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Abstract 
 
 

Natural disasters such as tsunamis have catastrophic impacts on the functionality and resilience 

of transportation networks in impacted areas, and they can damage coastal regions hundreds of 

kilometers away from the earthquake that caused them, resulting in a significant number of 

casualties. As a result, the ultimate goal of this study was to develop a fair-based evacuation model 

under tsunami hazards. The suggested fairness-based evacuation model employed in this study 

sought to provide evacuees with equitable access to the emergency facility centers and assembly 

areas. 

To demonstrate the suggested model, we provided a practical case study based on the Seaside, 

Oregon transportation network and the disruptive impacts of tsunami on the efficiency of the 

evacuation process. The results showed that the suggested model was efficient in decreasing the 

total average deviation across demand nodes and ensuring that most of the demand nodes received 

the minimum required service level. Moreover, after applying the fair distribution strategy, we 

were able to evacuate most of the threatened population to safer areas. Finally, we did sensitivity 

analysis to see how determining the best values of a few factors would improve the efficiency of 

the evacuation process. The findings showed that the value of the minimum required service level 

assisted in minimizing the total average deviation of the unmet demand in the demand nodes. 

Secondly, the changes in the upper capacities of arcs showed that: (a) as we raised the capacity of 

the links, we were able to increase the number of transported evacuees until we were able to 

dislocate 100 % of the whole population that needed to be displaced, (b) increasing the maximum 

capacity of each arc allowed us to reduce the total average deviation of the unmet demand of the 

demand nodes, (c) when we increased the upper maximum capacities of arcs, evacuees needed to 

travel for shorter distances to reach the safer areas.
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1. Introduction: 

 

Numerous individuals live in locations and regions that are vulnerable to natural disasters. At 

the moment, coastal areas are home to a sizable proportion of the world's population (Oktari et al., 

2020). According to Neumann et al. (2015), coastal zones have always attracted humans due to 

their availability of subsistence supplies, access points to maritime trade and transportation, and 

recreational or cultural activities. Coastal zone development and utilization have risen significantly 

in recent decades, and coasts are undergoing huge socioeconomic and environmental changes a 

trend that is projected to continue in the future. The United States is a good example in this regard 

since its coastal areas are also significantly more densely inhabited than the rest of the nation; 

population density in coastal shoreline counties is more than five times that of the rest of the 

country (US Department of Commerce, 2019). Coastal areas, on the other hand, are the most 

exposed to natural catastrophe impacts owing to their proximity to the coasts. As a result, these 

areas are particularly vulnerable to the effects of global climate change, such as tsunamis, 

earthquakes, erosion, and storm surges (Oktari et al., 2020). The consequences of coastal hazards 

severely harm the social, cultural, and natural assets, as well as critical resources, for populations 

living in low-lying coastal areas. 

Transportation networks are one of the most essential parts of life that would almost certainly 

be completely interrupted by natural catastrophes. Roads and bridges, for example, are critical to 

our everyday operations and activities in many cultures. Its significance is evident throughout the 

tsunami's post-event reaction and recovery. These transportation assets may be vulnerable to 

tsunami impacts, particularly in coastal locations, which might result in their destruction and a 

reduction in service levels (Williams et al., 2020). The transportation networks are crucial in the 

evacuation procedure. People utilize these networks to leave damaged regions and attempt to reach 
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safety. Further, the capacity of the transportation network to function efficiently is critical for the 

delivery of help and the transfer of essential supplies and commodities (Akiyama et al., 2013).    

The 2011 Tohoku-Oki earthquake is one illustration of the severity of natural disaster 

consequences (also known as the Off the Pacific Coast of Tohoku Region, Japan, earthquake). 

This earthquake, which caused a massive tsunami, caused significant damage to many towns, 

creating significant disruption to numerous coastal communities such as residential and 

commercial buildings, infrastructures, bridges, and key port facilities (Fujii et al., 2011). 

Furthermore, at least 200 bridges sustained significant damage as a result of the tsunami, while 

some bridges were entirely swept away (Akiyama et al., 2013). 

Based on the preceding ideas, evacuation may be the greatest choice to consider to secure the 

safety of the community and decrease the number of casualties (Charnkol & Tanaboriboon, 2006). 

Evacuation may be described as the movement of people or objects from dangerous locations to 

safer ones, which is critical in order to preserve lives. As a result, evacuation preparations should 

be well researched because failing to do so increases the likelihood of additional dangers and 

fatalities (Bin Obaid et al., 2020). 

Tsunamis, in general, require between 20 and 40 minutes to reach coastal communities and 

create damage. Various evacuation behaviors will exist during this lead period since each 

individual will react differently to the information that he got. Proactive conduct during the lead 

period is one item that would decrease tsunami dangers and greatly reduce the loss of human life, 

especially in mega-tsunamis. Thus, understanding human behavior during tsunamis will thus give 

significant information to consider when developing evacuation methods (Makinoshima et al., 

2020). Many research and mathematical models have been developed in this sector over the last 

several decades to assist planners in reaching an effective solution that provides for the protection 
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of lives while also reducing the time necessary to reach the safest locations. However, while these 

studies may give answers and simulation models to solve these problems, they fall short of 

delivering an ideal solution due to the intrinsic complexity of the dynamic transportation process 

(Bin Obaid et al., 2020). 

Finally, the final objective of this article is to apply a mathematical problem that reduces 

evacuation time, increases the number of evacuees, and eliminates conflicts throughout the 

network. Furthermore, the placements of bridges will be carefully studied since they are vulnerable 

to being entirely devastated by tsunami impact because not all bridges are resistant to earthquakes 

and tsunamis. Furthermore, different restrictions, parameters, decision variables, and objective 

functions must be clearly described to have complete knowledge of what should be done to obtain 

the best solution in the impacted regions. 

The following is the format of this paper: Section 2 includes an overview of the literature on 

transportation resilience in the face of disruptive events, network evacuation models, and the 

consideration of fairness in this context. Section 3 discusses the proposed model in depth. The 

results and analysis connected with an exemplary case study: the evacuation procedure in coastal 

Oregon, are then presented in Section 4. Section 5 finally discusses the findings and next work. 

 

2. Literature review 
 

2.1. Impact of disruptive events on transportation networks 
 

 

Natural disasters have a significant negative impact on transportation systems as well as other 

critical essential civil infrastructures such as the economic, social, and power distribution sectors. 

Depending on a system's resilience and the severity of the disruptive natural events, the 

consequences can range from traffic disruptions to the complete devastation of transportation 

infrastructures (Ahmed & Dey, 2020). What happened in Tokyo, Japan in 2011 is an example of 



 

4 
 

the severity of these events on transportation systems. One of the most disruptive earthquakes to 

occur in Tokyo because the magnitude was 9.0, resulting in a historical tsunami with a height of 

more than 39 m. More than 24,000 people were reported dead or missing as a result of this tragic 

event (Mimura et al., 2011). 

The United States' coasts are vulnerable to far-field and near-field tsunami hazards (Titus et al. 

1984). According to Atwatar et al. (2005), the most significant near-field hazards are linked to 

subduction zones in Cascadia, Alaska, and the Caribbean, and subsidence caused by a repeat of 

the massive 1700 Cascadia earthquake would result in a relative sea-level rise of up to one meter 

along with parts of coastal Oregon, Washington, and northern California. In addition, Atwatar et 

al. (2005) stated that when the 9.0 magnitude earthquake struck there, the main coastal highway, 

U.S. 101, became largely impassable, isolating people and making the evacuation process much 

more difficult. Furthermore, the Indian Ocean tsunami, which was produced by a deep-sea 

earthquake in northern Sumatra on December 26, 2004, was the greatest natural disaster of its type 

in recorded human history, killing about 350,000 people. This catastrophe serves as a good lesson 

on the significance of having an effective disaster management strategy (Athukorala et al., 2005). 

