
 A STUDY ON QUANTITATIVE DESIGN FOR

DYNAMIC BLOCKCHAIN-BASED COMPUTING

 By

 JONGHO SEOL

 Bachelor of Science in Control and Instrumentation
Engineering

 Kangwon National University
 Samcheok, Kangwon

 2000

 Master of Science in Computer Science
 Oklahoma State University

 Stillwater, Oklahoma
 2005

 Submitted to the Faculty of the
 Graduate College of the

 Oklahoma State University
 in partial fulfillment of

 the requirements for
 the Degree of

 DOCTOR OF PHILOSOPHY
 July, 2021

ii

 A STUDY ON QUANTITATIVE DESIGN FOR

DYNAMIC BLOCKCHAIN-BASED COMPUTING

 Dissertation Approved:

 Dr. Nohpill Park

 Dissertation Adviser

 Dr. Christopher Crick

 Dr. Esra Akbas

 Dr. Jonghoon Kim

iii

Name: JONGHO SEOL

Date of Degree: JULY, 2021

Title of Study: A STUDY ON QUANTITATIVE DESIGN FOR DYNAMIC

BLOCKCHAIN-BASED COMPUTING

Major Field: COMPUTER SCIENCE

Abstract: This research proposes novel embedded Markovian queueing model-based
quantitative models in order to establish a theoretical foundation to design a dynamic
blockchain-based computing system with a specific interest in Ethereum. The proposed
models commonly assume variable bulk arrivals of transactions in Poisson distribution,
i.e., 𝑀ଵ,௡, where 𝑛 the number of slots across all the mined transactions to be posted in a
block or the current block. Firstly, a baseline model is proposed to have a static bulk
service of transactions in exponential time, i.e., 𝑀௡, for posting the transactions in the
current block, referred to as Variable Bulk Arrival and Static Bulk Service (VBASBS)
queueing model of the 𝑀ଵ,௡/𝑀௡/1 type, in which note that 𝑛 is fixed in order to
demonstrate a static chain in terms of the size of the block. Secondly, an adaptive chain
model, as a solution of dynamic blockchain in a reactive manner, is proposed based on a
Variable Bulk Arrival and Variable Bulk Service (VBAVBS) queueing model of the
𝑀ଵ,௡/𝑀ଵ,௜,௡/1 type to provide a quantitative approach to design an adaptive chain that
dynamically adapts the size of the block to varying performance trends, in which a state
transitions from 𝑖 back to 0, where 0 < 𝑖 ≤ 𝑛, are tracked in order to demonstrate the
dynamically adaptive size of the block. Lastly, an asynchronous chain model, as a
solution of dynamic blockchain in a proactive manner, is proposed based on a Variable
Bulk Arrival and Asynchronous Bulk Service (VBAABS) queueing model is developed
and presented to study and demonstrate the fully asynchronous and staged asynchronous
chains. The analytical models are simulated extensively to compare the basic
performances of the proposed models such as the average transaction waiting time, the
average number of slots per block, and throughput. Further, extensive experiments are
conducted in order to validate the analytical results by redesigning the source code of
Ethereum to implement and demonstrate each of the proposed chains such as the
baseline, the adaptive, the fully-asynchronous and the staged-asynchronous chains. The
analytical results and the experimental results will be compared and discussed
extensively.

iv

TABLE OF CONTENTS

Chapter Page

I. INTRODUCTION ..1

II. PRELIMINARIES AND REVIEW ..10

III. BASELINE CHAIN MODEL ...15

1. Baseline Chain Model Equations ...18
2. Numerical Analysis ..27

IV. ADAPTIVE CHAIN MODEL ..33

1. Adaptive Chain Model Equations ..36
2. Numerical Analysis ..50

V. ASYNCHRONOUS CHAIN MODEL ...55

1. Fully Asynchronous Chain Model Equations ..56
2. Staged Asynchronous Chain Model Equations..70
3. Numerical Analysis ..78

v

Chapter Page

VI. IMPLEMENTATION AND EXPERIMENTAL RESULTS84

1. Adaptive Chain Algorithm ...85
2. Fully Asynchronous Chain Algorithm ...87
3. Staged Asynchronous Chain Algorithm ..89
4. Implementation and Experimental Environment Setup91
5. Implementation and Experimental Procedure ..93
6. Implementation and Experimental Results ...100

VII. CONCLUSION AND DISCUSSIONS ..103

REFERENCES ..106

APPENDICES ...112

vi

LIST OF FIGURES

Figure Page

 1.State transition diagram of the baseline chain model ..16
 2.State transition around 𝑃௜ for balance equations of the baseline chain model17
 3.State transition around 𝑃଴ for balance equations of the baseline chain model19
 4.𝐿ொ versus 𝑛 for given pairs of 𝜆 and 𝜇 of the baseline chain model27
 5.𝑊ொ versus 𝑛 for given pairs of 𝜆 and 𝜇 in the baseline chain model29
 6.𝑊 versus 𝑛 for given pairs of 𝜆 and 𝜇 in the baseline chain model30
 7.𝐿 versus 𝑛 for given pairs of 𝜆 and 𝜇 in the baseline chain model31
 8.𝛾 versus 𝑛 for given pairs of 𝜆 and 𝜇 in the baseline chain model32
 9.State transition diagram of the adaptive chain model ..35
 10.State transition diagram around 𝑃௜ of the adaptive chain model36
 11.𝐿ொ comparing baseline (B) and adaptive (A) chain model50
 12.𝑊ொ comparing baseline (B) and adaptive (A) chain model51
 13.𝑊 comparing baseline (B) and adaptive (A) chain model52
 14.𝐿 comparing baseline (B) and adaptive (A) chain model53
 15.Throughput, 𝛾, comparing baseline (B) and adaptive (A) chain model54
 16.State transition diagram of the fully asynchronous chain model57
 17.State transition diagram of the staged asynchronous chain model70
 18.Baseline, adaptive, and asynchronous chain models for 𝐿, 𝜆=0.00578
 19.Baseline, adaptive, and asynchronous chain models for 𝐿, 𝜆=0.0579
 20.Baseline, adaptive, and asynchronous chain models for 𝑊, 𝜆=0.00580
 21.Baseline, adaptive, and asynchronous chain models for 𝑊, 𝜆=0.0581
 22.Baseline, adaptive, and asynchronous chain models for 𝛾, 𝜆=0.00582
 23.Baseline, adaptive, and asynchronous chain models for 𝛾, 𝜆=0.0583
 24.Build Go Ethereum source code ..94
 25.Run command with geth ..94
 26.CPU mining in JavaScript console attach ..95
 27.Run geth console in geth JavaScript console ...95
 28.Find the empty block information with geth command in console or attach96
 29.Go Ethereum JavaScript Main Console ...97
 30.Transaction information in a block and empty block in JavaScript console98
 31.A simple smart contract of the solidity source code in Remix IDE [41]99
 32.Baseline, adaptive, and asynchronous chain models for the waiting time100
 33.Baseline, adaptive, and asynchronous chain models for the throughput101
 34.Baseline, adaptive, and asynchronous chain models for the number of slots102

1

CHAPTER I

INTRODUCTION

Blockchain technology [1, 2, 4, 5, 7, 10] is undergoing tremendous growth chocking itself up to

its capacity and performance limits [58] and thereby resulting in cost spikes [19]. It is exigently

sought to address and respond to these issues, being mostly concerned about the scalability [11,

12, 13, 14, 15, 16, 17, 24] dependability of the blockchain system, and privacy issues [53] in

systems such as smart grid [35] and IoT [18, 25, 26, 27]. In this context, blockchain technology is

emerging and gaining more and more attention from the technology community as an alternative

to the current centralized-based internet protocol, namely, the decentralization with blockchain-

based peer-to-peer internet protocol.

Blockchain technology also has been investigated by industry and research sectors for the benefit

of a transparent decentralized network control [4, 7, 16, 28, 29]. The scalability and dependability

issues of the blockchain system [23, 24] have been identified and addressed as the technology

matures and saturates in its current form.

2

A quite extensive line of decentralized applications in IoT [18, 25, 26, 27] and MEC [33, 48]

networks have been deployed and testbed to exercise various attempts to resolve those issues in [19,

34] with respect to security [52] and privacy [53] in IoT based smart grid. Blockchain is a

decentralized network system [4, 7, 16, 28, 29] that employs web3 [43] as its underlying technology,

based on the peer-to-peer communication protocol where all nodes store mutual data, as a basis for a

reliable and trustworthy communication that does not require mutual verification. Due to this

mutually trustworthy network requirement, there is a cost of extra block delay [38] for a smart

contract [7, 49] to be used to transmit or store data as a transaction off [36] of the smart contract

primarily due to a mining process to be performed to approve and post transactions in a block [7, 16,

50, 51] on the chain. In general, the network system used as a web2-based server-client network is

relatively faster than the decentralized distributed network, that is, blockchain. Today, such

decentralized systems and applications in many industries can be found as IoT and MEC [18, 25, 26,

27, 33], and more notably, blockchain technology for digital currency is used in central banks and

eyed by many governments as a future digital currency option. However, the issue of transaction

delay due to slower block processing (posting) speed must be addressed and resolved [19, 39] prior to

extensive acceptance in the market. Note that it has been reported that the blockchain consensus

algorithms [7, 16, 37] play the central role in the trustworthy system, it costs extra block time delay

which leads to lower throughput of the system and increases waiting time. In this context, block size

adjustment is being considered as an alternative solution to address the block delay with respect to the

gas limit [53, 54] per block and to improve the performance [30, 31, 32, 44]. The gas limit per block

proportionally influences block delay, scalability [12, 13, 14, 15, 17], and dependability [19].

Also, it has been reported that the consensus algorithms [7, 16] of the blockchain system is driving

the mining process to keep the block time constantly to be delayed and eventually to lead to slowing

down on the throughput and thereby limiting the capacity and even the functionality and operability

of the network, which mandates an excessively powerful server and a high-efficiency yet extremely

3

costly network. After all, blockchain technology in its current form is facing a serious hurdle before

finding itself as a true replacement of the current state of the art web2-based internet infrastructure. In

this context, it is exigently sought to address and respond to these issues mainly about the scalability

[15, 29] and performance [32] from the specific standpoint of the speed of block posting. As the

blockchain technology-based network is seeking a way to break through those underlying technical

issues, it has been considered that blockchain is proactively adapting to various performance criteria

[30, 31, 32, 44] in order to speed up the execution of transactions with respect to block size and

requirements. The basic network system of blockchain technology is a decentralized system that uses

a web3 network, which is a peer-to-peer communication based on a distributed information network

where all nodes store mutual data, as a reliable trust system that does not require mutual verification.

Due to this mutually reliable network environment, there is an issue of block delay time until a

contract is used to transmit or store data, i.e., as a transaction occurring, a mining process that is

posting in a block as a confirmed transaction. The point is that the system used as a server client-

based web2 network is relatively fast. Currently, decentralized applications in many industries are IoT

and MEC, and more notably, blockchain technology for digital currency is used in central banks.

However, the issue of transaction delay time due to block processing speed must be resolved. While it

has been reported that the blockchain consensus algorithm makes it a trusted system, it causes block

time delay, lowers the throughput of the system, and increases waiting time. In this context, block

size and its conditions will improve blockchain performance by changing it and will solve the block

size change and conditions for it in a way that can solve the scalability and dependability problems.

The central idea driving the technology shift is the trust of the internet service which the legacy

centralized-based internet service providers evidently have never convinced the users’ community to

sustain its credibility due to a few major reported breaches of trust no matter intentional or not, which

triggered the technology drive towards blockchain which is today’s and tomorrow’s promise and the

best-known solution of trust in internet services. However, as the blockchain technology matures, it

4

appears the technology is revealing either expected or unexpected performance flaws besides the

main concern of trusts, such as scalability and speed issues, as the main hurdle from success. The key

to the success of this technology in the market is how to bring the performance to the next level in

order to cope with the market needs and requirements from the performance perspective.

A prerequisite to the performance needs and requirements is to establish an analytical model in order

to establish an analytical model to evaluate and assure the performance of concern with high efficacy

in a quantitative manner during the early design cycle. There have been a few analytically approached

works [9] reported on dependability [20, 23, 24]. However, they are able to readily and adequately

address the queueing nature of the transactions flow and block posting in particular, which will

eventually prevent a synergistic and comprehensive analytical design of a dependable and high-

performance blockchain system.

There are four different types of blockchain architectures to be proposed and studied in this

dissertation for the above mentioned block size adjustment solution, namely, baseline chain [40] as

the conventional solution without allowing the block size adjustment, the adaptive chain as a naïve

solution to block size adjustment in a reactive manner, the fully asynchronous [56, 57] chain as

another naïve solution yet in a proactive manner, and lastly, the staged asynchronous [56, 57] chain as

a solution that is a hybrid form of the reactive and the proactive solutions.

The baseline chain [40] considered in this dissertation is the conventional chain (e.g., Ethereum [7,

16, 50]) with a fixed size for the blocks, and note that the size of a block is defined (represented) by

the block gas limit [53, 54] which is fixed throughput unless otherwise controlled, and also note that

in fact the physical size of each block in the baseline chain is practically fixed at 20~30KB [39] per

block multiplied by the size of a node to represent a transaction hash which is in fact nothing to do

with the size of the block to be adjusted as it concerned in this dissertation.

5

The adaptive chain is a chain in which the block size (i.e., the block gas limit as defined in this

dissertation) is adaptive to the total of the gas fees used by the transactions [7, 16, 49, 54] in the

previous block with a certain variation (or the average of a certain number of previous blocks) in a

reactive manner (i.e., the size of the block stays static throughout the time period of block delay).

The asynchronous chain is an adaptive chain yet in a proactive manner, in other words, the size of the

block is adapted on the fly. Two different types of asynchronous chains are proposed such that the

fully asynchronous chain adapts the size of the block to the size of an arriving transaction on the fly

immediately when a transaction arrives, which seemingly is an overly-costly, stringent and slow

solution, yet a fully asynchronous and adaptive solution to the temporal requirement for a transaction

posting in the block; and the staged asynchronous chain moderates the stringent proactive asynchrony

of the posting of a transaction such that the adaptive posting is staged (or grouped) by the rages of the

sizes of the transactions, e.g., instead of immediately posting each and every individual transaction in

the block, the block posting is delayed for a stage delay to accommodate potentially more transactions

within the range of the stage in an effort to relax the stringent asynchronous posting requirement of

the fully asynchronous chain.

 A variable bulk arrival and static bulk service (VBASBS) [40] of the 𝑀ଵ,௡/𝑀௡/1 type can be

considered to analyze the performance of the baseline chain and can serve as the basis of analysis of

such a variety of variations of chains as adaptive, fully asynchronous, and staged asynchronous chains

as proposed in this paper. VBASBS is an embedded markovian model and defines the state of the

chain by a single variable 𝑖, i.e., the number of slots pending in the current block for being posted,

where note that a slot is approximated to 100,000 wei [39, 50] in this paper and note that a typical gas

limit per block is set to 10 gwei [39, 50], and state transitions triggered from state 𝑖 to j, where 0 ≤

𝑖, 𝑗 ≤ 𝑛 and 𝑖 < 𝑗, and 𝑛 is the total possible number of slots to be posted in the current block, and a

6

state transition from 𝑛 back to 0 takes place when the current block is topped off and posted in the

chain.

As it turns to the adaptive chain, the VBASBS model can be extended to allow a state transition from

each state, 𝑖, back to state, 0, in addition to the state transition from the state, n, back to state, 0, in

other words, a block could be of any size and posted (i.e., flushed from any state 0 < 𝑖 ≤ 𝑛) with the

size that is adaptive to a certain condition such as (the average of) the total of the sizes of the

transactions in the prior block(s), namely, a variable bulk arrival and variable bulk service

(VBAVBS) of the 𝑀ଵ,௡/𝑀ଵ,௡/1 type under the assumption that the block size adaptation takes place

in a reactive manner after each round of block posting process and the size of the block (the block gas

limit) stays static throughout the block posting process.

Lastly, in order to allow a block size to be adaptive in a proactive manner, namely, the asynchronous

chain, the block size adaptation should take place on the fly such that the waiting time for a

transaction to be posted be strictly asynchronous to its arrival time (namely, the fully asynchronous

chain), or, at the most, be shorter than the possible maximum allowed block posting delay (e.g., block

gas limit) (namely, a non-fully asynchronous chain such as the staged asynchronous chain as

proposed in this paper). A variable bulk arrival and asynchronous bulk service of the 𝑀ଵ,௡/𝑀௜௞,௡/1

type can be considered, where 𝑖𝑘 indicates the staged group of states such that in the fully

asynchronous chain each state 𝑖 has only an arriving state transition from state 0 and only an outgoing

state transition back to state 0 in order to model the strict asynchrony; and in the staged asynchronous

chain the strict asynchrony is moderated to some extent by letting states in the range from 𝑖𝑘 + 1 to

(𝑖 + 1)𝑘 trigger state transition from 𝑙 to 𝑚, where 𝑖𝑘 + 1 ≤ 𝑙, 𝑚 ≤ (𝑖 + 1)𝑘 and 𝑙 < 𝑚 and (𝑖 +

1)𝑘 ≤ 𝑛.

The primary interest of the baseline chain in Chapter III is to develop an embedded Markovian

queueing model of the 𝑀ଵ,௡/𝑀௡/1 type in order to establish a theoretical foundation to design a

7

blockchain-based system with a focus on the stochastic behavior of the mined transactions waiting to

be posted for the block delay as the bulk synchronization point. The model assumes variable bulk

arrivals of transactions in Poisson distribution, i.e., 𝑀ଵ,௡, where 𝑛 the number of slots across all the

mined transactions and static bulk services of transactions in exponential time, i.e., 𝑀௡, for posting

in the current block, namely, a variable bulk arrival and variable bulk posting (VBASBP). The

primary performance measurements to be taken are the average number of slots no matter how many

transactions are mined under the assumption of the maximum number of slots per block as specified

by n, the average waiting time per slot, and the throughput in terms of the average number of slots to

be processed per time. The variable bulk arrival rate is assumed to vary linearly proportional to the

size of the transactions in a multiple of λ (note that there is only a single stage of a queue of waiting

transactions (in terms of slots) assumed for simplicity instead of assuming two independent arrival

rates of the transactions, one for the transaction pool and another for the waiting queue for the block

posting, thereby assuming only a single bulk arrival rate per slot λ, which might be to some extent

different in practice), and the static bulk service is assumed to take place when the number of slots in

the mined transactions reaches at 𝑛, i.e., a bulk processing of multiple transactions in multiple slots

for posting in a block.

In Chapter IV, with the baseline model of VBASBS (i.e., a 𝑀ଵ,௡/𝑀௡/1 type), the primary interest is

to develop an embedded Markovian queueing model of the 𝑀ଵ,௡/𝑀ଵ,௜,௡/1 type in order to establish a

quantitative foundation to design a blockchain-based system with a focus on the stochastic behavior

of the mined transactions waiting to be posted for the block time as potentially purging at every state,

which is possibly being from any state, 𝑃௜(0 ˂ 𝑖 ≤ 𝑛) back into the state, 𝑃଴. As in the baseline

model of VBASBS, the proposed model assumes variable bulk arrivals of transactions in Poisson

distribution, 𝑀ଵ,௡, where 𝑛 the number of slots across all the mined transactions, but, variable bulk

service of transactions in exponential time, 𝑀ଵ,௜,௡, for posting into the current block at any state in a

slot, VBAVBS. The primary performance measurements are to be taken in comparison with the

8

baseline model, such as the average number of slots no matter how many transactions are mined

under the assumption of the maximum number of slots per block as specified by 𝑛, the average

waiting time per slot, and the throughput in terms of the average number of slots to be processed per

time. The variable bulk arrival rate is assumed to vary linearly proportional to the size of the

transactions in a multiple of λ note that there is only a single stage of a queue of waiting transactions

(in terms of slots) assumed for simplicity instead of assuming two independent arrival rates of the

transactions, one for the transaction pool and another for the waiting queue for the block posting,

thereby assuming only a single bulk arrival rate per slot λ, which might be to some extent different in

practice, and the variable bulk service is assumed to take place when the number of slots in the mined

transactions reaches at any state, 1, 2, … , 𝑛 − 1, 𝑛, i.e., a bulk processing of single or multiple

transaction(s) in single or multiple slot(s) for posting in a block.

In Chapter V, with the baseline models of VBASBS (i.e., a 𝑀ଵ,௡/𝑀௡/1 type) and the adaptive model

VBAVBS (i.e., a 𝑀ଵ,௡/𝑀ଵ,௜,௡/1 type), the primary interest is to develop an embedded Markovian

queueing model of the asynchronous chain, namely a Variable Bulk Arrival and Asynchronous Bulk

Service (VBAABS) model is developed and presented to study and demonstrate the theoretical

performance of an asynchronous chain in order to establish a quantitative foundation to design a

blockchain-based system with a focus on the stochastic behavior of the mined transactions waiting to

be posted for the block time as potentially purging at every single state or every staged state(s). Two

types of asynchronous models are proposed as fully and staged asynchronous.

