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CHAPTER I

INTRODUCTION

The growing application of small-scale unmanned aerial systems has created a need for

sensing and feedback paths that provide computationally-efficient, robust autonomy.

The need for computationally-constrained robust autonomy is especially demanding

in the case of small aerial platforms appropriate for swarm use, where size, weight,

and power constraints limit the sensor payloads, processing, and communication tools

that can be carried.

Insects are model systems for this challenge as they achieve robust maneuvers in

unpredictable dynamic environment despite relatively limited neural resources. This

performance includes multi-agent behaviors such as cohesion, swarming, and other

coordinated motions involving navigation relative to each other. They often achieve

these relative navigation tasks by means of implicit visual communication, i.e., without

explicit communication links.

Despite these advantages, many attempts to replicate insect swarm behaviors

have suffered from a lack of precise measurements quantifying their relative motion

behaviors, and these bio-inspired routines are then inspired at the outline level rather

than experimentally consistent. The degree to which they are biological consistent

limits the resolution of the approaches; consequently, they often have not yet achieved

the robustness seen in biological implementations.

Early work quantified the positions of insects as point masses, tracking only their

positions. Recent high speed recording and visual tracking tools have enabled solitary

insect measurements that include wing motions, which includes rigid and flexible body
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digitization of body and wing positions. Automated tracking has led to improvements

in our understanding of the sensing and feedback paths used in individual flight control,

including quantification of the flight stabilization reflex, and of the reward/penalty

functions that insects feedback laws encode.

Detailed measurements of wing and body motion are needed in the multi-insect

case to provide tools to extract the actual interaction rules implemented by swarming

insects. These measurements need to precisely quantify the small perturbations in

the moving motion, including increasing the tracked volume to allow for multiple

interacting insects.

This paper introduces a multi-insect, high speed tracker that simultaneously

digitizes the flight trajectories of a flexible number of insects, including position and

orientation for body and wings. High speed Visual Insect Swarm Tracking (Hi-VISTA)

is able to handle a flexible number and orientation of cameras and achieves improved

throughput by parallel processing on several workstations. Hi-VISTA is tested on two

candidate test studies.

The first study examines the effect of insect confinement. Although progress has

been made in moving from tethered to free flight, the high lighting requirements and

low depth of field of high speed cameras has typically limited measurement to small

flight enclosures. The effect of these enclosures is not yet well quantified.

Because social interactions may be a strong component of the in-flight interaction

rules in swarm and group behaviors, mechanisms that can manipulate these tools

will improve the accuracy of system identification or “black box” tools to extract

these rules. Ethanol has shown several effects on honeybees in terrestrial experiments,

including changes in puzzle solving, aggressiveness, and the degree of social interaction.

The second manipulation examines the kinematic effects of ethanol treatment in

honeybees.

The study comprises 93 flight trials. 15 variables are tracked for each case, including
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body states and gross wing motion parameters such as stroke amplitude. In both

manipulations, the variables are analyzed by considering the trial wide mean and

maximum values, and testing for statistical significance using ANOVA, Welch’s t-test,

and Cohen’s d test. Then we present some system identification frameworks which

may be used for analyse behaviour of insects in a group context.
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CHAPTER II

PREVIOUS WORKS

2.1 High Speed Visual Insect trackers

Various approaches have been taken to study insect in flight kinematics by resolving

their body and wing orientation in the past. To study non-tethered free flight typically

a multi camera setup is necessary to gain depth information. (Fry et al., 2003) used

manual methods where multiple landmarks on a fly are digitized by using orthogonal

multiple camera views. (Hedrick, 2008) used direct linear coefficients camera calibration

which can work with more flexible camera settings not requiring orthogonality. Usage

of manual landmark based trackers are limited to insects big enough to use markers on

without changing their flight dynamics. Among the automatic trackers (Ristroph et al.,

2009) introduced Hull Reconstruction Motion Tracking which uses three orthogonal

views extruded to produce maximally consistent 3D pixels (voxel). (Kostreski, 2012),

used DLT coefficients with Hull reconstruction techniques removing the restriction of

camera orthogonality. (Grover et al., 2008) made real-time tracker to track body states

of multiple flies. (Fontaine et al., 2009) attempted model-based tracking in which

tracking is initialized manually by superimposing a predefined insect model. Studies

on multiple insect flights have been limited to position and orientation tracking with

no information on wing motion. In continuity of previous works the main contribution

in this paper is that we implemented a modified association routine based on (Straw

et al., 2011) and extended the capabilities of a single insect tracker to a multi-insect

one to track the wing states as well. We have built on works of (Kostreski, 2012)

which does not need manual initialization or a fixed insect model because in the multi
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insect environment the number of targets may change in different time frames, targets

can get lost and and reappear, and they may have different body orientation resulting

in repeated initialization process.