Unpredictable disruptions (e.g., earthquakes, tsunamis, floods, landslides, traffic crashes, 

roadway/bridge failures) can have an impact on transportation network performance by reducing 

roadway capacity where the incident occurs, resulting in delays, built-up queues, and spillovers to 

surrounding areas in the network. (Konduri et al., 2013). According to Jenelius et al. (2011), if 

there is a partial decrease or complete loss of capacity on a bridge link or a road, travel time may 

increase, network mobility may suffer, and several changes in evacuee behavior may occur. As a 

result, several existing research efforts focused primarily on reconstruction methodologies, 
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accessibility in disrupted networks, and efficient resource distribution systems to address these 

issues. 

Sánchez-Silva et al. (2005) have proposed a resource optimization model based on transport 

network system operating reliability. Several possible actions can be used to optimize the 

distribution of resources. These measures are presented for each link concerning failures and repair 

rates. Therefore, if this model improves resource allocation, the accessibility of a disturbed 

network will be maximized. This study also showed that modeling of a decision process can 

consider the user's behavior as he/she travels between two centroids. Therefore, to optimize 

resources allocation to improve the reliability of all transport network systems, the suggested 

model provides a solid environment. 

Another key idea is that extensive tsunami penetration inland can lead to challenges in 

recognizing its influence after its creation. Therefore, the widespread impact of major tsunamis 

has increased the need for social technologies. As a result, Koshimura et al., 2020 presented an 

overview of how remote sensing methods have evolved to aid in disaster response following a 

tsunami. The performance assessments of remote sensing technologies are reviewed with the 

demands of tsunami catastrophe response with a future viewpoint. Furthermore, Koshimura et al., 

2020 mentioned that the strong growth of ML (machine learning) and DL (deep learning) 

approaches indicates a significant potential to apply a technical framework to comprehensively 

identify the consequences of natural catastrophes, the frequency of which has increased in recent 

years. 
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2.2. Transportation resilience  
 

 
 

Many concepts have been used and studied to study the performance of transportation systems, 

especially when they are vulnerable and susceptible to multiple and different disturbances ranging 

from a day to day fluctuation to rare natural disasters, such as reliability, robustness, flexibility, 

and resilience, and when compared to other terms, resilience focuses more on the performance 

reduction and resilience (Zhou et al., 2019). When confronted with potential activity-interrupting 

disturbances, infrastructure resilience is defined as its ability to maintain normal and pre-disruption 

levels of functionality. As a result, for the system to be resilient, it must be able to return to pre-

disturbance performance levels or higher (Middleton & Latty, 2016). 

The term "resilience" is derived from the Latin word "resiliere," which means to leap, recoil, 

or spring back. The resilient concept has been introduced to a variety of disciplines and fields, 

including economics, organization, engineering, social science, and supply chain management. 

Although there are various explanations for resilience in various fields, the majority of these 

interpretations are based on the same idea: resilience is a system's ability to return to its normal 

state after being subjected to disruptions that change its state (Zhou et al., 2019). According to 

D'Lima and Medda (2015), resilience is a measure of how long a system can withstand 

disturbances and changes while maintaining the same relationships between state variables and 

populations. Furthermore, a system is resilient when it can adjust its functioning before, during, 

and after interruptions and disturbances, allowing it to continue to function as needed after a 

disruption and in the presence of ongoing stresses (Dekker et al., 2008). In addition, when 

discussing the resilience approach, two important aspects must be mentioned: criticality and 

exposure. The criticality of a segment refers to how important it is for the transportation of people 

and commodities while allowing access to vulnerable populations. Furthermore, the criticality of 
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a transportation network asset determines the system's impact if that asset is disrupted. Thus, the 

system's resilience is determined by the exposure and criticality of these assets to various hazards 

and disturbances (Weilant et al., 2019). 

According to Holling (1973), resilient infrastructure systems are those that maintain their 

functionality while also exhibiting an adaptive response to disruptive events. In light of the 

importance of transportation in emergency response, policymakers are paying closer attention to 

the resilience of transportation networks. Since infrastructure can be defined as a group of 

components that must interact and interconnect with one another for a system to function and 

achieve the desired result, these components must work in a way that increases a system's 

efficiency and makes it more resilient to natural hazards (Alderson et al., 2015). 

Several attempts and studies have been established to study and measure the resiliency of 

supply chain networks during and after disruptions. Their efforts were concentrated on analyzing 

the performance of the SCNs and how these systems would function in the face of these disruptive 

events. Simonovic and Peck (2013) introduced the quantitative resilience measure, and Cutter did 

as well (41Cutter et al., 2008). This quantitative measure is distinguished by two characteristics. 

The first quality is “inherit” (here, the system will function normally during non-disaster periods), 

and the second is “adaptive” (systems well respond flexibly during disastrous events). These 

techniques can be used to assess social systems, physical environments, economic systems, and 

governance networks. Another study proposed matrices for measuring resiliency based on the 

expected degradation in a system's equality by quantifying redundancy, resourcefulness, 

robustness, and rabidity to recovery (Bruneau & Reinhorn, 2007). Regarding Simonovic and Peck 

(2013), it was proposed an approach to adapt multiple scenario simulations using the CBRS 

(Coastal Megacity Resilience Simulator) model to aid in the development of various adaptation 
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policies, resource allocation decisions, and the prioritization of disaster management investment 

to increase network resilience. 

Furthermore, another study proposed a method to measure network resilience based on the 

observation that resilient systems reduce the likelihood of failure and increase recovery, and as a 

result, resilience can be measured by the performance of an infrastructure system after an external 

chock, including the time required to return to the initial level of performance (Tierney & Bruneau, 

2007). To deal with localized interruptions, Fang et al. (2019) presented a p-robust optimization 

model for infrastructure networks. The proposed model aims to improve network resilience by not 

only reducing system vulnerability to hazards but also incorporating the order of the repair 

sequence of destructed components under limited repair resources into pre-event system planning, 

which will protect the system from an immediate performance drop following an interruption 

event. 

Another essential point to emphasize here is the influence of tsunami and earthquake pressures 

on coastal buildings, particularly bridges in Oregon state. More than 7,500 highway bridges in 

Oregon are listed in the 2013 National Bridge Inventory FHWA (2015), with more than half of 

those constructed before 1975 and designed with seismic demand much lower than contemporary 

seismic requirements and projected seismic activity in the region. This is significant because 

geologic data suggests that there is a 37% chance of a subduction zone earthquake of magnitude 

8.0 or larger near the southern Oregon coast (Burns et al., 2021). Moreover, according to 

Goldfinger et al. (2012), there is a 15% chance that an earthquake of 9.0 magnitude or greater 

would strike the region encompassing Oregon, British Columbia, and Washington in the next 50 

years. A magnitude 9.0 earthquake will not only cause massive damage to bridges as a result of 
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ground shaking but will also cause severe ground collapses and wave flooding. As a result, owing 

to bridge damage along the shore, the transportation network will be affected (FHWA, 2015). 

