the family Lachnospiraceae being described as the “largest single 

group” accounting for 32.3% of the total sequences obtained during the Hiungate1000 
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project (Seshadri et al., 2018). In a study comprised of 742 ruminant animals spanning 

across geographies, the GRC reports the existence of a core-microbiome, comprising of 

seven bacterial groups that account for 67.1% all bacterial sequences generated during 

the study. This core rumen microbiome consists of genera such as Prevotella, 

Butyrivibrio, Ruminococcus, and other taxa unclassified at genus level such as 

Lachnospiraceae, Ruminococcaceae, Bacteroidales, and Clostridiales. According to the 

GRC, a vast majority (70%) of the most abundant bacterial OTUs (Operational 

Taxonomic Units) are yet to be classified at genus level (Henderson et al., 2015). 

 

The rumen archaea population is strictly anaerobic and is solely responsible for the 

production of methane. With a cell density of about 106 to 108 cells per ml of rumen 

liquid, archaeal members account only for less than 4% of the total microbial population 

residing in the rumen. Methanobrevibacter, Methanomicrobium, Methanosphaera, 

Thermoplasma and Methanobacterium are the five genera that account for almost 90% of 

the rumen archaeal population (Matthews et al., 2019). The methanogenic archaea in the 

rumen seem to be remarkably conserved across ruminant species and across geographies, 

according to the findings of the GRC project. Methanobrevibacter gottschalkii and 

Methanobrevibacter ruminantium, the two most abundant groups of methanogens 

accounting for almost 74% of the total archaea, were found in almost all of the samples. 

Together with “Methanomassiliicoccaceae-affiliated” and Methanosphaera sp., they 

accounted for 89.2% of all archaeal communities that were present in the samples 

(Henderson et al., 2015). 
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The rumen protozoan population was found to be less dense than the bacterial population 

at a cell density of 105 to 106 cells per gram of rumen contents, and was dominated by 

Entodinium, according to microscopic observations and real-time PCR (Skillman et al., 

2006). Further assessments done using PCR primers specific to protozoans revealed three 

dominant protozoans at species level; Entodinium caudatum, Epidinium caudatum, and 

Isotricha prostoma (Sylvester et al., 2004). The GRC project found 12 protozoan genera 

in the samples collected throughout the globe. In agreement with historical studies, the 

Entodnium and Epidinium genera were found to be the most abundant, occurring in 90% 

of the samples and accounting for 54.7% of the total protozoal sequence data. In addition, 

genera such as Enoploplastron and Ophryoscolex were also found to be widely prevalent 

in samples collected from sheep and cattle (Henderson et al., 2015). 

 

The rumen fungi population considered to be responsible for at least 10% of the 

microbial biomass in the rumen, has been described thus far through traditional culture-

based methods, and the sequencing of the Internal Transcriber Region 1 (ITS1) of the 

rRNA gene. According to most recent literature, around 17 genera of anaerobic gut fungi 

(AGF) have been identified by culture based methods and confirmed by ITS1 sequencing 

(Guo et al., 2020; Hanafy et al., 2020). Piromyces was found to be the most abundant 

anaerobic fungal species in the rumen during a study conducted in 2010, using 30 

different herbivore species, by sequencing the ITS1 of the rRNA gene in their rumen 

content. Piromyces accounted for 36% of the total ITS1 fungal sequences obtained during 

this study, while Orpinomyces and Cyllamyces were found to be the least abundant, 

represented by a mere 1.1% and 0.7% of the total sequences. Notably, a 38% of the total 
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sequences failed cluster alongside known fungal genera and formed separate clusters 

indicating the existence of novel anaerobic fungal taxa (Liggenstoffer et al., 2010; Krause 

et al., 2013). 

 

Studies involving Transmission Electron Microscopy (TEM), molecular biological 

techniques and NGS have revealed a rumen virome that is dominated by bacteriophages. 

Early morphological studies conducted via TEM found a high abundance of phages that 

belong to the order Caudovirales. It contains viral families such as Herelleviridae, 

Myoviridae, Podoviridae, Siphoviridae, and Ackermannviridae. These viral particles have 

a common morphology of a polyhedral head and tubular tail. Further TM studies have 

also revealed the existence of viral particles that lacks a tubular tail, possibly belonging to 

viral families such as Tectiviridae, Microviridae, and Corticoviridae (Gilbert et al., 

2020). Studies involving both molecular biological techniques such as pulse field gel 

electrophoresis and metagenomics studies involving NGS have further confirmed these 

findings and have also built on them. Unlike the rumen bacterial population that can be 

studied using both 16S amplicon sequencing and whole metagenome sequencing (WMS), 

the viral population can only be studied using WMS, due to the lack of universal primers 

that can amplify regions that are both variable and conserved enough to serve a similar 

purpose of the 16S rRNA gene (Gilbert et al., 2020). A recent study on rumen viral 

community of domestic caprids revealed the existence of double stranded DNA viral 

families such as Siphoviridae, Myoviridae, Podoviridae, Mimiviridae, Microviridae, 

Poxviridae, Tectiviridae and Marseillevirus (Namonyo et al., 2018). Another important 

study done on the bovine rumen virome revealed an absence of archaeal viruses and 
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rumen viral community abundant with viruses belonging to the families of Myoviridae, 

Siphoviridae, Mimiviridae, and Podoviridae (Anderson et al., 2017). 

 

1.6.2 Functional dynamics 

The consortia of microorganisms inhabiting the rumen and the hindgut of ruminants are 

responsible for the fermentation of feed components into short-chain volatile fatty acids. 

The ATP generated during this process facilitates microbial growth or the synthesis of 

microbial proteins that account for 60 to 85% of the amino acids found in the small 

intestine of the host (Hackmann and Firkins, 2015). 

 

The anaerobic degradation of biomass inside the rumen can be divided into three main 

steps, namely; the breakdown of complex plant polysaccharides, the fermentation of 

carbohydrates into VFAs, and methanogenesis. Using rumen fluid as a proxy and 

utilizing a combined approach of metatranscriptomics and VFA profiling, a study 

conducted by Söllinger et al. revealed major microbial taxa and enzymes involved in 

these key steps. The degradation of plant polysaccharides was mainly achieved by four 

carbohydrate active enzymes (CAZymes) namely; cellulases, hemicellulases, starch-

degrading enzymes, and oligosaccharide hydrolases. Transcripts coding for these 

enzymes were taxonomically assigned to Prevotellaceae, Clostridiales, Fibrobacter, 

Ciliophora (eukaryotic Ciliate), and Neocallimastigaceae (eukaryotic anaerobic fungi). 

The largest share of cellulase transcipts were produced by Fibrobacter and 

Neocallimastigaceae. Both Clostridiales and Ciliophora produced substantial amounts of 

cellulase and hemicellulase transcripts. Prevotella was found to express transcripts that 
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encode for hydrolases, starch degrading enzymes and hemicellulases, whereas Firmicutes 

were found to produce transcripts belonging to all four categories of CAZymes in 

approximately equal abundances. The expression of these CAZyme transcripts by several 

different microbial taxa suggests high functional redundancy in ruminal plant 

polysaccharide degradation (Söllinger et al., 2018). 

 

The VFAs produced inside the rumen can largely be grouped into acetate, propionate and 

butyrate. Transcripts associated with acetate production (via pyruvate, acetyl-CoA, and 

acetyl-CoA & acetyl-P pathways) were mainly produced by Prevotellaceae and 

Firmicutes with Prevotellaceae accounting for the large majority. The production of 

acetate in the rumen happens via two main pathways, namely, the succinate pathway and 

the acrylate pathways. Transcripts encoding for both of these pathways were produced by 

Prevotellaceae and Clostridiales, and again Prevotellaceae contributed for a large 

majority. In contrast, transcripts involved in butyrate production through butyrate kinase 

pathway and butyryl-CoA:acetyl-CoA transferase pathways were only associated with 

Firmicutes (i.e Clostridiales and Negativicutes). Notable animal to animal variation was 

also observed during this study, stemming from the differences in the relative abundance 

of contributing taxa (Söllinger et al., 2018). 

 

Methanogenesis by methanogenic archaea in rumen, can happen via three pathways 

namely; hydrogenotrophic pathway, methylotrophic pathway and acetoclastic pathway, 

with hydrogenotrophic pathway powered by Methanobrevibacter, being the most 

common. Methanogenesis via methylotrophic and acetocalstic pathways are not common 
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due to the low abundance of methanogens such as Methanomassiliicoccaceae, 

Methanosarcinales and Methanosphaera (Huws et al., 2018). 

 

1.6.3 Interaction with external factors 

Host genetics 

Out of the many factors that are known to affect the rumen microbiome, the effect of host 

genetics maybe one of the least studied. Some recent studies published within the last 

five years have been able to shed some light on this. A study published in 2019 by Fan et 

al. (Fan et al., 2020) tried to investigate the effect of host genetics on the gut microbiome 

by creating a “graduated spectrum” of host genetic variation by breading 228 calves that 

represented a linear variation in genetic composition from Angus (100% Bos taurus) to 

Brahman (100% Bos indicus) and analyzing their fecal microbiome composition and 

function. They uncovered that host genetics, predominantly of paternal origin, had a 

significant effect on the gut microbiome of pre-weaning calves. They also found that 

single nucleotide polymorphisms (SNPs) in the genes that code for mucin (imperative for 

the wellbeing of gut mucosae) in the host genome had a significant relationship with gut 

microbiota responsible for mucin degradation. However, this study was unable to draw 

any conclusion about the effect of host genetics on the rumen microbiome since, at the 

time of sample collection, calves did not have a fully developed rumen (Fan et al., 2020). 

 

The study by Roehe et al. (Roehe et al., 2016) describes how bovine host genetics was 

found to have a significant impact on the methanogen microbiota in the rumen 

microbiome. The genetically different sire progeny groups used for this study, when 
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ranked according to their methane emissions, demonstrated a significant correlation with 

the relative abundance of methanogen archaea, thus implying that at least the methane-

producing microbiota in the rumen is under considerable host genetic control. 

Furthermore, this also suggests that producing low methane-emitting animals, based on 

the host genetic control of methanogens in the rumen microbial community, is a viable 

option (Roehe et al., 2016). 

 

In 2019, a study based on 709 beef cattle comprising of Angus, Charolais and Kinsella 

hybrids, revealed that rumen microbiota of this commercial cohort differed mainly on 

diet, breed and sex with additive host genetic control having a considerable impact on its 

segregation. Around 59 microbial taxa were found to be moderately heritable and the 

majority of them being keystone members of the co-occurrence network of rumen 

microbiota. They were also found to be significantly correlated with host traits such as 

volatile fatty acid (VFA) concentration and feed efficiency (Li et al., 2019). 

 

Ambient temperature 

The effect of ambient temperature, relative humidity and antimicrobial compounds in diet 

are some of the external factors arising from the animal environment that can affect the 

rumen microbiome (Tajima et al., 2007; Romero-Pérez et al., 2011).  A study conducted 

by Romero-Perez et al. in 2011 (Fan et al., 2020) observed that ambient temperatures 

largely had an indirect effect on rumen microbiome. However, proportional differences 

based on ambient temperature was detected in some bacterial taxa at both phylum 

(Firmicutes) and order (Lactobacillales) levels (Fan et al., 2020). 
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In another study conducted in 2006 by Tajima et al. (Tajima et al., 2007) that consisted of 

3 sets of experiments, the animals in the first experiment did not exhibit significant 

difference in their rumen microbiome based on temperature differences that ranged from 

20C0 to 33C0. However, when coupled with 80% humidity, they were able to detect 

significant differences in the gut microbiome (Tajima et al., 2007). 

 

Heat stress 

Short-term or prolonged acute heat stress has been demonstrated to have detrimental 

effect on the rumen microbiome. A recent study conducted by Baek et al. (Baek et al., 

2020) reported that Hanwoo steers under 6 consecutive days of heat stress (housed in 

chambers maintaining 60% humidity and 350C ambient temperature) had an increase in 

the abundance of Ruminobacter, Lactobacillaceae and Prevotella, while species 

belonging to genus Ruminococcaceae showed a decrease in their abundance. However, 

rumen archaeal populations representing the bulk of rumen methanogens did not exhibit a 

significant impact from heat stress (Baek et al., 2020). 

 

A separate study conducted using lactating Holstein dairy cows (n=18) showed similar 

results with no significant impact on the overall diversity of the rumen microbiome. A 

comparison of control and heat stress groups of this study revealed increased relative 

abundances of Streptococcus, Enterobacteriaceae, Ruminobacter and Treponema, and a 

decrease in the abundance of Acetobacter in the rumen of  heat-stressed animals (Zhao et 

al., 2019). 
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Diet consumed and consumption level 

Since the dietary composition of beef cattle vary significantly during their lifespan, the 

rumen and its microbiota needs to adjust accordingly as well, resulting in changes in the 

structure and function of the rumen microbial community. A study published in 2010 by 

Pitta et al. (Pitta et al., 2010) evaluated the changes in rumen microbiota during the 

transition from Bermuda grass to wheat pastures in beef cattle operations. The relative 

abundance of Prevotella was observed to decrease while the contrary happened to the 

abundance of Rikenella during the transition, along with an increase in the abundance of 

Succiniclasticum. A decrease in overall community diversity of the rumen microbiome 

was also observed as an effect of transitioning into a high energy diet (Pitta et al., 2010). 

 

An increase in the abundance of Olsenella, Atopobium, Lactobacillus, Desulfocurvus, and 

Fervidicola in the rumen microbiome was connected to high-grain diets, while for cattle 

grazing on wheat pastures, an increase in the ratio of Bacteroidetes:Firmicutes was 

observed usually associated with increased biofilm formation that may also result in 

frothy bloat (Loor et al., 2016). Bacterial phyla such as Bacteroidetes and Firmicutes are 

known to affect residual feed intake and efficiency in Holstein dairy cows. It has been 

reported that animals that possess high feed efficiency and RFI, have a significantly high 

abundance of Bacteroidetes while an insignificant but nevertheless comparatively low 

abundance of Firmicutes was also noted (Delgado et al., 2019). 
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1.7 Next generation DNA sequencing (NGS) 

1.7.1 Sanger sequencing 

The dideoxy chain termination method (Sanger sequencing) developed by Fredrick 

Sanger in late 1970s laid the foundation for the DNA sequencing technologies as we 

know it today. This method relies on dideoxynucleotides (ddNTPs) that lack the 3’ 

hydroxyl group, thus enabling chain termination during a DNA extension reaction (PCR). 

Incorporation of a low concentration of these ddNTPs into a PCR reaction triggers early 

termination and generates DNA strands of each possible length, as these ddNTPs get 

randomly incorporated into the synthesized DNA stand. The sequence of a given DNA 

template can be observed running four such parallel reaction of each kind of radiolabeled 

ddNTPs (A,G,T,C), and then running them in parallel on a polyacrylamide gel (Heather 

and Chain, 2016). 

 

By 1980s the scientists at California Institute of Technology were able to automate 

Sanger's original method, which was then commercialized by the manufacturing of 

commercial First Generation sequencing machines by Applied Biosystems. In these 

machines the polyacrylamide gel was replaced with capillaries and radiolabeled ddNTPs 

were replaced with fluorescent labeled ones that generates an electropherogram which 

can be used for base calling, enabling its widespread use. Sanger sequencing is best 

suited for the sequencing of fragments that are around 500bp-1000bp in length. First 

Generation sequencing machines played a pivotal role in the Human Genome Project, 

and are still in use today, where sequencing of larger DNA fragments is required but low 
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throughput and high cost sequencing is acceptable (Sequencing 101: The Evolution of 

DNA Sequencing Tools - PacBio). 

 

1.7.2 Second generation sequencing 

Alongside the large scale and commercial use of automated Sanger (first generation) 

sequencing technologies, the very first massively parallel, second generation sequencing 

technology was developed by 454 Life Sciences, based on a technique known as 

pyrosequencing, originally developed by Pal Nyren and colleagues. This parallelization 

enabled high-throughput sequencing (HTS) that drastically increased the yield of DNA 

sequencing projects making it possible to sequence the genome of a single human in 

record time, overtaking similar efforts made at the Craig Venter institute, that was using 

first generation sequencing technologies (Heather and Chain, 2016). 

 

Overall, second generation technologies can be divided into two broad categories; optical 

sequencing and non-optical/post-light sequencing. Optical sequencing includes 454-

pyrosequencing based sequencers and Solexa/Illumina sequencing (MISeq, HiSeq and 

NextSeq sequencers). Whereas non-optical sequencing include semiconductor based 

sequencers such as Ion Torrent and S5 sequencers from ThermoFisher (Singh, 2017). 

 

Illumina sequencing or reversible terminator-based sequencing uses distinctly labeled 

nucleotides in a chain termination, sequence by synthesis (SBS) approach to identify 

nucleotides in the template DNA strand. The template DNA strands are made of clonally 

amplified input DNA. Once the labeled nucleotides are bound (entire flow cell is flooded 
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with labeled dNTPs and DNA polymerase), the template strands are imaged and 

fluorescence is recorded. However, in contrast to Sanger sequencing, these chain 

terminations are reversible hence the bound dNTPs are washed away and the flow cell is 

prepped for the next “cycle” where the subsequent nucleotide of same clonal DNA strand 

will be sequenced. This is the most widely used second generation sequencing 

technology to-date, and forms the basis for MISeq (medium throughput, table-top), HiSeq 

(high throughput, commercial) and NextSeq (medium-high throughput) sequencers from 

Illumina (Singh, 2017). 

 

1.7.3 Third Generation sequencing 

One of the main limitations in second generation sequencing is that the genomic input 

DNA needs to be fragments in relatively short sequences. Furthermore, the clonal 

amplification of fragmented genomic DNA introduces PCR bias and makes it difficult to 

quantitatively compare end-results (this specifically affects microbiome projects). Hence, 

Single Molecule Real-time (SMRT) sequencing, or third generation sequencing has been 

looked upon as a promising solution for these issues (Heather and Chain, 2016). 

 

PacBio and Oxford Nanopore Technologies (ONT) currently offer SMRT solutions, 

however, PacBio is considered to be the most widely used. It uses adapter ligation to 

double stranded DNA to create ‘circular’ DNA that is called SMRTbell library. DNA 

polymerase and labeled nucleotides are added to the library and placed on the SMRT cell 

that contains nanostructure wells called zero-mode waveguides (ZMWs). Each ZMW 

will hold a single double stranded DNA ligated with the adapter and DNA polymerase 
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attached. When DNA polymerase adds labeled nucleotides to the template strand, 

fluorescence is detected and recorded. ONT, on the other hand, utilizes a completely 

different approach for single molecule sequencing, where the DNA molecule is unzipped 

and the template strand is threaded through by the Motor Protein, a protein nanopore 

fixed to a membrane where voltage is applied so that there is ionic current flow through 

pore. When template strand goes through the pore, this ionic current is disrupted, and 

these disruptions can be used to identify the nucleotide that passes through the pore (Lu 

et al., 2016). 

 

A major drawback of ONT is its high error rate, and the requirement of specialized 

sequence assembly software to assemble the long DNA sequences obtained via third 

generation sequencers. However, the advances in denovo sequencing assembly 

techniques have paved the way for the combinatorial usage of Illumina and ONT/PacBio 

technologies where long read assembly and short read error correction can be used to 

assemble complete bacterial genomes in microbiome studies (Heikema et al., 2020; Moss 

et al., 2020). 

 

1.8 16S rRNA gene sequencing for microbiome studies 

1.8.1 The 16S rRNA gene 

The 16S, 5S and 23S rRNAs present in the ribosomes of bacteria and archaea are coded 

by the ribosomal RNA operon (rrn), available in multiple copies usually of 1-15 in 

bacteria and 1-4 in archaea (Stoddard et al., 2015). The 16S rRNA molecule that forms 

the Small Subunit (SSU) of the prokaryotic ribosome contains interleaving conserved and 



33 
 

hypervariable regions that are also different in their rate of molecular evolution, thus 

enabling their utilization as molecular biomarkers to derive both ancient (domains) and 

recent (genera) taxonomic lineages. The secondary structure of the 16S rRNA that 

consists of nearly 50 helices is highly conserved as well, making them important 

structural features that establish positional homology in phylogenetic analyses (Yarza et 

al., 2014). 

 

Similarly, this interspersed hypervariable and conserved structure is preserved in the gene 

for 16S rRNA as well. The hypervariable regions are unique to different bacterial species 

or genera and the conserved regions make it possible to design universal primers that 

enable PCR amplification and sequencing of the variable regions. However, the 9 

hypervariable regions all differ in their degree of sequence diversity. Hence, the efficacy 

of each hypervariable region in distinguishing different bacterial taxa vary, and no single 

hypervariable region has the capability to classify all bacteria correctly (Chakravorty et 

al., 2007; Ames et al., 2017). 

 

1.8.2 Taxonomic profiling of the microbiome through 16S rRNA gene amplicon 

sequencing 

The availability of a plethora of hypervariable regions whilst being highly conserved and 

abundantly available across all archaea and bacteria have made the 16S ribosomal RNA 

(rRNA) gene the preferred molecular phylogenetic marker for many taxonomic studies 

from as early as 1977 (Kim and Chun, 2014). 
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With the advent of NGS, 16S rRNA gene-based taxonomic profiling has become a 

popular and cost-effective technique in studying the composition of a microbial 

community, that does not rely on culturing. Its ability to determine the relative abundance 

of bacterial taxa in a sample, increased efficiency that enables the sequencing of a 

multitude of samples simultaneously, improved turnaround times, and its ability to be 

utilized for the surveillance of pathogenic bacteria in a clinical setting (through amplicon 

sequencing of selected variable regions) have further contributed to increased popularity 

(Gupta et al., 2019). 

 

Existing literature suggests two different approaches when utilizing 16S rRNA sequences 

for microbiome studies; one targeting only a specific region comprising of a single or a 

few adjacent hypervariable regions, and the other being the amplification and sequencing 

of the entire 16S rRNA gene. The former being used for taxonomic identification at 

genus level or above, and the latter being utilized for more precise species and strain level 

identification (Kim and Chun, 2014; Johnson et al., 2019) 

 

Targeting a single hypervariable region (e.g. the V4 region) has long been a norm in 16S 

studies. However, due to the limitations mentioned above and due to the huge progress 

made in next generation sequencing technologies, current and future studies have an 

increased tendency to be based on sequencing the whole 16S gene. Optimized circular 

consensus sequencing techniques coupled with state-of-the-art denoising algorithms have 

made it possible to distinguish individual bacterial taxa at species or strain level, based on 

single nucleotide polymorphisms (SNP) in the 16S gene (Johnson et al., 2019). 
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The common conduct of a 16S gene amplicon based taxonomic survey of a microbiome 

can be stratified in to five main stages; (1) sample collection and storage, (2) DNA 

extraction, (3) sequencing library preparation and NGS, (4) amplicon sequencing data 

analysis, (5) data visualization and statistical analysis (Pollock et al., 2018). 

 

Sample collection: Sample collection protocols are largely dependent on the sample type 

used and the host organism, and can introduce considerable bias to the downstream 

process. Important aspects to consider here are the sampling site (specific region in 

gastrointestinal tract of animals or depths in soil), sample collection method (e.g. invasive 

vs non-invasive), and homogenization of samples (most important in gut and soil 

studies). Hence, sample collection protocols should always be considered when 

comparing results of similar studies (Pollock et al., 2018). 

 

Sample storage: The best way for post sample processing is to extract DNA from fresh 

samples. However, due to practical and logistic issues, this is often impossible and 

samples will need to be stored for a short or an extended time before DNA can be 

extracted. Based on current literature the ‘gold standard’ appears to be to snap freeze 

samples at sample collection site and store them at -80C0 until DNA extraction, and most 

studies report no significant difference between the microbial communities recovered 

from fresh samples and after extended freezing at -80C0. Sample storage at 4C0 however, 

is not advised and have been demonstrated to have a significant impact on the microbial 

community recovered (Pollock et al., 2018; Bharti and Grimm, 2019). 
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DNA Extraction: Existing literature suggests that the DNA extraction protocol used to 

extract total genomic DNA of samples could introduce considerable bias into the 

taxonomic classification of a microbial population using 16S gene amplicon sequencing. 

This is mainly due to microbes that are resistant to lysis, and the presence of inhibitors 

that may affect the efficiency of the DNA extraction and downstream processes. Hence, 

the choice of DNA extraction methodology should often be based on the sample type 

(e.g. fecal, tissue, saliva etc.), inclusion of a mechanical lysis step and the ability to 

provide a high yield of high-quality DNA. This often requires optimization of current 

protocols based on DNA extraction kits (Pollock et al., 2018). 