This dissertation is organized as follows. The preliminaries and review are introduced in the

following Chapter II. The baseline chain model, VBASBS, is proposed and the numerical analysis is

reviewed in Chapter III. The adaptive chain model, VBAVBS, is proposed and the numerical analysis

is compared with between VBASBS and VBAVBS in Chapter IV. The asynchronous chain models,

VBAABS, two different types of architecture, the fully asynchronous chain and the staged

9

asynchronous chain are proposed and the numerical analysis is reviewed in Chapter V. The

implementation and experimental results of the proposed four types of models are presented and

compared to the baseline chain model, VBASBS, to validate the efficacy and benefits of the rest of

the models, in addition, the experimental environment and procedure are shown in Chapter VI.

Lastly, the conclusion and discussions are drawn in Chapter VII.

10

CHAPTER II

PRELIMINARIES AND REVIEW

There have been a few works to address and investigate on various yet critical performance and

dependability issues and problems as identified in various blockchain-based crypto computing

systems. Various hypothetical and theoretical designs [6, 8, 9] of a few crypto computing

solutions have been developed in order to establish an engine for preliminary yet extensive

parametric simulation, and some results have been demonstrated and validated through isolated

testing on Ethereum and Hyperledger open source-based prototypes [20, 23, 24]. As the ultimate

quality of crypto computing will be determined by its likelihood to be performed as commanded

or desired, referred to as the dependability, those hypothetical and theoretical models emphasized

and centered around the dependability of each of those crypto solutions to accommodate such

capabilities as the on/off-balanced crypto computing [23], the real-time computing [24], the slim-

computing [21, 46] and the hybrid computing [45]. Dependability for each of those crypto

solutions has been identified and defined along with various performance variables and ultimately

has provided a theoretical yet practical understanding of each crypto solution.

11

A prototype, to demonstrate some of those crypto solutions and to validate their hypothetical and

theoretical results, has been built by identifying and isolating the insertion points for necessary

technology modification within Ethereum and Hyperledger open source to start out with and to

ultimately realize a new core blockchain for optimal crypto computing.

The on/off-balanced chain [23] has been proposed in order to investigate on how to assure the

dependability of a crypto system built across on and off the blockchain facilitated and coordinated

by using the proposed adaptive checkpoint and rollback algorithm. The theoretical foundation of

the proposed checkpoint and rollback algorithm is to characterize the variables affecting the

dependability such as security [49], authenticity and reliability with respect to the rates of hit by

any events of those issues, the rates to detect and diagnose, and then the rate to vote for a

consensus whether to mark a checkpoint and trigger a rollback or not. Based on the variables

characterization in a stochastic manner, the steady state probabilities and state transition

probabilities have been derived in order to assure the ultimate effective dependability of each

individual dependability variable (i.e., security, authenticity, and reliability) [47], then, finally to

assure the dependability in a compound manner with each variable assigned a weight depending

on the nature of the systems specifications. Based on the theoretical study [3, 21] a prototype of

the crypto system has been built to demonstrate the underlying architecture and operations and to

justify the need for such system to take synergistic advantages from both on- and off-chains, with

an experimental result of a benefit in gas fee [4, 7, 16] with respect to performance and

dependability, which is the most exigently addressed issue today in blockchain systems especially

in Ethereum network of blockchain. An astonishing result of gas fee saving has been

demonstrated. It is expected that the crypto system will benefit more if more computationally

intensive transactions are executed off-chain and vice versa. An isolated testing has been

conducted for a demonstration of the purpose on the proposed checkpoint and rollback algorithm

on Ethereum open source. The real-time chain [13, 19, 24] has been proposed in order to

12

investigate on an approach how to design and realize crypto computing (Ethereum blockchain-

based [16]) under the stringent real-time requirement. In order to evaluate the efficacy of the

approach, a new analytical metric has been defined and developed to estimate the dependability,

referred to as block-dependability. The proposed block-dependability precisely models the

probability for the mined transactions to be posted within the current, in other words, within the

target block delay, further, namely, within the deadline required if their expected execution times

are within the temporal range of the deadline. Various methods how to prioritize [17] and select

transactions in the pending transaction pool in order to facilitate those transactions to be executed

within their deadline requirements, such as the normal, random, sorted, and stratified [7], have

been proposed. A set of performance variables, or parameters, such as the number of pending

transactions in the pool, the average speed of the transactions, gas fees, deadlines as well as the

number of miners, are identified and taken into the block-dependability analysis in order to reveal

the influence of each variable on the block-dependability, versus each of those proposed

prioritization and selection methods. Extensive parametric simulations are being conducted

through an isolated testing on the Ethereum open source; the slim chain has been investigated in

[20] in order to address and resolve the scalability issue [55] of blockchain-based crypto

computing in which it is required that every node participating in the computation carry a full

load of the entire chain of blocks all the way from the genesis block. As evidenced from the

preliminary results of the on/off-balanced chain [23], the performance and dependability [20]

could be significantly improved by balancing the amount of computations across on- and off-

chains, which depends on the type of computations such that on-chain execution is more suitable

for more dependability-stringent or computation-intensive transactions, and off-chain for less

dependability-stringent or less data-intensive computation. A smart balancing of computation

across on/off-chain is expected to relieve the spatial and temporal overhead of managing the

otherwise explosively growing size of the blockchain, as referred to as a slim chain in this paper

13

(cf. the light chain is a technology to limit the temporal extent of the chain of blocks for

synchronization). A novel theoretical model has been developed to evaluate the efficacy of the

slim chain with respect to the dependability from a single transaction’s standpoint in a stochastic

manner. Further, the dependability will be traced with respect to whether the transaction of

concern is to write off the chain or read from off the chain as the transactions writing intensively

off the chain are more likely to be dependable than the ones reading intensively from off chain.

Also, note that IPFS (Inter-Planetary File System) [11, 16, 22] is the off-chain storage system to

be considered in the slim chain. A prototype with an isolated testing on the Ethereum open source

is being built for validation purpose along with extensive parametric simulations; and the hybrid

chain is being studied in order to investigate on a new blockchain network that is to be built

particularly across private (i.e., permissioned) and main nets (i.e., permissionless). Note that the

hybrid chain is distinguished from the earlier mentioned on/off-balanced chain such that the

hybrid chain is concerned across two different types of nets (e.g., Hyperledger-based private net

vs. Ethereum-based main net) while the on/off-balanced chain is concerned across on- and off-

chain (e.g., Ethereum-based main net vs. cloud or IPFS). It is essential to build a dependable

interface between the private network and the main network if business-to-consumer (or vice

versa) transactions are the primary transaction of interest. In the course of interfacing across the

private and the main nets, dependability is to be considered as one of the most critical design

factors in order to ensure that the private transactions stay within the private territory and

publicized transactions stay public in the main net, and further in order to facilitate a seamless yet

dependable migration of transactions across the border. In this context, the efficacy of the privacy

of the private network side and the publicity of the main net side is addressed and modeled by

tracing a transaction’s stochastic process at a steady state. A prototype for an isolated testing

across the Ethereum and Hypercubes open source for validation purposes is being built for

validation purposes along with extensive parametric simulations.

14

However, the dependability models or performance models in [20, 23, 24] cannot readily and

adequately address the queueing nature of the transactions flow and block posting other than that

they will provide a sound theoretical foundation for dependability analysis in various blockchain

contexts in line with the proposed VBASBS model. Ultimately, a synergistic model will be

highly desired and pursued to model and assure both the dependability and the performance as

two primary and concurrent variables of the blockchain system, thereby synergizing those

dependability models and the VBASBS model into a comprehensive and integrated analytical

design tool.

15

CHAPTER III

BASELINE CHAIN MODEL

The baseline model is proposed as named, Variable Bulk Arrival and Static Bulk Service

(VBASBS). In the proposed VBASBS model, an embedded Markovian single-server exponential

queueing system (i.e., 𝑀ଵ,௡/𝑀௡/1) is considered without loss of generality, and the server (e.g.,

the server is the equivalence of the group of miners to select the transactions to be posted) serves

the entire batch of customers (e.g., the customers are the equivalence of the transactions to be

posted in the block) in the queue (e.g., a queue is the equivalence of a block to be mined and

posted) all at once at the same time. Whenever the server completes a service (e.g., a service is an

equivalence a process of posting a block), it then purges the queue (e.g., the equivalence of the

posting a block) and then serves the influx of new customers incoming. Note that it is assumed

that the service takes place within a certain amount of time yet no transaction is assumed to arrive

in the meantime. However, note that it is not unlikely to have new customers arrive if a

significant amount of service time is assumed, from a practical point of consideration. It is

assumed that the service time is exponential at
ଵ

ఓ
 when the server is serving the entire queue (e.g.,

equivalently, posting and purging the entire queue).

16

Without loss of generality, it is assumed that customers arrive at an exponential rate of λ.

The underlying queueing process is assumed to take place with fixed-sized slots and the status of

the queue is determined by the number of slots.

Given the assumptions as made above, the proposed VBASBP model employs an embedded

Markovian queueing model and it defines the states as expressed in terms of the number of slots

assigned to a block and it traces the normalized number of slots allocated for the transactions in

steady state than the number of transactions whose size varies in the number of slots.

The state transition diagram of the baseline chain model is shown with all states, λ, and μ in

Figure 1.

Figure 1. State transition diagram of the baseline chain model

17

𝑃଴ : the state in which there is no transaction (i.e., no slot) arrived in the queue as of yet for the

posting in the block, currently.

𝑃௡ : the state in which there is 𝑛 number of slots (i.e., which is the capacity of the queue,

equivalently, the maximum number of slots set and voted by the miners or voters) arrived in the

queue for the posting in the block, currently.

𝑃௜ : the state in which there is 𝑖 number of slots (where 0 ˂ 𝑖 ˂ 𝑛) arrived in the queue for the

posting in the block, currently.

The random variables employed to express the state transition rates are specified as follows.

λ: the rate for a slot of a transaction to arrive, and the rate for a transaction to arrive is determined

by the number of slots allocated for the transaction in a prorated manner such that a transaction

with a size of 𝑗 number of slots arrives at the rate of 𝑗λ, without loss of generality and practicality

as well.

μ: the rate for the slots of the transactions in the entire queue to be posted and purged. Notice that

this is a single and unique state transition precisely from 𝑃௡ back to 𝑃଴.

The following Figure 2 shows the state transitions around 𝑃௜ for the balance equations.

Figure 2. State transition around 𝑃௜ for balance equations of the baseline chain model

18

1. Baseline Chain Model Equations

The balance equations for VBASBS are as follows.

(𝜆 + 2𝜆 + 3𝜆 + ⋯ + 𝑛𝜆)𝑃଴ = 𝜇𝑃௡

൬𝜆
𝑛(𝑛 + 1)

2
൰ 𝑃଴ = 𝜇𝑃௡

𝑃௡ =
𝜆

𝜇

𝑛(𝑛 + 1)

2
𝑃଴ (1)

The following Figure 3 shows all incoming transitions to 𝑃଴ are equal to all outgoing transitions

from 𝑃଴.

μ𝑃௡ = (𝜆 + 2𝜆 + ⋯ + (𝑛 − 2)𝜆 + (𝑛 − 1)𝜆 + 𝑛𝜆)𝑃଴

(𝜆 + 2𝜆 + 3𝜆 + ⋯ + (𝑛 − 𝑖)𝜆)𝑃௜ = 𝜆𝑃௜ିଵ + 2𝜆𝑃௜ିଶ + 3𝜆𝑃௜ିଷ + ⋯ + 𝑖𝜆𝑃଴ (2)

𝑃ଵ = 𝑞ଵ𝑃଴ (3)

19

Figure 3. State transition around 𝑃଴ for balance equations of the baseline chain model

From Equations (1), (2), and (3), 𝑃௜, 0 ˂ 𝑖 ˂ 𝑛, can be expressed in terms of 𝑃଴ as follows.

𝑃ଶ = 𝑞ଶ(𝑞ଵ + 2)𝑃଴ (4)

𝑃ଷ = 𝑞ଷ(𝑞ଶ(𝑞ଵ + 2) + 2𝑞ଵ + 3)𝑃଴ (5)

𝑃ସ = 𝑞ସ(𝑞ଷ(𝑞ଶ(𝑞ଵ + 2) + 2𝑞ଵ + 3) + 2𝑞ଶ(𝑞ଵ + 2) + 3𝑞ଵ + 4)𝑃଴ (6)

𝑃ସ = 𝑃଴𝑞ସ(1(𝑞ଷ𝑞ଶ𝑞ଵ + 𝑞ଷ𝑞ଶ2 + 𝑞ଷ3) + 2(𝑞ଶ𝑞ଵ + 𝑞ଶ2) + 3(𝑞ଵ) + 4) (7)

𝑃଴ + 𝑃ଵ + 𝑃ଶ + ⋯ + 𝑃௡ = 1 (8)

𝑃௜ can be generalized and expressed as follows.

𝑃௜ = 𝑞௜𝑃଴ ቎෍ 𝑗 ቎෍ ൥ෑ 𝑞௟

௞ିଵ

௟ୀଵ

൩

௜ିଵ

௞ୀଵ

𝑘቏

௜

௝ୀଵ

+ 𝑖቏ (9)

Where,

20

0 < 𝑖 < 𝑛

𝑞௜ =
2

(𝑛 − 𝑖)(𝑛 − 𝑖 + 1)

𝑞௟ =
2

(𝑛 − 𝑙)(𝑛 − 𝑙 + 1)

ෑ 𝑞௟

௞ିଵ

௟ୀଵ

= ෑ
2

(𝑛 − 𝑙)(𝑛 − 𝑙 + 1)

௞ିଵ

௟ୀଵ

=
2௞ିଵ

(𝑛!)ଶ

(𝑛 − 0)(𝑛 − 𝑘 + 1)

=
2௞ିଵ(𝑛)(𝑛 − 𝑘 + 1)

(𝑛!)ଶ
 (10)

Then, it can be expressed in Equation (11) as follows.

෍ ቌෑ 𝑞௟

௞ିଵ

௟ୀଵ

ቍ 𝑘

௜ିଵ

௞ୀଵ

= ෍ ቆ
2௞ିଵ(𝑛)(𝑛 − 𝑘 + 1)

(𝑛!)ଶ ቇ 𝑘

௜ିଵ

௞ୀଵ

 (11)

=
𝑛

(𝑛!)ଶ ൮(𝑛 + 1) ቌ ෍ 2௠

௜ିଶ

௠ୀ଴

𝑚ቍ − ቌ ෍ 2௠

௜ିଶ

௠ୀ଴

𝑚ଶቍ + ቆ𝑛
2൫2௜ିଶ − 1൯

(2 − 1)
ቇ൲ (12)

In Equation (12), there are two sigma forms to solve as follows.

The first sigma form ∑ 2௠𝑚௜ିଶ
௠ୀ଴ can be expressed as follows.

෍ 2௠

௜ିଶ

௠ୀ଴

𝑚 = 2଴0 + 2ଵ1 + 2ଶ2 + ⋯ + 2௜ିଷ(𝑖 − 3) + 2௜ିଶ(𝑖 − 2) = 2௜ିଵ(𝑖 − 3) + 2 (13)

21

The following Equation (14) rewrites equation (12) by taking Equation (13) in place.

෍ ቌෑ 𝑞௟

௞ିଵ

௟ୀଵ

ቍ 𝑘

௜ିଵ

௞ୀଵ

=
𝑛

(𝑛!)ଶ ൮(𝑛 + 1)൫2௜ିଵ(𝑖 − 3) + 2൯ − ቌ ෍ 2௠𝑚ଶ

௜ିଶ

௠ୀ଴

ቍ + ቆ𝑛
2൫2௜ିଶ − 1൯

(2 − 1)
ቇ൲ (14)

In Equation (14), another sigma form ∑ 2௠𝑚ଶ௜ିଶ
௠ୀ଴ can be expressed as in Equation (15).

෍ 2௠𝑚ଶ

௜ିଶ

௠ୀ଴

= 2(௜ିଵ)(𝑖ଶ − 6𝑖 + 11) − 6 (15)

Then, the following is obtained.

෍ ቌෑ 𝑞௟

௞ିଵ

௟ୀଵ

ቍ 𝑘

௜ିଵ

௞ୀଵ

=
𝑛

(𝑛!)ଶ
෍ ቀ2௞ିଵ(𝑛 − 𝑘 + 1)ቁ 𝑘

௜ିଵ

௞ୀଵ

=
௡

(௡!)మ ቆ(𝑛 + 1)൫2௜ିଵ(𝑖 − 3) + 2൯ + ൬𝑛
ଶ൫ଶ೔షమିଵ൯

(ଶିଵ)
൰ + ቀ(−1)൫2(௜ିଵ)(𝑖ଶ − 6𝑖 + 11) − 6൯ቁቇ (16)

Then, lastly, the following term can be solved as follows as shown in Equation (17).

22

෍ 𝑗 ቌ෍ ቌෑ 𝑞௟

௞ିଵ

௟ୀଵ

ቍ 𝑘

௜ିଵ

௞ୀଵ

ቍ

௜

௝ୀଵ

= ∑ 𝑗 ൭
௡

(௡!)మ ቆ(𝑛 + 1)൫2௜ିଵ(𝑖 − 3) + 2൯ + ൬𝑛
ଶ൫ଶ೔షమିଵ൯

(ଶିଵ)
൰ + ቀ(−1)൫2(௜ିଵ)(𝑖ଶ − 6𝑖 + 11) −௜

௝ୀଵ

6൯ቁቇ൱

= ∑ 𝑗 ቆ
௡

(௡!)మ ቀ൫2௜ିଵ𝑖𝑛 − 2௜ିଵ3𝑛 + 2𝑛 + 2௜ିଵ𝑖 − 2௜ିଵ3 + 2൯ + ൫2௜ିଵ𝑛 − 2𝑛൯ + ൫−2(௜ିଵ)𝑖ଶ +௜
௝ୀଵ

2(௜ିଵ)6𝑖 − 2(௜ିଵ)11 + 6൯ቁቇ

= ∑ 𝑗 ቆ
௡

(௡!)మ ቀ൫2௜ିଵ𝑖𝑛 − 2௜ିଵ3𝑛 + 2𝑛 + 2௜ିଵ𝑖 − 2௜ିଵ3 + 2൯ + ൫2௜ିଵ𝑛 − 2𝑛൯ +௜
௝ୀଵ

൫−2(௜ିଵ)𝑖ଶ + 2(௜ିଵ)6𝑖 − 2(௜ିଵ)11 + 6൯ቁቇ (17)

Taking the Stirling’s Approximation as shown in (18), Equation (17) can be rewritten as shown in

Equation (19).

𝑛! ~ √2𝜋𝑛 ቀ
௡

௘
ቁ

௡
 (18)

෍ 𝑗

⎝

⎜
⎛ 𝑛

ቀ√2𝜋𝑛 ቀ
𝑛
𝑒

ቁ
௡

ቁ
ଶ ቀ൫2௜ିଵ𝑖𝑛 − 2௜ିଵ3𝑛 + 2𝑛 + 2௜ିଵ𝑖 − 2௜ିଵ3 + 2൯ + ൫2௜ିଵ𝑛 − 2𝑛൯

௜

௝ୀଵ

+ ൫−2(௜ିଵ)𝑖ଶ + 2(௜ିଵ)6𝑖 − 2(௜ିଵ)11 + 6൯ቁ

⎠

⎟
⎞

 (19)

23

Where,

෍ 𝑗

௜

௝ୀଵ

= ൬
𝑖(𝑖 + 1)

2
൰

Equation (19) can be rewritten the equation as follows.

෍ 𝑗 ቌ෍ ቌෑ 𝑞௟

௞ିଵ

௟ୀଵ

ቍ 𝑘

௜ିଵ

௞ୀଵ

ቍ

௜

௝ୀଵ

+ 𝑖

= ൬
𝑖(𝑖 + 1)

2
൰ ൮

𝑛

ቀ√2𝜋𝑛 ቀ
𝑛
𝑒

ቁ
௡

ቁ
ଶ൲ ൫2௜ିଵ(𝑖𝑛 − 2𝑛 + 7𝑖 − 14 − 𝑖ଶ) + 8൯

Now, 𝑃௜ can be expressed as follows.

𝑃௜ = 𝑞௜𝑃଴ ൮ቀ
௜(௜ାଵ)

ଶ
ቁ ቌ

௡

൬√ଶగ௡ቀ
೙

೐
ቁ

೙
൰

మቍ ൫2௜ିଵ(𝑖𝑛 − 2𝑛 + 7𝑖 − 14 − 𝑖ଶ) + 8൯ + 𝑖൲ (20)

where,

0 ˂ 𝑖 ˂ 𝑛

24

𝑞௜ =
2

(𝑛 − 𝑖)(𝑛 − 𝑖 + 1)

𝑃௜ =
ଶ

(௡ି௜)(௡ି௜ାଵ)
𝑃଴ ൮ቀ

௜(௜ାଵ)

ଶ
ቁ

௡

൬√ଶగ௡ቀ
೙

೐
ቁ

೙
൰

మ ൫2௜ିଵ(𝑖𝑛 − 2𝑛 + 7𝑖 − 14 − 𝑖ଶ) + 8൯ + 𝑖൲

From Equation (8), 𝑃଴ + ∑ 𝑃௜
௡ିଵ
௜ୀଵ + 𝑃௡ = 1 and 𝑃଴ can be solved as shown in Equations (21),

(22), and (23).