There are several initiatives underway to offer risk assessments and anticipate the 

consequences of probable disruptive events to bridges in a high-way network owing to seismic 

risks. The Risk of Earthquake Damage for Roadway Systems is one of the methods used by Werner 

et al. (2006) to forecast possible seismic losses and prioritize bridge retrofits and considerations 

for bridge reconstruction. Another tool is the FEMA program HAZUS-MH, which is frequently 

used by government organizations to prioritize funding (FEMA, 2010). Another major method has 

been taken in analyzing the possible seismic reaction of bridges, and the projected amount of 

damage is depicted as fragility curves (Shinozuka et al., 2000). However, one of the crucial data 

requirements is the link between the level of devastation to a bridge and the resultant loss of 

functionality of the network component, which is significant and important in understanding the 

repercussions of an earthquake occurrence (Padgett & DesRoches, 2007). In general, these 

techniques aid in the development of frameworks for analyzing transportation network disruptions, 

allowing for the prediction of restricted access to emergency routes, economic losses due to 

disrupted traffic flow, and network damage in general (Padgett & DesRoches, 2007). 

Another important notion that should be highlighted here is that Kameshwar et al. (2019) 

focused on increasing the resilience of communities under multiple disruptive events. To do so, 

the proposed a probabilistic decision support framework for this purpose. The framework evaluates 

the impact of decision support choices such as hazard selection, resilience objectives, and 

mitigation and response methods to find solutions that can enhance infrastructure performance and 

achieve community-defined resilience goals. By using Monte Carlo simulation, they were able to 

propagate restoration, uncertainties in damage, and economic losses in a framework. They then 
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use the Monte Carlo simulation findings to build a Bayesian network. The findings highlight the 

significance of considering multiple performance targets as well as the interdependence of diverse 

infrastructure systems in terms of infrastructure resilience. 

 

2.3. Evacuation strategies  

 

Following a discussion of the impact of natural disasters on various aspects of life and the 

severity of these events on the functionality of transportation networks, well-developed evacuation 

plans are critical and essential during these disruptive events such as tsunamis, earthquakes, floods, 

hurricanes, and so on. This is because many individuals just do not know what to do in the event 

of a grave emergency or what the best evacuation strategy is to be followed. The evacuation 

procedure may be characterized as a temporary movement of individuals from a dangerous area to 

a safer location. Every 2-3 weeks, an evacuation of 1000 persons or more takes occurs in the United 

States (Dotson & Jones, 2005). Although, the evacuation procedure is an efficient technique since 

it assists in removing people from the dangers of natural catastrophes such as tsunamis, 

earthquakes, and floods, Lindell (2013) stated that it cannot be always regarded as the right 

reaction to all dangerous circumstances. Lindell (2013) explained that by stating that in certain 

cases, the hazard's characteristics, such as earthquakes and tsunamis, preclude evacuation. As an 

example, earthquakes and tsunamis often give little forewarning, making pre-impact escape 

impossible. Furthermore, certain tornadoes, hazardous chemicals, and radioactive occurrences 

have such a quick start and brief duration that evacuation might enhance rather than lessen the risk 

to inhabitants in the risk region. Evacuation would also be inadvisable in any situation when the 

danger of mobility outweighed the risk of remaining in place, such as when evacuating intensive 
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care patients. Therefore, a wide range of evacuation models with varying objectives has been 

tested. 

There are two types of evacuation models: structural evacuation and vehicle-based evacuation. 

Structure evacuation refers to the procedure of evacuating pedestrians from structures such as 

theaters, skyscrapers, and stadiums (Bin Obaid et al, 2020). An illustration of the structural 

evacuation process proposed by (Kisko & Francis, 1985). Kisko and Francis (1985) presented a 

computer algorithm in this study to find the best building evacuation strategies. This approach 

provides the best method for removing individuals from risky regions as quickly as feasible. Car-

based evacuation, on the other hand, includes both private vehicle evacuation and mass-transit 

evacuation, such as the bus-based evacuation plan given by (Margulis et al., 2006). Margulis et al. 

(2006) created a scalable and adaptable deterministic evacuation decision support model that 

would allow the development of a comprehensive decision support system that would allow 

decision-makers to optimize the number of persons evacuated during disruptive occurrences.  

Moreover, according to Bish et al. (2014), an evacuation model was developed to determine 

traffic flows using the CTM (cell transmission model) proposed by Daganzo (1994) and modified 

to be utilized in LP (linear programming) by Ziliaskopoulos (Ziliaskopoulos, 2000). This LP 

framework is an excellent choice for a strategic planning model since it gives a clear depiction of 

traffic flows while being analytically tractable, allowing it to be utilized as a foundation in other 

evacuation studies. Finally, Mostafizi et al. (2019) propose an agent-based multi-modal near-field 

tsunami evacuation modeling framework in Netlogo to study how decision time, mode of 

transportation, and other variables (i.e., walking speed and driving speed) will impact the 

estimation of casualties under tsunami hazard. This novel agent-based modeling framework is used 

to detect and categorize the criticality of network links based on their failure impact on evacuation 
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mortality rates, and so it is used to create the ideal retrofitting strategy for the network's critical 

links. 

 

2.4. Fairness in evacuation planning: 

 

In the aftermath of natural disasters, the primary goal is to effectively relocate the threatened 

population to safer areas. The performance of traffic networks may be reduced as a result of the 

drastic changes in traffic demand that occur during or after a disruptive event. Furthermore, 

depending on the nature of the natural disaster, some entities in the transportation network may 

become inoperable, affecting the network's connectivity, reliability, capacity, and safety. As a 

result, proper emergency evacuation management and planning are critical to mitigating the 

devastation caused by natural disasters (Aalami & Kattan, 2020). 

In general, there are two types of emergency evacuation modeling approaches: analytical and 

simulation-based. Analytical models provide answers to questions like "what to do?" to create a 

proper evacuation plan, whereas simulation-based models provide answers like "what if?" As a 

result, analytical evacuation models can be used directly to find the most efficient evacuation plans, 

whereas simulation-based evacuation strategies are more convenient for evaluating evacuation 

plans but do not directly create them (Osorio & Bierlaire, 2013). Depending on the type and 

severity of natural disasters, different objectives for evacuation planning can be established. 

According to Oxendine et al. (2012) and Rabbani et al. (2016), one of the most common objectives 

studied by researchers is minimizing both total evacuation time and loss of life and property, 

particularly in neighborhoods with high population densities. Furthermore, minimizing total in-

network time and network clearance, as presented by Zhang and Haghani (2016), and maximizing 

the number of evacuees relocated to safer areas in a given time window, as illustrated by Pillac et 
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al. (2016), are two of the most important goals that have captured the attention of researchers in 

this field. Furthermore, resource allocation is crucial and fundamental in emergency evacuation 

planning. This critical strategy is a hotly debated topic in academia. Even the most straightforward 

cases end with the debate over fairness versus efficiency (Zukerman et al., 2005).      

Another critical point to emphasize here is that when tsunamis occur, evacuees are usually 

advised to go to the nearest shelter with the shortest route. However, to avoid inundation, it is 

sometimes necessary to take a detour that may result in more time for safe evacuation rather than 

taking the shortest route of the evacuation process. Thus, Kitamura et al. (2020) conducted a study 

to develop an allocation strategy for evacuees and evacuation routes to reduce the number of 

casualties in all tsunami scenarios. In their study, the proposed model calculates the amount of 

time left for each evacuee to reach a safe location using various combinations of shelters and 

routes. The combination that provides the greatest amount of time for each evacuee is then chosen, 

and an evacuation plan for all evacuees is obtained. Following that, this process is repeated for 

other possible tsunami scenarios, and several evacuation simulations are performed for all obtained 

plans with other tsunami scenarios, and the number of fatalities is calculated. Then, as the optimal 

plan with the fewest accumulated casualties, an evacuation plan is selected. This method was 

proven to be effective because it reduced the number of fatalities by approximately 40% on 

average. 

