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Abstract:

Fluid Mechanics is a central theme of science concerned with the study of the behav-
ior of fluids when they are in state of motion or rest. When the density of the fluid
is constant or its change with the pressure is so small that can be neglected, the fluid
is said to be incompressible. Examination of such fluid flow phenomena is carried
out with the help of the incompressible Navier-Stokes equations. These fundamental
equations provide a mathematical model of the motion of the fluid. In this direction,
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CHAPTER I
INTRODUCTION

1.1 Navier-Stokes Equations

The Navier-Stokes equations, named after Claude-Louis Navier and George Gabriel
Stokes, model the motion of viscous fluids, which may be liquids or gases. These
nonlinear partial differential equations govern, for example, the movements of air in
the atmosphere, ocean currents, the flow of water in a pipe, blood flow, and many
other fluid flow phenomena. When dealing with incompressible fluids, the Navier-
Stokes equations can be written as

Ou+ (u-V)u=—-Vp+vAu+ f,
(1.1.1)

V-u=0,
where u denotes the velocity field, p represents the pressure, v is the kinematic vis-
cosity and f denotes the external force. The first equation of (1.1.1) is known as the
momentum equation, which is the statement of Newton’s second law. The second
equation V - u = 0, which expresses incompressibility, is derived from the conserva-
tion of mass. In the paricular case when v = 0, the system (1.1.1) is reduced to Euler

equations. Here, and throughout this dissertation, we denote

0 0
= 63;1 and (9t = a

81'2

The Navier—Stokes equations describe the physics of many phenomena of scien-
tific and engineering interest. They help with the analysis of pollution, the study of

blood flow, the design of cars and aircraft, and much more things. Also, in a purely



mathematical sense, the Navier-Stokes equations have long been a topic of extensive
research. As any PDE, the central questions about existence and uniqueness of the
solutions to the Navier-Stokes equations have been the subject of great research in-
terest. Suitable answers to those questions were obtained in two dimensions by the
celebrated works of Leray [42], Lions-Prodi [46] and Ladyzhenskaya [43]. However, in
three dimensions, it has not yet been proven that solutions always exist. In this case,
Leray [42] and Hopf [33] established the existence of global weak solutions, but no
results on the uniqueness of the Leray-Hopf weak solutions have yet been achieved.
So far, the existence and uniqueness of local solutions to the 3D Navier-Stokes equa-
tions was proved (see, e.g., [37]). In addition, global existence of strong solutions have
been shown only, when initial and external forces data are sufficiently smooth (see,
e.g., [60],[31]). Proving whether smooth solutions always exist in three dimensions
remains to be answered. This basic open question is one of the seven Clay Foundation

Millennium problems, and solving it carries a prize of one million-dollar.

1.2 Micropolar Equations

The micropolar equations were first derived in 1965 by C.A Eringen to modal microp-
olar fluids which are fluids with microstructure such as suspensions, liquid crystals
and animal blood (see, e.g., [10],]29],[28]). Micropolar fluids belong to a class of fluids
with nonsymmetric stress tensor called polar fluids. In particular, they include the
viscous fluids modeled by the Navier-Stokes equations (see, e.g., [10],[29],[28],[41]).

The standard 3D incompressible micropolar equations are given by

(

Ou— v+ k) Au—2sVXxw+u-Vu+VII=0, z€R3 t>0,

Ow — YyAW + 4w — pVV - w — 26V x u+u- Vw = 0, (1.2.1)

V-u=0,
\



where u = u(x,t) = (ui(x,t),us(x,t), us(z,t)) denotes the fluid velocity, w =
w(z,t) = (wyi(x, 1), wa(x, t), ws(x,t)) the field of microrotation representing the angu-
lar velocity of the rotation of the fluid particles, II(z, t) the scalar pressure, x denotes
the micro-rotation viscosity, v the Newtonian kinematic viscosity, and v and p the
angular viscosities.

The first equation in (1.2.1) represents the conservation of linear momentum, the
second one expresses the conservation of angular momentum and the third equation
reflects the incompressibility condition for the fluid.

Note that when the microrotation effects are neglected, namely w = 0, (1.2.1)
reduces to the incompressible Navier—Stokes equations (1.1.1). Further more, if we
assume that the velocity component in the z3-direction is zero and the axes of rotation

of particles are parallel to the xs-axis, that is
u = (ul(xlyx%t))uZ(J}lax27t)70)7 H:H(Il,l’g,t), W = (0,0,w<l'1,$2,t)),
the 3D micropolar equations reduce to the 2D micropolar equations given by

O — (v + k)Au —2kV x w+u-Vu+ VII =0, xe€R? t>0,

\ Orw — AW + 4kw — 26V X u +u - Vw = 0, (1.2.2)

V-u=0,
\

where u = u(x,t) = (ui(x,t), us(x,t)) is the 2D fluid velocity vector and w = w(zx, t) is
a scalar function representing the angular velocity of the rotation of the fluid particles.

Here, we remember that, in the 2D case,
V Xu= 81U2 — 82u1

is a scalar function representing the vorticity, and V x w = (Gyw, —01w).
Besides its rich physical background, the micropolar equations have been one

of the most commonly studied models in mathematical fluid dynamics for many



decades. In the recent years, extensive works have been done on the global reg-
ularity, well-posedness and large-time decay problems on the micropolar equations
(see, e.g.,[4],[15],[32],[39],[40],[41],[51],[53],[66],[16],[12],[28],[41],[13]).

We mention in particular some results on the global regularity of the 3D microp-
olar equations (1.2.1). In [32], Galdi and Rionero were the first who studied the
weak solutions of the initial boundary-value problem for the system (1.2.1). Then,
Lukaszewicz established the global existence of weak solutions for sufficiently regular
initial data in [39] and the local and global well-posedness results under asymmetric
conditions in [40]. Further, Boldrini, Duran and Rojas-Medar showed the local exis-
tence and uniqueness of strong solutions to the initial and boundary-value problem for
bounded or unbounded domains in their work [4]. In addition, Yamaguchi established
the global existence of small classical solutions in bounded domains in [66].

There is also an array of important results on the global regularity of the 2D
micropolar equations (1.2.2). (see,e.g., [22],[27],[54]). We mention in particular some
results on the 2D micropolar equations (1.2.2) with partial dissipation. In [27], Dong
and Zhang established the global regularity for the system (1.2.2) without the micro-
rotation viscosity (when v = 0). Then, Xue restudied the system (1.2.2) with v =
0,7 >0,k > 0 and k # 7 in his paper [65] and obtained the global well-posedness in
some Besov space settings. In [22], Dong, Li and Wu studied the global well-posedness
problem and the large-time behavior of (1.2.2) with no velocity dissipation. See also

[35], [48].

1.2.1 Fractional Dissipative Micropolar Equations

Despite all the efforts mentioned above, the global regularity of the weak solution
of the system (1.2.1) with general initial data remains an open problem. When
trying to solve this issue by applying the standard techniques, the main difficulty

that encounters us is that the Laplacian dissipation is not sufficient to control the



nonlinearity. Naturally, this leads us to ask the question of how much dissipation
one requires in order to get the global regularity. To answer this question, we are led
to replace the standard Laplacian dissipations —Awu and —Aw by general fractional
Laplacian dissipations (—A)%u and (—A)?w. Doing so, we get the following 3D

standard fractional micropolar equations

(

ou+ (v+k)(—A)u—2kVxw+u-Vu+VIl=0, ze€R3 t>0,

Ow + y(—A)YPw + 4w — uVV - w — 26V x u+u - Vw = 0,

V-u=0,
(1.2.3)

where the fractional powers o and [ are nonnegative and the fractional Laplacian

operator (—A)7 is defined via the Fourier transform

(CAV (&) = € ©).

The generalization to include fractional Laplacian dissipations (—A)%u and (—A)Pw
allows simultaneous study of a family of equations and is relevant in some physical
circumstances.

Fundamental issues such as the well-posedness problem on the micropolar equa-
tions with fractional dissipation have recently attracted considerable interest and an
array of important results have been established. Among those results, we mention
the recent work [26] of Dong, Wu, Xu and Ye who studied the 2D fractional microp-
olar equations and established the global well-posedness for the fractional powers «
and f in suitable ranges. We mention also the work of Wang, Wu and Ye [63], who
proved that, if o > g, g>0and a+ [ > ;Z, the fractional 3D micropolar equations
always possess a unique global classical solution for any sufficiently smooth data.

In this dissertation, we are concerned with the following d-dimensional (d = 2 or



d = 3) incompressible micropolar equations with fractional dissipation

(

Ou+ (v+k)(=A)u+u-Vu+ VII-2kV xw=0, z€R: t>0,

Oyw + 4kw 4 2kV x u 4 u - Vw + y(=A)Pw = 0, (1.2.4)

V-u=0,

| u(z,0) =uo(z), w(z,0)=wo(z),

where in the above system, u = u(z,t) € RY stands for the fluid velocity, w =
w(z,t) € R? denotes the field of microrotation representing the angular velocity of
the rotation of the fluid particles, II = II(z,¢) stands for the pressure in the fluids,
and the parameter v denotes the Newtonian kinematic viscosity, k£ the microrotation
viscosity and 7 the angular viscosity. Here the fractional Laplacian operator (—A)®

(which is also referred as the Riesz potential operator) is defined via the Fourrier

transform
(CA)F(€) = |6 F(©),
where
N _ 1 —iz-€
fler= g [ S

In our joint work with Wu [8], that will be discussed in chapter II, we are interested
in proving the local existence and uniqueness of weak solutions to the system (1.2.4)
in the frame work of inhomogeneous Besov spaces. We mention here that definitions
and some fundamental results about inhomogeneous Besov spaces that are mentioned
in [8] and again prominently in Chapter IT can be found in Subsection 2.1.1. In our

research [8], we established that, when a > % and 8 > %, any initial data (ug,wp)

. o 1+4—20 0 4 14428 o . :
in the critical Besov space ug € B, (R?) and wy € By (R?) yields a unique

local weak solution. Due to this result, taking in particular a = § = 1, one can
deduce that the 2D micropolar equations with the standard Laplacian dissipation,

have a unique local weak solution for (ug,wp) € B . Additionally, we proved in [8]



that for « > 1 and § = 0, any initial data ug € B;%_Qa(Rd) and wy € BQ%J(]Rd)
also leads to a unique local weak solution as well. We should mention here that, the
regularity indices obtained in the above stated Besov spaces appear to be optimal
and can not be lowered in order to achieve the uniqueness results.

For the proof of the above results and further details, we refer the reader to

Chapter II.

1.3 Boussinesq Equations

The Boussinesq equations were first introduced in 1872 by Joseph Valentin Boussi-
nesq to reflect the basic physics laws obeyed by buoyancy-driven fluids. These fun-
damental equations are frequently used in modeling many geophysical flows, such as
atmospheric fronts and oceanographics flows, and serve in the study of the Rayleigh-
Bénard convection (see, e.g., [14],[20],[50],[52],[5],[30]).

In the 2-dimensional case, the Boussinesq equations can be written as

(

ou+u-Vu=-Vp+rvAu+0e,, xcR?2 t>0,

9,0 +u-VO =nA8, (1.3.1)

V-u=0,

3
where u = u(z,t) = (ui(x,t),us(z,t)) denotes the fluid velocity, p = p(x,t) the
scalar pressure, @ = 0(x,t) the temperature, v > 0 the kinematic viscosity, and 7 the
thermal diffusivity. Here e; = (0, 1) is the unit vector in the vertical direction.

The first equation in (1.3.1) represents the Navier-Stokes equations with an extra
buoyancy term Oe, that reflects the influence of the gravity and the stratification on
the motion of the fluid. The second equation in (1.3.1) corresponds to the temperature
equation. Lastly, the third equation V - u = 0 is the mass continuity equation for
incompressible fluid.

In addition to their geophysical applications, the 2D Boussinesq equations serve



mathematically as a lower dimensional model of the 3D hydrodynamics equations. In
fact, the 2D Boussinesq equations retain some key features of the 3D Euler and Navier-
Stokes equations such as the vortex stretching mechanism. Namely, the inviscid
(v = n = 0) 2D Boussinesq equations can be identified as the FEuler equations for
the 3D axisymmetric swirling flows [5]. Due to these similarities, the study of the 2D
Boussinesq equations, may in particular shed light on the global existence and the
regularity open problems on the 3D Navier-Stokes and Euler equations. Despite the
huge efforts done on the study of the 2D Boussinesq equations, in the non-dissipative
case (where v = i = 0), the global regularity remains an open problem. When dealing
with the desipative Boussinesq equations cases, studies show that the dissipation
terms vAu and nA@ in (1.3.1) play an important part in controlling the long time
behavior of the system.

Over the past few years, fundamental issues on the 2D Boussinesq systems such
as the global well-posedness problem have attracted considerable interests (see, e.g.,

[1], 20,117, 9], [23], [34], [45]).

1.3.1 Partial Dissipative Boussinesq Equations

In order to model anisotropic flows (the thermal diffusivity and the viscosity are
different in the vertical and the horizontal directions), (1.3.1) is generalized to the
form

Opuy 4+ uy Qg + ug by = —01p + vy Oy + 1,001y,  x € R? £ >0,

Opug + uy O1ug + ug Ghuy = —0hp + v3 O11ug + vy Oppuy + 6,

0,0 +u-VO =1, 0110 + 1y 0220,

V-u=0.

\

(1.3.2)



Note that, when vy = vy = v5 = vy and 1, = 15, the above system reduces to (1.3.1).

Writing down the 2D Boussinesq equations in its general form (1.3.2) allow us to

consider the horizontal and vertical dissipations separately.

What we care about here, is whether the dissipative models of (1.3.2) always have

a global unique solution when the initial data u(z,0) = (u;(z,0),us(z,0)) = uy(z)

is sufficiently smooth, and if so, we are concerned also with its large-time behavior.

These issues were resolved in several cases among which we summarize the following:

(i)

(i)

(iv)

(v)

(vi)

When vy = v3 > 0,15 = g > 0,11 > 0,15 > 0 (Fully dissipative system). The
global existence of unique solutions was obtained for any suffciently smooth

data (ug,0y) € H*(R?) (see, e.g.,[44]).

When vy > 0,15 > 0,3 > 0,y > 0,11 > 0,72 > 0 (Both dissipation and
thermal diffusion). The global existence of classical solutions was achieved in a

similar way as for the 2D Navier-Stokes equations (see, e.g.,[20],[5]).

When vy = vy = v3 = vy > 0,11 = 1 = 0 (Velocity dissipation only). The
global regularity was obtained. (see, e.g., [9], [34]). The uniform-in-time bound-
edness of kinetic energy for initial-boundary value problems on 2D bounded

smooth domains for large data was shown in [47].

When vy = v = v3 = vy = 0,1 > 0,72 > 0 (Thermal diffusion only). The
global regularity was obtained (see, e.g., [9]) and the large-time behavior was

studied in [69] in the particular case when 1, =1y > 0.

When vy = v3 > 0,15 = vy = 1m = n3 = 0, (Horizontal velocity dissipation
only). The global existence of suitably regular solutions was proved in [23].

Furthermore, the uniqueness was established in [45] under the assumption that

0, € L>(R?).

When vy = vy = v3 = vy = 0,1 > 0,72 = 0, (Horizontal thermal diffusion



only). The global existence of suitably regular solutions was achieved (see, e.g.,

[23],[45]).

(vii) When vy =v3 =mnm = 0,15 = vy > 0,19 > 0 (Vertical velocity and vertical ther-
mal diffusion only). The global existence of classical solutions was established

by Cao and Wu in [17].

In the last few years, the study of the stability problem on the 2D Boussinesq equa-
tions has gained momentum. Current investigations focused in particular on the

stability near the hydrostatic equilibrium (the status of a fluid when it is at rest)
L,
upe =0, O = L2,  Phe = 51‘2‘

Hydrostatic equilibrium or hydrostatic balance occurs when the gravity is balanced
out by the pressure-gradient force. The stability problem on perturbations near this
particular steady state is one of the most prominent topics in fluid dynamics, as-
trophysics and atmospherics. Indeed, our atmosphere is mostly in the hydrostatic
equilibrium.

To understand the desired stability, we write the equation of the perturbation

denoted by (u, p,6), where
U=U—Up, P=P—DPpy and 60=806—0.

It follows easily from (1.3.2) that the perturbation (u,p, ) satisfies

(

Oy + up O1ug + ug oty = —O1p + V1 Oy + 19 Onpin, x € R2 ¢ >0,

Oty + Uy O1ug + Ug Oty = —0ap + V3 O11Ug + vy Oxpun + 0,

0,0 + 1w - VO + us = 11 9110 + 12 Os), (1.3.3)
V-u=0,

u(z,0) = ug(x), 6(z,0)=0(x).

\

10



The only difference between (1.3.2) and (1.3.3) is an extra term wus (the vertical
component of u) in (1.3.3), which plays a very important role in balancing the energy.

The answer to the stability problem near the hydrostatic balance of the 2D Boussi-
nesq equations (1.3.3) was first initiated by the work [24] of Doering, Wu, Zhao and
Zheng for the particular case when v; = vy = v3 = vy > 0,1, = 175 = 0 (only velocity
dissipation). Then, Tao, Wu, Zhao and Zheng established the large-time behavior
and the temperature profile in their paper [59]. Further, the stability and large-time
behavior of the 2D inviscid Boussinesq equations with velocity damping term was
established by Castro, Cérdoba and Lear in [11]. In this context, more recent works
have been done (see, e.g., [6], [62], [64], [68], [49], [25]).

In our paper [6] that will be discussed in Chapter III, we are concerned with the
study of the 2D Boussinesq equations with vertical dissipation and horizontal thermal
diffusion (system (1.3.3) with vy = v3 = = 0,15 = vy :=v > 0,1, :=n > 0) given

by
(

Owu+u-Vu=—Vp+vdpu+0le, z€R? t>0,

8t(9+uV0+u2 :778116,
(1.3.4)

V- -u=0,

u(z,0) = ug(x), 6(z,0) = Oy(x).

\

We obtained in [6] three main results. The first result established the H? nonlin-
ear stability on (1.3.4). In the second result, we precised the anisotropic large-time
behavior of the solution of the linearized system (see Theorem 3.3.4 in Chapter III).
In the third main result, we proved that the Fourier frequency piece of the solutions
(u, ) of the linearized system away from the two axes of the frequency space decays
exponentially in time to zero (see Theorem 3.3.6 in Chapter III).

Additionally, we studied in our research [7] the 2D Boussinesq equations with

horizontal dissipation and vertical thermal diffusion (system (1.3.3) with v = vy =

11



m =0,v1 =v3:=v>0,1m:=n>0) written as

,

ou+u-Vu=—-Vp+vou+6ey, x€Q, t>0,

8t9—|—u : v0+U2 = 7”]8229,
g (1.3.5)

V-u=0,

u(z,0) = ug(x), 6(x,0) = Oy(z).

(
When studying the 2D Boussinesq equations (1.3.5), we have observed that the type of
the spatial domain €2 plays an essential role in the resolution of the stability problem.
Indeed, when the spatial domain €2 is taken to be the whole plane R?, the stability
problem in the Sobolev space H? remains an open problem. In this case, we are able
to show that any small H! initial data leads to a global H! weak solution. However,
it does not appear to be possible to show that the H'-solutions are unique. While in
the second situation, when the spatial domain is 2 = [0, 1] x R, we succeeded to solve
the global H? stability of (1.3.5). In addition, we specified some decay properties in
time of the solutions to the system (1.3.5). These results will be discussed in further

detail in Chapter IV.

12



CHAPTER I1

ON THE D-DIMENSIONAL MICROPOLAR EQUATION WITH
FRACTIONAL DISSIPATION

2.1 Introduction

Recall that the d-dimensional (d = 2 or d = 3) incompressible micropolar equations

with fractional dissipation is given as

(

Ou+ (v+k)(=A)u+u-Vu+ VI —2kV xw =0, zeR: t>0,

Oyw + 4kw 4 2kV x u+u - Vw + y(=A)Pw = 0, (2.1.1)

V-u=0,

u(z,0) = ug(x), w(z,0)=wy(zx).

0
As outlined in the introduction, this Chapter is concerned with the study of (2.1.1)
in the frame work of inhomogeneous Besov spaces. A review of the Besov spaces and
related facts is provided in Subsection 2.1.1. The main goal of our study is to prove
the existence and uniqueness of solutions to (2.1.1) in a weakest possible functional
setting for the largest possible ranges of o and f.

In this chapter, we present two main results from the author’s joint work in [§].
Each result will be discussed and proved in a separate section. Further, each section
is naturally split into two subsections with one devoted to the existence and the other
to the uniqueness. Our process involves various analysis tools and techniques which

will be provided in Subsection 2.1.1.

13



2.1.1 Preliminaries

This subsection is a collection of notations, definitions and Lemmas that will be used
in the proofs of our main results. The definition of the Besov space and related simple
facts presented here can be found in [3]. We refer the reader to [36, Lemma A.5] for a
detailed proof of Lemma 2.1.6. In what follows, S(R?) stands for the Schwartz class

and §’(RY) its dual, the space of tempered distributions.

Definition 2.1.1 (Inhomogenous Besov space B ) f € S'(RY) belongs to Bj,

with s e R and 1 <p < g < oo if

= b
| (X @A) i a<o
1135, = 127085 flleollie = & 971 |
sup 29912 f |1 if g=o
j>—1

s finite.

Lemma 2.1.2 Let B(0,7) and C(0,71,72) denote the standard ball and the annulus,

respectively,
BO,r)={¢€R?, g <r} . C(0,r,m)={ R, r <[] <ra}.

There are two compactly supported smooth radial functions ¢ and v satisfying

4 38

supp ¢ C B(0, 5)7 supp ¢ C C(0, 7 5),

S&) + > (27 =1 forall { R (2.1.2)
Jj=0

For a detailed proof of Lemma 2.1.2, we refer to [3, p.59].

Notations 2.1.2.1 We use h and h to denote the inverse Fourier transforms of ¢

and v respectively
h=F"'¢, h=F .
We write 1;(£) = ¥(279€). By a simple property of the Fourier transform,
hi(z) == F';(x) = 2Yn(2x).
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Definition 2.1.3 The inhomogeneous dyadic block operator A; are defined as

A]f: 0 fOTj S _27
A_lf:ﬁ*f=/ﬂ{df(:r—y)ﬁ(y)dy7

Ajf =hjxf=29 g flz—y)h(2y) dy forj > 0.

The corresponding inhomogeneous low frequency cut-off operator S; is defined by
Sif= > Aif
k<j—1

Remarks 2.1.3.1 For any function f in the usual Schwarz class S, (2.1.2) implies

F(©) = 6O F(©) +Y_v(27O)]©),
Jj=0
or in terms of the inhomogenous dyadic block operators
f= ZAjf or Id= ZAJ’
j>—1 j>—1
where Id denotes the identity operator. For generality, for any F in the space of
tempered distributions S,
F=) NF or Id=)Y_A; in &. (2.1.3)
j>—1 j>—1

(2.1.3) is referred to as the Littlewood-Paley decomposition for tempered distributions.

Definition 2.1.4 In terms of inhomogeneous dyadic block operators, we can write

the standard product in terms of the paraproducts, namely

FG = Z Sp 1 FALG + Z ALFS, G + Z AFALG,

li—k|<2 li—k|<2 k>j—1

where ﬁk = Ap_1+ Ar + Apy1. This is the so-called Bony decomposition.

The following Lemma provides Bernstein type inequalities for fractional derivatives.

15



Lemma 2.1.5 Let a > 0. Let 1 < p < g < <.

(1) If f satisfies
supp f C {€ € RY, [¢] < K27},

for some integer j and a constant K > 0 then

1_1

[(=2)*fll poray < 0122aj+jd(;_5)HfHLP(]Rd)-
(2) If [ satisfies
supp f C {€ € RY, K27 < [¢] < K2},
for some integer j and constants 0 < K; < Ky then
2% | Laray < [(=A)* fll paqray < 0222aj+jd(%—%)HfHLP(Rd)a

where ¢y, co are constants depending only on a,p,q.

In the next Lemma, we state bounds for the triple products involving Fourier

localized functions.

Lemma 2.1.6 Let 7 > 0 be an integer. Let A; be the inhomogeneous Littlewood-
Paley-localization operator. For any vectors field F,G, H with V - F = 0 we have
. d
| dAj(F VG) - AjH dz| < c||AjH|| 2 (23 > 22AnF 2 > [AGr
® m<j—1 j—hl<2

+ > AF2 Y 20+D™ A G|z + > zjz%k||AkF\|L2y|£kG|yL2)

li—k|<2 m<j—1 k>j—1
and
| / DY(F-VG) - A,Gdal < | &Gl Y 2 ARF ] Y IAG] ke
R m<j—1 |7 —k[<2

+ 3 IAFle ST 200 ALG e + Y 2j2%k||AkF||Lz||ZkG||L2>.

li—k|<2 m<j—1 k>j—1

For a detailed proof of Lemma 2.1.6, we refer the reader to [[21], Lemma 2.3].
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2.2 System with Full Fractional Dissipation

Our first result established in [8] can be stated as follows.