2.1.1 Wide area visual position tracking

(Straw et al., 2011) build Flydra to track fruit flies and hummingbirds that allows

tracking in large areas of space in real-time. They used constructed the 3D position

of the animal from multiple 2D views by finding the intersection of emerging lines

and implementing nearest neighbor algorithm with an EKF. (Grover et al., 2008) uses

multiple silhouettes to construct 3D visual hull of a fly, and tracks the multiple hulls

in real-time with EKF implementation. (Ardekani et al., 2013) developed a program

to keep track of multiple flies in a 3D arena for a long period of time (hours) enabling

individual behavioral analysis.

To track individual insects, appearance features such as color and shapes have

been used for identifying individuals in data-association(Kuo et al., 2010)(Zhou et al.,

2004).

2.2 Studies on ethanol-exposed honey bees

Honey bees have much to recommend them for studies of ethanol induced behavior.

Bees have low procurement and maintenance costs, a vast database for information

on natural history, physiology, and genetics. Moreover, bees engage in a wide range of

simple and complex behaviors including learning, communication, and the capacity to

self-administer large quantity of ethanol (Bozic et al., 2007).

Much like humans, honey bees can have alcohol naturally in their diet as they

forage on fermenting nectar and fruit, but unlike fruit flies humans and honey bees do

not have a life stage dependent on alcohol (Gibson et al., 1981). Honey bees easily

consume high quantities and concentrations of alcohol and, like humans, demonstrate
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preferences for specific types of alcohol (Abramson et al., 2004b). Further, bees and

humans exhibit similar aggression, locomotor, and learning changes following ethanol

consumption (Abramson et al., 2004a)(Giannoni-Guzmán et al., 2014).

Honey bees become more aggressive under ethanol exposure (Abramson et al.,

2004a)(Giannoni-Guzmán et al., 2014), showing a decreased threshold for the sting

extension response after ethanol consumption (Giannoni-Guzmán et al., 2014). Following

the consumption of an ethanol solution, honey bees would sting a leather patch en

masse more often than bees that consumed a simple sucrose solution (Abramson et al.,

2004a).

Bees like humans also show alcohol dose-dependent decreases in locomotor activity

(Abramson et al., 2000). Consuming small quantities of ethanol causes bees to display

erratic movements (Mixson et al., 2010). Additionally, high EtOH doses produces

decreases in both bee flight and walking activity(Bozic et al., 2007)(Maze et al., 2006).

After consuming high quantities of ethanol humans often suffer from learning and

memory impairments. Alcohol dose-dependent learning impairments are seen as well

in honey bees (Abramson et al., 2000)(Abramson et al., 2005)(Abramson et al., 2015),

even in learning tasks as simple as association between an odor (CS) and a sucrose

reward (US) in proboscis extension response (PER) experiments e.g. (Abramson et al.,

2000).

All these studies suggest that general honey bee behaviour is changed under ethanol

influence, and their flight behaviour may potentially be impacted as well. In this work

we conduct some simple analyses to guide us to reveal these effects.
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CHAPTER III

MULTI-INSECT TRACKER

In this section the main construction of the Multi insect tracker is described. The

tracking program requires the DLT camera calibration matrices (Abdel-Aziz et al.,

2015) as an input in order to operate. The main program is built in four major

sections described in 3.2 - 3.5. A flowchart of the main program is shown in Figure

3.1. Inspirations of the methods are taken from previous literature. However there

are several implementation modifications to make it robust to the variety of data

measured in multi agent flight.

3.1 Camera Calibration

Camera calibration allows us to mathematically relate a 3D point in world to the

2D point in an image formed by the camera. Pinhole camera model approximate

imaging process by projecting objects through a point. 3D – 2D correspondence can be

described using camera projection matrix L, which is dependent on camera properties

and position of camera in the world coordinate system. The goal of multi-camera

calibration program is to estimate the matrix L. As points in 3D world are quantized

in pixels when the image in formed, exact value of L can not be solved for and it is

estimated by a camera calibration program by finding the optimum solution.

Raw images Insect association Insect reconstruction Insect segmentation Calculated insect 
parameters

Figure 3.1: Flowchart of multi-insect tracking program
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Figure 3.2: Insect association steps

The camera projection equation here is

λ

[
a b 1

]T
= L3×4

[
X Y Z 1

]T
(3.1)

where, L is the DLT matrix,a, b are pixel co-ordinates of a point in 2-D image,λ is

scaling factor,(X, Y, Z) is 3-D point in space.

We used the (Svoboda et al., 2005) calibration routine to compute L. This routine

requires a single laser pointer to be entered into the test arena such that the multiple

cameras may distinguish one 3D points in several 2D image points. Using this

information the program gives an estimate of L. The output L needs to be adjusted if

we choose to shift to another global reference frame of choice with preferred origin

and orientation.

3.2 Insect Association

This part of the tracker identifies one individual insect in different 2D camera views

as shown in Figure. 3.2. Multiple insect centroids are identified in each view by

subtracting the average background calculated from the images in each frame to detect

the blobs.