𝑃଴

⎝

⎜
⎛

1 + ൮𝑞ଵ ቌ෍ 𝑗

ଵ

௝ୀଵ

+ 1ቍ൲ + ൮𝑞ଶ ቌ෍ 𝑗 ቌ෍ ቌෑ 𝑞௟

௞ିଵ

௟ୀଵ

ቍ

௜ିଵ

௞ୀଵ

𝑘ቍ

ଶ

௝ୀଵ

+ 2ቍ൲ + ⋯

+ ൮𝑞௡ିଵ ቌ෍ 𝑗 ቌ෍ ቌෑ 𝑞௟

௞ିଵ

௟ୀଵ

ቍ

௡ିଶ

௞ୀଵ

𝑘ቍ

௡ିଵ

௝ୀଵ

+ 2ቍ൲ +
𝜆

𝜇
൬

𝑛(𝑛 + 1)

2
൰

⎠

⎟
⎞

 = 1 (21)

𝑃଴

⎝

⎜
⎛

1 + ෍ ൮𝑞௜ ቌ෍ 𝑗 ቌ෍ ቌෑ 𝑞௟

௞ିଵ

௟ୀଵ

ቍ

௜ିଵ

௞ୀଵ

𝑘ቍ

௜

௝ୀଵ

+ 𝑖ቍ൲

௡ିଵ

௜ୀଵ

+
𝜆

𝜇
൬

𝑛(𝑛 + 1)

2
൰

⎠

⎟
⎞

= 1 (22)

𝑃଴ =
1

ቆ1 + ∑ ቀ𝑞௜൫∑ 𝑗൫∑ ൫∏ 𝑞௟
௞ିଵ
௟ୀଵ ൯௜ିଵ

௞ୀଵ 𝑘൯௜
௝ୀଵ + 𝑖൯ቁ௡ିଵ

௜ୀଵ +
𝜆
𝜇

൬
𝑛(𝑛 + 1)

2
൰ቇ

 (23)

25

From Equations (1), (8), and (9), all the remaining solutions for the balance equations for

VBASBS (i.e., 𝑃௡ from Equation (1) and 𝑃௜ from Equation (8)) can be obtained).

The followings are a few baseline performance measurements of primary interests in VBASBS.

𝐿ொ : the average number of customers (i.e., equivalently the average number of transactions) in

the queue (i.e., the block currently being mined).

𝐿ொ = ෍ 𝑖𝑃௜

௡

௜ୀ଴

 (24)

Where,

෍ 𝑖𝑃௜

௡

௜ୀ଴

= ෍ 𝑖 ൮𝑞௜𝑃଴ ቌ෍ 𝑗 ቌ෍ ቌෑ 𝑞௟

௞ିଵ

௟ୀଵ

ቍ 𝑘

௜ିଵ

௞ୀଵ

ቍ

௜

௝ୀଵ

+ 𝑖ቍ൲

௡

௜ୀ଴

𝑊ொ : the average amount of time a customer (i.e., equivalently, a transaction) in the queue (i.e.,

the block currently being mined).

𝑊ொ =
𝐿ொ

𝜆
 (25)

26

𝑊 : the average amount of time a customer (i.e., equivalently, a transaction) in the system (i.e.,

the transaction pool in the blockchain).

𝑊 = 𝑊ொ +
1

𝜇
 (26)

𝐿 : the average number of customers (i.e., equivalently, the average number of transactions) in the

system (i.e., the transaction pool in the blockchain).

𝐿 = 𝜆𝑊 (27)

27

2. Numerical Analysis

The primary objective of the simulation is to reveal the various preliminary performance of the

blockchain system of interest such as 𝐿ொ , 𝑊ொ , 𝑊, and 𝐿 versus 𝑛 (i.e., size of a block), 𝜆 (i.e.,

transaction arrival rate or speed), and
ଵ

ఓ
 (i.e., block posting time). Note that the block posting

time,
ଵ

ఓ
 , is fixed at 15 seconds (i.e., 𝜇 = 0.0667) in order to conduct the analysis under a

practical parametric condition as typical block delay is known to be about 15 seconds in

Ethereum. Note that this section is not to conduct a simulation to reveal against a particular

blockchain system but to demonstrate a valid and baseline simulation model in the context of a

queueing system.

The following graph plots 𝐿ொ (i.e., from Equation (24)) versus 𝑛 for given pairs of 𝜆 and 𝜇.

Figure 4. 𝐿ொ versus 𝑛 for given pairs of 𝜆 and 𝜇 of the baseline chain model

28

Figure 4 demonstrates the validity of the proposed VBASBS model. Under the assumptions on

the arrival rates and service times, it shows quite a monotonically increasing trend of the average

number of slots in a block as a representation of the number of transactions in a normalized

manner.

Notice that the average number of slots ultimately represents the population in the block on

average no matter how many transactions they belong to. In fact, each state 𝑃௜, 0 ≤ 𝑖 ≤ 𝑛,

represents a transaction with 𝑖 number of slots and its steady state probability represents the

normalized likelihood of the number of transactions of the size of 𝑖. Thus, it is claimed that 𝐿ொ =

 ∑ 𝑖𝑃௜
௡
௜ୀ଴ , has a valid representation of the average number of transactions in terms of the average

number of slots. In fact, tracking the number of slots facilitates the process of tracking the number

of transactions which otherwise would be complicated to track due to the variability of the sizes

of the transactions. Also, note that the arrival rates of lots (cf. transactions) at the transaction pool

(i.e., 𝐿) and at the block (i.e., 𝐿ொ) are assumed to be identical in this simulation, for simplicity

purpose, which might have been assumed differently if mandated to do so for practicality

purpose. The following observations are drawn from the simulation results in Figure 4: as the size

of the block increases, the average number of slots in the mined transactions to be posted in the

block increases slower as the arrival rate (i.e., 𝜆) decreases as expected and intuitively as well; the

unpopulated portion on average (i.e., 𝑛 − 𝐿ொ) is narrowing as the size of the block grows, which

is to do with the level of the arrival rate such that the higher the arrival rate goes, the narrower the

unpopulated portion turns; further, notice that 𝐿ொ grows monotonically without a sign of

saturation and it is speculated that the monotonicity is expected as the block is modeled to be

purged as soon as the number of slots in the mined transactions to be posted on the block hits 𝑛,

which does not lose any generality from the standpoint of a queue of mined transactions to be

29

posted on a block as is the underlying assumption of the proposed VBASBS model; and lastly,

notice that as the arrival rate grows higher, the growth rate of 𝐿ொ slows.

Note that an assumption is made for simplicity such that the block is to be purged back to 0 slot

status exactly when it hits 𝑛 without any consideration of non-full block posting, yet in practice, it

is not impossible to have a non-full block to be posted when, for instance, a huge transaction is

mined and might span across two or more number of blocks, which is left in this work as a future

work to be addressed and resolved.

The following graph plots 𝑊ொ (i.e., from Equation (26)) versus 𝑛 for given pairs of 𝜆 and 𝜇.

Figure 5. 𝑊ொ versus 𝑛 for given pairs of 𝜆 and 𝜇 in the baseline chain model

30

As the proposed VBASBS model has been validated in the simulation as shown in Figure 4

without loss of intuition, Figure 5 also demonstrates the average waiting time of the mined

transactions (or slots) for the posting on the block is proportional to
௅ೂ

ఒ
 in a monotonic manner. It

is observed that for a given size of the block, the waiting time picks up as the arrival rate 𝜆

decreases; and the growth rate of the waiting time steepens as the arrival rate 𝜆 decreases as well.

Figure 6 plots 𝑊 (i.e., from Equation (25)) versus 𝑛 for given pairs of 𝜆 and 𝜇.

Figure 6. 𝑊 versus 𝑛 for given pairs of 𝜆 and 𝜇 in the baseline chain model

31

Figure 6 demonstrates the waiting time of the pending transactions (in terms of slots) in the

transactions pool for the mining selection for the block, which is determined by 𝑊ொ +
ଵ

ఓ
 and it is

observed to be just a matter as much as
ଵ

ఓ
 added to 𝑊ொ resulting in a slight increase in time.

The following graph plots 𝐿 (i.e., from Equation (27)) versus 𝑛 for given pairs of 𝜆 and 𝜇.

Figure 7. 𝐿 versus 𝑛 for given pairs of 𝜆 and 𝜇 in the baseline chain model

32

Figure 7 demonstrates the average number of transactions in the transaction pool waiting for

mining selection and is determined by 𝐿 = 𝜆𝑊. It is observed that at the given arrival rates of 𝜆,

𝐿 is set to be slightly higher than 𝐿ொ at a given 𝑛, which is speculated such that the identical

arrival rates of 𝜆 as assumed accounts for it.

The throughput per block in the VBASBS model can be obtained in Equation (28).

𝛾 = 𝜇𝑃௡ = 𝜇
𝜆

𝜇

𝑛(𝑛 + 1)

2
𝑃଴ = 𝜆

𝑛(𝑛 + 1)

2
𝑃଴ (28)

The following graph plots γ versus 𝑛 for given pairs of 𝜆 and 𝜇. In Figure 8, it is observed that as

the size of the block (i.e., 𝑛) grows, γ increases; γ is independent of 𝜇 and solely affected by 𝜆;

and the higher 𝜆 picks up, the higher throughput achieved for a given size of the block, 𝑛.

Figure 8. 𝛾 versus 𝑛 for given pairs of 𝜆 and 𝜇 in the baseline chain model

33

CHAPTER IV

ADAPTIVE CHAIN MODEL

This chapter proposes an adaptive chain and presents a Variable Bulk Arrival and Variable Bulk

Service (VBAVBS) queueing model of the 𝑀ଵ,௡/𝑀ଵ,௜,௡/1 type in order to provide a quantitative

method to design an adaptive chain. The queueing model (i.e., VBASBS) of the type 𝑀ଵ,௡/𝑀௡/1

in Chapter III serves as the baseline for the proposed new model for the adaptive chain. The

adaptive model assumes variable bulk arrivals of transactions in Poisson distribution, i.e., 𝑀ଵ,௡,

where 𝑛 represents the number of slots across all the mined transactions, and variable bulk

services of transactions, each of which applies to a block potentially of different capacity in terms

of the number of slots in it, in exponential time, i.e., 𝑀ଵ,௜,௡, for posting in the current block,

namely, VBAVBS. The difference between VBASBS and VBAVBS is that in VBASBS, the state

𝑃௡ is the only state to transition back into 𝑃଴ (i.e., the capacity of the block is constant

throughout) while in VBAVBS, every state 𝑃௜, 0 ˂ 𝑖 ≤ 𝑛, potentially transitions back into 𝑃଴ (i.e.,

the capacity of the block is variable adapting to a certain criteria as desired, e.g., asynchronous

transactions control and any other stringent requirements imposed on the execution time of

transactions), which is the major contribution of this research.

34

VBAVBS will reveal the performance advantages of the adaptive chain versus the baseline chain,

i.e., VBASBS, with respect to the average time for a slot to stay (or wait) in the block and the

average spatial requirement by the slots in the block. Numerical simulations are conducted on

Matlab to compute the models and a comparative study will be demonstrated on VBAVBS versus

VBASBS.

The state for the adaptive chain is basically identical to and only the state transition probabilities

differ from the ones in VBASBS. The random variables employed to express the state transition

rates are shown in Figure 9 and defined as follows.

𝑃଴ : the state in which there is no transaction (i.e., no slot) arrived in the queue as of yet for the

posting in the block, currently.

𝑃௡ : the state in which there is 𝑛 number of slots (i.e., which is the capacity of the queue,

equivalently, the maximum number of slots set and voted by the miners or voters) arrived in the

queue for the posting in the block, currently.

𝑃௜ : the state in which there is 𝑖 number of slots (where 0 ˂ 𝑖 ˂ 𝑛) arrived in the queue for the

posting in the block, currently.E

The random variables employed to express the state transition rates are specified as follows.

λ: the rate for a slot of a transaction to arrive, and the rate for a transaction to arrive is determined

by the number of slots allocated for the transaction in a prorated manner such that a transaction

with a size of 𝑗 number of slots arrives at the rate of 𝑗λ, without loss of generality and practicality

as well.

35

μ: the rate for the slots of the transactions in the entire queue to be posted and purged. Notice that

this is an every state transition precisely from 𝑃௡ back to 𝑃଴, 𝑃௡ିଵ back to 𝑃଴,…, 𝑃ଶ back to 𝑃଴,

and 𝑃ଵ back to 𝑃଴ with
ఓ

௡ି(௡ିଵ)
,

ఓ

௡ି൫(௡ିଵ)ିଵ൯
, … ,

ఓ

௡ିଵ
, and

ఓ

௡
 respectively. The balance equations

for the adaptive chain model are as follows.

Figure 9. State transition diagram of the adaptive chain model

36

1. Adaptive Chain Model Equations

The balance equations for VBAVBS are as follows.

(𝜆 + 2𝜆 + 3𝜆 + ⋯ + 𝑛𝜆)𝑃଴ = 𝜆
𝑛(𝑛 + 1)

2
𝑃଴

ቆ𝜆
𝑛(𝑛 + 1)

2
ቇ 𝑃଴ =

𝜇

𝑛
𝑃ଵ +

𝜇

𝑛 − 1
𝑃ଶ +

𝜇

𝑛 − 2
𝑃ଷ + ⋯ + 𝜇𝑃௡

= 𝜇 ൬
1

𝑛
𝑃ଵ +

1

𝑛 − 1
𝑃ଶ + ⋯ +

1

2
𝑃௡ିଵ + 𝑃௡൰

൬𝜆 + 2𝜆 + 3𝜆 + ⋯ + (𝑛 − 𝑖)𝜆 +
𝜇

𝑛 − (𝑖 − 1)
൰ 𝑃௜

= 𝜆𝑃௜ିଵ + 2𝜆𝑃௜ିଶ + 3𝜆𝑃௜ିଷ + (𝑖 − 1)𝜆𝑃ଵ + 𝑖𝜆𝑃଴

Where,

0 ˂ 𝑖 ≤ 𝑛,

Figure 10 shows the state transition diagram around 𝑃௜ of adaptive chain model. All outgoing

transitions equal all incoming transitions for 𝑃௜.

Figure 10. State transition diagram around 𝑃௜ of the adaptive chain model

37

It can be expressed as 𝑖 = 1, 2, 3, … , 𝑛, and find a generalized form as the following steps.

𝑖 = 1,

𝜆 ቆ
(𝑛 − 1)(𝑛)

2
+

𝜇

𝜆(𝑛)
ቇ 𝑃ଵ = 𝜆𝑃଴

𝑃ଵ = ቆ
(𝑛 − 1)(𝑛)

2
+

𝜇

𝜆(𝑛)
ቇ

ିଵ

𝑃଴

𝑃ଵ = 𝑞ଵ
ିଵ𝑃଴

𝑞ଵ =
(𝑛 − 1)(𝑛)

2
+

𝜇

𝜆(𝑛)

𝑖 = 2,

𝜆 ቆ
(𝑛 − 2)(𝑛 − 1)

2
+

𝜇

𝜆(𝑛 − 1)
ቇ 𝑃ଶ = 𝜆𝑃ଵ + 2𝜆𝑃଴

Where,

𝑃ଵ = ቆ
(𝑛 − 1)(𝑛)

2
+

𝜇

𝜆(𝑛)
ቇ

ିଵ

𝑃଴

𝑃ଶ = ቆ
(𝑛 − 2)(𝑛 − 1)

2
+

𝜇

𝜆(𝑛 − 1)
ቇ

ିଵ

(𝑃ଵ + 2𝑃଴)

𝑃ଶ = ቆ
(𝑛 − 2)(𝑛 − 1)

2
+

𝜇

𝜆(𝑛 − 1)
ቇ

ିଵ

൭ ቆ
(𝑛 − 1)(𝑛)

2
+

𝜇

𝜆(𝑛)
ቇ

ିଵ

𝑃଴ + 2𝑃଴൱

𝑞ଶ =
(𝑛 − 2)(𝑛 − 1)

2
+

𝜇

𝜆(𝑛 − 2)

38

𝑃ଶ = 𝑞ଶ
ିଵ(𝑞ଵ

ିଵ𝑃଴ + 2𝑃଴) = 𝑞ଶ
ିଵ(𝑞ଵ

ିଵ + 2)𝑃଴

𝑃ଶ = 𝑞ଶ
ିଵ(𝑞ଵ

ିଵ + 2)𝑃଴

𝑖 = 3,

𝜆 ቆ
(𝑛 − 3)(𝑛 − 2)

2
+

𝜇

𝜆(𝑛 − 2)
ቇ 𝑃ଷ = 𝜆𝑃ଶ + 2𝜆𝑃ଵ + 3𝜆𝑃଴

Where,

𝑃ଵ = 𝑞ଵ
ିଵ𝑃଴

𝑃ଶ = 𝑞ଶ
ିଵ(𝑞ଵ

ିଵ + 2)𝑃଴

𝑃ଷ = 𝑞ଷ
ିଵ൫ 𝑞ଶ

ିଵ(𝑞ଵ
ିଵ + 2) + 2𝑞ଵ

ିଵ + 3൯𝑃଴

𝑞ଷ =
(𝑛 − 3)(𝑛 − 2)

2
+

𝜇

𝜆(𝑛 − 2)

𝑖 = 4,

𝜆 ቆ
(𝑛 − 4)(𝑛 − 3)

2
+

𝜇

𝜆(𝑛 − 3)
ቇ 𝑃ସ = 𝜆𝑃ଷ + 2𝜆𝑃ଶ + 3𝜆𝑃ଵ + 4𝜆𝑃଴

Where,

𝑃ଵ = 𝑞ଵ
ିଵ𝑃଴

𝑃ଶ = 𝑞ଶ
ିଵ(𝑞ଵ

ିଵ + 2)𝑃଴

𝑃ଷ = 𝑞ଷ
ିଵ൫ 𝑞ଶ

ିଵ(𝑞ଵ
ିଵ + 2) + 2𝑞ଵ

ିଵ + 3൯𝑃଴

39

𝑃ସ = 𝑞ସ
ିଵ൫ 𝑞ଷ

ିଵ൫ 𝑞ଶ
ିଵ(𝑞ଵ

ିଵ + 2) + 2𝑞ଵ
ିଵ + 3൯ + 2(𝑞ଶ

ିଵ(𝑞ଵ
ିଵ + 2) + 3𝑞ଵ

ିଵ + 4൯𝑃଴

𝑃ସ = 𝑞ସ
ିଵ൫𝑞ଷ

ିଵ𝑞ଶ
ିଵ𝑞ଵ

ିଵ + 2𝑞ଷ
ିଵ𝑞ଶ

ିଵ + 2𝑞ଷ
ିଵ𝑞ଵ

ିଵ + 3𝑞ଷ
ିଵ + 2𝑞ଶ

ିଵ 𝑞ଵ
ିଵ + 4𝑞ଶ

ିଵ

+ 3𝑞ଵ
ିଵ + 4൯𝑃଴

𝑞ସ =
(𝑛 − 4)(𝑛 − 3)

2
+

𝜇

𝜆(𝑛 − 3)

The generalized form is as follows.

𝜆 ቆ
(𝑛 − 𝑖)(𝑛 − 𝑖 + 1)

2
+

𝜇

𝜆(𝑛 − 𝑖 + 1)
ቇ 𝑃௜

= 𝜆𝑃௜ିଵ + 2𝜆𝑃௜ିଶ + ⋯ + (𝑖 − 1)𝜆𝑃௜ି(௜ିଵ) + 𝑖𝜆𝑃௜ି௜ (29)

Where,

0 ˂ 𝑖 ≤ 𝑛,

𝑞௜ =
(𝑛 − 𝑖)(𝑛 − 𝑖 + 1)

2
+

𝜇

𝜆(𝑛 − 𝑖 + 1)

From Equation (29), it can get 𝑃௜ as following expressions.

𝜆𝑞௜𝑃௜ = 𝜆𝑃௜ିଵ + 2𝜆𝑃௜ିଶ + ⋯ + (𝑖 − 1)𝜆𝑃௜ି(௜ିଵ) + 𝑖𝜆𝑃௜ି௜

𝑃௜ = 𝑞௜
ିଵ൫𝑃௜ିଵ + 2𝑃௜ିଶ + ⋯ + (𝑖 − 1)𝑃௜ି(௜ିଵ) + 𝑖𝑃௜ି௜൯

From Equation (29), all outgoing transitions from 𝑃௜ equal all incoming transitions to 𝑃௜, which

can be expressed as follows.