Theorem 2.2.1 Consider (2.1.1) with o > % and 3 > % Assume the initial data ug

and wqy satisfy

d
5t+1-2a

dyq_
Veoug=0, wuge B TRY, w e By TTRY.
Then there exist T > 0 and a unique weak solution (u,w) of (2.1.1) on [0, T satisfying

d_94 d
we L™(0,T, By 2 *(R%) N LY(0, T, By, 2 (RY)), (2.2.1)

d_ d
w € L=(0,T, By 2 (RY) N LY(0, T, By 2 (RY)). (2.2.2)

Here and throughout the present Chapter, B, , denotes the inhomogeneous Besov
space. As a direct application of Theorem 2.2.1, the 2D micropolar equations with
standard Laplacian dissipation, namely a = S = 1, have a unique local solution
(u, w) in the critical Besov space L>(0,T; By (R?)). Further more, the 3D micropolar
equations with the standard Laplacian dissipation, possess a unique local solution in

1
the critical Besov space L>(0,T; B3, (R?)).

2.2.1 Local Existence of Weak Solutions

This subsection deals with the proof of the existence part of Theorem 2.2.1. This pro-
cess starts with the construction of a successive approximation sequence (u("), w(”))
which iteratively solves systems close to (2.1.1). Then, the next step is to show that
this successive approximation sequence is uniformly bounded in suitable Besov spaces
via an iterative process. These uniform bounds allow us to extract a subsequence,
which converges weakly to a limit. Finally, using the Aubin-Lions Lemma stated in
the Appendix A.2, the weak limit is then shown to be the weak solution of the system

(2.1.1). This process is detailed as bellow.
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Proof. The existence of weak solutions to the system (2.1.1) is proven through a
successive approximation process, which starts with the construction of a successive

approximation sequence {(u(”),w(”))} satisfying

ut) = Spug,  wY = Sywy,

O™ (v 4+ k) (=A)u ) = P(—u™ - Vu ) 4 26V x w®),

(2.2.3)
Q™) 4 (= AYw ) = 4kt — 2kV x u™ — ) . V),
\ u(n—H)(wa O) - Sn+lu0a w(n—H)('T? 0) = Sn+lw07
where P := I — V(—A)~!div is the standard Leray Projection. For
M = 2(”“0”3;%% + ||w0||B;j%—23)a
T > 0 sufficiently small and 0 < § < 1 (to be specified later), we set
Y = <M <M
{0l |l g <Ml g0 <M,
<9 <dJp. 2.24
ol ity <3 Dl res) <0} (2:2.0)

We show that {(u(”), w(”))} has a subsequence that converges to the weak solution
of (2.1.1). This process is based on three main steps. The first step is to show that
{(u(”), w(”))} is uniformly bounded in Y. The second step is to extract a strongly
convergent subsequence via the Aubin-Lions Lemma (stated in the Appendix). While
the final step is to show that the limit is indeed a weak solution of (2.1.1).

We start by proving the uniform bound for {(u(”) ,w(”))} in Y by induction.

Clearly,
e =S <M
50, ity = 192000 g M
@ =||S < M.
Hw HLOO(O,T,B;%QB) “ 2w0||L°0(0,T,B;7+1%72'8) =
If T > 0 is sufficiently small, then
(1)
0 gty < TS0l g STl <6

18



14+¢
1(07T7BQ’1 2 )

Jo®1 < TlS2woll jag < Tellwoll gy <0

Assuming that (u™, w(™) obeys the bounds defined in Y, namely

(n) (n)
Hu " ||L°°(O,T,B;+1%72a) <M, ||w " ||L°°(O,T,B;+1%72ﬂ) <M,
I HLI(O,T,B;%) <0, w HLl(o,T,B;j%) -

we prove that { (u(”+1),w(”+1))} obeys the same bound for suitably selected T" >
0, M > 0 and § > 0. For the sake of clarity, we provide the proof of the four bounds

in the following four steps.

4 g
Step 1: The estimate of (""" in B;{Q 2R

Let j > 0 be an integer. Applying A; to the second equation in (2.2.3) and then

dotting with Aju"tV yield

SIA L + 0+ IACAUC L = A+ Ay (225)
with
A = /d 2kA;(V x w(“)) . Aju(”H) dx,
R
Ay = — /d A;(u™ - Tu YA
R
where for the sake of conciseness, we denote here and throughout the proof, A := (—A) .

Note that the projection operator P := [ —V(—A)~!div has been eliminated in (2.2.5)
due to the divergence-free condition V - v("* = 0.

By Lemma 2.1.5, the dissipative part admits a lower bound

(v + k) A u" VT2 > co 2299]| Ajut™ | 2,
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where ¢g > 0 is a constant. According to Hélder’s inequality and Lemma 2.1.5,

|Ay| = \/Rd 2k A;(V x w™) - Aju™) d|

< 2k [|8;(V x w™)|[ 2| Aju™ D 12

< 2 | A;w™]| 2] Au" Y| s (2.2.6)
Due to Lemma 2.1.6,

Aal == [ A Tul ) A0

< cl|Au™ D2, 3T 2D AU

m<j—1

é’ITL n
+ e AU ol Agut[ e > 20T AU
m<j—1

e > 225 A ™| ol Apu TV 2 | Agult Y e, (2.2.7)

E>j—1
Inserting (2.2.6) and (2.2.7) in (2.2.5) and eliminating ||A;u"*V ||z from the both

sides, we get

d (n+1) 20§ (n+1)

EHAJU ||L2 + 002 ]||Aju ||L2 S Jl + JQ + J3 + J4, (228)
where

= cl| A g2 3T 20D AL w1,

m<j—1

Joi= el Agu® e 30 20 At s,
m<j

Jyi=e2 30 2R ol A,

k>j—1

Ji = c 2| Aw™ || s
Integrating the estimate (2.2.8) in time yields

1A u D 2 < e A;ul || 2 + / e P o ) dr (2.2.9)
0
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Multiplying (2.2.9) by 9(1+5-20)i and summing over j, we obtain
ymg

t .
R S L UE R AT
2,1 0

j>-1

(2.2.10)

Using the inductive assumption on u(™, the term with .J; on the right hand side of

(2.2.10) can be bounded for any ¢t < T by,

Z 2 1+d 204)]/ —6022aj(t—T)J1 dr

j>—1
/ D 2 A o Y 2 A (7) | 2 dr

j>—1 m<j—1

< [ 10l g a1y

2,1

< (n+1)

< el Ol et WO e

< (n+1) <ecs (n+1) '

= c||u H (OTB;J;%QD‘ HU HL (0TBH2) =c Hu HL (OTBHQ 2a)
(2.2.11)

By Young’s inequality for series convolution, the term involving J, admits the follow-

ing bound

t .
Z 2(1+g2a)j/ 6760220‘]@77){]2 dT
0

Jj=-1

= / D AR Az lga 3 222 A () | 2 dr

j>—1 m<j
< [ IOy gl DO gt
2,1
< lly® (n+1) < 6 [[ul+D
< cllu HL (OTBHQ)HU HLOO(OTBHQ—M) cd ||lu HL o (0 TBHQ 2ay-
(2.2.12)
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Similarly, the term associated with J3 obeys the same bound,

:E: o(1+4

i>-1

t
M / e~ 0= I dr
0

/ Z p(1+5-20)] Z ¢ 29250 | A | 2| Al | 2 dr

j>—1 k>j—1
_C/ Z Z 2(2+7—2o¢ j— k)2(1+g)k”Aku(n)||L22(1+g—2a)k”5ku(n+1)”L2 dr
j>—1k>j—1
< ¢ [ I g 1D gy
2,1
(n) (n+1) (n+1)
<c ”u ||L1(0TBl+j H HLOO(QT,B;I%_M) <cd ”u H (OTBH%_QO’)
(2.2.13)
It remains to bound the term with Jj,
Z 92 1+—2a)]/ —c022°‘j(t—T)J4 dr
j>—1
t
= Z 2(1+‘§—2a)j/ e—co22aj(t—7)62j||Ajw(n)||L2 dr
j>-1 0
< Y ol / 27 | Ajw™ |2 dr = c/ S 2@ a 20| A ™| 2 dr
jz—1 j>—1
/ 3 20525 Ajw ™| 2 dr = ¢ || L4 <cd.
smcea l 7t7B212)
=2 j>—1 ’
(2.2.14)

Combining the bounds in (2.2.11), (2.2.12), (2.2.13), (2.2.14) and inserting them in

(2.2.10), we have for any t < T

+ cd.

1+§720¢

(n+1) (4 sy (1)
I O g = o Oyt

21

It follows,

lu™ D @) 144 -2

Choosing § > 0 such that ¢§ < min(i,

L2(OT.B,3% ) < I HB;[Q o e U, (0,7, 272 Feo

) we obtain

M

1+2 —2a + Z>

™|
Le(0,1,B, 12 ")

™D @) 11420 +

L>(0,T,B,

INA
| E ez

=~ =

)
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which gives

HU("H)@)H <M.

n+1
Step 2: The estimate of ||u HLI(O,T,B”%)'
We multiply (2.2.9) by 2(1+%)j, sum over j and integrate in time to get

n —c22 n
Oty < [ D2 e

j>—1

/ / QD= 6=7) (], 44 1) dr ds.
(2.2.15)

We estimate the terms on the right hand side of (2.2.15) and start with the first term.

/ D AR T Agu o di = ¢ 7 20FEEI(1 — T Agu Y

j>-1 j>-1

@)

Since ug € B(IJr2 , it follows from the Dominated convergence Theorem that

Jim 37 201 — e T A e = 0.
j>—1

Hence, we can choose T sufficiently small such that
1+ —cg2299¢ (n+1) 0
Z 2(155)i =02 T Ay, | dit < e (2.2.16)
j>—1
Due to Young’s inequality for the time convolution, the term invoking J; can be

bounded as follows

/ > 2w / e Ty dr ds

j>—1

/ PO / e ALY e Y0 2 Au™ 2 dr ds

7j>—1 m<j—1

T .
<o 30 20 [N At s 3 20 A dr [ o
0

j>-1 m<j—1 0
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Further, using the fact that there exists ¢y > 0 satisfying for 7 > 0,

T v .
/ 6700220‘]8d8 S 62*2@](1 _ e*C2T>7 (2217)
0
we obtain
T Ny S 520
/ 3 o +2>a/ =002 (=7 1 47 ds
0 =1 0

T
<c(1—e T / §:2<1+%*2a>jHAju("H)(T)HLQ 3 20D A ™| 2 dr
() .
J

m<j—1
_ 2Ty, (n+1) (n)
L P ] SRS

<cd(l- e_CQT)”u(TH_l)HL 144 -2a, - (2.2.18)

00(07T’B2’1 )

The terms related to J; and J3 obey the same bound,

T s
/ Z 9(1+5)d / =02 (s=7) JodT ds
0 0

j>—1

T s )
—c / Y ol / e~ O A ™| 2 7 20D A u | o dr ds
0 0

j2-1 m<j

T T ,
<320 [ A 3T 2O A D dr [ e s,
0 0

Jj=-1 m<j
Then, due to (2.2.17) and the above inequality, we get

T s
/ 3 oles) / e~ 0P 1, dr ds
0 0

Jj=-1

T
<c(1—e ) / S o2 A ™| e ST 20D AL | dr
0

j>-1 m<j—1
T
<e(l— e—C2T)/ Z 2(1+%—20¢)j||Aju(n+1)||L2 Z 2(1+%)J‘||Aju(n)||L2 dr
0 j>-1 j>-1
< (1 — —c2T (n+1) (n)
e L TR '

<c(l—e®)d Hu("H)HL 14420 (2.2.19)

OO(O7T7B2’1 )
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Similarly,

/ S 2t / e~ 0P gy dr ds
j>—1
—o [ 30 20ty [ e S o A Ry s

j>—1 k>j—1

T .
Sy 2ty / Z 258)| A ™| 2| BV | 2l / emeoZ s g
J> 1 0 0

k>j—
Then, owing to (2.2.17) and the above inequality, we obtain

/ Z 9(1+3 / 6_0022”(5_7)(]3 dr ds

j>—1

< C(l _ —czT / Z 2(2-1— —20)j Z 2%k||Aku(n)||L2||zkzu(n+1)“L2 dr

j>—1 k>j—1
<c(l- -czT/ S 2@ a2 A | S 287 Ajul| 2 dir
j>—1 j>—1

< C(l . eczT)/ Z 2(1+g72oz)j”&ju(nJrl)HL2 Z 2(1+%)jHAju(n)”L2 dr
0 j>-1 j>—1

< 1 — —coT (n+1)

Se=e Do B,

<cd(1—e Ty |lunth) 2.2.2

S ed = e ) e (2:2.20)

It remains to bound the term associated with Jy,

/ Z 21+3 )]/ —e2**(s=7) g, deS—C/ Z 202+3 )3/ _5022aj(5_7)||Ajw(”)||L2 dr ds

Jj=—-1 5o
T .
< CZ 2(2+§l)j/ ”Ajw(n)”L2 dT/ 6_002204]8 ds
j>—1 0
<c — *czT / Z 2(2+d 2a]”Ajw(n)HL2 dr
j>—1
since a> £ e
T
[ HL1<0,T,B§,+1%>
<cd(l—e ). (2.2.21)
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Inserting the estimates (2.2.16), (2.2.18), (2.2.19), (2.2.20), (2.2.21) in (2.2.15) yields,

o
(n+1) < = 5(1 — —c2T (n+1) 5(1— —coT
b gty = 7+ €00 =T gy Fe0 T ™)
o
< 1 +cb(1—e M 4 c6 (1 —e 2T,

Hence, choosing T sufficiently small such that ¢ (1 — ") < min(4, 3), we obtain

n+1)H

> S,
+
> >
+

[ a <
2

LY(0,T,By 1 %)

a_
Step 3: The estimate of w(™™V in L>(0,T, B;Q % (RY).

Applying A; to the third equation in (2.2.3) and then dotting with A;w™* | we get

AL 4 (22 4+ 4 A V)
< —Zk/Aj(V x u™)Aw™ Y dy
- /Aj (u™ - V™) A dy
= By + B, (2.2.22)

where
B, = 2k / AG(V x u™)A ;™) do,
By = —/Aj(u(") -V A ™ dy.
By Holder’s inequality and Lemma 2.1.5, B; can be bounded by
By = | — Qk/Aj(V X uM)A D) d

< 2k |8 (V % ul) [ 2| Ay ™ | 2

< 2 ||Au™|| 2| Aw™ Y| L2 (2.2.23)
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Thanks to Lemma 2.1.6, By is bounded by

|BQ| = | — /AJ(’U,(”) . vw(nJrl))Ajw(nJrl) da:]

< clAuwTE, ST 20D AL )|

m<j—1

d m n
e[ A7 | Au™ 2 Y 20D A o

m<j

+el| A ™ D227 37 28R A ™D 2| Ag™ . (2.2.24)

k>j—1
Inserting (2.2.23), (2.2.24) in (2.2.22) and eliminating ||A;w®™*Y| 2 from both sides

of the inequality, we get

d .

%HA]'U)(”—H)HLQ —f- (01226] —I— 4k)||Ajw("+1)||L2 S Kl —f- K2 + Kg —I— I(47 (2225)
where

Kl = 02j ||Aju("))HLz,

Ky = cl|Aw™ D | 37 20507 AL 0|,

m<j—1

i m n
Ky =c||Au™ 2> 2052 | A w1,

m<j

Ki=c 3 2285 R o At 2.

k>j—1
Integrating (2.2.25) in time yields, for any ¢t < T
1A 12 < e @2 ALwT || 2 + / e~ PN (K 4+ Ky dr
0

(2.2.26)

Multiplying (2.2.26) by 2027283 and summing over j, we have

n+1

t
Z / 67(0122f’j)(t7T)2(1+%725)j(Kl 4. +K4)d7'
0

j=-1

(n+1) (n+1)
Hw HBH-%—Q[E < ||w0 HB;:%—% +

2,1

(2.2.27)
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The terms invoking K through K on the right hand side of (2.2.27) can be estimated

suitably as follows. Starting with the term containing K, we have

: t
> / 90+5 =200 || dr = / > 2@ i 20 Al (1) | 12 dr
0 0

j=2—1 j=2—1

t
< c/ > 2093 | A ul™ (7| 2 dT < €6, (2.2.28)
sinceb’z% 0 j>—1

7

TV
=™l g
L10,7,B,1?)

The term with Ky admits the following bound

t t
S a0+d 2y / Kydr = c / > 20 A e T 2O A ™ g2 dr
0 0

jz2-1 j>-1 m<j—1
< (n+1) (n)
> CHw ||L°°(O,T,B;j%726)||u HLl(O,T,B;j%)
<co ||w(n+1)|| 1+4-28, - (2.2.29)

L=(0,T,By % )
Similarly, the terms associated with K3 and K, obey the same bound. In fact, for

the term with K3, we write

t t
S g2 / Kydr = c / > 2O 37 2 A |1 dr
0 0

j=—1 Jj=-1 m<j
< (n+1) (n)
<cllw™ (o,T,B;;%fw)”“ [ o,
< cdflw™| Lo (2.2.30)

L=(0,T,By % )
Also, for the term with K, we have

t t
St [ Rdr—c [ 30 30 20 B A 2
0 0

j>—1 jz2—1k>j-1

t
= / 3 S 2@HE 250 R w2 | Aju™ || 12 dr

j>—1j>-1

t
—c [ 30 3 2 R Ay
0

j>-1j>-1
< (n+1) (n)

<l gt Ty,

< el (2:231)

Lo(01,By 12 ")
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Collecting the estimates (2.2.28), (2.2.29), (2.2.30), (2.2.31) and inserting them in

(2.2.27), we get for any t < T,

(n+1)
DN rgze < g™ PN prrgoas + e84 O™ gsn

2,1
Then, choosing ¢d < min(i, %), we obtain

M M 1

e ay that A ]
which implies
(1) (¢ < M.
O B——
Step 4: The estimate of |jw™ (¢ :
ep e estimate of ||w ( )|]L1(07T7B;%)

We multiply (2.2.26) by 20+5)7 sum over j and integrate in time to get

T
n dyi 2283 n
000 ety € [ 30 2
4P 0 j>—1
T vy s 528
+/ >l +z>ﬂ/ e TG oK) dr ds.
(2.2.32)
Clearly,

/ Z 2(1+%)j67c122ﬁ3tHAjw(()n—&-l)HL2 dt — ¢ Z 2(1+g—26)g(1 _ €7c122ﬁJT)HAjw(()n—i-l)“LQ.
0 j=-1 iz-1

d 2,8

Since wg € B;jgf , we have by the Dominated Convergence Theorem,

Jim 37 201 — e T A 2 = 0.
j>-1

Therefore, we can choose T sufficiently small so that

|

T .
/ Z 2(1+g)j€fC122ﬁJtHAjw((]nJrl)HL2 dt < —. (2.2.33)
0

j=-1
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Applying Young’s inequality for the time convolution, the term associated with K,
can be bounded by

/ Z o(1+3 )]/ —a?V N K drds < c/ Z 2(2+3 )J/ _51225j(s_7)|]Aju(”)||L2 drds

j>—1 j>—1 0

T .
sc Z 2(+3 / 1Au™]| 2 d7 / e~ 125 s,
0

j>—1

Using the fact that there exists c3 > 0 satisfying for all j > 0,

T . .
/ 6—0122ﬁ]sd8 S 02_26j(1 _ e_C3T) , (2234)
0
we obtain
[ 3ot (e s < e - o) [ 3 20 a0 1) s
> j>—1
<c(l—e) / > 2 AU (1) |2 dr
j>—1
o

1+5
1 2
L1(0,1,B, 1 ?)

<cd(1—e ), (2.2.35)

Due to Young’s inequality for the time convolution, the term invoking K5 is bounded

by

[ St [ o

j>-1
—C/ 221+ / —c122P9 (s—71) HAwn-‘rl ” ) Z 21+ mHA u ( )HdeTdS
j=-1 m<j—1
dn - T 28j
Sep 20 / 8w 32 2 AU ([ e ds)
j>-1 m<j—1 0
<c(i—e) / > 2 AW @) Y 20D Al (7)1 dr
j=—1 m<j—1
_ ,—c3T (n+1)
L I U Y
<M <5
< oM (1 —e 7). (2.2.36)
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The terms related to K3 and K4 admit also the same bound,

T s
/ S ol / e PV K dr ds
0 0

j=>-1
T s ]
_ C/ Z 2(1+g)j/ 6—01226J(S—T)c||Aju(n)(7—)||L2(Z2(1+%)m||Amw(N+1)(7—)||L2> drds
0 0

j>—1 m<j

T T ,
<c Z 2(1-1—;)]'/ ||Aju(n)(7_)||L2 Z 2(1+%)m”Amw(n+1)(T)HL2 dT(/ 6—0122/:?]st>

jz-1 0 m<j 0
Hence, thanks to (2.2.34) and the above estimate, we have

T s
/ Z o(1+5)i / e~ 27T KL dr ds
0 0

Jj=-1

T
<c(1—e T / 37 202 A ()| 2 S 20D A w Y (1) 2 dir
0

j=>—1 m<j
T
<e(l—eT) / S 202 A ()| 2 S 20D Aju ™ () | 2 d
0 j>_1 j>—1
T
= ¢(1—e7) / S 2T A ™ (1) 2 Y 2055720 Ay (1) |12 d
0 j>-1 j>-1
< 1 — —c3T (n+1) (n)
Se@=e Mt Tl
B %5
<M (1 —e 7). (2.2.37)

It remains to bound the term containing Ky,

T s
/ Z 9(1+5)i / 6_0122Bj(8_T)K4 dr ds
0 0

j=-1

T s ) ) .
=c / 3 9(+5)i / e~ 12 (s=)2i 25k | A ™| 2| Apu™ || 12 drds
0 0

i>-1

T T .
<320 [0S o B g o dr ([ e ds).
0

j>—1 O k>j-1

31



Then, owing to (2.2.34) and the above estimate, we get

T s
/ > ol+e)i / e PPN, dr ds
0 0

Jj=-1

T
<c(l—e ) / D 207 3 7 9tk A 2| A 2 dr
0

j>-1 k>j—1

T
= c(1 _e—ch)/ Z Z 2(1+g_25)(j_k)2(1+g)kHAku(n)||L22(1+g_25)k”zkw(n+1)||L2 dr
0

j>—1k>j-1

T
—c(1- ) / la® g™ D@ g dr
0 32,1 3271
< (1 —e 3T [y (n+1)
= C( (& ) ”U HLl(O,T,B;j%) H’LU HLOO(O,T,B;I%_Q’@)
<5 <M
<coM (1 —e 7). (2.2.38)

Combining the bounds (2.2.33), (2.2.35), (2.2.36), (2.2.37), (2.2.38) and inserting

them in (2.2.32), yield

J
(n+1) b _ ,—c3T _ —c3T
||w ||L1(07T,B;’+1%) < 5 +c(l—e®)d+c(l—e=")oM.
Therefore, choosing T sufficiently small such that ¢ (1 — e~%%) < min(437, 1), we
obtain,
y o0 0
(n+1) < Z e =5
lw HLl(o,T,B;j%) — 2 + 4 * 4

These uniform bounds allow us to extract a weakly convergent subsequence. That
is, there is (u,w) € Y such that a subsequence of (u",w™) (still denoted by (u", w™))

satisfies

* ) 1+4 20
u" —wu in L%(0,T,By;* ),

* d_
w' S w o in L®(0,T, Byt ).

In order to show that (u,w) is a weak solution of (2.1.1) we need to further extract

a subsequence which converges strongly to (u,w). We use the Aubin-Lions Lemma.
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We can show by making use of the equation (2.2.3) that (Oyun, yw,) is uniformly

bounded in

d_94 441-3a
8tu” - LI(O,T, B;jz 2 )ﬂL2(07Ta BZ2,1H ’ )7

d_ d _
du" € L0, T, By 2y n L2(0,T, Bz,

Since we are in this case in the whole space R?, we need to combine Cantor’s diagonal
process with the Aubin-Lions Lemma to show that a subsequence of a weakly con-

vergent subsequence, still denoted by (u™, w™), has the following strongly convergent

property
d_ a_
u" —u in  L*0,T, B;Q @), w"—w in L*0,T, B;’? (Q)),

where a < v < 3a, B < v, < 38 and Q C R? is a compact subset. This strong
convergence property would allow us to show that (u,w) is indeed a weak solution of

(2.1.1). This completes the proof for the existence part of Theorem 2.2.1. |

2.2.2 Uniqueness of Weak Solutions

In this subsection we present the proof of the uniqueness part of Theorem 2.2.1.