Association is done by testing 3D points visible in the greatest number of cameras

against a reprojection threshold as in the real-time (Straw et al., 2011), which is

implemented in a MATLAB adaptation. This implementation is adapted for post-
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processing by including a capability to use different cameras for reconstruction and

association tasks, subject to the limitation of visibility in more than 2 cameras. In

this implementation we also allowed to assign multiple object ids to a single blob

with nearest neighbour assignment corresponding to the case where the insect cover

each other in a camera view. This does not create a major problem if they can be

separated in any other camera views because eventually the reconstruction routine

can separate them in 3D.

For association every possible combination of triangulated 3D points from 2D

centroids in multiple views is tested. Any 3D point with visible in greatest number

of cameras with a re-projection error less than a chosen threshold is considered a

valid association point. In a N camera system,let mn ∈ [1, 2, · · · , j] when there are

j insects present in nth camera view.Cm
n =

[
amn bmn

]
refers to mth centroid in nth

camera view,where a, b refers to 2D pixel co-ordinates of image. A test combination of

detected centroids, Tn×2 =

[
Cm1

1 Cm2
2 · · · Cmn

n

]T
where,2 ≤ n ≤ N ,is defined valid

if every row i of the corresponding re-projection error vector δ has maxi=1,2,...,N δi < η.

where,

P = solve3D(T )

T ′ = project(P )

ξ = T − T ′

δi = ‖ξi‖2

Here,project uses camera projection equations (3.1) with 3D points to find the projected

point in 2D. solve3D uses camera projection with 2D points in available cameras to a

solve for a 3D point optimum in a least square sense.

With all valid combinations which are visible in the most number of cameras the
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association set A = {T 1, T 2, ...T j} is computed where the frame contains maximum

of j insects. The implementation supports arbitrary number of cameras with the

flexibility to choose a subset of cameras if required for association and can keep track

of insects visible in at least 2 cameras. After association matrix is computed, it is

matched with any existing targets by minimizing target to target distance.Since η is a

chosen variable, tuned specifically to the camera setup used.

3.3 Insect Reconstruction

The 3D space in consideration can be discretized into volume pixels or voxels. With

a valid associated centroid list available at each time step, we take every element in

association set A to generate estimated centroid P i = solve3D(T i). This point is

then projected into voxel space,and a predefined scaler length, l obtained from the

average size of a honey bee is used to define a search space such that P i lies in the

centroid of the cube with length l. For each point in this cubic search space, a point

P k is registered as an insect voxel if it can be projected back on the insect blob in a

preset number of camera views. In our implementation we kept voxels which could be

projected back on a binarized insect image in at least 3 views based on visibility in

the cameras.

Figure 3.3: Insect reconstruction steps
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Figure 3.4: Insect is reconstructed by taking the common voxels in search area that
could be projected back to insect pixels in the camera images

3.4 Insect Segmentation

Segmentation refers to dividing the insect voxels into body and wing voxels. At first

intensities of the insect pixels in each 2D view is used to do a preliminary segmentation

which is refined in subsequent steps. In each view, the 2D insect pixels can be clustered

into two different groups where the darker and lighter pixels refer to the body and

wing pixels. The histogram obtained from the pixel intensities as shown in Figure

3.6 is used to estimate the probability density of intensity using a kernel density

estimator(Hill, 1985). The probability density function generally have two peaks and

the value of normalized intensity at the minima between two peaks of the distribution

is used as a segmentation threshold value to separate out wing pixel from body pixels.

A voxel is assigned as a wing voxel if any of the views identify it as a wing, because

the body is visible through the transparent wing. In this step, the border voxels will

be misidentified as wing voxels and we further refine it by removing any wing pixel

Figure 3.5: Segmentation to body/wings steps
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Figure 3.6: 2D pixels on each insect body can be segmented to body and wing based
on their intensity

Figure 3.7: Purely intensity based segmentation leaves ambiguous voxels close to the
boundary of body voxels. Wing voxels withib ε from body are thrown out

that is too close to the body and we also remove isolated disconnected wing voxels if

any. After this step, a k-means segmentation with k=2 separates out 2 wings as in

Figure 3.7

3.5 Calculating insect features

Each insect is modeled as a 12-dof system with position of body center of mass,

orientations of body and 2 wings.