According to Flötteröd and Lämmel (2010), several factors, such as traffic, technical, 

hydraulic, hydrological, and social characteristics, influence the fairness and efficiency of the 

flood-induced evacuation process of urban areas. The evacuation plan must include, in particular, 

hard infrastructure that protects people from natural disasters such as earthquakes and tsunamis 

(Yamuri & Sugiyama, 2020). As a result, several evacuation studies have optimized the properties 
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of the shelters, such as their locations, numbers, and capacity, due to their importance and ability 

to reduce the required time of the evacuation process, increasing its efficiency (Yin et al., 2014). 

To elaborate, previous research has shown that shelter capacity has a significant impact on the 

effectiveness of evacuation management (Lim et al., 2013). Although in some cases, shelter 

capacity may be less important to the efficiency of the evacuation process, such as when evacuees 

can either stay at their homes or evacuate to higher ground, as explained by Johnstone (2012), 

numerous studies have defined shelter capacity as a constraint in location-allocation models of 

evacuation problems because of the distribution of shelter capacity (Kongsomsaksakul et al., 

2005). As an example of the previous concept presented by Oh et al. (2021), a model was 

developed to investigate the impact of shelter capacity on the fairness of the evacuation process. 

According to the findings, the distribution of shelter capacity has a greater impact on the efficiency 

(evacuation duration) of the evacuation process, whereas fairness changes more noticeably to the 

evacuation priority assigned to the divided zones in staged evacuation. 

Finally, Yan et al. (2018) considered both efficiency and social fairness in an emergency 

evacuation, initially proposing and embedding in system optimal (SO) objective function a weight 

function consisting of risk evaluation index as variable and managers' emphasis degree on social 

fairness principle as a coefficient. The linear program (LP) model was developed to simulate 

dynamic traffic assignment in the emergency evacuation by combining the weight function and 

additional restrictions based on an expanded cell transmission model (CTM). 

 

3. Fair-evacuation distribution model  

 

The used fairness-based evacuation distribution model was developed in this part by 

(Abushaega et al., 2021). We enhanced this model by incorporating different modes of 
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transportation (such as pedestrians and cars) and implementing the proposed fairness-based 

distribution strategy on a Seaside. OR transportation network. 

In this section, we discuss the proposed fairness-based evacuation distribution model, starting 

with a description of the model's specific goals and related assumptions. Then we provide a 

detailed model description, including the proposed mathematical formulation as well as the nature 

of the variables, constraints, and objective functions used. 

 

3.1. Fair-evacuation distribution model discussion  

 

Under the impact of disruptive events such as Tsunami, this model is designed to transfer 

people from supply nodes (sectors contain the population needed to be dislocated) to demand 

nodes (emergency facility centers and assembly areas) and fairly distribute them among these 

facilities while at the same time minimizing the associated costs (i.e. time, priorities, penalties, 

etc.) of transferring people through the network. Moreover, the fairness concept here is achieved 

by minimizing both the positive and negative deviations of not fulfilling the required number of 

evacuees at the demand nodes. This model is structured to ensure that all demand nodes are getting 

the minimum required service level. The number of evacuees assigned to each emergency facility 

center and assembly area is what we mean by the minimum required service level of demand 

nodes. Also, this model calculates the total percentage of unmet demands at the demand nodes, 

which is then used to calculate the absolute deviation from this percentage for each demand node 

for each type of people demand, ensuring that all evacuees have equal access to the demand nodes. 
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3.2. Fair-evacuation distribution model description 

 

The proposed evacuation model considers the different types of people demands that need to 

be shifted from supply nodes to demand nodes and attempts to provide them with equal access to 

the demand nodes. 

Because we are studying the evacuation process under tsunami hazards, we will deal with a 

variety of people's demands based on their basic needs in these situations. Some people, for 

example, must be transferred to hospitals and fire stations due to their conditions and the need for 

immediate critical care, whereas others must simply reach safer areas, such as assembly areas, to 

escape the disruptive event. As a result, this approach facilitates in providing evacuees with fair 

access to demand nodes based on their type of demand. The main sets used in the fair evacuation 

process model are described in Table 1. Table 2 describes the parameters used in this model, 

including the supply/demand of people for each node, the upper and lower capacity of each arc, 

the minimum required service level for each node, and the cost of transporting a single person to 

a demand node; this cost could be distance, time, penalty number etc. Table 3 shows the decision 

variables used in this model, such as the number of people transferred using each arc to meet 

demand nodes, a binary variable based on if the demand node is getting the required number of 

evacuees, and the positive and negative deviation from the total percentage of having fewer people 

than the actual demand at the emergency facilities and assembly areas. 

 
Table 1: Sets 

 
A    Set of arcs 

 
N    Set of nodes 
 
𝑁"    Set of emergency facility centers and assembly areas 
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𝑁#  A set of nodes containing the number of persons who must be relocated. 
 
𝐾%  Set of people's demand types 
 
M     Set of transportation modes 
 
 
 
 
 

Table 2: Parameters 
 
𝑏'(      Supply/ Demand of people at Node i ∈ N for type of people demand k ∈ 𝐾%  
 
𝑑'+     Distance of arc (i,j) ∈ A 
 
𝑢'+-    Maximum capacity of the arc (i,j) ∈ A using transportation mode m ∈	M 
 
𝑙'+-     Minimum capacity of the arc (i,j) ∈	A using transportation mode m ∈	M 
 
𝛼'(     Minimum required service level of node i  ∈ 𝑁"  for each type of people demand k ∈ 𝐾%  
 
𝑓'(2     Cost of having an excessive number of people at each sector i ∈ 𝑁# for each type of people  
          demand k ∈ 𝐾%  
 
𝑓'(3     Cost of having unmet demand at each emergency facility center and assembly area i Î 𝑁"  
          for each type of people demand k ∈ 𝐾%	 
 
𝑐𝑜'(    Cost of not meeting the minimum required service level at node i ∈ 𝑁"  for each type of  
          people demand k ∈ 𝐾% 
 
𝑐'+-     Unit cost of moving single person to emergency facility center j ∈ 𝑁" or assembly area  
             j ∈ 	from their residence i ∈ 𝑁# using transportation mode m ∈ M 
 
β	        Total available budget 
 
 

 
Table 3: Decision variables 

 
𝑦'+- = 9				1																															𝑖𝑓	𝑡ℎ𝑒	𝑎𝑟𝑐	(𝑖, 𝑗) ∈ 	𝐴	is	used	using	transportation	mode	m ∈ 𝑀

		0																																																																																																		𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒																														
 

 
𝑥'+(-    The number of people transferred using arc (i,j) ∈ A for each type of people demand  
             k ∈ 𝐾% using transportation mode m ∈ M 
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µ'(2          Positive deviation from the total percentage of having fewer people than the actual required   
            demand at the emergency facility center and assembly area i ∈ 𝑁" for each type of people  
            demand k ∈ 𝐾%  
 
µ'(3        Negative deviation from the total percentage of having fewer people than the actual demand  
           at each emergency facility center and assembly area i ∈ 𝑁"  for each type of people 
           demand k ∈ 𝐾%  
 