Proof. Assume that (uV),w®) and (u®,w®) are two solutions of (2.1.1) in the

regularity class in (2.3.2) and (2.3.3). Their difference (u, w) with
t=u? -4 and @ =w® — W

satisfies

(

o+ (v + k)(=A)u = —P(u® - Vi +u - VuV) 4 2kV x @,
oW + (=AW = —4kw — 2kV x U —u? -V —u - Vw,

(2.2.39)
V-u=0,

u(z,0) =0, w(z,0)=0.
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We estimate the difference (7, w) in L?(R?). Dotting (2.2.39) by (u,w) and applying

the divergence-free condition V - u = 0, we get

1d
2 dt
:—/u(2)-Vﬂ-ﬂdm—/ﬁ-VU(l)-ﬂdx

—/u(z)-Vﬂ?%ﬂdm—/ﬂ-Vw(l)'fDdx

(32 + 1122 + (v + KA + [ APT132 + 4kl| )2

=Ly + Ly + L3 + Ly,
with

Ll = —

Ly = —/ﬂ-Vum cudz,

L3I:—

L4I:—

N

where we recall that A := (—A)z.

As V- u® =0, it is easy to show via integration by parts that L; = 0. In fact,

= [ VP ds
@10
=— [ V-(u §|u] ) dz
— 0. (2.2.40)
By the same reason,
Ly = —/u<2> -V - wdr = 0. (2.2.41)
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Applying Holder’s inequality and Lemma 2.1.5,
Lo = | — /a Vu - G daf
< |[Vul|| < |1l

< D 1A Val [l

j>—1

<y 2967V AU |z [fElf7e < cflulV) gt [t

j>—1
:HU(UHB;%

To bound Ly, we set

1 1 p 1 p d

—==——=, —== (or—=0).

p 2 d q d q
Due to Holder’s inequality and Lemma 2.1.5,

|Ls| = | —/ﬁ-Vw(l) - w dx|

< Nl z2 | Vo o[ @] o

< ST 1A VOO | @l 2 @] o

j>—1
< e 30 2D A o | 2 3 1o
j>—1
< 3 2 A0 ol o ]
Jj=-1

<clwh] goslllze]| A7 e
2,1

<7
< SIA%@IZ: +cflwt H2l+2 SlIllZz,

where in the last inequality we have made use of the Sobolev’s inequality,

1@]lze < c || .

Collecting the estimates (2.2.40), (2.2.41), (2.2.42) and (2.2.43) yields,
d /. . N o N N
(e + 1132 ) + 202 + WA + 5 A3 + 8 |5

(1) 1) 12 ~112 ~12
< (g + el g0 ) (1 + 12152
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(2.2.44)



d a d_
Since u) € LY(0,T, By;?) and w®) € L}(0,T, By 2) N L=(0,T, By ;2 ),

T
|1,y < oc,
0 By,?
! (1) g (1) (1)
1 2 1 1
/0 O e g-alt < /0 D@ g 1O o g-asl
1) ! 1)
1 1
IOl griia [, 10Oy e <
Applying Gronwall’s inequality to (2.2.44), we get

[ull2 = llwllz2 = 0,

which leads to the desired uniqueness. This completes the proof of the uniqueness

part of Theorem 2.2.1. [ |

2.3 System with no Diffusion for the Angular Velocity

Our second main result established in [8] is the following.

Theorem 2.3.1 Consider (2.1.1) with o > 1 and § = 0. Assume the initial data

(wo, wo) satisfies V - ug = 0, and is in the following Besov spaces

1+4§—2a

d
up € By1® T (RY),  wo € B (RY). (2.3.1)

Then there exist T > 0 and a unique weak solution (u,w) of (2.1.1) on [0, T] satisfying

d_9q d

we L=(0,T, Byy2 "(RY) N L}(0, T, By 2 (RY)), (2.3.2)
d

w € L*(0,T, B3, (RY)). (2.3.3)

In comparison with Theorem 2.2.1, the Besov space of u remains the same, however
due to the lack of diffusion in the equation of the angular velocity w, the setting for
w needs to be in a more regular Besov space. In fact, the regularity index %l in the
Besov space BQ% L(R%) of w can not be lowered in order to obtain the uniqueness of

solutions.
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This section is divided into two subsections. Subsection 2.3.1 deals with the
existence part of Theorem 2.3.1. Subsection 2.3.2 is devoted to the uniqueness part.
Before starting the proof of Theorem 2.3.1, we recall that we are concerned with

the system of equations (2.1.1) with § = 0, namely

(

Ou+ (v+k)(—A)*u~+u- Vu+ VII — 2kV x w = 0,

Oyw + (4k + y)w + 2kV X u+u - Vw =0,
(2.34)

V-u=0,

| u(z,0) = uo(z), w(z,0)=wo(z).

2.3.1 Local Existence of Weak Solutions

This subsection is concerned with the existence part of Theorem 2.3.1. Using the same
approach as in the proof of Theorem 2.2.1, we construct a successive approximation
sequence and show that the limit of a subsequence actually solves (2.3.4) in the weak
sense. To avoid repetitions, we will refer next to some inequalities already showed in

the proof of Theorem 2.2.1.

Proof. We start by considering a successive approximation sequence {(u(”),w(”))}

satisfying
(
O™ + (v 4+ k) (=A%) u" Y = P(—u™ - Yy D) 4 25V x w™), (2.35)
Ow™ D) = —(4k + y)w ) — 2kV x u™® — 4™ . VD),
\ u(n—i—l)(l,,()) = Spi1to, w(n+1)(aj,0) = Sp1Wo,
where P := [ — V(—A)~!div is the standard Leray Projection. For
M = 2(|\UoHB;g_2a + |!wo||B§1),
T > 0 being sufficiently small and 0 < § < 1 (to be specified later), we set
Y = <M =M
{<u,w> el greoney S A el g <M,
||u||L1(O,TyB;j%) - ||w|’L1(O,T,B2%1) - } ( )
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We show that {(u(”), w™ )} has a subsequence that converges to the weak solution
of (2.3.4). This process consists of three main steps. The first step is to show that
{(u™,w™)} is uniformly bounded in Y. The second step is to extract a strongly
convergent subsequence via the Aubin-Lions Lemma. While the last step is to show

that the limit is indeed a weak solution of (2.3.4).

Our main effort is devoted to show inductively that {(u™,w™)} is bounded

uniformly in Y. Recall that (ug,wy) is in the regularity class (2.3.1). Clearly,

(1) _
6PN, g ety = NS2t0ll o vvgon <,
[w™| g = || Sywol] . <M.

Loo(o,T,BQ%I) Loo(07T732271)

If T > 0 is sufficiently small, then

@) < TS <T <6
H“ ||L1(0,T,B;j%) > || QUOHB;% = CHUOHB;gaa = 0,
|]w(1)|| ¢ < T|Sqwp|| a <Te|lwpl a <0.
Ll(O,T,BZI) Bgl le

Assuming that (1™, w™) obeys the bounds defined in Y, namely

(n) < M (n) <M
60 gictoney S M 0 g <,
[ g <6, ut™| g <O

LY(0,T,By 1 %) LY(0,T,B3)

we prove that {(u("+1),w("+1))} admits the same bound for suitably selected 1" >
0, M >0 and 6 > 0. For sake of clarity, the proof of the four bounds is achieved in

the following four steps.
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44
Step 1: The estimate of u™*Y in L>(0,T, B;{Q (RY)).

Following the same process as in the proof of the first step of Theorem 2.2.1, we write

the inequality

(n+1) (n+1)
Jul™ (t)HB;flgfga < g HB;;%—M

¢ .
+) 2(1+g_2a)j/ e 0Ty - ) d
0

j>-1
(2.3.7)
where
e T D DI i T I
m<j—1
Jo = ellAu 3 2D Anu
m<j
Jyi= 2 S 2Rt ol Al 2,

k>j—1

J4 = 02j HAJw(”) ||L2.

The terms on the right hand side of (2.3.7) can be estimated as follows. Recalling the
definition of J; above and using the inductive assumption on u™, we have for any
t<T,

t
S g2 / (0= g
0

Jj=-1

t
—c [ 30 2 A e 3 0 A ()]
0

i>-1 m<j—1

t
< C/ Z 2(1+g—2a)j||Aju(n+1)||L2 Z 2(1+%)j||Aju(n)(T)|lL2 dr
0

j>-1 j>—1
_ +1 _
BT M s omatth)
< CHU ||L°°(0,T,B;+1%72a)“u HLl(O,T,B;%
S co ||u(n+1)” 1+%72a . (238)

L(0,T,B, | )
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The terms with J, and J3 share the same upper bound. In fact, by Young’s inequality

for series convolution,

t
S ol / e~ (=) I 17

j>—1

<°’/ D 2RI A g2 20D Al ()2

j>—1 m<j
< [ Iy Gy
21
< o lly® (n+1)
< et I
(n+1)
< el ot (2.3.9)

Similarly the term related to J3 is bounded by

22 +d 2a)j/ 7c022°‘]'(t77'){]3d7_

j>—1
/ Z 21+772a Z 2]22kHAku (n+1) ”LQHAkU n)“L2 dr

j>—1 k>j—1
—c/ Z Z 9(2+§ 2a)(jfk)2(1+%)k”Aku(n)HLQQ(H%*MWHKWMH)HLQ dr
J>—1k>j—1
< [ I g 1Dy
21
< o lly® (n+1)
N [ P
(n+1)
<collu ||LOO(OTB1+2 “aa; (2.3.10)

We now examine the term involving Jy,

' t
Rl A S e = LN P

j>-1 0 j>—1 0

<> / ¢ 22| A ™| 2 dr

j>—1

< cllw™| :
~—~ LY(0,T,B)
since a>1

< ¢é. (2.3.11)
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Collecting the bounds (2.3.8), (2.3.9), (2.3.10), (2.3.11) and inserting them in (2.3.7),

we obtain for any ¢t < T

+1
||U(n+1)<t)||B;,+1%72a < Huén )HB;gza +cd ”u(n+1) HLOO(O,T’B;%*Z") +co.

Hence, it results

(nt1) (4 < lq D) Sl D J.
||u ( )”LOO(O,T,B;;%_M) = HUO HB;j%_Qa tc Hu HLOO(O,T,B;I%_QQ) tc

Consequently, choosing ¢ such that ¢d < min(i, %), we get

M 1 M
(n+1) t < = - (n+1) M
| u ()lILw(()’T’B;gfza) <5+l \ILW(O’TﬁB;g,QQ)Jr e
which implies
||u(n+1)(t)|| 1+¢ 24 < M.

L>=(0,T,B, )

Step 2: The estimate of ||u("+1)||L1(OTBl+%).

Following the same method as in the proof of the second step of Theorem 2.2.1, we

write the inequality

T
dys 2aj n
L A i LY A Y
49 Po 0 j>—1
T s s e
+/ / Z QUL gm0 =T () o ) dr ds.
0 J0 >

(2.3.12)

We estimate the terms on the right and start with the first term,
r da j d j
/ Z 2(1+§)J’67c022a]tHAjuéTH'l)HL2 dt = ¢ Z 2(1+572a)j<1 _ 670022“]T)||Aju((]n+1)HLQ_
0 j>—1 j>-1

d_
Since uy € B;? 2a, then by the Dominated Convergence Theorem

ilrig%) 2(1+%_2“)j(1 — e_COQMjT)HA]-u(()nH)HLz =0.
Jjz-1
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Therefore, we can choose T sufficiently small such that

2a) 7L 5
/ 3 ol Ay )| < e (2.3.13)

7j>—-1

Due to Young’s inequality for the time convolution, we have

/ Z 9(1+3 / e—c022af(s—T)J1 drds

j>—1
/ ZQ(H- / 6—c022a7(5—r)||Aju(n+1)(7_)||L2 Z 2(1—}—%)m”Amu(n)”L2 dr ds
j>—1 m<j—1
T .
<o 30 20 [ au e 3 2 A dr [ e s
j>—1 m<j—1 0

Further, using the fact that there exists ¢y > 0 satisfying for 7 > 0,

T _ .
/ e*COQQQJSdS S 62720:](1 _ 6702T>7 (2314)
0
we obtain
/ D2l / e~ P ) dr ds
j>—1

T
<c(1—e T / S 22 A ()| e ST 205D A ul™| 2 dr
0

j>-1 m<j—1
<c(l—e) / > 2820 A D (7)1 > 20450 Aju™]| 2 dr
j=>-1 j=>-1
c(l- 6‘C2T)||u("+”|| m(oz,B 8 za)H ||L \or B
<cd(l- e*CQT)Hu(““)H orpitdy (2.3.15)

The terms associated with J, and J3 can be similarly estimated and obey the same

bound. In fact,

T s
/ Z 2(1+§)j/ e~ 02 (s=7) I dr ds
0 .
/ S22 [ e A 3T 2 e ds

j>—1 m<j

T .
<ed 20 / I8 e 32 2Oy [ e s,
0

j=>—1 m<j
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Then, owing to (2.3.14),

/ 3 old)i / e~ =1 Iy dr ds

j>—1

e / D A A e 37 2D Al | ey

j>—1

m<j—1

_ _C2T / Z 2(1+é_2a)g||A u(n—i—l)” ) Z 2(1+%)j||Aju(n)||L2dT

j>—1 j>—1
< 1 _ —c2T (n+1)
<l e g g
_ T (n+1)
<c(l—em ) flu™ oAy’ (2.3.16)

Similarly, the term with J3 is bounded by

/ S ot / e~ 0P =) I dr ds
j>—1
/ R [l
Jj=—
j=—

| /\

/ S 28a,
0

k>j—1

ST 28K A | 2| AV 2 dr ds

k>j—1

T .
ul™ || 2| Agul"h HdeT/ e s,
0

Using (2.3.14) and the above inequality leads to,

T s
/ 3 ol / e~ 0P (=) I dr ds

<e(t—eoT) [0 3 20 S oI A O Bl dr
j>—1 k>j—1

<e(l— —62T / Z 2(2+§—2a)j||A u(n—f—l)H ) Z () ||A u”)“Lz dr
j>-1 j>—1

<c(1— e / Z 9(1+5—2a); ”ﬁju(nJrl)HLz Z Q(H%MHA]'U(")HLQ dr
j>—1 Jj=-1

< (1 — =T[4t D)

< e(U=em DN pregoan 16O o

< (U= e (23.17)
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Now, it remains to control the term invoking Jy,

T s
/ Z 9(1+5)d / =02 (s=7) Jydr ds
0 0

j=2-1
T s )
= C/ Z 2(2+§)j/ e—co22‘”(s—7)||Ajw(n)||L2 dr ds
0 0

Jj=-1
. T T o
<c Z 2(2+2)j/ HAjw(")“deT/ e 0¥ s
jz-1 0 0
T 4 )
<c(1—e ) / > 2@ A ™| dr
0

Jj=-1

T
< c(l—e @t 229(| A (™ 12 dT
; j

since a>1 i>—1

= c(1 — e72T)|lw™|| (2.3.18)

d .
Ll (07T)B22,1)

Taking into account the estimates (2.3.13), (2.3.15), (2.3.16), (2.3.17), (2.3.18) and

(2.3.12), we obtain

||U(n+1)|| 14920

)
< = 51 — —coT (n+1)
H=3te (=Dl HL°°(0,T,BQ,1 )

el - e_CQT)”w(n)”Ll(OTB% )
15591

< g +cd(l—e @M +c(1 — e =T)s.

As a result, choosing T sufficiently small such that c(1 —e=T) < min(ﬁ, %) yields,
o & 0
(n+1) < Z e Z =54
I ||L1(0,T,B;+1%) — 4 * 4 2

d
Step 3: The estimate of w™! in L>(0,T, B3,(R?)).

Applying A; to the third equation in (2.3.5) and then dotting with A;w(™ V) we get

1d
§E”Aiw(n+l)||2m + (4k + 1A w17 = _2k/Ag~(V x u™) A" d

— /Aj(u(") V") A ™ dy

= Bl + 327 (2319)
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where

B = —Qk/Aj(V x u™) A" dr,

By := —/Aj(u(") -V ™M) A jw ™ dg.
By Holder’s inequality and Lemma 2.1.5,

|B:| = | — 2]{:/A]~(V x u™)Aw™ Y de|
S 2]{3 ||A](V X u(”))||L2||Ajw(”+1)dx||,;2

< 2 || A u™ || 2 | A w™ V|| s (2.3.20)
According to Lemma 2.1.6,

IBy| = | — / Ay (™ - T YA+

< cllAuwTE, ST 20D AL )|

m<j—1

d m n
e A7 gl Au™ 2 Y 20D AL o

m<j

+el|Aw™ D227 37 28R A ™D 2| A . (2.3.21)

k<j—1
Inserting the estimates (2.3.20), (2.3.21) in (2.3.19) and eliminating ||A;w™ || 2

from both sides of the inequality, we get

d A
18w e + (8K + 29) | A0 V]2 <e 27 A7ut 12

+ HAj,w(n-i-l)HL2 Z 2(1+%)mHAmu(n)HL2

m<j—1

+el|Au™ g Y 20F DAL w ™D o
m<j

+e2 3 255 A ™Y pa | A g™ e

k>j—1

(2.3.22)
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Integrating (2.3.22) in time yields, for any ¢ < T,

t
HAjw(n-i-l)HL2 < e—(8k+2fy)tHAjw(()n+1)HL2 +/ e—(8k+2’y)(t—‘r)(K1 4. +K4)d7',
0
(2.3.23)

where

Ky = c2|Au™,

Ky = c[[Apu |2 Y7 2059m A, 0™,
m<j—1
Ky = c || A2 Y 2050m | A ™D o,
m<j
Kyi=c2 3 285 A ™| af| A o

k>j—1

Multiplying (2.3.23) by 257 and summing over j yield,

t
lw™ V]| 4 < ng”“)HB + Z/ e RN () oo 4 Ky) dr. (2.3.24)
1 0

d
2
“ j>-1

Noja,

1

Starting with the term involving K7, we write

' t
> 2513'/ e~ ERHN=T) [ g < / S 20 Aju () 2 dr
0 0

j=-1 j=-1

< (n)
<cllu HLl(O,T,B;%)

< cd. (2.3.25)
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The terms containing K, through K, on the right of (2.3.23) can be bounded suitably

and share the same bound. Indeed, for the term with K5 we have,

5020 [ e A D e 3 20 0 dr

j>-1 m<j—1
d . d
<C/ > 2 Au ()2 Y 2 A u (7) | e
j>—1 m<j—1
< / [0 g ] g dr
22 21
SCHw(”“)H g ™
>(0,T,B,) L(OTB )
< ed Jw™|| g (2.3.26)

Lo°(0,T,B3,)

In the same way, the term involving K3 is bounded by

t
Z ()i / e~ BRI e | Au™]| Z 2(1+%)m||Amw(n+1)||L2dT

j>-1 0 m<j
<c/ > 2@ A ™| Y 20525 AV 2 dr
Jj=—-1 j>—1
< ¢ lp®+D (n)
<cljw ”mom )Hu I vorstd)
< ed ™| a . (2.3.27)

L>(0,T,B3,)

Further, for the term associated with K, we have,

t
So2t [ 3 Bl a2 dr

j>—1 0 E>j—1
/ S 20D A2 3 25 R | adlr
j=—1 j>-1
< (n+1) (n)
<clw ||Lw(07T?B§1)|Iu I Lomst
<cé ||w<"+1>H y (2.3.28)
(0782,

The estimates in (2.3.25), (2.3.26), (2.3.27) and (2.3.28) taken with (2.3.24), allow us

to establish that for any t < T,

[w™ D@ g < oSN g +ed+edw™D)

d 4 .
32%1 Bgl Loo(o,T,Bg%l)
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As a consequence,

lwm D@ g < el g 4 ed+esut )

L>(0,T,B3,) ~— BZ ,T,ngl)
Choosing ¢ < min(4, %) yields
M M 1
[w ()||LOO(O,T7B§1> <5+ ™ol orhy
which implies
oD@ s <M.

L>(0,T,B3,)

Step 4: The estimate of Hw("H)(t)HLl(OTB% )
1201

Multiplying (2.3.23) by 257 , summing over j and integrating in time yield

n _ (n+1
o) Dol = / 22”6 (SR A g™ 12 dt
/ ZQQJ/ =BG (K 4 4 K,) dr ds.
j>—1
(2.3.29)
Clearly,

/ Z 22] (8k+27)t ||A n+1 ||L2dt —¢c Z 22;(1 —(8k+27)T )HA n+1 ||L2

j>—1 j>—1

a
Since wy € By, it follows from the Dominated Convergence Theorem that

lim S 257(1 — e EF20T) | AL |12 = 0.
T—0 ——
=

From this, we can choose T sufficiently small such that

/ Z 957 o= (8k+27)t 1A, w (n+1) ||L2 dt <

j>—1

(2.3.30)
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Applying Young’s inequality for the time convolution, the term related to K; can be

bounded by

T s
/ Z QZj/ e~ BRI [ dr ds
0 0

j=>—1
T s
= C/ Z 2(1+§)J‘/ e~ BR20ED | Ay || 1 dr ds
0 0

j=-1
LT T
< (c Z 2(1+2)j/ A ju™ ]| dT) (/ e*(8k+27)sds>
Pt 0 0

T
< C(l . 6—(8k+2“/)T)/ Z 2(1+§)j||Aju(n)”L2 dr
0

j>—1
Ny - J/

=[lul™]|

d

1+

1 2
L1(0,1,B, 1 ?)

< cd (1 — e ERF2T) (2.3.31)

Applying again Young’s inequality for the time convolution, the term associated with

K5 is bounded by

T S
/ Z 2§j/ e_(8k+27)(8_7)K2 dr ds
0 0

j=—1
T s
:c/ 2233'/ 67(8k+2’y)(577)”Ajw(n+1)”L2 Z 2(1+g)m”Amu(n)HL2des
0 0

> m<j—1
T T
< (e 2¥ / 8t e 3 20 A2 ) / =Bk
j<-1 0 m<j—1 0

T
< cf1 - e the) / D 2 A e Y7 2 A 2 dr
0

j<—1 m<j—1
T

<c(l- 6—(8k+2’y)T)/ Z Q%J'HA],,LU(n-&-l)HL2 Z 2(1—1—%)]'”Aju(n)HL2 dr
0 j>-1 j>—1

So(l=e BT )
LOO

g 14§
(0.T,B3, 1(0,7,B,1 %)

< c6M (1 — e~ GE+2T (2.3.32)
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Similarly, due to Young’s inequality for the time convolution, the term with K3 admits

the same bound

T s
/ Z 2§j/ e~ BRI Ko drds
0 0

j>—1
T s
= c(/ Z 23]‘/ 6*(8k+2’7)(877)HAju(n)HLg) <22(1+%)m“Amw(n+l)HL2> dr ds
0 j>-1 0 —y
g [T 4 T
< (e 28 [ 1A Y 2 A dr) ([ e kas)
j=-1 0 m<j 0
T
<c(l- e‘(s’“*QV)T)/ > 257 || Au™]| 2 > 20+ A w12 dr
Jj=—-1 m<j
8k+2v)T r dy; d - 1
<e(t— e @) [T 57 0 DA 3 2B A dr
0 j>—1 j>-1
< o] — —(8k+2v)T (n+1) (n)
R [ TR Tl e
< cOM (1 — em BT, (2.3.33)

Finally, it remains to bound the last term with Ky,

T s
/ pE: / e BRI K drds
0 0

j=-1
T s
=c / D 2 / e B0 N 92k R | A | 2l
0

0

jz—1 k>j—1
av. [T g~ T
< (C Z 2(1+2)J/ Z 2§k||Akw(n+1)||L2||Aku(n)||L2d7_> (/ 6—(8k+2'y)5d8>
j>-1 0 k>j-1 0
T
< el — T / > 2087 3 28K A o | Al 2l
0 j>-1 k>j—1
T
<l - e(8k+2’Y)T)/ Z 2(1+%)J‘HAju(n)HL2 Z Q%J'HAjw(nH)HLQdT
0 j>-1 j>—1
< 1 — —(8k+2+)T (n+1) (n)
<c(l-e )||[w ”Loo(o,mi)”“ HLI(O,T,B;%)
< cOM (1 — e~ BEH2IT, (2.3.34)

20



In view of (2.3.29), collecting the estimates (2.3.30), (2.3.31), (2.3.32), (2.3.33) and
(2.3.34) yield,

[|w™ V|| g < 0 +c6 (1 — e BF2ITY L cM (1 — e~ BF2T),
LY(0,1,B3,) — 2
Choosing T sufficiently small such that ¢(1 — e~®*29)7T) < min(1-, 1) , we obtain
o o 0
(n+1) < Z e A
lw HLl(o,T,Bfl) -2 + 4 + 4

These uniform bounds allow us to extract a weakly convergent subsequence. That
is there is (u,w) € Y such that a subsequence of (u",w™) (still denoted by (u™, w™))
satisfies

* . 14420
u" —wu in L>(0,T,By,* ),

d
w' > w in L®(0,T, B3)).