Figure 3.8: Insect feature calculation steps
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Type Variable Description

Axes/Directions

{x̂, ŷ, ẑ} Global frame axes,G
{ŝx, ŝy, ŝz} Stability frame axes,S
{b̂x, b̂y, b̂z} Body frame axes,B

{ŵx, ŵy, ŵz}R/L Right/Left wing frame axes,W
rl Average leg direction

Orientation θb Body pitch angle

Velocities and angular rates

vG Body velocity
ωB Body angular velocity

u, v, w Body translational rates vG in S coordinates
p, q, r Body rotational rates ωB in S coordinates

Wing parameters
φR,L Wing stroke angle
ψR,L Wing elevation angle
βR,L Stroke plane angle

Forces and moments
X, Y, Z Forces expressed in stability axis,S
L,M,N Moments expressed in stability axis,S

Table 3.1: Notations used for defining insect pose

3.5.1 Insect parameters definitions and notation

Insect body parameters used in this paper are described in Table 3.1 and Figure

3.11,3.9
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Figure 3.9: Body and stability axes to define insect orientation

3.5.2 Identifying body frame

The body fixed frame aligns with head-right-down, b̂x, b̂y, b̂z respectively. The roll

angle is the most difficult one to identify in insect due to its nearly cylindrical shape

(Fontaine et al., 2009). However using legs as a reference can improve the determination

of roll angle. We assumed that the insect legs can only rotate about b̂y and used

the leg direction to detect roll angle. For doing this we fit a ellipsoid with Iterated

Closest Point (ICP) (Chen and Medioni, 1992) algorithm to the body voxel cloud

which computes a rotation matrix necessary to minimize point to point distance in

two point clouds. We initialize the ellipsoid major axis overlapping with the first

principal component of body voxels. We assume, any voxels lying outside the ellipsoid

(a) Leg detection

෡𝒃𝒙

෡𝒃𝒛

𝒓𝒍

Cb

𝐶𝑙

(b) b̂z determination

Figure 3.10: Reconstructed legs are used for determination of b̂z
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should refer to the leg voxels. The rotated ellipsoid major axis taken as b̂x. Then the

centroid of leg voxels is used to identify b̂z. If, rl= vector in the body centroid to leg

centroid direction expressed in global axis, b̂z can be obtained by,

b̂z =
bz
|bz|

, bz = rl −
rl · b̂x
|rl|

If legs can not be reconstructed sufficiently good enough due to poor visibility, we

impose the roll constraints as used in Fontaine et al. (2009) to determine roll axis

which assumes symmetry of wings about the transverse plane of body.

3.5.2.1 Identifying wing frame

The wing frames are initially aligned with the body frame such that right wing

span,ŵy = b̂y and normal ŵz = b̂z . In each time step the major wing span direction

ŵy is determined by taking the connecting vector between centroids of 20% closest

(hinge) and furthest (tip) wing voxels to the body. The normal to the wing,ŵz is

determined by the normal of the plane fitted through the remaining 60% wing voxels

in the middle.

3.5.3 Determination of wingbeat frequency and amplitude

The wing angles are defined as the rotations needed to transform the body frame to a

wing frame in each time instant. The right wing euler 3-1-2 angles φR, ψR, αR were

projected to get in plane motion with the following equation.

γR = −φR cos βR + ψR sin βR

Here βR refers to the average stroke plane angle (Figure 3.11) which is determined by

linear fitting of φR and ψR over a single wingbeat length. The fast Fourier transform

of signal γR is then taken to obtain peak amplitude,Φ and peak frequency,f .
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෡𝒃𝒙

ො𝒔𝒙

Ƹ𝑧

𝜃𝑏

𝛽

Figure 3.11: Wingbeat amplitude and body pitch angle definitions

(a) Reference
insect

(b) Reconstructed
hull

Figure 3.12: Reconstruction of a reference model insect

3.5.3.1 Determination of body pitch angle

The body pitch angle is defined by the complementary angle of the angle between

global vertical (−ẑ) axis and body roll axis (b̂x) according to Figure 3.11.

3.6 Validation

When calibrating the camera the projection matrices were taken which give less than

0.5 pixels mean reprojection error in order to minimize reconstruction error.

In order to test the tracker performance the wing angles of a 3D printed insect

was determined. In 500 frames the tracker determined the 3-1-2 euler angles with the

reported error in Table 3.2.

Wing Mean Error, ◦ Std. Dev., ◦

Left (-2.6, 0.6, 6.3) (1.0, 1.3, 0.9)
Right (-5.6, -3.4, 5.4) (1.3, 0.8, 1.4)

Table 3.2: Error in Euler (3,1,2) wing angle estimation for 3D printed insect
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Figure 3.13: Example of tracker output

3.7 Example output

An example of the tracker working is shown in 3.13.
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CHAPTER IV

ETHANOL EXPOSED HONEY BEE FLIGHT

The goal of this study is to test our multi-insect tracker on free flights of honeybees and

chemically exposed bees and examine the variables that may have been influenced by

ethanol exposure. This study is the first one testing flight behaviours with chemically

exposed insects and works as a foundation to more detail study on flight behaviour.

4.1 Experimental Setup

A T-shaped tunnel was built with one of it ends attached to a beehive of Apis mellifera

residents and two others for exiting freely from the setup. 4 Photron high speed

cameras were set up to film the intersection of the T-joint at 9000 Hz.