𝑠'(2         Excessive number of people at each supply node i ∈ 𝑁# for each type of people demand  
            k ∈ 𝐾%  
   
𝑠'(3         Unmet demand at each emergency facility center and assembly area i ∈ 𝑁" for each type  
            of people demand k ∈ 𝐾% 
 

𝛿'(	 = 	 Z
1	𝑖f	𝑛𝑜𝑑𝑒	i ∈ 	𝑁"𝑑𝑖𝑑𝑛]𝑡𝑔𝑒𝑡	𝑚𝑖𝑛𝑖𝑚𝑢𝑚	𝑠𝑒𝑟𝑣𝑖𝑐𝑒	𝑙𝑒𝑣𝑒𝑙	𝑜𝑓	𝑒𝑎𝑐ℎ	type	of	people	demand

k	Î	𝐾%
			0																																																																																																																		𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒																														

 

 
𝛾(        Total percentage of unmet demand at the emergency facility centers and assembly areas 
           for each type of people demand k ∈ 𝐾%  
 
  
 
 

 

The goal of this model is to use the concept of a fairness-based distribution strategy to improve 

the efficiency of the evacuation process in Seaside, Oregon, which is under threat from a tsunami. 

This model aims to provide evacuees with fair access to demand nodes based on their type of 

demand. As a result, this fair evacuation model aims to satisfy two objective functions to 

accomplish the desired result. 

The first objective function, designated by O1, is to minimize the associated costs, which 

include the cost of transferring evacuees from supply to demand nodes as well as the penalties 

associated with failing to supply the required number of people or meeting the desired service level 

at emergency facility centers. The corresponding objective function is represented by Eq (1). The 

first term in Eq (1) represents the per-mile flow cost of transporting a single person to an 
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emergency facility center for each type of people demand. The cost of not satisfying the requisite 

demand at each demand node is the second term in Eq (1). The third term in Eq (1) reflects the 

cost of having surplus supply at each supply node for each sort of people demand. Finally, the cost 

of not meeting the minimum required service level for each type of people demand in each demand 

node is associated with the last term of Eq (1). 

 

Minimize 

𝑂1 = f f f 	𝑥'+(- ⋅ 	𝑑'+
(',+)∈h

⋅ 𝑐'+-
(	∈	ij-∈k

+ f f 𝑠'(2 	 ⋅ 𝑓'(2
'	∈	mn	(	∈	ij

	+ f f 𝑠'(3 	 ⋅ 𝑓'(3	
'	∈	mo(	∈	ij

+	 f f 𝑐𝑜'( ⋅ 	𝛿'(		
'	∈	mo(	∈	ij

																																																																											(1) 

 

The second objective, denoted by O2, shows the average deviation (the negative and positive 

deviations) of unmet demand for each type of people demand at each demand node. The 

significance of having the fairness-based distribution strategy in separate objectives is to compare 

the obtained results when attempting to reduce total distances that evacuees should travel with and 

without considering the fairness-based distribution strategy. Because the penalty cost of 

maintaining the minimum required service level is difficult to quantify and the model is designed 

to deal with multiple types of people demand, determining the evacuees’ distribution without a 

focus on the fairness-based distribution strategy is difficult. By forcing the model to minimize the 

total average deviation of unfulfilled demand, the bias towards the nodes with the highest demand 

is minimized to a minimal minimum. 

Minimize 

																																		𝑂2 =
∑ ∑ (rst

u 2	rst
v )s	∈	wot	∈	xj		

|	mo	|
                                                    (2) 
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This model considers multiple restrictions concerning the effectiveness of the evacuation 

procedure, reducing the initial network capacity and the tsunami's perturbing effects on the 

transport network functionality. For example, the effects of this type of disturbance might reduce 

the number of people traveling over each arc, the inability to supply the number of evacuees, 

fluctuating demand nodes, and problems in the emergency facilities. 

The first constraint is related to the process's available budget (𝛽), as shown in Eq (3). This 

constraint calculates and assures that the overall costs of transporting people across network arcs 

for all sorts of people demand for all forms of transportation are less than or equal to the entire 

budget allocated. 
 

				 f f f 	𝑥'+(-	𝑑'+
(',+)∈h

𝑐'+-
(	∈	ij

≤		𝛽			
-	∈	k

																																																																										(3)	 

 
 

The link capacity constraint, as shown in Eq (4), is the second constraint. This constraint 

specifies how much flow (𝑥'+(-) can be distributed and travel through each arc in the network for 

each type of people demand. If the arc is functional, the flow through it should be equal to or 

greater than the arc's minimum capacity (𝑙'+-). The variable (𝑦'+-) denotes the functionality of each 

arc and is 1 if the arch is operational and 0 otherwise. Furthermore, the flow through each arc 

should be less than or equal to the maximum capacity of each arc (𝑢'+-)  

 

𝑦'+-	𝑙'+- ≤ 	𝑥'+(- ≤ 	𝑢'+-	𝑦'+-	,																						∀	(𝑖, 𝑗) ∈ 𝐴, ∀𝑘 ∈ 𝐾%	, ∀	𝑚 ∈ 𝑀											(4) 

 

The flow balance constraint is the third constraint as shown in Eq (5). This constraint computes 

the value of subtracting the number of evacuees entering each node from the number of evacuees 

leaving each node, and the sum of these values should equal the required demand of each node, 

whether it is a supply or demand node. Furthermore, if a node has any unmet demand or excess 
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supply for each type of people demand, these values (𝑠'(3 , 𝑠'(2  respectively) should be added or 

subtracted to the balance constraint equation to make it balanced depending on whether it is a 

supply or demand node. 

 

f 𝑥'+(-
+∶(',+)∈h

− f 𝑥+'(-
+∶(+,')∈h

	= 	 𝑏'( + 𝑠'(3 − 𝑠'(2 															∀	𝑖 ∈ 𝑁", ∀𝑘 ∈ 𝐾%, ∀	𝑚 ∈ 𝑀				(5) 

 

 

Eq (6) is formulated to ensure that all emergency facility centers and assembly areas will 

receive at least the minimum required service level (𝛼'(). This can be ensured by calculating the 

value of subtracting the number of evacuees entering each node from the number of evacuees 

leaving each node, and the sum of these values should equal to the minimum required service level 

of each demand node. If the binary variable (𝛿'() equals one from this equation, it indicates that 

the minimum required service level of demand nodes was not satisfied. 

 

f 𝑥'+(-
+∶(',+)∈h

− f 𝑥+'(-
+∶(+,')∈h

≤ 	𝛼'(𝑏'((1 −	𝛿'()																∀	𝑖 ∈ 𝑁", ∀	𝑘 ∈ 𝐾%	, ∀	𝑚 ∈ 𝑀				(6) 

 

According to Eq (7), the total percentage of having fewer people than the actual demand at all 

emergency facility centers and assembly areas (𝛾() is equal to the sum of unmet demand at each 

demand node of each type of evacuees’ demand (𝑠'(3 )	divided by the total demand that needed at 

the demand nodes for all type of evacuees’ demand (𝑏'().  

 

∑ ∑ 𝑠'(3'	∈	mo(∈ij

∑ ∑ 𝑏'('	∈	mo(∈ij
= 𝛾(																																																																				∀	𝑘 ∈ 𝐾%																																							(7) 

 
Because this model is intended to provide evacuees with equal access and distribute them fairly 

between emergency facility centers and assembly areas, the absolute deviation from the percentage 

of unmet demand at each demand node for each type of people’s demands to the total percentage 
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of unmet demand in the whole network is calculated. It indicates that we are measuring the average 

distance between each unmet demand for each type of people demand in each demand node and 

the total percentage of unmet demand in the network's demand nodes. As a result, Eq (8) is 

developed to calculate the absolute deviation in which (µ'(2 ) and (µ'(3 ) represent the positive and 

negative deviations from the total percentage of unmet demand. 