In order to show that (u,w) is a weak solution of (2.3.4) we need to further extract
a subsequence which converges strongly to (u,w). We use the Aubin-Lions Lemma.
We can show by making use of the equation (2.3.5) that (J,u", d,w™) is uniformly
bounded in

1+4 20 4 _3a

atun c LI(O, T, B271 ) N L2(07 TJ B21,—~1_2 )7

d_9q [
8tw" S LI(O, T, 322’1 2 ) N L2<07 T7 B22,1 )

Since we are in this case in the whole space R?, we need to combine Cantor’s diagonal
process with the Aubin-Lions Lemma to show that a subsequence of a weakly con-
vergent subsequence, still denoted by (u™, w™), has the following strongly convergent
property

1+%—73

d_
u —u i L(0,T,By 2 (Q), w"—w in L*0,T,Bi *(Q)),

where a < v3 < 3a, 0 < 4 < 2 and @ C R? is a compact subset. This strong
convergence property would allow us to show that (u,w) is indeed a weak solution of

(2.3.4). This completes the proof for the existence part of Theorem 2.3.1. [ |
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2.3.2 Uniqueness of Weak Solutions

This subsection proves the uniqueness part of Theorem 2.3.1.

Proof. Assume that (u™®,w®) and (u®,w®) are two solutions of (2.3.4) in the

regularity class in (2.3.2) and (2.3.3). Their difference (u, w) with

t=u? —u®M and @ =w?® — W

satisfies
O+ (v + k) (—A)U = —P(u® - Vi + 1 - VuV) 4+ 2kV x @,

O = —(4k + )W — 2kV x @ —u? - Vi — u - VuD),
(2.3.35)
V-u=0,

u(z,0) =0, w(z,0)=0.

We estimate the difference (@, w) in L*(R?). Dotting (2.3.35) by (@, w) and applying

the divergence-free condition of u, namely V - u = 0, yield

1d
2 dt
:—/u(2)~Vﬂ~ﬂd$—/ﬂ~Vu(1)-ﬂdx

(032 + 1122 + (v + RN + (4h + ) D3

—/u(Q)~V®-”&7d:c—/17~Vw(1)‘@d:c
=L+ Lo+ L3 + Ly, (2.3.36)
with
Ly := —/u(2) -Vu - udr,
/ﬂ - VuV - de,
L3 = —/u(z) -Vuw - wdr,
Ly = —/

u- Vol - @dr,

52



where we denote A := (—A)z.

Due to V - u® = 0, one can easily check by integration by parts that

Li=L;=0. (2.3.37)
As in (2.2.42),
|Ls| < CIIU(”IIBig ][ (2.3.38)
In order to estimate L4, we set
1 « 1 « ( d )
—=———=, —== (or-=«
p 2 d g d ¢

Applying Holder’s inequality and Cauchy’s inequality with epsilon,

|Ly4| = | —/ﬁ~Vw(1) - w dx|
< @22 [V ol o

< 3 12V o ] 2
j>-1
< ey 229570 A @] ol oo
j>-1
jod-4; (1) m U
= Z 27227 | Ajw' || e ||w]| p2 || e
j>-1

dj ~ ~
< e S 28|80 g2 1@ g | 1o

i >
since a>1 j>—1

<clw g ] ]| A% 1

d
2
2,1

(v+ k)
2

< A2z + ellw™]2

|w||%2, (2.3.39)

d
2
2,1

where in the last inequality we make use of
[alle < ¢ [|A%ul] 2.

Combining the estimates (2.3.37), (2.3.38), (2.3.39) and inserting then in (2.3.36), we
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obtain,

d /. N o N
= (132 + 18122 + (v + R AT + (3K + 29) )32

dt
) (V2= + al32). (2.3.40)

1

(1) 12
< (cllu®l e + el

%
2,
d a d
Since u € L'(0,T, B, }?) and w® € L'(0, T, BZ,) N L*(0,T, BZ,), we have
T T
[ IO gde <00 and [ e @ <T@
0 By, ? 0 B, L>°(0,T,B3,)
Applying Gronwall’s inequality to (2.3.40), we conclude that

[ull 2 = llwllz2 = 0,

which leads to the desired uniqueness. This completes the proof of the uniqueness

part of Theorem 2.3.1. [ |
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CHAPTER III

STABILIZATION OF THE 2D BOUSSINESQ EQUATIONS WITH
VERTICAL DISSIPATION AND HORIZONTAL THERMAL
DIFFUSION

3.1 Introduction

As outlined in the introduction, we focus on the following special two-dimensional

Boussinesq system with partial dissipation

;

U +U-VU =—-VP +v0pU +0Oey, z€R? t>0,

9,0+ U-VO =1nd,0, (3.1.1)

V-U=0.

Our study in this Chapter intends to reveal and rigorously prove the fact that the
temperature can actually have a stabilizing effect on the buoyancy-driven fluids. More
precisely, we aim to understand the stability and large-time behavior of perturbations

near the hydrostatic equilibrium (Upe, Ope, Pre) with
L,
Uhe = O, @he = Ta, Phe = 51‘2.

In order to understand the desired stability, we consider the equation of the pertur-

bation denoted by (u,p,0), where

U:U_Uhey p:P—Phe and 0:@_6}167
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given as
(

O+ u-Vu=—Vp+ v0xpu+ les,,

(9t9+uV0+u2 :778119,
(3.1.2)

V-u=0,

\u(x,O) =up(z), 0(x,0) =0(x).

This Chapter is based on the author’s joint work [6]. Its main three results are
organized as follows. In Section 3.2, we establish the H? nonlinear stability on (3.1.2).
In Section 3.3, we derive a precise anisotropic large-time behavior of the solutions to
the linearized system of (3.1.2) and we prove that the Fourier frequency piece of the
solutions (u, #) to the linearized system away from the two axes of the frequency space
decays exponentially in time to zero.

In order to establish the H2 nonlinear stability, one needs to prove that the solution
(u,0) of (3.1.2) corresponding to any sufficiently small initial perturbation (ug,6p)
(measured in the Sobolev norm H?(R?)) remains small for all time.

In our situation, we can obtain a uniform bound on the L?-norm of the vorticity

w =V X u itself which satisfies
8tw+u-Vw:y822w+81«9, i €R2, t> O, (313)

but controlling the growth of the the L?-norm of the gradient of the vorticity, Vw
does not appear to be an easy task due to the lack of horizontal dissipation.
In particular, taking 6 identically zero, (3.1.3) turns to the 2D Navier-Stokes

equation with degenerate dissipation ,
Ow+u-Vw=rv0pw, xR t>0. (3.1.4)

(3.1.4) always has a unique global solution w for any initial data wy € H*(R?), but
the issue of whether ||Vw(t)||z2 for the solution w of (3.1.4) grows as a function of

t remains an open problem. In another particular case, when dealing with the 2D
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Euler vorticity equation
Ow+u-Vw=0, zecR?* t>0.

it was shown in many works (see, e.g., [19],[38],[67]), that Vw(t) can grow even double
exponentially in time. In contrast, it has been shown that the solutions to the 2D

Navier-Stokes equations with full dissipation
Ow+u-Vw=vAw, z€R* t>0,

always decay in time (see, e.g., [56],[57]). The lack of the horizontal dissipation in
(3.1.4) prevents us from following the same approach used for the fully dissipative 2D
Navier-Stokes equations. Indeed, when we estimate the L?-norm of Vw, the issue is
how to proceed from the energy equality

1d
3 EHVw(t)H%Q + V]| Vw(t)||3: = — /w -Vu - Vwdz.
Making use of the anisotropic dissipation, we can further decompose the nonlinear

right hand side term in the above equation as follows,
/Vw -Vu-Vwdr = /81U1 (01w)2 dx + /81U2 Blw 62w dx (315)

+/82u1 01w Oqw dx + /32u2 (Opw)* dux.

Due to the lack of control on the horizontal derivatives in the dissipation, the first
two terms in (3.1.5) do not appear to admit suitable bounds. Fortunately, it is
the smoothing and stabilization effects of the temperature through the coupling and
interaction that allow us to establish the H? nonlinear stability of (3.1.2). To reveal
these effects, we need first to eliminate the pressure term from the first equation of
(3.1.2) and provide the explicit wave-type equations satisfied by the velocity u, the
temperature 6 and the vorticity w := V xu. Applying the Helmholtz-Leray projection

P=1— VA~V to the velocity equation of (3.1.2) we obtain
Oru = vOpu + P(fey) — P(u - Vu). (3.1.6)
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Then, using the definition of P,

—010,A710
P(fey) = fes — VATV - (fey) = : (3.1.7)

6 — 03A10
Inserting (3.1.7) in (3.1.6) and writing (3.1.6) in terms of its component equations,

we get

atul = V822u1 — 8182A’10 + Nl,
(3.1.8)

8{&2 =V aQQUQ -+ 8181A_19 -+ Nz,

where N; and N, are the following nonlinear terms,
Ny =—(u-Vu, — AV (u-Vu)), Ny=—(u-Vuy— KAV (u-Vu)).
Differentiating the first equation of (3.1.8) with respect to ¢ yields
Op; = VOO — 0105 10,0 + O, .
Then using the equation of §, namely 0,0 = 10110 — us — u - VO we get
Oty = Va0 + 0105 ugy — 1011010, A0 + 010, A (u - VO) + O, N,.
Additionally, substituting 9,0, A0 using the first equation of (3.1.8), namely

—8182A*19 = (9tu1 — V822u1 — le

yields
Oy = vOp0uy + 0100 uy 4+ 1 011 (Opuy — v Ogpuy — N)
+ 010, A (u - VO) + O,N;. (3.1.9)
Due to the divergence-free condition Oyus = —0uy, it follows from (3.1.9),
Oy — (nOy1 + v0a2)Oyuy + vndy1Oapuy + 011 A uy = N, (3.1.10)

where the nonlinear term N3 is given by,
Ng = (8t — 7]811)]\71 + 81(92A*1(u . VQ)
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Following a similar process, one can easily show that uy and 6 satisfy

3ttu2 — (77811 + V(922>atU2 + 1/7”]811(922162 + 811A’1u2 = N4, (3111)

Ol — (011 + 1022)0,0 4+ v1D110220 + D11 A0 = Nj
where the nonlinear terms N, and N5 are defined by

N4 = (8t — ?7811)N2 — 8181A*1(u . V@),

N5 = —((?t — Vagg)(u . VH) — NQ.

Therefore, combining (3.1.10) and (3.1.11), we have converted (3.1.2) into the follow-

ing new system

Onu — (NO11 + v0a9)Oyu + vnO11 090U + O11A = N,
(3.1.12)

&tte — (7]811 + l/agg)ate + 1/77811(9229 + 811A_19 = N5,
where

NG = (Ng, N4) = —(8t - n@ll)IP’(u : Vu) + VLﬁlA_IQL . V@)

with VJ' == ((92, —(91).
Further, applying the curl Vx to the first equation in (3.1.12), we can also convert

(3.1.12) into a system of vorticity w := V x u and the temperature 6,

(9ttw — (77811 + l/agg)atw + l/nallazgw =+ (911A_1w = N7,
Onl — (NO11 + 1V022) 048 + 110110220 + 011 A0 = N5,
where

N7y = —(0y — no11)(u - Vw) — 01 (u - VO).

Amazingly, we have found that all physical quantities u,0 and w satisfy the same
damped degenerate wave equation only with various nonlinear terms N5, Ng and N;.
The new system of wave type equations in (3.1.12) exhibits much more smooth-

ing and stabilization properties hidden in the original system (3.1.2). In fact, the
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velocity in (3.1.2) involves only vertical dissipation, but the wave structure actually
implies that the temperature can stabilize the fluids by creating the horizontal reg-
ularization via the coupling and interaction. These properties allow us to establish
the desired global stability result and provide some decay properties of the solutions

to the linearized system of (3.1.2).

3.2 The H? Nonlinear Stability

We now state our first main result.

Theorem 3.2.1 Consider (3.1.2) with v > 0 and n > 0. Assume the initial data
(ug, 0o) is in H*(R?) with V - ug = 0. Then there exists € = (v,n) > 0 such that, if
(wo, 0o) satisfies

[uol| 2 + [[6oll > < e,
then (8.1.2) has a unique global solution (u, ) satisfying, for any t > 0,
t
) B+ 16O + 20 [ ol dr
0
t t
+2n/ EXTER d7+0(y,n>/ |Ovus||2s dr < C 2,
0 0
where C(v,n) > 0 and C > 0 are constants.
The idea of the proof of Theorem 3.2.1 is based on the construction of a suitable

energy functional

0<7<t

t
B(t) = max, (lu(r) e + 10()]3: ) +2v / Ol
t t
+277/ H@ﬁH%sz—l—&/ ”81U2H%2 dr
0 0

= Ey(t) + 6 By(t), (3.2.1)
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t t
Br(t) 1= puas, (1) + 100 ) + 20 [ 10wl 420 [ 0361

0<r<t

t
Eg(t) I:/ ||81’LL2||%2dT,
0

and § > 0 is a suitably selected parameter. We should mention here that the control

on the time integral of the horizontal derivative of the velocity field, namely

t
/ |O1us (7)]|32d. (3.2.2)
0

plays an important role in the proof. Due to the special coupling in the system (3.1.2),
which allows us to transfer the time integrability from one function in the system to

another, we are able to prove that E(t) satisfies
E(t) < CLE(0) + CoE(t)>. (3.2.3)

Once (3.2.3) is established, an application of the bootstrapping argument, which
general statement can be found in the Appendix A.2, implies that if £(0) is sufficiently
small or equivalently

[uoll ez + 100]l 2 < €

for some sufficiently small ¢ > 0, then E(t) remains uniformly small for all time,
namely

E(t) < Cé?

for a constant C' > 0 and for all ¢t > 0.
Before starting the proof of Theorem 3.2.1, we need to state the following useful

lemmas.

Lemma 3.2.2 Assume that f, g, Oag, h and O1h are all in L*(R?). Then, for some

constant C' > 0,
1 1 1 1
[ gl de < Cluslalaloagl I 1oubl o
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A detailed proof of Lemma 3.2.2 can be found in [18].

Lemma 3.2.3 Assume that f is in LY(R?),

2 1—2
[fllze < CUAZ IV A2
for2 < q < oo.

Lemma 3.2.4 The following estimates hold when the right-hand sides are all bounded.

1 1 1 1
[ fllzoe ) < CUFll 2@y 10171 22 g2y 102 F 1 L2 ey 1012 1| 2 g2y

We now detail the proof of Theorem 3.2.1.

Proof of Theorem 3.2.1. We define E(t) as in (3.2.1). Our main efforts are devoted
to establishing (3.2.3).

We recall that, for a divergence-free vector field u, namely V - u = 0, we have
[Vullrz = [[wllrz,  [|Aul|r2 = [[Vwl|z2,

where w := V X u is the vorticity.

Taking the inner product of (u,#) with the first two equations in (3.1.2) yields

t t
lu@)lZ2 + 10172 + 2V/0 102u ()72 d7 + 277/0 10:0(7)|I12dr

= [[uollZ2 + [16ollZ- (3.2.4)

To estimate the L2-norm of (w, V), we make use of the vorticity and the temerature

equations,
3tw +u-Vw= Vaggw + 819,
(3.2.5)
3t9 +u-VO0+ Ug = 778110.
Taking the inner product of (w, Af) with the system (3.2.5), we get
ld 2 2 2 2 3.2.6
5 g llze +UIVOIL) + v 0awlle + 0|01 VO|Le o= Lo + I, (3.2.6)
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where

I, = /(819w—Vu2-V¢9)dx, I ::—/VG-VU-VQd:U.

Owing to V- u = 0, one can write w and u in terms of the stream function v, namely

w= Ay and u = Vi := (=01, O17)), to obtain

_ /(-9 A + Ady 6) d = 0. (3.2.7)
To bound I, we write it as,

[2 = - /(alul (819)2 + (31u2810029 + 82u1819829 + (92162(829)2) dx
1= Ipy + Ipo + Ioz3 + Iy, (3.2.8)

We now estimate the terms on the right-hand side of (3.2.8). The effort is devoted to
obtaining an upper bound that is time integrable for each term.

According to Lemma 3.2.2,

121 = —/81u1(810)2 dx
1 1 1 1
< C|0vun || 2]|010]]2[|02010]) 12| 010|172 [ 010101} -
< Cl|0vua| 2 |010] 2 |01V O]| 2

< Clull g2 [|0:0]17:- (3.2.9)
Due to Lemma 3.2.2 and Young’s inequality,

Iy = /81u2819826 dx
< 000120y | 2:110a010s] 211026 2. 191 226 2
< C0yual| 2, 18:0112, 104622 1029wl 0,762,
< C 2.1 V61 2,105l 2. 1016112,

< Cllulfu 198152 (192l + 101013 ). (3.2.10)
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By Lemma 3.2.2 and Cauchy’s inequality,
123 = /82u1816’820 dz
1 1 1 1
< C|020]|2]]010]| 7211020101} 2| O2n || 72| 010214 ||} -
< C|VO|| 2|02t g1 || 010 1

<C Hvean(naQuuip + ||ale|\§,l). (3.2.11)

Using respectively, integrating by parts, the divergence-free condition V - u = 0,

Lemma 3.2.2 and Young’s inequality yield,
IQ4 = /81“1(826)2 dz = —2/U1 820 81829 dx
1 1 1 1
< C|01020]12(|020] 121|101 020 .l || 72| Do [ o
1 1 1 3
= Clullzz 10201172 102url 72 [0 VO
1 1
< C lullfu V115 (1102ull3 + 121015 ). (3.2.12)

Clearly, each upper bound above is expressed in terms of favorable derivatives (0; on
0 and 0y on u) and are time integrable.
Collecting the bounds (3.2.9), (3.2.10), (3.2.11), (3.2.12) and inserting them in (3.2.8),

we obtain
L < C (Jullm + 196]12) (120l + 193613 ). (3:2.13)
In view of (3.2.7), (3.2.13) and (3.2.6), we get

d
Z(IVullzz + VO[52) + 2010, Vulz: + 2001V |72

< C(lullsr + VOllz2) (102ullF +1101017) - (3.2.14)

Integrating (3.2.14) over [0, ¢] and combining with (3.2.4), we obtain

t t
I, 0201 + 20 / 10su(r) 3 + 21 / 18:6(r) |2 dr
0 0
t
< | (uo, 60} |12 + C / (lullas + [960122) (100wl + 18013 dr  (3.2.15)

< B(0)+ CE(t)>. (3.2.16)
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A simple consequence of (3.2.15) is that any initial small H' initial data leads to

a global H' weak solution. However, it does not appear possible to show that H'-

solutions are unique. In fact, when we evaluate the difference (w, ) of two solutions

(u®,0M) and (u®,0?), the terms generated by the nonlinearity
/a-vu“) -Udr and /a-vem G dz

are hard to deal with. When the solutions are only at the H'-level, it does not appear
possible to bound them suitably. This is one of the reasons that we are seeking global
H?-solutions.

In order to estimate the H?norm of (u,#), it remains to bound the L?*norm of

(Vw, Af). Taking the inner product of (Aw, A?0) with the system (3.2.5), yields

1d

where
Jl = /(V(%H -Vw — AUQAQ) dx,
Joy 1= —/Vw-Vu-dex,

J3 = —/AH -Au - Vl)dz.

Due to the divergence-free condition of u, one can write w and w in terms of the

stream function v, namely w = A and uy = 019, to obtain

J, = /(Vé?l@ -Vw — AugAb) dx = /(V819 -Vw — A0 Af) dx
= /(V@lﬁ -Vw — 01w Af) dx = /(V@lﬁ -Vw+ 0 Vw - V) dz

= /81(V0 -Vw) dzx = 0. (3.2.18)
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After integration by parts, we can decompose J3 as,

Jg = —/AHAul (910dx—/A0Au2 829d3:

= ng + J32 + J33 -+ J34. (3219)
Thanks to Lemma 3.2.2 and Young’s inequality,

J31 = —/A@Aul 81€d1‘

1 1 1 1

< C|010] 2 | AOl| L2 |01 AO| L2 [| Al Lo (028w [| 7
3 1
< C(1A0]]z2 + [Auall2) 10:0]| 7= 028w [| 7

< C (Jlulle + 16112 ) (1020l3= + 1016]3 ) (3.2.20)

Further, using the divergence-free condition of u, namely V - u = 0 and integration

by parts, we split Js32 into two terms,

A / AOAUO0d
__ / 1040 Ay Dbl — / Ds0of) Atiy D
__ / 1010 Ausds 0 d + % / Adyus (0,02 da
__ / 0010 Aty 90 i — % / Adyuy (950)2da

Therefore, according to Lemma 3.2.2 and Young’s inequality,

Jz2 < C'01010] 12]| Aus| 72| 02Aus || 211020 12| 01920 7
+ C1010:01| 12 (1020112101020 o [| A || £ [| G2 A || 5
3 1
< C([10:0]| 2 + [[Aul|22) [|01 V| L2 [|02Aul| 5

< C (Jlulle + 16112 ) (1020]3z + 12:6]3% ) (3.2.22)
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To bound Js3, we again apply Lemma 3.2.2 and Young’s inequality,

J33 = —2/A0 Vu1 . 81V6’ dx

< VOl [|A0] 22 |01 A0 £ [ Vun || 22 102V [| 7
< C(I1A0]]22 + [[Vua[l22) 10101 2 102V ua | 72

< C (Il -+ 16112 ) (N0l + 21617 ).
After integration by parts,
J3q = =2 / AOVuy - VO dx
= —2/(81u281826A9 + Oatia 0200 A0) dx

=-2 / 81u2 81(929 Al dx + 2 / 81u1 8282(9 Ab dx

(3.2.23)

= —2/8111,2 61029 Al dx — 2/U1 6162829 Abdxr — 2/’&1 8282081A9d93

= J3a1 + J3a2 + Jaus.

(3.2.24)

By Lemma 3.2.2 and Young’s inequality, the terms on the right-hand side of (3.2.24)

can be bounded as follows,

J341 = —2/81u2 81829 AO dx

< C|01020|| 12| 01us || 7. [|0201us || 7. [| AG|| 7. |01 AD)| 7
< C(|A]| 2 + [|01uzl|2) [|010]| 77 |02V us || 72

< C (Jfull + 101l ) (2ulle + 19101 )

J342 = —2/U1 8182826 AO dx

< C|0102090|| 2| AO|| 72|01 A0 72 [[ua ]| 72 || Douin || 2
3 1
< C(|A0]| 2 + llurl[z2) 01012 || Oaua |72

< O (Nlullz + 6112 ) (1020l + 191617 ).
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J343 = —2/U1 62820 81A0 dx

1 1 1 1

< C|01A0]|12|02020]| ;2 [|0102020 || 72| un || 72 | Do || 7 2
3 1
< O (A0 g2 + [lutl|z2) [1010]] 772 | Oour ]|} -

< C (Jlullie + 1)) (1020l + 1016)3 ) (3.2.27)

Combining the estimates (3.2.25), (3.2.26), (3.2.27) and inserting them in (3.2.24)
yields,
Jsn < C (Ifullae + 160]22) (1100ulle + 100132 ). (3.2.28)

Putting (3.2.20), (3.2.22), (3.2.23) and (3.2.28) together, we get
I3 < C (Jlullsz + 10112 ) (1920l + 1010132 ) (3.2.29)

We now turn to the estimate of J;. As outlined before, we need the help of the extra

regularization term
t
By(t) = / 19vus |2 dr- (3.2.30)
0

To make full use of the anisotropic dissipation, we further write .J5 as
Jy 1= — /81u1 (Ow)* dw — /81uQ 01w Ohw dx
- /ébul 01w Ohwdr — /62u2 (82w)2dx
= / Dot (Oyw)*dx — /81u2 01w Oow dx
— /82u1 O1w Oow dx — /82u2 (Opw)? dx

I:J21 -+ J22 —+ J23 -+ J24. (3231)

To bound the first two terms, we need to make use of the term in (3.2.30). Using
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integration by parts, Lemma 3.2.2 and Young’s inequality, yields

J21 = /82162 (81w)2d:c
= —2/U2 81(4) 8281w dx

1 1 1 1
< Cl|0:010][ 2 [| 010|221 02010 Lo |2 | 22| v a2
3 1
< Cllullgz [|0:000]| 2 (| Ovusll 72

< C llulle (I102ulfz + 010 22). (3.2:32)
According to Lemma 3.2.2 and Cauchy’s inequality,

J22 = —/81u2 (91w c%w dz

1 1 1 1
< C|0rus|r2(|01w| 72 (| O201w] | || Oow | 22 (|01 Oaw || 72
< OVl z2 |02010] 12 [|Ovus | 22

<C ||u||H2(||aQu||§I2 + ||alu2|y§2). (3.2.33)
Thanks to Lemma 3.2.2,

J23 = — /32u1 81w 82w dx

1 1 1 1
< O ||Opur| 2 ||01w]| 72 [|0201w]| 72 ||Oaw]| 72 [|0102w]] 7 -
< C||Vwlr2 [|0:01w]| 2 || 02w || 12

< C||ul| 2| Q2|32 (3.2.34)
Similarly, due to Lemma 3.2.2,
J24 = — /82162 (82w)2 dx
1 1 1 1
< C||Ozuzl|z2 |020] 72 [|0102w]| 72 [|Oow]| 2 [|02020] 72

< C||Vwlz2 |02V 2 [|Oxuz|| L2

< C'||u| 2| Q2|2 (3.2.35)
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Collecting the bounds (3.2.32), (3.2.33), (3.2.34), (3.2.35) and inserting them in
(3.2.31) yield,
Jo < C llulle (19l + llovuall3e ). (3:2.36)

Inserting J; = 0, (3.2.29) and (3.2.36) in (3.2.17), we get
Il + 1803) + 20| Auls + 2121 A0]3
< C (Julle + 1602 ) (100013 + 100ul3e + lovwall3s). (3.237)
Integrating (3.2.37) over the time interval [0, ¢] yields
¢ ¢
A7 + A7 +2V/0 ||(92AU|IZL2€ZT+2?7/0 1A0:0][72dr
< [|Auo|[72 + [|AG|I7:
+C / (lallr + 1602 (100018 + Noaule + forusl ) dr
< E(0) + C E(t):. (3.2.38)

Combining (3.2.16) and (3.2.38) leads to,

t t
Ey(t) = max (||u(7)||§12+||9<7)||§{2)+2u/0 \|a2u||§,2d7+2n/0 1016]2 dr

0<7<t

< CE(0) + CE(t)2. (3.2.39)
The next major step is to bound the last piece in E(t) defined by (3.2.1), namely
t
Ey(t) = / 19vus |2 -
0
Applying 0; to the second equation in (3.1.2) yields,
81U/2 = —8t816 — 81 (U . VH) + 7]81119. (3240)
Multiplying (3.2.40) with dus and then integrating over R?, we get

||81U2H%2 = —/8t819 81u2 dr — /81162 81(’& . V@) dr + 77/81’&2 81119 dx
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Even though the estimate of K3 appears to be easy, the term with unfavorable deriva-

tive Ojus will be absorbed by the left-hand side,
K3 = 77/31U2 b dz < nl|Ovuzl|pz [|01110] 22 < %||51U2||%2 +C 01072 (3.2.42)
We shift the time derivative in K,
K, = —% /(919 O1uy dx + /819 010us dx := K11 + K. (3.2.43)
Making use of the equation for the second component of the velocity, we have
Ky = — /81819 O dx
= — / O110(—(u - V)ug — Oap + vOsus + 0) dx
= /(9110 (u-V)uy dor + /(9116’ Oop dx
— V/@HQ Oty dx — /8110 0 dx.