4.2 Preparation of chemically-exposed insects

Captured insects were anesthetized by storage below freezing for 3 minutes, and

restrained in a harness made from a modified micro centrifuge tube. The insects were

then fed sucrose solution until no proboscis extension reflex was present and then

let rest for approximately 24 hours at 72◦ F. This preparation ensured a consistent

metabolic state at the beginning of experiments. In ethanol-exposure experiments,

insects were then fed ethanol solution, kept for 15 minutes, and added to the flight

test chamber. Each insect was removed from the test arena within 30 minutes of

releasing to the test chamber to ensure flight is recorded under chemical influence. In

this paper two types of insect flights are discussed.
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Figure 4.1: Tunnel setup attached to a beehive with camera setup to film the
intersection

Figure 4.2: Restrained honeybees for chemical preparation.

Solution 50% Sucrose 95% C2H6O H2O, distilled
0% 40ml 0 ml 60 ml
1% 40ml 1.05 ml 58.95 ml

2.5% 40ml 2.63 ml 57.37 ml
5% 40ml 5.26 ml 54.74 ml

Table 4.1: Ethanol preparation recipes
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Figure 4.3: Insects fly through the whole tunnel in open tunnel experiments. In
confined flights the intersection in confined by adding partitions.

4.3 Open flights

Honey bee workers were filmed when they were moving freely through the tunnel.

The data was collected between 4 pm to 5 pm when the primary activity was foragers

returning to the hive. In these trials multiple of them crossed the test section showing

wide range of maneuvers. 60 flight sequences were analyzed for this study.

4.4 Ethanol exposed flights

In this experiment we recorded flights bees exposed with control 0%,1% and 2.5%

and 5% ethyl-alcohol. These experiments were done in a confined environment in the

tunnel by blocking exits. A total of 33 trials were collected(9 of 0%, 8 of 1%, 8 of

2.5%, 8 of 5%).

4.5 Parameters considered

For this study, the state variables in each flight sequence are represented by 15 (scalar)

variables. For a time history over [0, Tr], where Tr is the time length recorded, time

t was discretized as ti, i = 1, 2, 3..., n at a constant sample frequency, and the mean
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value of a variable h(t) measured the flight sequence was calculated as

h̄ :=
1

n

n∑
i=1

h(ti), ti ∈ [0, Tr] (4.1)

and the maximum value is defined as

hmax := max
t∈[0,Tr]

[h(t)]. (4.2)

Each flight sequence was characterized by 15 scalar values as shown in Table 4.2.

We define the set of these scalars as B.

Notation Description
f Peak wingbeat frequency
Φ Peak wingbeat amplitude
θ̄b Mean body pitch angle
¯|u| Mean absolute forward speed
¯|v| Mean absolute sideways speed
¯|w| Mean absolute heave speed
¯|p| Mean absolute roll rate
¯|q| Mean absolute pitch rate
¯|r| Mean absolute yaw rate

|u|max Maximum absolute forward speed
|v|max Maximum absolute sideways speed
|w|max Maximum absolute heave speed
|p|max Maximum absolute roll rate
|q|max Maximum absolute pitch rate
|r|max Maximum absolute yaw rate

Table 4.2: Characterizing variables in flight sequence

For each,s ∈ B we consider population-wise mean and standard deviation.

The mean value of population of a variable is defined as

µ(s) :=
1

n

n∑
i=1

si (4.3)

where, n is the number of flight sequences recorded for the concerned category(Open,0%,..

etc).
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The standard deviation of population of a variable is defined as

σ(s) := (
1

n

n∑
i=1

(si − µ(s))2)1/2 (4.4)

4.6 Analysis tools and methods

In order to find significant variables we did binary statistical analyses by dividing the

data in groups (G0, G1, G2). The following cases were considered:

• Case-1: G0(Open) Vs G1(0%), to find significant changes between open and

confined insect flights.

• Case-2: G1(0%) Vs G2((1%, 2.5%, 5%)), to find significant changes between

exposed/unexposed insect flights.

The statistical tools we considered are one-way Analysis of Variance(ANOVA),

Cohen’s d test, and Welch’s t-test.