 

Library preparation and sequencing: Sequencing library preparation is also a crucial 

part of the design of a microbiome study and largely depends on the study objective. If 

the intent is primarily to do a genus level taxonomic survey of a given microbial 

population, then generating PCR amplicons of a certain hypervariable region (or a 

combination) coupled with 2nd generation short read sequencing would suffice. Again, it 

should be emphasized that there is no current consensus on a particular hypervariable 

region that can distinguish all bacterial genera with equal efficiency. However, based on 

existing literature, regions such as V1,V2 and V3,V4 can be identified as commonly used 

where existing studies have found V3,V4 to over perform V1,V2 (Pollock et al., 2018; 

Rausch et al., 2019). A study based on geodesic distance has also identified the sub-

regions V4-V6 as optimal  to identify phylogenetic diversity across bacterial phyla (Yang 

et al., 2016). Other than the sub-region of choice, factors such as the presence of PCR 
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inhibitors, the number of PCR cycles, the type of DNA polymerase used in the PCR 

reaction, and the quantity of input DNA have all been found to significantly impact the 

structure and composition of the microbial community recovered (Gohl et al., 2016; 

Pollock et al., 2018). 

 

The phylogenetic analysis of a microbial population at species or strain level, however, 

would require the entire length of the 16S rRNA gene (~1,500 bps in length) to be 

included in library preparation, coupled with third generation sequencing such as Oxford 

Nanopore or PacBio. Techniques such as Circular Consensus Sequencing and complex 

denoising algorithms that can detect minute PCR and sequencing errors, have made it 

possible for species and strain level differentiation of 16S data based on Single-

nucleotide Polymorphisms (SNPs) (Johnson et al., 2019). 

 

Amplicon sequencing data analysis: 16S amplicon sequencing data are usually 

generated as 250 bp paired-end reads on Illumina (MiSeq) platforms. The very first step 

of amplicon sequence data analysis would be to demultiplex the sequencing reads into the 

respective samples they came from using the barcodes used during sequencing. 

Subsequently, the paired reads are joined to obtain merged amplicon sequences that are 

then stripped of their barcodes and linker-primer sequences. Sequence pre-processing 

usually concludes with a final quality control step where low quality reads are removed 

based on their quality scores (Pollock et al., 2018; Liu et al., 2020). 

 



38 
 

Sequences that passes through the above steps will then be used to pick representative 

sequences for different bacterial species (genera). There are two major approaches used 

by current analysis pipelines for this purpose; feature selection by clustering into 

Operational Taxonomic Units (OTUs), and feature selection by de-noising into Amplicon 

Sequence Variants (ASVs). Algorithms such as VSEARCH and USEARCH can be used 

to generate OTUs, usually based on >97% sequence similarity. This method however is 

thought to be less sensitive than the ASV method, currently championed by algorithms 

such as DADA2 (Callahan et al., 2016), Deblur (Amir et al., 2017) and unoise3 in 

USEARCH (Edgar, 2016). Post feature selection, the generated OTU/ASV table that 

contains the frequencies of each representative sequence/OTU (feature) in each of the 

samples analyzed, is subjected to downstream statistical analysis and data visualizations 

(Rognes et al., 2016; Liu et al., 2020). 

 

Post feature selection, the representative sequences are aligned against a reference 

database using a sequence classifier. SILVA, RDP and Greengenes are the most 

commonly used 16S reference databases for this purpose, and more often than not, 

SILVA and RDP are preferred over Greengenes due to data quality. The aligned 

sequences are then assigned with a taxonomic classification. These taxonomic 

classifications may differ based on the underlying reference database used. The end of the 

core data analysis process for 16S amplicon data should result in ASV/OTU table and a 

taxonomy table that contains the taxonomic classification for each ASV/OTU (Pollock et 

al., 2018). 
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Data visualization and statistical analysis: Once the core data analysis is completed, a 

number of statistical analyses and data visualizations can be conducted on the resulting 

output to generate and extract biologically relevant information. Computational tools 

such as MEGAN, STAMP, MicrobiomeAnalyst, Phyloseq (a package in R) etc. can be 

used for this purpose. Some of the common statistical tests include, rarefaction analysis, 

alpha diversity, beta diversity, Linear Discriminant Analysis Effect Size (LEfSe) etc. 

(McMurdie and Holmes, 2013; Parks et al., 2014; Callahan et al., 2016; Huson et al., 

2016) 

 

1.8.3 Functional profiling of the microbiome through 16S gene amplicon sequencing 

16S rRNA gene data are best utilized to obtain information about the taxonomic 

classification of a microbial community. However, computational tools such as 

PICRUSt1, PICRUSt2, Tax4Fun and FAPROTAX allow us to gain at least some 

functional insights into microbial communities by predicting its metagenome using 16S 

data. The functional inference is done by linking taxonomic classifications with 

functional data such as KEGG (Kyoto Encyclopedia of Genes and Genomes) pathways, 

KEGG orthologs and Enzyme Commission numbers (EC numbers) in published 

databases and literature. Tools such as PICRUSt2 uses advanced phylogenetic tree 

building algorithms capable of utilizing both OTU and ASV data for functional 

prediction based on predefined as well as user defined reference databases (Douglas et 

al., 2020; Liu et al., 2020). 
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1.9 Whole metagenome sequencing (WMGS) for microbiome studies 

Even though 16S amplicon sequencing is considered as a readily available, efficient and 

cost-effective method of determining the taxonomic composition of a given microbial 

community, the pitfalls and limitations it inherit, such as PCR amplification bias, 

variability of results based on the choice of hypervariable region, and inability to 

accurately classify beyond genus level (unless the entire 16S gene is sequenced) have 

undermined the accuracy and reproducibility of 16S marker based microbiome studies. 

Moreover, 16S amplicon sequencing studies are inherently incapable of directly 

elucidating the functional characteristics of a microbiome, and can only identify taxa for 

which there are known, amplifiable phylogenetic markers, making it difficult to identify 

novel organisms. In addition, horizontal gene transfer events that may have occurred in 

the 16S locus between distant taxa, may give rise to an overestimation of microbial 

diversity in 16S studies. These well-known shortcomings have made a strong case for the 

inclusion of Metagenomics or WMGS studies to further analyze microbiomes (Sharpton, 

2014; Rausch et al., 2019). 

 

Metagenomics, unlike 16S rRNA sequencing, is not a marker-based approach and 

attempts to sequence total DNA content in a sample using genome-wide shotgun 

sequencing. Sample collection and DNA extraction procedure and concerns for WMGS 

studies are quite similar to 16S studies. Post DNA isolation steps such as library 

preparation & sequencing, data preprocessing, and sequence data analysis however, is 

starkly different. That being said, once the primary analysis of sequencing data is 
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complete, the post-processing analysis that follows has considerable overlap with 

methods used in amplicon sequence data analyses (Bharti and Grimm, 2019). 

 

Library preparation and sequencing: Illumina sequencing, a popular NGS technology 

that is commonly used in WMGS studies, offers a variety of library preparation kits that 

differ based on the method of DNA fragmentation. Commonly used kits such as Nextera 

DNA Flex, and Nextera XT that utilize bead-based transposomes, and enzymatic lysis for 

shotgun library preparation, respectively, are known to introduce biases into microbiome 

studies. Hence, PCR-free library preparation kits such as TruSeq DNA PCR-Free that is 

based on PCR-free mechanical lysis are generally recommended (Jones et al., 2015; 

Bharti and Grimm, 2019) 

 

Data pre-processing: Sequence quality checking, sequence quality trimming and 

decontamination will be done during this step. FastQC, a java-based tool that has the 

capability of reading FASTQ/SAM/BAM files in order to generate data quality reports on 

the raw sequencing data can be used to check sequence data quality. This will also be 

useful to identify which areas need to be trimmed. Once the law quality areas are 

identified (if at all), a sequence trimming tool like Trimmomatic can be used to remove 

leading/trailing low quality bases and adaptors. The next crucial step is decontamination 

via the removal of host DNA sequences using reference based host DNA contaminant 

removal pipeline such as KneadData (Andrews et al., 2012; Bolger et al., 2014; Liu et al., 

2020) 
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Assembly, binning and taxonomic classification (sequence data analysis): The 

metagenomic shotgun sequences subjected to preprocessing can be analyzed using either 

a read-based, assembly-based, or a combinatory approach. Deciding on which approach 

to use largely depends on the biological question at hand. 

 

If the intent is to determine the species or strain level taxonomic classification of the 

microbial community, MetaPhlAn can be used on the cleansed metagenomic reads. 

MetaPhlAn is a metagenomics phylogenetic analysis tool that makes use of a database of 

clade-specific marker genes obtained from nearly 17,000 reference genomes that span 

across bacteria, viruses, archaea and eukaryotes to assign taxonomic classifications to 

metagenome sequence reads. It can provide species level or above taxonomic resolution 

and a more accurate relative abundance value for each organism, due to its use of single 

copy genes in the reference database (Segata et al., 2012). A more recent version of the 

same, MetaPhlAn2 has the ability to do strain level taxonomic identification and strain 

tracking as well (Truong et al., 2015). 

 

However, this approach cannot classify previously unknown organisms accurately, since 

it relies on a reference database derived from genomes of known species. Therefore, as a 

further analysis step, sequence assembly and binning should be done to arrive at a 

metagenome assembled genome or MAG. The unique nature of whole metagenome 

shotgun sequences presents a unique set of challenges for assemblers trying to assemble 

them into scaffolds and contigs. Therefore, specialized de-novo assemblers are required 

to overcome them. IDBA-UD, MEGAHIT and MetaSPAdes are such metagenome 
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specific assemblers suited for this task. However, no matter which assembler is used, the 

output would be a set of contigs. Hence, specialized software is required to bin these 

contigs into genomes (Quince et al., 2017; Olson et al., 2018). 

 

Binning methods can be grouped into two broad categories; supervised and unsupervised. 

Supervised methods are designed to bin contigs based on reference databases and 

unsupervised methods are designed to find natural groups based on clustering of similar 

contigs. Methods that use supervised binning is not often considered as effective when 

analyzing environmental samples that can be home to diverse microbiota (Quince et al., 

2017; Woloszynek et al., 2018). Tools such as MaxBin and MetaCluster5.0 can be used 

for binning of assembled contigs(Sedlar et al., 2017). Once binning is completed, tools 

such as CheckM and Taxator-tk can be used for assigning taxonomic classifications to 

the binned sequences (Dröge et al., 2015; Parks et al., 2015). 

 

Functional profiling (data analysis): Identifying genes and metabolic pathways using 

whole metagenome sequencing data accurately reveals the functional profile and 

metabolic potential of a given microbial community. This can be done either using the 

MAG assemblies described above, or directly using the pre-processed shotgun sequence 

reads (Quince et al., 2017; Liu et al., 2020). 

 

HUMAnN2 is popular tool used for this purpose that uses pre-processed shotgun 

sequences as the input. HUMAnN2 relies on a tiered search strategy that consists of 

identifying known players in the community via marker genes and constructing a 
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pangenome, mapping shotgun sequence reads to each pangenome, and translating 

unmapped sequence reads for protein database similarity searches. This tiered approach 

gives it the ability to ultimately analyze all sequences with known or unknown taxonomy. 

At the end of this process HUMAnN2 will be able to provide a comprehensive visual 

analysis on abundance of gene families, abundance of metabolic pathways and pathway 

coverage (Franzosa et al., 2018). 

 

For an assembly-based approach, a software pipeline such as Prokka can be used to 

annotate the MAGs. Prokka is a Unix based software that can be used to annotate shotgun 

sequences that are assembled into scaffolds. It uses external computational tools such as 

Prodigal, RNAmmer, Aragorn, SignalP and Infernal to annotate genomic features and 

their coordinates on pre-assembled contigs. It utilizes parallel programming techniques to 

exploit multi-core processor for efficient analysis of bacterial genomic data (Seemann, 

2014). 

 

Post-processing analyses: Similar to 16S studies, once the core sequence data analysis 

steps are complete, the WMGS studies will also end-up with matrices of samples against 

taxa, genes, pathways etc. Hence, most of statistical analysis and data visualization 

methods and tools used for amplicon sequencing (16S) studies can be used for 

metagenome studies as well. Post-processing analyses can be divided into two categories; 

supervised and unsupervised (Quince et al., 2017). 
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Supervised methods would include the traditional multivariate analysis techniques (e.g. 

ANOVA), and machine learning algorithms that classify samples into groups based on a 

training dataset. Unsupervised methods would include hierarchical clustering of samples 

and heatmaps, sample clustering based on principle component analysis (PCA) and 

principle coordinate analysis (PCoA), and pattern detection via correlation network 

analysis. Indices that measure between sample differences (beta diversity), and species 

richness and evenness (alpha diversity), can be used to assess the overall composition of 

a feature table along with abundance graphs and box plots for data visualization. 

Computational tools such as MicrobiomeAnalyst, MEGAN and R packages such as 

DESeq, metagenomeSeq, Cytoscape and vegan are often utilized to conduct these 

statistical analyses and data visualizations (Huson et al., 2016; Dhariwal et al., 2017; 

Quince et al., 2017; Liu et al., 2020). 

 

The read based approach was utilized in metagenome sequence data analysis for the 

current study. Hence, MetaPhlAn 3.0 (Truong et al., 2015) was used for taxonomic 

profiling of metagenome sequencing data and HUMAnN 3.0 (Franzosa et al., 2018) was 

used for functional profiling of rumen and fecal samples. 
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CHAPTER II 

POPULATION DYNAMICS OF THE BOVINE RUMEN MICROBIOME UNDER 
WATER RESTRICTED CONDITIONS: A TAXONOMIC SURVEY OF 16S V4 

AMPLICON SEQUECING DATA 
 

 
2.1. Introduction 

Even though overlooked in many of the nutrient requirement models, water is one of the 

most important nutrients required for the health and wellbeing of beef cattle. Water on 

average, accounts for 50% to 80% of an animal’s body weight (BW), and plays an 

imperative role in feed digestion and maintaining other critical physiological functions 

(Dyer et al. 2017). Hence, if an animal is deprived of sufficient amounts of water, its feed 

intake may also drastically decrease, and even bodily functions may fail due to 

dehydration (Wickramasinghe et al. 2019). 

 

The minimum amount of water required by cattle to properly maintain its physiological 

functions is determined by growth, water lost due to urinary excretions, sweat, feces and 

evaporation (through lungs or skin). Furthermore, the daily water requirement of an 

animal can be influenced by body weight, ambient temperature, stage of production, diet 

and the type of cattle (Dyer et al. 2017; Rasby and Walz 2011). 

 

Decreased water intake is known to amplify the effects of heat stress in cattle, thus 

lowering digesta flow rate in the rumen, decreasing saliva excretion, altering feed 
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efficiency & nutrient digestibility and affecting the composition of blood hormones 

(Benatallah et al. 2019). Water restriction is known to have a direct effect on rumen 

function where increased osmolality in rumen fluid caused by water restriction can give 

rise to dehydration-induced hypophagia (Burgos et al. 2000). Furthermore, a combination 

of reduced feed intake due to water restriction, reduced saliva production and a decrease 

in HCO3
- content in saliva in a heat stressed animal, can make it more susceptible to 

rumen acidosis (Nardone et al., 2010). Although no direct effects of water restriction on 

rumen motility is known, an increase in the time to first rumination have been observed 

(Carter and Grovum, 1990). 

 

While the impact of water restriction on rumen physiology is well known, its impact on 

the rumen microbiome has not been extensively studied yet, even though rumen 

microbial studies have seen drastic improvements due to the use of Next Generation 

Sequencing (NGS) technologies. Existing studies have largely focused on the effect of 

host genetics (Roehe et al., 2016; Li et al., 2019; Fan et al., 2020), age (Liu et al., 2017), 

sex (Li et al., 2019), feed intake (Delgado et al., 2019), diet (Pitta et al., 2010), and heat 

stress (Tajima et al., 2007; Romero-Pérez et al., 2011; Zhao et al., 2019; Baek et al., 

2020) on the rumen microbial population, with meager emphasis on how it may be 

affected by water scarcity or water restriction. 

 

Hence, this study was conducted to elucidate the microbial dynamics of the bovine rumen 

under water stress, primarily based on 16S rRNA gene amplicon sequencing of genomic 
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DNA extracted from rumenocentesis samples obtained from feedlot beef cattle under 

50% water restriction. 

 

2.2. Materials and Methods 
 

2.2.1.Animals 

A total of 858 cross-bred steers belonging to 7 feeding groups were used in a randomized 

block design for this study. Group 01 was maintained from May 2014 to October 2014 

(n=117), group 02 from November 2014 to May 2015 (n=115), group 03 from May 2015 

to September 2015 (n=118), group 05 from May 2016 to November 2016 (n=105), group 

06 from December 2016 to June 2017 (n=123), group 07 from August 2017 to January 

2018 (n=142) and group 08 from February 2018 to July 2018 (n=138). All animals were 

housed in the Willard Sparks Beef Research Center (WSBRC) in Stillwater, Oklahoma. 

 

Before pen assignments (on d 21), all animals were vaccinated for bacterial (Vision 7®, 

Merck Animal Health, Madison, NJ) and viral (Titanium 5+PH-M, Elanco, Greenfield, 

IN) diseases. Administering fenbendazole oral suspension (Safe-Guard by Merck Animal 

Health), and metaphylaxis treatment (Excede® by Zoetis) was also conducted to deworm 

and prevent the spread of infectious diseases. The steers were also implanted with an 

estradiol implant (Compudose® by Elanco) upon first arrival (Bruno, 2019). The animals 

were fed with a diet comprising of ~51% wet corn gluten feed, 15% cracked corn, ~28% 

prairie hay, and ~5% feed additives (supplements). Animal breeds were largely of  

British influence and were proactively monitored to exclude Bos indicus descendants, 
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since they are known to be capable of intentionally reducing water consumption as an 

adaptation to increased ambient temperature (Ahlberg, 2018). 

 

2.2.2. Experimental design and sample collection 

Within each group, the animals were randomly allocated to one of 4 pens (approx. 30 

animals each) in a completely randomized design. All animals were given a 21-day 

acclimatization period upon arrival at the WSBRC.  A 70-day feed and water intake (WI) 

trial followed after the acclimatization period to establish baseline WI. All animals had 

access to ad libitum feed and water during the acclimatization period and WI trial. 

 

Post WI trial, 50% water restriction was achieved via gradual reduction of water across a 

35-day step-down period, giving animals 7 days to get acclimatized to a 10% decrease in 

available water. Animals were maintained at 50% restriction for another 35 days to 

complete the water restriction trial, before being brought up to ad libitum WI levels 

within 6 days of ending the water restriction. Insentec® (Hokofarm Group, Netherlands) 

Roughage Intake Control (RIC) system was used to measure WI and achieve water 

restricted conditions without altering the normal environmental and pen dynamics for the 

animals. Animal weights were measured at the beginning and the end of each trial 

(baseline and water restriction). Rumen samples were collected via rumenocentesis at the 

end of each trial. All samples were snap frozen on dry ice at sample collection, 

transported immediately to the lab and stored at -80C0 until DNA extraction. 
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2.2.3. Animal selection for DNA extraction 
 

Even though rumenocentesis was attempted on all animals, DNA extraction (for 16S 

rRNA gene amplicon sequencing) from all rumen samples is not cost effective. Hence, 

animals that showed statistically significant (p < 0.1) performance based on percentage 

recovery of average daily gain (ADG) were selected, and their rumenocentesis samples 

were used for whole genomic DNA extraction. 

 

% recovery of ADG = 
ADG during restriction trial

ADG during WI trial
 ×100 

 

The % recovery of ADG distributions were calculated separately for each group and the 

animals that fall in the tails of the distribution were selected to maximize statistical 

power. A total of 146 animals from the seven groups were selected for fecal and rumen 

DNA extraction based on the criteria mentioned above. This gave rise to a total of 209 

rumen samples that comprised of 115 samples from the water intake trial (baseline 

rumen samples) and 94 samples from the water restriction trial (restriction rumen 

samples). 

 

2.2.4. Selection of DNA extraction kits 

A pilot study was conducted to establish a high efficacy genomic DNA extraction 

methodology for the extraction of genomic DNA from liquid rumen samples obtained 

via rumenocentesis. Five randomly selected rumenocentesis samples (5 biological 

replicates for DNA extraction via each kit) were subjected to genomic DNA extraction 

using three different commercially available DNA extraction kits from Qiagen (QIAGEN 
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Sciences Inc., Germantown, MD). Namely; QIAamp® Fast DNA Stool Mini Kit (FSM), 

QIAamp® PowerFecal DNA Kit (PF), and QIAamp® PowerFecal Pro DNA Kit (PFP). 

 

DNA extraction was conducted based on manufacturer’s specifications with 

modifications to the bead beating step and the final DNA elution step (detailed in the 

following section). 250µl of rumen fluid was used as starting material. Bead beating was 

conducted using a BeadBug6® homogenizer (Benchmark Scientific, Inc. Edison, NJ). 

Molecular grade water was used as the negative control, and ZymoBIOMICS® Microbial 

Community Standard (Zymo Research, Irvine, CA) was used as the positive control. 

DNA quality and yield of each extraction (five replicate extractions for each of the three 

kits) was measured using NanoDrop® 1000 (ThermoFisher Scientific, Waltham, MA) 

spectrophotometer. Based on the initial DNA quality and yields obtained, an attempt was 

made to further optimize the mechanical lysis step by replacing the beads inside the 

Power Bead tubes with 1mm Zirconia beads and 0.1mm Zirconia beads. Accordingly, 

two more extractions were done using the same rumen samples for the two different 

sizes of Zirconia beads. 

 

All DNA extractions (including negative and positive controls) were sent to Novogene 

Co., Ltd (CA, USA) for 16S rRNA gene amplicon sequencing of the V4 region. 

Resulting sequencing data was analyzed using DADA2 (Callahan et al., 2016) and 

visualized using MicrobiomeAnalyst (Dhariwal et al., 2017). 
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2.2.5. Whole genomic DNA extraction from rumen samples 
 
Based on the results from the pilot study, QIAamp® PowerFecal Pro DNA Kit with 

standard Power Beads was used to extract genomic DNA from rumen samples according 

to manufacturer’s specifications subjected to modifications in the bead beating and final 

elution steps. Bead beating was done using the BeadBug® 6 homogenizer (Benchmark 

Scientific, Inc. Edison, NJ) for two 2min iterations at an rpm of 4000 separated by a 

resting period of 5mins on ice (Smith, 2011; Lim et al., 2018). The BeadBug® program 

was set to 4 cycles of 30sec each. With a 30sec resting period. 

 

Final elution was done using molecular grade water as two iterations of 100µl, each with 

a 5min incubation at room temperature. DNA was eluted by centrifuging at 14000 rpm 

for 1min. The second elution was concentrated using the CentriVap DNA concentrator 

(Labconco, Kansas City, MO) by evaporating it down to 50µl. The second elution was 

then added to the first elution to arrive at a volume of 150µl in the final DNA elution. 

 

2.2.6. Library preparation and 16S V4 rRNA gene amplicon sequencing 

The PCR amplification of extracted DNA and 16S amplicon sequencing was performed 

by Novogene Corporation Inc., Sacramento, CA. The V4 region of the 16S ribosomal 

RNA gene (~250bp) was amplified using the specific primer pair 515F (5’- 

GTGCCAGCMGCCGCGGTAA-3’) and 806R (5’-GGAC TACHVGGGTWTCTAAT-

3’), with the forward primer carrying the barcode sequence. The Phusion® High-Fidelity 

PCR Master Mix (New England Biolabs) was used to carry out all PCR reactions. 
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PCR products were purified by running them on a 2% agarose gel and extracting them 

using a Qiagen® Gel Extraction Kit (Qiagen, Germany). The sequencing library 

preparation was done using a NEBNext® UltraTM DNA Library Prep Kit for Illumina. 

It was quality tested using Qubit 3.0 fluorometer and quantified using Q-PCR. 

Subsequently, an Illumina HiSeq 2500 platform was utilized for the sequencing of the 

library, generating ~250bp paired-end raw sequence reads. 

 

2.2.7. 16S V4 amplicon sequencing data analysis 

The computational analysis of 16S V4 amplicon sequence data was conducted using 

DADA2 version 1.8, according to standard operation procedures for Illumina data 

(Callahan et al., 2016). All DADA2 codes were run using R-Studio version 1.1.4 on R 

version 3.6.1. Briefly; The quality scores of forward and reverse sequence reads were 

plotted to identify any drastic drops in sequence quality, specifically towards the ends of 

the sequences, and no such significant drops were observed. Hence, no specific 

truncation of the ends of sequences were done during the pre-processing step. However, 

linker primer sequences and any sequences that had ambiguous bases and an expected 

error greater than 2 were removed using the ‘filterAndTrim’ command in DADA2. 

Subsequently, the error rates for the amplicon sequence data were modeled using 

‘learnErrors’ function in DADA2 and the sequence reads were then de-replicated using 

the function ‘derepFastq’. The de-replicated sequences were then used for the inference 

of sequence variants for each sample using the core sample inference algorithms 

available in DADA2, implemented in the function ‘dada’. Using the ‘mergePairs’ 

function, the corresponding forward and reverse inferred sequence variants were then 

merged to arrive at the full de-noised sequence contigs. The ‘makeSequenceTable’ 
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function was run on these contigs to create the amplicon sequence variant (ASV) table. 

The ASV table was then subjected to chimera removal and taxonomic classification via 

‘removeBimeraDenovo’ and ‘assignTaxonomy’ functions. The DADA formatted version 

of the Silva version 132 reference database (Quast et al., 2013) was used as the training 

dataset for taxonomic classification. The ASV table and the taxonomy file generated by 

DADA2 was then used for statistical analysis and data visualization, using 

MicrobiomeAnalyst (Dhariwal et al., 2017). 