40

൬𝜆 + 2𝜆 + 3𝜆 + ⋯ + (𝑛 − 𝑖)𝜆 +
𝜇

𝑛 − (𝑖 − 1)
൰ 𝑃௜

= 𝜆𝑃௜ିଵ + 2𝜆𝑃௜ିଶ + 3𝜆𝑃௜ିଷ + ⋯ (𝑖 − 1)𝜆𝑃ଵ + 𝑖𝜆𝑃଴

ቆ𝜆 ቆ
(𝑛 − 𝑖)(𝑛 − 𝑖 + 1)

2
ቇ +

𝜇

𝑛 − (𝑖 − 1)
ቇ 𝑃௜

= 𝜆𝑃௜ିଵ + 2𝜆𝑃௜ିଶ + 3𝜆𝑃௜ିଷ + ⋯ (𝑖 − 1)𝜆𝑃ଵ + 𝑖𝜆𝑃଴

From all the way steps above, it can be a generalized form of 𝑃௜ as follows.

𝑃௜ = 𝑞௜
ିଵ𝑃଴ ቎෍ 𝑗 ቎෍ 𝑘 ൥ෑ 𝑞௟

ିଵ

௞ିଵ

௟ୀଵ

൩

௜ିଵ

௞ୀଵ

቏

௜

௝ୀଵ

+ 𝑖቏ (30)

Where,

0 < 𝑖 ≤ 𝑛

𝑞௜
ିଵ = ቆ

(𝑛 − 𝑖)(𝑛 − 𝑖 + 1)

2
+

𝜇

𝜆(𝑛 − 𝑖 + 1)
ቇ

ିଵ

=
2𝜆(𝑛 − 𝑖 + 1)

(𝑛 − 𝑖)𝜆(𝑛 − 𝑖 + 1)ଶ + 2𝜇
 (31)

It can be expressed by 𝑃௜ by inserting 𝑞௜
ିଵ Equation (31) into Equation (30) as following

Equations (32).

41

𝑃௜

= ቆ
2𝜆(𝑛 − 𝑖 + 1)

(𝑛 − 𝑖)𝜆(𝑛 − 𝑖 + 1)ଶ + 2𝜇
ቇ 𝑃଴ ቎෍ 𝑗 ቎෍ 𝑘 ൥ෑ ቆ

2𝜆(𝑛 − 𝑖 + 1)

(𝑛 − 𝑖)𝜆(𝑛 − 𝑖 + 1)ଶ + 2𝜇
ቇ

௞ିଵ

௟ୀଵ

൩

௜ିଵ

௞ୀଵ

቏

௜

௝ୀଵ

+ 𝑖቏ (32)

From Equation (8), it can be expressed in Equation (33) and (34).

𝑃଴ ൭1 + ෍ 𝑃௜

௡

௜ୀଵ

൱ = 1 (33)

𝑃଴ =
1

൫1 + ∑ 𝑃௜
௡
௜ୀଵ ൯

 (34)

It shows transitions from 𝑃௡ with 𝜇 to 𝑃଴ equals all outgoing transitions from 𝑃଴ with 𝜆 to 𝑃௡ in

Equation (35) and (36).

𝜇

𝑛 − (𝑛 − 1)
𝑃௡ = 𝜆

𝑛(𝑛 + 1)

2
𝑃଴ (35)

𝑃௡ =
𝜆

𝜇

𝑛(𝑛 + 1)

2
𝑃଴ (36)

Then, the following Equation (37) and Equation (38) can be used to compute 𝑃଴.

𝑃଴ + 𝑃ଵ + 𝑃ଶ + ⋯ 𝑃௡ିଵ + 𝑃௡ = 1 (37)

It can be expressed as follows.

𝑃଴ + ෍ 𝑃௜

௡ିଵ

௜ୀଵ

+ 𝑃௡ = 1 (38)

42

From the generalized expression 𝑃௜, the first inner production calculation is shown in the

following Equations. The calculation inner product is expressed as a closed-form solution, but

there are two imaginary numbers and one real number from the cubic equation denominated in

the product equation. It shows three steps to solve the generalized form as following Equations

(39), (40), and (41).

First, it is described to find a solution as a closed-form as follows.

ෑ 𝑞௟
ିଵ

௞ିଵ

௟ୀଵ

= ෑ ቆ
2𝜆(𝑛 − 𝑙 + 1)

(𝑛 − 𝑙)𝜆(𝑛 − 𝑙 + 1)ଶ + 2𝜇
ቇ

௞ିଵ

௟ୀଵ

= ෑ ቆ
2𝜆(𝑛 − 𝑙 + 1)

−𝜆𝑙ଷ + 𝜆𝑙ଶ(3𝑛 + 2) − 𝜆𝑙(𝑛ଶ − 4𝑛 − 1) + 𝜆𝑛ଷ + 2𝜆𝑛ଶ + 𝜆𝑛 + 2𝜇
ቇ

௞ିଵ

௟ୀଵ

 (39)

=
∏ 2𝜆(𝑛 − 𝑙 + 1)௞ିଵ

௟ୀଵ

−𝜆 ∏ (𝑙 − 𝑟ଵ)௞ିଵ
௟ୀଵ ∏ (𝑙 − 𝑟ଶ)௞ିଵ

௟ୀଵ ∏ (𝑙 − 𝑟ଷ)௞ିଵ
௟ୀଵ

=

−2
𝑛!

൫𝑛 − (𝑘 − 1)൯!

(1 − 𝑟ଵ)!
(𝑘 − 𝑟ଵ)!

(1 − 𝑟ଶ)!
(𝑘 − 𝑟ଶ)!

(1 − 𝑟ଷ)!
(𝑘 − 𝑟ଷ)!

=
1

(1 − 𝑟ଵ)!
(−𝑛 + 1 − 𝑟ଵ)!

(1 − 𝑟ଶ)!
(−𝑛 + 1 − 𝑟ଶ)

(1 − 𝑟ଷ)!
! (−𝑛 + 1 − 𝑟ଷ)!

 (40)

Where,

43

Taking a partial fraction of the cubic equation from the denominator and the nominator is to be 1

as follows.

−2
𝑛!

൫𝑛 − (𝑘 − 1)൯!
= 1

𝑛!

൫𝑛 − (𝑘 − 1)൯!
= −

1

2

𝑘 = −𝑛 + 1 (41)

By Equation (41), the value 𝑘 is applied to Equation (40).

Second, the calculation of the outer sum of the first product is shown as follows.

෍ 𝑘 ൦
1

൬
(1 − 𝑟ଵ)!

(−𝑛 + 1 − 𝑟ଵ)!
൰ ൬

(1 − 𝑟ଶ)!
(−𝑛 + 1 − 𝑟ଶ)

൰ ൬
(1 − 𝑟ଷ)!

(−𝑛 + 1 − 𝑟ଷ)!
൰

൪

௜ିଵ

௞ୀଵ

=
(𝑖 − 1)𝑖

2
൮

1

൬
(1 − 𝑟ଵ)!

(−𝑛 + 1 − 𝑟ଵ)!
൰ ൬

(1 − 𝑟ଶ)!
(−𝑛 + 1 − 𝑟ଶ)

൰ ൬
(1 − 𝑟ଷ)!

(−𝑛 + 1 − 𝑟ଷ)!
൰

൲

Third, as a final step, the outside sum of the given equation can be solved in Equation (42).

෍ 𝑗 ൦
(𝑖 − 1)𝑖

2
൮

1

൬
(1 − 𝑟ଵ)!

(−𝑛 + 1 − 𝑟ଵ)!
൰ ൬

(1 − 𝑟ଶ)!
(−𝑛 + 1 − 𝑟ଶ)

൰ ൬
(1 − 𝑟ଷ)!

(−𝑛 + 1 − 𝑟ଷ)!
൰

൲൪

௜

௝ୀଵ

44

=
𝑖(𝑖 + 1)

2

⎝

⎜
⎛(𝑖 − 1)𝑖

2
൮

1

൬
(1 − 𝑟ଵ)!

(−𝑛 + 1 − 𝑟ଵ)!
൰ ൬

(1 − 𝑟ଶ)!
(−𝑛 + 1 − 𝑟ଶ)

൰ ൬
(1 − 𝑟ଷ)!

(−𝑛 + 1 − 𝑟ଷ)!
൰

൲

⎠

⎟
⎞

=
𝑖ସ − 𝑖ଶ

4
൮

1

൬
(1 − 𝑟ଵ)!

(−𝑛 + 1 − 𝑟ଵ)!
൰ ൬

(1 − 𝑟ଶ)!
(−𝑛 + 1 − 𝑟ଶ)

൰ ൬
(1 − 𝑟ଷ)!

(−𝑛 + 1 − 𝑟ଷ)!
൰

൲ (42)

𝑟ଵ, 𝑟ଶ, and 𝑟ଷ can be formed from the following equations such that the denominator, Equation

(42),
(ଵି௥భ)!

(ି௡ାଵି௥భ)!

(ଵି௥మ)!

(ି௡ାଵି௥మ)!
, and

(ଵି௥య)!

(ି௡ାଵି௥య)!
 can be obtained from the cubic formula that has three

roots. One real number is 𝑟ଵ and two imaginary numbers are 𝑟ଶ and 𝑟ଷ. Taking the Stirling’s

approximation, the denominator in Equation (42) can be obtained as follows.

(1 − 𝑟ଵ)! = ඥ2𝜋(1 − 𝑟ଵ) ൬
1 − 𝑟ଵ

𝑒
൰

(ଵି௥భ)

(1 − 𝑟ଶ)! = ඥ2𝜋(1 − 𝑟ଶ) ൬
1 − 𝑟ଶ

𝑒
൰

(ଵି௥మ)

(1 − 𝑟ଷ)! = ඥ2𝜋(1 − 𝑟ଷ) ൬
1 − 𝑟ଷ

𝑒
൰

(ଵି௥య)

(−𝑛 + 1 − 𝑟ଵ)! = ඥ2𝜋(−𝑛 + 1 − 𝑟ଵ) ቆ
(−𝑛 + 1 − 𝑟ଵ)

𝑒
ቇ

(ି௡ାଵି௥భ)

(−𝑛 + 1 − 𝑟ଶ)! = ඥ2𝜋(−𝑛 + 1 − 𝑟ଶ) ቆ
(−𝑛 + 1 − 𝑟ଶ)

𝑒
ቇ

(ି௡ାଵି௥మ)

(−𝑛 + 1 − 𝑟ଷ)! = ඥ2𝜋(−𝑛 + 1 − 𝑟ଷ) ቆ
(−𝑛 + 1 − 𝑟ଷ)

𝑒
ቇ

(ି௡ାଵି௥య)

45

From the above equations, 𝑟ଵ, 𝑟ଶ, and 𝑟ଷ can be further derived by the following method.

𝑟ଵ = 𝑆 + 𝑇 −
𝑏

3𝑎

𝑟ଶ = −
𝑆 + 𝑇

2
−

𝑏

3𝑎
+

𝑖√3

2
(𝑆 − 𝑇)

𝑟ଷ = −
𝑆 + 𝑇

2
−

𝑏

3𝑎
−

𝑖√3

2
(𝑆 − 𝑇)

Where,

𝑎 = −𝜆

𝑏 = 𝜆(3𝑛 + 1)

𝑐 = −𝜆(𝑛ଶ − 4𝑛 − 1)

𝑑 = 𝜆𝑛ଷ + 2𝜆𝑛ଶ + 𝜆𝑛 + 2𝜇

𝑆 = ට𝑅 + ඥ𝑄ଷ + 𝑅ଶ
య

𝑇 = ට𝑅 − ඥ𝑄ଷ + 𝑅ଶ
య

𝑄 =
3𝑎𝑐 − 𝑏ଶ

9𝑎ଶ

𝑅 =
9𝑎𝑏𝑐 − 27𝑎ଶ𝑑 − 2𝑏ଷ

54𝑎ଷ

By given the coefficient of the cubic equation, it is generated the 𝑄, 𝑅, 𝑆, 𝑇, 𝑟ଵ, 𝑟ଶ, and 𝑟ଷ as

following Equations (43), (44), (45), (46), (47), (48), and (49) respectively.

46

𝑄 =
3(−𝜆)൫−𝜆(𝑛ଶ − 4𝑛 − 1)൯ − ൫𝜆(3𝑛 + 1)൯

ଶ

9(−𝜆)ଶ

=
3𝜆ଶ(𝑛ଶ − 4𝑛 − 1) − ൫𝜆ଶ(9𝑛ଶ + 6𝑛 + 1)൯

9𝜆ଶ

=
(3𝜆ଶ𝑛ଶ − 3𝜆ଶ4𝑛 − 3𝜆ଶ) − 9𝑛ଶ𝜆ଶ − 6𝑛𝜆ଶ − 𝜆ଶ

9𝜆ଶ

=
−6𝜆ଶ𝑛ଶ − 18𝜆ଶ𝑛 − 4𝜆ଶ

9𝜆ଶ
 (43)

𝑅 =
ଽ(ିఒ)൫ఒ(ଷ௡ାଵ)൯ቀିఒ൫௡మିସ௡ିଵ൯ቁିଶ଻(ିఒ)మ൫ఒ௡యାଶఒ௡మାఒ௡ାଶఓ൯ିଶ൫ఒ(ଷ௡ାଵ)൯

య

ହସ(ିఒ)య

=
ቀଽఒయ൫ଷ௡యିଵଵ௡మି଻௡ିଵ൯ቁିଶ଻ఒమ൫ఒ௡యାଶఒ௡మାఒ௡ାଶ ൯ିଶఒయ൫ଶ଻௡యାଶ଻௡మାଽ௡ାଵ൯

ିହସఒయ

=
൫ଶ଻ య௡యିଽଽఒయ௡మି଺ଷఒయ௡ିଽఒయ൯ା൫ିଶ଻ఒయ௡యିହସఒయ௡మିଶ଻ఒయ௡ିହସఒమఓ൯ା൫ିହସఒయ௡యିହସఒయ௡మିଵ଼ఒయ௡ିଶఒయ൯

ିହସఒయ

=
൫ିଶ଴଻ఒయ௡మିଵଵ଼ఒయ௡ିଵଵఒయ൯ା൫ିହସఒమఓ൯ା൫ିହସఒయ௡య൯

ିହସఒయ (44)

𝑆 = ට
(ିଶ଴଻ఒయ௡మିଵଵ଼ఒయ௡ିଵଵఒయ)ା(ିହସఒమఓ)ା(ିହସఒయ௡య)

ିହସఒయ
య

+ඨටቀ
ି଺ఒమ௡మିଵ଼ఒమ௡ିସఒమ

ଽఒమ ቁ
ଷ

+ ቀ
(ିଶ଴଻ఒయ௡మିଵଵ଼ఒయ௡ିଵଵఒయ)ା(ିହସఒమఓ)ା(ିହସఒయ௡య)

ିହସఒయ ቁ
ଶయ

 (45)

𝑇 = ට
(ିଶ଴଻ఒయ௡మିଵଵ଼ఒయ௡ିଵଵఒయ)ା(ିହସఒమఓ)ା(ିହସఒయ௡య)

ିହସఒయ

య

47

−ඨටቀ
ି଺ఒమ௡మିଵ଼ఒమ௡ିସఒమ

ଽఒమ ቁ
ଷ

+ ቀ
(ିଶ଴଻ఒయ௡మିଵଵ଼ఒయ௡ିଵଵఒయ)ା(ିହସఒమఓ)ା(ିହସఒయ௡య)

ିହସఒయ ቁ
ଶయ

 (46)

𝑟ଵ = 𝑆 + 𝑇 −
𝜆(3𝑛 + 1)

3(−𝜆)
 (47)

𝑟ଶ = −
1

2
(𝑆 + 𝑇) −

𝜆(3𝑛 + 1)

3(−𝜆)
+

𝑖√3

2
(𝑆 − 𝑇) (48)

𝑟ଷ = −
1

2
(𝑆 + 𝑇) −

𝜆(3𝑛 + 1)

3(−𝜆)
−

𝑖√3

2
(𝑆 − 𝑇) (49)

 Now, 𝑃௜ can be expressed as follows.

𝑃௜ =
2𝜆(𝑛 − 𝑖 + 1)

(𝑛 − 𝑖)𝜆(𝑛 − 𝑖 + 1)ଶ + 2𝜇
𝑃଴ ቈ

𝑖ସ − 𝑖ଶ

4
൬

1

 𝐴𝐵𝐶
൰ + 𝑖቉ (50)

Where,

𝐴 =
ඥ2𝜋(1 − 𝑟ଵ) ቀ

1 − 𝑟ଵ
𝑒

ቁ
(ଵି௥భ)

ඥ2𝜋(−𝑛 + 1 − 𝑟ଵ) ൬
(−𝑛 + 1 − 𝑟ଵ)

𝑒
൰

(ି௡ାଵି௥భ)

𝐵 =
ඥ2𝜋(1 − 𝑟ଶ) ቀ

1 − 𝑟ଶ
𝑒

ቁ
(ଵି௥మ)

ඥ2𝜋(−𝑛 + 1 − 𝑟ଶ) ൬
(−𝑛 + 1 − 𝑟ଶ)

𝑒
൰

(ି௡ାଵି௥మ)

𝐶 =
ඥ2𝜋(1 − 𝑟ଷ) ቀ

1 − 𝑟ଷ
𝑒

ቁ
(ଵି௥య)

ඥ2𝜋(−𝑛 + 1 − 𝑟ଷ) ൬
(−𝑛 + 1 − 𝑟ଷ)

𝑒
൰

(ି௡ାଵି௥య)

48

Due to the two imaginary roots from the cubic formula equation, it has been shown to express all

the steps to find a closed-form that has two imaginary roots in the closed-form in Equation (50).

To avoid the imaginary value number in the result, it simulated the formula before going to get

the two imaginary roots in Equation (48). From Equation (38), 𝑃଴ + ∑ 𝑃௜
௡ିଵ
௜ୀଵ + 𝑃௡ = 1 and 𝑃଴ can

be solved as shown in Equations (51), (52), and (53).

𝑃଴ ൮1 + (𝑞ଵ ቎෍ 𝑗

ଵ

௝ୀଵ

+ 1቏) + (𝑞ଶ ቎෍ 𝑗 ቎෍ ൥ෑ 𝑞௟

௞ିଵ

௟ୀଵ

൩

௜ିଵ

௞ୀଵ

𝑘቏

ଶ

௝ୀଵ

+ 2቏) + ⋯

+ (𝑞௡ିଵ ቎෍ 𝑗 ൥෍ ൥ෑ 𝑞௟

௞ିଵ

௟ୀଵ

൩

௡ିଶ

௞ୀଵ

𝑘൩

௡ିଵ

௝ୀଵ

+ 2቏) +
𝜆

𝜇
൬

𝑛(𝑛 + 1)

2
൰൲ = 1 (51)

𝑃଴ ൮1 + ෍ ቌ𝑞௜ ቎෍ 𝑗 ቎෍ ൥ෑ 𝑞௟

௞ିଵ

௟ୀଵ

൩

௜ିଵ

௞ୀଵ

𝑘቏

௜

௝ୀଵ

+ 𝑖቏ቍ

௡ିଵ

௜ୀଵ

+
𝜆

𝜇
൬

𝑛(𝑛 + 1)

2
൰൲ = 1 (52)

𝑃଴ =
1

൤1 + ∑ ൫𝑞௜ൣ∑ 𝑗ൣ∑ ൣ∏ 𝑞௟
௞ିଵ
௟ୀଵ ൧௜ିଵ

௞ୀଵ 𝑘൧௜
௝ୀଵ + 𝑖൧൯௡ିଵ

௜ୀଵ +
𝜆
𝜇

൬
𝑛(𝑛 + 1)

2
൰൨

 (53)

The performance measurements of primary interests in the adaptive model are expressed in

𝐿ொ , 𝑊ொ , 𝑊, 𝐿, and 𝛾 as following Equations respectively.

49

𝐿ொ : the average number of customers (i.e., equivalently the average number of transactions) in

the queue (i.e., the block currently being mined).

𝐿ொ = ෍ 𝑖𝑃௜

௡

௜ୀ଴

𝑊ொ : the average amount of time a customer (i.e., equivalently, a transaction) in the queue (i.e.,

the block currently being mined).

𝑊ொ =
𝐿ொ

𝜆

𝑊 : the average amount of time a customer (i.e., equivalently, a transaction) in the system (i.e.,

the transaction pool in the blockchain).

𝑊 = 𝑊ொ +
1

𝜇

𝐿 : the average number of customers (i.e., equivalently, the average number of transactions) in the

system (i.e., the transaction pool in the blockchain).

𝐿 = 𝜆𝑊

𝛾: the throughput of the average number of customers (i.e., equivalently, the average number of

transactions) arrives and services (posting a block) through the adaptive chain model in the

system in Equation (54).