ANOVA and Welch’s t-test checks the null hypothesis that two populations have

equal means for some variable. We checked this hypothesis for each,s ∈ B where, the

null hypotheses are,

• Case-1: µG0(s) = µG1(s)

• Case-2: µG1(s) = µG2(s)

The simple one way ANOVA works on the assumptions that the response variable

residuals are normally distributed and the variances of populations are equal. The

Welch’s t-test does not require the assumption of equal variance and more applicable

when the sample sizes are not equal. The p-values provide us the probability of the

null-hypothesis being true. Cohen’s d effect size shows the shift of µ(s) in terms of

pooled standard deviation. We apply these two tests on the dataset having sample

points (G0(60), G1(9), G2(24)).
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Figure 4.4: Mean absolute velocity statistics of population
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Figure 4.5: Mean absolute body rate statistics of population

4.7 Results and Discussion

The simple one way Anova works on the assumptions that the response variable

residuals are normally distributed and the variances of populations are equal. From

the limited set amount of data points we have (G0(60), G1(9), G2(24)) if we assume

those conditions to be true then, for case-1, observing the p-values in Table 4.3 and

choosing (p < 0.05) we observe the ANOVA test detects ¯|r|, θ̄b,Φ, |q|max, ¯|q| variables

have some significant impacts. The closed environment insects tend to fly at a greater

pitch angle as seen in Figure 4.9. As they have walls to land on their average pitch

angle is higher. However having a greater pitch angle changes the aerodynamics of

flight and so experiments in closed environment might not be a good replication for

studying flight behaviour of free flights.

In case-2,when comparing ethanol exposed and unexposed From table 4.4 the
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Figure 4.6: Maximum absolute velocity statistics of population
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Figure 4.7: Maximum absolute body rate statistics of population
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Figure 4.8: Wing motion statistics of population
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Figure 4.9: Mean body pitch angle, θ̄b statistics of population

24



µ(.) p-value(ANOVA) d p-value(Welch’s t)
¯|r| 0.0014 1.1944 0.0807
θ̄b 0.0017 1.1688 0.0166
Φ 0.0039 -1.0675 0.0021
|q|max 0.0200 0.8522 0.0876
¯|q| 0.0335 0.7760 0.2104
|r|max 0.1196 0.5636 0.1207
|p|max 0.2744 0.3939 0.2695
|w|max 0.2941 0.3780 0.2589
f 0.3196 0.3584 0.3795
|v|max 0.3442 0.3406 0.3056
¯|u| 0.4945 -0.2455 0.3070
|u|max 0.5622 0.2082 0.3480
¯|w| 0.8202 -0.0816 0.6989
¯|v| 0.9230 -0.0347 0.8937
¯|p| 0.9940 -0.0027 0.9932

Table 4.3: Open vs 0% comparison. Table is sorted by p-value(ANOVA)

strongest effects (p < 0.01) are seen with |q|max,|r|max. This suggests a potential

effect in flight stabilization characteristics. The unexposed bee can reach higher

|p|max, |q|max, |r|max as seen in Figure 4.7a,4.7b,4.7c suggesting that body rate regulation

can be affected under the influence of ethanol.The all other mean body rates are also

affected (p < 0.05) showing the possibility of affected flight stabilization reflex.Increase

in Φ is also observed in Figure 4.8b suggesting a wing motion change as well.

The Welch’s t-test does not require the assumption of equal variance and more

applicable when the sample sizes are not equal. With this looser assumption we can

still find that in Welch’s t-test (p < 0.05) the most impacted variables for Case-1,

are θ̄b,Φ which agrees with the previous observation.Both of these variables also

show high effect size (|d| > 0.8). For Case-2, the Welch’s test show |v|max with

(p = 0.056), ¯|r| with (p = 0.07) may not have been significantly changed and |u|max

might have changed which was not captured in ANOVA test.However, they both show

that |q|max, |r|max, ¯|p|, |p|max,Φ has significant changes. We get large effect size for

each of them (|d| > 0.8) which suggest they are handling lower body rates with higher

wingbeat amplitude.
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µ(.) p-value(ANOVA) d p-value(Welch’s t)
|q|max 0.0002 -1.6602 0.0214
|r|max 0.0007 -1.4679 0.0313
¯|r| 0.0152 -1.0045 0.0755
¯|p| 0.0201 -0.9579 0.0288

Φ 0.0225 0.9391 0.0077
|v|max 0.0317 -0.8793 0.0566
|p|max 0.0324 -0.8754 0.0350
¯|q| 0.0490 -0.8009 0.1184
|u|max 0.0702 -0.7331 0.0360
¯|w| 0.2039 0.5073 0.0580
¯|v| 0.5001 -0.2667 0.4118
f 0.6262 0.1923 0.6611
|w|max 0.7138 -0.1447 0.6930
¯|u| 0.8009 0.0994 0.7683
θ̄b 0.9747 0.0125 0.9696

Table 4.4: Closed exposed(1%,2.5%,5%) vs unexposed(0%) comparison. Table is
sorted by p-value(ANOVA)

All these statistical inferences show that there is some kind of effect is in place

without giving us the explicit reasons behind them. We also did not account for

inter-dependence of variables.These questions can be addressed in future studies.
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CHAPTER V

SYSTEM IDENTIFICATION APPROACH IN MULTI-AGENT

FLIGHT

5.1 Introduction

System identification is a mature field today undergoing continuous improvements.

It focuses on extracting the underlying relation between input and output signals.