 

 

2.2.8. Data filtering, normalization, statistical analysis and visualization 

Low abundance features, defined as those with less than 10 read counts in at least 20% of 

the samples were removed prior to data normalization. Rarefying of data based on 

minimum library size, and Total Sum Scaling was performed as data normalization steps 

to negate the effect of uneven sequencing depth (Dhariwal et al., 2017). The resulting 

filtered and normalized data were used for subsequent statistical analyses and data 

visualizations. Baseline rumen samples from all selected animals were grouped together 

when making inferences about the rumen microbiome during ad libitum water intake and 

restriction rumen samples from all animals were grouped together when making 

inferences about the rumen microbiome during water restriction.  

 

2.3. Results 
 

2.3.1. Rarefaction analysis 

A total of 8,876,490 high quality sequences (94,431 ± 25,689) ranging from a minimum 

of 26,091 in a sample to a maximum of 126,820, were obtained from rumen restriction 
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samples. For rumen baseline samples, a total of 9,895,310 high quality sequences were 

obtained with a minimum sequencing read depth of 26,470 to a maximum read depth of 

127,617 (86,046 ± 25,828).  

 

To determine whether enough sampling depth was achieved to capture the prevalent 

microbial richness in baseline and restriction rumen samples during NGS of 16S V4 

amplicons, a rarefaction analysis was performed generating rarefaction curves and 

Good’s coverage  values (Dethlefsen et al., 2008) for each rumen sample. Rarefaction 

analysis is a non-parametric re-sampling method that generates individual/sample based 

re-sampling species curves that are often used in microbiome studies to assess the 

completeness of the taxonomic survey in terms of identified taxa (Dethlefsen et al., 2008; 

McMurdie and Holmes, 2014). 

 

The rarefaction curves generated for rumen samples originating from selected animals 

belonging to both WI (baseline) and water restriction trials are depicted in Figure 2.1. 

Plateaued curves were observed for all rumen samples, well before the count of re-

sampled sequences equaled minimum library size (26,181 read counts). The plateauing of 

the curve after exponential increase at the beginning indicates the increasing sequencing 

effort required to identify new taxa (Dethlefsen et al., 2008). The plateaued curves for all 

rumen samples, subsequently becoming parallel to x-axis even before the minimum 

library size is reached, indicates that all rumen genomic DNA samples were sequenced 

with sufficient depth to capture the entirety of the microbial richness present in them. 
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Good’s coverage on the other hand is a similar estimate based on the taxonomic 

classification of newly sampled reads. It determines the probability of the subsequently 

sampled read being classified into a taxon that has not been captured by the reads that 

were sampled before (Dethlefsen et al., 2008). For all rumen samples, the Good’s 

coverage reached >99% at a sampling depth of ~24,000 sequence reads, meaning 

essentially that the total microbial diversity in the samples were captured at this point. 
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Figure 2.1: Rarefaction curves for baseline (top) and restriction (bottom) rumen samples. 

The curves were generated using the ‘ggrare’ function ranacapa R pckage (Kandlikar et 

al., 2018) implemented in MicrobiomeAnalyst (Chong et al., 2020), and demonstrates 

how the discovery of new species (species richness in y axis) increases with the number 

of sampled reads from each sample (x axis). All curves are truncated at a sampling depth 

of 26,181 sequence reads due to subsampling based on the minimum library size for all 

rumen samples (data rarefying).  

 

2.3.2. Alpha diversity analysis 

In order to determine the effect of water restriction on species richness and evenness of 

the rumen microbial population, we conducted an alpha diversity analysis on the 

microbial community abundance data recovered from baseline and restriction rumen 

DNA samples. Alpha diversity estimates such as Chao1 and Observed ASV indices were 
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used to calculate species richness (Ocejo et al. 2019), Shannon and Simpson indices are 

commonly used to measure alpha diversity of a microbial community based on both 

species evenness and richness (Wagner et al., 2018). Fisher’s index models alpha 

diversity as a log series distribution and is seen as measure that takes species evenness 

into account (Parsons et al., 2017; Chong et al., 2020). Between group comparisons for 

Chao1, Observed ASV and Fisher’s indices were performed using ANOVA, while Man-

Whitney test was used for Shannon and Simpson alpha diversity estimates (Clemmons et 

al., 2017). The alpha diversity analysis was done using the phyloseq R package 

implemented in MicrobiomeAnalyst (McMurdie and Holmes, 2013; Chong et al., 2020).  

 

No statistically significant differences (p<0.05) were observed in species richness and 

evenness (based on any of the alpha diversity indices mentioned above) between 

restriction and baseline samples. However, when subsampling (or data rarefying) was not 

used as a data normalization step (normalizing only via total sum of scaling or log ratio 

normalization) a statistically significant difference (p<0.05) was observed between 

restriction and baselines samples, based on Fisher’s test for alpha diversity. 
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Figure 2.2: Box plots representing the alpha-diversity distributions at genus level for 

microbial communities recovered from baseline and restriction rumen DNA samples.  All 

rumen samples are grouped as either baseline or restriction and color coded accordingly. 

Chao1 and Observed ASV indices measure species richness while Shannon, Simpson, 

and Fisher indices measure species evenness. 
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Alpha Diversity Index Statistical Test Test Statistic p-value 
Observed ASV T-test 1.2499 0.21289 
Chao1 T-test 1.0429 0.29837 
Shannon Man-Whitney 5976 0.18963 
Simpson Man-Whitney 5991 0.17825 
Fisher’s T-test 2.4963 0.01338 

 

Table 2.1: Between group comparisons of alpha diversity indices derived for baseline 

and restriction rumen samples. T-test was used to measure between group comparisons 

for the distribution of Observed ASV, Chao1, and Fisher’s indices. Mann-Whitney test 

was used for Shannon and Simpson indices. Only Fisher’s index indicated a statistically 

significant difference (in species evenness) when the data is normalized only using log 

ratio techniques or data scaling techniques (omitting subsampling from the data 

normalization process). 

 

2.3.3. Beta diversity analysis 

A beta diversity analysis was conducted based on the microbial community abundance 

data obtained from baseline and restriction rumen DNA samples to determine the effect 

of water restriction on the composition of rumen microbial community. Bray-Curtis 

dissimilarity and Jensen-Shannon index (Chong et al., 2020) were used to measure 

dissimilarity/similarity between baseline and restriction microbial communities based on 

the presence and absence of species. As depicted in Figure 2.3, when visualized using 

NMDS (None-parametric multidimensional scaling) (Luz Calle, 2019) plots, the baseline 

and restriction samples did not form clear visible clusters. However, when the overall 

clustering pattern was analyzed using permutational analysis of variance 

(PERMANOVA) (Moore et al., 2017), a statistically significant (p<0.05) difference in 
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species composition was observed between the microbial communities recovered from 

baseline and restriction rumen samples for both the dissimilarity measures used. The 

statistics for Bray-Curtis dissimilarity were; F-value: 2.5244; R-squared: 0.012048; p-

value <0.03; [NMDS] Stress = 0.18029. And the statistics for Jensen-Shannon index 

were; F-value: 3.3465; R-squared: 0.01591; p-value <0.031; [NMDS] Stress = 0.17346. 
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Figure 2.3: NMDS plots illustrating dissimilarity matrices generated using Bray-Curtis 

(a) and Jensen-Shannon (b) indices, in the two-dimensional space. Each blue (restriction 

rumen samples) and red (baseline rumen samples) point represent the species 
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composition of the entire microbiome present in a given rumen sample. The ellipses mark 

the 95% confidence interval surrounding the centroid of each of the two groups. Plot (a) 

NMDS stress = 0.18029. Plot (b) NMDS stress = 0.17346. 

 

2.3.4. Microbial community composition 

In order to assess the effect of water restriction on the rumen microbial community 

composition, taxonomic abundance profiles were built at phylum and genus levels using 

MicrobiomeAnalyst. A total of 1403 features (ASVs) that remained after data filtering 

and normalization was used to identify the 10 most abundant phyla and genera in baseline 

and restriction rumen samples. 

 

For baseline samples, out of the top 10 phyla, Firmicutes (47.5%), Bacteroidota (36.3%), 

Proteobacteria (7.0%), Euryarchaeota (4.7%), Actinobacteriota (1.4%), and 

Verrucomicrobiota (1.3%) accounted for 98.3% of the total abundance. The rest of the 10 

most abundant phyla were Fibrobacterota, Spirochaetota, Cyanobacteria and 

Desulfobacterota, accounting for 1.4% of the total abundance. For restriction samples, the 

top 10 and the top 6 phyla (accounting for 98.4% of the total abundance) essentially 

remained the same. 

 

However, a statistically significant drop in relative abundance was observed for phyla 

Proteobacteria (baseline 7.01% to restriction 5.40%; p < 0.05) and Desulfobacterota 

(baseline 0.18% to restriction 0.15%; p < 0.05) in the restriction samples. Furthermore, a 

significant increase in the relative abundance of phyla Euryarchaeota (baseline 4.72% to 
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restriction 5.24%; p < 0.05) and Verrucomicrobiota (baseline 1.26% to restriction 1.62%; 

p < 0.01) was observed in the restriction samples as well (Table 2.2). 

 

As depicted in Figure 2.4(b), when the relative abundance data was summarized at genus 

level, the baseline samples were dominated by genera such as Prevotella (21.9%), 

Christensenellaceae_R_7_group (6.4%), Lachnospiraceae_NK3A20_group (6.3%), 

Methanobrevibacter (4.6%), Succinivibrionaceae_UCG_002 (3.6%), and Ruminococcus 

(3.3%). These top 6 genera accounted for a cumulative 46.1% of the total microbial 

abundance. The other four genera out of the top 10 were NK4A214_group, 

Rikenellaceae_RC9_gut_group, Lachnospiraceae_XPB1014_group, and 

Prevotellaceae_UCG_003, giving rise to a cumulative 7.3% of the total microbial 

abundance. 20.1% of the total abundance could not be assigned a classification at genus 

level. 

 

The taxonomy of the 10 most predominant genera in restriction rumen samples, remained 

the same as the baseline samples as depicted in Figure 2.4(b). However, a significant 

increase in the relative abundance of Methanobrevibacter (baseline 4.6% to restriction 

5.1%; p < 0.05) and Rikenellaceae_RC9_gut_group (baseline 1.95% to restriction 2.14%; 

p < 0.05) was observed in the restriction samples while the abundance of 

Prevotellaceae_UCG_003 decreased significantly (baseline 1.61% to restriction 1.47%; p 

< 0.05). Marginally significant (p<0.05) variations in relative abundance was observed 

for Succinivibrionaceae_UCG_002 and NK4A214_group as well. 
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Figure 2.4: Relative abundance bar graphs depicting the 10 most predominant phyla (a) 

and genera (b) present in baseline and restriction rumen samples. 

 

Phyla Baseline Restriction P-value 
Firmicutes 47.54% 47.08% 0.7611 
Bacteroidota 36.35% 37.66% 0.1857 
Proteobacteria 7.01% 5.40% 0.0002*** 
Euryarchaeota 4.72% 5.24% 0.0018** 
Verrucomicrobiota 1.26% 1.62% 0.0011** 
Actinobacteriota 1.43% 1.36% 0.8499 
Fibrobacterota 0.54% 0.52% 0.1461 
Spirochaetota 0.52% 0.47% 0.0559 
Cyanobacteria 0.19% 0.22% 0.4993 
Desulfobacterota 0.18% 0.15% 0.0414* 

                            (*) – p <0.05 (**) – p <0.01 (***) – p<0.001 

Table 2.2: The 10 most abundant phyla observed in the baseline and restriction rumen 

samples of cattle. Baseline and Restriction columns indicate the relative abundance of 

each phylum in baseline and restriction rumen samples. The p-values indicated are 

between group (baseline and restriction) comparisons for each phyla using paired t-test. 

Genus Baseline Restriction P-value 
Prevotella 21.92% 23.09% 0.250 
Lachnospiraceae_NK3A20_group 6.30% 6.77% 0.054 
Christensenellaceae_R_7_group 6.38% 6.45% 0.220 
Methanobrevibacter 4.57% 5.06% 0.001** 
Succinivibrionaceae_UCG_002 3.64% 3.44% 0.041* 
Ruminococcus 3.31% 3.16% 0.228 
NK4A214_group 2.09% 2.13% 0.049* 
Rikenellaceae_RC9_gut_group 1.95% 2.14% 0.006** 
Lachnospiraceae_XPB1014_group 1.66% 1.52% 0.150 
Prevotellaceae_UCG_003 1.61% 1.47% 0.019* 

(**) – p < 0.01  (*) – p < 0.05 

Table 2. 3: The relative abundance of the 10 most predominant genera observed in the 

rumen samples obtained during the water intake (baseline) and water restriction 
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(restriction) trials. The p-values were calculated using paired t-test on animal wise 

abundant data grouped according to treatment. 

 

2.3.5. The core-microbiome 

To further elucidate the microbial community structure of baseline and restriction rumen 

samples, we conducted a core-microbiome analysis at genus level. The core microbiome 

was defined as the taxa that are present in at least 70% of the samples considered, at a 

threshold relative abundance of 0.01% or above.  The core-microbiome for baseline 

rumen samples (as depicted in Figure 2.5a) consisted of 9 genera, namely; 

Ruminococcus, Prevotella, Lachnospiraceae_NK3A20_group, 

Christensenellaceae_R_7_group, Methanobrevibacter, 

Oscillospiraceae_NK4A214_group, Rikenellaceae_RC9_gut_group, 

Prevotellaceae_UCG_003, and Mogibacterium. 

 

The core microbiome for rumen samples from the water restriction trial (as depicted in 

Figure 2.5b) included 10 genera comprising of Ruminococcus, Prevotella, 

Lachnospiraceae_NK3A20_group, Christensenellaceae_R_7_group, 

Methanobrevibacter, Oscillospiraceae_NK4A214_group, 

Rikenellaceae_RC9_gut_group, Prevotellaceae_UCG_003, 

Lachnospiraceae_XPB1014_group and Mogibacterium. 
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Figure 2.5: The heat map illustrating the relative abundance and prevalence of the 

microbial taxa defining the core-microbiomes recovered from baseline (a) and restriction 

(b) rumen samples. A threshold of at least 70% prevalence and 0.01% relative abundance 

was used as the selection criteria, for microbial taxa to be considered as a part of the 

baseline or restriction rumen core-microbiome. 
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2.3.6 Biomarker analysis of baseline and restriction rumen microbial populations 

In an effort to identify differentially abundant and biologically significant taxa, or 

biomarkers, enriched in baseline and restriction rumen samples, a linear discriminant 

analysis (LDA), also known as LEfSe (LDA effect size), was conducted (Segata et al., 

2011). The LEfSe algorithm takes into account both statistically significant differential 

abundance of taxa and the magnitude of the effect each of these taxa would have on 

classifying samples into treatment groups (also known as biological consistency). 

Kruskal-Wallis rank-sum test is used to identify statistically significant taxa and LDA is 

used to measure their effect size (Segata et al., 2011). Data summarized at genus level 

was used for this analysis, and a selection criteria of p<0.05 and LDA > 2.0 was used to 

identify differentially abundant taxa (biomarkers) associated with baseline and restriction 

rumen samples. 

 

We were able to identify a total of 35 differentially abundant taxa as biomarkers using the 

LEfSe analysis. The 15 most predominant biomarkers out of that 35, are depicted in 

Figure 2.6. Based on that, it can be observed that UCG-004 (Erysipelatoclostridiaceae 

family), Prevotellaceae_UCG_004, Moryella, Saccharofermentans, Selenomonas, 

Flexilinea, Lachnoclostridium were enriched in restriction rumen samples. Bacteroides, 

CAG_352 (Ruminococcaceae family), Escherichia_Shigella, Romboutsia, UCG-005 

(Oscillospiraceae family), Ruminobacter, Turicibacter and 

Succinivibrionaceae_UCG_001 were identified as enriched biomarkers in baseline rumen 

samples. 
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Figure 2.6: The bar graph depicting the results of linear discriminant analysis (LDA) 

effect size (LEfSe) done on baseline and restriction rumen samples. The blue bars 

indicate LDA score of biomarkers for rumen restriction samples and the red bars indicate 

LDA scores of biomarkers for rumen baseline samples. The LDA score is an estimation 

of the magnitude of the effect each biomarker would have in grouping each sample into 

the two classes (baseline and restriction) (Segata et al., 2011; Chong et al., 2020). 
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Random forest (RF) analysis (Breiman, 2001) implemented in MicrobiomeAnalyst 

(Chong et al., 2020) was used to further elucidate the differentially abundant taxa 

between baseline and restriction rumen samples. The Random Forest (RF) algorithm, 

originally developed by Leo Breiman (Breiman, 2001), is a supervised learning algorithm 

that can be well adapted to analyze high dimensional microbiome data (Chong et al., 

2020). Due to its ability to efficiently analyze large datasets, accurately classify features 

into treatment groups, and determine the importance of each feature for classification (as 

a proxy for biological consistency), it is utilized in microbiome studies to discover 

enriched features in different environments or treatment groups.  

 

The out-of-sample error (how accurately the algorithm can classify new data) also known 

as the OOB error for the RF algorithm converges to a minimum (limit) when the number 

of decision trees built, increases (Breiman, 2001). Hence, we generated 5000 decision 

trees (the maximum allowed by MicrobiomeAnalyst) when looking for enriched taxa in 

baseline and restriction rumen samples, thus lowering the OOB error to 0.263. Lower 

OOB errors are associate better sensitivity and classification accuracy of underlying 

random forest generated (Roguet et al., 2018). 

 

Out of the top 15 biomarkers identified by RF analysis (depicted in Figure: 2.7), 13 

overlapped with the taxa identified by LEfSe and the rest, namely; Catenibacterium, 

Saccharopolyspora, Geobacillus were unique to RF analysis. 
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Figure 2.7: Illustration of the differentially abundant features identified by random forest 

analysis. The features are ranked according to the mean decrease in accuracy the model 

suffers in assigning samples to the classes, if the particular feature is removed from the 

analysis. The color codes indicate the association of each feature either with baseline or 

restriction samples. 
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Genus P-values FDR LDAscore Association 
Succinivibrionaceae_UCG_001 4.672e-02 1.800e-01 -4.19 Baseline 
Turicibacter 3.367e-02 1.641e-01 -3.99 Baseline 
Ruminobacter* 1.759e-02 1.324e-01 -3.88 Baseline 
UCG_005 3.820e-02 1.659e-01 -3.88 Baseline 
Romboutsia 4.913e-02 1.813e-01 -3.82 Baseline 
Escherichia_Shigella* 2.242e-03 4.196e-02 -3.72 Baseline 
CAG_352* 2.417e-02 1.439e-01 -3.55 Baseline 
Bacteroides 2.127e-02 1.327e-01 -3.43 Baseline 
Cellulosilyticum 2.809e-02 1.508e-01 -3.35 Baseline 
Clostridioides 3.926e-02 1.659e-01 -3.34 Baseline 
Pseudobutyrivibrio* 3.873e-02 1.659e-01 -3.26 Baseline 
Lachnospiraceae_AC2044_group* 1.328e-05 8.700e-04 -3.2 Baseline 
Alistipes 1.204e-02 1.052e-01 -3.18 Baseline 
Tuzzerella 6.065e-03 6.621e-02 -3.1 Baseline 
Caproiciproducens* 5.054e-04 1.655e-02 -2.92 Baseline 
Catenisphaera 4.416e-02 1.753e-01 -2.66 Baseline 
Flavonifractor 3.383e-02 1.641e-01 -2.65 Baseline 
Oscillibacter 2.021e-02 1.324e-01 -2.56 Baseline 
Colidextribacter* 5.275e-03 6.621e-02 -2.53 Baseline 
Parabacteroides 3.582e-02 1.659e-01 -2.47 Baseline 
Parvibacter 1.536e-02 1.257e-01 -2.45 Baseline 
UCG_004* 1.722e-06 2.255e-04 4.34 Restriction 
Prevotellaceae_UCG_004* 2.870e-05 1.253e-03 3.86 Restriction 
Moryella* 4.485e-03 6.528e-02 3.73 Restriction 
Saccharofermentans 2.877e-02 1.508e-01 3.7 Restriction 
Selenomonas 1.106e-02 1.052e-01 3.48 Restriction 
Flexilinea 3.787e-03 6.201e-02 3.38 Restriction 
Lachnoclostridium 1.925e-02 1.324e-01 3.37 Restriction 
Oribacterium 2.743e-02 1.508e-01 3.22 Restriction 
Lachnobacterium* 1.108e-03 2.903e-02 3.21 Restriction 
Veillonellaceae_UCG_001 5.929e-03 6.621e-02 3.19 Restriction 
Papillibacter* 1.450e-03 3.165e-02 3.08 Restriction 
Anaerovorax 1.139e-02 1.052e-01 2.84 Restriction 
Defluviitaleaceae_UCG_011 4.073e-02 1.667e-01 2.77 Restriction 
Lachnospiraceae_UCG_009 1.916e-02 1.324e-01 2.16 Restriction 
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Table 2.4: The 35 differentially abundant taxa (biomarkers) identified using LEfSe 

analysis, and their overlap (*) with the top 15 most predominant biomarkers identified by 

RF analysis. 

 

 

2.4. Discussion 

Ruminants are often considered to be superorganisms due to the prominent symbiotic 

host-microbiome relationship they maintain with the rumen microbiota (Matthews et al., 

2019). The rumen is home to a diverse and complex microbial community that comprises 

of anaerobic bacteria, methanogenic archaea, fungi, protozoa and phages, and facilitates 

pre-gastric fermentation in ruminants (Weimer et al., 2009; Huws et al., 2018). 

 

The diversity and abundance of rumen microbiota can be affected by a multitude of 

internal (host) and external environmental factors. Internal factors such as host genetics 

(Roehe et al., 2016; Li et al., 2019; Fan et al., 2020), age (Liu et al., 2017), sex (Li et al., 

2019), and external factors such as feed intake (Delgado et al., 2019), diet (Pitta et al., 

2010), feed withdrawal (Rabaza et al., 2019), and heat stress (Tajima et al., 2007; 

Romero-Pérez et al., 2011; Zhao et al., 2019; Baek et al., 2020) have been associated 

with changes in the rumen microbial population via seminal and more recent studies 

found in existing literature. However, substantial studies on the direct and indirect effects 

of water restriction on the rumen microbial community are yet to materialize. 

 

In order to assess the effect of water restriction on the rumen microbial dynamics, we 

reconstructed microbial communities in rumenocentesis samples obtained from animals 
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maintained at 50% water restriction, using 16S rRNA V4 gene amplicon sequencing and 

compared them against similarly reconstructed microbial communities from the baseline 

rumenocentesis samples of the same animals. 

 

2.4.1 Alpha diversity measures indicate a possible difference in species evenness 

between restriction and baseline rumen microbial communities. 

Alpha diversity, also known as within sample diversity, is a measure of species richness 

(the number of different species available in a given environment) and species evenness 

(the consistency of species abundance). Diversity indices such as observed richness 

(observed ASV/OTU) and Chao1 are commonly used to assess the alpha diversity of a 

population based on species richness (Luz Calle, 2019; Chong et al., 2020). They do not 

take species evenness into account. Observed richness is often criticized for under 

representation of the actual richness in microbial community since under this method 

species with low abundance can go undetected.  Hence, extended richness measures such 

as Chao1 that explicitly takes into account the number of species that are found once or 

twice, in its calculation are also utilized in parallel to assess alpha diversity of a microbial 

community in terms of species richness (Luz Calle, 2019). 

 

Even though species richness indices calculated (Chao1 and observed ASV) for baseline 

samples were slightly higher than those that were for restriction rumen samples, they did 

not exhibit significant differences (p<0.05) in their pairwise comparisons. Thus, making 

it clear that, overall, there was no significant difference in the number of different species 
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in the microbial communities recovered from the rumen samples when the animals were 

under water restriction versus ad libitum water intake. 

 

Similar to species richness indices, Shannon and Simpson indices did not exhibit a 

statistically significant difference (p<0.05) during pairwise comparison (Man-Whitney 

test), even though baseline values were slightly higher than restriction values. The 

Fisher’s index however did show a significant difference in evenness between baseline 

and restriction samples, when the data was not rarefied/sub-sampled (all other indices 

revealed statistically insignificant pairwise comparison results with or without data 

rarefying). This may well be due to the fact that, even though data rarefying based on 

minimum library size is a popular method for normalizing data from samples with vastly 

different sequence library sizes, there is an apparent loss of information since a 

significant amount of sequence reads are discarded from samples with large sequencing 

libraries, thus affecting alpha diversity estimations (McMurdie and Holmes, 2014; Willis, 

2019). 

 

Our observations indicate that water restriction may possibly be exerting an effect on the 

relative abundance of individual species in the rumen microbiome rather than affecting 

the total number of unique species that comprises it. Furthermore, this may be a direct 

effect of water scarcity on the growth of certain ruminant microorganisms, or an indirect 

effect of water restriction, through its effect on feed intake and digestibility in cattle 

(Benatallah et al. 2019; Hackmann and Firkins 2015). 
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2.4.2 The species composition of rumen microbial communities recovered from 

baseline and restriction rumen samples are significantly different. 