 

𝑠'(3

𝑏'(
− 𝛾( 	+	𝜇'(3 −	𝜇'(2 = 0,																																	∀	𝑖	 ∈ 𝑁", ∀	𝑘 ∈ 𝐾%																																																(8)	 

 

 
Finally, Eqs (9) – (16) represent the nature of the decision variables 
 
 

𝑦'+- ∈ 	 {0,1}                      
                             

∀	(𝑖, 𝑗) ∈ 𝐴,			∀𝑚 ∈ 𝑀	       
                                  

(9) 

𝑥'+(-  ≥  0     
                                           

∀	(𝑖, 𝑗) ∈ 𝐴,  ∀	𝑘 ∈ 𝐾%,   ∀	𝑚 ∈ 𝑀	                     (10)   

 

𝑠'(2     ≥  0  
                                                 

∀	𝑖	 ∈ 𝑁#,				∀𝑘 ∈ 𝐾%																																															 (11) 

𝑠'(3 			≥  0   
                                                

∀	𝑖	 ∈ 𝑁",				∀	𝑘 ∈ 𝐾%	                                      (12)     
 

µ'(2  ≥  0    
                                                

∀	𝑖	 ∈ 𝑁",				∀	𝑘 ∈ 𝐾%							                                 (13) 
 

µ'(3  ≥  0                                                   ∀	𝑖	 ∈ 𝑁",				∀	𝑘 ∈ 𝐾%			                                    (14) 
 

𝛾( 			≥  0                                                   ∀	𝑘 ∈ 𝐾%			                                                     (15) 

 

𝛿'(	 ∈ 	 {0,1}                                                    ∀	𝑖	 ∈ 𝑁",				∀	𝑘 ∈ 𝐾%			                                       (16)       
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4. Case study 
 

The network utilized in this study to apply the fairness-based evacuation distribution model is 

connected with Seaside City, Oregon, and includes all of its buildings, transportation network, and 

emergency facility centers and assembly areas. We chose Seaside City as a tested community 

because its flat topography and its location along the northern Oregon coast and is especially 

vulnerable to the Cascadia subduction zone, with about 87 percent of built land falling inside the 

tsunami inundation zone as shown in Fig. 1 (Wood, 2007). Additionally, Seaside City has a 

resident population of around 6500 people; but, because it is a tourist destination, its population 

might surpass 20,000 people which makes it more complex. As seen in Fig. 2a, Seaside has only 

one hospital, one electric substation, one water treatment facility, and one fire station due to its 

tiny population. Residents' access to these amenities, however, is dependent on 13 bridges because 

the city is separated into three sections by a river and a creek (Kameshwar et al., 2019). 

 
Figure 1. Cascadia subduction Zone site map of the Pacific Northwest Coast (CSZ), TarunAdluri. (n.d.). 

Tarunadluri/seaside_optimization. GitHub. Retrieved November 22, 2021, from 
https://github.com/TarunAdluri/Seaside_Optimization. 
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The elevation of the Seaside city from sea level is seen in Fig.2b. We can see that almost the 

whole city is located in the tsunami inundation zone, making it more vulnerable to tsunami 

impacts. Numerous studies have been conducted to identify mitigation, response, and recovery 

strategies that are required to limit the impact of this sort of natural hazard. 

 

 

Because the supply chain network used in this study is linked to Seaside, OR, we obtained the 

number of people who need to be evacuated to safer areas from (IN_CORE) which is 3157 people. 

As illustrated in fig.3a, these persons came from 4453 different buildings. However, to simplify 

the difficulty of dealing with the 4453 supply nodes, we aggregate these buildings into different 

sectors based on their addresses we acquired from (IN_CORE). As a result, we got a total of ten 

sectors that contain all the 4453 buildings, so constructing our supply nodes in our model. These 

3157 people should be transported to ten demand nodes, which include eight assembly sites, one 

hospital, and one fire station, based on their associated capacity and the type of people demands. 

Figure 2. (a) Transportation network in Seaside, OR and the locations of both the hospital and fire station, (b) Seaside, 
OR elevations https://en-us.topographic-map.com/maps/rug1/Seaside/ 
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Wang et al. (2016) established these eight assembly areas and their locations, which are located 

outside of the tsunami inundation zone, as shown in Fig.3b. 

 

Moreover, we selected two categories of people demand in this study. The first is associated 

with persons who require emergency medical assistance and should be sent to a hospital or a fire 

station. The second type of person demand is for people to be allocated to safe zones, which 

requires them to be transferred to one of the eight assembly sites or the fire station. 

Regarding the transportation modes, we believed that we had two alternatives. The first is that 

people would walk to safer areas to escape potential congestions and delays. Cars are another 

means of transportation that can help those who need to be transported as quickly as possible. We 

were able to establish the maximum and minimum capacity of each link of the transportation 

network by determining the prior. Furthermore, we calculated efficiency by measuring the number 

of demand nodes that do not obtain the needed service level for each demand. Additionally, for 

the four costs that we have in the first objective function, we assume each of them based on the 

type of people demand, whether it is for excess supply, unmet demand, or the penalty cost 

Figure 3. (a) Seaside population that need to be dislocated to safer regions obtained from IN-CORE, (b) The yellow 
points represent the eight shelters that are located outside the tsunami inundation zone 
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associated with failing to maintain the needed service level at each demand node. To highlight 

further, for those who require emergency critical care, we gave large numbers for costs, whether 

these costs are due to excess supply, unmet demand, or failure to provide the required service level. 

As a result, the model will try to reduce these high costs as much as possible, and in doing so, the 

model is prioritizing this sort of demand and attempting to satisfy it first. Finally, we assumed that 

the flow cost was proportional to the distance between nodes.  

To summarize, the Seaside City network is made up of supply nodes that are divided into ten 

sectors that include the whole population that has to be evacuated to safer places. There are ten 

demand indications, which are eight assembly areas located beyond the tsunami inundation zone, 

one hospital, and one fire station. We have 100 arcs connecting the supply nodes to the demand 

nodes.  

Fig.4a depicts a simulation of persons in each sector being allocated to each of the tenth 

demand nodes we have, and this would apply to the other sectors. Furthermore, fig.4b depicts 

Seaside City's transportation network, which connects supply and demand nodes. 

 

Figure 4. (a) simulation of persons in each sector being allocated to each of the tenth demand node, (b) Seaside City's 
transportation network, which connects supply and demand node. 
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4.1. Results and discussion 

 

In this section of our research, first we ran our model without taking the fairness concept 

into account, merely reducing overall distances and the related surplus supply, unmet demand, and 

not getting the required service level costs. Then we ran it while considering the fairness 

distribution strategy, concentrating on aiming to reduce the average deviations of unfulfilled 

demand nodes for all types of people type of demand in the whole network. Following that, we 

performed a sensitivity analysis to see how the minimum required service level in each demand 

node and the upper capacity of each arc affected the overall findings. We chose to conduct these 

two analyses because the first would provide appropriate direction for decision-makers on how to 

utilize limited resources and supplies and effectively shift them to meet the needs of evacuees in 

each assembly area, hospital, and fire station. The second study then assists decision-makers in 

determining the number of individuals that should pass through each arc to prevent congestion or 

delays, thus increasing the efficiency of the evacuation process.   