𝛾 = ෍
𝜇

𝑛 − (𝑖 − 1)
𝑃௜

௡

௜ୀ଴

 (54)

Where,

𝑃௜ is Equation (50)

50

2. Numerical Analysis

The following graph plots 𝐿ொ (i.e., from Equation (38)) on the comparison of the baseline model

versus the adaptive model in 𝑛 for given pairs of 𝜆 and 𝜇. Observe that as 𝜆 goes 0.005 to 0.05, at

𝜇=0.0667, the ratio of 𝐿ொ between adaptive vs. baseline swings from 85%, 69%, 63%, and 67%

to 18%, 21%, 31%, and 39%, respectively, as 𝑛 increases in Figure 11.

Figure 11. 𝐿ொ comparing baseline (B) and adaptive (A) chain model

51

The following graph plots 𝑊ொ (i.e., from Equation (25)) on the comparison of the baseline model

versus the adaptive model in 𝑛 for given pairs of 𝜆 and 𝜇. Observe that as 𝜆 goes 0.005 to 0.05, at

𝜇=0.0667, the ratio of 𝑊ொ between adaptive vs. baseline swings from 85%, 68%, 61%, and 63%

to 17%, 20%, 31%, and 38%, respectively, as 𝑛 increases in Figure 12.

Figure 12. 𝑊ொ comparing baseline (B) and adaptive (A) chain model

52

The following graph plots 𝑊 (i.e., from Equation (26)) on the comparison of the baseline model

versus the adaptive model in 𝑛 for given pairs of 𝜆 and 𝜇. Observe that as 𝜆 goes 0.005 to 0.05, at

𝜇=0.0667, the ratio of 𝑊 between adaptive vs. baseline swings from 85%, 69%, 63%, and 67% to

18%, 21%, 31%, and 39%, respectively, as 𝑛 increases in Figure 13.

Figure 13. 𝑊 comparing baseline (B) and adaptive (A) chain model

53

The following graph plots 𝐿 (i.e., from Equation (27)) on the comparison of the baseline model

versus the adaptive model in 𝑛 for given pairs of 𝜆 and 𝜇. Observe that as 𝜆 goes 0.005 to 0.05, at

𝜇=0.0667, the ratio of 𝐿 between adaptive vs. baseline swings from 85%, 69%, 63%, and 67% to

18%, 21%, 31%, and 39%, respectively, as 𝑛 increases in Figure 14.

Figure 14. 𝐿 comparing baseline (B) and adaptive (A) chain model

54

The throughput (γ) per block in the adaptive chain model can be obtained from Equation (54).

The following graph plots γ versus n for given pairs of λ and μ. Observe that as λ goes 0.005 to

0.05, at μ=0.0667, the ratio of γ between adaptive vs. baseline swings from 85%, 68%, 61%, and

63% to 17%, 20%, 31%, and 38%, respectively, as n increases in Figure 15.

Figure 15. Throughput, 𝛾, comparing baseline (B) and adaptive (A) chain model

55

CHAPTER V

ASYNCHRONOUS CHAIN MODEL

This chapter proposes an asynchronous chain and an analytical model, namely, a Variable Bulk

Arrival and Asynchronous Bulk Service (VBAABS) model. It is developed and presented to

study and demonstrate the theoretical performance of an asynchronous chain. The proposed

asynchronous chain is to address and respond to the speed needs by such transactions as being

exigently mandated to be executed in an asynchronous manner. Otherwise, all the transactions

pending for a posting in the current block are synchronized by the block posting delay which is

primarily determined by the gas limit on the block and the total gas used by transactions pending

for the block. Two different types of asynchronous models are proposed and numerical analysis

and experimental results are presented. In previous Chapters, III, and IV, the baseline chain

model VBASBS and the adaptive chain model VBAVBS are presented. VBASBS and VBAVBS

are the basis for the proposed asynchronous chain model VBAABS and the states can be defined

in Section 1 as fully asynchronous chain model and in Section 2 as staged asynchronous chain

model as follows.

56

1. Fully Asynchronous Chain Model Equations

VBASBS [40] and VBAVBS models are the basis for the proposed VBAABS model in this

section and the states can be defined as follows. The state for the adaptive chain model,

VBAVBS, is identical to and only the state transition probabilities differ from the ones in the

baseline model, VBASBS.

μ: the rate for the slots of the transactions in the entire queue to be purged and posted into a block.

It is only noted in the adaptive model that it is an every state transition precisely from 𝑃௡ back to

𝑃଴, 𝑃௡ିଵ back to 𝑃଴, …, 𝑃ଶ back to 𝑃଴, and 𝑃ଵ back to 𝑃଴ with
ఓ

௡ି(௡ିଵ)
,

ఓ

௡ି൫(௡ିଵ)ିଵ൯
, … ,

ఓ

௡ିଵ
, and

ఓ

௡
 respectively.

 The state for the fully asynchronous chain model is that an arrived transaction is only posted to a

current block. The definitions of 𝑃଴, 𝑃௡, 𝑃௜, λ, and µ are defined as follows.

𝑃଴ : the state in which there is no transaction (i.e., no slot) arrived in the queue as of yet for the

posting in the block, currently, and is onheld in the proposed VBAVBS model in this dissertation.

𝑃௡ : the state in which there is 𝑛 number of slots (i.e., which is the capacity of the queue,

equivalently, the maximum number of slots set and voted by the miners or voters) arrived in the

queue for the posting in the block, currently, and is onheld in the proposed VBAVBS model in

this dissertation.

𝑃௜ : the state in which there is 𝑖 number of slots (where, 0 ˂ 𝑖 ˂ 𝑛) arrived in the queue for the

posting in the block, currently, and is onheld in the proposed VBAVBS model in this dissertation.

The random variables employed to express the state transition rates are specified as follows.

57

λ: the rate for a slot of a transaction to arrive, and the rate for a transaction to arrive is determined

by the number of slots allocated for the transaction in a prorated manner such that a transaction

with a size of 𝑗 number of slots arrives at the rate of 𝑗λ, without loss of generality and practicality

as well, which will be onheld in this dissertation as well.

µ: the rate for the slots of the transactions in the queue to be posted and purged. Notice that this is

a single and unique state transition precisely from 𝑃௜, 1 ≤ 𝑖 ≤ 𝑛 back to 𝑃଴.

The following Figure 16 shows the state transition diagram around 𝑃௜ of fully asynchronous chain

model. All outgoing transitions equal all incoming transitions for every state.

Figure 16. State transition diagram of the fully asynchronous chain model

58

The balance equations for the fully asynchronous chain model are as follows.

All outgoing transitions from 𝑃଴ are follows.

(𝜆 + 2𝜆 + 3𝜆 + ⋯ + 𝑛𝜆)𝑃଴ = 𝜆
𝑛(n + 1)

2
𝑃଴

All outgoing transitions from 𝑃଴ equal all incoming transitions to 𝑃଴ as follows.

𝜆
𝑛(n + 1)

2
𝑃଴ =

𝜇

𝑛
𝑃ଵ +

𝜇

𝑛 − 1
𝑃ଶ +

𝜇

𝑛 − 2
𝑃ଷ + ⋯ +

𝜇

2
𝑃௡ିଵ +

𝜇

1
𝑃௡

= 𝜇 ൬
1

𝑛 − 0
𝑃ଵ +

1

𝑛 − 1
𝑃ଶ +

1

𝑛 − 2
𝑃ଷ + ⋯ +

1

𝑛 − (𝑛 − 2)
𝑃௡ିଵ +

1

𝑛 − (𝑛 − 1)
𝑃௡൰

= 𝜇 ൬
1

𝑛
𝑃ଵ +

1

𝑛 − 1
𝑃ଶ +

1

𝑛 − 2
𝑃ଷ + ⋯ +

1

2
𝑃௡ିଵ + 𝑃௡൰

Where,

𝜆
௡(୬ାଵ)

ଶ
𝑃଴ ∶ all outgoing from 𝑃଴

ఓ

௡
𝑃ଵ: incoming from 𝑃ଵ to 𝑃଴ with

ఓ

௡

ఓ

௡ିଵ
𝑃ଶ: incoming from 𝑃ଶ to 𝑃଴ with

ఓ

௡ିଵ

ఓ

௡ିଶ
𝑃ଷ: incoming from 𝑃ଷ to 𝑃଴ with

ఓ

௡ିଶ

ఓ

௡ି(௜ିଵ)
𝑃௜: incoming from 𝑃௜ to 𝑃଴ with

ఓ

௡ି(௜ିଵ)

ఓ

௡ି(௡ିଵ)
𝑃௡: incoming from 𝑃௡ to 𝑃଴ with

ఓ

௡ି(௡ିଵ)

59

The balance equations for the asynchronous chain model are as follows.

(𝜆 + 2𝜆 + 3𝜆 + ⋯ + 𝑛𝜆)𝑃଴ = 𝜆
𝑛(𝑛 + 1)

2
𝑃଴

ቆ𝜆
𝑛(𝑛 + 1)

2
ቇ 𝑃଴ =

𝜇

𝑛
𝑃ଵ +

𝜇

𝑛 − 1
𝑃ଶ +

𝜇

𝑛 − 2
𝑃ଷ + ⋯ + 𝜇𝑃௡

= 𝜇 ൬
1

𝑛 − 0
𝑃ଵ +

1

𝑛 − 1
𝑃ଶ + ⋯ +

1

𝑛 − (𝑛 − 2)
𝑃௡ିଵ +

1

𝑛 − (𝑛 − 1)
𝑃௡൰

= 𝜇 ൬
1

𝑛
𝑃ଵ +

1

𝑛 − 1
𝑃ଶ + ⋯ +

1

2
𝑃௡ିଵ + 𝑃௡൰

൬𝜆 + 2𝜆 + 3𝜆 + ⋯ + (𝑛 − 𝑖)𝜆 +
𝜇

𝑛 − (𝑖 − 1)
൰ 𝑃௜

= 𝜆 ቆ
(𝑛 − 𝑖)(𝑛 − 𝑖 + 1)

2
+

𝜇

𝜆(𝑛 − 𝑖 + 1)
ቇ 𝑃௜

= 𝜆𝑃௜ିଵ + 2𝜆𝑃௜ିଶ + 3𝜆𝑃௜ିଷ + (𝑖 − 1)𝜆𝑃ଵ

Where,

0 ˂ 𝑖 ≤ 𝑛,

It can be expressed as 𝑖 = 1, 2, 3, … , 𝑛, and find a generalized form as the following steps.

𝑖 = 1,

60

𝜆 ቆ
(𝑛 − 1)(𝑛)

2
+

𝜇

𝜆(𝑛)
ቇ 𝑃ଵ = 𝜆𝑃଴

𝑃ଵ = ቆ
(𝑛 − 1)(𝑛)

2
+

𝜇

𝜆(𝑛)
ቇ

ିଵ

𝑃଴

𝑃ଵ = 𝑞ଵ
ିଵ𝑃଴

Where,

𝑞ଵ =
(𝑛 − 1)(𝑛)

2
+

𝜇

𝜆(𝑛)

𝑖 = 2,

𝜆 ቆ
(𝑛 − 2)(𝑛 − 1)

2
+

𝜇

𝜆(𝑛 − 1)
ቇ 𝑃ଶ = 𝜆𝑃ଵ + 2𝜆𝑃଴

Where,

𝑃ଵ = ቀ
(௡ିଵ)(௡)

ଶ
+

ఓ

ఒ(௡)
ቁ

ିଵ
𝑃଴

𝑃ଶ = ቀ
(௡ିଶ)(௡ିଵ)

ଶ
+

ఓ

ఒ(௡ିଵ)
ቁ

ିଵ
(𝑃ଵ + 2𝑃଴)

𝑃ଶ = ቀ
(௡ିଶ)(௡ିଵ)

ଶ
+

ఓ

ఒ(௡ିଵ)
ቁ

ିଵ
൬ ቀ

(௡ିଵ)(௡)

ଶ
+

ఓ

ఒ(௡)
ቁ

ିଵ
𝑃଴ + 2𝑃଴൰

𝑞ଶ =
(௡ିଶ)(௡ିଵ)

ଶ
+

ఓ

ఒ(௡ିଶ)

𝑃ଶ = 𝑞ଶ
ିଵ(𝑞ଵ

ିଵ𝑃଴ + 2𝑃଴) = 𝑞ଶ
ିଵ(𝑞ଵ

ିଵ + 2)𝑃଴

𝑃ଶ = 𝑞ଶ
ିଵ(𝑞ଵ

ିଵ + 2)𝑃଴

61

𝑖 = 3,

𝜆 ቆ
(𝑛 − 3)(𝑛 − 2)

2
+

𝜇

𝜆(𝑛 − 2)
ቇ 𝑃ଷ = 𝜆𝑃ଶ + 2𝜆𝑃ଵ + 3𝜆𝑃଴

Where,

𝑃ଵ = 𝑞ଵ
ିଵ𝑃଴

𝑃ଶ = 𝑞ଶ
ିଵ(𝑞ଵ

ିଵ + 2)𝑃଴

𝑃ଷ = 𝑞ଷ
ିଵ൫ 𝑞ଶ

ିଵ(𝑞ଵ
ିଵ + 2) + 2𝑞ଵ

ିଵ + 3൯𝑃଴

𝑞ଷ =
(௡ିଷ)(௡ିଶ)

ଶ
+

ఓ

ఒ(௡ିଶ)

𝑖 = 4,

𝜆 ቆ
(𝑛 − 4)(𝑛 − 3)

2
+

𝜇

𝜆(𝑛 − 3)
ቇ 𝑃ସ = 𝜆𝑃ଷ + 2𝜆𝑃ଶ + 3𝜆𝑃ଵ + 4𝜆𝑃଴

Where,

𝑃ଵ = 𝑞ଵ
ିଵ𝑃଴

𝑃ଶ = 𝑞ଶ
ିଵ(𝑞ଵ

ିଵ + 2)𝑃଴

𝑃ଷ = 𝑞ଷ
ିଵ൫ 𝑞ଶ

ିଵ(𝑞ଵ
ିଵ + 2) + 2𝑞ଵ

ିଵ + 3൯𝑃଴

𝑃ସ = 𝑞ସ
ିଵ൫ 𝑞ଷ

ିଵ൫ 𝑞ଶ
ିଵ(𝑞ଵ

ିଵ + 2) + 2𝑞ଵ
ିଵ + 3൯ + 2(𝑞ଶ

ିଵ(𝑞ଵ
ିଵ + 2) + 3𝑞ଵ

ିଵ +

 4൯𝑃଴

62

𝑃ସ = 𝑞ସ
ିଵ൫𝑞ଷ

ିଵ𝑞ଶ
ିଵ𝑞ଵ

ିଵ + 2𝑞ଷ
ିଵ𝑞ଶ

ିଵ + 2𝑞ଷ
ିଵ𝑞ଵ

ିଵ + 3𝑞ଷ
ିଵ + 2𝑞ଶ

ିଵ 𝑞ଵ
ିଵ +

 4𝑞ଶ
ିଵ

+ 3𝑞ଵ
ିଵ + 4൯𝑃଴

𝑞ସ =
(௡ିସ)(௡ିଷ)

ଶ
+

ఓ

ఒ(௡ିଷ)

The generalized form is as follows.

𝜆 ቆ
(𝑛 − 𝑖)(𝑛 − 𝑖 + 1)

2
+

𝜇

𝜆(𝑛 − 𝑖 + 1)
ቇ 𝑃௜

= 𝜆𝑃௜ିଵ + 2𝜆𝑃௜ିଶ + 3𝜆𝑃௜ିଷ + ⋯ + (𝑖 − 1)𝜆𝑃ଵ + 𝑖𝜆𝑃଴

Where,

0 ˂ 𝑖 ≤ 𝑛,

𝑞௜ =
(௡ି௜)(௡ି௜ାଵ)

ଶ
+

ఓ

ఒ(௡ି௜ାଵ)

All outgoing transitions from 𝑃௜ equal all incoming transitions to 𝑃௜ as follows.

𝜇

𝑛 − (𝑖 − 1)
𝑃௜ = 𝑖𝜆𝑃଴ (55)

Where,

0 ˂ 𝑖 ≤ 𝑛

Solving Equation (59) in terms of 𝑃଴ yields as follows.

63

𝑖 = 1,

𝜇

𝑛
𝑃ଵ = 𝜆𝑃଴

𝑃ଵ =
𝑛𝜆

𝜇
𝑃଴

𝑃ଵ = 𝑞ଵ𝜆𝑃଴

𝑞ଵ =
𝑛

𝜇

𝑖 = 2,

ቀ
𝜇

𝑛 − 1
ቁ 𝑃ଶ = 2𝜆𝑃଴

𝑃ଶ = ൬
𝑛 − 1

𝜇
൰ 2𝜆𝑃଴

𝑃ଶ = 𝑞ଶ2𝜆𝑃଴

𝑞ଶ =
𝑛 − 1

𝜇

𝑖 = 3,

ቀ
𝜇

𝑛 − 2
ቁ 𝑃ଷ = 3𝜆𝑃଴

𝑃ଷ = ൬
𝑛 − 2

𝜇
൰ 3𝜆𝑃଴

64

𝑞ଷ =
𝑛 − 2

𝜇

𝑖 = 4,

ቀ
𝜇

𝑛 − 3
ቁ 𝑃ସ = 4𝜆𝑃଴

𝑃ସ = ൬
𝑛 − 3

𝜇
൰ 4𝜆𝑃଴

𝑞ସ =
𝑛 − 3

𝜇

𝑖 = 𝑛,

ቀ
𝜇

1
ቁ 𝑃௡ = (𝑛)𝜆𝑃଴

𝑃௡ = ൬
1

𝜇
൰ (𝑛)𝜆𝑃଴

𝑞௡ =
1

𝜇

To determine 𝑃଴, we use the fact that the ∑ 𝑃௜
௡
௜ୀ଴ should be 1.

𝑃଴ + 𝑃ଵ + 𝑃ଶ + ⋯ + 𝑃௡ = 1 (56)

All outgoing transitions from 𝑃௜ equal all incoming transitions to 𝑃௜ from Equation (55) as

follows.

65

𝜇

𝑛 − (𝑖 − 1)
𝑃௜ = 𝑖𝜆𝑃଴

𝑃௜ can be generalized and expressed as follows.

𝑃௜ = ൬
𝜇

𝑛 − (𝑖 − 1)
൰

ିଵ

𝑖𝜆𝑃଴

𝑃௜ = 𝑞௜𝑖𝜆𝑃଴ (57)

Where,

0 ˂ 𝑖 ≤ 𝑛, 𝑞௜ = ቀ
ఓ

௡ି(௜ିଵ)
ቁ

ିଵ

Equation (56) can be replaced by Equation (58) as follows.

𝑃଴ + ෍ 𝑃௜

௡

௜ୀଵ

 = 1 (58)

Equation (57) 𝑃௜ can be replaced by Equation (59) as follows.

𝑃଴ + ෍ 𝑞௜𝑖𝜆𝑃଴

௡

௜ୀଵ

 = 1 (59)

66

𝑃଴ ൭1 + ෍ 𝑞௜𝑖𝜆

௡

௜ୀଵ

൱ = 1

𝑃଴ =
1

൫1 + ∑ 𝑞௜𝑖𝜆௡
௜ୀଵ ൯

Where,

෍ 𝑞௜𝑖𝜆

௡

௜ୀଵ

= 𝜆൫1𝑞ଵ + 2𝑞ଶ + 3𝑞ଷ + ⋯ + (𝑛 − 2)𝑞(௡ିଶ) + (𝑛 − 1)𝑞(௡ିଵ) + 𝑛𝑞௡൯

= 𝜆൫1𝑞ଵ + 2𝑞ଶ + 3𝑞ଷ + ⋯ + (𝑛 − 2)𝑞(௡ିଶ) + (𝑛 − 1)𝑞(௡ିଵ) + 𝑛𝑞௡൯

= 𝜆 ൬1 ቀ
ఓ

௡ି(ଵିଵ)
ቁ

ିଵ
+ 2 ቀ

ఓ

௡ି(ଶିଵ)
ቁ

ିଵ
+ 3 ቀ

ఓ

௡ି(ଷିଵ)
ቁ

ିଵ
+ ⋯ + (𝑛 − 2) ቀ

ఓ

௡ି(௡ିଶିଵ)
ቁ

ିଵ
+

(𝑛 − 1) ቀ
ఓ

௡ି(௡ିଵିଵ)
ቁ

ିଵ
+ 𝑛 ቀ

ఓ

௡ି(௡ିଵ)
ቁ

ିଵ
൰

= 𝜆 ൬1 ቀ
ఓ

௡
ቁ

ିଵ
+ 2 ቀ

ఓ

௡ିଵ
ቁ

ିଵ
+ 3 ቀ

ఓ

௡ିଶ
ቁ

ିଵ
+ ⋯ + (𝑛 − 2) ቀ

ఓ

ଷ
ቁ

ିଵ
+ (𝑛 − 1) ቀ

ఓ

ଶ
ቁ

ିଵ
+

𝑛 ቀ
ఓ

ଵ
ቁ

ିଵ
൰

= 𝜆 ቆ1 ቀ
௡

ఓ
ቁ + 2 ቀ

௡ିଵ

ఓ
ቁ + 3 ቀ

௡ିଶ

ఓ
ቁ + ⋯ + (𝑛 − 2) ቀ

ଷ

ఓ
ቁ + (𝑛 − 1) ቀ

ଶ

ఓ
ቁ + 𝑛 ቀ

ଵ

ఓ
ቁቇ

=
ఒ

ఓ
൫1(𝑛) + 2(𝑛 − 1) + 3(𝑛 − 2) + ⋯ + (𝑛 − 2)(3) + (𝑛 − 1)(2) + 𝑛(1)൯

=
ఒ

ఓ
(∑ 𝑇௥

௡
௥ୀଵ)

=
ఒ

ఓ
൫(𝑛 + 1)𝑟 − 𝑟ଶ൯

67

Where,

𝑇௥ = 𝑟൫𝑛 − (𝑟 − 1)൯

= (𝑛 + 1)𝑟 − 𝑟ଶ

To find the sum of the series above equation is defined in Equation (60) as follows.