 

Dissimilarity matrices constructed using Bray-Curtis index, Jensen-Shannon divergence 

and Jaccard index for baseline and restriction rumen samples at genus level, did not 

portray clear clustering when visualized using NMDS plots (Ramette, 2007; Luz Calle, 

2019). However, when their overall beta diversity was analyzed using PERMANOVA 

(Anderson, 2001; Moore et al., 2017; Luz Calle, 2019), the results were statistically 

significant (p<0.05), suggesting a significant difference in species composition in the 

microbial communities reconstructed from baseline and restriction rumen samples. 

 

The reason for observing no clear clustering in the NMDS plots for statistically 

significant data, may be due to the information loss during dimensionality reduction. 

Microbiome data are high dimensional and the NMDS plots try to bring these down to 2 

or 3 dimensions. Further evidence for this ‘information loss’ can be found in the stress 

values calculated for each plot which are close to 0.2, meaning that the NMDS plot may 

not be fully accurate in depicting the actual distributions of the samples in two 

dimensional space (Chong et al., 2020). 

 

2.4.3 The taxonomy of the predominant rumen microbiota remains largely 

unchanged while their relative abundances differ. 

Unlike observational data from any other natural ecosystem, high throughput sequencing 

(HTS) data from a particular microbiome is always limited by the sequencing capacity of 
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the HTS platform. The main implication of this phenomenon is that the abundance of a 

particular species cannot be considered as independent of the abundance of the other 

species co-inhabiting the environment. Hence taxonomic abundance data is best 

portrayed as relative abundances rather than actual abundances or count data (Gloor et 

al., 2017). Therefore, we used relative abundance graphs to summarize the taxonomic 

abundances obtained through sequence data analysis. 

 

The predominant taxa observed by us in baseline and restriction rumen samples fall well 

in line with existing literature describing the taxonomic composition of the rumen 

microbiome (Seshadri et al. 2018; Henderson et al. 2015; Matthews et al. 2019; Snelling 

et al. 2019). The taxonomy of the 10 most abundant genera and phyla remained the same 

between baseline and restriction samples, however we observed significant variations in 

their relative abundances, both at phylum and genus level. 

 

A significant drop (p<0.05) in the relative abundance of phylum Proteobacteria observed 

in restriction samples was particularly noteworthy. This was mainly caused by a drastic 

drop in the abundance of Ruminobacter (45% reduction), Succinivibrio (13% reduction), 

Escherichia/Shigella (78% reduction) and Acinetobacter (30% reduction) at genus level 

in restriction rumen samples compared to baseline samples. 

 

The genus Ruminobacter is known to contain major amylolytic bacteria found in the 

rumen responsible for starch degradation. They are also known to be highly dependent on 

starch as a substrate, hence observed to decrease in abundance when the animal is fed 
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with a sugar-rich diet (Klevenhusen et al., 2017). Abundance of Ruminobacter is known 

to increase in heat stressed animals under increased ruminal pH (Zhao et al., 2019). 

Animals used for the current study did show a slight but a significant decrease (p=8.29e-

05) in rumen pH, where it declined from an average baseline pH of 6.45 to 6.36 in 

restriction rumen samples. The behavior of Ruminobacter species, when subjected to 

water scarcity has not been described yet. The significant decrease in the abundance of 

Ruminobacter we observed during water restriction could be an indication of reduced 

starch digestibility of the rumen under water restricted conditions. 

 

Escherichia/Shigella are mucosa-associated microorganisms, widely known for their 

adverse gut health implications in ruminants and humans, including biofilm formation 

during frothy bloat and zoonotic transmission of virulent strains such as Escherichia. Coli 

O157:H7 (Auffret et al. 2020; Pitta et al. 2016; Stein and Katz 2017). A 78% reduction of 

the baseline Escherichia/Shigella abundance during water restriction, can be considered 

as a beneficial health implication of water restriction. However, this requires further 

scrutinization of the data at species and strain level, since Escherichia spp. may also play 

an integral role in the natural symbiosis of the rumen microbiome. 

 

The relative abundances of Methanobrevibacter and Rikenellaceae_RC9_gut_group 

showed a significant increase in their relative abundances in restriction rumen samples 

when compared to baseline samples. According to the global rumen census data 

(Matthews et al., 2019), Methanobrevibacter is most predominant methanogen found in 

ruminants. The abundance of Methanobrevibacter (or methanogens in general) in the 
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beef cattle rumen is known to differ based on factors such as residual feed intake and diet 

type (Carberry et al., 2014). However, current literature suggests a knowledge gap in 

assessing the effect of the water consumption on enteric methane production in ruminants 

and microbial dynamics of methanogens, including Methanobrevibacter (Hill et al., 

2016). Hence, our study provides a first look at how predominant methanogens such as 

Methanobrevibacter may increase in abundance during water restricted conditions. 

However, whether this is a direct effect of water intake on the rumen methanogens or an 

indirect effect through differed feed intake or microbial co-occurrence networks, remains 

to be further investigated.  

 

Rikenellaceae_RC9_gut_group extends from the family Rikenellaceae known to produce 

volatile fatty acids during the rumen fermentation process (Holman and Gzyl, 2019). The 

abundance of Rikenellaceae_RC9_gut_group is known to differ based on diet 

composition and has been observed to have a negative correlation with average daily gain 

(ADG) (Mcloughlin et al., 2020). However, current literature does not describe clear 

association between Rikenellaceae_RC9_gut_group and water intake or feed intake. 

Hence, the statistically significant decrease we observed during our study breaks new 

ground on this regard. However, we did not observe a significant increase in the 

abundance of Rikenellaceae_RC9_gut_group in animals with low percentage recovery of 

ADG during water restriction, as one might infer based on the previous observations of a 

negative correlation between Rikenellaceae_RC9_gut_group abundance and ADG. 
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2.4.4 The rumen core-microbiome remains essentially unchanged during water 

restriction. 

In host-microbiome studies, a core microbiome is often defined to identify microbial taxa 

that plays a key role across time, treatment, spatial distribution and ecological impact etc. 

and usually consists of a persisting set of microbial taxa. Due to the lack of clear 

definitions, a common consensus on parameters and their threshold values to define the 

scope of a core-microbiome has not been established yet (Risely, 2020). Prevalence and 

relative abundance are two of the most common parameters used in host-microbiome 

studies to define a host-associated core-microbiome, even though the threshold levels 

may vary (John Wallace et al., 2019). 

 

We used 70% prevalence and 0.01% relative abundance as threshold values to define the 

baseline and restriction rumen core-microbiomes. Meaning that a taxon will only be 

considered as a part of the core microbiome if it is present in at least 70% 

baseline/restriction rumen samples at an individual relative abundance > 0.01%. 

 

The core microbiome derived for baseline rumen samples comprised of 9 genera, and the 

core microbiome for the restriction rumen samples consisted of 10 genera essentially 

identical to those of the baseline core microbiome, with the exception of the addition of 

Lachnospiraceae_XPB1014_group. Ruminococcus, Prevotella, and Lachnospiraceae 

family have previously been found to be a part of the heritable core microbiome of cattle 

(John Wallace et al., 2019). In a temporal study conducted using Tibetan lambs,  

Christensenellaceae_R_7_group, Rikenellaceae_RC9_gut_group, and 
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Prevotellaceae_UCG_003 were observed to get established in the rumen microbiome of 

mature lambs (Wang et al., 2019). To date, Christensenellaceae minuta which is closely 

related to the Christensenellaceae_R_7_group, is the only cultivated member of the 

Christensenella genus, known to have the capability of producing acetate and butyrate 

from glucose. Members of the Christensenellacea family are also known to be associated 

with lowering the pH of the rumen (Holman and Gzyl, 2019). 

 

Previous work has found bacterial taxa such as Prevotella, Butyrivibrio, and 

Ruminococcus, and unclassified Lachnospiraceae as prominent members of the rumen 

microbiome, hence deemed as members of the rumen core microbiome at genus (or 

higher) level (Henderson et al. 2015). However, it is important to note that in our study, 

Butyrivibrio was not present in high abundance and prevalence in either baseline or 

restriction rumen samples, hence not being identified as a part of the core rumen 

microbiome, and not appearing in the 10 most abundant genera found in the rumen 

samples. It ranked 45th in overall abundance and had a baseline relative abundance of 

0.29% and a restriction relative abundance of 0.24%. 

 

2.4.5 LEfSe analysis and Random Forest classification reveal biomarkers associated 

with rumen microbiome under water stress. 

Linear discriminant analysis (LDA) effect size or LEfSe (Segata et al., 2011) is a 

biomarker discovery algorithm specifically designed to identify biomarkers in high 

dimensional data such as metagenomics or microbiome data. Conventionally, the 

statistical significance of p<0.05 and a minimum LDA score of 2.0 are used as threshold 
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values for a feature to be identified as a biomarker. To identify biomarkers for baseline 

and restriction rumen samples, we used an p-value <0.05 and LDA>2.0 with all LEfSe 

analyses done at genus level (Chong et al., 2020). 

 

Based on both LEfSe analysis and RF classification, a consensus list of 5 differentially 

abundant biomarkers were associated with restriction rumen samples, namely; UCG_004, 

Prevotellaceae_UCG_004, Moryella, Lachnobacterium, and Papillibacter. All of these 

biomarkers exhibited statistically significant (p<0.05) increase in relative abundances in 

restriction rumen samples when compared with baseline samples. Moryella is known to 

be positively associated with dry matter intake (DMI) (Qiu et al., 2019). The abundance 

of Lachnobacterium and Papillibacter (known to play a role in butyrate production in the 

rumen) are affected by diet type (Wang et al. 2020; Belanche et al. 2019). The abundance 

of Prevotellaceae UCG-004 on the other hand is known to decrease during starvation. 

However, none of these taxa have been associated with water intake/water restriction so 

far. Hence the current study adds a new dimension to the existing knowledge we have on 

external factors that affect the abundance of rumen microbiota. 
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CHAPTER III 

POPULATION DYNAMICS OF THE BOVINE FECAL MICROBIOME UNDER 
WATER RESTRICTED CONDITIONS: A TAXONOMIC SURVEY OF 16S V4 

AMPLICON SEQUECING DATA 
 

 
3.1 Introduction 

The cattle gut microbiome and its host-microbiome interactions has been studied 

extensively in order to develop new strategies to improve production and efficiency of 

beef and dairy cattle systems while reducing its negative environmental impact (O’Hara 

et al., 2020). The rumen microbiome has often been the epicenter of cattle gut 

microbiome studies due to its importance in fermentation and VFA production. With the 

increased use of Next Generation Sequencing (NGS) technologies, such studies have 

generated a vast amount of data and information detailing taxonomic composition and 

function of the rumen microbiome, spanning multiple breeds, production systems, and 

external environmental factors (Henderson et al., 2015; Deusch et al., 2017; Zhou et al., 

2018). 

 

The lower gut of cattle comprises of the small intestine and the hindgut region 

comprising of cecum, colon and the rectum. The hindgut is thought to be responsible for 

up to 30% of the total cellulose and hemicellulose digestion in ruminants (Hoover 1978; 

Gressley et al. 2011), and the energy produced can be an important contributor to the 

total energy requirement of the animal throughout different stages of production, 
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especially during the first few weeks of the life of a calf where the rumen is not yet fully 

developed (Castro et al., 2016). When compared to the rumen microbiome, the structure 

and function of the lower-gut microbiome and its role in animal health and production is 

not well understood (O’Hara et al., 2020). However, recent studies suggest that the 

inherent microbiota of the lower gastrointestinal (GI) tract may play an important role in 

beef and dairy cattle production, including host-microbiome interactions that contribute 

to animal health, even though comprehensive studies on this regard is still scarce 

(Malmuthuge and Guan 2017; Myer et al. 2015; Hara et al. 2018). In contrast to the 

rumen, the lower gut of ruminants plays an imperative role in their immune function. The 

mucosal epithelium hosting a multitude of immune receptors and cells, acts as a chemical 

and physical barrier for pathogenic organisms (Hooper et al., 2015; Malmuthuge and 

Guan, 2017). Similar to their function in the monogastrics, the lower gut microbial 

community of cattle is also found to contribute towards the establishment of the immune 

system (Mulder et al., 2011; Malmuthuge and Guan, 2017). Therefore, gaining a 

comprehensive understanding of structure and function of the fecal microbiome of cattle 

is of utmost importance due its potential role in improving ruminant gut health, 

maximizing production efficiency and reducing the environmental impact of beef cattle 

operations (O’Hara et al., 2020). 

 

Analyzing the fecal microbial community has often been used as a non-invasive method 

of studying the hindgut microbiome  (Mote et al., 2019) especially due to the similarities 

in the composition of microbial communities recovered from cattle feces, and their 

hindgut digesta (Song et al., 2018). Existing studies have found the cattle fecal 
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microbiome to comprise of a complex microbial community, and like the rumen 

microbiome, is often affected by both host and external environmental factors such as 

breed, age, stage of production, and diet (Shanks et al., 2011; Song et al., 2018; Hagey et 

al., 2019; Noel et al., 2019; Cendron, 2020). However, the effect of water intake or water 

restriction on the establishment and development of the lower gut microbiome of cattle is 

yet to be extensively studied. 

 

Studies conducted in mice and humans have demonstrated that pH and chlorine 

concentration of drinking water can have a significant impact in shaping the gut 

microbiome (Sofi et al., 2014; Sasada et al., 2015; Cremer et al., 2017), thus establishing 

the fact that water intake can have a significant impact on shaping the mammalian gut 

microbiome. Therefore, a prominent research gap exists in studying the effects of water 

restriction or water stress on the fecal microbiome of cattle thus justifying a 

comprehensive microbiome study on this regard. 

 

Hence, we conducted the current study to elucidate the microbial dynamics of the bovine 

lower gut microbiome under water stress, based on 16S rRNA gene amplicon sequencing 

of genomic DNA extracted from fecal samples obtained from feedlot beef cattle under ad 

libitum water intake, and at 50% water restriction. 
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3.2 Materials and Methods 
 

3.2.1 Animals, experimental design and samples collection 

The animals and the experimental design used in this study were as described in Chapter 

2. The difference lies in sample collection where we collected fecal samples instead of 

rumen samples, in order to investigate the fecal microbiome. Refer section 2.2.1 and 

2.2.2 for detailed information. Fecal samples were collected directly from the rectum 

(being careful not to cross contaminate samples), at the end of each trial. All samples 

were snap frozen on dry ice at sample collection, transported immediately to the Lab and 

stored at -80C0 until DNA extraction. 

 

3.2.2 Animal selection for DNA extraction 
 

Even though fecal sample collection was attempted on all animals, DNA extraction (for 

16S rRNA gene amplicon sequencing) from all fecal samples is not cost effective. 

Hence, animals that showed statistically significant (p < 0.1) performance based on 

percentage recovery of average daily gain (ADG) were selected, and their fecal samples 

were used for genomic DNA extraction. 

 

% recovery of ADG = 
ADG during restriction trial

ADG during WI trial
 ×100 

 

The % recovery of ADG distributions were calculated separately for each group and the 

animals that fall in the tails of the distribution were selected to maximize statistical 

power. A total of 146 animals from the seven groups were selected for fecal DNA 

extraction based on the criteria mentioned above. A total of 223 fecal samples that 
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comprised of 118 samples from the water intake trial (baseline fecal samples) and 115 

samples from the water restriction trial (restriction fecal samples) originating from the 

146 animals were used for the current study. 

 

3.2.3 Whole genomic DNA extraction from fecal samples 
 
Based on the results from the pilot study, QIAamp® PowerFecal Pro DNA Kit with 

standard Power Beads was used to extract genomic DNA from fecal samples according 

to manufacturer’s specifications subjected to modifications in the bead beating and final 

elution steps. Bead beating was done using the BeadBug6® homogenizer (Benchmark 

Scientific, Inc. Edison, NJ) for two 2min iterations at an rpm of 4000 separated by a 

resting period of 5mins on ice (Smith, 2011; Lim et al., 2018). The BeadBug program 

was set to 4 cycles of 30sec each. With a 30sec resting period. 

 

Final elution was done using molecular grade water as two iterations of 100µl, each with 

a 5min incubation at room temperature. DNA was eluted by centrifuging at 14000 rpm 

for 1min. The second elution was concentrated using the CentriVap DNA concentrator 

(Labconco, Kansas City, MO) by evaporating it down to 50µl. The second elution was 

then added to the first elution to arrive at a volume of 150µl in the final DNA elution. 

 

3.2.4 Library preparation and 16S V4 rRNA gene amplicon sequencing 

The PCR amplification of extracted DNA and 16S amplicon sequencing was performed 

by Novogene Corporation Inc, Sacramento, CA. The V4 region of the 16S ribosomal 

RNA gene (~250bp) was amplified using the specific primer pair 515F (5’- 

GTGCCAGCMGCCGCGGTAA-3’) and 806R (5’-GGAC TACHVGGGTWTCTAAT-
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3’), with the forward primer carrying the barcode sequence. Phusion® High-Fidelity PCR 

Master Mix (New England Biolabs) was used to carry out all PCR reactions. 

 

The PCR products were purified by running them on a 2% agarose gel and extracting 

them using a Qiagen® Gel Extraction Kit (Qiagen, Germany). The sequencing library 

preparation was done using a NEBNext® UltraTM DNA Library Prep Kit for Illumina. It 

was quality tested using Qubit 3.0 fluorometer and quantified using Q-PCR. 

Subsequently, an Illumina HiSeq 2500 platform was utilized for the sequencing of the 

library, generating ~250bp paired-end raw sequence reads. 

 

3.2.5 16S V4 amplicon sequencing data analysis 

The computational analysis of 16S V4 amplicon sequence data was conducted using 

DADA2 version 1.8, according to standard operation procedures for Illumina data 

(Callahan et al., 2016). All DADA2 codes were run using R version 3.6.1. on the 

Oklahoma State University high performance computing cluster (Pete). Briefly, the 

quality scores of forward and reverse sequence reads were plotted to identify any drastic 

drops in sequence quality, specifically towards the ends of the sequences, and no such 

significant drops were observed. Hence, no specific truncation of the ends of sequences 

were done during the pre-processing step based on sequence quality. However, linker 

primer sequences and any sequences that had ambiguous bases and an expected error 

greater than 2 were removed using the ‘filterAndTrim’ command in DADA2. 

Subsequently, the error rates for the amplicon sequence data were modeled using 

‘learnErrors’ function in DADA2 and the sequence reads were then de-replicated using 

the function ‘derepFastq’. The de-replicated sequences were then used for the inference 
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of sequence variants for each sample using the core sample inference algorithms 

available in DADA2, implemented in the function ‘dada’. Using the ‘mergePairs’ 

function, the corresponding forward and reverse inferred sequence variants were then 

merged to arrive at the full de-noised sequence contigs. The ‘makeSequenceTable’ 

function was run on these contigs to create the amplicon sequence variant (ASV) table. 

The ASV table was then subjected to chimera removal and taxonomic classification via 

‘removeBimeraDenovo’ and ‘assignTaxonomy’ functions. The DADA formatted version 

of Silva reference database version 132 (Quast et al., 2013) was used as the training 

dataset for taxonomic classification. The ASV table and the taxonomy file generated by 

DADA2 was then used for statistical analysis and data visualization, using 

MicrobiomeAnalyst (Dhariwal et al., 2017). 

 

3.2.6 Data filtering, normalization, statistical analysis and visualization 

Low abundance features, defined as those with less than 10 read counts in at least 20% of 

the samples were removed prior to data normalization. Data rarefying (based on 

minimum library size), and Total Sum Scaling was performed as data normalization 

steps to negate the effect of uneven sequencing depth (Dhariwal et al., 2017). The 

resulting filtered and normalized data were used for subsequent statistical analyses and 

data visualizations. Baseline fecal samples from all selected animals were grouped 

together when making inferences about the fecal microbiome during ad libitum water 

intake and restriction fecal samples from all animals were grouped together when making 

inferences about the fecal microbiome during water restriction. 
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3.3 Results 
 

3.3.1 Rarefaction analysis 

A total of 9,797,366 high quality sequences (86,702 ± 24,738) ranging from a minimum 

of 30,357 in a sample to a maximum of 123,556, were obtained from fecal restriction 

samples. For fecal baseline samples, a total of 10,134,524 high quality sequences were 

obtained with a minimum sequencing read depth of 27,215 to a maximum read depth of 

124,731 (85,886 ± 22,822) 

 

For the purpose of determining whether enough sequencing depth was achieved to 

capture the entirety of the microbial richness in baseline and restriction fecal samples 

during 16S rRNA gene amplicons sequencing, we conducted a rarefaction analysis to 

generate rarefaction curves and Good’s coverage (Chao and Jost, 2012) values for each 

fecal sample. The rarefaction curves generated for samples from both water intake 

(baseline) and water restriction trials are depicted in Figure 3.1. Plateaued curves were 

observed for all fecal samples, well before the count of re-sampled sequences equaled 

minimum library size (27,261 read counts). For all fecal samples, a Good’s coverage of 

>99% was achieved when re-sampled read counts reached 25,634. 
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Figure 3.1: Rarefaction curves for baseline (top) and restriction (bottom) fecal samples. 

The curves were generated using the ‘ggrare’ function in ranacapa R pckage (Kandlikar 

et al., 2018) implemented in MicrobiomeAnalyst (Chong et al., 2020), and demonstrates 

how the discovery of new species (species richness in y axis) increases with the number 

of sampled reads from each sample (x axis). All curves are truncated at a sampling depth 
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of 27,261 sequence reads due to subsampling based on the minimum library size for all 

fecal samples (data rarefying). 

 

3.3.2 A comparison of alpha diversity, between restriction and baseline fecal 
microbiomes. 

As a part of microbial community profiling of fecal samples, and to determine whether 

water restriction has had significant impact on it, we conducted an alpha diversity 

analysis on both baseline and restriction fecal DNA samples. Chao1 and Observed ASV 

indices were used to calculate alpha diversity based on species richness (Figure 3.2). 

Shannon, Simpsons, and Fisher indices were used to calculate alpha diversity mainly 

based on species evenness (Ocejo et al., 2019). Between group comparisons for Chao1, 

Observed ASV and Fisher’s indices were performed using t-test. Mann-Whitney U test 

was used for between group comparisons of Shannon and Simpson alpha diversity 

estimates (Clemmons et al., 2017). The phyloseq R package implemented in 

MicrobiomeAnalyst (McMurdie and Holmes, 2013; Chong et al., 2020) was used to 

conduct the alpha diversity analysis. 

 

As depicted in Table 3.1, we did not observe any statistically significant differences 

(p<0.05) between baseline and restriction fecal samples for Chao1, Observed ASV and 

Fisher’s indices. However, for both Shannon and Simpson’s indices, we were able to 

observe statistically significant results (p<0.05) for between group comparisons of alpha 

diversity values. 
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Figure 3.2: Box plots representing the alpha-diversity distributions at genus level for 

microbial communities recovered from baseline and restriction fecal DNA samples. Each 

dot on the plot represents the alpha diversity of a single fecal sample. The dots are color 

coded based on which group they belong to (baseline or restriction). The y-axis indicates 

the magnitude of alpha diversity for each sample, based on the diversity measure used. 
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Alpha Diversity Index Statistical Test Test Statistic p-value 

Observed ASV T-test -1.7763 0.07701 

Chao1 T-test 1.0429 0.06156 

Shannon Man-Whitney 5679 0.03162a 

Simpson Man-Whitney 5191 0.00195b 

Fisher’s T-test -1.8117 0.07136 

(a) – p<0.05; (b) – p<0.01 

Table 3.1: Between group comparisons for alpha diversity indices generated for fecal 

samples. T-test was used to measure between group comparisons for the distribution of 

Observed ASV, Chao1, and Fisher’s indices. Man-Whitney test was used for Shannon 

and Simpson indices. Significance levels are indicated using ‘a’ and ‘b' superscripts. 

 

3.3.3 Baseline and restriction fecal microbiomes differ significantly in their beta 

diversity 

We conducted a beta diversity analysis to assess the effect of water restriction on the 

species composition of the fecal microbial community, using abundance data from both 

baseline and restriction fecal samples. Two popularly used dissimilarity indices, namely; 

Bray-Curtis dissimilarity and Jensen-Shannon index (Chong et al., 2020) was used to 

measure dissimilarity/similarity between baseline and restriction microbial communities 

in each sample.  

 

As illustrated in Figure 3.3 and 3.4, the beta diversity measures were then visualized 

using NMDS (Non-parametric multidimensional scaling) plots (Luz Calle, 2019). The 

baseline and restriction samples formed partially overlapping but distinguishable 



112 
 

clusters. We observed high statistical significance (p<0.05) when between group 

variance for the overall clustering pattern  

was analyzed using permutational analysis of variance (PERMANOVA) (Moore et al., 

2017).  Statistics for between group comparisons are depicted in Table 2.2. 