Insect flying near neighbours show interaction among them enabling them to perform

maneuvers to avoid collision, speed matching etc. In order to understand these

behaviours quantitivly some mechanism is needed to analyze the flight data. In this

section we build a simple framework which can be used to analyse multi-insect data

to learn about their interaction rules. With our tracker we have access to the control

inputs of the insect to control their flight. In this implementation we mainly focus on

collision avoidance though it can be modified to analyze other behaviours too. For

simplicity we work with existing linearized insect motion model. With available time

history of insect wing inputs, a time domain least square regression identification

example is shown.

5.2 Linearized Lateral Flight Dynamics of Insects

An insect flying straight forward with constant speed maintains it’s stability in lateral

direction. For maintaining stability while flying near neighbours it needs distance

information from the neighbour to adjust its wing motion to slightly change path and

avoid collision. Dipteran insect motion about hover has been formulated previously

in (Faruque and Humbert, 2010a) and (Faruque and Humbert, 2010b) for stability
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along their longitudinal and lateral directions. The lateral directional stability model

describes an insect flying at a nearly constant speed and the necessary wing inputs to

maintain stability at the trim condition.

body sideways velocity in expressed in stability axis, v

body roll rate in stability axis,p

body roll angle in stability frame,φ

body yaw rate in stability frame,r

The state vector here,x =

[
v p φ r

]T
The control inputs that control this motion are shown as in Fig,5.1,

Differential stroke amplitude,φd = 1
2
(φr − φl)

Differential stroke amplitude,βd = 1
2
(βr − βl)

Control input, u =

[
φd βd

]T
The linearized state space representation of the system is given by,

ẋ = Ax+Bu (5.1)

Figure 5.1: Lateral directional inputs
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Where,

A =



Yv 0 g 0

L
′
v L

′
p 0 L

′
r

0 1 0 0

N
′
v N

′
p 0 N

′
r


, B =



Yφd 0

Lφd 0

0 0

0 Nβd


X, Y, Z and L,M,N are forces and moments respectively and [.]x represents partial

derivative with respect to x.

This model is ideal when a insect is flying straightly forward attempts to correct

the mentioned states to stay stable. When solitary flight is considered we can assume

that the insect uses its states as feedback to stabilize the motion.

u = −Kfbx (5.2)

When it is not flying alone we can assume that it is also sensing some external signal

v that also influences its control inputs.

u = −Kfbx+Kextv (5.3)

The exact signal v an insect is using may not be determined clearly, but we can

make synthetic signals which is applicable to the specific behavior we are observing

and try to estimate how good that synthetic signal explains the data using system

identification. The gain Kext takes the synthetic signal to influence wing input in

order to control motion. In this example we will derive a potential synthetic signal

that might be used by the insect to show collision avoidance mechanism.

5.3 Example design of a synthetic signal

As we are trying to understand collision avoidance mechanism we call this synthetic

function as ‘social distancing function’.It needs to have some inherent properties to
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show collision avoidance. Firstly, it should decay with increased distance between

neighbours so that if a neighbour is far away the signal needs to go to zero. Secondly,

it needs to contain the direction at which a neighbour is located so that the insect can

avoid that direction. Thirdly, it should be able to take in account the effects when

the insect is surrounded with multiple neighbours.

let,ra be the position vector of the insect in consideration and ri the position vector

of the neighbour i in the global frame. We can define the function with magnitude,

e−Ks‖ri−ra‖ in the direction ri − ra,

dg = e−Ks‖ri−ra‖ ri − ra
‖ri − ra‖

(5.4)

Here Ks is a constant tuning the strength of the signal depending on the distance

to its neighbour.

The vector dg is expressed in global frame co-ordinates. We reorient it to the

stability frame of the insect so that d =

[
dx dy dz

]T
represent the repulsion strength

in the stability axes directions ŝx, ŝy, ŝz. If there are multiple agents we can add up

their effects by choosing the synthetic signal as, v =
∑n

i=1 di, where there are total n

neighbours.

5.4 Simulation

For simulation, We set the model of a typical insect in Faruque and Humbert (2010b)

as the system,



v̇

ṗ

φ̇

ṙ


=



−9.69 0 9.81 0

−9720.0 −177 0 −2.07

0 1 0 0

−167.0 462.0 0 −71.6





v

p

φ

r


+



8.24 0.0

−12300 0

0 0

0 −28100


φd
βd


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The controller Kext was chosen in such a way that collision avoidance can be observed.

We set, Kext =

0.001 −2.0 0.001

0.005 0.01 0.02

. The intuition behind this controller is that the

insect must move in the opposite direction of an agent at its side. The Kext,(1,2) = −2

term is multiplied the social distancing component in stability axis ŝy, and generates

input to the φd which is the primary way to generate a sideways acceleration v̇.