We further replace the pressure term. Applying the divergence operator to the velocity

equation in (3.1.2) yields,
p=—A"'V"(u-Vu)+ A'0,0.
Therefore,
Kip = / 910 (u- Vs dz + / 010 (DAY - (- Vi) da
— 1//8119 Oyl dz — /(9116 O AT dx

= Kio1 + Koo + Ko + Kioa. (3.2.44)
According to the boundedness of the double Riesz transform (see, e.g., [55]),
[0uA fllee < Cllflle, 1< g < o0,
we have

K124 = /819 (911A_1(91«9 dz S C ||816H%2 S C ||818H?{2 (3245)
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Due to Holder’s inequality and Cauchy’s inequality, K123 can be bounded by,
Koz = —V/anl9 Oy dx
< C|0010]| 12 |022uz]| 2
< C (2l + 10103 (32.46)

Using Holder’s inequality, the boundedness of the double Riesz transform, integration

by parts, Lemma 3.2.3, Lemma 3.2.4 and Cauchy’s inequality,
Ky = — /819 01 ATV - (u - Vu) dx

< [|046]| 12 |AT 012V - (u - V)| 2

< Cllov0] 12 [|02(u - V)| 2

< C|010|| 22 ||O2u - Vu 4 u - VOqul| 12

< Cl[010] > (| O2ullzs [Vullps + |ull e[V Opul 2)

< Cllon8] 2 [|0xullr [[Vull g + C1010] 2 [l 2]V Oyul| 22

< O llull (1 02ul + 101612 )- (3.2.47)
To estimate K91, we write it explicitly as,

K121 = /8110(U181U2 + UQaQUQ)dZE

= /8118 Uq 8111,2 dx -+ /8119 U2 aQUQ dx.
Thanks to Lemma 3.2.2, Lemma 3.2.4 and Cauchy’s inequality,
1 1 1 1
Kio1 < C|0110]| 22 [|ua ||} 2 [|Ovua || 72 || Orua || 7 2| 0201 ua |} -
+ O ug| e [|0110]| 2 ||Oaus|| L2
< Clullg [|0oul| g [|0110]| 2 + C'l|ul| g2 [|Ozul| 2 [|0110]| L2
<C HuHHz(HazuH%p + Halenip). (3.2.48)
The bounds for K5 in (3.2.45), (3.2.46), (3.2.47) and (3.2.48) lead to,

Kiz < C (10sull3e + 101013 ) + C sz (103l + 10:603). (3.249)

72



It remains to bound K5. After integration by parts, we can write K, as,

KQ = —/81U2 81’&1 819d$—/81U2U181819d$C

—/81U281U2829d$—/81U2U281829d$.

By Lemma 3.2.2 and Young’s inequality,

Ky < C ||0yusl| 2110us | 2, 020512, 101612, 10,016 2
+ Ol |2 10vus |22 9y | 2. 19201 s 211010161
+ C10hus |12 10ruz |22 |20 | 2, 1921122192016 2
+ C 1101001 12 usl| 22 |9r s | 22 10r a2 25 | Do | 2

< C (lullz + 100m2) (IOrusliZe + 102uli3e + 1016153 ) (3.2.50)
Collecting (3.2.42), (3.2.43), (3.2.49) and (3.2.50), we get
L 1ovuslZs < C 04612 — i/a 0 0yus o+ C (1013 + 19l
g ITHT2IL = P gy e e 2l
+ C (lullz + 1012 (I8l + el + 19:0)3 ). (3.2.51)

Integrating (3.2.51) over [0,¢] and then applying Holder’s inequality and Cauchy’s

inequality, yield

t
Bs(t) :_/0 Oy | e 7
t
< C/ H@ﬁH%z dT—2/61081U2d5€+2/810061U02d$
’ t
+ o/ (1010132 + 10ullfe ) dr
0
t
0 [ (i + 161 (Nosule + 10vual + 101613 ) dr
0
t t
< C [0l +C [ owuliedr+ C (ulk + o)
0 0

3
+C <||u0|\§12 + ||9o||?{z> +CE(t)>. (3.2.52)
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Adding (3.2.39) and 6 (3.2.52) leads to

E(t) = Ey\(t) + 6 Es(t)

t t t
= s (1Ol + 100)) +20 [ [owulfd+ 20 [ 100pdr +5 [ orualuar

0<7<t

< CE(0)+ CE®)? + Ca(lu®lie +116()3) + C 8 (Juollie + [16ole)

t t
+ 05/ |8yl adr + 05/ 100|2dr + C6 E(t)3. (3.2.53)
0 0

Now, we need to eliminate the quadratic terms on the right-hand side of (3.2.53) by
the corresponding terms on the left-hand side. To do so, it suffices to choose § > 0
sufficiently small, say

Cé<—-, Co<vy, Co<n,

N =

so that, (3.2.53) is reduced to

3
2

E(t) < CLE(0) + Cy B(1)?, (3.2.54)

where C] and Cy are positive constants. An application of the bootstrapping argu-
ment to (3.2.54) then leads to the desired stability result. In fact, if the initial data

(uo, bp) is sufficiently small,

1
0 2 < g i = ——n——
H(Uo, O)HH =€ 4\/?102’

then (3.2.54) allows us to show that

I((),0() |2 < V/2C1 e,

The bootstrapping argument starts with the ansatz that, for t < T

1

Elt) < — 2.
)< 172 (32.59)
and show that
1
E(t) < —5 forallt<T. (3.2.56)
8C5
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Then the bootstrapping argument would imply that 7" = oo and (3.2.56) actually
holds for all ¢. (3.2.56) is an easy consequence of (3.2.54) and (3.2.55). Inserting
(3.2.55) in (3.2.54) yields

E(t) < CLE0)+ CyE(t)?

IN

CLe? 4 Oy —— E(b).

2CY
That is,
1E(t)<O 2 E(t)<2C ! L o0
g\ = =“M1960,02 T 8C2 1

which is (3.2.56). This completes the proof of the global stability.

Finally we briefly explain the proof of the uniqueness part of Theorem 3.2.1. It is
very easy to check that any two solutions (u®, pt §M) and (u®,p®, 0®) to (3.1.2)

with one of them in the H2-regularity class, say (u™",0(")) € L>°(0,T; H?) must be

unique. In fact, the difference between the two solutions (@, p, 8) with

T=u® — ™, F=p® _pM and §=0@ _ g0

satisfies
O+ u? - Vi + 1 - VulY) + Vi = 10l + fes,

0,0 +u® - VO+7-VY +dy =ndy,0,
(3.2.57)
V.u=0,

w(z,0) =0, 6(x,0)=0.

We estimate the difference (u, p, #) in L?(R?). Taking the L-inner product of (3.2.57)

with (w,0) and applying the divergence-free condition V - % = 0, we find

1d,, .~ - ~ ~ ~ ~ ~
5%”(%9)”%2 + v||0vt72 + ]| 10]72 = — /u -VuY U dr — /u VoW . 6 da.

Using respectively, Lemma 3.2.2, the uniformly global bound for |[(u™",M)||z2 and
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Cauchy’s inequality with epsilon, we obtain

52 1@ OZz + V10T + 1|01 0|7
1 1 1 1
< C [l =1l 221022 7. |V a1 22 100 Ve 22
~ 1 1 1 1
+ C 110 el 72 102l 22 1 VOV 22 10, VO £
3 1 1 1 ~
< Cllullpa[105ul| > + C [l £ || 92| £ [16]] 22

< Sll0: 72 + C' || (@ 0)[7--

|

It then follows from Gronwall’s inequality that

[a(t)][r2 = 110(t)]|z2 = 0.

That is, these two solutions coincide. This completes the proof of Theorem 3.2.1. H

3.3 Decay Results for the Linearized System

In this section, we focus on the following linearized system

.

O — (nO11 + v0a2)Opu + vN011 O22u + oA~y =0,

@t@ — (77811 + V822)8t9 -+ w]8118229 + (911A_16 = 0, (331>

u(z,0) = up(x), 0(x,0)=60y(z).

\

Note that (3.3.1) is the corresponding linearized system of (3.1.12). Our efforts are
devoted here to analyze the large-time behavior of the system (3.3.1). To do so, we
first represent the solution of (3.3.1) explicitly in terms of kernel functions and the
initial data in Subsection 3.3.1. Second, we find suitable upper bounds for the kernel
functions in Subsection 3.3.2. We use these upper bounds to obtain precise decay rates
of the solution in Subsection 3.3.3. Finally, in Subsection 3.3.4 we establish that the
frequencies away from the two axes in the frequency space decay exponentially to

zero 1n time.
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3.3.1 Representation of the Solutions in Terms of the Kernel Functions

In the following Proposition, we solve the system (3.3.1) and express the solution in

terms of kernel functions and the initial data.

Proposition 3.3.1 The solution of (3.3.1) can be explicitly represented as

Ul(t) = Kl (t) U0 + Kg(t) 90, (332)
Ug(t) = Kl (t) U920 + Kg(t) 90, (333)
g(t) = K4(t) U9y + K5(t) 90, (334)

where K1 through Ky are Fourier multiplier operators with their symbols given by

Ki6.0) = Gal6t) —vG(ent). Fal6t) = =L Gr(En) (3..5)
K3(&,t) = & SLGi(&t), Ki=—-Gi, Ks(&t)=Ga(Et) —n&iGi(&, ). (3.3.6)

€17

Here G and G4 are two explicit symbols involving the roots \1 and Ay of the charac-

teristic equation

&

e

(7761 + Vfé))‘ + V775152

or

) 1
A= 5 + ) — 5\/(776% s (w75152 EQ)

Yo =~ (n€ +vEd) + %\/(ngf Hrars (m&g2 EQ)

More precisely, when A\i # As,

e)qt _ e)\gt )\16)\2t _ )\26)\1t
Gi(&t) = VS Go(&,t) = N (3.3.7)
When )\1 = )\2,
G1(&,t) = teM!, Go(&,1) = eMt — \teMt, (3.3.8)

The proof of Proposition 3.3.1 relies on the following lemma that solves the degenerate

damped wave equation explicitly via the method of operator splitting.
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Lemma 3.3.2 Assume that [ satisfies the damped degenerate wave type equation

Ouf — (VOa2 + 1011 )OLf + nroy10aa f + OulA~'f =F,

(3.3.9)
f(2,0) = folx),  (0cf)(x,0) = fi(z).
Then f can be explicitly represented as
f(t) = Gi(t) f1 + Ga(t) fo + /0 Gi(t —7) F(r)dr, (3.3.10)

where G and Gy are two Fourier multiplier operators with their symbols given by

e)qt _ e>\2t )\16)\2t _ )\26)\1t
Gi(&t) =————  Ga&t) = 3.3.11
1(67 ) )\1 _ )\2 7 2(57 ) )\1 _ )\2 ( )
with A1 and Ay being the roots of the characteristic equation
2 2 2 20, &1
A"+ (€ +vE) A+ vn€iés + e =0 (3.3.12)
or
A = e 2y _ 1 2 2)2 _ a0, 81
1= 5 (€] +v&) — 5y [(néf + ved)? — 4 ( vngies + )
(3.3.13)

2
ho =~ (0t +ved) + %\/ o404 (i + )

When Ay = Ao, (3.3.10) remains valid if we replace Gy and Gy in (3.5.11) by their
corresponding limit form, namely,

At Aot

. €
Gl (gat) = )\ll_%\l )\1 _ )\2

—e
= teM!

and

Aot At
Go(€,8) = Tim 217 = A2€

= Mt — \jteMl.
A2— A1 AL — Ao

Proof of Lemma 3.3.2. We first consider the case when F' = 0. Since A\1(§) and \y(§)
are the roots of the characteristic equation in (3.3.12), we can decompose the second-

order differential operator as follows,
(O — M(D))(0y — Xa(D))f =0 (3.3.14)
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and

(0 — A2(D))(0r — Mi(D)) f =0, (3.3.15)

where A\; (D) and A\ (D) are the Fourier multiplier operators with their symbols given

by A1(§) and Ay(§), or

1 1
(D) = §(Va22 + 1o ) — 5\/(V322 + 1011)? — 4(vnoi122 + 011 A1),

1 1
)\Q(D) = 5(1/622 + 77811) + 5\/(V822 + 77811)2 — 4(1/7]81122 + 811A_1).

Obviously, we can rewrite (3.3.14) and (3.3.15) into the following two systems,

/

(0 — M (D))g =0,
(3.3.16)
|0~ (D)) = g
and
(0, — Ma(D))h =0,
(3.3.17)
| (@ = M(D)f = h.
Taking the difference of the second equations of (3.3.16) and (3.3.17), yields
(Ai(D) = Xa(D)f =g —h
or equivalently
f= (D) = Xa(D)) g = h). (3.3.18)
Further, solving the first equations of (3.3.16) and (3.3.17), we get
g(t) = g(0) P = ((0.£)(0) — Ao(D) f(0)) e (3.3.19)
and
h(t) = h(0) P = ((9:f)(0) = M(D)f(0)) P, (3.3.20)

where we have used the second equations of (3.3.16) and (3.3.17) to obtain the initial
data ¢(0) and h(0).
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Plugging (3.3.19) and (3.3.20) into (3.3.18), we conclude that
£8) = (u(D) = 2a(D) ™" (M = =) (3,£)(0)
+ (D) = 2o(D)eM M) £(0))

=G fi + Gy fo,

where
6)\1(D)t _ 6)\2(D)t )\1(D)6)\2(D)t o A2(D)6)\2(D)t
~ND) = (D) (D) — (D)

Gy =

1

In the case when F is not identically zero in (3.3.9), the formula in (3.3.10) is obtained

via Duhamel’s principle. This completes the proof of Lemma 3.3.2. [ |
We are now ready to prove Proposition 3.3.1.

Proof of Proposition 3.3.1. Applying Lemma 3.3.2, we have
u(t) = Go(t) ug + G1(t) (Opu)(2,0), 0(t) = Ga(t) by + G1(t) (0,0)(x,0). (3.3.21)

Since u and 0 satisfy the original linearized system,

(

@ul = V822u1 — 8182A_10,

@uQ = VaQQUQ + 811A719,

0,0 = 77811Q — Uz,
\

we obtain
¢

(atul)(x, 0) = 1/(922u10 — 8182A_1«90,

(8tu2(']77 O) - I/822u20 + (911A_190, (3322)

\ (@9)(@ 0) = 7781100 — U20-

Inserting (3.3.22) in (3.3.21), yields
U1 (t) = (GQ(t) + V822G1> U0 — (9182A_1 G1 90,
U/Q(t) = (GQ(t) + V822G1> U20 + (911A’1 G1 80,

0(t) = —G1ugo + (G2 + 1011 G1)bo,
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which are the representations in (3.3.2), (3.3.3) and (3.3.4). This completes the proof

of Proposition 3.3.1. [ ]

3.3.2 Upper Bounds for the Kernel Functions

In this subsection, we provide upper bounds for the kernels K (&, t) through K5(&,1t).
Since these kernel functions rely on the Fourier frequencies &, we need to split the
frequency space into three subdomains, Si1, Si2,S2, and analyze the behavior of the
kernel functions in each of these subdomains. Details of these upper bounds are given

in the following Proposition.

Proposition 3.3.3 Assume the kernel functions K through Ky are given by (3.3.5)
and (4.3.158) with Gy and Gy defined in (3.3.7) and (3.3.8). Set

| wo

S — {5 (6,6) € R, 2+ 2 >
Sy =R?\ ;.

o g ngr ]

(@)

The kernel functions K through Ks can then be bounded as follows.
(a) Let £ € Sy. Then
Reh < —s (@ 4n)),  Reh < — (v +n€l),
where Re denotes the real part, and, for constants co > 0 and C > 0,

[K1(& )], [ K5(€,1)] < CemoleP, (3.3.23)

|K2(§7t)|7 |K3<§’t)|7 |K4(£a t)| < Ote—co|£\2t' (3324)

(b) Let £ € Sy. Then

3 vnede + €3¢
M < =W +n8), A< -——2 ol
1 4( &3 7751) > Vf%—i—nﬁ%
_wneiedtley P72
|K1|’ |K5| S C’e*%(l/53+n§%)t + Ce 15{%“}5% t (3325)
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and

C|§1||€2|6700\5|2t O|§1||§2| 700§%§§t 760%2

1Kl < +——r e e (3.3.26)
€] e
0‘51‘2 _ 2 C’§1|2 _ ﬁt 3 it
|55 < HE e ol We DPeZ’ o™ D e ,
2.2 2
’K4’ S K%eco |€‘2t + ‘§C|’2 e‘%%t e—Co éﬁt.

In view of the above Proposition, one can see that the bounds for these kernel
functions K; throught K5 are anisotropic and are not uniform in different directions.

We now prove Proposition 3.3.3.

Proof. To prove the bounds in (a), we need first to divide S; into two subsets,

Si = {€ € S, (& +n€d)? > d(wneiel + |27},

S12 =51\ S
For any £ € Sy,

(V€5 +néi)™.

1 =

0 < (v +néY)* — A(vn&i&s + 16?16 7%) <

According to the formula for A; and A, in (3.3.13), A; and A, are real and satisfy

1 1
M <= E ), e < =L (v g,

It then follows by the mean-value theorem that

e o 6)\2t

T T | <te Ol 3.3.27

G| =

for some constant C > 0.

Writing G in (3.3.7) in terms of G,

G2 = e)‘lt — )\1G1
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and using the simple fact that 2™ e * < C'(m) for any > 0 and m > 0, we can

bound K7 and K35 in Sq; as follows,

il < |Gel +vIE] |G| < e 4 C et eI 4 v|gg ¢ eI

o 2
< Ce col€] t’

|Ks| < |Gl +n]€2||G] < C ekl

where C' > 0 and ¢y > 0 are constants. The bounds K5, K3 and K, follow directly
from (3.3.27). For any £ € S,

(V&5 +n&7)? < A(wn&i&s + 1 P1E™)

and, as a consequence, A\; and Ay are complex numbers,

M= (08 0€) — £ \JAmgied + 6 PIE) — (6 + g,
Yo =~ (8 +0E) + 5 \AnEiEE + IEaPIEN?) — (v + meD2

Then

1
Re )\1 Re )\2 5 (Vf% + 7”]5%)
Further, we have

e)\lt _ 6)\2t

A1 — A2

— e 2 PRRLST t 1
\/1(”7”{]{2 |( ]| |£| ) — (V§2 ,'762)2

|G| =

< tesWEHNEDL

The desired upper bounds for K; through K5 then follow as before.
We now prove the bounds in part (b) of Proposition 3.3.3.

For any & € Sy, we have

(W& +n€d)* — A(wnei&s + &?1€)7%) = ~(v&d + n&})*. (3.3.28)

1 =
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Then A\; and Ay are both real. Obviously, \; satisfies
3
M < =2 (8 + ). (3:.29)

In addition, Ay is bounded by

1
o= (1 0gh) - g+ o — st + )

vnéiEs + & 7€)
vE} + €t + /(v&3 + n&d)? — A(wneied + 16 Pl
gt + el

(3.3.30)
V€3 +néi
Hence, it results from (3.3.28), (3.3.29) and (3.3.30) that
1
|Ghl < 2 2\2 2¢2 2)£]-2
\/(sz +né7)? — 4(vnéi&s + 6 2[€172)
vneTe3+1e1121g1 2
% (ei(u§§+n5%)t +e g e t)
) vneded+ig121g 2
< ﬁ (ei(u§%+n5%)t +e g e t)
v&y + néi
C 2 O —c ﬁt '5% t
< —emolelt 4 T gm0 gt
Bk SI?
where C' > 0 and ¢y > 0 are constants. Therefore,
1] < ||§g||lf2’ p—colélPt | C\‘f£1’||§2| —co mgt —co éj;t
0’51’2 2 0‘61’2 —00515215 —co 51 t
| K| < e~co |l L o meoTe? et
& &
and
C 2 C —c 51527& —c 6% t
|K4| 6—00|§|t+_6 0\5\2 07T’
[¢P €12
K is bounded by
[Ki| < [Gol +v|&] |G| < M < M 4 NG| + v[€] |G
_vmgres+le P lel =2
< CeiWE+nEt 4 e veg+ne?
K5 obeys the same bound. This completes the proof of Proposition 3.3.3. [ |
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3.3.3 Large-Time Behavior in the Standard Homogeneous Sobolev Space

By making use of the upper bounds for the kernel functions K; through K5 in Propo-
sition 3.3.3, we are able to derive the precise large-time behavior of the solutions to
(3.3.1). To reflect the anisotropic behavior of the solutions, we need to use anisotorpic
Sobolev type spaces defined as follows. For s > 0 and o > 0, the anisotropic Sobolev
space H™7(R2) consists of functions f satisfying

1w = ([l e 1R@)R de) " < o

Similarly, 57 (R?) consists of functions f satisfying
3
o = ( [ 16 el 1@ de)” < oc.
In addition, we write H*(R2) = H 7(R?) N Hy ?(R?) with the norm given by

/]

Hs—o(R2) — ||f‘ HP 77 (R2) + Hf| Hy ™ (R2)"

Theorem 3.3.4 Consider the linearized system in (3.3.1) with the initial data ug

and 0y satisfying V - ug = 0 and
up € H*"NH>"NH*">7 @y H> " nNH>" "N H 1,

where s > 0 and o > 0 satisfy s + o > 2. Then the corresponding solution (u, ) to

(3.3.1) satisfies, for some constant C' > 0,

lax@ll e < CE2 fusoll o + €75 [|uol| oo

+ Ot 0] oo + C 275 |60 oo

—lis+o —g
lus (@)l e < Ct73% |fugo| oo + C 5 |Jugo]] oo
+ Ot 300 om0 + C 177 F ||| e
10@)] 5 < Ct 2 lugg |l oo + C 15 |Jtno]| o 2,0

L Byl g0 + O o]l oo
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where H* denotes the standard homogeneous Sobolev space with its norm defined by

~

1 s = THEF AN 22 @2)-

Before proving Theorem 3.3.4, we recall the next lemma that provides an explicit
decay rate for the heat kernel associated with a fractional Laplacian A® (a € R)

which is defined through the Fourier transform

Aaf(€) = [¢°F(e). (3.3.31)

Lemma 3.3.5 Let a >0, >0 and 1 < q < p < oo. Then there exists a constant

C such that, for any t > 0,

Y

o7

o — B 7777777
A% fllrway < Ct 7l 1 f || o ray-

The proof of the Lemma can be found in [61].
In addition to the fractional operator written as in (3.3.31), we also make use of the

fractional operators Ay with ¢ = 1,2 defined by

—_ ~

A7) = [&17f(€), &= (&1,62).

The following proof of Theorem 3.3.4 is based on Proposition 3.3.3 and Lemma
3.3.5.