 

Distance method F-value R-squared P-value NMDS Stress 
Bray-Curtis dissimilarity index 17.362 0.0699 p < 0.001 0.20326 
Jensen-Shannon divergence 27.002 0.10466 p < 0.001 0.17904 

 

Table 3.2: Results of the PERMANOVA analysis and the goodness-of-fit test for NMDS 

plot (NMDS Stress). The values are calculated using the underlying data generated using 

each of the distance methods listed. 
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Figure 3.3: NMDS plots illustrating the distribution of baseline and restriction fecal 

samples based on Bray-Curtis (a) and Jensen-Shannon (b) distance measures, in two-

dimensional space. Each blue (restriction fecal samples) and red (baseline fecal samples) 

point represent the species composition of the entire microbiome present in a given fecal 

sample. The ellipses mark the 95% confidence interval surrounding the centroid of each 

of the two groups. 



115 
 

 

Figure 3.4: Three-dimensional NMDS plots illustrating the distribution of restriction and 

baseline fecal samples based on Bray-Curtis (a) and Jensen-Shannon (b) distance 

methods. Each green (restriction fecal samples) and red (baseline fecal samples) sphere 

represent the species composition of the entire microbiome present in a given fecal 

sample. 
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3.3.4 Microbial community composition of baseline and restriction fecal samples 

In order to assess the effect of water restriction on the fecal microbial community 

composition, we built taxonomic abundance profiles of the 1342 features (ASVs) that 

remained post data filtration. The relative abundances were summarized at phylum and 

genus levels. 

 

As depicted in Figure: 3.5(a) and Table: 3.3, out of the 10 most abundant phyla identified 

from baseline samples, Firmicutes (76.4%), Bacteroidota (13.8%), Euryarchaeota (4.5%), 

Actinobacteriota (2.4%), Spirochaetota (1.6%), accounted for 97.1% of the total 

abundance. The rest of the 10 most abundant phyla were Proteobacteria, 

Verrucomicrobiota, Desulfobacterota, Fibrobacterota, and Cyanobacteria, accounting for 

1.19% of the total abundance. For the restriction fecal samples, the list of the 10 most 

abundant taxa remained the same. However, the relative abundances of some taxa 

differed significantly. 

 

As depicted in Table 3.3, for Firmicutes, Verrucomicrobiota, Desulfobacterota, and 

Cyanobacteria, we observed a significant increase (p<0.05) in their relative abundance in 

restriction fecal samples compared to baseline. On the other hand, for the phyla 

Euryarchaeota, Actinobacteriota, and Spirochaetota, we observed significant decrease in 

their overall relative abundance in restriction fecal samples when compared to baseline. 

No significant differences (p<0.05) were observed in the overall relative abundance of 
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Bacteroidota, Proteobacteria, and Fibrobacterota between baseline and restriction fecal 

samples. 

 

We summarized the microbial composition of both baseline and restriction fecal samples 

at genus level as illustrated in Figure 3.5(b). The 10 most abundant genera for both 

baseline and restriction fecal samples did not differ in their taxonomy, and it comprised 

of; UCG_005, Lachnospiraceae_NK3A20_group, Turicibacter, 

Clostridium_sensu_stricto_1, Christensenellaceae_R_7_group, Methanobrevibacter, 

Romboutsia, Rikenellaceae_RC9_gut_group, Ruminococcus, and Paeniclostridium. 

UCG-005 that belongs to the Oscillospiraceae family and Firmicutes had the highest 

abundance in both baseline (10.0%) and restriction (8.6%) samples. 

 

However, we observed significant variations in the relative abundances of some of the 10 

most predominant genera, when an animal wise paired t-test was conducted for each of 

the top 10 taxa. Turicibacter, Clostridium_sensu_stricto_1, 

Christensenellaceae_R_7_group, Romboutsia, and Paeniclostridium had a significant 

increase (p<0.05) in their relative abundances in the restriction samples, compared to 

baseline. UCG_005, Methanobrevibacter, and Ruminococcus demonstrated significant 

decreases (p<0.05) in their relative abundances in the restriction samples, compared to 

baseline. We could not detect any significant differences in the abundances of 

Lachnospiraceae_NK3A20_group and Rikenellaceae_RC9_gut_group. 18.3% of the total 

abundance could not be assigned a taxonomic classification at genus level. The 
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taxonomic composition of the 20 most abundant genera for both baseline and restriction 

samples are further elaborated in in Figure 3.6 and Table 3.5. 
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Figure 3.5: Relative abundance bar graphs depicting the 10 most abundant phyla (a) and 

genera (b) found in baseline and restriction fecal samples. 

Phylum Baseline Restriction P-value 
Firmicutes 76.44% 79.25% 4.38e-06 
Bacteroidota 13.85% 14.09% 8.50e-01 
Euryarchaeota 4.53% 2.53% 4.35e-09 
Actinobacteriota 2.37% 1.74% 5.77e-06 
Spirochaetota 1.57% 0.67% 6.17e-06 
Proteobacteria 0.91% 1.04% 1.19e-01 
Verrucomicrobiota 0.17% 0.40% 9.58e-04 
Desulfobacterota 0.05% 0.11% 1.13e-05 
Fibrobacterota 0.04% 0.04% 2.93e-01 
Cyanobacteria 0.02% 0.06% 2.74e-07 

 

Table 3.3: Relative abundances of the 10 most abundant phyla in baseline and restriction 

fecal DNA samples, sorted in descending order of baseline abundances. 
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Genus Baseline Restriction P-value 
UCG_005 10.0% 8.6% 3.79e-05 
Lachnospiraceae_NK3A20_group 7.8% 7.7% 0.18 
Turicibacter 5.3% 6.3% 3.29e-4 
Clostridium_sensu_stricto_1 5.0% 5.8% 4.04e-3 
Christensenellaceae_R_7_group 4.8% 5.8% 4.77e-10 
Methanobrevibacter 4.3% 2.4% 4.13e-09 
Romboutsia 3.7% 4.5% 2.81e-07 
Rikenellaceae_RC9_gut_group 3.6% 3.4% 0.23 
Ruminococcus 2.8% 2.3% 1.03e-4 
Paeniclostridium 2.3% 3.5% 2.76e-14 

 

Table 3. 4: Relative abundances of the 10 most abundant genera in baseline and 

restriction fecal DNA samples, sorted in descending order of baseline abundances. 
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Figure 3.6: The relative abundance bar graphs for restriction and bassline fecal samples 

at genus level depicting the 20 most abundant genera. The two treatment wise bar graphs 

are derived by summarizing animal wise microbial abundances. 
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Genus Baseline Restriction 
Not_Assigned 18.3% 18.4% 
Others 17.4% 17.2% 
UCG_005 10.0% 8.6% 
Lachnospiraceae_NK3A20_group 7.8% 7.6% 
Turicibacter 5.4% 6.2% 
Clostridium_sensu_stricto_1 5.0% 5.8% 
Christensenellaceae_R_7_group 4.8% 5.8% 
Methanobrevibacter 4.3% 2.4% 
Romboutsia 3.7% 4.5% 
Rikenellaceae_RC9_gut_group 3.6% 3.4% 
Ruminococcus 2.8% 2.3% 
Paeniclostridium 2.4% 3.4% 
Bacteroides 1.9% 2.2% 
Mogibacterium 1.8% 1.7% 
Prevotellaceae_UCG_003 1.8% 1.6% 
Monoglobus 1.7% 2.0% 
Treponema 1.6% 0.6% 
Acetitomaculum 1.4% 0.9% 
Clostridioides 1.3% 1.5% 
Prevotella 1.2% 1.3% 
Alistipes 1.2% 1.2% 
Family_XIII_AD3011_group 0.9% 1.1% 

 

Table 3.5: The relative abundances of the 20 most abundant microbial genera in baseline 

and restriction fecal samples, sorted in descending of baseline abundances. ~18% of the 

total sequence abundance remains unclassified at genus level. 
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3.3.5 The core-microbiome mostly remains stagnant across treatments 

To further elucidate the microbial community structure of baseline and restriction fecal 

samples, we conducted a core microbiome analysis at genus level. The core microbiome 

was defined as the taxa that are present in at least 70% of the samples considered, at a 

threshold relative abundance of 0.01% or above. 

 

The core microbiome for baseline fecal samples (Figure 3.7 (a)) consisted of 13 genera, 

comprising of; UCG_005, Ruminococcus, Lachnospiraceae_NK3A20_group, 

Clostridium_sensu_stricto_1, Christensenellaceae_R_7_group, Turicibacter, 

Rikenellaceae_RC9_gut_group, Mogibacterium, Romboutsia, Methanobrevibacter, 

Paeniclostridium, Monoglobus, and Bacteroides. 

 

The core microbiome for fecal samples from the restriction trial (Figure 3.7(b)) included 

15 genera comprising of; UCG_005, Turicibacter, Romboutsia, 

Lachnospiraceae_NK3A20_group, Clostridium_sensu_stricto_1, 

Christensenellaceae_R_7_group, Paeniclostridium, Rikenellaceae_RC9_gut_group, 

Ruminococcus, Mogibacterium, Monoglobus, Clostridioides, Bacteroides, 

Methanobrevibacter, and Prevotellaceae_UCG_003. 
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Figure 3.7: The heat map illustrating the relative abundance and prevalence of the 

microbial taxa defining the core microbiomes recovered from baseline (a) and restriction 

(b) fecal samples. A threshold of at least 70% prevalence and 0.01% relative abundance 

was used as the selection criteria for microbial taxa to be considered as a part of the 

baseline or restriction fecal core microbiome. 

 

3.3.6 Biomarker analysis of baseline and restriction fecal microbial populations 

In order to identify microbial biomarkers that are enriched in baseline and restriction 

fecal samples, a LEfSe analysis (Segata et al., 2011) was conducted. We were able to 

identify 75 differentially abundant taxa between baseline and restriction fecal samples, 

based on FDR adj. P-value < 0.05 and LDA > 2.0. 

 

As depicted in Figure 3.8, the 15 most influential biomarkers identified by LEfSe, were; 

Methanobrevibacter, UCG_005, Paeniclostridium, Christensenellaceae_R_7_group, 

Treponema, Turicibacter, Clostridium_sensu_stricto_1, Romboutsia, Acetitomaculum, 

Ruminococcus, Cellulosilyticum, UCG_002, Monoglobus, Clostridioides, and 

Coprococcus. 
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Figure 3.8: The bar plot depicting the 15 most enriched biomarkers ranked in the 

descending order of their LDA score (magnitude), out of the 75 total biomarkers 

identified by LEfSe analysis based on FDR adj. P-value < 0.05 and LDA > 2.0. The blue 

bars indicate the LDA score of biomarkers enriched in restriction fecal samples and the 

red bars indicate LDA scores of biomarkers enriched in baseline fecal samples.  (Segata 

et al., 2011; Chong et al., 2020). 

 

Random forest (RF) analysis (Breiman, 2001) implemented in MicrobiomeAnalyst 

(Chong et al., 2020) was used to further elucidate the differentially abundant taxa 
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between baseline and restriction fecal samples, at genus level. The 15 most significant 

biomarkers (based on their mean decrease in accuracy) identified by RF analysis 

(depicted in Figure: 3.9) were; UCG_002, Cellulosilyticum, Marvinbryantia, UCG_007, 

Anaerovibrio, Christensenellaceae_R_7_group, Agathobacter, dgA_11_gut_group, 

Syntrophococcus, Acetitomaculum, Paeniclostridium, Treponema, 

p_1088_a5_gut_group, Family_XIII_AD3011_group, and Methanobrevibacter. 

 

Genera such as Marvinbryantia, Agathobacter, Syntrophococcus, Acetitomaculum, 

Treponema, and Methanobrevibacter were associated with baseline fecal samples, and 

UCG_002, Cellulosilyticum, UCG_007, Anaerovibrio, Christensenellaceae_R_7_group, 

dgA_11_gut_group, Paeniclostridium, p_1088_a5_gut_group, and 

Family_XIII_AD3011_group were associated with restriction fecal samples. 

 

Only 7 out of the 15 biomarkers identified by the RF analysis overlapped with the 15 

most significant biomarkers identified by LEfSe analysis. However, all 15 overlapped 

with the 75 differentially abundant taxa (LDA>2.0 & FDR-adj. P-value<0.05) identified 

by LEfSe analysis. 
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Figure 3.9: Illustration of the differentially abundant features identified by random forest 

analysis. The features are ranked according to the mean decrease in accuracy the model 

suffers in assigning samples to the classes, if the particular feature is removed from the 

analysis. The color codes indicate the association of each feature either with baseline or 

restriction samples. 
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(*) –  Overlap with top 15 biomarkers from RF analysis 

Table 3.6: The top 15 biomarkers identified during LEfSe analysis, and their overlap 

(indicated using *) with biomarkers identified by RF analysis. The unmarked biomarkers 

were uniquely identified by the LEfSe analysis. 

 

3.4 Discussion 

The GI tract microbiota plays an essential role in the cattle industry due to its influence 

on animal health, well-being, performance and impact on the environment. Thus, it 

becomes imperative to have a comprehensive understanding about these complex and 

dynamic microbial communities. Hence the necessity to generate the knowledge required 

to better inform livestock producers in decision making with regard to health and well-

being of animals, and sustainable growth of their cattle operations (Lourenco et al., 

2020). 

Genera P-values FDR-adj. P-value LDAscore 
Methanobrevibacter* 3.72e-8 3.02e-7 4.97 
UCG_005 3.86e-6 1.88e-5 4.85 
Paeniclostridium* 8.45e-10 1.03e-8 -4.74 
Christensenellaceae_R_7_group* 4.29e-10 5.69e-9 -4.69 
Treponema* 1.20e-7 7.30e-7 4.67 
Turicibacter 8.63e-4 2.248e-3 -4.66 
Clostridium_sensu_stricto_1 1.27e-3 3.20e-3 -4.62 
Romboutsia 2.19e-5 7.61e-5 -4.61 
Acetitomaculum* 4.36e-11 7.96e-10 4.4 
Ruminococcus 1.55e-4 4.61e-4 4.38 
Cellulosilyticum* 3.20e-17 1.56e-15 -4.36 
UCG_002* 7.34e-22 1.07e-19 -4.24 
Monoglobus 6.24e-5 2.07e-4 -4.22 
Clostridioides 9.28e-6 3.66e-05 -4.17 
Coprococcus 5.22e-9 5.44e-08 4.16 
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Even though a multitude of studies based on culture independent methods have focused 

on elucidating the dynamics of the bovine GI tract microbiome, a vast majority of that 

have focused on the rumen microbial population. Hence, information about the lower gut 

microbial communities in cattle is limited (Lourenco et al., 2020). Based on existing 

literature, diet composition is one of the most influential as well as extensively studied 

factors that affect the microbial dynamics of the bovine fecal microbiome (Shanks et al., 

2011; Cendron, 2020). More specifically the forage to concentrate ratio in the diet 

provided for feedlot cattle is considered a major aspect of the dietary influence on the 

fecal microbiome (Kim et al., 2014). However, the effect of factors such water intake, 

water restriction, water temperature, pH, and dissolved mineral content on the bovine 

fecal microbiome is yet to be studied extensively. 

 

Therefore, in order to assess the influence of stress created by water restricted conditions 

on the fecal microbial dynamics, we reconstructed microbial communities in fecal 

samples obtained from animals maintained at 50% water restriction (restriction fecal 

samples). These microbial communities derived using 16S rRNA V4 gene amplicon 

sequencing were then compared against similarly reconstructed microbial communities 

of fecal samples obtained from the same animals under ad libitum water intake. 
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3.4.1 Alpha diversity measures indicate a significant increase in species evenness in 

fecal samples obtained during water restriction. 

Based on the results of the species richness and evenness indices, it can be concluded that 

the alpha diversity of the microbial communities recovered from the restriction fecal 

samples have increased, when compared to baseline samples. However, the indices that 

take into account the combinatorial effect of species richness and evenness such as 

Shannon and Simpson’s, were the only ones that were able to capture this. Indices that 

take into account only one aspect of alpha diversity, either species richness (Chao1 and 

Observed ASV indices) or evenness (Fisher’s index) may not have been sensitive enough 

to capture the true between group variation in alpha diversity between baseline and 

restriction rumen samples. 

 

3.4.2 Fecal samples obtained during ad libitum water intake, and water restriction 

differ significantly in their species composition. 

Moderate clustering with clear overlap was observed between restriction and baseline 

fecal samples for both Bray-Curtis index and Jensen-Shannon divergence. Furthermore, 

between group comparisons for restriction and baseline fecal samples, using 

PERMANOVA revealed high statistical significance (p-value < 0.05). Microbial 

communities recovered from fecal samples when the animal was under water stress are 

significantly different in their beta diversity (species composition), when compared 

against fecal microbial communities recovered at ad libitum water intake. 
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3.4.3 The taxonomy of prominent fecal microbiota remains unchanged during water 

restriction. Their relative abundances, however, differ significantly. 

Next generation sequencing data from microbiome studies are always constrained by the 

sequencing depth of the NGS platform used. Therefore, unlike a typical ecological study, 

the abundance of a particular species cannot be considered independent of the abundance 

of its co-inhabitants. Due to this inherent compositionality of microbiome NGS data, 

taxonomic abundance is best depicted using relative abundance values (Gloor et al., 

2017). Hence, we summarized data at genus and phylum levels to generate relative 

abundance graphs and tables to study microbial community composition of fecal samples. 

 

We were able to identify Firmicutes, Bacteroidota, Euryarchaeota, Actinobacteriota, 

Spirochaetota, Proteobacteria, Verrucomicrobiota, Desulfobacterota, Fibrobacterota, and 

Cyanobacteria, as the top 10 phyla for both baseline and restriction fecal samples. Even 

though the taxonomy of the 10 most abundant phyla remained the same for both baseline 

and restriction fecal samples, there were significant differences (p<0.05) observed in 

some of their relative abundances. 

 

Our findings for 10 most prominent phyla fall mostly in line with existing literature. 

Similar to our findings, Firmicutes and Bacteroidota (Bacteroidetes) have been described 

the most dominant phyla in the cattle fecal microbiome during large cohort studies 

(Hagey et al., 2019). Other than that, Euryarchaeota, Actinobacteriota (Actinobacteria), 

Spirochaetota (Spirochetes), Proteobacteria, Verrucomicrobiota (Verrucomicrobia), and 

Fibrobacterota (Fibrobacter) have also been found to be common dominant inhabitants of 
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the cattle fecal microbiome (Shanks et al., 2011; Mote et al., 2019; Lourenco et al., 

2020). 

 

Desulfobacterota however is not commonly observed as a dominant phylum in the fecal 

or rumen microbiome of cattle. The Desulfobacterota identified in our study were largely 

unclassified at genus level, other than for two genera; Desulfovibrio and Mailhella. 

Desulfovibrio is a gram-negative sulfate reducing bacteria (SRB) commonly found in the 

rumen of cattle fed with high concentrate and by-products of the ethanol industry. SRB 

play a pivotal role in reducing the concentrations of sulfate that can be toxic to the 

animal, by reducing it to H2S, which is subsequently eructed out (Richter, 2011). 

 

Methanogens such as Methanobrevibacter utilize hydrogen produced during the rumen 

fermentation process to reduce CO2 into methane. Similarly, rumen Desulfovibrio, use 

hydrogen to make sulfide from sulfate. The existing literature suggest a positive 

correlation between Desulfovibrio and high methane emissions in cattle, since high 

emissions may imply high H2 concentration inside the rumen thus facilitating the growth 

of Desulfovibrio (Wallace et al., 2015). However, in the current study we observed a 

decrease in the abundance of Methanobrevibacter while an increase in abundance of 

Desulfovibrio in restriction samples. This discrepancy may still be explained by the fact 

that in a situation where two H2 utilizers compete for the available hydrogen in the rumen 

(Shah et al., 2020), one H2 utilizer (Desulfovibrio) may thrive in the absence of another 

(Methanobrevibacter). 
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Mailhella on the other hand, has been observed in the fecal microbiome of heifers, 

although information on its potential role in the bovine gut microbiome is still not 

available (Cendron, 2020). The relative abundance of both Desulfovibrio and Mailhella 

increased in restriction fecal samples (Desulfovibrio - 0.03%, Mailhella – 0.09%), 

compared to baseline samples (Desulfovibrio - 0.02%, Mailhella - 0.03%), even though 

their overall abundance was very low. 

 

When the taxonomic abundance data were summarized at genus level, again we observed 

that the ten most dominant genera remained the same for both baseline and restriction 

fecal samples.  However, the relative abundance for many of them differed significantly. 

The predominant genera identified by us have been previously described in the studies 

concerning the fecal microbiota of cattle (Cendron, 2020; Huang et al., 2021). Hence, our 

findings are in agreement with existing knowledge on the composition of fecal 

microbiome of cattle. 

 

In comparison to baseline samples, the restriction fecal samples had significant increases 

in the relative abundance of Turicibacter, Clostridium_sensu_stricto_1, 

Christensenellaceae_R_7_group, Romboutsia, and Paeniclostridium. 

Clostridium_sensu_stricto_1 is a genus commonly associated with pathogenic bacteria 

(Huang et al., 2021). Christensenella minuta is the species most closely related to the 

Christensenellaceae_R_7_group and is known to be associated with pH reduction in the 

rumen. C. minuta is also known to produce acetate and butyrate thorough glucose 

metabolism (Holman and Gzyl, 2019). The genus Turicibacter is known to be associated 
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with feed intake and has been detected in human gut microbiome as well. However, still 

very little information is available for this genus, hence further studies are much 

warranted especially due to animal gut health implications since some species in this 

genera are considered pathogenic (P R Myer et al., 2015). Both Romboutsia and 

Paeniclostridium are known to be associated with diet composition (Cendron, 2020). 

Romboutsia has also found to be the among the most abundant microbiota in the small 

intestine of Nelore steers (Lopes et al., 2019). 

 

The increase of abundance in phylum Verrucomicrobiota and subsequent increase in the 

abundance of the genus Akkermansia in restriction fecal samples is also noteworthy. 

Akkermansia are known to be mucine-degrading bacteria and have been observed to be 

associated with Angus cattle. Mucine is an important component in the mucosal barrier of 

the gut, and mucine degradation can result in increased susceptibility of the host to gut 

pathogens (Fan et al., 2020). Hence, the increase is relative abundance of Akkemansia we 

observed in restriction fecal samples can be considered as further evidence of adverse gut 

health implications due to water restricted conditions. 

 

3.4.4 The fecal core-microbiome remains essentially unchanged during water 

restriction, with exception of an addition of pathogenic genus Clostridioides 

The core microbiome is a contingent of microbial taxa that usually plays an essential role 

in host-microbiome interactions, hence found to be conserved across time, breed, 

treatment and sppatial distribution. However, due to lack of consensus, a clear definition 

on parameters and their threshold values to define a core-microbiome for a given 
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environment is yet to materialize (Risely, 2020). The prevalence of an organism across 

hosts or samples, and its relative abundance in the microbial communities recovered, are 

commonly used as the parameters to define a core microbiome. Their thresholds 

however, may defer from study to study (Wallace et al., 2019). 

 

A prevalence threshold of 70% and relative abundance cut-off value of 0.01% was used 

to define the core microbiome at genus level for both baseline and restriction core 

microbiomes for the fecal samples of this study. We were able to identify a core 

microbiome comprising of 13 genera for baseline fecal samples, and a core microbiome 

of 15 genera for restriction fecal samples. The core microbiome for restriction fecal 

samples essentially contained the 13 genera found in baseline fecal core microbiome, 

with the addition of Clostridioides and Prevotellaceae_UCG_003. 

 

Clostridioides is a reclassified genus containing taxa that previously belonged to 

Clostridium, and contains only two child taxa, namely; Clostridioides difficile and 

Clostridioides mangenotii (Lawson et al., 2016). 

 

Clostridioides difficile is described as a Gram-positive, anaerobic bacterium that can 

cause severe colitis or C. difficile infection (CDI) in humans. It has also been observed in 

the gut and feces of animals such as swine, horses and cattle. The zoonotic transmission 

of CDI happens through the fecal-oral route. C. difficile has been observed in both adult 

dairy cows and beef calves (Redding et al., 2021). However, the exact health implications 

of C. difficile in cattle is still unclear and is believed to be minimal. There are reports of 



137 
 

an association between C. difficile in feces and diarrhea in calves, however, the results 

could not be experimentally reproduced (Weese, 2020). We also observed an increase in 

relative abundance of Clostridioides in restriction fecal samples (1.54%), compared to the 

baseline (1.25%). 

 

3.4.5 LEfSe analysis and Random Forest classification reveal differentially 

abundant taxa (biomarkers) associated with baseline and restriction fecal 

microbiomes. 

To identify biomarkers for baseline and restriction fecal samples, we used an FDR adj. p-

value <0.05 and LDA>2.0 with all LEfSe analyses done at genus level (Chong et al., 

2020). 

 

In the current study, six out of the 15 differentially abundant taxa identified by LEfSe 

analysis, Methanobrevibacter, UCG_005, Treponema, Acetitomaculum, and 

Coprococcus were highly associated with baseline samples. The other 9 taxa, 

Clostridoides, Monoglobus, UCG_002, Cellulosilyticum, Clostridum_sensu_stricto_1, 

Turicibacter, Christensenellaceae_R_7_group, and Pauniclostridum were highly 

associated with restriction fecal samples. 