൫1(𝑛) + 2(𝑛 − 1) + 3(𝑛 − 2) + ⋯ + (𝑛 − 2)(3) + (𝑛 − 1)(2) + 𝑛(1)൯ = ෍ 𝑇௥

௡

௥ୀଵ

 (60)

෍ 𝑇௥

௡

௥ୀଵ

= ෍൫(𝑛 + 1)𝑟 − 𝑟ଶ൯

௡

௥ୀଵ

= (𝑛 + 1) ෍ 𝑟 − ෍ 𝑟ଶ

௡

௥ୀଵ

௡

௥ୀଵ

=
(𝑛 + 1)𝑛(𝑛 + 1)

2
−

𝑛(𝑛 + 1)(2𝑛 + 1)

6

=
𝑛(𝑛 + 1)

2
ቆ(𝑛 + 1) − ൬

2𝑛 + 1

3
൰ቇ

=
𝑛(𝑛 + 1)(𝑛 + 2)

6

68

𝜆

𝜇
൭෍ 𝑇௥

௡

௥ୀଵ

൱ =
𝜆

𝜇
ቆ

𝑛(𝑛 + 1)(𝑛 + 2)

6
ቇ

𝑃଴ =
1

൫1 + ∑ 𝑞௜𝑖𝜆௡
௜ୀଵ ൯

=
1

ቆ1 +
𝜆
𝜇

(∑ 𝑇௥
௡
௥ୀଵ)ቇ

=
1

ቆ1 +
𝜆
𝜇

൬
𝑛(𝑛 + 1)(𝑛 + 2)

6
൰ቇ

𝑃௡ = ൬
1

𝜇
൰ (𝑛)𝜆𝑃଴

= ൬
1

𝜇
൰ (𝑛)𝜆

1

ቆ1 +
𝜆
𝜇

൬
𝑛(𝑛 + 1)(𝑛 + 2)

6
൰ቇ

The followings are a few fully asynchronous model performance measurements of primary

interests in the fully asynchronous model.

𝐿ொ : the average number of customers (i.e., equivalently the average number of transactions) in

the queue (i.e., the block currently being mined).

𝐿ொ = ෍ 𝑖𝑃௜

௡

௜ୀ଴

Where,

෍ 𝑖𝑃௜

௡

௜ୀ଴

= ෍ 𝑖 ቆ൬
𝜇

𝑛 − (𝑖 − 1)
൰

ିଵ

𝑖𝜆𝑃଴ቇ

௡

௜ୀ଴

69

𝑊ொ : the average amount of time a customer (i.e., equivalently, a transaction) in the queue (i.e.,

the block currently being mined).

𝑊ொ =
𝐿ொ

𝜆

𝑊 : the average amount of time a customer (i.e., equivalently, a transaction) in the system (i.e.,

the transaction pool in the blockchain).

𝑊 = 𝑊ொ +
1

𝜇

𝐿 : the average number of customers (i.e., equivalently, the average number of transactions) in the

system (i.e., the transaction pool in the blockchain).

𝐿 = 𝜆𝑊

𝛾 : the throughput per block in the fully asynchronous model can be obtained as follows.

𝛾 = ෍ 𝜇𝑃௜

௡

௜ୀ଴

 = ෍ 𝜇
𝜆

𝜇

𝑖(𝑖 + 1)

2
𝑃଴

௡

௜ୀ଴

= ෍ 𝜆
𝑖(𝑖 + 1)

2
𝑃଴

௡

௜ୀ଴

70

2. Staged Asynchronous Chain Model Equations

The state for the staged asynchronous chain model is that multiple arrived transactions are staged

to be posted to a current block. The definitions of 𝑃଴, 𝑃௡, 𝑃௜, and λ are defined in the previous

Section 1 Fully Asynchronous Chain Model Equations. In a staged asynchronous model, each

stage is not related to the state in other stages. Each state in a stage has only λ limited in its stage.

μ: the rate for the slots of the transactions in the queue to be posted and purged. Notice that this is

a multiple and unique state transition precisely from 𝑃௜௦, 1 ≤ 𝑖 ≤ 𝑡, back to 𝑃଴.

Figure 17 shows the state transition diagram of the staged asynchronous chain. The balance

equations for the staged asynchronous chain are defined as follows.

Figure 17. State transition diagram of the staged asynchronous chain model

71

Outgoing from 𝑃଴ is follows.

(𝜆 + 2𝜆 + 3𝜆 + ⋯ + 𝑛𝜆)𝑃଴ = 𝜆
𝑛(n + 1)

2
𝑃଴

Outgoing from 𝑃଴ equals incoming to 𝑃଴ as follows.

𝜆
௡(௡ାଵ)

ଶ
𝑃଴ =

ఓ

௡ି(௦ିଵ)
𝑃ଵ௦ +

ఓ

௡ି(ଶ௦ିଵ)
𝑃ଶ௦ +

ఓ

௡ି(ଷ௦ିଵ)
𝑃ଷ௦ + ⋯ +

ఓ

௡ି൫(௡ିଵ)௦ିଵ൯
𝑃(௡ିଵ)௦ +

ఓ

௡ି(௡ିଵ)
𝑃௡

= 𝜇 ൬
ଵ

௡ି(௦ିଵ)
𝑃ଵ௦ +

ଵ

௡ି(ଶ௦ିଵ)
𝑃ଶ௦ +

ଵ

௡ି(ଷ௦ିଵ)
𝑃ଷ௦ + ⋯ +

ଵ

௡ି൫(௡ିଵ)௦ିଵ൯
𝑃(௡ିଵ)௦ +

ଵ

௡ି(௡ିଵ)
𝑃௡൰

Where,

𝜆
௡(୬ାଵ)

ଶ
𝑃଴ ∶ all outgoing from 𝑃଴

ఓ

௡ି(௦ିଵ)
𝑃ଵ௦: incoming from 𝑃ଵ௦ to 𝑃଴ with

ఓ

௡ି(௦ିଵ)

ఓ

௡ି(ଶ௦ିଵ)
𝑃ଶ௦: incoming from 𝑃ଶ௦ to 𝑃଴ with

ఓ

௡ି(ଶ௦ିଵ)

ఓ

௡ି(ଷ௦ିଵ)
𝑃ଷ௦: incoming from 𝑃ଷ௦ to 𝑃଴ 𝑤𝑖𝑡ℎ

ఓ

௡ି(ଷ௦ିଵ)

ఓ

௡ି(௧௦ିଵ)
𝑃௧௦: incoming from 𝑃௧௦ to 𝑃଴ with

ఓ

௡ି(௧௦ିଵ)

ఓ

௡ି(௡ିଵ)
𝑃௡ (𝜇𝑃௡): incoming from 𝑃௡ to 𝑃଴ with

ఓ

௡ି(௡ିଵ)

72

𝜆
௡(௡ାଵ)

ଶ
𝑃଴ = 𝜇 ൬

ଵ

௡ି(௦ିଵ)
𝑃ଵ௦ +

ଵ

௡ି(ଶ௦ିଵ)
𝑃ଶ௦ +

ଵ

௡ି(ଷ௦ିଵ)
𝑃ଷ௦ + ⋯ +

ଵ

௡ି൫(௡ିଵ)௦ିଵ൯
𝑃(௡ିଵ)௦ +

ଵ

௡ି(௡ିଵ)
𝑃௡൰

𝑃଴ = ቀ𝜆
௡(௡ାଵ)

ଶ
ቁ

ିଵ
𝜇 ൬

ଵ

௡ି(௦ିଵ)
𝑃ଵ௦ +

ଵ

௡ି(ଶ௦ିଵ)
𝑃ଶ௦ +

ଵ

௡ି(ଷ௦ିଵ)
𝑃ଷ௦ + ⋯ +

ଵ

௡ି൫(௡ିଵ)௦ିଵ൯
𝑃(௡ିଵ)௦ +

ଵ

௡ି(௡ିଵ)
𝑃௡൰

Stage 1 for 𝑃଴௦ାଵ:

𝜆(1 + 2 + 3 + ⋯ + (𝑠 − 1))𝑃ଵ = 𝜆𝑃଴

൬
(𝑠 − 1)𝑠

2
൰ 𝑃ଵ = 𝑃଴

𝑃ଵ = ൬
(𝑠 − 1)𝑠

2
൰

ିଵ

𝑃଴

𝑃ଵ = 𝑞ଵ𝑃଴

𝑞ଵ = ൬
(𝑠 − 1)𝑠

2
൰

ିଵ

Stage 1 for 𝑃଴௦ାଶ:

𝜆(1 + 2 + 3 + ⋯ + (𝑠 − 2))𝑃ଶ = 𝜆𝑃ଵ + 2𝜆𝑃଴

𝑃ଶ = 𝑃ଵ + 2𝑃଴

𝑃ଶ = ቆ
(𝑠 − 2)(𝑠 − 1)

2
ቇ

ିଵ

(𝑃ଵ + 2𝑃଴)

73

𝑃ଶ = ቆ
(𝑠 − 2)(𝑠 − 1)

2
ቇ

ିଵ

ቆ൬
(𝑠 − 1)𝑠

2
൰

ିଵ

𝑃଴ + 2𝑃଴ቇ

𝑃ଶ = 𝑞ଶ(𝑞ଵ𝑃଴ + 2𝑃଴)

Stage 1 for 𝑃଴௦ାଷ:

𝜆(1 + 2 + 3 + ⋯ + (𝑠 − 3))𝑃ଷ = 𝜆𝑃ଶ + 2𝜆𝑃ଵ + 3𝜆𝑃଴

ቆ
(𝑠 − 3)(𝑠 − 2)

2
ቇ 𝑃ଷ = 𝑃ଶ + 2𝑃ଵ + 3𝑃଴

𝑃ଷ = ቆ
(𝑠 − 3)(𝑠 − 2)

2
ቇ

ିଵ

(𝑃ଶ + 2𝑃ଵ + 3𝑃଴)

𝑃ଷ = ቀ
(௦ିଷ)(௦ିଶ)

ଶ
ቁ

ିଵ
൬ቀ

(௦ିଶ)(௦ିଵ)

ଶ
ቁ

ିଵ
൬ቀ

(௦ିଵ)௦

ଶ
ቁ

ିଵ
𝑃଴ + 2𝑃଴൰ + 2 ቀ

(௦ିଵ)௦

ଶ
ቁ

ିଵ
𝑃଴ + 3𝑃଴൰

𝑃ଷ = 𝑞ଷ(𝑞ଶ(𝑞ଵ + 2) + 2𝑞ଵ + 3)𝑃଴

Stage 1 for 𝑃௦ିଵ:

𝜆𝑃௦ିଵ = 𝜆𝑃௦ିଶ + 2𝜆𝑃௦ିଷ + ⋯ + (𝑠 − 2)𝜆𝑃ଵ + (𝑠 − 1)𝜆𝑃଴

𝜆𝑃௦ିଵ = 𝜆𝑃௦ିଶ + 2𝜆𝑃௦ିଷ + ⋯ + (𝑠 − 2)𝜆 ቆ
(𝑠 − 1)𝑠

2
ቇ

ିଵ

𝑃଴ + (𝑠 − 1)𝜆𝑃଴

𝑃௜ = 𝑃௜ିଵ + 2𝑃௜ିଶ + ⋯ + (𝑖 − 1) ൬
(𝑠)(1 + 𝑖)

2
൰

ିଵ

𝑃଴ + 𝑖𝑃଴

74

Stage 1 for 𝑃௦ (posting stage 1):

𝜇

𝑛 − (𝑠 − 1)
𝑃௦ = 𝜆𝑃௦ିଵ + 2𝜆𝑃௦ିଶ + ⋯ + (𝑠 − 1)𝜆𝑃ଵ + 𝑠𝜆𝑃଴

Stage 2 for 𝑃௦ାଵ:

𝜆(1 + 2 + 3 + ⋯ + (𝑠 − 1))𝑃௦ାଵ = (𝑠 + 1)𝜆𝑃଴

൬
(𝑠 − 1)𝑠

2
൰ 𝑃௦ାଵ = (𝑠 + 1)𝑃଴

𝑃௦ାଵ = ቆ
(𝑠 − 1)𝑠

2
ቇ

ିଵ

(𝑠 + 1)𝑃଴

Stage of 1 for 𝑃௦ାଶ:

𝜆(1 + 2 + 3 + ⋯ + (𝑠 − 2))𝑃௦ାଶ = (𝑠 + 2)𝜆𝑃଴ + 𝜆𝑃௦ାଵ

൬
(𝑠 − 2)(𝑠 − 1

2
൰ 𝑃௦ାଶ = (𝑠 + 2)𝑃଴ + 𝑃௦ାଵ

𝑃௦ାଶ = ቆ
(𝑠 − 2)(𝑠 − 1)

2
ቇ

ିଵ

൫(𝑠 + 2)𝑃଴ + 𝑃௦ାଵ൯

75

Generalized form for 𝑃௔௦:

𝜇

𝑛 − (𝑎𝑠 − 1)
𝑃௔௦ = 𝜆𝑃(௔ିଵ)௦ିଵ + 2𝜆𝑃(௔ିଵ)௦ିଶ + ⋯ + (𝑠 − 1)𝜆𝑃(௔ିଵ)௦ାଵ + 𝑎𝑠𝜆𝑃଴

Where,

1 ≤ 𝑎 ≤ 𝑡,

𝑃௔௦: the 𝑎௧௛ staged state and note that 𝑡 = ቒ
௡

௦
ቓ for 𝑃௧௦,

𝑃௔௦ା௜ = 𝑞௔௦ା௜𝑃଴ ቎ ෍ 𝑗 ቎ ෍ ൥ෑ 𝑞௟

௞ିଵ

௟ୀଵ

൩

௔௦ା௜ି

௞ୀଵ

𝑘቏

௔௦ା௜

௝ୀଵ

+ 𝑎𝑠 + 𝑖቏

𝑃௔௦ା௜ = 𝑞௔௦ା௜𝑃଴ ൮ቀ
(௔௦ା௜)((௔௦ା௜)ାଵ)

ଶ
ቁ ቌ

௡

൬√ଶగ ቀ
೙

೐
ቁ

೙
൰

మቍ ൫2(௔௦ା௜)ିଵ((𝑎𝑠 + 𝑖)𝑛 − 2𝑛 + 7(𝑎𝑠 + 𝑖) −

14 − (𝑎𝑠 + 𝑖)ଶ) + 8൯ + 𝑎𝑠 + 𝑖൲

Where,

 0 ≤ 𝑎 ≤ 𝑡, 0 ≤ 𝑖 < 𝑠, 𝑡 = ቒ
௡

௦
ቓ , 𝑠 = ቒ

௡

௧
ቓ

 𝑞௔௦ା௜ =
ଶ

(௡ି(௔௦ା௜))(௡ି(௔௦ା௜)ାଵ)

 𝑃௔௦ =
ఒ(௡ି(௔௦ିଵ))

ఓ

௡(௡ାଵ)

ଶ
𝑃଴

76

The performance measurements of primary interests in the asynchronous model are expressed in

𝐿ொ , 𝑊ொ , 𝑊, and 𝐿 as following Equations respectively.

𝐿ொ : the average number of customers (i.e., equivalently the average number of transactions) in

the queue (i.e., the block currently being mined).

𝐿ொ = ෍ 𝑖𝑃௜

௡

௜ୀ଴

𝑊ொ : the average amount of time a customer (i.e., equivalently, a transaction) in the queue (i.e.,

the block currently being mined).

𝑊ொ =
𝐿ொ

𝜆

𝑊 : the average amount of time a customer (i.e., equivalently, a transaction) in the system (i.e.,

the transaction pool in the blockchain).

𝑊 = 𝑊ொ +
1

𝜇

𝐿 : the average number of customers (i.e., equivalently, the average number of transactions) in the

system (i.e., the transaction pool in the blockchain).

𝐿 = 𝜆𝑊

77

𝛾 : the throughput per block (𝛾) and the throughput can be expressed differently for the baseline,

the fully asynchronous, the stage asynchronous chain, and the adaptive chain.

𝛾 = 𝜇𝑃௡ = 𝜇
𝜆

𝜇

𝑛(𝑛 + 1)

2
𝑃଴ = 𝜆

𝑛(𝑛 + 1)

2
𝑃଴

for the baseline chain model in Equation (28);

𝛾 = ෍ 𝜇𝑃௜

௡

௜ୀ଴

 = ෍
𝜇

𝑛 − (𝑖 − 1)

𝑛 − (𝑖 − 1)

𝜇
𝑖𝜆𝑃଴

௡

௜ୀ଴

= ෍ 𝑖𝜆𝑃଴

௡

௜ୀ଴

 (61)

for the fully asynchronous chain model in Equation (61);

𝛾 = ෍
𝜇

𝑛 − (𝑖 − 1)
 𝑃௔௦

௧

௔ୀ଴

 (62)

Where,

𝑃௔௦: the 𝑎௧௛ staged state and note that 𝑡 = ቒ
௡

௦
ቓ for 𝑃௧௦,

for the staged asynchronous chain model in Equation (62);

and

𝛾 = ෍
𝜇

𝑛 − (𝑖 − 1)
𝑃௜

௡

௜ୀ଴

for the adaptive chain model in Equation (54).

78

3. Numerical Analysis

The primary objective of the numerical simulation is to reveal the various preliminary

performance of the blockchain system of interest such as 𝑊 and 𝐿 versus 𝑛 (i.e., size of a block),

𝜆 (i.e., transaction arrival rate or speed), and
ଵ

ఓ
 (i.e., block posting time).

Figure 18 plots 𝐿 based on Equation (27) with respect to 𝑛 for given pairs of 𝜆 and 𝜇. Observe

that as 𝜆=0.005 and at 𝜇=0.0067, 𝐿 grows in a monotonic manner with baseline, but in stage, it

increases within each stage and gradually increases, repeating a slight descent at the end of the

stage. In adaptive cases, it shows that it is growing very gently, and in the last fully asynchronous,

it is a graph similar to
ଵ

௡
 was observed, with 𝑛 increasing and 𝐿 decreasing gradually but it looks

almost identical to the x-axis.

Figure 18. Baseline, adaptive, and asynchronous chain models for 𝐿, 𝜆=0.005

79

Figure 19 plots 𝐿 based on Equation (27) with respect to 𝑛 for the given pairs of 𝜆 and 𝜇. Observe

that as 𝜆 0.05 and at 𝜇=0.0067, 𝐿 grows in a monotonic manner with baseline, but in stage, it

increases within each stage and gradually increases, repeating a slight descent at the end of the

stage. In adaptive cases, it shows that it is growing very gently, and in the last full case, it is a

graph similar to
ଵ

௡
 was observed, with 𝑛 increasing and 𝐿 decreasing gradually but it looks almost

identical to the x-axis. Unlike the previous Figure 18, the angle of the graph of adaptive has risen

slightly, and the stage shows an increase until the first 𝑛=20 and then increases little, and is lower

than adaptive at around 𝑛=70.

Figure 19. Baseline, adaptive, and asynchronous chain models for 𝐿, 𝜆=0.05

80

Figure 20 plots 𝑊 based on Equation (26) with respect to 𝑛 for given pairs of 𝜆 and 𝜇. Observe

that as 𝜆=0.005 and at 𝜇=0.0667, 𝑊 trends more or less the same patterns with Figure 18.

Figure 20. Baseline, adaptive, and asynchronous chain models for 𝑊, 𝜆=0.005

81

Figure 21 plots 𝑊 based on Equation (26) with respect to 𝑛 for the given pairs of λ and 𝜇.

Observe that as λ=0.05 and at 𝜇=0.0667, 𝑊 trends more or less the same patterns with Figure 19.

The difference from Figure 20 is observed to be a slight increase in the range of waiting time 𝑊

at the y-axis.