Proof of Theorem 3.3.4. Taking the Hé-norm of u; in (3.3.2), applying Plancherel’s

theorem and dividing the spatial domain R? as in Proposition 3.3.1, yield

lus ()]

Hs(R2) < ”AsKl(t)UOHLQ(R?) + ||ASK2(t)00||L2(R2)
< C[E1° Ki (€, )ao(E) [ z2sy) + CHHIER Ko (€, D)t (€) ] 2(sn)

+ C € Ko (& )86(E) 2050y + C IS Ka(& )00(E) 1252 (3:3.32)

The terms on the right-hand side of (3.3.32) can be bounded as follows.

86



Using Proposition 3.3.3, Plancherel’s theorem and Lemma 3.3.5, we get

1] K (&, 6)@(E)ll 2251y < C 1] e @ (&) z2(sy)
= C|[I€]" |6 17~ €170 (&) | r2s:)
< Cllgf+e P Jey |77 ()| pags)
=C HAS*"ecoAt A;"uOHLz(Rz)

< Ot 26 | AT ug | 2 e
Invoking (3.3.25) in Proposition 3.3.3,

€N K (€, 1)0(E) | 2syy < CNIEIT e @y (€)]| sy

_wnededrieg 21g 72

+Cllgl e e an(€)lrasy-

(3.3.33)

(3.3.34)

The first part on the right-hand side of (3.3.34) can be bounded similarly as (3.3.33).

To deal with the second piece, we need first to split the domain S5 into two subdomains

521 and 522 where

So1 =1{§ € 5y, G| > [&2]},  Sea={£ € S, [&1] < |&al}-

Clearly, for any £ € Saq,
RS RESTE
vEd + gt
and for any £ € Soo,
e+ lalel
V€3 + gt
It follows that,

<=Cl&LP = Cla)lEl™ < -C &)

< =Cl&)? = Cla))E < =Cl& ™

_un&%g%;\suzm\”
lglPe et ag(€) s,

s — 2¢ ~ s — 2¢ ~

< |1 e el @ ()| 2850 + C NIE1T €1 @5 ()] r2(sm0)
s o, — 2 -0~

< ClJE° |6]7e 11 16| 7 @ (€) || agsan
s o, — 2 —0

+ C €1 161]7e 1118 |7 @ (€) || 2(sa)

< Ct% |Jul

f[s,—a‘-
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We now estimate |||£]® K2 (€, t)&o( M r2(sy)- Owing to (3.3.24) in Proposition 3.3.3 and

following the same process as in (3.3.33), we have

111" Ka (&, )0(E) |25y < CENIEN eI Bo(€) ] 2(s1)

< Ct7 3+ AT | 12 re). (3.3.38)

We now bound |||¢]* Ka(&, t)é;)(f)HLz(SQ). According to (3.3.26) in Proposition 3.3.3,

8182 e
(G

+C |le

I1€]° K2(&,1)00(6) || 1255y < C 1€]* (&)l 125

|§1||€2| —co mgt e Sy~

L el 90(5)

. (3.3.39
i 833

The first piece on the right-hand side of (3.3.39) can be bounded in the same way as
n (3.3.33) and (3.3.38),

566 —c s—2 _—c 0
11€] ﬁ ol€Pt gy (¢ Ollrzsy) < €l 2e °|€‘2t90(§)||L2(R2)

< CH 3+ AT | L2 g2y (3.3.40)

To bound the second part on the right-hand side of (3.3.39), we use the simple fact
that 2™ e* < C(m) valid for any m > 0 and x > 0, and proceed as in (3.3.35) and

(3.3.36) to get

2 2
|5| ‘£|1§‘-|‘§2| —Co |§‘2 t —Co é|14t |€|S 1 |’€;‘| CO 13 ‘2 t—* ’é|-2I|22 e |§‘14t

22

—3 s— 1 —¢o §2t
<Crbjgle ™

Ciz [t e85t for & € Sy,
Ct s |¢]st e Ot for £ € Say.
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It results that,

|§1Hf2| 2t —co”i(tA ‘
€] €l
Hlﬂ e 00| g,
|§1||§2| 2 o &y~
< \&IQ R ‘
— H|£| |§| 0(5) L2(Sa1)
‘lefﬂ m@t 514t
i€l 0 Tel
+ e ST ) s,

< 1 e O Go(€) 12 + O ||l O Gy (€)1

< Ct 275 |16y oo, —o- (3.3.41)
Inserting the upper bounds (3.3.40) and (3.3.41) in (3.3.39), we find
I KalE, (Ol za(sn) < C 4 ATy aqu + 63 Bl oo (3.3.42)
In view of (3.3.32), (3.3.33), (3.3.37), (3.3.38), (3.3.40) and (3.3.41), we obtain
s (D) || 72y < Ot 2% | AT 7o porey + C't7% [0l frs.o ()
+ CHm 2D AT Gy |2y + C 1722 |80 ot o .
Using the same techniques, [|ua(t)| . g2y and [|0(1)] zs g2y can be bounded as follows

l ST0 —0 g
[z ()] o g2y < Ct7 2| AT gl 22y + C 177 [Juzol| oo g

L(s4o —0o -1-3
+ Ct7 2T AT 0| 2wy + C 772 |60l oo 2y,

and
1 S+o0 —0 _g
16| s rzy < Ct72F T AT | 22y + C' 7% (Juzo|l o2, (g2
—L(s+o —0 75
+ Ct72C) A0 || L2rzy + Ot 2 (00| oo go)-
This completes the proof of Theorem 3.3.4. [ |

3.3.4 Exponential Decay Away from the Two Axes of the Frequency

Space

When the Fourier frequencies are away from the two axes, the solution of the linearized

system (3.3.1) actually decays exponentially to zero in time. To state our result more
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precisely, we define a frequency cutoff function, for a; > 0 and as > 0,

R R 0, if [&] <ay or [&] < ao,
(&) =o(&, &) = (3.3.43)

1, otherwise.

Theorem 3.3.6 Let v > 0 and n > 0. Consider the linearized system in (3.3.1) or

equivalently
.

(9tu1 = l/aggul — A_181829,
8tU2 = 1/8221,62 + A_181619,

8t0 = 770110 — U9,

\(ul,uQ,G)(x,O) = (uo1, oz, Oo)-

Let (u,0) be the corresponding solution. The Fourier frequency piece of (u,0) away

from the two azes of the frequency space decays exponentially in time to zero. More

precisely, if (ug, 0y) € H*(R?) with V-ug = 0, then there is constant Cy = Co(v,n, ay, as)

such that, for all t > 0,

10 w) ()17 + 10 * W) (B)IFn < C (o *uollzpe + o+ bollz2) e, (3.3.44)

10 % O) ()72 + (0% O)(B)IFn < C (g * Oollfga + o x uollf2) e, (3.3.45)
where ¢ is as defined in (3.3.43) and C = C(v,n,a1,a2) > 0 is a constant.

Proof of Theorem 3.3.6. Let @ be the Fourier cutoff function defined in (3.3.43). Tak-

ing the convolution of ¢ with the velocity equation in the system (3.3.1), yields
3tt(g0 * u) — (?7811 + 1/822)8,5(@ * U) -+ Vﬁallagg((p * U) + anA’l(go * u) = 0. (3346)

Dotting (3.3.46) with 0,(¢ * u), we obtain

| s

(190 * w)ll72 + IRl * Wl + nw[[ 012 * w)|172)

N | —
Q

t
+0[1020:( * w)l[72 + 0| 010 (0 % w72 = 0, (3.3.47)
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where Ry := 9)(—A) "2 denotes the Riesz transform.
Taking the L%-inner product of (3.3.46) with ¢ * u leads to

1d

57 V0202 x )lZ2 +nll0n(p % w)l[Z2) + [Raop x w)lIZ2

+ vn)|Ora (@ * u)[172 + /@:t(sa su) - (@ *u)de = 0.

Further, integrating by parts, we find

= ln(e =l +nllon(e s + 20 e ). (g« )

+ 1R * )z + vllOna (e + W) Z2 — 10:( * w)|I 72 = 0, (3.3.48)
where (f, g) stands for the L?-inner product.

For A > 0, adding (3.3.47) and A (3.3.48), we obtain

d
A1) +2B(t) =0, (3.3.49)

where for notational convenience, we have set

A(t) = 110 * w72 + [Ra (0 % w)[ 72 + |0z % w) |72

+A[[02(p x )72 + MpllOn (e + w) |72 + 2X(s(p + w), (9 * u)),  (3.3.50)

B(t) = v[|0:0:(0 * )72 + nl|010e(p  w) |72 + Aiw]|Ora(p + w)[7

— M8 (e * w172 + AR % w) |72 (3.3.51)

The next step is to show that, by selecting suitable A = \(v,n, aq, as) > 0, there exists

a constant Cy = Cy(v, 1, a1, ag) > 0 such that, for any t > 0,

where, we recall that a; > 0 and a, > 0 are the parameters mentioned in the definition
of the frequency cutoff function defined by (3.3.43).

Applying Plancherel’s theorem and using the dfinition of ¢ in (3.3.43),

10204 (0 % )72 = / |62 0(PU(E, 1)) d > a3 ]|0k( + w72, (3.3.52)

[€1]=a1,|€2|>a2
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Proceeding as in (3.3.52), we find

1010 (¢ * uw)ll7> > ai 10(w * w72, N|Ow2(p *w)ll7> > @i |00 % u)72,  (3.3.53)

10120 % w)[ 72 > a3 [|01(w * w72, |Ow2(p * w)l|72 > @t ag [l * ull7.. (3.3.54)

Choosing A > 0 such that

1
A< S(vad+nad)

we deduce from (3.3.52), (3.3.53), (3.3.54) and (3.3.51) that

1
B(t) > (va; +nap)|[ 0+ w)llZ2 — Mo * w)l[12 + T Aqv]|0n (e = u)|Z:

4

1
~nv a3 (|01 (¢ * u)||7

1
+ a0 5 ) + |

4

1
P a3 i ulfs + AR x w2
1
> 2 (e +n a0l = w)ls + e s u)l
1 1
+ 3w @ 0a(i ) [ + a3 10h (o % )
1

+ v aia @+ ulfi: + MRa(p * )7
In addition, invoking the Cauchy-Schwarz inequality and Cauchy’s inequality, we have

1 1
1 v+ e Wl + i ad i o + w3

1
> S\/vad+nat I a3 (e x w). o % )

Thus,

1
B(t) > - (vay +nai)l0:(e * w72 + MRi(p * u)7-

=~

1
D rolo %l + A 0b(o x ) 3a + T a3 1040+ w) 3

1
- 5\/ua§+na% \/)\nua%a% (¢ (p * u), p*xu).

Therefore choosing Cj satisfying,

1 1
Cy = Zmin{(ya%%—vyaf), A, na?, va3, 7 \/Vag—l—na% \/nuafag }7
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we get
B(t) > Cy A(t). (3.3.55)

Inserting (3.3.55) in (3.3.49) leads to

%A(t) +CoAt) <0, or equivalently, A(t) < A(0)e " (3.3.56)

In order to establish the desired inequality (3.3.44), we derive a lower bound for A(t)
as follows.

Owing to (3.3.54) and the Cauchy-Schwarz inequality,
At) 2 10u(p * u) |72 + [Ra(p w72 +nvaf aj [l * ull7
+ A[[0( 0 * w)l[72 + M| (9 * w) |72 — %H@t(@ )72 — 277l * ulZ.
= %H@t(so s u)|[z2 + [Rile * w72 + (v ai a3 — 2X%)[Jp * w2
+ (|02 (¢ * )| 72 + Al|Or (¢ + w) |2,

where, we recall that Ry := 0;(—A)"2 stands for the Riesz transform.

If we take A > 0 such that

1 1
nva? a3 — 2\ > Enya%ag or A< 5«”77/@1@2,

we get

1 1
A(t) 2 510w« wllze + IRy * w)Z- + > ai a; |l¢ * ullz

+ A[|02( + )72 + AllOn (0 w) 172
> C (10 * w72 + o * ullzo + V(@ % w)72), (3.3.57)

where C' = C(v,n, a1,az) > 0 is a constant.

Finally, it remains to derive an upper bound for A(0). Recalling that (u, ) satisfies

;

&gul = I/azgul — A‘181829,

@uz = VaQQUQ + A‘181818,

0,0 = 10110 — us,
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we have
8tu1 (O) = V822'u/01 — Aflﬁlﬁgﬁo, 8tu2(0) = V822u02 + Ailalaleo
and thus
1(0:( % w) (0) |72 < 2021022 ( * o) 72 + 2llp * B0l 7, (3.3.58)

where we have used the fact that Riesz transforms are bounded in L? with 1 < ¢ < 00
(Seev e.g, [55])7
|AT'010s fll1a < C'|| fllLs-

In addition, invoking the basic inequality,
2M(0u(p * ), (9 * w)) < [|0:(p * w)||Z2 + N[l * ullZ2,
we obtain,
A(0) = [|8:(0 * u) (0)[|72 + [R1 (9 * wo) |72 + 1] 912(0 % wo) [ 72
+ (|02 (¢ wo) |22 + Mpl|On (¢ + wo) |22 + 2M(0e(p * w)(0), (¢ * uo)),
< 40%(|O2(¢p * o) |72 + 4l * bol|72 + (1 + N*)]l * ol|7

+ |12 (¢ * uo) |72 + Av[|02(p * ug) |72 + |91 (0 * uo)||72

< C(le*uollzen + llg = OollZ2)- (3.3.59)
In view of (3.3.56), (3.3.57) and (3.3.59), we conclude that
10 (0 + w) (W) 72 + (0 W) (O)I72 + [V (0% u) (B)]I7:
< C (Il *uollf + [l = Ool72) ="

This completes the proof of the inequality (3.3.44). The estimate for € in (3.3.45) is
very similar. In fact, since 6 satisfies the same wave equation as u, most of the lines

for u remain valid when we replace u by 6 and replace the bound in (3.3.58) by

100 = O)(O)IZ2 < 20*1011(¢p * O0) |72 + 2l * wonl|7--

This finishes the proof of Theorem 3.3.6. [ |
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CHAPTER IV

STABILIZATION OF THE 2D BOUSSINESQ EQUATIONS WITH
HORIZONTAL DISSIPATION AND VERTICAL THERMAL
DIFFUSION

4.1 Introduction

In this Chapter we study the following special two-dimensional (2D) Boussinesq sys-

tem with partial dissipation

(

U +U - VU =-VP+vonlU+0ey, z€Q, t>0,

9,0+ U -VO =100, (4.1.1)

V.U =0,
\

where we will consider two different spatial domains Q = R? and Q = T x R where
T = [0,1] being a 1D periodic box and R being the whole line. The first case when
Q) = R? will be discussed in Section 4.2. While the second case when = T x R will
be studied in Section 4.3. For both situations we aim to understand the stability of

the perturbations near the hydrostatic equilibrium (Upe, Ope, Pre) with

Clearly, it follows from (4.1.1) that the perturbation (u,0,p) given by

UZU—Uhe, p:P—Phe and 9:@—@h6.
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satisfies the following equations

(

ou+u-Vu=-Vp+vou+be, =z t>0,

8159 +u- A\ + U9 = 778229, (412>

V-u=0,

\

As outlined in the Introduction, the type of the spatial domain €2 plays an important
role in solving the stability problem. In fact, when the spatial domain is the whole
plane R?, the H? stability issue remains an open problem. In this situation, we are
only able to show the existence of the H' global weak solutions (see Section 4.2).
However, we do not know the uniqueness of H'-level solutions. Indeed, when we
evaluate the difference(u*, 6*) of two solutions (u™,6M) and (u®,0®)), the terms

generated by the nonlinearity

/ u* - VuV - u* da and/ u* - VO . 9" da
R2

R2
are hard to deal with. Further more, when trying to seek for global H? solutions we
encounter a difficulty when estimating ||(Vw, Af)||2 where w := V x u. The issue is

how to proceed from the energy equality

1d
5 = (V)3 + 1A0]3: ) + vy Vu®) 2 + A0
=/<V819~Vw—AuzA0> dx—/Vw'Vu-dex—/A.A(u.vg)dx
=A+B+C.

Using the divergence free condition of u namely V - u = 0, one can easily show that

A = 0. The integral C' can be bounded suitably. However, if we write B as follows
BZ:—/VW-VU-VMCZ:E
== /62%2 (81W)2d$ — /81U2 81w 82w dx

- /82u1 (91w 82(,4) dr — /82@&2 (82(,0)2 dx (413)
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then the last two terms in (4.1.3) do not appear to admit suitable bounds due to the
lack of control on the vertical derivatives in the dissipation.

In contrast, when the spatial domain is Q = T x R with T = [0, 1] being the 1D
periodic box and R being the whole line, we are able to establish the H? stability
of the system (4.1.2). Working in the domain 2 = T x R allows us to separate the
horizontal average (@, ) from the corresponding oscillation part (1, 5), where for any

function f = f(zy, ;) integrable in z; on T, we define the horizontal average f by

flas) = /Ef($1,$2)d171, (4.1.4)

and we write

f=F+F (4.1.5)

Clearly, f also represents the zeroth horizontal Fourier mode of f. This decomposition
is very useful due to some of the associated fine properties. For example, f and fare

orthogonal in L2, namely the inner product (7, ]7) = 0 and as a consequence, for any

fe LX),
Hf”%%sz) = HTH%Q(Q) + ”f||2L2(Q) :

In addition, a strong Poincaré type inequality holds,

1 fll2) < CllOLf| 2o

By applying this decomposition to the velocity field, namely writing v = u + u and
taking advantage of the special properties of u such as the Poincaré type inequality, we
are able to establish suitable upper bounds for the nonlinear terms in (4.1.3), which
in turn leads to a global and uniform upper bound for ||u|| z2(q). This explicit upper
bound also implies the stability of perturbations near the hydrostatic equilibrium. In
addition, by writing the evolution equations of the oscillations u and 5, we are also
able to prove that the norms ||| 1) and ||§||H1(Q) decay algebraically to zero in

time. Details of these results will be discussed in Section 4.3 of the present Chapter.
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4.2 System in the Spatial Domain R?

In this section we study the following 2D Boussinesq equations with partial dissipation

(

ou+u-Vu=-Vp+vou+be, =z t>0,

(9t9 +u- VG + Uy = 778229, (421)

V-u=0,
\

where the spatial domain is ) = R2.

4.2.1 Existence of H' Global Weak Solutions

The following Theorem proves the existence of the H' global weak solutions to the

system (4.2.1).

Theorem 4.2.1 Consider (4.2.1) with v > 0 and n > 0. Assume ug, 6y € H'(R?)

and V - ug = 0. Then there exists ¢ = £(v,n) > 0 such that, if
[uoll ez + 100l < e,

then (4.2.1) has a global weak solution (u, ) satisfying for all time,

t t
la(®) 12+ 16(8) |12 + 20 / 10vu(r) 3 + 21 / 10:0(r) Bpudr < C=2,
for some constant C' > 0.

Proof. We define the natural energy functional,

t t
E(t) = max ([[u(r)[l5 + [10(7)[[3) +2V/0 \|31U(T)||§1d7+277/0 1026(7) |52 .

0<r<t

(4.2.2)

Our main efforts are devoted to show that

N

E(t) < CLE(0) + CLE(#)3, (4.2.3)
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for some constants C7,Cy > 0 and for all ¢ > 0. The bootstrapping argument then
allows us to conclude the desired result.
The proof of (4.2.3) is achieved in the following two steps.

Step 1: Showing that

t t
lu(®)lIZ2 + [10()[1Z2 + QV/O 10vu(T) [ Z2dr + 277/0 1820(7)||Z2dT = [uolZ2 + [160]Z:-
(4.2.4)

Applying the Leray Projection P = I — V(—A)~!div to the first equation in (4.2.1)

we obtain
Owu 4 P(u - Vu) = voyu + P(bey). (4.2.5)

Dotting (4.2.5) by u, integrating in space and using the divergence free condition

V.u =0 we get

1d
§£Hu|]%2 +/ P(u - Vu)udr = —v||0ul|3, —/ R1R20u dx
\RQ , R2

-~

=0

—I—/ Ouqdx — R%é’qum
R2 R2
= —v||0ul)3, —I—/ Ouqdz, (4.2.6)
]RQ
where R; = 01(—A)*% fori =1 or 2.

Now dotting the second equation of (4.2.1) by 6, integrating in space and using the

divergence free condition V.u = 0 we obtain

1d
\]R2 P R2

g

=0

Adding the two equations (4.2.6) and (4.2.7) we get

1d
5 7 IOz +16@)1122) + vlIOru(r)Z= + nll9:0(7)|72 = 0. (4.2.8)

99



Integrating the equation (4.2.8) in time yield

t t
lu(®)l[72 + 01172 + 21//0 10vu ()| 72dT + 2n/0 1020(7) | 72d7 = [Juol72 + 160172,
(4.2.9)

for all ¢ > 0.

Step 2: Showing that
t
IVal) [+ 1901 +20 [ [0Vu(r) e
t “
42 [ 1090 adr < B} + [Tualls + V60l
0

(4.2.10)

holds for some constant ¢ > 0 and for all ¢ > 0. To prove (4.2.10) we resort to the

equation of the vorticity w := V X u and the second equation in (4.2.1)

Ow+u-Vo=vohw+0o, xcR% t>0,
(4.2.11)
6t9+uV6’+u2 :7’]8220.

Taking the gradient of the second equation in (4.2.11), dotting with V6, and multi-

plying the first equation by w we find

1d
5 7 I9llze +1VOlZ2) + 182 VOlL2 + v[ 1w

= —/V@-Vu-Vde%—/(@ﬁ-w—Vw-V@)dx

—A4B (12.12)

Using V - u = 0, there exists a stream function 1 such that u = V¢ = (—dy), 011))

and AY = w. Then
B = /(819 cw— Vuy - VO)dx = /(819A¢ — Vo - V)dx
_ / (—0AD + Ady0)dz

= 0. (4.2.13)
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Writing A explicitly as follows

A::—/V0~Vu'v9dx
. / <8lu1(819)2 + 0112010050 + Oyu10,00,0 + aQuz(aQQ)Q)dx
=A1+ A+ As + Ay, (4.2.14)
one has to bound the four integrals Ay, As, A3 and Ajy.

Using respectively the divergence free condition of u, integration by parts, Lemma

3.2.2, and Young’s inequality yield

Al = —/61U1(81€)2dl’
:/321/@(@19)2d1'
== —2/u281082810dac

1 1 1 1
< ||02010]| 21010 7 21]02010| 72 [[ua || 2 || Orual 7 2
1 1 1 1
< || 020 e 101177 1102011 7y |l 7y [|Ov ]| 710
3 1 1 1
< c||020 M| Ovul| fpa [l 72 1101 70

1 1
< cljull i N0 (10:0103 + vl ). (4.2.15)
To bound A,, we apply Lemma 3.2.2 and Young’s inequality

Ag = —/61’&2019829(11‘
1 1 1 1
< )| 020]| 2 || Oruz]| 72|01 01uz || 2110107211020 7 -
1 1 1 1
< || 020 ||l 7 101 7 1101 32 1020 70
3 1 1 1
< c||029||12{1||31u||12{1||u||12{1||9||§11

1 1
< cllul 1015 (102003 + el ). (4:2.16)
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For Az, we divide it into two integrals

Ag = /82u181«9829dx
—/u132(819329)dx
:/u182819829dx+/u181982829d:c

= Az + Az
We start with As;. By Lemma 3.2.2 and Young’s inequality we get

A31 = /u182810829dx

1 1 1 1
< ¢||02010]| 21020 7 21| 02020 | 7 2 || ua || 2 | Orua || 7 2
1 1 1 1
< || 020z 1011 7 1020 | 7 | 7 |01 £
3 1 1 1
< || 020 7 M| Ovul| 7 101 7o Ml 0

1 1
< cllull 612 (10201 + Novedn ).
Similarly,

A32 = /u181082820da:

1 1 1 1
< | 020,012 10101 2 (| 02010 12 [|ua [| 72 | Or a7
1 1 1 1
< cl| 0201 1011 272 11020 2 [l o [| Ol o
3 1 1 1
< cl| 001l | Oveall £ 101 Ml o

< cllul 1603 (122011 + 1ovull3 ).
Combining (4.2.18) and (4.2.19) yield

1 1
Ag < cljull 1017 (102013 + 1owull3: ).
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Due to Lemma 3.2.2,
A4 = /82U2(829)2dI
1 1 1 1
< cf|Ogul| 12| 020|172 1101020 721|020} || 0200 } -
< cf|ul| g1 ]|020)) % - (4.2.21)

Collecting (4.2.15), (4.2.16), (4.2.20) and (4.2.21) and inserting them in (4.2.14) we

get
A < el ()l (11020131 + Orull3s ). (4.2.22)

Thus, in view of (4.2.22), (4.2.13) and (4.2.12) we get

S (IVuIZ+ IV ) + 10 Vu(r)3 + 0l V0
< el 0) s (1102015 + lonulfn ). (4.2.23)
Integrating (4.2.23) over [0, ¢] yields
IVu(®)l2: + V6@ 3: + 2v / Jonvu(r)|adr
v 20 [ 10900 adr < B0} + Vol + [9015

(4.2.24)
Finally, combining (4.2.9) and (4.2.24) leads to

E(t) < C1E(0) + CyE(t)?. (4.2.25)

for some constants C7,Cy > 0 and for all ¢ > 0. Then the bootstrapping argument

implies that if £(0) is sufficiently small namely

(o, bo) | < ¢,

for some sufficiently small ¢ > 0, then E(¢) remains uniformly small for all time,

namely
E(t) < Ce,
for a constant C' > 0 and for all ¢ > 0. This completes the proof of Theorem 4.2.1.
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4.3 System in the Spatial Domain 2 = [0,1] x R

In this section we study the following 2D Boussinesq equations with partial dissipation
(

ou+u-Vu=-Vp+vou+be, =z, t>0,

ate + u - v& + U2 = 7782297 (431)

V-u=0,
\
where the spatial domain is Q@ = T x R, with T = [0, 1] being a 1D periodic box and
R being the whole line.
This section is based on the author’s joint work [7]. It is divided into three
main subsections. Subsection 4.3.1 makes necessary preparations for the subsequent
subsections. Subsection 4.3.2 proves the H? nonlinear stability of the system (4.3.1).