 

4.1.1. Results with and without considering fairness-based distribution 

strategy 

 

In this section of the research, we used the model to minimize the first objective function, 

which is the total distances that evacuees must travel to reach safer places. Then we ran it with the 

second goal function, reducing the average deviations of the whole demand in the demand nodes 

for all people's demand types. Then we compared the results of both cases in terms of the number 

of people we were able to transfer, the total distances that should have been traveled to reach safer 

areas, the total average deviation of unmet demand in demand nodes, and finally the number of 
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demand nodes that did not receive the minimum required service level. The findings are shown in 

Table 1.  

Table 1: Comparison between Objective function1 and Objective function 2 results 

 

 

 

 

 

 

 

We can see that after implementing the fairness distribution strategy, we were able to evacuate 

and raise the number of persons that needed to be evacuated to safer locations from 2520 to 3092, 

but this increased the overall distance traveled from them. Furthermore, the fairness distribution 

technique helped to reduce the overall average deviation of unmet demand in demand nodes from 

98.71 % to 55.38 %, and the number of demand nodes that did not receive the minimum required 

service level reduced from four demand nodes to only two demand nodes. 

Moreover, were then able to collect the outcomes of the unmet demand deviations in the 

demand nodes. We can observe that all demand nodes have only positive deviations, both with and 

without considering fairness distribution strategy. This is because all of the observed result 

deviations surpassed the total percentage of unmet demand in the network's demand nodes. 

As shown in fig.5, before implementing the fairness distribution strategy, we obtained high values 

for positive deviations up to 180 %; however, after implementing the fairness distribution strategy, 

we were able to reduce these values to less than 40 % in all demand nodes, despite one node having 

Results Objective 

function 1 

Objective 

function 2 

Improvement 

(%) 

Number of transferred evacuees 2520 3092 22.69 

Total distance  (mile) 5040 6184 21.95 

Total average deviation  (%) 98.71 55.38 43.89 

Number of demand nodes did not get 

the minimum required service level 
4 2 50 



 

29 
 

nearly a 100 % positive deviation. This is because this node has the maximum capacity, resulting 

in the highest related positive deviation value, as seen in fig.6. 

 

 

 

Figure 5. Positive deviations of unmet demand in the demand nodes without applying the fairness concept 

Figure 6.  Positive deviations of unmet demand in the demand nodes with applying the fairness concept 
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To make the previous findings more obvious, we utilized shades that begin with the lightest 

color, which shows the lowest positive deviation values, and conclude with the darkest color, 

which shows the highest positive deviation values. Fig. 7 shows that before implementing the 

fairness distribution strategy, all of the demand nodes have the darkest colors, indicating that all 

of the demand nodes have large positive deviation values. However, after employing the fairness 

distribution strategy, all demand nodes have the lightest colors, indicating that these demand nodes 

have low positive deviation values. 
 

 

 

Finally, here in this part of the study, we investigated the relationship between the first 

objective function and the total average deviation of unfulfilled demand in the demand nodes 

which is the second objective of this study. As a result, the 𝜀-method was used to run the model 

with both objectives and to construct the Pareto frontier. We concentrated on minimizing the 

overall distance that evacuees had to go. The link between total distance that evacuees should 

travel and the total average deviation of unmet demand in demand nodes is depicted in Fig.7. The 

Figure 7. Different shades show the difference between the positive deviation values of unmet demand before and after 
implementing the fairness distribution strategy 
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vertical axis indicates the average deviation of unfulfilled demand at demand nodes, while the 

horizontal axis reflects the total distance that evacuees must travel to reach safer places. 

Furthermore, fig.8 illustrates the findings by demonstrating that when the model prioritizes the 

first objective function; minimizing total distance, people needed to travel for relatively short 

distances; however, this meant that we had a few demand nodes that did not receive the minimum 

required service level, resulting in a higher value for the average deviation of unmet demand in 

the demand nodes. On the other hand, when we have a smaller value for the total average deviation 

of unmet demand at the demand nodes, it means that we were able to meet most of the minimum 

required service level of the demand nodes, while evacuees had to travel a longer distance to reach 

the emergency facility centers and the assembly areas.  

 

 

 

Figure 8. The correlation between the total travelled distance from evacuees and the total average deviations of the 
unmet demand in the demand nodes 
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4.1.2. Sensitivity Analysis 

 

4.1.2.1. Minimum required service level and the number of demand nodes 

that did not get the minimum required service level 

The minimum required service level values had been investigated in this section of the study 

since reducing the number of demand nodes that do not get the minimum required service level is 

one of the study's final goals. This is significant because identifying the best values for the 

minimum required service level that should be allocated to each demand node will assist decision-

makers in assigning the best values. In other words, obtaining these values would aid in 

determining how much of the limited supplies should be allocated to each demand node based on 

the number of evacuees that would be available there. Therefore, we chose different percentages 

for the minimum required service level starting from 30 % and ending with 100%. What we meant 

by these percentages was deciding how much of the threatened population should be transferred 

to each demand node. As shown in Table 2, when we chose 30% as the percentage of each demand 

node's minimum required service level, we improved by guaranteeing that all demand nodes 

received the assigned minimum required service level. However, this % means that we were only 

able to relocate % of the threatened people to safer areas, which would raise the total average 

deviation of unmet demand in the demand nodes, which is something we were attempting to 

prevent. As a consequence, we examined several values for the minimum required service level of 

each demand node, and the final result revealed that 90 % of the threatened population would be 

the best value for the minimum required service level. This is because we were able to reduce the 

number of nodes that did not get the minimum required service level from 4 to 2 while also moving 

a larger portion of the threatened population. 
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Table 2: The minimum required service level of demand nodes and the number of demand nodes that did not get the minimum 
required service level 

Number of emergency facility centers and assembly areas that did not receive the 

minimum required service level (SL) 

Test Without fairness With fairness Improvement 

30% SL D>S 10 % 0 % 10 % 

70% SL D>S 30 % 10 % 20 % 

90% SL D>S 40 % 20 % 20% 

100% SL D>S 60 % 50 % 10% 

 

 

4.1.2.2. Minimum required service level and the total average deviation 

analysis 

 

In this portion of the study, we noticed that the minimum required service level for each 

demand node for each type of people demand assisted in lowering the total average deviation of 

unmet demand across all demand nodes. In other words, when we had smaller percentages for the 

minimum required service level at each demand node; the portion of the threatened population 

assigned to each demand node, we were only able to transfer a small proportion of the threatened 

population, resulting in demand nodes not being able to meet their required demand. As a result, 

large average deviations of unmet demand in demand nodes would be obtained. Fig.9 expands on 

the preceding notion by demonstrating that when the demand's minimum required service level 

was low at the demand nodes, the total average deviation was large. This is mostly due to unmet 

demand in the demand nodes. On the contrary, by increasing the minimum required service level 

value of the demand node, we were able to reduce the overall average deviation of all demand 

nodes. In other words, when we had a minimum required service level of 90%, we had the lowest 
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overall deviation value, which was 56%. This means that we evacuated 90% of the population that 

needed to be evacuated to safer areas while maintaining a reduced average deviation in the demand 

nodes. Furthermore, we can see certain variations in the line depicting the relationship between 

the minimum required service level and the average deviation of unmet demand. This is because 

we were evaluating the best value of the minimum required service level of demand nodes, and 

some values are not optimal in this regard. These values, however, would be omitted while 

showing the pareto frontier, which would only exhibit the good values of the minimum required 

service level of the demand nodes, assisting in lowering the overall average deviations of the unmet 

demand in the demand nodes.  