Figure 21. Baseline, adaptive, and asynchronous chain models for 𝑊, 𝜆=0.05

82

Figure 22 plots the throughput per block (𝛾) in the four different models. The throughput per

block can be obtained from the different equations such that for the baseline from Equation (28),

the fully asynchronous from Equation (61), the staged asynchronous from Equation (62) and the

adaptive from Equation (62). Observe that for λ=0.005 and 𝜇=0.0667, the highest throughput is

achieved by the fully asynchronous as expected, and likewise, the baseline throughput also

increases along as the n increases, while the staged model increases and bounces back down at

n=20 eventually. The adaptive model shows the lowest throughput consistently throughout as a

justification for the proactively dynamic adaptive chain (i.e., the asynchronous chain) versus the

reactively dynamic adaptive chain.

Figure 22. Baseline, adaptive, and asynchronous chain models for 𝛾, 𝜆=0.005

83

Figure 23 plots the throughput per block (𝛾) in the four different models likewise as shown in

Figure 22 for the same 𝜇=0.0667 yet for an elevated λ=0.05. It is observed that at an elevated

transaction arrival rate, the fully asynchronous model definitely as expected, continues to exhibit

the highest throughput, however the staged asynchronous model turns outperformed by the

baseline model beyond n=20 which is cut quicker than in the case of Figure 22, and it is also

noteworthy that the adaptive shows the lowest throughput until n=80, from there on the staged

turns lower.

Figure 23. Baseline, adaptive, and asynchronous chain models for 𝛾, 𝜆=0.05

84

CHAPTER VI

IMPLEMENTATION AND EXPERIMENTAL RESULTS

This chapter presents algorithms of the adaptive chain model and two different asynchronous

chain models such as the fully asynchronous and the staged asynchronous. The following

algorithms and procedures are coded to allow comparative analysis of simulations and

implementations for each model. The adaptive chain model algorithm is shown in section 1, the

fully asynchronous chain model algorithm is shown in Section 2, and the staged asynchronous

chain model is shown in Section 3. This chapter also describes the experimental environments

such as hardware, software, network, and installation. Section 4 shows the implementation and

experimental environment setup. Section 5 shows the implementation and experimental

procedure. Lastly, it demonstrates the implementation and experimental results and compares

four different chain models in Section 6.

85

1. Adaptive Chain Algorithm

1) Set 𝑏𝑙𝑜𝑐𝑘_𝑔𝑎𝑠_𝑙𝑖𝑚𝑖𝑡, and reset 𝑡𝑜𝑡𝑎𝑙_𝑔𝑎𝑠 = 0

2) Mine a transaction and read 𝑔𝑎𝑠_𝑓𝑒𝑒_𝑢𝑠𝑒𝑑 and 𝑡𝑜𝑡𝑎𝑙_𝑔𝑎𝑠+= 𝑔𝑎𝑠_𝑓𝑒𝑒_𝑢𝑠𝑒𝑑

3) If 𝑡𝑜𝑡𝑎𝑙_𝑔𝑎𝑠 ≤ 𝑏𝑙𝑜𝑐𝑘_𝑔𝑎𝑠_𝑙𝑖𝑚𝑖𝑡 then go to 2)

4) Post the current block and go to 1)

Adaptive Chain Procedure {

Set block_gas_limit

Initialize total_gas := 0

Loop for Block {

 Wait for a transaction

 If no transaction arrived in Block time {

 Post the empty_current_block

 }

A transaction arrived == true {

 Mining the new_transaction

 Read gas_fee_used

Check the transaction gas_fee_used

86

Count transactions = transactions + new_transaction

Updated current_block = transactions

 Sum total_gas = total gas + gas_fee_used

 If total_gas > block_gas_limit {

 Post the current_block

 }

 Else {

 Loop for Block

 }

} //End A transaction arrived

} //End Loop for Block

} //End Adaptive Chain Procedure

87

2. Fully Asynchronous Chain Algorithm

1) If 𝑔𝑎𝑠 𝑢𝑠𝑒𝑑 ≤ 𝑙𝑖𝑚𝑖𝑡, post the current block

2) Else, set 𝑙𝑖𝑚𝑖𝑡 = 𝑔𝑎𝑠 𝑢𝑠𝑒𝑑 and go to 1)

Fully Asynchronous Chain Procedure {

 Set block_gas_limit

 Loop for Block {

 Wait for a transaction

 If no transaction arrived in Block time {

 Post the empty_current_block

 }

A transaction arrived == true {

Mining the new_transaction

 Read gas_fee_used

If gas_fee_used ≤ block_gas_limit {

 Post the current block

}

88

Else {

Block_gas_limit = gas_fee_used

}

 } // End Loop for Block

} // End Fully Asynchronous Chain Procedure

89

3. Staged Asynchronous Chain Algorithm

1) Set staged gas range for each stage 𝑠௜

2) Mine a transaction, read 𝑔𝑎𝑠_𝑓𝑒𝑒_𝑢𝑠𝑒𝑑, determine the stage 𝑠௜, and total 𝑡௦೔
+= 𝑔

3) If 𝑡௦೔
≤ 𝑙𝑖𝑚𝑖𝑡௦೔

, then go to 2

4) Post the current block with the transactions of 𝑡௦೔
, and go to 2)

Staged Asynchronous Chain Procedure {

 Set staged_block_gas_limit

 Loop for Block {

 Wait for a transaction

 If no transaction arrived in Block time {

 Post the empty_current_block

 }

A transaction arrived == true {

Mining the new_transaction

 Read gas_fee_used

If staged_gas_fee_used ≤ staged_block_gas_limit {

 Post the current staged block

}

90

Else {

staged_block += new transaction

}

 } // End Loop for Block

} // End Staged Asynchronous Chain Procedure

91

4. Implementation and Experimental Environment Setup

This section introduces the hardware requirement, software requirement, operating systems, IDE

(Integrated Development Environment), and network for the implementation and experimental

environment setup.

1) Hardware specification

 Apple iMac

 Intel Core i5 (2.3GHz)

 8GB Memory

 1TB Hard Disk

2) Operating systems

 macOS Catalina version 10.15

3) Software

 Ethereum Protocol with Golang (https://github.com/ethereum/go-ethereum)

 Go Language (version 1.13.4, https://golang.org/) for Geth (Go Ethereum)

 Solidity Language for the smart contract (transaction)

4) IDE (Integrated Development Environment)

 Remix (https://remix.ethereum.org/ [42]) for Smart Contract using Web3 [43]

provider

92

Web3 is a JavaScript library (API) to interact with Ethereum node remotely or locally

and works to connect to an Ethereum node remotely or locally using JSON RPC with

Remix (https://remix.ethereum.org)

 Visual Studio Code for Go Ethereum

(https://code.visualstudio.com/docs/languages/go)

 GoLand for Go Ethereum

(https://www.jetbrains.com/go/promo/?gclid=Cj0KCQjwwLKFBhDPARIsAPzPi-

KGXVlE_gNvXybyjdoAbp0CtljkJOR4yL31HDnzkInKr9jEQl4h39EaAlAKEALw_

wcB)

5) Network

 A local private Ethereum network using the Proof of Authority consensus engine

(Clique)

93

5. Implementation and Experimental Procedure

This section shows the procedure of each step of commands to make a geth execution file,

block information, transaction information, and a mining start/stop. it. The remix shows the

transaction from the solidity program language

1) Remix Configuration [41, 42]

 Deploy & Run: Compiled smart contract (transaction) to be posting in a block

- to send contract compiled transactions to the environment

 Environment: Web3 Provider

- to connect to a remote node by providing the URL with geth

 Web3 Provider: Remix and Geth

- to run Remix and a local test node

 Account: “0xa4040DA9353CD9ba03C7e9BCe0876d450fea08B5”

- to use my accounts list for transaction

 Gas Limit: set 3000000 as default

- to set the max Gas Limit of the smart contract in Remix

 Value: set 0 as default

- to send wei, gwei, finney, ether if the smart contract has the payable function

2) Compile and make geth (go ethereum source code)

 Compiling all geth source code files and make the latest geth executable file version

 Command: “make geth” in the source directory in Figure 24

94

Figure 24. Build Go Ethereum source code

3) Run the geth

 Run the geth with rpcport, rpccorsdomain, unlock my account, and target gaslimit in

bin folder

 Command: ./geth --datadir “data file name ” --port 30304 --networkid 1234 --rpc --

rpcport “8545” --rpccorsdomain http://remix.ethereu.org --“allow-insecure-unlock”

“my account” --password password.txt --targetgaslimit ‘10000000’ in Figure 25

Figure 25. Run command with geth

4) Mining

 CPU Mining with Geth in Geth JavaScript Console

 Start CPU mining and stop CPU mining

 Command: miner.start(number of threads), miner.stop() in Figure 26

95

Figure 26. CPU mining in JavaScript console attach

5) Geth JavaScript Console [43]

 Web3.js – Ethereum JavaScript API provided to interact with a local or remote

ethereum node by HTTP, IPC or WebSocket

 Command: geth console, geth attach in Figure 27

Figure 27. Run geth console in geth JavaScript console

6) Block

 Find the block information with block number

 Command: eth.getBlock(‘block number’) in JavaScript console or attach in Figure 28

96

Figure 28. Find the empty block information with geth command in console or attach

7) Information of Block creation with transactions

 There is all information of the transaction, block, mining, time, hash code, elapsed,

and so on in Figure 29

97

Figure 29. Go Ethereum JavaScript Main Console

8) Detailed block information in JavaScript console

 eth.getBlock(‘block number’) shows the detailed information as follows

 Find a transaction in a block and detailed information in a block in Figure 30

98

Figure 30. Transaction information in a block and empty block in JavaScript console

9) A solidity source code for a smart contract to request a transaction from Remix

 Remix provides the solidity for a smart contract to deploy and run transactions in

three kinds of environment such as JavaScript VM, Injected Web3, and Web3

Provider in Figure 31

99

 A smart contract is coded by solidity source code to send a transaction to the Geth

using Web3 Provider

 The Web3 Provider is used to connect Geth with Remix IDE

Figure 31. A simple smart contract of the solidity source code in Remix IDE [41]

100

6. Implementation and Experimental Results

Figure 32 plots the experimental and implemented average waiting time of transactions given

an arrival rate (e.g., average 0.2 sec) and given a posting rate. The average waiting time is

obtained by averaging the arrival time of each transaction minus its posting time, the average of

the simulated waiting time versus the number of transactions arrived. The adaptive chain shows

the lowest waiting time throughout, followed by the fully asynchronous and the staged

asynchronous chains as the next slowest, and it is observed that the time spent waiting for

posting with a large number of transactions in the naïve baseline chain is quite linearly

proportional to the number of transactions as expected, and which is the primary motivation for

the proposed dynamic blockchain either reactive or proactive.

Figure 32. Baseline, adaptive, and asynchronous chain models for the waiting time

101

Figure 33 plots the throughput per block with respect to the number of transactions given for a

given arrival rate (e.g., average 0.2 sec) and given a posting rate. The fully asynchronous chain

initially and briefly maintains the highest throughput, then drops down slightly below the

baseline chain beyond 𝑛 = 20 and maintains it. Overall, the baseline and the adaptive and the

staged asynchronous chains demonstrate a good agreement with the numerical simulation

results. The throughput is defined by the number of transactions arrived over the block delay

(i.e., block posting time minus block creation time), and calculated as follows.

𝑇ℎ𝑟𝑜𝑢𝑔ℎ𝑝𝑢𝑡 =
𝑡𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡𝑟𝑎𝑛𝑠𝑎𝑐𝑡𝑖𝑜𝑛𝑠 𝑢𝑝 𝑡𝑜 𝑡ℎ𝑒 𝑝𝑜𝑖𝑛𝑡

𝑡𝑜𝑡𝑎𝑙 𝑡𝑖𝑚𝑒 𝑠𝑝𝑎𝑛 𝑢𝑝 𝑡𝑜 𝑡ℎ𝑒 𝑝𝑜𝑖𝑛𝑡

Figure 33. Baseline, adaptive, and asynchronous chain models for the throughput

102

Figure 34 plots the average # of slots per block with respect to the number of transactions given

for a given arrival rate (e.g., average 0.2 sec) and given a posting rate. In the experimental

results as shown in Fig.9, the average number of slots is obtained by averaging the number of

100,000 wei versus the number of transactions arrived, whereas, in the theoretical (numerical)

results as shown in Fig. 1-6, the average number of slots (equivalently, the average number of

100,000 wei) versus the number of transactions arrived is simulated. The baseline, the adaptive,

the fully asynchronous and the staged asynchronous chains show in good agreement with the

numerical results.

Figure 34. Baseline, adaptive, and asynchronous chain models for the number of slots

103

CHAPTER VII

CONCLUSION AND DISCUSSIONS

This dissertation has presented a variety of models of blockchain architecture to be proposed and

studied for a variety of dynamic block size adjustment solutions. The baseline model has

demonstrated the baseline chain as the conventional solution without allowing any block size

adjustment. The adaptive model has demonstrated an adaptive chain as a naïve solution to block

size adjustment in a reactive manner. The asynchronous model has demonstrated two different

types of chains such as the fully asynchronous chain as another naïve solution yet in a proactive

manner, and the staged asynchronous chain as a solution that is a hybrid form of the reactive and

the proactive solutions.

The models have been expressed by developing four different types of embedded Markovian

queueing models of the 𝑀ଵ,௡/𝑀௡/1 type (VBASBS) for the baseline chain, the 𝑀ଵ,௡/𝑀ଵ,௜,௡/1

type (VBAVBS) for the adaptive chain, and the 𝑀ଵ,௡/𝑀௜௞,௡/1 type (VBAABS) for the

asynchronous chain precisely for the fully asynchronous as well as the staged asynchronous

chain, in order to establish a theoretical foundation to design a blockchain-based system with a

104

focus on the stochastic behavior of the mined transactions waiting to be posted for the block delay

along with the assumptions of the static bulk service, the variable bulk service, and the fully and

staged asynchronous bulk services, respectively. As shown in the results of the numerical analysis

and the experimental results, the theoretical models have been extensively simulated to compare

the basic performance of the proposed models in the perspective of the average transaction

waiting time, the average number of slots per block, and throughput.

The baseline model has presented the assumption of the static bulk service taken place when the

number of slots in the mined transactions reaches 𝑛, i.e., a bulk processing of multiple

transactions in multiple slots for posting in a block in numerical simulation, on the other hand, the

adaptive model has presented every state 𝑃௜ , 0 < 𝑖 ≤ 𝑛, potentially transitions back into 𝑃଴, which

represents the normalized size of the block at various and random sizes of the block in numerical

simulation. The adaptive model has shown the performance advantages to the baseline model

through the average number of transactions, the average number of waiting time, but except

throughput. The staged asynchronous model has presented staged state transitions precisely from,

𝑃௜௦ , 1 ≤ 𝑖 ≤ 𝑡, back into 𝑃଴, which represents the asynchronously scalable staged size of the block

at various and random sizes of the block in numerical simulation. The staged asynchronous model

has shown the performance advantages against both the baseline and the adaptive models from

the number of transaction around 𝑛 > 60 through the average number of transactions, the average

number of waiting time, but except throughput. The fully asynchronous model has presented a

single and unique state transition precisely from 𝑃௜, 1 ≤ 𝑖 ≤ 𝑛, back into 𝑃଴, which represents an

arrived transaction only to be posted to a current block. The fully asynchronous model has shown

the performance excellence against the other models through the average number of transaction,

the average number of waiting time and throughput in numerical simulation.

105

A reasonable agreement has been observed with the theoretical results overall as presented in the

section of implementations and experimental results. The proposed staged asynchronous chain

model has demonstrated as expected as the most alternative yet promising solution to the baseline

chain model in order to improve the speed that is desired by such transactions as being exigently

mandated to be executed in an asynchronous manner, ultimately in order to realize a dynamic

blockchain-based computing.

106

REFERENCES

[1] Vladimir Soloviev, “Fintech Ecosystem in Russia”, 2018 Eleventh International

Conference “Management of large-scale system development” (MLSD). DOI:
10.1109/MLSD.2018.8551808

[2] Nir Kshetri, and Jeffrey Voas, “Blockchain in Developing Countries”, IT Professional

(Volume: 20, Issue: 2, Mar./Apr. 2018). DOI: 10.1109/MITP.2018.021921645

[3] Guido Perboli, Stefano Musso, and Mariangela Rosano, “Blockchain in Logistics and

Supply Chain: A Lean Approach for Designing Real-World Use Cases”, IEEE
Access, pp(99):1-1 · October 2018

[4] Satoshi Nakamoto, “Bitcoin: A Peer-to-Peer Electronic Cash System”, 2008, [online]

Available: https://bitcoin.org/bitcoin.pdf.

[5] Chris Dannen. 2017. Introducing Ethereum and Solidity: Foundations of

Cryptocurrency and Blockchain Programming for Beginners (1st. ed.). Apress

[6] Diego Vegros, and Jaime Saenz, 2010. Peer-To-Peer Networks and Internet Policies,

Nova Science Publishers, Inc., NY, USA

[7] Vitalik Buterin, “A Next Generation Smart Contract & Decentralized Application

Platform”, White Paper, 2014. Available online at: http://www.the-
blockchain.com/docs/Ethereum_white_paper-
a_next_generation_smart_contract_and_decentralized_application_platform-vitalik-
buterin.pdf

[8] Israel Koren and C. Mani Krishna, “Common Network Topologies and Their
Resilience,” in Fault-Tolerant Systems, San Francisco, CA: Morgan Kaufmann
Publishers, 2007, pp. 112-135

107

[9] Pouria Pirzadeh, Michael Carey, and Till Westmann, “A performance study of big
data analytics platforms,” 2017 IEEE International Conference on Big Data (Big
Data). DOI: 10.1109/BigData.2017.8258260

[10] Morgen E. Peck. “Blockchains: How They Work and Why They’ll Change the
World,” IEEE Spectrum (Volume: 54, Issue: 10, October 2017). DOI:
10.1109/MSPEC.2017.8048836

[11] Konstantin Shvachko, Hairong Kuang, Sanjay Radia, and Robert Chansler, “The

Hadoop Distributed File System,” 2010 IEEE 26th Symposium on Mass Storage
Systems and Technologies (MSST). DOI: 10.1109/MSST.2010.5496972

[12] Hemang Subramanian. “Decentralized Blockchain-Based Electronic Marketplaces,”

Communications of the ACM, Volume 61, Number 1, December 2017.
https://doi.org/10.1145/3158333

[13] Dejan Vujii, Dijana Jagodi, and Sinia Rani, “Blockchain technology, bitcoin, and

Ethereum: A brief overview,” 2018 17th International Symposium INFOTEH-
JAHORINA (INFOTEH). DOI: 10.1109/INFOTEH.2018.834554

[14] Sara Rouhani, and Ralph Deters, “Performance Analysis of Ethereum Transactions

in private blockchain,” 2017 8th IEEE International Conference on Software
Engineering and Service Science (ICSESS). DOI: 10.1109/ICSESS.2017.8342866

[15] Mrs. Anamika Chauhan, Om Prakash Malviya, Madhav Verma, and Tejinder Singh

Mor, “Blockchain and Scalability,” 2018 IEEE International Conference on
Software Quality, Reliability and Security Companion (QRS-C). DOI: 10.1109/QRS-
C.2018.00034

[16] Gavin Wood, “Ethereum: A Secure Decentralised Generalised Transaction Ledger”,

2014. Ethereum Project Yellow Paper, http://gavwood.com/paper.pdf

[17] Ingo Weber, Vincent Gramoli, Alex Ponomarev, Mark Staples, Ralph Holz, An Binh

Tran, and Paul Rimba, “On Availability for Blockchain-Based Systems,” 2017 IEEE
36th Symposium on Reliable Distributed Systems (SRDS). DOI:
10.1109/SRDS.2017.15

[18] Federico Lombardi, Leonardo Aniello, Stefano De Angelis, Andrea Margheri, and

Vladimiro Sassone, “A Blockchain-based Infrastructure for Reliable and Cost-
effective IoT-aided Smart Grids,” Living in the Internet of Things: Cybersecurity of
the IoT – 2018. DOI: 10.1049/cp.2018.0042

[19] Qi Zhang, Petr Novotný, Salman Baset, Donna N. Dillenberger, Artem Barger and

Yacov Manevich, “LedgerGuard: Improving Blockchain Ledger Dependability,”
ICBC (2018).

108

[20] Jongho Seol, Abhilash Kancharla, Nicole Park, Nohpill Park, and Indy Nohjin Park,
“The Dependability of Crypto Linked Off-chain File Systems in Backend
Blockchain Analytics Engine,” International Journal of Networked and Distributed
Computing Vol 6, Dec 2018.

[21] Ying Liu, Kai Zheng, Paul Craig, Yuexuan. Li, Yangkai Luo and Xin Huang,
"Evaluating the Reliability of Blockchain Based Internet of Things Applications,"
2018 1st IEEE International Conference on Hot Information-Centric Networking
(HotICN), 2018, pp. 230-231, doi: 10.1109/HOTICN.2018.8606026.