 

UCG-002 that belongs to the Oscillospiraceae family, Monoglobus, and Cellulosilyticum 

were the genera that did not appear in the list of predominant genera (with increased 

relative abundances for restriction fecal samples) and the core microbiome for restriction 

fecal samples. When relative abundance data were mined for these three taxa, it was 
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observed that their relative abundance increased during water restriction, when compared 

to baseline. Cellulosilyticum – from 0.45% to 0.90%; Monoglobus – from 1.69% to 

2.02%; UCG_002 – from 0.23% to 0.58%. Thus making it clear that results generated 

from different perspectives are in good agreement. 

 

Monoglobus pectinilyticus is the only child taxon described under the Monoglobus genus 

and has been studied as a model organism for pectin degradation in the human gut. OTUs 

with 95% similarity to Monoglobus have been described in cattle fed with Tall fescue 

grass (Kim et al., 2017; Kim et al., 2019; Koeste et al., 2020). Genus Cellulosilyticum 

comprises of cellulolytic bacteria associated with the cecum of cattle. Increased 

abundance of Cellulosilyticum has been associated with inflammatory responses in aging 

cows, and with feedlot cattle fed with antibiotics such as monensin and tylosin as feed 

additives in finishing diets (Thomas et al., 2017; Zhang et al., 2019) 

 

Out of the 15 most influential biomarkers identified by the RF analysis, only 7 

overlapped with the 15 most significant biomarkers identified by LEfSe analysis. Even 

though, all 15 of them overlapped with the 75 differentially abundant taxa identified by 

LEfSe analysis. Marvinbryantia, UCG_007, and Anaerovibrio should be noted as 

biomarkers (with relatively high mean decrease in accuracy) identified by RF analysis, 

but failed to appear in the list of predominant differentially abundant taxa derived using 

LEfSe analysis. To measure the magnitude of the effect exerted by a particular biomarker 

in classifying the samples, RF and LEfSe takes two different approaches. RF uses ‘mean 

decrease in accuracy’ which is a direct implication of a supervised non-parametric 
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learning algorithm (Breiman, 2001; Chong et al., 2020). For the same purpose, LEfSe 

uses LDA scores that are linear and parametric (Segata et al., 2011). Hence the two 

different approaches taken by the two algorithms in determining the effect of a 

‘biomarker’ in sample classification may well be the reason behind this discrepancy in 

identifying top biomarkers, or differentially abundant features. However, looking at data 

from two different perspectives paves the way for robust conclusions. The fact that we 

ultimately observed complete overlap of biomarkers identified by both LEfSe and RF 

analysis, increases the confidence in our data, and future research based on them. 
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CHAPTER IV 

ASSOCIATION BETWEEN ANIMAL PERFORMANCE AND THE 
POPULATION DYNAMICS OF THE GUT MICROBIOME OF FEEDLOT 

CATTLE UNDER WATER RESTRICTED CONDITIONS 
 

 
4.1 Introduction 

The gut microbiome of cattle, commonly represented by its rumen and fecal microbiota, 

is known to be largely affected by diet. Factors such as host genetics, breed, age, and the 

external environment are also known to influence its composition (Holman and Gzyl, 

2019). Water is considered a key component of an animal’s diet that contributes directly 

or indirectly to almost all of its essential physiological functions connected to digestion, 

growth, maintenance, fattening, lactation and pregnancy (Lardner et al., 2005; Williams 

et al., 2017). 

 

The main source of water for most cattle is drinking water. Factors such as impurities in 

drinking water, water temperature and restricted access to drinking water can greatly 

decrease water intake, thus decreasing feed intake and ultimately having a profound 

impact on animal performance (Lofgreen et al., 1975; Wright, 2007). Furthermore, water 

treatment, coagulation, aeration and overall increase in palatability of drinking water has 

been linked to a ~10% weight gain in grazing cattle (Lardner et al., 2005), thus providing 

further evidence for the association between water intake/quality and performance in 

cattle.
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The microbial community residing in both the foregut (rumen) and the lower 

gastrointestinal tract of ruminants such as cattle, impose a huge influence on animal 

performance and physiology. For an example, increased abundance in Firmicutes in the 

rumen have been linked to increased Average Daily Gain (ADG) and increased feed 

efficiency. Not only Firmicutes, but a number of other microorganisms living throughout 

the ruminant gut is well known to have an effect on animal performance parameters such 

as ADG and average daily feed intake (ADFI) (Myer, 2019) 

 

In the previous two chapters we demonstrated that water restriction can be linked to 

variations in the composition, and abundance of certain microorganisms in the fecal and 

rumen microbiomes. With the existing literature suggesting an association between 

animal performance parameters (such as ADG) and water intake, we conducted the 

current study to assess the association between population dynamics of the cattle gut 

microbiome and animal performance under water restricted conditions. 

 

4.2 Materials and Methods 
 

4.2.1 Animal selection for DNA extraction 

The % recovery of ADG distributions were calculated (refer section 2.2.3 for further 

information on % recovery of ADG calculations) separately for each group and the 

animals that fall in the left tail of the distribution were selected to represent animals with 

low performance (low percentage recovery of average daily gain – Low PRADG). Those 

who belonged to the right tail of the % recovery of ADG distribution were selected to 

represent animals with high performance (high percentage recovery of average daily gain 
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– High PRADG). A total of 132 animals (66 high performing animals and 66 low 

performing animals) from the seven groups were selected for fecal and rumen DNA 

extraction, based on the criteria mentioned above. Rumen and fecal samples collected 

during water intake and water restriction trials, originating from the selected animals 

were used for DNA extraction and 16S V4 amplicon sequencing calculated. Refer 

sections 2.2.4, 2.2.5, 2.2.6 and 2.2.7 for further information on DNA extraction and 16 

V4 amplicon sequencing from rumen samples. And refer sections 3.2.3, 3.2.4 and 3.2.5 

for further information on DNA extraction and 16 V4 amplicon sequencing from fecal 

samples. 

 

4.2.2 Data filtering and normalization 

Low abundance features, defined as those with less than 10 read counts in at least 20% of 

the samples were removed prior to data normalization. Rarefying of data based on 

minimum library size, and Total Sum Scaling was performed as data normalization steps 

to negate the effect of uneven sequencing depth (Dhariwal et al., 2017). The resulting 

filtered and normalized data were used for subsequent statistical analyses and data 

visualizations using MicrobiomeAnalyst. 

 

4.3 Results 
 

4.3.1 Alpha diversity analysis 

In order to assess the difference in species richness and evenness between the gut 

microbiomes of animals with high performance (High PRADG) and animals with low 

performance (Low PRADG) under water restriction, we conducted an alpha diversity 

analysis at genus level by grouping the fecal and rumen samples from the water 



149 
 

restriction and baseline trials, based on the performance of the animal they originated 

from. Alpha diversity measures such as Chao1, Observed ASV, Shannon and Simpsons 

indices were used for this purpose (Ocejo et al., 2019). Alpha diversity values calculated 

for baseline and restriction fecal samples are summarized in box plots given in Figure 

4.1. and Figure 4.3. The same for rumen baseline and restriction samples are depicted in 

Figure 4.2 and Figure 4.4. 
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Figure 4.1: Box plots representing the alpha-diversity distributions at genus level for 

microbial communities recovered from restriction fecal DNA samples. Fecal samples are 

grouped into either High PRADG (percentage recovery of average daily gain) or Low 

PRADG categories and color coded accordingly. Chao1 (a) and Observed ASV (b) 

indices are based on species richness while Shannon (c) and Simpson (d) indices takes 

onto account both species richness and evenness. 
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Figure 4.2: Box plots representing the alpha-diversity distributions at genus level for 

microbial communities recovered from restriction rumen DNA samples. The rumen 

samples are grouped into either High PRADG (percentage recovery of average daily 

gain) or Low PRADG and color coded accordingly. Chao1 (a) and Observed ASV (b) 

indices are based on species richness while Shannon (c) and Simpson (d) indices takes 

onto account both species richness and evenness. 
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Figure 4.3: Box plots representing the alpha-diversity distributions at genus level for 

microbial communities recovered from baseline fecal DNA samples. The rumen samples 

are grouped into either High PRADG (percentage recovery of average daily gain) or Low 
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PRADG and color coded accordingly. The Y-axis indicates the respective alpha diversity 

index for each sample. 
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Figure 4.4: Box plots representing the alpha-diversity distributions at genus level for 

microbial communities recovered from baseline rumen DNA samples. The rumen 

samples are grouped into either High PRADG (percentage recovery of average daily 

gain) or Low PRADG and color coded accordingly. The Y-axis indicates the respective 

alpha diversity index for each sample. 

 

In order to determine the statistical significance of the differences in alpha diversity 

measures observed between High PRADG and Low PRADG animals, we conducted 

pairwise comparisons on all alpha diversity indices calculated for both fecal and rumen 

restriction and baseline samples. Depicted in Table 4.1, Table 4.2, Table 4.3 and Table 

4.4 are the results. 

 

Alpha Diversity Index Statistical Test Test Statistic p-value 

Observed ASV T-test 1.0455 0.2980 

Chao1 T-test 1.3309 0.1859 

Shannon Man-Whitney 1551 0.8247 

Simpson Man-Whitney 1512 0.6556 

 

Table 4.1: Between group comparisons of alpha diversity indices for restriction fecal 

samples obtained from High PRADG and Low PRADG animals. T-test was used to 

measure between group comparisons for the distribution of Observed ASV and Chao1 

indices. Man-Whitney test was used for Shannon and Simpson indices. 
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Alpha Diversity Index Statistical Test Test Statistic p-value 

Observed ASV T-test -0.7926 0.4302 

Chao1 T-test -0.8403 0.4030 

Shannon Man-Whitney 1017 0.5318 

Simpson Man-Whitney 922 0.1786 

 

Table 4.2: Between group comparisons of alpha diversity indices for restriction rumen 

samples obtained from High PRADG and Low PRADG animals. Between group 

comparisons for Observed ASV and Chao1 indices were conducted using T-test, while 

Man-Whitney test was used for between group comparisons of Shannon and Simpson 

indices. 

 

Alpha Diversity Index Statistical Test Test Statistic p-value 

Observed ASV T-test -0.5102 0.7113 

Chao1 T-test -0.4998 0.6181 

Shannon Man-Whitney 1773 0.7124 

Simpson Man-Whitney 1704 0.9978 

 

Table 4.3: Between group comparisons of alpha diversity indices for baseline fecal 

samples obtained from High PRADG and Low PRADG animals. T-test was used to 

measure between group comparisons for the distribution of Observed ASV and Chao1 

indices. Man-Whitney test was used for Shannon and Simpson indices 
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Alpha Diversity Index Statistical Test Test Statistic p-value 

Observed ASV T-test -0.1343 0.8933 

Chao1 T-test -0.2658 0.7908 

Shannon Man-Whitney 1916 0.0935 

Simpson Man-Whitney 1873 0.1518 

 

Table 4.4: Between group comparisons of alpha diversity indices for baseline rumen 

samples obtained from High PRADG and Low PRADG animals. T-test was used to 

measure between group comparisons for the distribution of Observed ASV and Chao1 

indices. Man-Whitney test was used for Shannon and Simpson indices 

 

We were not able to observe a significant difference between the alpha diversity of High 

PRADG and Low PRADG animals for any of the indices used to analyze microbial 

communities reconstructed from fecal and rumen samples at baseline or restriction water 

intake. 

 

4.3.2 Beta diversity analysis 

In order to compare the species composition of the fecal and rumen microbiomes of low 

performing and high performing animals under water restriction and baseline conditions, 

we conducted a beta diversity analysis of the microbial communities reconstructed from 

rumen and fecal samples obtained during water restriction and water intake (baseline) 

trials. Bray-Curtis dissimilarity and Jensen-Shannon divergence (Chong et al., 2020) was 
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used to assess the dissimilarity between the samples from high and low performing 

animals. The dissimilarity matrices were visualized using NMDS (Non-parametric 

multidimensional scaling) plots (Luz Calle, 2019) depicted in Figure 4.5, Figure 4.6, 

Figure 4.7 and Figure 4.8. 

 

The overall clustering pattern was analyzed using permutational analysis of variance 

(PERMANOVA) in order to make between group comparisons. (Moore et al., 2017). No 

clear clustering was observed between high performing animals (High PRADG) and low 

performing animals (Low PRADG) for either rumen or fecal samples. However, for 

restriction fecal samples there was a significant difference (p<0.05) in the overall beta 

diversity (species composition) between the two groups (Table 4.5). No significant 

difference between group comparison results were observed for overall beta diversity of 

restriction rumen samples and baseline rumen/fecal samples from High PRADG and Low 

PRADG animals (Table 4.6). 
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Figure 4.5: NMDS plots illustrating dissimilarity matrices generated using Bray-Curtis 

(a) and Jensen-Shannon (b) indices in two-dimensional space, for fecal samples obtained 

from High PRADG and Low PRADG animals. Each blue (Low PRADG animals) and 

red (High PRADG) point represent the species composition of the entire microbiome 

present in a given fecal sample. The ellipses mark the 95% confidence interval 

surrounding the centroid of each of the two groups. 
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Figure 4.6: NMDS plots illustrating dissimilarity matrices generated using Bray-Curtis 

(a) and Jensen-Shannon (b) indices in two-dimensional space, for rumen samples 

obtained from High PRADG and Low PRADG animals. Each blue (Low PRADG 

animals) and red (High PRADG) point represent the species composition of the entire 

microbiome present in a given fecal sample. The ellipses mark the 95% confidence 

interval surrounding the centroid of each of the two groups. 
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Figure 4.7: NMDS plots illustrating dissimilarity matrices generated using Bray-Curtis 

(a) and Jensen-Shannon (b) indices in two-dimensional space, for baseline fecal samples 
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obtained from High PRADG and Low PRADG animals. Each blue (Low PRADG 

animals) and red (High PRADG) point represent the species composition of the entire 

microbiome present in a given fecal sample. The ellipses mark the 95% confidence 

interval surrounding the centroid of each of the two groups. 
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Figure 4.8: NMDS plots illustrating dissimilarity matrices generated using Bray-Curtis 

(a) and Jensen-Shannon (b) indices in two-dimensional space, for baseline rumen samples 

obtained from High PRADG and Low PRADG animals. Each blue (Low PRADG 

animals) and red (High PRADG) point represent the species composition of the entire 

microbiome present in a given fecal sample. The ellipses mark the 95% confidence 

interval surrounding the centroid of each of the two groups. 

 

 

Table 4.5: The results of the PERMANOVA test for between group comparison of High 

PRADG and Low PRADG groups based on the microbial community composition of 

restriction rumen and fecal samples. For restriction fecal samples the community 

composition differs significantly (p<0.05) for both the distance methods used. For 

restriction rumen samples, no significant difference in between group comparisons was 

observed (p>0.05), for either of the distance methods used. 

 

Sample Type Distance method F-value R-squared p-value 

Baseline fecal 
samples  

Bray-Curtis dissimilarity 0.6887 0.0059 0.737 
Jensen-Shannon divergence 0.3882 0.0033 0.767 

Baseline rumen 
samples 

Bray-Curtis dissimilarity 1.2428 0.0109 0.244 
Jensen-Shannon divergence 0.4762 0.0042 0.638 

 

Table 4.6: Between group comparisons of distance methods used to measure beta 

diversity of baseline rumen and fecal microbiome of low performing and high performing 

Sample Type Distance method F-value R-squared p-value
Bray-Curtis dissimilarity 2.4333 0.0214 0.011
Jensen-Shannon diversgence 4.1053 0.0356 0.004
Bray-Curtis dissimilarity 1.4488 0.0155 0.168
Jensen-Shannon diversgence 1.2333 0.0132 0.308

Restriction fecal samples 

Restriction rumen samples
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animals. None of the comparisons between high and low performing animals revealed a 

significant difference in their beta diversity. 

 

4.3.3 Microbial community composition 

The taxonomic composition of the microbial communities recovered from fecal and 

rumen samples from the water restriction trial were visualized using relative abundance 

graphs. The samples were grouped based on animal performance (i.e. High PRADG 

animals and Low PRADG animals) and the data were summarized at genus level. 

 

As depicted in Figure 4.8, The taxonomy of the 10 most abundant genera remained the 

same between High PRADG and Low PRADG animals for both rumen and fecal samples 

obtained during the water restriction trial. However, the relative abundance of some of 

the genera differed significantly between the two groups. For fecal samples, we observed 

a significant decrease (p < 0.05) in the abundance of Christensenellaceae_R_7_group and 

Paeniclostridium in High PRADG animals (compared to Low PRADG animals), while a 

significant increase (p<0.05) in abundance was observed for Methanobrevibacter (Table 

4.7). For rumen restriction samples, Christensenellaceae_R_7_group and Ruminococcus 

showed a significant decrease (p<0.05) in abundance in High PRADG animals, whereas 

the relative abundance of Prevotella showed a significant (p<0.05) increase (Table 4.8). 

 

The baseline fecal microbiome did not show a significant difference in terms of overall 

species composition as well as the composition and the abundance of the most 

predominant genera observed between high performing and low performing animals 
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(Table 4.9). Only the abundance of Christensenellaceae_R_7_group and 

Rikenellaceae_RC9_gut_group differed significantly between the baseline rumen 

microbiomes of high performing and low performing animals (Table 4.10). 
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Figure 4.8: Relative abundance bar graphs depicting the 10 most abundant genera for 

fecal (a) and rumen (b) samples from the water restriction trial. The results are grouped 

according to animal performance, i.e High PRADG and Low PRADG animals. 
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Figure 4.9: Relative abundance bar graphs depicting the 10 most abundant genera for 

fecal (a) and rumen (b) samples from the water intake (baseline) trial. The results are 

grouped according to animal performance, i.e High PRADG and Low PRADG animals. 

 

Genus Low PRADG High PRADG P-value 
UCG_005 8.47% 8.92% 0.358 
Lachnospiraceae_NK3A20_group 7.48% 7.80% 0.490 
Turicibacter 6.48% 6.15% 0.395 
Christensenellaceae_R_7_group 6.17% 5.61% 0.010* 
Clostridium_sensu_stricto_1 5.95% 5.70% 0.368 
Romboutsia 4.67% 4.23% 0.072 
Paeniclostridium 3.67% 3.20% 0.047* 
Rikenellaceae_RC9_gut_group 3.42% 3.41% 0.850 
Methanobrevibacter 1.87% 2.88% 0.003* 
Ruminococcus 2.22% 2.43% 0.218 

(*) – p < 0.05 

Table 4.7: Relative abundances of the 10 most abundant genera in fecal samples obtained 

during the water restriction trial summarized according to animal performance (High 

PRADG and Low PRADG). 

Genus High PRADG Low PRADG P-value 
Prevotella 25.04% 21.92% 0.040* 
Lachnospiraceae_NK3A20_group 6.56% 7.06% 0.315 
Christensenellaceae_R_7_group 5.90% 6.91% 0.037* 
Methanobrevibacter 5.00% 5.13% 0.781 
Succinivibrionaceae_UCG_002 3.50% 3.41% 0.926 
Ruminococcus 2.94% 3.35% 0.030* 
NK4A214_group 2.00% 2.28% 0.079 
Rikenellaceae_RC9_gut_group 2.09% 2.10% 0.984 
Lachnospiraceae_XPB1014_group 1.54% 1.53% 0.963 
Prevotellaceae_UCG_003 1.45% 1.50% 0.640 
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(*) – p < 0.05 

Table 4.8: Relative abundances of the 10 most abundant genera in rumen samples 

obtained during water restriction trial summarized according to animal performance 

(High PRADG and Low PRADG). 

 

Genera High PRADG Low PRADG P-values 
UCG_005 9.88% 10.09% 0.641 
Lachnospiraceae_NK3A20_group 7.77% 7.87% 0.791 
Turicibacter 5.08% 5.44% 0.465 
Clostridium_sensu_stricto_1 4.88% 5.02% 0.752 
Christensenellaceae_R_7_group 4.73% 4.80% 0.705 
Methanobrevibacter 4.88% 3.97% 0.096 
Romboutsia 3.54% 3.82% 0.336 
Rikenellaceae_RC9_gut_group 3.27% 3.79% 0.077 
Ruminococcus 2.84% 2.77% 0.794 
Paeniclostridium 2.26% 2.37% 0.651 

 

Table 4. 9: Relative abundances of the 10 most abundant genera in fecal samples 

obtained during the water intake trial summarized according to animal performance 

(High PRADG and Low PRADG). 

 

Genera High PRADG Low PRADG P-value 
Prevotella 21.12% 22.66%    0.3644  
Christensenellaceae_R_7_group 7.07% 5.78%    0.0054*  
Lachnospiraceae_NK3A20_group 6.52% 6.25%    0.5205  
Methanobrevibacter 4.76% 4.50%    0.6217  
Succinivibrionaceae_UCG_002 3.18% 4.24%    0.2088  
Ruminococcus 3.22% 3.43%    0.3136  
NK4A214_group 2.21% 2.00%    0.1810  
Rikenellaceae_RC9_gut_group 2.16% 1.70%    0.0015*  
Lachnospiraceae_XPB1014_group 1.80% 1.58%    0.2854  
Prevotellaceae_UCG_003 1.58% 1.61%    0.9351  

(*) p<0.05 
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Table 4.10: Relative abundances of the 10 most abundant genera in rumen samples 

obtained during the water intake trial summarized according to animal performance 

(High PRADG and Low PRADG). 

 

4.3.4 The core-microbiome 

In order to determine whether there is a difference in the most prevalent microbial taxa in 

the gut microbiome of animals who perform well during water restriction, we derived a 

core microbiome for fecal and rumen samples obtained during the water restriction trial. 

The core microbiome was defined as the taxa that are present in at least 70% of the 

samples considered, at a threshold relative abundance of 0.01% or above. 

 

As depicted in figures 4.10, 4.11, 4.12 and 4.13, for both rumen and fecal samples, the 

core microbiome for High PRADG and Low PRADG animals essentially looked the 

same with two exceptions in the restriction fecal microbiome and baseline fecal 

microbiome. Methanobrevibacter present in the fecal core microbiome of High PRADG 

animals, was replaced by Familly_XIII_AD3011_group in the Low PRADG animals. 

Prevotellaceae_UCG_003 appeared additionally in the baseline fecal microbiome of low 

performing animals compared to the same in high performing animals. 
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Figure 4.10: The heat map illustrating the relative abundance and prevalence of the 

microbial taxa defining the core-microbiomes recovered from fecal samples obtained 

during the water restriction trial from High PRADG (a) and Low PRADG (b) animals. A 

threshold of at least 70% prevalence and 0.01% relative abundance was used as the 

selection criteria for microbial taxa to be considered as a part of the core microbiome. 
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Figure 4.11: Heat maps illustrating the relative abundance and prevalence of the 

microbial taxa defining the core-microbiomes recovered from restriction rumen samples 

of High PRADG (a) and Low PRADG (b) animals. A threshold of at least 70% 

prevalence and 0.01% relative abundance was used as the selection criteria for microbial 

taxa to be considered as a part of the core microbiome. 
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Figure 4.12: Heat maps illustrating the relative abundance and prevalence of the 

microbial taxa defining the core-microbiomes recovered from baseline fecal samples of 

High PRADG (a) and Low PRADG (b) animals. A threshold of at least 70% prevalence 

and 0.01% relative abundance was used as the selection criteria for microbial taxa to be 

considered as a part of the core microbiome. 
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Figure 4.13: Heat maps illustrating the relative abundance and prevalence of the 

microbial taxa defining the core-microbiomes recovered from baseline rumen samples of 

High PRADG (a) and Low PRADG (b) animals. A threshold of at least 70% prevalence 

and 0.01% relative abundance was used as the selection criteria for microbial taxa to be 

considered as a part of the core microbiome. 
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4.3.5 Biomarker analysis based on animal performance. 

In order to identify microbial biomarkers (differentially abundant taxa with biological 

significance) that are enriched in high performing (High PRADG) and low performing 

(Low PRADG) animals, a LEfSe (Linear Discriminant Analysis Effect Size) analysis 

(Segata et al., 2011) was conducted using fecal and rumen samples from the water 

restriction trial. For restriction fecal samples, we were able to identify 23 differentially 

abundant taxa between the two animal groups, and only 5 differentially abundant taxa 

based on restriction rumen samples. A P-value<0.05 and an LDA score> 2.0 was used as 

the selection criteria for biomarkers. 

 

As depicted in Figure 4.14a, out of the 15 most enriched biomarkers identified by LEfSe 

based on the restriction fecal samples, 7 were differentially abundant in High PRADG 

animals, namely; Lachnospiraceae_UCG_002, Blautia, UCG_001, Mehthanosphaera, 

UCG_001, Methanosphaera, Coprococcus, Acetitomaculum, and Methanobrevibacter. 