Lastly, Subsection 4.3.3 derives some decay rates for the solution to (4.3.1).

4.3.1 Preliminaries

We recall that for any function f = f(x1,5) that is integrable in x; over the 1D

periodic box T = [0, 1], its horizontal average f is given by

flas) = /Tf(ﬁlaxz)d%- (4.3.2)

We decompose f into f and the corresponding oscillation portion f,

f=T+7. (4.3.3)

The following lemmas provide a few properties of f and fto be used in the proof of

our main results.

Lemma 4.3.1 Assume that the 2D function f defined on Q0 =T x R is sufficiently
regular, say f € H*(Q). Let f and f be defined as in (4.3.2) and (4.3.3).

(a) f and fv obey the following basic properties,

Df=0F=0, Oof =0of, f=0, Oof =0uf.
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(b) If f is a divergence-free vector field, namely V - f = 0, then f and f are also

divergence-free,
V-f=0 and V-fz().
(c) f and f are orthogonal in L?, namely
(3= [ FFde =0, 1ley = 71 + 1l
In particular,
Flzze < Il and Ifllza@) < 1Ifllz@)-
The orthogonality is actually more general and holds for any integrable functions,

/Qf-jq“da;:().

The properties given in Lemma 4.3.1 can be easily verified via (4.3.2) and (4.3.3).

Lemma 4.3.2 For any 1D function f € H'(R),
1l < V2IFI1Z2gy 11 22y (4.3.4)
For any bounded domain such as T = [0,1] and f € HY(T),
1 il
||f||L°°(T) < \/§||f||z2('{r) If ||z2(11‘) + ||f”L2(T)7 (4.3.5)
in particular, if the function f has mean zero such as the oscillation part f,
1 1
1|y < CUFNZ2ery 1Sl 22y (4.3.6)

Lemma 4.3.3 Let Q = T x R. For any f,g,h € L*(Q) with d,f € L*(Q) and
Dag € L*(Q), then

| [ gohs] < UG + 1070 Hallosgllil. 43)
For any f € H*(Q), we have
1l oe@) SCNAAZ (L2 + 100Fll22)* 102£ 1122

% ([102f 122 + 10102 f]]12)7. (4.3.8)
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The upper bound for the triple product in (4.3.7) on the whole R? was proved in [18]
while the inequality (4.3.7) is a different version on the domain €2 and can be shown

using (4.3.4) and (4.3.5).

Replacing f in Lemma 4.3.3 by the oscillation part f, yields to the following Lemma.

Lemma 4.3.4 Let Q@ = T x R. For any f,g,h € L*(Q) with 0,f € L*(Q) and
Dag € L?(2), then

~ ~ 1 ~ 1 1 1
| [ Fata] < U0 ol Noug ]2 (43.9)

For any f € H?*(Q), we have

£l o) < ClFIENO N2 | 2010180 f 1|2 (4.3.10)

Lemma 4.3.5 Let [ and [ be defined as in (4.5.2) and (4.3.3). If ||81ﬂ|L2(Q) < 00,

then
1 Fllz20) < Cllor Sz,
where C' is a pure constant. In addition, if H@lfHHl(Q) < 00, then
1 £l < ClonFllm ey
As a direct consequence of Lemma 4.3.5 and the inequality (4.3.9), one has

| / Fohdz| < €101 Flle2llgl 32 10291 211 R . (43.11)
Q

4.3.2 The H? Nonlinear Stabilty
We are able to prove the following result on the stability problem of (4.3.1).

Theorem 4.3.6 Let T = [0,1] be a 1D periodic box and let Q@ = T x R. Assume

ug, 0y € H*(Q) and V - uy = 0. Then there exists € = e(v,n) > 0 such that, if

[uollzz + [0l <,
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then (4.3.1) has a unique global solution that remains uniformly bounded for all time,

t
[t + 10O + 20 | forutr)
t t
w2 [ Nou0(r) s + [ 100 adr < O
0 0
for some constant C' > 0.

The proof Theorem 4.3.6, is based on the construction of a suitable energy functional

t
B(t) i= guax(lu()lfe + 10(r) ) + 20 [ |Ovulfyedr
STS 0
t t
s [ oublfedr + [ for6le dr
0 0
with

t t
Eq(t) == max (||u(r)|72 + 10(7)[I%2) +2V/0 H31UH?pdT+2n/O 102012

0<r<t

and

t
Bo(t) = / 16,612 dr.
0

The energy functional E) is natural and comes from the H%norm of (u, ) and the
corresponding time integral part due to the partial dissipation, while the part Fs(t)
is needed and comes from the regularization that (w := V X u, ) satisfies the wave
equation

8ttw — (77822 + V@H)@tw -+ m;@llﬁggw —+ 811A_1w = Nl,

6tt9 — (77622 + V@H)@,ﬁ + m78118229 + 011A_19 = NQ,

where

Ny := —(0y — n0a2)(u - Vw) — 01 (u - V),

Ny := (01 — 8)(u- V) + (u- Vuy — HAT'V - (u- Vu)),
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Then the idea consists on using the bootstrapping argument after showing that E(t)
satisfies

E(t) < ¢1E(0) + 2 E(t)?, (4.3.13)
for some positive constants ¢; and ¢y and for all ¢ > 0. The proof of (4.3.13) consists
of two main parts. The first part focuses on the estimate of E; and we obtain

Er(t) < E1(0) + ¢35 By ()7 + ¢4 Ba(t)?. (4.3.14)

The second part proves

3
2

Ea(t) < ¢sE1(0) + ¢ Ey(t) + 7 E1(£)2 + cs Es(t)2, (4.3.15)

where ¢; through cg are all constants. Adding (4.3.14) with 1/(2c¢g) of (4.3.15) yields
the desired inequality in (4.3.13). More details are given in the following proof.

Proof. We define the energy functional E(t) as in (4.3.12). Our main effort is devoted
to prove (4.3.13).

First of all, we have the global L2-bound

t t
06O + 20 | oruladr +20 [ 10:0]adr = (uo,60)[: (4:3.16)
0 0

Next, we compute the H'-norm using the temperature equation and the vorticity

equation associated with the velocity equation in (4.3.1),

(‘3tw +u- Vw = l/auw + 810,
(4.3.17)

8t0 +u- Vo + Uo = 778229,
where w :=V X u.

Taking the inner product of (w, V@) with the equations of w and V6, we obtain

1d
5 77 (122 + VOI[Z2) + 1182V 72 + V][Ol
:—/V@-Vu-vedm+/(310~w—Vu2~V9)dx
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Due to the divergence free condition of u, namely V - u = 0, there exists a stream

function 9 so that u = V4t = (=01, 919)) and Ay = w. Hence

L= /(810 W= Vuy - VO)dz — /(alemp Vo - Vo) dz
_ / (—9A8 + Adh)da

= 0. (4.3.19)
We further split I; into four integrals as follows

II::—/V9~Vu-V9dx
= —/81u1(@10)2dx—/61u2819829d:6—/82u1819020dx—/82u2(32«9)2d:1:

= Iy + Lo + L1z + L1y (4.3.20)

The terms on the right-hand side of (4.3.20) can be bounded as follows. The key
point here is to obtain upper bounds that are time integrable.
Using respectively, V -u = 0, integration by parts, the fact that us = 0, Lemma 4.3.4

and Young’s inequaliy

Ill L= /61U1(616)2d£[
= —2/u281981829d3:
= —2/@610816296&7

1 1 1 1

< cllug||;2||01uz]| 7 [|010]] ;21| 02010]| ;2 || 01020 || 1.2
3 1
< cllull 21020 211010 7

< cllullz (19:0113 + 12101132 ). (43.21)
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Due to the fact that us = 0, Lemma 4.3.4 and Cauchy’s inequality,

[12 L= —/81U2819829d13
= —/81@819829dx

1 1 1 1
< cl|Orul| 7z (| 0101w |2 (| 0201 72102050 721|010 2
< cl|Orull2||020]] 12|01 12

< el e (10rullfs + 12261 ). (43.22

To bound I3, we first invoke the decompositions u = @ + @ and 6 = 6 + 6 to write it

into four integrals

I3 : = —/82u1819829dx
= - / Oa70100,0dx — / 111 0100,0da
- / Oa70100,0dx — / 111 0100,0d
= I131 + L1390 + 133 + L134. (4.3.23)

Due to Lemma 4.3.1,

1131 = —/Bgu_l(?la@ggdx :/8217182@/8156&16&2 :/(%u_lﬁggalgdxg =0.
Q R T R
(4.3.24)

According to Lemma 4.3.4 and Young’s inequaliy

1132 == / 0227181582561&5
Q

_ .1 o x ~ 1 ~ 1
< ¢)|020]| 2| Opuin || 72| 0102t || 21| 010 7 2 || 02010 £ »
1 1 1 1
< )| 020|| 2| ]| 2 |01 | 712 1101 Fr2 | 020 | 2
3 1 1 1
< c)|0a0]| 72l Ovuel| 7y |l 72 1101 77

< cllull i 101 (10:013 + Ovul% ). (43.25)
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Similarly,
]133 == —/82271815825dx
Q

~ 1 ~ 1 ~ 1 ~ 1
< || Osur |2 (|010]| £21102010] 72 (| 02011 [|01020] | 7 »
1 3
< cf|ul[2[[010] 721|020 72

< cllullz (1930132 + 1220132 ). (4.3.26)
I134 can be similarly bounded as I;33. In fact
[134 = —/ 02171815825(196
Q

< c|010]1 2102010 2,100 2, (| 0100 | 2, || Do || .2
< cl|ull 121|161 2.118201|2,»

< cllullue (101613 + 19261132 ). (4.3.27)
Inserting (4.3.24), (4.3.25), (4.3.26) and (4.3.27) in (4.3.23), we get
Ig < cll(u, 0) 1 (101013 + 110263z + |Orull3ye ). (4.3.28)

Using respectively, the divergence free condition of u, Lemma 4.3.1, Lemma 4.3.4 and

Cauchy’s inequality yield
Iy = —/(‘32u2(829)2dx
_ / Oy (Do) 2
< cl|vi 221010, | 2110261 22110202612 1926 2

< |0 g2 |0vul| 2 || 020 | 12

< cllfll= (J1nullfe + 12201132 ). (4.3.20)

Collecting the bounds obtained in (4.3.21), (4.3.22), (4.3.28), (4.3.29) and inserting

them in (4.3.20) we get

I < ell(w, )l (101013 + 10013 + ovul3e ). (13.30)
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It follows from (4.3.30), (4.3.19) and (4.3.18),
ld 2 2 2 2

5 73 UIVullze + IVOl[Zz2) + nll02VOl72 + v owll7,
< cll(w.0) e (190603 + 10603 + [9rulye).  (43:31)

Integrating (4.3.31) over [0, t] yields,

t t
||Vu||i2+||ve||i2+2n/ ||agv9||§2d7+2y/ |Ovw|[Zadr
0 0

ol

< Vol + | V0|22 + ¢ By (1) + ¢ Es(t)?. (4.3.32)

Applying V to the first equation of (4.3.17) and dotting with Vw and applying A to

the second equation of (4.3.17) and dotting with Af, we obtain
1d 2 2 2 2
5 77 IVWllze + [A0]72) +0[0:VO|[72 + ][0 Vwl|7,
= —/Vw-Vu-deac—/AQ-A(U-V@)dm+/(V@10~Vw—Au2-A@)dm

Since V - u = 0, there exists a stream function v such that we can write v = V¢ =

(=091, 017) and Ay = w. Hence,
J3 1= /(V@ﬂ - Vw — AugAf) dx = /(V&H -Vw — A0y AG) dx

= /(V@lé) -Vw — 0w Af) dx = /(V@ﬁ -Vw+ 0Vw - V) dx

= /81(V0 -Vw)dz = 0. (4.3.34)
Integrating by parts, one can write J, as follows

Jy = —/AH -Au - VO)dx
= — /AQAuﬁl@dx — /AQAUQGQde
—2 / AOVu; - 0, VOdr — 2 / AOVuy - ,VOdx

= ng + :]22 + J23 + J24. (4335)
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To deal with Jy, we invoke the decompositions u = @ + @ and § = 6 + 0 to write it

into four terms,
Jop 1= — / AOAu,0,0dx = — / AAu,0,0dz
=— / Auo0AGdx — / A0 0AOd — / At 0AGdx — / A0 0AOdz
= Jo11 + Jor2 + Jo1s + Jo1a. (4.3.36)
According to Lemma 4.3.1,

J211 = —/Au_lalgAgdx :/Au_lAg/(?lgdxlde :/Au_lAgﬁlgdxg =0.
R T R

(4.3.37)
Further, we write Jo15 explicitly as follows,
Jo1g 1= — / NN L
= —/anu_lalgAgd:c— /822111_18158115611)— /822171815822561%
= Ja191 + Ja122 + Jo123. (4.3.38)
Due to Lemma 4.3.1,
J2121 = —/811271815A5dx = 0 (4339)
I

Integrating by parts and using Lemma 4.3.1 yield

- - 1 ~ 1 ~
J2122 = —/822u_1816’8110dx = —= /8227161(810)2d1‘ = —/822 81U_1(810)2d1‘ =0.
2 2 ~—~

=0

(4.3.40)
It follows from Lemma 4.3.4 and Young’s inequality,
Jorg 1= — / Ooa 117000090
< 982, 1910020112 1048129046112, | Doy | .2
< clull w1100 10,61 .
< cllullzz (19201132 + 12101132 ). (4.3.41)
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Combining the bounds in (4.3.39), (4.3.40), (4.3.41) and inserting them in (4.3.38)

yield
Jara < cllullz (102013 + 19:6]13:). (4.3.42)
By Lemma 4.3.1, Lemma 4.3.4 and Cauchy’s inequality,
Jorz 1= — / At,0,0A0dx
= / A,0,00550dx
< | AN || 2 |01 A | 221020581 2 [ 020208 101 12
< cllullZ 1013210l 31001 1046 o2
< clul 3100 s (101012 + 1910l + 193613 ). (43.43)
Applying Lemma 4.3.4 and Cauchy’s inequality, we have
Jorg 1= — / At 0,0M0dx
8 N A RN A G AT AT P
< cllullZal10rul 22 101132118261 32 19,6 2
< clfull 3. 0] 32 19:ul 3211901 21016 .2
< cllull 015 (1000132 + 102013 + [Orul3z). (43.44)
Collecting (4.3.37), (4.3.42), (4.3.43), (4.3.44) and inserting them in (4.3.36) we get

Jar < ell(w,0) 2 (10101122 + 19201132 + Drul ). (4.3.45)

Using the orthogonal decomposition of u and € we can split Jos into four integrals as

follows
J22 = —/AQAUQaQQdI
— / AOAT00dx — / AGAG0x0ds — / AOATZ0,0dx — / AGAG0,0dx

1= Jag1 + Jaza + Jazz + Jaoa. (4.3.46)
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We start with Jyo1. By the divergence free condition of u, Lemma 4.3.1 and Lemma 4.3 .4,

J221 = —/A@Au_gazedx

= —/822962217282961:6
=0
Similarly,

According to Lemma 4.3.1, Lemma 4.3.4 and Young’s inequality

J222 = —/A@A@@ﬁdm
== —/82@25A’L,[2629d1‘

1 1 _1 _1

< c||Aua |72 || 01 Atz]| 72[]02020]| 7 2[] 0202000 ; 2 || 020 L2
1 1 1 3

< cllull F2 101172 |0l 72 1| 20| 77

1 1
< cllull 01 (100l + 122011 ). (4.3.49)
By Lemma 4.3.4 and Young’s inequality,

Joos 1= — / AOAGD,0dx

1 .1 ~ 1 ~ 1

< cf| Auz|| g2 |00 Az 12 | AG| 221102 A 2| 926 2
1 1 1 3

< cllull =101 7= Nl Ovull 2 1| 0201 772

< cllul 161 (Novulle + 19:61132). (4.3.50)

Combining (4.3.47), (4.3.48), (4.3.49), (4.3.50) and inserting them in (4.3.46) we

obtain,

1 1
Joz < cllull 007 (10l + 1102603z ) (4.3.51)
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To bound Jy3, we start by writing it into a summation of four integrals,

Joz 1= —2/A6Vu1 -0, Vldx
=2 / A0O 1y 0,0, 0dx — 2 / A0Osu10,050d
=2 / A0 u10,0,0dx — 2 / NGO, u10,0,0dx
—2 / N / NS

1= Jag1 + Jazz + Jaszz + Joza (4.3.52)
Using Lemma 4.3.1, we can write Jy3; as,

J231 = —2/A581U181819d,f
= —2/81(91581?]181615(&%—2/828258112/18181§d17

= Joz11 + Jozio. (4.3.53)

Due to the divergence free condition of u, integration by parts, Lemma 4.3.4 and

Young’s inequality,

J2311 = —2/81?21(81815)2d$
:2/82’172(81815)2d$
=4 / 301010050, 0, 0dx

1 1 ~ 1 1 -
< clluz||;2|01uz]| ;2 [|01010||; 2 || 0201 010]| 2| 0201010 | L
1 1 1 3
< cllull 72110l 72 [|01ull 712 [| 020
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By Lemma 4.3.4 and Young’s inequality,
Jogig 1= —2 / 020500, 10;0,0, 0z
R A AR AR A AR P
< cllull i 605 (10l + 125612 ). (43.55)
Collecting (4.3.54) and (4.3.55) and inserting them into (4.3.53), we get
Jasy < cllulz 00 (10l + 102613 ). (4.3.56)
To bound Js35, we use Lemma 4.3.1, Lemma 4.3.4 and Young’s inequality,
Jozg 1= —Z/Agﬁlulﬁlaﬁdw
=2 / 020,00, 11,0,0, 0z

< cl|0hin || 2, 1010101 | 22| 91010]| 221|920, 010 2, | 92050 1.2

1 1
< cllull i N0l (10l + 10:01132). (43.57)

To deal with Jy33, we invoke the decompositions ©w =7 +u and 6 = 6 + 0 to write it

into three terms,
Jozg 1= —2 / AOOyuy 0,050
=2 / 0Dy 0, 050dx — 2 / NGOy 0, 0,0dx
— -2 / AOBy ;01 0y0dx — 2 / 10,00,170,D50d — 2 / B20,00,T1 01 D5 0d:
= Jog31 + Jozz2 + J233s. (4.3.58)
According to Lemma 4.3.4 and Young’s inequality,
Josap 1= —2 / NGOy ;01 0,0dx:

1 1 ~ 1 ~
< || 0ot ||} 210102t || 72 [| AO| 2 || 02 AD]| 2 || 01020 L2
1 1 1 3
< cllull 721011 72101l 721|020 712

< el O (10l + 1201152, (43.59)

117



Using respectively integration by parts, Lemma 4.3.1, Holder’s inequality, Lemma 4.3.2

and Cauchy’s inequality, we have

J2332 = —2/8181582m8162§d$

=2 / 0160 010517 O, Do0d + 2 / 010(0511010,0,0) da
—

== 2/815(62718181825)d$

:2/82u_1</01§(8181825)dx1>dx2
R T

<2 | om0z, 1010040 3,
R

< 2||32U_1||L;°2||31§||L2 L2 ||8131325HL3%2L,261

T2y

< c[|8ywr || g1 [|016]) 12|01 01020 1.2

< cllullz (19161132 + 1220132 ). (4.3.60)
Due to Lemma 4.3.4,
J2333 = —2/8282582m6162§d1‘

~ 1 ~ 1 ~ 1 ~ 1
< ¢||010:0]|72 1010100 71| 02020| 71| 0202020 || ; 2 || Doy || 2

< cflull 210207 (4.3.61)
Combining (4.3.59), (4.3.60), (4.3.61) and inserting them in (4.3.58) we get

Joss < (. 0) = (| nul i + 2201 + 1101015 )- (43.62)
From Lemma 4.3.1 and Lemma 4.3.4,

J234 = —Q/Agagulal(%@dx
= —2/8282582U181825d1’

< [|91050]|2,1|0101050| 2, | 0200 |2, 1| 020500 | 2, || Oyun | 2

< cllu| 2| 020) % (4.3.63)
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Collecting the estimates (4.3.56), (4.3.57), (4.3.62) and (4.3.63) and inserting them

in (4.3.52) we obtain,
Jas < el (w,0) 12 (vl + 101013 + 11026]3 ). (4.3.64)

Invoking the decomposition v =% + @ and = 6 + 0 and applying Lemma 4.3.1, we

can write Joy as,

Jog = —2 / AOVusy - 0,V 0dx
~ 9 / (011300206 + DyusDrs0A0) da
=2 / O11201 0,00 — 2 / Dat202020 A0
=2 / Otz 01 D00z — 2 / Oa3020:0A0dx — 2 / Otz 0200 AOda

= J241 + J242 + J243. (4365)
We start with Jy41. By Lemma 4.3.4 and Young’s inequality we have

Joup 1= —2 / Oy 1120, 0,0 A0dx:

1 1 1 1 -
< cf|Oruz| 71|01 01uz || 12 || A0 72 || 02 A0]| 72| 02020 2
1 1 1 3
< c||u||12{2||9||}{2||81u||§12||820||12{2

1 1
< cllul 161 3 (vl + 12:61132). (4.3.66)
Next, using the divergence free condition of u and Lemma 4.3.1,

J242 = —2/8217282829A9da:
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According to Lemma 4.3.4 and Young’s inequality,

J244 = —2/82’[[28282(9A9d$

1 1 1 1

< c||Oatia ||} 21|01 02tz 72 [| AO| 2|02 AD]| 2 || 02020 2
1 1 1 3

< cllull 720172 (101wl 721|020 712

< cllul i 01 (19l + 12:613:). (4.3.68)
Collecting (4.3.66), (4.3.67), and (4.3.68) and inserting them in (4.3.65), we obtain
Jaa < cllull 01 s (I9ruli + 11220152 ) (13.69)
Thus, by (4.3.45), (4.3.51), (4.3.64), (4.3.69), and (4.3.35),
Jo < e 0) = (9wl + 946132 + 11021 ). (48.70)
It remains to bound J;. To do so, we split it into four integrals

Ji ::—/Vw-Vu-dex
= —/alul(é?lw)z dx — /81’&26100620) dx — /agulalwﬁgw dx — /02u2(02w)2 dx

= Ju + Jio + Jiz + Jua. (4.3.71)

Due to Lemma 4.3.1 and Lemma 4.3.4,

J11 = —/81u1(81w)2 dx
== —/811}/1(81@)(81&) dz
< c||0vin ]| 10101 ]| 2|01 |72 1020161 72 [| 01 2

< cllullz2]|Orul3- (4.3.72)
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According to Lemma 4.3.1 and Lemma 4.3.4,

J12 = —/81'&281&]82&) dx
= —/8117281(7)82&} dx
< cl|Ortia]| 22110101102 £ | 10| 12 [| 02016 2| Do | 2

< c|lul| g2 ||01ul|3 . (4.3.73)

Making use of the orthogonal decomposition of u; and w and Lemma 4.3.1, we can

write Ji3 as
Jiz = —/82u181w82w dx
= —/agulal(fj@gwda:
= —/8217181[&02@(& — /8227181(562&7 dr — /ﬁgﬁlal&ﬁagw dx
= Jis1 + Jis2 + Jiss. (4.3.74)
According to Lemma 4.3.1, it is easy to see that
Jig1 = —/agu_lalcf)@gwdx =0. (4.3.75)
To bound Ji39 we use Lemma 4.3.4

J132 = —/827181@82@ dx

1 1 1 1

< || Oau | 12| 0o || 72 (010201 22 |10 | 22 | 02010 | 7 2
3 1

< cllul[ g2 [|01020]| £2 || 01017 5

< c|lul| g2 ||01u3 . (4.3.76)
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Similarly,

J133 = —/82’{[161@82&) dx

1 U 1

< c||Oaw|| 2 || 0ot ||} 2 || 01 02t || £ 2 [| 010 | 7 2 [| 02010 7 2
1 !
< (|| Vwl|2[|010zur || 22 [ 010] | 2 |0201 0] 2

< cflull2|OvullF (4.3.77)
Thus, by (4.3.75), (4.3.76), (4.3.77), and (4.3.74),
Tz < cflullg2|Ovul|Fpe. (4.3.78)
Due to V - u = 0, Lemma 4.3.1, and the inequality (4.3.11)

Jig = — /8QUQ(82w)2 dx
_ / 01 (05 + D)2 da
9 / T 0505 dr + 2 / 4T (052
P (= PR CX PAT LR A AN A P 1
< cllull 2| Ovulle. (4.3.79)

Collecting the results obtained in (4.3.72), (4.3.73), (4.3.78), (4.3.79) and inserting

them in (4.3.71) we obtain
Jy < cljull g2||01ul| 3 - (4.3.80)

Combining the upper bounds in (4.3.70), (4.3.80) and inserting them in (4.3.33), we

get

1d
57 IVellzz + 1A01722) + 0|02V 0] 72 + v]| 01 Vel 22

< el )12 (I Dralye + 10101132 + 10201132 (13.81)
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Integrating (4.3.81) over [0,t], we get
t ¢
IVlis + 18013 + 2 [ 1096l dr -+ 20 [ o1Vl dr
0 0

t
< [ 00w (10181 + 106615 + vl ) dr + | Auolzs + 1G]
0

N|w

< || Aug|%s + | Ab|1%2 + ¢ Er(£)2 + ¢ Ex(t)2. (4.3.82)
It follows from (4.3.16), (4.3.32) and (4.3.82)

t t
Eu(t) : = max (Ju() |32 + [6(r)[2) + 20 / |0vuladr + 21 / 10,612 podr
0

0<7<t

e

< E1(0) + ¢35 By (1) + ¢4 Es(t)?, (4.3.83)

for some constants c3, ¢y > 0.
In the final step, we bound the extra term Fs(t) := fot 10103 .d7 of the energy E(t)
defined in (4.3.12). To do so, we use the equations of the vorticity w := V x u and

the temperature 0,

Ow +u - Vw = vojw + 040,
(4.3.84)

@9 +u- Vo + Uo = 7]8229.