[22] Juan Benet, “IPFS – Content addressed, versioned, P2P file system (DRAFT 3),”

2014. arXiv:1407.3561v1, [online] Available
: https://ipfs.io/ipfs/QmV9tSDx9UiPeWExXEeH6aoDvmihvx6jD5eLb4jbTaKGps

[23] Abhilash Kancharla and N. Park, “A Realtime Crypto Computing and Block-

Dependability,” IEEE SC2 2019

[24] Abhilash Kancharla, Indy Park, Nicole Park, and N. Park, “Dependable Industrial

Crypto Computing,” IEEE ISIE 2019. DOI: 10.1109/ISIE.2019.8781245

[25] Keke Gai, Yulu Wu, Liehuang Zhu, Zijian Zhang, and Meikang Qiu, “Differential

Privacy-Based Blockchain for Industrial Internet-of-Things”, IEEE Transactions on
Industrial Informatics (Volume: 16, Issue: 6, June 2020). DOI:
10.1109/TII.2019.2948094

[26] Keke Gai, Yulu Wu, Liehuang Zhu, Meikang Qiu, and Meng Shen, ''Privacy-

Preserving Energy Trading Using Consortium Blockchain in Smart Grid,” IEEE
Transactions on Industrial Informatics (Volume: 15, Issue: 6, June 2019). DOI:
10.1109/TII.2019.2893433

[27] Keke Gai, Yulu Wu, Liehuang Zhu, Lei Xu, and Yan Zhang, “Permissioned

Blockchain and Edge Computing Empowered Privacy-Preserving Smart Grid
Networks,” IEEE Internet of Things Journal (Vomue:6, Issue:5, Oct 2019). DOI:
10.1109/JIOT.2019.2904303

[28] Fabian Knirsch, Andreas Unterweger and Dominik Engel, “Implementing a

blockchain from scratch: why, how, and what we learned,” EURASIP Journal on
Information Security, volume 2019, Article number: 2 (2019)

[29] Di Yang, Chengnian Long, Han Xu, Shaoliang Peng, “A Review on Scalability of

Blockchain,” ACM ICBCT'20: Proceedings of the 2020 The 2nd International
Conference on Blockchain Technology, March 2020. Pages 1–6.
https://doi.org/10.1145/3390566.3391665

109

[30] Parth Thakkar, Senthil Nathan N, Balaji Viswanathan, “Performance Benchmarking
and Optimizing Hyperledger Fabric Blockchain Platform,” 2018 IEEE 26th
International Symposium on Modeling, Analysis, and Simulation of Computer and
Telecommunication Systems (MASCOTS), 08 Nov 2018. DOI:
10.1109/MASCOTS.2018.00034

[31] Suporn Pongnumkul, Chaiyaphum Siripanpornchana, and Suttipong Thajchayapong,

“Performance Analysis of Private Blockchain Platforms in Varying Workloads,”
2017 26th International Conference on Computer Communication and Networks
(ICCCN), Sep 2017. DOI: 10.1109/ICCCN.2017.8038517

[32] Peilin Zheng, Zibin Zheng, Xiapu Luo, Xiangping Chen, and Xuanzhe Liu, “A

detailed and real-time performance monitoring framework for blockchain systems,”
ACM ICSE-SEIP '18: Proceedings of the 40th International Conference on Software
Engineering: Software Engineering in Practice, May 2018. Pages 134–143.
https://doi.org/10.1145/3183519.3183546

[33] Mengting Liu, F. Richard Yu, Yinglei Teng, Victor C. M. Leung, Mei Song,

“Distributed Resource Allocation in Blockchain-Based Video Streaming Systems
With Mobile Edge Computing,” IEEE Transactions on Wireless Communications
(Volume: 18, Issue: 1, Jan. 2019). DOI: 10.1109/TWC.2018.2885266

[34] Shishir Rai, Kendric Hood, Mikhail Nesterenko, and Gokarna Sharma, “Blockguard:

Adaptive Blockchain Security,” Distributed, Parallel, and Cluster Computing, Jul
2019. arXiv:1907.13232 [cs.DC]

[35] Songpu Ai, Diankai Hu, Tong Zhang, Yunpeng Jiang, Chunming Rong, Junwei Cao,

“Blockchain based Power Transaction Asynchronous Settlement System,” 2020
IEEE 91st Vehicular Technology Conference (VTC2020-Spring). DOI:
10.1109/VTC2020-Spring48590.2020.9129593

[36] J. Lind, O. Naor, I. Eyal, F. Kelbert, P. Pietzuch, E.G. Sirer, “Teechain: A Secure

Payment Network with Asynchronous Blockchain Access,” arXiv:1707.05454

[37] Rafael Pass, Lior Seeman, Abhi Shelat, “Analysis of the Blockchain Protocol in

Asynchronous Networks,” Published in Advances in Cryptology – EUROCRYPT
2017

[38] Wei Chih Hong, Ying Chin Chen, Ren Kai Yang, Bo Li, Jung San Lee, “Efficient

peer-to-peer E-payment based on asynchronous dual blockchain,” Journal of
Internet Technology, vol 21. Issue no. 5. Published 2020

[39] Ethereum Average Block Size Chart, https://etherscan.io/chart/blocksize

110

[40] Jongho Seol, Abhilash Kancharla, Zuqiang Ke, Hyeyoung Kim, Nohpill Park, “A
Variable Bulk Arrival and Static Bulk Service Queueing Model for Blockchain,”
BSCI '20: Proceedings of the 2nd ACM International Symposium on Blockchain and
Secure Critical Infrastructure, October 2020, Pages 63–72,
https://doi.org/10.1145/3384943.3409423

[41] Remix Documentation – Ethereum IDE, Edit on GitHub, https://remix-

ide.readthedocs.io/en/latest/index.html

[42] Remix – Ethereum IDE, Deploy & Run Transactions in the Blockchain,

https://remix-project.org/

[43] web3.js Documentation – Ethereum JavaScript API,

https://web3js.readthedocs.io/en/v1.2.9/#

[44] Quan-Lin Li, Jing-Yu Ma, and Yan-Xia Chaing, “Blockchain Queue

Theory”, arXiv:1808.01795v1 [cs.CE], 6 Aug 2018

[45] Abhilash Kancharla, Jongho Seol, Nohpill Park, Tao Feng, “A Hybrid Chain and A

Double-Tuple Variable Bulk Arrival and Static Bulk Service Model,” 2021 IEEE
International Conference on Blockchain and Cryptocurrency (ICBC 2021)

[46] Abhilash Kancharla, Jongho Seol, Nohpill Park, Hyeyoung Kim, “Slim Chain and

Dependability,” BSCI '20: Proceedings of the 2nd ACM International Symposium
on Blockchain and Secure Critical Infrastructure, October 2020, Pages 180–185,
https://doi.org/10.1145/3384943.3409435

[47] Tian Min, and Wei Cai, “A Security Case Study for Blockchain Games,'' 2019 IEEE

Games, Entertainment, Media Conference (GEM). DOI:
10.1109/GEM.2019.8811555

[48] Dongjing Xu, Liang Xiao, Limin Sun, and Min Lei, “Game theoretic study on

blockchain based secure edge networks,” 2017 IEEE/CIC International Conference
on Communications in China (ICCC). DOI: 10.1109/ICCChina.2017.8330529

[49] Ting Chen, Zihao Li, Yuxiao Zhu, Jiachi Chen, Xiapu Luo, John Chi-Shing Lui,

Xiaoding Lin, Xiaosong Zhang, “Understanding Ethereum via Graph Analysis,”
ACM Transactions on Internet Technology, April 2020, Article No.:18,
https://doi.org/10.1145/3381036

[50] Ethereum. Ethereum Homestead Documentation. Retrieved from

http://www.ethdocs.org/en/latest/

[51] Ethereum. Community. Etherscan, The Ethereum Blockchain Explorer. Retrieved

from https://etherscan.io/

111

[52] Xiaoqi Li, Peng Jiang, Ting Chen, Xiapu Luo, and Qiaoyan Wen, “A survey on the
security of blockchain systems,” Future Generation Computer Systems. 107.
10.1016/j.future.2017.08.020.

[53] Galal H.S., Youssef A.M., “Trustee: Full Privacy Preserving Vickrey Auction on

Top of Ethereum,” Financial Cryptography and Data Security. Science, vol 11599.
Springer, Cham. https://doi.org/10.1007/978-3-030-43725-1_14

[54] Chen T. et al. (2017) “An Adaptive Gas Cost Mechanism for Ethereum to Defend

Against Under-Priced DoS Attacks,” In: Liu J., Samarati P. (eds) Information
Security Practice and Experience. ISPEC 2017. vol 10701. Springer, Cham.
https://doi.org/10.1007/978-3-319-72359-4_1

[55] Decker C., Wattenhofer R. (2015) “A Fast and Scalable Payment Network with

Bitcoin Duplex Micropayment Channels,” In: Pelc A., Schwarzmann A. (eds)
Stabilization, Safety, and Security of Distributed Systems. SSS 2015. Lecture Notes
in Computer Science, vol 9212. Springer, Cham. https://doi.org/10.1007/978-3-319-
21741-3_1

[56] Jakub Sliwinski and Roger Wattenhofer, “ABC: Proof-of-Stake without Consensus,”

arXiv:1909.10926 [cs.CR]

[57] Zeta Avarikioti, Eleftherios Kokoris-Kogias, Roger Wattenhofer, and Diony-sis

Zindros, “BRICK: Asynchronous Payment Channels”

[58] Sara Rouhani and Ralph Deters, "Performance analysis of ethereum transactions in

private blockchain," 2017 8th IEEE International Conference on Software
Engineering and Service Science (ICSESS), 2017, pp. 70-74, doi:
10.1109/ICSESS.2017.8342866.

112

APPENDICES

Matlab source code for the baseline chain model (VBASBS)

iterations =120;
LQ = zeros(1,iterations)
W = zeros(1,iterations)
WQ = zeros(1,iterations)
L = zeros(1,iterations)
Gamma = zeros(1, iterations)
TestP = zeros(1, iterations)
n=10;
Psum = 0;
lambda = 0.005 % % 0.005 -./ 0.01 -/ 0.03 -d/ 0.05 -h/,
mu = 1/15;

for iterations = 1:iterations
 Q = zeros(1,n);
 a = zeros(1,n);
 P = zeros(1,n);
 temp = ones(1,n);

 for i = 1 : n-1
 temp(i) = 2^(i-1)*(i*n-2*n+7*i-14-i^2)+8;

 a(i) =

(i*(i+1)/2)*(n/(sqrt(2*pi*n)*(n/exp(1))^n)^2)*temp(i)+i;
 Q(i) = a(i) * (2/((n-i)*(n-i+1)));
 end
 Psum = sum(Q)+1+(lambda/mu)*((n*(n+1))/2);
 Pzero = 1/Psum;

113

for i = 1:n-1
 P(i) = Q(i)*Pzero ;
 end

P(n) = (lambda/mu)*((n*(n+1))/2)*Pzero
 Psum = sum(P)+Pzero;

 for i = 1:n
 LQ(iterations) = LQ (iterations) + i * P(i) ;
 end

 for i = 1:n
 WQ(iterations) = LQ(iterations) / lambda;
 end

 for i = 1:n
 W(iterations) = WQ(iterations) + 1/mu;
 end

 for i = 1:n
 L(iterations) = lambda * W(iterations);
 end
 for i = 1:n
 Gamma(iterations) = P(i)*mu;
 end

 for i = 1:n
 TestP(iterations) = P(n);
 end

 n = n + 1;
end

hold on
x = 1:1:(iterations);

plot(x, Gamma,'k x-', 'MarkerIndices', 1:10:length(L))
%plot(x, L, 'k --', 'MarkerIndices', 1:10:length(L)) % 'k .-'

or 'k .'
%plot(x, TestP, 'k -x', 'MarkerIndices', 1:10:length(L))
%plot(x, LQ, 'k --', 'MarkerIndices', 1:10:length(L)) % 'k .-'

or 'k .'
%plot(x, W, 'k x-', 'MarkerIndices', 1:10:length(L))
%plot(x, WQ, 'k --', 'MarkerIndices', 1:10:length(L)) % 'k .-'

or 'k .'
title('Baseline ')

hold off

114

Matlab source code for the adaptive chain model (VBAVBS)

iterations =120;
LQ = zeros(1,iterations)
W = zeros(1,iterations)
WQ = zeros(1,iterations)
L = zeros(1,iterations)
Gamma = zeros(1, iterations)
n=10;
mu_n=10;
Psum = 0;
lambda = 0.005% % 0.005 :o/ 0.01 :+/ 0.03 :s/ 0.05 :*/,
mu = 1/15;

for iterations = 1:iterations
 Psum = 0;
 SUM_a1 = 1;
 SUM_a2 = 0;
 SUM_a3 = 0;
 SUM_a4 = 0;
 q = zeros(1,n);
 for i = 1:n
 q(i) = (2*lambda*(n-i+1)) / ((n-i)*lambda*(n-

i+1)^2+(2*mu));
 end

 for i= 1 : n
 SUM_a3 = 0;
 for j=1 : i
 SUM_a2 = 0;
 for k=1 : i-1
 SUM_a1 = 1;
 for l= 1 : k-1 % Product of l=1 to k-1
 SUM_a1 = SUM_a1*q(l);
 end
 SUM_a2 = SUM_a2 + k * SUM_a1;
 end
 SUM_a3 = SUM_a3 + j * SUM_a2;
 end
 SUM_a4 = SUM_a4 + q(i)*(SUM_a3 + i);
 end

 P0 = 1/(1+(SUM_a4));

 Psum = 0;
 SUM_a1 = 1;
 SUM_a2 = 0;
 SUM_a3 = 0;
 SUM_a4 = 0;

115

 for i= 1 : n
 SUM_a3 = 0;
 for j=1 : i
 SUM_a2 = 0;
 for k=1 : i-1
 SUM_a1 = 1;
 for l= 1 : k-1 % Product of l=1 to k-1
 SUM_a1 = SUM_a1*q(l);
 end
 SUM_a2 = SUM_a2 + k * SUM_a1;
 end
 SUM_a3 = SUM_a3 + j * SUM_a2;
 end
 SUM_a4 = SUM_a3 + i;
 P(i) = q(i)* P0 * SUM_a4;
 end

 Psum = sum(P) + P0;

 for i = 1:n

 LQ(iterations) = LQ(iterations) + i * P(i);

 Gamma(iterations) = Gamma (iterations)+ P(i)*mu/(n-(i-

1));
 end

 WQ(iterations) = LQ(iterations) / lambda;

 W(iterations) = WQ(iterations) + 1/mu ;

 L(iterations) = lambda * W(iterations);

 n = n + 1;
end

hold on

x=1:1:(iterations);

plot(x, L, 'k :s', 'MarkerIndices', 1:10:length(L))
plot(x, Gamma, 'k :s ', 'MarkerIndices', 1:10:length(L))
plot(x, LQ, 'k :s', 'MarkerIndices', 1:10:length(L))
plot(x, W, 'k :s', 'MarkerIndices', 1:10:length(L))
plot(x, WQ, 'k :s', 'MarkerIndices', 1:10:length(L))
%hold off

116

Matlab source code for the asynchronous chain model (VBAABS)

I. Fully Asynchronous Chain model

iterations =120;
LQ = zeros(1,iterations)
W = zeros(1,iterations)
WQ = zeros(1,iterations)
L = zeros(1,iterations)
Gamma = zeros(1, iterations)
n=10;
Psum = 0;
Psumbefore = 0;
lambda = 0.05 % % 0.005 -./ 0.01 -/ 0.03 -d/ 0.05 -h/,
mu = 1/15;

for iterations = 1:iterations
 Q = zeros(1,n);
 a = zeros(1,n);
 P = zeros(1,n);

 for i = 1 : n-1

 a(i) = i*lambda;
 Q(i) = a(i) * ((n-(i-1))/mu);
 end
 Psumbefore = 1+((lambda/mu)*((n*(n+1)*(n+2))/6));
 Pzero = 1/Psumbefore;

 for i = 1:n-1
 P(i) = Q(i)*Pzero ;
 end

 P(n) = (1/mu)*i*lambda*Pzero
 Psum = sum(P)+Pzero;

 for i = 1:n
 LQ(iterations) = LQ(iterations) + i * P(i) ;
 end

 for i = 1:n
 WQ(iterations) = LQ(iterations) / lambda;
 end

 for i = 1:n
 W(iterations) = WQ(iterations) + 1/mu;
 end

117

 for i = 1:n
 L(iterations) = lambda * W(iterations);
 end
 for i = 1:n
 Gamma(iterations) = Gamma(iterations) + P(i)*mu;
 end
 n = n + 1;
end

hold on
x = 1:1:(iterations);

%plot(x, Gamma, 'k -o', 'MarkerIndices', 1:10:length(L))
%plot(x, L, 'k -x', 'MarkerIndices', 1:10:length(L)) % 'k .-'

or 'k .'
%plot(x, P, 'k -*')
%plot(x, LQ, 'k -s', 'MarkerIndices', 1:10:length(L))
plot(x, W, 'k -o', 'MarkerIndices', 1:10:length(L))
%plot(x, WQ, 'k -x', 'MarkerIndices', 1:10:length(L))
title('Fully asynchronous')

hold off

118

II. Staged Asynchronous Chain model

iterations =120;
LQ = zeros(1,iterations)
W = zeros(1,iterations)
WQ = zeros(1,iterations)
L = zeros(1,iterations)
Gamma = zeros(1, iterations)
n=10;
Psum = 0;
lambda = 0.005; % % 0.005 -./ 0.01 -/ 0.03 -d/ 0.05 -h/,
mu = 1/15; % set 1/15
s = 10;

for iterations = 1:iterations
 Q = zeros(1,n);
 a = zeros(1,n);
 P = zeros(1,n);
 outer = zeros(1,n)

 for i = 1 : n-1
 if rem(i, s) == 0
 outer(i)= (lambda/mu)*(((s-i)*(s-i+1)))/2
 else
 temp(i) = 2^(i-1)*(i*n-2*n+7*i-14-i^2)+8;
 a(i) =

(i*(i+1)/2)*(n/(sqrt(2*pi*n)*(n/exp(1))^n)^2)*temp(i)+i;
 outer(i) = a(i) * (2/((n-i)*(n-i+1)));
 end
 end

 Psum = sum(outer)+1+(lambda/mu)*((n*(n+1))/2);
 Pzero = 1/Psum;

 for i = 1:n-1
 P(i) = outer(i)*Pzero ;
 end
 P(n) = (lambda/mu)*((n*(n+1))/2)*Pzero
 Psum = sum(P)+Pzero;

 for i = 1 : n
 LQ(iterations) = i * P(i)
 end

 for i = 1:n

119

 WQ(iterations) = LQ(iterations) / lambda
 end

 for i = 1:n
 W(iterations) = WQ(iterations) + 1/mu
 end

 for i = 1:n
 L(iterations) = lambda * W(iterations)
 end
 for i = 1:n
 if rem(i, s) == 0
 Gamma(iterations) = Gamma (iterations) + P(i)*mu
 else
 Gamma(iterations) = P(i)*mu
 end

 end
 n = n + 1;
end

hold on
x = 1:1:(iterations);

plot(x, Gamma, 'k -.','MarkerIndices', 1:10:length(L))
%plot(x, L, 'k -o','MarkerIndices', 1:10:length(L)) % 'k .-'

or 'k .'
%plot(x, P, 'k -*')
%plot(x, LQ, 'k -o','MarkerIndices', 1:10:length(L))
%plot(x, W, 'k -o', 'MarkerIndices', 1:10:length(L))
%plot(x, WQ, 'k -o','MarkerIndices', 1:10:length(L))
%title('Baseline vs. Adaptive')

hold off

.

VITA

Jongho Seol

Candidate for the Degree of

Doctor of Philosophy

Dissertation: A STUDY ON QUANTITATIVE DESIGN FOR DYNAMIC

BLOCKCHAIN-BASED COMPUTING

Major Field: Computer Science

Biographical:

Education:

Completed the requirements for the Doctor of Philosophy in Computer Science
at Oklahoma State University, Stillwater, Oklahoma in July, 2021.

Completed the requirements for the Master of Science in Computer Science at
Oklahoma State University, Stillwater, Oklahoma in 2005.

Completed the requirements for the Bachelor of Science in Control and
Instrumentation Engineering at Kangwon National University, Samcheok,
Kangwon, Republic of Korea in 2000.

Experience:

Teaching Instructor for CS 1003, Computer Proficiency online and regular

courses in the Department of Computer Science at Oklahoma State
University, Stillwater, OK, from Spring 2019 to Summer 2021

Proposal Senior Engineer and System Lead Engineer at Emerson Automation

Solutions, Seongnam, Korea, from Nov 2007 to June 2017

Research Software Engineer at LG Electronics Mobile Handset Research and

Development Center, Seoul, Korea, from June 2005 to Oct 2007