The remaining eight were differentially abundant in Low PRADG animals, namely; 

Christensenellaceae_R_7_group, Paenoclostridum, Rombutsia, Clostridoided, 

UCG_002, Akkermansia, Lactobacillus, and dgA_11_gut_group. For restriction rumen 

samples, only five genera immerged as differentially abundant taxa, namely; 

Saccharofermentans, Mogibacterium, Lachnoclostridium, 

Lachnospiraceae_FCS020_group, and Prevotella. Saccharofermentans, Mogibacterium, 

and Lachnoclostridium were associated with the rumen microbiome of Low PRADG 

animals, while Lachnospiraceae_FCS020_group, and Prevotella were associated with 

the rumen microbiome of High PRADG animals. 
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Figure 4.14: Differentially abundant bacterial genera in the gut microbiome of High 

PRADG and Low PRADG animals during water restriction. Plot (a) depicts the 15 most 

enriched biomarkers (out of the 23 total  
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biomarkers identified by LEfSe analysis) associated with the fecal microbiome of High 

PRADG animals and Low PRADG animals during water restriction. Plot (b) depicts the 

biomarkers associated with High PRADG animals and Low PRADG animals based on 

their rumen microbiome during water restriction. The selection criteria for differentially 

abundant features were a P-value < 0.05 and LDA score > 2.0. The blue bars indicate 

LDA score of biomarkers associated with Low PRADG animals and the red bars indicate 

LDA scores of biomarkers associated with High PRADG animals.  (Segata et al., 2011; 

Chong et al., 2020). 
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Figure 4.15: Differentially abundant bacterial genera in the gut microbiome of High 

PRADG and Low PRADG animals. Plot (a) depicts enriched biomarkers associated with 

the fecal microbiome of High PRADG animals and Low PRADG animals during baseline 

water intake. Plot (b) depicts the biomarkers associated with High PRADG animals and 

Low PRADG animals based on their rumen microbiome during baseline water intake. 

The selection criteria for differentially abundant features were a P-value < 0.05 and LDA 

score > 2.0. The blue bars indicate LDA score of biomarkers associated with Low 
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PRADG animals and the red bars indicate LDA scores of biomarkers associated with 

High PRADG animals.  (Segata et al., 2011; Chong et al., 2020). 

 

LEfSe analysis on the baseline fecal microbiome revealed four biomarkers with only 

Mailhela associated with low performing animals, while Anerostipes, 

Lachnospiraceae_UCG_002 and Lachnospiraceae_FCS_020_group were associated 

with high performing animals (Figure 4.15(a)). The baseline rumen microbiome revealed 

9 biomarkers associated with high and low performing animals as depicted in (Figure 

4.15(b)). 

 

Random forest (RF) analysis (Breiman, 2001) implemented in MicrobiomeAnalyst 

(Chong et al., 2020) was used to further elucidate the differentially abundant taxa 

between Low PRADG and High PRADG animals using fecal and rumen samples from 

the water restriction trial, at genus level. By running RF analysis on restriction fecal 

samples, we were able to identify Parvibacter, Streptococcus, Lacotbacillus, 

Methanobrevibactor, Blautia, Coprococcus, and Lachnospiraceae-UCG-002 as 

differentially abundant species associated with High PRADG animals. While 

p_1088_a5_gut_group, Akkermansia, Christensenellaceae_R7_group, UCG-002, 

Denitrobacterium, Geobacillus, Caproicipruducens, and Clostridioides were associated 

with Low PRADG animals (Figure 4.9). 

For restriction rumen samples, only Provetollaceae_Ga6A1_group and Aeriscardovia out 

of the top 15 differentially abundant taxa, were identified as features associated with 

High PRADG animals. The rest of the top 15 differentially abundant taxa identified, 
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namely; Saccharofermentans, Lachnospiraceae_NKA416_group, Oscillospira, 

Christensenellaceae_R7_group, Lactobacillus, Flexilinea, Veillonellacea_UCG-001, 

Lachnospiraceae_FE2018_group, Sacharopolyspora, Prevetollaceae_UCG-003, 

Elusimicrobium, Syntrophococcus, and Papillibacter were all associated with Low 

PRADG animals (Figure 4.10). Random Forest analysis on baseline and rumen and fecal 

microbiome was not able to identify significant biomarkers.  
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Figure 4.16: Differentially abundant taxa between High PRADG and Low PRADG 

animals in the restriction fecal microbiome, identified using RF analysis. The features are 

ranked according to the mean decrease in accuracy the model suffers in sample 

classification, if the particular feature is removed from the analysis. The color codes 

indicate the association of each feature either with High PRADG or Low PRADG 

animals. 
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Figure 4.17: Illustration of differentially abundant taxa associated with High PRADG 

and Low PRADG animals identified by RF analysis of the restriction rumen samples. The 

features are ranked according to the mean decrease in accuracy the model suffers in 

assigning samples to each of the classes, if the particular feature is removed from the 

analysis. The color codes indicate the association of each feature either with High 

PRADG or Low PRADG animals. 
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4.4 Discussion 

Often overlooked in animal nutrient requirement models, water is an essential ingredient 

in the diet of ruminants such as beef cattle, and plays a key role in all their essential 

physiological functions (Wickramasinghe et al. 2019). The relationship between water 

intake/impurities/temperature and performance in beef cattle has been well established in 

existing literature (Lofgreen et al., 1975; Lardner et al., 2005; Wright, 2007). The gut 

microbiome of cattle, commonly represented by its rumen and fecal microbiota is also 

well connected to animal performance (Myer, 2019). However, the association between 

the inherent gut microbiome of cattle, and animal performance in water restricted 

conditions, is yet to be extensively studied. 

 

The biodiversity of any given microbial community is commonly assessed in terms of its 

alpha and beta diversity. The alpha diversity measures generated for both restriction 

rumen and restriction fecal samples obtained from high performing animals (High 

PRADG) did not yield any significant difference (P>0.05) when compared against the 

same from low performing (Low PRADG) animals. However, for alpha diversity indices 

that only take species richness into account, an increase in average alpha diversity was 

observed in High PRADG animals. This may be due to slight increase in the number of 

unique species present in fecal samples of animals that are performing better in water 

restricted conditions. However, for rumen samples, the alpha diversity of High PRADG 

animals decreased (even though not significant) when compared to Low PRADG animals 

(only in species richness indices). Further investigation at species level or strain level is 
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warranted to elucidate the cause behind this disparity in the behavior of rumen and fecal 

microbiomes during water restriction. 

 

Similar behavior of the fecal and rumen microbiomes was observed during beta diversity 

analysis as well. Where the overall beta diversity of the fecal microbiome differed 

significantly between low performing and high performing animals, but no significant 

difference was observed in the rumen microbiome. The inherent differences in species 

diversity and composition that exist between rumen and fecal microbiomes (Seshadri et 

al., 2018; Lourenco et al., 2020) maybe the reason behind these differed responses of the 

rumen and fecal microbiome of cattle to water restriction`. Furthermore, the cumulative 

effect of reduced motility on cattle gut microbiome may be more visible in the fecal 

microbiome rather than the rumen microbiome, especially since the fecal microbiota may 

well be a combination of foregut and hindgut microbial communities of the animal. 

 

In terms of microbial community composition and relative abundance of different taxa at 

genus level, Christensenellaceae_R_7_group demonstrated statistically significant (P < 

0.05) increases in its relative abundances in the fecal and rumen microbiome of Low 

PRADG animals. Members of the Christensenellaceae family 

(Christensenellaceae_R_7_group) are known to increase in abundance when rumen pH 

decreases (De Nardi et al., 2016). The overall rumen pH of animals subjected to the 

current study showed a statistically significant decrease (p=8.29e-05), from a baseline 

average rumen pH of 6.45 to a restriction average rumen pH of 6.36. However, there was 

no significant difference (p=0.073) between the average rumen pH of low performing 
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(6.32) animals and high performing animals (6.51) during water restriction, but a slight 

decrease average pH was observed, thus strengthening the basis for our observation.  

Hence, this may be compelling evidence of an association between the high relative 

abundance of Christensenellaceae_R_7_group (driven by reduced overall rumen pH) and 

decreased performance of animals during water restriction. 

 

Methanobrevibacter showed a statistically significant (P<0.05) increase in its abundance 

in the fecal microbiome of High PRADG animals under water restriction, when 

compared against Low PRADG animals. Methanobrevibacter also appears in the core 

microbiome High PRADG animals and gets replaced by Familly_XIII_AD3011_group in 

the Low PRADG animals. Increased abundance of methanogens such as 

Methanobrevibacter has been historically linked to high residual feed intake (HRFI), or 

low feed efficiency in cattle (Carberry et al., 2014; Delgado et al., 2019). However, no 

statistically significant association between RFI and performance parameters such as 

ADG has been found thus far in ruminants (Nkrumah et al., 2006; Zhang et al., 2017). 

Furthermore, a direct association between rumen/fecal methanogens, and ADG of cattle 

could not be found described in existing literature. Hence, further investigation is 

required to ascertain the association we observed between the abundance of 

Methanobrevibacter and the percentage recovery of ADG in feedlot cattle during water 

restriction. 

 

The significant decrease (P<0.05) in the abundance of Prevotella in the rumen of Low 

PRADG animals  supplements the behavior of Christensenellaceae_R_7_group and can 
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be considered as further evidence of increasing acidity in the rumen of low performing 

animals, since the decreasing abundance of Prevotella has been linked to pH drop in the 

rumen in cattle (Fernando et al., 2010; Holman and Gzyl, 2019). 

 

The results from the biomarker analysis for fecal samples, also confirms the prominent 

presence of methanogens in High PRADG animals. Out of the 7 features identified by 

LEfSe analysis, the top 5 in terms of LDA scores contains two methanogens, namely; 

Methanobrevibacter and Methanosphaera. However, no methanogens appear as 

biomarkers that can differentiate High PRADG animals from Low PRADG animals 

under water restriction, in the rumen samples. Again, this agrees with our community 

composition and relative abundance data on restriction rumen samples, where 

Methanobrevibacter or any other methanogen does not show a statistically significant 

difference between High PRADG and Low PRADG animals. 

 

Another noteworthy observation is, the genus Akkermansia being picked as a 

differentially abundant taxon in the fecal microbiome of Low PRADG animals during the 

biomarker analysis (by both LEfSe and RF). As described in the previous chapter, 

Akkermansia showed a statistically significant increase in abundance in the restriction 

fecal samples in comparison to baseline fecal samples. Building on that, in the current 

study we found that when compared to high performing animals (High PRADG) under 

water restriction, Akkermansia was differentially abundant in low performing animals 

(Low PRADG) and could be used as a biomarker to differentiate between them. Members 

of the genus Akkermansia are known to cause mucine degradation in the gut that causes 
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increased susceptibility to gut pathogens (Fan et al., 2020). Hence, this may be 

considered as evidence for gut health implications of water restriction in cattle that 

ultimately affects animal performance. 

 

Members of the genus Lactobacillus have long been used as a probiotic in improving 

feed efficiency, growth and performance of animals in the cattle industry. However, 

while species such as L. acidophilus, L. fermentum and L. ingluviei are associated with 

weight gain in animals, other Lactobacilli such as L. plantarum and L. gasseri are known 

to cause weight loss (Million et al., 2012; Angelakis, 2017). Both Random Forest 

analysis and LEfSe analysis conducted during the current study identified Lactobacillus 

as a differentially abundant taxon in Low PRADG animals when compared to High 

PRADG animals. As mentioned above, these Lactobacilli present in Low PRADG 

animals can be species such as L. plantarum and L. gasseri, thus having an adverse effect 

on animal performance. However, it needs further investigation of fecal microbiome data 

at species level to ascertain this fact. 
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CHAPTER V 

POPULATION DYNAMICS OF THE BOVINE GUT MICROBIOME 
REVEALED BY METAGENOME SEQUENCING 

 

 

5.1 Introduction 

In the design of a microbiome study, 16S rRNA gene amplicon sequencing is often the 

first step in determining the structure and composition of the microbial community. Due 

to the continuous improvements in next generations sequencing (NGS) technologies, 16S 

rRNA gene amplicon studies have become cost effective and readily available. Hence, it 

has become the most widely used culture independent technique used to study 

microorganisms in their natural habitat (Gupta et al., 2019).  

 

However, due to its inherent nature of only targeting a single or a few hypervariable 

regions within the 16S rRNA gene (the length of the entire gene at most), these studies 

are often incapable of accurate taxonomical profiling beyond genus level. Moreover, 16S 

rRNA gene amplicon sequence data lack the ability to provide any information about the 

functional or metabolic potential of the microbial community being studied. Other than 

that, like any other amplicon based study, they are prone to PCR bias, and any horizontal 

gene transfer events that have happened in the 16S locus between evolutionary distant 
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species may result in an overestimation of the true phylogenetic diversity (Sharpton, 

2014; Rausch et al., 2019).  

 

Therefore, whole genome shotgun sequencing (metagenome sequencing) is often utilized 

to go beyond traditional 16S rRNA gene amplicon sequencing and analyze the microbial 

community at species or strain level, while elucidating metabolic and functional potential 

of the microbiome. However, due to the comparatively high cost of whole genome 

shotgun sequencing, it is often difficult to use a large number of samples for this purpose. 

Hence, we utilized a tiered approach in the current study to select a subset of rumen and 

fecal samples used for the 16S gene amplicon study in order to have a deeper look at the 

structural and functional dynamics of the cattle gut microbiome under water restriction.   

 

5.2 Materials and Methods 

5.2.1 Animal Selection and DNA extraction 

We selected 16 animals, out of the 146 animals used for the 16S rRNA gene amplicon 

study. Animal selection was done based on the beta diversity of their rumen and fecal 

samples, using the ‘representative dissimilarity’ method available in microPITA (Tickle 

et al., 2013). Attention was given to include a similar number of animals from each tail of 

the percentage recovery of average daily gain distribution. Sixty-four fecal and rumen 

samples originating from the 16 selected animals were subjected to whole genomic DNA 

extraction as described previously. These samples comprised of fecal and rumen samples 

from water intake and restriction trials for each animal. Molecular grade water was used 
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as the negative control, and ZymoBIOMICS® Microbial Community Standard (Zymo 

Research, Irvine, CA) was used as the positive control during DNA extraction.  

 

5.2.2 Metagenomic sequencing 

The extracted genomic DNA from all samples were sent to BGI Genomics (Cambridge, 

MA) for metagenome sequencing. Sequence library construction and shotgun 

metagenome sequencing was done using the BGISEQ-500 sequencing platform as 

described in Fang et al., 2018 to generate 40 million 150bp paired-end (PE) sequence 

reads worth 12Gb of data per sample. 

 

5.2.3 Sequence data pre-processing and bioinformatics analysis 

The raw data generated by the sequencing process was first filtered to remove adapter 

sequences and low quality sequences using SOAPnuke (Chen et al., 2018). Sequences 

that had a greater than 25% match with an adapter sequence was removed. Low quality 

sequence reads identified based on the presence of more than 50% of its bases with a 

quality score less than 20, were deleted. Sequence reads with more than 3% ambiguous 

bases, and duplicate sequences were also deleted. 

 

The pre-processed, quality filtered sequences were then subjected to taxonomic 

classification using MetaPhlAn 3.0 (Truong et al., 2015). Both paired end sequencing 

data files in ‘fastq’ format obtained for each of the samples were utilized for the 

taxonomic analysis. MetaPhlAn 3.0 parameters such as ‘–t’, ‘--index’ and ‘--bt2_ps’ were 

set to ‘rel_ab_w_read_stats’ ‘latest’ and ‘sensitive’. ‘--add_viruses’ and ‘--
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unknown_estimation’ was also set to include viruses in the clade specific marker 

database search and to estimate the number of reads that do not map to known clades in 

the database. The taxonomic profiles generated for each sample were then combined into 

a single taxonomic profile similar to an ASV table where rows contain taxa and the 

columns would contain read counts for each sample. The combined taxonomic profile 

was then subjected to statistical analysis and data visualization using MicrobiomeAnalyst 

(Chong et al., 2020) and R. 

 

HUMAnN 3.0 (Franzosa et al., 2018) was used to conduct functional profiling of the pre-

processed and quality trimmed metagenome sequencing data. Both paired end sequencing 

files for each sample was subjected to analysis and default parameters were used to run 

HUMAnN 3.0. Functional profiles pertaining to abundance of gene families, abundance 

of metabolic pathways and pathway coverage were generated for metagenomic data 

obtained for each sample. Individual tables were joined to compile three comprehensive 

tables for gene families, metabolic pathways and pathway coverage for all fecal and 

rumen samples subjected to metagenome sequencing. Initial abundance values reported 

in Reads per Killobase (RPK) were normalized to Copies per Million (CPM) in order to 

facilitate comparison of samples with un-equal sequencing depth. 
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5.3 Results 

5.3.1 Taxonomic profiling of rumen and fecal microbiomes at species level  

5.3.1.1 Diversity analysis 

We conducted alpha and beta diversity analyses (as described previously) at species level 

based on the taxonomic abundance profiles built using MetaPhlAn 3.0 for both baseline 

and restriction rumen samples and fecal samples. Chao1, observed species, Shannon and 

Simpson indices were used to measure alpha diversity, while Bray-Curtis dissimilarity 

and Jensen-Shannon index was used to measure beta diversity.  

 

With regard to rumen samples, for the indices that take only species richness into 

account, a slight increase in average alpha diversity was observed in the restriction 

samples. For Shannon and Simpson indices that take both species richness and evenness 

into account, a slight decrease in the average alpha diversity was observed in restriction 

samples when compared to baseline samples (Figure 5.1). However, none of the between 

group comparisons (restriction against baseline) of alpha diversity at species level yielded 

statistically significant (p<0.05) results (Table 5.1). 

 

The results of the beta diversity analysis for rumen samples followed a similar trajectory 

where, for both the beta diversity measures used, no clustering was observed when 

visualized using None-metric Multidimensional Scaling (NMDS) plots (Figure 5.2). A 

between group comparison of overall beta diversity using permutation analysis of 

variance (PERMANOVA) revealed no significant difference between the beta diversity 

of baseline and restriction rumen samples at species level (Table 5.2). 
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Figure 5.1: Alpha diversity box plots of baseline and restriction rumen samples based on 

the taxonomic profiles generated by MetaPhlAn 3.0. Y axis indicates the magnitude of 

the alpha diversity index calculated for each rumen sample. The samples are grouped and 

colored based on the water restriction or baseline trial they belong. 
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Alpha Diversity Index Statistical Test Test Statistic p-value 
Observed ASV T-test -0.9236 0.3635 
Chao1 T-test -0.4478 0.6577 
Shannon Man-Whitney 129 0.7404 
Simpson Man-Whitney 127 0.8000 
    

Table 5.1: Between group comparison statistics for each of the alpha diversity indices 

used in estimating the alpha diversity of baseline and restriction rumen samples.  
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Figure 5.2: Non-metric multidimensional scaling (NMDS) plots illustrating the 

distribution of microbial communities from baseline and restriction rumen samples in 

terms of their beta diversity. Bray-Curtis dissimilarity index (a) and Jensen-Shannon 

divergence (b) were used as beta diversity estimates that measure dissimilarity between 
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samples based on the presence and absence of species. NMDS stress for plot (a) is 

0.19099. NMDS stress for plot (b) is 0.1175. 

 

Distance method Statistical test F-value R-squared p-value 
Bray-Curtis dissimilarity PERMANOVA 0.9422 0.0314 0.388 
Jensen-Shannon divergence PERMANOVA 0.9888 0.0329 0.379 

 

Table 5.2: Between group comparisons of beta diversity measures using permutated 

analysis of variance (PERMANOVA). 

 

We observed a similar pattern in the alpha diversity of fecal samples as well. Where a 

slight increase in species richness was seen in restriction samples for species richness 

indices (Chao1 and observed species), and a slight decrease was seen in restriction 

samples for indices that took both species richness and evenness into account (Figure 

5.3). However as depicted in Table 5.3, none of these between group differences were 

statistically significant (p<0.05).  

 

As depicted in Table 5.4, no significant difference could be observed between beta 

diversity of baseline and restriction fecal samples for either of the beta diversity measures 

used (Bray-Curtis dissimilarity and Jensen-Shannon divergence). Hence as expected, no 

clustering was observed in the NMDS plots as well (Figure 5.4). 
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Figure 5.3: Box plots depicting species level alpha diversity distributions of baseline and 

restriction fecal samples. The alpha diversity values were derived based on taxonomic 

profiles generated using metagenome sequencing data. The value of the alpha diversity 

index calculated for each fecal sample is represented in the Y axis. The samples are 

grouped and colored based on the water restriction or baseline trial they originated from. 
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Alpha Diversity Index Statistical Test Test Statistic p-value 
Observed ASV T-test -0.9987 0.3216 

Chao1 T-test -0.9877 0.3317 
Shannon Man-Whitney 144 0.5641 
Simpson Man-Whitney 137 0.7520 

 

Table 5.3: Results of the statistical tests conducted on each alpha diversity index to 

detect any significant differences in the alpha diversity that may exist between baseline 

and restriction fecal samples. 

 

Distance method Statistical test F-value R-squared p-value 
Bray-Curtis dissimilarity PERMANOVA 1.3838 

2.6839 
0.0440 
0.0821 

0.210 
0.054 Jensen-Shannon divergence PERMANOVA 

 

Table 5.4: Results of the statistical test (PERMANOVA) conducted to compare the 

overall beta diversity of baseline and restriction fecal samples 
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Figure 5.4: Non-metric multidimensional scaling (NMDS) plots illustrating the 

distribution of baseline and restriction fecal samples based on Bray-Curtis (a) and Jensen-
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Shannon (b) dissimilarities. NMDS stress for plot (a) was 0.2062 and for plot (b) it was 

0.1582.  

 

5.3.1.2 Abundance Profiles 

Using MetaPhlAn 3.0, we were able to accurately map an estimated 86,644,338 sequence 

reads (out of an estimated total of 2,726,200,094 sequence reads) from rumen samples to 

its clade specific marker gene database. The mapped sequence reads contained a total 130 

species belonging to bacteria, archaea and viruses. Similarly, a total of 131,259,912 (out 

of an estimated total of 2,939,333,876) sequence reads arising from the fecal samples 

were mapped to 152 species in the marker gene database. The subsequent taxonomic 

profiles for all rumen and fecal samples were built based on taxonomic classification of 

the mapped reads. 

 

As depicted in Figure 5.5 and Figure 5.6, the 10 most predominant organisms identified 

at species level for both baseline and restriction rumen samples were Bacteroidales 

bacterium KHT7, Methanobrevibacter millerae, Methanosphaera sp BMS, Prevotella 

ruminicola, Prevotella sp tf2 5, Pseudobutyrivibrio ruminis, Ruminococcaceae bacterium 

P7, Sarcina sp DSM 11001, Streptococcus equinus, and Succiniclasticum ruminis. A 

notable increase in abundance was observed in Sarcina sp DSM 11001 from baseline 

(41%) to restriction (47%) rumen samples. For Succiniclasticum ruminis, Prevotella 

ruminicola and Prevotella sp tf2 5, a 5.0%, 2.0% and 3.5% decrease in relative 

abundance was observed in rumen restriction samples compared to baseline samples. 

However, these fluctuations in relative abundance were not found to be statistically 

significant (p<0.05). 
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Figure 5.5: Animal wise relative abundance of microbial taxa in baseline and restriction 

rumen samples at species level. The 10 most predominant species identified in both 

baseline and restriction samples are depicted. The bar plot was created by summarizing 

taxonomic profiling data generated using MetaPhlAn 3.0 at species level. 

 

Species Baseline Restriction P-value 
Sarcina sp DSM 11001 40.0% 47.2% 0.27 
Succiniclasticum ruminis 21.3% 16.2% 0.08 
Prevotella ruminicola 12.2% 10.2% 0.60 
Prevotella sp tf2 5 4.4% 0.9% 0.13 
Bacteroidales bacterium KHT7 1.4% 3.1% 0.22 
Methanosphaera sp BMS 1.8% 2.6% 0.29 
Methanobrevibacter millerae 1.4% 2.1% 0.33 
Streptococcus equinus 1.3% 2.0% 0.09 
Pseudobutyrivibrio ruminis 1.5% 1.6% 0.94 
Ruminococcaceae bacterium P7 1.9% 0.9% 0.20 
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Table 5.5: The change in the relative abundance of the 10 most predominant species in 

baseline and restriction rumen samples and the p-values calculated based on animal wise 

fluctuations of each species. 

 

 

 

Figure 5.6: The relative abundance of the 10 most predominant species in baseline and 

restriction rumen samples summarized by treatment. 

 

As depicted in Figure 5.7 and 5.8 the 10 most predominant species in baseline and 

restriction fecal samples essentially remained the same, and comprised of Sarcina sp 

DSM 11001, Turicibacter sanguinis, Ruminococcaceae bacterium P7, Methanosphaera 
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sp BMS, Streptococcus equinus, Escherichia coli, Methanobrevibacter thaueri, 

Methanobrevibacter millerae, Saccharopolyspora rectivirgula, and Treponema 

porcinum. However, as depicted in Table 5.6, a significant decrease in the abundance of 

Ruminococcaceae bacterium P7, Methanosphaera sp BMS and Methanobrevibacter 

millerae was observed in restriction fecal samples, when compared to the baseline. 

 

 

Figure 5.7: Animal to animal variation in relative abundance of the 10 most predominant 

species identified in baseline and restriction fecal samples. The relative abundance values 

are derived from taxonomic profiles built using metgenome sequencing data obtained 

from baseline and restriction fecal samples selected for the study.  
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Figure 5.8: The relative abundance of the 10 most predominant species found in baseline 

and restriction fecal samples summarized by treatment. 