 

 

 

 

 

 

Figure 9. The minimum required service level in demand nodes versus the total average deviation of the unmet demand in the 
demand nodes 
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4.1.2.3. Increase in the link’s upper capacity and the percentage of transferred 

people to safer areas 

 

 In this test, we wanted to evaluate how the maximum capacity of links influenced the overall 

number of people transported to safer regions depending on their demands. We tried different 

capacities for arcs, ranging from small to big capacities until we couldn't see any improvement in 

the number of people we could transport. Fig.10 displays the outcome by indicating that when we 

increased the capacities of links to 22 people moved through each arc of the transportation network, 

we transferred 100% of the threatened population that needed to transfer to safer locations, which 

was 3157 people. On the contrary, when the upper capacity of each link was limited to a small 

value, we were unable to evacuate the threatened population to safer areas. We can see that we 

kept raising the upper capacity of links only to test our concept. 

 

 

 

Figure 10. The upper capacity of arcs versus the percentage of transferred people to safer areas. 
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4.1.2.4. Increase in the link’s upper capacity and the total average deviation 

of unmet demand in demand nodes 

 

In this part of this study, we investigated how the maximum capacity of the arcs influenced the 

overall average deviation of unmet demand in the demand nodes. In other words, we examined 

how the upper capacities of arcs would aid in supplying the needed demand in demand nodes, 

hence lowering the overall average deviations of unmet demand in demand nodes. The findings 

revealed that increasing the maximum capacity of each arc allowed us to minimize the total 

average deviation of the unmet demand of the demand nodes. Fig. 11 demonstrates the previous 

notion by depicting that when the maximum capacities of arcs were assigned to small values, we 

had the highest value of the total average deviation of unmet demand, which was nearly 350 %. 

The previous percentage indicates that we could not transfer evacuees and meet the required 

demand in demand nodes. On the other hand, when links capacities increased, we relocated the 

majority of the population with small total average deviations of unfulfilled demand at all demand 

nodes. 

Figure 11. The upper capacity of arcs versus the total average deviation of the unmet demands for all demand nodes 
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4.1.2.5. Increase in the link’s upper capacity and the total traveled distance 

from evacuees to reach the safer areas 

 

Finally, in the sensitivity analysis, we tested how increasing the upper capacities of links would 

affect the total distances that evacuees should travel to reach the safer areas.  To do so, we depict 

the relationship between the total distance that evacuees should travel and the total average 

deviation of the unmet demand in the demand nodes. Here we were focusing on minimizing the 

total distance while increasing the upper capacities of links. Fig.12 depicts the previous 

relationship more clearly. It demonstrated that at the start of the test, when we set low values to 

the upper capacities of links, we had a high number; more than 6000 miles in all, for the total 

distances that evacuees should travel to safer places. However, because we evacuated the majority 

of the people and had little unmet demand at the demand nodes, we had a low value for the total 

average deviation. After that, we finish this test by providing higher values to the upper capacities  

of links. Hence, we reduced the total traveled distances by evacuees; to less than 1000 miles in 

total, while at the same time increasing the total average deviation in the demand nodes since 

evacuees had to travel to the closest nodes without satisfying the needed demands in the farthest 

demand nodes.  

Figure 12. the link’s upper capacity and the total traveled distance from evacuees to reach the safer areas 
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5. Conclusion and future work 

 

Natural catastrophes have a significant influence on the transportation network's efficiency and 

operation. When tsunamis strike coastal areas, they can create serious disruptions to the 

transportation network, affecting the evacuation process and the capacity to evacuate people to 

safer locations, as well as increasing the number of casualties and injured persons. As a result, 

numerous previous studies in this field have been investigating and analyzing the resilience of the 

transportation network under the disruptive impacts of these natural disasters, along with 

developing evacuation processes that allow people to safely reach regions that are outside the 

affected areas. Furthermore, tsunami evacuation processes are unique and must be addressed and 

investigated since these disasters differ from other natural disasters in terms of available time for 

escape. This is since tsunami warning timeframes are often significantly shorter than those of other 

natural catastrophes, and may not allow a sufficient enough lead time for evacuation before the 

disaster occurs.  

 In this study, we employed a fairness-based evacuation distribution model. Based on the 

individuals' type of need, whether they were evacuated to shelters or require urgent care, this 

strategy attempts to relocate evacuees from high-risk regions as a result of unexpected events such 

as tsunamis and minimize the number of demand nodes that did not receive the minimum required 

service level. Additionally, this strategy gave evacuees equitable access to emergency facility 

centers and assembly zones, which was accomplished by lowering the overall average deviation 

of unmet demand at demand nodes. On the opposite, when the model focused on decreasing the 

total distances that evacuees must travel, the model prioritized nodes with the highest demand 

which created high average deviation in other demand nodes. Moreover, the findings demonstrate 

that the suggested model was efficient in decreasing the total average deviation across demand 
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nodes and ensuring that most of the demand nodes received the minimum required service level. 

Moreover, we were able to depict the Pareto frontier between the two objective functions. The 

pareto frontier illustrated that there is an opposite correlation between the total traveled distances 

by evacuees and the total average deviation of the unmet demand in the demand nodes. To explain 

more, when the model prioritizes the first objective function; minimizing total traveled distance, 

people needed to travel for short distances; however, this meant that we had demand nodes that 

did not receive the minimum required service level, resulting in a higher value for the average 

deviation of unmet demand in the demand nodes. Furthermore, we did sensitivity analysis and we 

obtained the following results. First, the minimum required service level for each demand node for 

each type of people's demands assisted in lowering the total average deviation of unmet demand 

across all demand nodes. Second, the changes in the upper capacities of arcs showed that (a) as we 

raised the capacity of the links, we were able to increase the number of transported evacuees until 

we were able to dislocate 100 % of the whole population that needed to be displaced, (b) increasing 

the maximum capacity of each arc allowed us to reduce the total average deviation of the unmet 

demand of the demand nodes, and (c) when we increased the upper maximum capacities of arcs, 

evacuees needed to travel for shorter distances to reach the safer areas.   

Future research will build on current efforts and may expand in a variety of areas. One of these 

directions may be to consider vertical shelters. Vertical evacuation shelters are structures or earth 

hills designed to resist earthquake and tsunami impacts, and their height allows people to evacuate 

above the level of tsunami inundation. This is significant since most people do not have enough 

time to escape the area, and having these sorts of shelters would increase the number of survivors.  

Furthermore, due to congestion and blocked roads, while evacuating, people may abandon their 

cars in the middle of the road and decide to walk to shelters, which would disrupt the entire 
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evacuation process, cause additional congestion, and lengthen the evacuation time. Another area 

that will be investigated in future works is the time required for the evacuation process and how 

this factor might increase the efficiency of the evacuation while preventing traffic congestions and 

blocked roads. Another topic for future research is the expanding population of Seaside, which can 

exceed 20,000 people during certain times of the year when we only investigate a small portion of 

the population. As a result of the large increase in population, further studies may be beneficial, 

such as requiring extra shelters. Finally, we hypothesized that to ensure a fair evacuation, people 

should have equitable access to the emergency facility centers. However, the concept of fairness 

is broad and can be interpreted in a variety of ways which would affect the final aimed results.  
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