For simulation we set a forward speed u = 0.1m/s,and x =

[
0 0 0 0

]T
as initial

condition. The insect starts its journey from position

[
5 6 7

]T
meter in global

frame with its stability frame aligned with the global frame initially. Two stationary

insects are put in

[
5.045 6.01 7.0

]T
meter and

[
5.28 6.023 7.003

]T
meter. Ks

was set 50/m.A virtual state feedback controller,Kfb =

0.0790 0.0014 0 0

0.0006 −0.0016 0 0

 so

that Acl = A−BKfb is stable was assumed to be working.

The simulation was run for 4 seconds with a sampling rate of 100Hz.

The example simulation of path in Figure. 5.2 show how this controller lets the

agent avoid collision with stationary agents.

5.5 Experiment with honey bee data

In this example flight, one bee was trying to follow another bee while avoiding collision.

With the same structure described for the simulation we identified Kfb and Kext. The

linearization point in this trial was:

v = −0.0328m/s, p = 1.4439rad/s, φ = 0.0672rad, r = 1.0808rad/s

The forward mean forward speed of the bee was, u = 0.1694m/s
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Figure 5.2: The target insect(blue) avoids two stationary agents (red) using the
controller Kext

Figure 5.3: Example identification from real honey bee flight
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5.6 System identification Method

From simulated and real experimental data we have the states time histories x, and

control inputs u. We can use eq. 5.3 to define a linear regression problem

u =

[
x v

]Kfb

Kext


=⇒ u = XK

=⇒ K = (XTX)−1XTu

Where X =

[
x v

]
and K =

[
Kfb Kext

]T
. Least square estimation was used to

calculate K. The identification quality is assessed with Cramér-Rao lower bounds(?)

which expresses a lower bound on the variance of unbiased estimators.

5.7 Results and Discussion

Controller Identification Error Cramér-Rao bounds

Kfb,id

[
0.0018 0.0000 0.0000 0.0000
0.0000 −0.0000 −0.0000 0.0000

]
10−27

[
0.1179 0.0001 0.0036 0.0000
0.0004 0.0000 0.0000 0.0000

]
Kext,id

[
−0.0000 0.0050 −0.0000
−0.0000 −0.0000 −0.0001

]
10−27

[
0.0091 0.9505 0.4365
0.0000 0.0034 0.0016

]
Table 5.1: Identified controller errors and Cramér-Rao bounds in simulation

Controller Identified Values Cramér-Rao bounds

Kfb,id

[
−1.2224 0.0004 0.2897 0.0048
0.0788 0.0011 0.0658 0.0002

] [
0.0017 0.0000 0.0001 0.0000
0.0004 0.0000 0.0000 0.0000

]
Kext,id

[
12.1537 −30.7815 −13.3814
−6.6250 4.1522 −3.2751

] [
1.1895 1.8132 0.3545
0.2650 0.4040 0.0790

]
Table 5.2: Identified controllers and Cramér-Rao bounds in experimental bee data

The simulated controllers can be identified with very low Cramér-Rao variance as

shown in Table.5.1. The real experimental identification has Cramér-Rao variance

several order of magnitudes higher than in simulation. The real insect does not follow
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the assumed model perfectly and the linearization point was not exactly zero while the

insect was showing the particular behaviour and therefore the identified parameters

would have higher uncertainty as expected.

The formulation presented here can be adapted for other synthetic signals in order

to study other types of group flight. As insect flights are diverse it is not always

possible to find a idealized flight pattern like we did for a simulation.However a well

designed synthetic signal may be able to extract valuable insights about the data.

In chosen Kext for simulation, we set Kext(1,2) to be the highest in magnitude as we

wanted the insect to move sideways. In the identified Kext in experiment we also see

the highest magnitude in the Kext(1,2). In the simulation it is assumed that the forward

speed remains constant through the trial which is very hardly achieved in real data.

As the model is linearized, changes in the trim condition adds difficulty in identifying

Kext because Kfb may also change during that time. We can see these effects in real

data observing the increased Cramér-Rao bounds as the fit quality degrades with

these added uncertainties.
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CHAPTER VI

CONCLUSION AND FUTURE WORK

In this work, a visual multi-insect kinematic tracker is constructed and it is applied

to study ethanol exposed honey bees and an example system identification to study

collision avoidance. This work builds the measurement tools necessary to study multi-

insect with detailed kinematics. We see statistically significant changes in body rate

and wingbeat amplitude behaviours when comparing ethanol exposed and unexposed

insects. Also,open tunnel flights differed from closed tunnel flights with respect to

body pitch angles suggesting that insect flight studies done in a closed environment

may change it normal behaviour, A simple system identification example is worked

out in simulation and real data to study collision avoidance group flight.

With the measurement tool developed in this thesis, further detailed studies of

insect group interaction is possible. The ethanol exposure study tells us that the insect

kinematics has changed and further studies with more sophisticated analyses tools

may reveal the actual mechanisms and implications of it. The system identification

examples worked out can be further developed into more mature frameworks to analyse

inflight interaction between insects.
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