Species 
            
Baseline Restriction   P-value 

Sarcina sp DSM 11001 65.39% 66.62% 0.7597 
Turicibacter sanguinis 15.04% 13.37% 0.5931 
Ruminococcaceae bacterium P7* 3.64% 1.81% 0.0375 
Methanosphaera sp BMS** 2.68% 0.82% 0.0006 
Streptococcus equinus 2.42% 1.35% 0.2534 
Escherichia coli 1.61% 5.01% 0.1207 
Methanobrevibacter thaueri 0.84% 0.42% 0.1765 
Methanobrevibacter millerae* 0.73% 0.41% 0.0186 
Saccharopolyspora rectivirgula 0.68% 1.49% 0.0897 
Treponema porcinum 0.64% 1.47% 0.3991 

                         (*) – p<0.05; (**) – p<0.001 

Table 5. 6: The 10 most abundant species observed in the baseline and restriction fecal 

samples and their respective relative abundances. P-values indicated are calculated based 

on animal wise fluctuations of the microorganisms between baseline and restriction trials.  
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5.3.1.3 Core microbiome analysis 

The taxonomic profiles generated using MetaPhlAn 3.0 (Truong et al., 2015) were 

analyzed using MicrobiomeAnalyst (Chong et al., 2020) to derive rumen and fecal core 

microbiome profiles. As described previously, a relative abundance > 0.01% and 

prevalence > 70% were used as selection criteria when defining the core microbiomes. 

Figure 5.5, depicts the core microbiomes derived from baseline and restriction rumen 

samples at species level. 
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Figure 5.9: The core microbiomes of baseline (a) and restriction (b) rumen samples at 

species level, based on the taxonomic profiling of shotgun metagenome sequencing data. 

A relative abundance greater than 0.01% and prevalence greater than 70% was used as 

the cut-off values for a taxon to be included in the particular core microbiome. 

 

The baseline core microbiome for rumen samples comprised of 7 species, namely; 

Sarcina sp DSM 11001, Succniclasticum ruminis, Prevotella ruminicola, 

Ruminococcaceae bacterium P7, Methanosphaera sp BMS, Methanobrevibacter 
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millerae, and Streptococcus equinus. The core microbiome of restriction rumen samples 

constituted of only five species, namely; Sarcina sp DSM 11001, Succiniclasticum 

ruminis, Prevotella ruminicola, Methanosphaera sp BMS, and Streptococcus equinnus. 

Hence, the rumen core microbiome identified here at species level appears to shrink 

during water restriction, losing two of its members, Ruminococcaceae bacterium P7 and 

Methanobrevibacter millerae. 

 

Sarcina sp. DSM 11001, Turicibacter sanguinis, Ruminococcaceae bacterium P7, 

Methanosphera sp BMS and Streptococcus equinus formed the baseline fecal 

microbiome. However, during water restriction the species level fecal core microbiome 

of the animals used for the study appears to shrink more than 50% in size (in terms of 

number of species), comprising only of Sarcina sp. DSM 11001 and Turicibacter 

sanguinis. 
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Figure 5.10: Species level core microbiomes of baseline (a) and restriction (b) fecal 

samples derived via taxonomic profiling of shotgun metagenome sequencing data. A 

relative abundance greater than 0.01% and prevalence greater than 70% was used as cut-

off values for defining the composition of the core microbiomes. 

 

5.3.1.4 Co-occurrence networks 

We constructed microbial co-occurrence networks using baseline and restriction rumen 

and fecal samples in order to visualize possible interactions between the cattle gut 

microorganisms, and to identify organisms that may act as potential keystone species in 

their response to water restriction. MicrobiomeAnalyst (Chong et al., 2020) was used to 

construct and visualize the networks, based on the taxonomic profiles built by 
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MetaPhlAn 3.0. The SparCC algorithm (Friedman and Alm, 2012; Chong et al., 2020)  

was used to calculate pairwise correlations between species. A p-value of 0.05 and a 

correlation of 0.6 was used as thresholds when generating the networks. As depicted in 

Figure 5.11, two co-occurrence networks were built, each for rumen and fecal samples, 

based on the co-variation of species abundance during water restriction. 

 

Upon visual examination of the co-occurrence network generated for rumen samples, 

species such as Sarcina sp DSM 1101, Denitrobacterium detoxificans, Ruminococcus 

flavefaciens, Streptococcus equinus and Methanobravibactor thaueri appear to act as 

hubs in the network with many significant correlations to other species and subnetworks. 

In the fecal samples, species such as Geobacillus thermodenitrificans, Streptococcus 

lutetiencis, Streptococcus equinus, and Methanobrevibactor millerae appears to act as 

hubs of the co-occurrence network. 
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Figure 5.11: Microbial co-occurrence networks derived for rumen (a) and fecal (b) 

microbiomes considered in the study. SparCC algorithm was used to calculate pairwise 

correlations. A p-value < 0.05 and a correlation threshold > 0.6 was used to identify an 

interaction between two organisms. The edges represent negative or positive correlations 

between the two connecting organisms (nodes). The node sizes correspond to the 

abundance of each organism in restriction and baseline samples. Orange represents the 

mean abundance of the given organism in restriction samples and green indicates the 

same in baseline samples. 

  

5.3.1.5 Differentially abundant microorganisms 

In order to identify differentially abundant microorganisms at specie level, we conducted 

a LEfSe (linear discriminant analysis effect size) (Segata et al., 2011) analysis on the 

taxonomic profiles built using metagenome sequencing data. As described previously, we 

used a  

p-value <0.05 and an LDA (linear discriminant analysis) score > 2.0 when selecting 

features. Two separate biomarker profiles were generated for rumen and fecal samples as 

depicted in Figure 5.12. 

 

Through the LEfSe analysis we were able to identify 8 differentially abundant species for 

rumen samples and 12 differentially abundant species for fecal samples. Species such as 

Kandleria vitulina, Denitrobacterium detoxificans, Schwartzia succinivorans, 

Saccharopolyspora rectivirgula, and Streptococcus infantarius with known gut health 

implications were found to be enriched in restriction rumen samples.  
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Notably, in the fecal samples Methanosphera sp. BMS, Methanobrevibacter thaueri, and 

Methanobrevibacter millerae that together forms a major part of the population of 

methanogens in cattle, were all enriched in the baseline samples in comparison to 

restriction samples. Similar to their behavior observed in the rumen samples, 

Saccharopolyspora rectivirgula could be seen enriched in the restriction fecal samples as 

well. Geobacillus thermodentrificans and Roseburia sp. 499 are the other notable species 

observed to be enriched in the fecal samples collected during water restriction. 
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Figure 5. 12: Differentially abundant species identified in the rumen (a) and fecal (b) 

samples based on their enrichment in the respective restriction and bassline samples. A p-

value < 0.05 and an LDA score > 2.0 was used to classify species into their enriched 
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groups (baseline and restriction). The red bars represent the LDA score of microbial 

species enriched in baseline samples and the blue bars indicate the LDA score of species 

that are enriched in restriction samples. 

 

5.3.2 Functional dynamics of the beef cattle gut microbiome during water restriction 

In order to unravel the changes that occur in the functional profile of the rumen and fecal 

microbiomes during water restriction, we used HUMAnN 3.0 (Franzosa et al., 2018) to 

detect the presence/absence and the abundance of metabolic pathways in the rumen and 

fecal microbiomes. Quality controlled metagenome sequencing data generated from 

selected rumen and fecal samples (as described previously) obtained during the baseline 

and water restriction trials were used for this purpose. STAMP 2.1.3 (Parks et al., 2014) 

was used for statistical analysis and visualization of pathway abundance data generated 

using HUMAnN 3.0. 

 

5.3.2.1 Functional dynamics of the rumen microbiome during water restriction 

We were able to identify 90 microbial metabolic pathways that had a statistically 

significant (p<0.05) difference in their abundance when compared between baseline and 

restriction rumen samples. Biologically important metabolic pathways such as (but not 

limited to) glucose-1-phosphate degradation, glycogen biosynthesis I (from ADP-D-

glucose), homolactic fermentation, TCA cycle, super pathway of purine nucleotide 

salvage, pyrimidine nucleobases salvage, thiamin salvage, thiamin diphosphate 

biosynthesis, pyrimidine deoxyribonucleotide de novo biosynthesis, L-histidine 

biosynthesis, and super pathway of L-lysine, L-threonine and L-methionine biosynthesis 
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had significantly high (p<0.05) pathway abundance in restriction rumen samples (Figure 

5.13). 

 

Furthermore, metabolic pathways such as superpathway of branched chain amino acid 

biosynthesis, L-methionine biosynthesis III, L-isoleucine biosynthesis (I and II), L-lysine 

biosynthesis III, pyruvate fermentation to isobutanol, adenosine ribonucleotides de novo 

biosynthesis, purine ribonucleosides degradation, and superpathway of L-serine and 

glycine biosynthesis I were observed to be significantly low in abundance in the 

restriction rumen samples (Figure 5.14). 
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Figure 5.13: A subset of the pathways that were found to be significantly (p<0.05) high 

in abundance in restriction rumen samples; a) Glucose-1-phosphate degradation 

(p=0.028), b) Glycogen biosynthesis from ADP-D-Glucose (p=1.6e-3),  c) Homolactic 

fermentation (p=0.01), d) super pathway of L-lysine, L-threonine and L-methionine 

biosynthesis (p=0.03). Baseline rumen samples are indicated in blue and restriction 

rumen samples are indicated in green. Mean pathway abundance for each group is 
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indicated by the horizontal line. The Y-axis indicates pathway abundance in counts per 

million (CPM) for each sample and the X-axis indicates samples IDs.  

 

 

 

Figure 5.14: A subset of the pathways observed to be significantly (p<0.05) low in 

abundance in restriction rumen samples when compared to baseline; a) L-methionin 

biosynthesis (p=0.014), b) Pyruvate fermentation to isobutanol (p=0.016), c) 

Superpathway of branched chain amino acid biosynthesis (p=0.012), d) Superpathway of 

L-thrionin biosynthesis (p=0.024). Baseline and restriction rumen samples are color 
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coded in blue and green, respectively. The Y-axis indicates pathway abundance in counts 

per million (CPM) for each sample and the X-axis indicates samples IDs.  

 

5.3.2.2 Functional dynamics of the fecal microbiome during water restriction 

In terms of the fecal microbiome we were able to identify a total of 106 metabolic 

pathways that had a significant difference (p<0.05) in their pathway abundance when 

between group comparisons were done for baseline and restriction fecal samples. Many 

biologically important pathways such as (but not limited to) superpathway of branched 

amino acid biosynthesis, superpathway of aromatic amino acid biosynthesis, glycolysis I 

(from glucose 6-phosphate), L-histidine biosynthesis, methanogenesis from H2 and CO2, 

formaldehyde assimilation II (RuMP Cycle), amino acid biosynthesis pathways for L-

lysine & L-isoleucine, urate biosynthesis, flavin biosynthesis and pyruvate fermentation 

to isobutanol had significantly low (p<0.05) pathway abundances in restriction fecal 

samples than baseline samples (Figure 5.15). 

 

On the other hand, metabolic pathways such as L-arginine biosynthesis, L-tryptophan 

biosynthesis, pyruvate fermentation to propanoate I, TCA cycle VIII, D-fructuronate 

degradation, guanosine nucleotide degradation and superpathway for pyrimidine 

nucleotides de novo biosynthesis had significantly high (p<0.05) pathway abundance in 

the restriction samples when compared against the baseline samples (Figure 5.16). 
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Figure 5.15: A subset of the metabolically important pathways exhibiting significantly 

low abundance in restriction fecal samples compared to baseline; a) Glycolysis I (from 

glucose-6-phosphate) (p=3.09e-6), b) Methanogenesis from H2 and CO2 (p=1.63e-5), c) 

Superpathway for branched chain amino acid biosynthesis (p=1.57e-5), d) Superpathway 

for aromatic amino acid biosynthesis (p=3.7e-4). Baseline samples are indicated in blue 

and restriction samples are indicated in green. The horizontal lines indicate the mean 

abundance of that pathway for each group (baseline and restriction). The Y-axis indicates 

pathway abundance in counts per million (CPM) for each sample and the X-axis indicates 

samples IDs.  
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Figure 5.16: Four pathways observed with significantly high abundance in restriction 

fecal samples compared to baseline; a) D-fructuronate degradation (p=1.96e-4) b) 

Guanosine nucleotides degradation (p=9.12e-5) c) Superpathway of pyramidine 

ribonucleotide de novo biosynthesis (p=8.47e-3) d) Pyruvate fermentation to propanoate I 

(p=5.64e-3). Baseline rumen samples are indicated in blue and restriction rumen samples 

are indicated in green. Mean pathway abundance for each group is indicated by 

horizontal lines. The Y-axis indicates pathway abundance in counts per million (CPM) 

for each sample and the X-axis indicates samples IDs.  
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5.4 Discussion 
 

The results we obtained during the metagenome sequencing study provides information 

about the effect of water restriction on the structural and functional dynamics of rumen 

and fecal microbiomes at the species level. Taxonomic profiling at species level and true 

functional profiling of a microbial community cannot be achieved only through 16S 

rRNA gene amplicon sequencing, since only a portion of the 16S rRNA gene is used for 

taxonomic profiling in these studies. This approach fails to provide reliable taxonomic 

information beyond genus level and inherently lacks the potential to provide information 

about the functional capabilities of the microbial community, unless a functional 

inference software such as PICRUSt (Douglas et al., 2020) or Tax4Fun (Wemheuer et al., 

2020) is used. However, the use of these software are sometimes criticized for their 

predictive nature in generating results, rather than deriving from actual underlying data. 

 

Furthermore, the comparability of 16S rRNA gene amplicon sequencing studies both 

with its own kind, and metagenome sequencing studies is affected by factors such as the 

hypervariable region being amplified, the copy number of the 16S rRNA gene, the 

sequencing technology employed and even on the bioinformatics pipelines used for data 

analysis (López-García et al., 2018; Winand et al., 2020). The V1 to V9 hypervariable 

regions are not equally informative across different taxa and differ in their amplification 

efficiency. Hence, the taxonomy and abundance of the bacterial genera detected can 

depend on the region choice. The copy number of the 16S rRNA gene vary across 

different organisms, hence bacterial species with low copy numbers can potentially have 
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a lesser chance of being detected (Winand et al., 2020). The discrepancies we observed in 

the predominant taxa identified by the 16S rRNA gene amplicon study and the 

metagenome study (for both rumen and fecal samples) can be attributed to the reasons 

mentioned above. Furthermore, since the bioinformatics workflow used for the two 

studies ultimately depend upon searching against two very differently curated databases 

(SILVA database and a clade specific marker gene database), it can introduce database 

bias, thus having a profound effect on the final results.  

 

Non-bacterial microbial communities such as anaerobic fungi and other rumen 

eukaryotes have proven to be difficult to sequence and characterize due to the 

considerable technical challenges they present (Seshadri et al., 2018). The vast majority 

of the fungal diversity described in the rumen and other host-associated or environment-

associated microbiomes are based on amplicon sequencing strategies such as ITS 

(Internally Transcribed Spacer) region sequencing (Lind and Pollard, 2020). Whole 

metagenome sequencing studies are also used for taxonomic and functional profiling of 

rumen fungal communities, but are often coupled with multiple parallel enrichment 

culture experiments in order enrich the fungal community present in the rumen samples 

(Peng et al., 2021). This is due to the relatively low abundance of rumen fungi compared 

to total bacterial community, thus contributing a smaller fraction of the reads to shot gun 

sequence library (Lind and Pollard, 2020). Furthermore, like any other reference database 

based study, the ability of the current study to detect fungal communities depends on the 

completeness of the curated databases used for similarity searches. The lack of fungal 

communities identified during the current study can be mainly attributed to the above 
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mentioned factors. However, MetaPhlAn was able to successfully detect the fungal 

communities present in the Zymobiomics microbial community standard used as the 

positive control during the study. Similar to fungi, the proper detection of rumen viruses 

through whole metagenome sequencing also requires an efficient viral DNA isolation and 

enrichment protocol that incorporates membrane filtering to remove other 

microorganisms such bacteria and protozoa (Namonyo et al., 2018). Such enrichment 

procedures were beyond the scope of this study, hence the lack of viral communities 

detected. 

 

The overall species composition data we obtained for both rumen and fecal samples are 

well supported by existing literature on metagenome sequencing of the bovine rumen and 

fecal microbiomes. Sarcina sp DSM 11001, Prevotella ruminicola, Streptococcus 

equinus, Succiniclasticum ruminis, and Bacteroidales bacterium species were categorized 

as informative taxa in a compendium of 4,941 rumen metagenomes assembled using 283 

cattle (Stewart et al., 2019). Furthermore, the authors also found Methanobrevibacter and 

Methanosphaera species to constitute 111 out of 126 archaeal genomes they assembled. 

In another metagenome sequencing study done using cow, sheep, reindeer and red deer 

rumen samples, Succiniclasticum ruminis, and Sarcina sp DSM 11001 were identified as 

species commonly observed in rumen bacteria. They were also part of the 31 rumen 

uncultured genomes assembled during this study (Glendinning et al., 2021). 

 

Out of the predominant species observed in the fecal microbiome, Ruminococcaceae 

bacterium P7, Methanosphaera sp BMS and Methanobrevibacter millerae had significant 
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decreases in their overall abundance during water restriction. This drop in abundance is 

further reflected in the functional profile as well, where we observed a statistically 

significant drop in the pathways attributed to these three organisms such as, L-arginine 

biosynthesis, superpathway of branched chain amino acid biosynthesis, L-isoleucine 

biosynthesis I, L-lysine biosynthesis III, pyruvate fermentation to isobutanol and L-valine 

biosynthesis. A significant drop in the methanogenesis pathway abundance was also 

observed in the restriction fecal samples. The drop in Methanosphaera sp BMS and 

Methanobrevibacter millerae may have played a major role in this as well, however 

methonogenesis pathway was not attributed specifically to any of the two organisms by 

HUMAnN3.0. 

 

The species level fecal core-microbiome derived using metagenome sequencing data, had 

notable change during water restriction by losing 3 (out of 5) species it had in the 

baseline core microbiome, namely; Ruminococcaceae bacterium P7, Methanosphera sp 

BMS and Streptococcus equinus. This coincides with the drop in the overall relative 

abundance in these species. The drop in the abundance of Streptococcus equinus is also 

reflected in the functional profile of the fecal microbiome during water restriction. 

Pathways attributed to S. equinus such as sucrose degradation IV (sucrose phosphorylase) 

pathway and 5-aminoimidazole ribonucleotide biosynthesis I pathway were observed to 

decrease in abundance during water restriction.  

 

The interactions between the microorganisms that form a microbial community is 

important in determining microbial community dynamics. Hence, these rich and diverse 
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relationships are often expected to be reflected in the high throughput microbial 

community survey datasets. Constructing microbial co-occurrence networks based on 

their covariation patterns across multiple samples is an effective method of understanding 

these microbial interactions (Berry and Widder, 2014; Riera and Baldo, 2020). Hence, we 

used taxonomic profiling data derived from metagenome sequencing to build microbial 

co-occurrence networks of both rumen and fecal microbiomes under water restriction. 

We used a novel algorithm called SparCC (Friedman and Alm, 2012) to calculate 

pairwise correlations between species, since traditional statistical methods such as 

Pearson and Spearman correlations are known to perform poorly due to the compositional 

nature of microbiome data, thus giving rise to spurious relationships (Chong et al., 2020).  

 

The co-occurrence network for rumen samples revealed a subnetwork of 14 species that 

co-vary during water restriction. Sarcina sp DSM 1101, Denitrobacterium detoxificans, 

Ruminococcus flavefaciens, Streptococcus equinus and Methanobravibactor thaueri 

could be observed as major hubs of this network and may act as potential keystone 

species of the rumen co-occurrence network during water restricted conditions. Similarly, 

for fecal samples we could identify a subnetwork of 17 species held together by 

Geobacillus thermodenitrificans, Streptococcus lutetiencis, Streptococcus equinus, and 

Methanobrevibactor millerae working as hubs and potential keystone species in the fecal 

co-occurrence network during water restriction. 

 

Kandleria vitulina found to be enriched in the rumen microbiome during water restriction 

is a homolactic bacteria. Rumen when enriched with homolactic bacteria such as 
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Kandleria and Sharpea are known to produce less methane, especially in the presence of 

bacteria such as Megasphaera spp. that converts lactic acid to butyrate by producing less 

H2 than the traditional carbohydrate fermentation to butyrate. Thus reducing the amount 

free H2 available in the rumen that can be utilized for methane production (Kamke et al., 

2016; Kumar et al., 2018). The enhanced presence of Kandleria vitulina coincides with 

the increased abundance of homolactic fermentation pathway, observed in the functional 

profile of the rumen microbiome during water restriction.  

 

Denitrobacterium detoxificans, known to metabolize nitrogen containing compounds 

such as nitrates in the rumen (Anderson et al., 2016), also emerged as a differentially 

abundant species in the restriction rumen samples during this study.  D. detoxificans have 

been associated with inhibition of methane production in the presence of forage 

containing nitrate, NPA (3-nitro-1-propionic acid) and NPOH (3-nitro-1-propanol) 

(Anderson et al., 2016). Hence, water restriction may have an indirect effect towards the 

reduction of methane production in the rumen via increased abundance of homolactic 

fermentation, and nitrogen metabolizing bacteria. Thus warranting further investigation 

on this regard. 

 

Streptococcus infantarius seen differentially abundant in restriction rumen samples is a 

member of the S. bovis/S. equinus complex, a major lactic acid producing bacterium in 

the rumen (Clarke et al., 2016). Members of this complex are regularly identified as 

commensals in the GI tract of rumens that play an essential role in proteolysis and 

carbohydrate degradation. However, they can also become opportunistic pathogens and 
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cause rumen lactic acidosis primarily due to rapid shifts in diet from forage to 

concentrate/grain (Jans et al., 2014). No such change in diet occurred during the study 

and the animals were fed with a constant diet of ~51% wet corn gluten feed, 15% cracked 

corn, ~28% prairie hay, and ~5% feed additives. However, we did observe a slight but a 

statistically significant decrease (p=8.29e-05) in the average rumen pH of animals during 

water restriction (from 6.45 to 6.36). Thus, water restriction may have created a favorable 

environment for the growth of lactic acid producing bacteria like Streptococcus 

infantarius, increasing the susceptibility of cattle to rumen acidosis, during water 

restricted conditions. However, even though not directly comparable, we could not 

observe such a trend in the abundance of genus Streptococcus during the 16S rRNA gene 

amplicon sequencing study. 

 

The overall abundance of Methanosphaera sp BMS, Methanobrevibacter thaueri and 

Methanobrevibacter millerae decreased in the fecal microbiome during water restriction. 

They emerged as biomarkers (differentially abundant taxa) for the baseline fecal 

microbiome as well, meaning that their footprint in restriction samples was reduced 

significantly. Furthermore, functional profile of the fecal microbiome depicted a 

significant (p<0.05) reduction in the abundance of methanogenesis pathway during water 

restriction. Other biologically important pathways attributed to these organisms, such as 

(but not limited to) amino acid biosynthesis (L-lysine, L-isoleucine, L-arginine and L-

valine), ribonucleotide biosynthesis and pyruvate fermentation also demonstrated a 

significant loss in their abundance during water restriction. It is estimated that an 

approximate 11% of the total methane emitted by a ruminant is produced in the hindgut 
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(Hook et al., 2010) and most of the protein requirement of the animal is replenished by 

microbial proteins (Moran, 2005). Therefore, the apparent implications of water 

restriction on methanogens and microbial amino acid biosynthesis that we have observed 

during our study, breaks new ground and provides a basis for further investigations to be 

carried out on this regard.
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Appendix 

 

USDA – United States Department of Agriculture 

FDA – Food and Drug Administration 

USGCRP – United States Global Change Research Program 

BW – Body Weight 

GRC – Global Rumen Census 

ITS1 – Internal Transcribed Spacer 1 

NGS – Next Generation Sequencing 

RDP – Ribosomal Database Project 

WMS – Whole Metagenome Sequencing 

VFA – Volatile Fatty Acids 

RFI – Residual Feed Intake 

PCR – Polymerase Chain Reaction 

ddNTP – Dideoxy Nucleotide Triphosphate 

HTS – High Throughput Sequencing 

SBS – Sequencing by Synthesis 

ZMW – Zero-mode Waveguides 

ONT – Oxford Nano-pore Technologies 

SNP – Single-nucleotide Polymorphism 

OTU – Operational Taxonomic Unit 

ASV – Amplicon Sequence Variant 

DADA2 – Divisive Amplicon De-noising Algorithm 2 

LDA – Linear Discriminant Analysis 

LEfSe – Linear Discriminant Analysis Effect Size 
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MAG – Metagenome Assembled Genomes 

WSBRC – Willard Sparks Beef Research Center 

DMI – Dry Matter Intake 

NMDS – Non-parametric Multidimensional Scaling  

SRB – Sulfur Reducing Bacteria 

ADG – Average Daily Gain 

ADFI – Average Daily Feed Intake 

RFI – Residual Feed Intake 
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