Dotting the first equation of (4.3.84) by 016 and then integrating in space, we get
10:0]32 = /810(8tw —vonw+ u - Vw)dx

= %/819wdx — /w@lﬁtﬁdx— V/819811wdx+/819(u-Vw)dx

=A+B+C+D.

Due to Holder inequality and Cauchy’s inequality, we have

t td
/AdT :—/ —/316wdxd7'
0 o dt
= </819(t>&)(t)d$‘—/6190W0d$>

< 1010 z2[|w]| 2 + [|0160]| 2 [|wol| 22

1 1
< 5 (11012 + Nl ) + 5 (160l + luollye ). (4.3.85)
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Integrating by parts and using the second equation in (4.3.84), we can decompose the

integral B as follows,
B .= —/w@lathac = /(91w 0.0 dx
:i/@w@@ﬁ—ﬂ.va—mym
=n / 01w 0r050dx — /81w usdr — /81w u-Vodx
= By + By + Bs. (4.3.86)
By Holder’s inequality and the Cauchy’s inequality with epsilon,
B, = U/alw 0a050dx < nl|Ohw| 12]|02050] 2 < [|Oyul|Fe + %2“329”?{% (4.3.87)

Integrating by parts and making use of Lemma 4.3.1, Lemma 4.3.5 and Holder’s

By = —/8lwu2dx = —/8lc~uu2dx = /@8lu2dx

< @[l z2 100wz 2 < [|01@] 22 |01ua || 2 < [|81ul|Fe- (4.3.88)

inequality

Further, by Lemma 4.3.1 one can decompose B3 as follows,
By = — /alwu - VOdx
:—/b@ma%x—/a@w@wx
:= Bs3; + Basg. (4.3.89)
Due to Lemma 4.3.4 and Cauchy’s inequality,
B3 = —/a@ulaﬁdx

1 U S 1
< c||01@ ||} 21101010 7211010]| ;2| 0201 0| 2 || ua || 2
1 1 1 1
< c|lull g2 ||0vul| f2l|Ovull 712 101017 2 || 0201 71
1 1
< c|lull g2 ||01ul 221|010} 2 | 020 72

< clullg (I9rullds + 10:6)3 + 22612 (43.90)
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Similarly,
ng = —\/81(:)1@8266&1'

1 1 1 1
< || 01@||;2 (1010180 72110201 ;2| 02020 7 2 ||| 22
< c|lul| g2 |0vu|| 52| 020]| 2

< cllullzz (l0vulle + 19261132 (4.3.91)
In view of (4.3.90), (4.3.91) and (4.3.89) we have
By < ¢f|ul| 2 (Halunzg +[18:6] 22 + ||820H§{2>. (4.3.92)
Combining (4.3.87), (4.3.88), (4.3.92) and inserting them in (4.3.86) yield
2
B < 2l|0vull}e + T10:0 1% + cllulle (101ulhe + 10:01%: + 12:6]3: ).
Hence,
t t 772 t
| Bar <2 [ owliudr + % [ jousladr
0 0 0
t
+c/ ol (vl + 110581 + 101613 ) (4.3.93)
0
To bound the integral C', we use both Holder’s inequality and Young’s inequality
1
C .= —y/(?l@anwdx S VH816HL2H811U)HL2 S ZH&H”%Q -+ V2H81UH§{2.
Hence,
t 1 t t
Due to Lemma 4.3.1, D can be written as,
D = /81«9(u -Vw)dx
= /81§(u - Vw)dz
= /815’1]48181”&261%— /8151110132?11(11:+/315u28281u2dx—/31§u28232u1dx
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The integrals Dy up to D3 can be bounded as follows by using Lemma 4.3.1, Lemma

4.3.4 and Cauchy’s inequality,

D1 12/815U18181UQ6L’I)
— / 810,018,y

1 1 ~ 1 ~ 1
< ¢||010112]| £ [|0101 01z | 12 (| 010} 2 (| 0201 0| 7 2 || || 2
1 1
< c|lull g2 ||0vul| g2]]010]] ;2 | 020 712

< clull g2 (IIC%UH%Q +10:0]17> + ||(929||?{2), (4.3.96)

Dg = —/algulalaguldx
= —/algul(?l@gﬁld:}c

1 1 ~ 1 ~ 1
< ¢||010x1]| 7 [|0101 02t || 12| 010||7 2[| 02010| 7 2 || n || 2
1 1
< c|lull g2 ||0vul g2]|010]] ;2 | 020 72

< clull g2 <||5‘1UII?{2 +10:0]17> + ||829||%,2>, (4.3.97)

D5 = /81§u28281u2dx
= / 0102050, lindx
< ]| 0012121020101 ]| 2119101121020 6 2. o] 2
< cllulle |yull 1026 25 102011

< cllulluz (101ull3e + 101613 + 18261132 ). (4.3.98)

Using the fact that w; = 0, the inequality (4.3.11) and Cauchy’s inequality, D4 can
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be bounded by
D4 = —/81§u28282u1dx
= —/815@8282101(11:

~ 1 ~ 1
< c||Ovua||L2(|010]| 7 21|02010]| ;2 [| 0200w || L2
1 1
< c|lull g2 [|01ul 21| 010]] ;2 | 020 7,2

< cllullz (101ull3e + 101013 + 18:61132 ). (4.3.99)

In view of (4.3.95), collecting the bounds in (4.3.96), (4.3.97), (4.3.98) and (4.3.99)

we get
D < cllull (10vulle + 19381132 + 12:61132). (4.3.100)
Hence,
t t
/ Ddr < c/ ol (00l + 1016013 + 261 ) (4.3.101)
0 0

Therefore, combining the estimates (4.3.85), (4.3.93), (4.3.94) and (4.3.101), we ob-

tain
t
Eg(t) :/ ||819||%2d7’
0
<l 0 2 2 1 4 2 2
< S (1007 + lullizz ) + 5 [100ll7z2 + [luoll7
t 772 t
0 4 0
1 t t
43 [ 106ldr +7 [ owuliadr
4 0 0

t
s [ lullms (100l + 04612 + 102813 )ar
0

1 t
< / 1010||22d7 + cE1(0) + cEy(t) + cEy(t)2 + cEs(t)?. (4.3.102)
0
It results from (4.3.102),
Eg(t) S C5E1(O) + cg E1 (t) + cr El (t)% + cg Eg(t)%7 (43103)
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where c; through cg are all positive constants.

Adding (4.3.83) with 1/(2cs) of (4.3.103) yields,
E(t) := E\(t) + Es(t) < 1 E(0) + o E(¢)2. (4.3.104)

where ¢ and ¢, are positive constants. Finally, applying the bootstrapping argument
to the inequality (4.3.104) leads to the desired stability result. Indeed, if the initial

data (ug,8p) is sufficiently small,

1
4y/ciey’

[(uo, Oo)[| 2 < €=
then (4.3.104) allows us to show that

[(u(t),0(6))[[ 2 < V21 €.

In the rest of the proof, we show the uniqueness part of Theorem 4.3.6. We show
that two solutions (u, p™® M) and (u®, p®, #?)) of (4.3.1) with one of them in the
H?%-regularity class say (u"),0(M)) € L>(0,T, H*(Q)) must coincide. Their difference
(u*, p*, 0*) with u* = M —u® p* = p® —p@ g+ = 9() — 92 satisfies according to
(4.3.1)

(

o 4+ u® - Vur +u* - VulY) + Vp* = v dju* + 0*e,,
0,0* +u® - VO* +u* - VOO - ul = n0yb?*,

(4.3.105)
V.-u* =0,

u*(z,0) =0, 6*(z,0)=0.

\

We estimate the difference (u*,p*,0*) in L*(2). Dotting (4.3.105) by (u*,6*) and

applying the divergence free condition of u*, we get

1d

5 71 02 + vl|0rw” (72 + 9267

:—/u*~Vu(1)'u*dx—/u*-VH(l)'G*dx
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Due to Lemma 4.3.3, Cauchy’s inequality, Cauchy’s inequality with epsilon and the

uniformly global bound for ||u||g,

I, = —/u* - Vul) -yt dr

1 3 1 1
< cllu 13 (llu* ez + 101" l122)* IV 2210906 | 7 ] 2
Vv

<c

< elluflzz (Jlu* o2 + 0llz2 ) + a3
v
< c|lu*||3: + 5||@1u*||2L2. (4.3.107)
By Lemma 4.3.3, Cauchy’s inequality, Cauchy’s inequality with epsilon and the uni-
formly bound for ||§™)|| 52,
I = —/u*-Vé’(l)-Q*dx

(1)) (1) (1) 2wk 3 |[,*
<cl|Vo Hiz(HW 22 + (|01 V0 Hm) 107721102071 72| ]| 2

-~

<c

1 1
< cll0" 17 110a6" 12" 2
< cllullz2 (116" 112 + 11026152

< el [+ cll0°[132 + 5 020" . (43.108)

Now, inserting the estimates (4.3.107) and (4.3.108) in (4.3.106) we get

1d
2 dt
< * |2 9*2 Za * |12 ﬂ|89*||2
< c(llu e+ 167132) + 5 10v 122 + Z1joa” 2

1", 022 + vllovu™ (22 + nll90:071 22

Hence,

d * * * * * *
1022 + vl 0vwllz + nll 0267172 < ell(w”, 7)1 7. (4.3.109)

Gronwall’s inequality applied to (4.3.109) implies that |Ju*||2, = ||#*||?, = 0. This

completes the proof of Theorem 4.3.6. [ |
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4.3.3 Decay Rates Result

The next theorem rigorously establishes what we have observed in numerical simu-
lations of buoyancy-driven stratified fluids (see, e.g., [24]). Perturbations governed
by the Boussinesq systems near the hydrostatic equilibrium are observed to stratify
and eventually approach their horizontal averages while the oscillation parts of both
u and 6 are observed to decay to zero. The following theorem verifies that indeed the

oscillation part (u,6) corresponding to the solution of the system (4.3.1) decays to

zero at algebraic rates.

Theorem 4.3.7 Let ug, 0y € H*(Q) with V - uyg = 0. Assume that (ug,0y) satisfies
[uoll 2 + 160l 1r2 < e,

for sufficiently small € > 0. Let (u,0) be the corresponding solution of (4.3.1). Then

the oscillation part (u,0) satisfies the following algebraic decay in time,

2]l + 116]] 12 < (1 +1)72, (4.3.110)

for some constant ¢ > 0 and for all t > 0. In addition, (u,0) has the asymptotic

behavior, as t — o0,

t (@17 + 100 I52) — 0.

As a consequence of Theorem 4.3.7, the solution (u,f) of (4.3.1) approaches the
horizontal average (1, §) asymptotically, and the 2D Boussinesq system (4.3.1) evolves

to the following 1D system

(

- 0 0
8tE+UVﬁ+ - y

0op 0

A\

00 +u - VO = 1o2a.
\
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Proof. We start the proof of Theorem 4.3.7 by writing the system governing the

horizontal average (7, ), namely,

;

- 0 0
ou—+u-Vu+ = ,
0o 9 (4.3.111)

8,0 +u - VO = o20.
\

Taking the difference of (4.3.1) and (4.3.111), we get

B+ - Vi + 0T — v + Vi = e,
(4.3.112)

00 + u - VO + 13050 — 1020 + T = 0.

Dotting the system (4.3.112) by (u, 0) yields,

1dy/, - ~ ~ ~
S (11l + 1812 ) + vlol: +nll.6]3
= mﬂdx—/@aza-adx—/u.v’é-’édx—/@aQE-é“d:c

Using the divergence-free condition of v and Lemma 4.3.1,

Ay ::—/u'Vﬂ-ﬁd:c:—/wV%ﬂdx—l—/u'Vﬂ-ﬂd:czo. (4.3.114)

/

g g

=0 =0

Similarly,

Ay = /u .V - 0dz = 0. (4.3.115)
By Lemma 4.3.4, the divergence free condition of u, Lemma 4.3.1, and Lemma 4.3.5,
A2 = —/17282ﬂ - udx
B 1 11 1
< cl|Oyul| g2 [|ua | 72| O2uz | Fo [l 7ol 1 ull 72

R | U R
< ¢\ 0zl 2 || Ovul| L2 | Ovall 2 | Oval| 22| Oval | £

< c|lul| g2 ||01]|3 2. (4.3.116)
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Then, we estimate A, using Holder’s inequality, Lemma 4.3.2, Lemma 4.3.5 and
Cauchy’s inequality
Ay = —/@829-5(11«
< |00 25 12| 22161 .2
< cl|0s0]| 1|01 21| .2
< cl|6]] 2| 0r ]| 116 2

< cy|ey|H2(||ala||§,1 + ||(7||22). (4.3.117)

Collecting the estimates (4.3.114), (4.3.115), (4.3.116), (4.3.117) and (4.3.113) we get,

| =

(132 + 18132 ) + vloniliZ: + nll o013

N | —
QL

t
< o, O)ll= (101 + 113:). (43.118)

Further, applying V to (4.3.112) yields,

OV + V(- Vi) + V(G051) — vV + VVp = V(Bey),
(4.3.119)

VO + V(- V) + V(120,0) — nd2VE + Viiy = 0.

Taking the L*inner product of (4.3.119) with (Vu, V6) we obtain

1d

5= (IVEWIIE= + VO ) + VoVl + 0.V

=— [ V(u-Va) - Vudx — /V(ﬁg@gﬂ) - Vudz

- / V(u-V0) - Vodz — / V (20,0) - VOdx
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According to Lemma 4.3.1, we write B explicitly into the following four integrals,

By :=— [ V(u-Vu) - Vudz

——/V(u-Vﬂ)-Vﬂd:c+/V(u-Vﬂ)-Vﬂda:

J/

-~

=0

== —/alulc‘?lﬁ@lﬂdx—/61u282681ﬂd:17—/82u181ﬂ826dx—/62u2826626d:17

= BH + 312 + Blg + Bl4. (43121)
We start with By;. Due to Lemma 4.3.1 and the inequality (4.3.11),

Bll = —/(%ul('?lﬂalﬂda: = —/31{[18156?1%@

1 S S
< c||010vu|| 2| Ovur || 71| O201un || 2 || 01| 2

< cllul|g=]|0v||3 - (4.3.122)
Similarly,

Blg = —/81u2826816dx == —/01[[2826816&70

1 ! _
< || 01011z ]| 2 (|02 71| 02021 | £ || Or ]| 12

< c|lul| g2 |01 31 . (4.3.123)
Using the inequality (4.3.11),

BlB = —/82u1616826dx

1 PR
< ¢||0102u| 2| O2ur || 7 21| 202w || 2 || Or ]| 2

< cllul| g2 ]|Ov|3 - (4.3.124)

According to the divergence-free condition of u, Lemma 4.3.1 and the inequality
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(4.3.11),
Bl4 = —/82u282632ﬂdx = /31u162ﬂ82ﬂdx
= /811%82&02&(11’

1 1 _
< c[|010aul| r2[|Oau| 72 (| 200wl [|Ovun || 2

< clull il (4.3.125)

In view (4.3.121), collecting the estimates (4.3.122), (4.3.123), (4.3.124) and (4.3.125)

we get,
By < c|jul|g2||0va)| 3 - (4.3.126)
Now, we write By explicitly,

By = —/V(@@gﬂ) - Vudz
=— / O1u20,ud udx — / Oatinai0sud
— / Ue01 U udr — / Up 0505 uDsudx
:= By + Bay + Bag + Bay. (4.3.127)

We start with Bs;. By the inequality (4.3.11) and Lemma 4.3.1,

Bgl = —/8127282%61176&5

1 1 _
< c||0101u|| 2]|02T|| 7 2 || 020210 || 7 || O iz | 12

< clfull e |1l (4.3.128)

For Bag, we use the divergence-free condition of u, the inequality (4.3.11) and Lemma
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4.3.1,

Bgz = —/8217262%8227(11‘
:/8112'182ﬂ8217dx

1 1 _
< c||0101ur | 2[|021|| 7 21| 02021 | £ || O] 12

< clull g2 ]| 0nal 7. (4.3.129)
Due to the definition of w,
ng = —/1728182E316dx = 0. (43130)

To estimate Bgy, we make use of the inequality (4.3.11) and the divergence- free

condition of u

BQ4 = —/1728282682&11'

1 1 B
< ¢||010xu| 2| Oz || 72| O2ti]| 72 || 2027 | L2

< c|lul| g2 |01 . (4.3.131)
Combining (4.3.128), (4.3.129), (4.3.130), (4.3.131) and (4.3.127) we obtain,
By < c|jul| g2|| 01| % - (4.3.132)

Further, by the definition of @, we can split Bs into four integrals,

By = —/V(u-vé')-védx

:—/V(u-vé)-védx+/wu-v§)-vé“dx

J/

-~

=0

= — / 010011 0,0dx — / 02001050, 0dx
—/81582U182§dl’—/82582172825dl’

= BSl + BgQ + ng + Bg4. (43133)
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Using the divergence-free condition of u, integration by parts, the inequality (4.3.11)
and Young’s inequality, we bound Bj; as follows,

By = — / 010041, 0,0dx = / Oatin(010)%dx = —2 / 112020100, 0da
< cl|020,8] 201 sl 12110461 2 920,61 .
< cl|0wB 111047 B [l 21101 5o
< cllull3. 101 &= (10130 + 10281 ). (43.134)
To deal with Bss, we use Lemma 4.3.4 and Cauchy’s inequality,
Biy = — / 020011201 O

1 I S| 1~
< c|Ovua|| 72| 0101ua |12 || 020 7 21| 02020 || 7 2| 010 2
< ||0]| r2]| On || 112 [| D] 1

< ol (vl + 122011 ). (43.135)
For Bss, we invoke the decomposition u; = @y 4+ w7 to write it into two integrals
Bss = —/(915821@1025@:
= / 0,001 0,0d — / 00051050
:= Bss1 + Baso. (4.3.136)

By integration by parts, Holder’s inequality, Lemma 4.3.1, Lemma 4.3.4 and Cauchy’s

inequality, we get
B331 = = /815827:[1 82§d$
= /58182??1 825(1.1’ + /582171 3182§dx

< ¢[|320]| 12|01 Dt || 12 ]10]| oo + |0 o | Dot || 12101020 2
< |0 2|01l | 11| 020] 11 + |6 2|01 Dot || 2] 0100 2

< clollms (10r0s + 1132 + 12:013 ). (13.137)
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Due to Lemma 4.3.2, Holder’s inequality and Cauchy’s inequaliy,

2 —— / 0 0ytt7 91020 da = /R Doy /T 0 0,050 dz1dzs
<c [ 10a] [z, 0002012,
< cl|0swlleg 16122, 22, 101021 12, 12,
< cl|0a | 111 [10]] 2191220 -2

< clulls: (16132 + 9.0 ) (4.3.138)

Combining (4.3.137), (4.3.138) and (4.3.136) we obtain,
Baa < cl|(u, )]l = (101132 + 19201 + 95 ). (43.130)
According to the divergence-free condition of u, Lemma 4.3.4 and Cauchy’s inequality,

Bg4 = —/82582{[2825611’ == /825617}71825611‘

1 I S| ~1
< c|[Orun || [|0101ua [| 721|920 721|020 72 [| 026 || 2
< cl|6]]z2 1017 1111020 0

< cllfll= (Jlonll3n + 120113 ). (4.3.140)

Combining the estimates (4.3.134), (4.3.135), (4.3.139), (4.3.140) and inserting them

in (4.3.133) we get
By < el u.0) = (104150 + 106013 + 1113 ). (13141)

It remains to bound B,. By integration by parts, we write B4 into four terms as
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follows,
By = — / V(059 - Vida
= - / 1 (112050 - O0dx — / O (112050) - Ox0dx
= — / 120,00, 0dx: — / 1010500, 0da
- / 30,000z — / Ui3050,00,0x
:= By + By + Bus + Bu. (4.3.142)

We start with By;. To bound By, we use integration by parts, Holder’s inequality,

Lemma 4.3.2 and Cauchy’s inequality
By = — / 020500, O

= / 010z D20 Odx

< |00 o< |01 D ]| 216 -2

< |05 11 (|01 D ]| 216 -2

< |62 1017 1116 2

< el (Noxl + 10132). (4.3.143
Due to the definition of the horizontal average 6,

B42 = - /ﬁg@ﬁg@@lgdzv =0. (43144)

To estimate By, we use the divergence-free condition of u, Lemma 4.3.4 and Cauchy’s

inequality,
B43 = —/8217282582§dx = /81171825825611’

< |0y || 2 (1010101 2211020112, (| 02020 2. [| 020 12
< |0 g2 | 0171]| 11| D0 | 11

< cllfll= (Jlonll3n + 120113 ). (4.3.145)
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For By, we use Lemma 4.3.1, the inequality (4.3.11) and Cauchy’s inequality,
By = — / Ui5050,0050d:x

< | Oniia|| 12 [10:0 22102051 3. 10208 .2
< |01l 2107 111028 1

< ¢||6]| ;2 (||ala||§{1 + ||a25||;{p). (4.3.146)

Combining the estimates (4.3.143), (4.3.144), (4.3.145), (4.3.146) and inserting them
in (4.3.142) we get

Ba < el (u,0) 2 (10013 + 10:013 + 01132 ). (4.3.147)

Collecting the estimates (4.3.126), (4.3.132), (4.3.141), (4.3.147) and inserting them
in (4.3.120) we obtain

1d

S (IVE@ 22 + V8@ ) + vlorvilE. +nll2: V6]

< el 0) 1 (1080 s + 198O + 18]3:). (43.148)

In order to control the norm \|§\|Lz appearing in (4.3.118) and (4.3.148) we need to
add the following term,

_%@(@ﬁ)) — —5(DyiT, 0) — O(az, 0:0).

where ¢ > 0 is a small constant to be fixed in the end of the proof. The inclusion of
this term will generate an extra regularization term to help bound ||d||2. Clearly this
stabilizing term comes from the interaction between u and 0. By Holder’s inequality

and Cauchy’s inequality, one can easily sees that, for sufficiently small § > 0,

(@, 0) |2 — 6(i@a, 0) > 0.

Due to the first equation of (4.3.112) and the fact that wz = 0, we have

—~——

Oyl + u - Viiy + Uadaliz —vO20 + Oy = 0. (4.3.149)
=0
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On the other hand, applying V- to the first equation of (4.3.112), we get
V(0 Vi) + V- (63057) + AP = 950, (4.3.150)

By (4.3.150), we can write

=AW (0 Vi) — ANV - (@3057) + A~Lu0. (4.3.151)
Hence,
Bf = —A IV - (- V) — AV - (G205T) + Drs A1, (4.3.152)

Using (4.3.149) and the second equation of (4.3.112) we get,

5 0) = ~0(00i,B) — 8(i, )

—_——
—~—

= —6(0 — 0oP + 1020y — u - Vi, 0) — 0(ia, — iy + 0020 — WrDs0 — u - V)

e +/62]'55dx —5y/6fﬁg§dx—|—6/u/-\v/u~25dx

e 5n/a§5@dx + 5/@@32% + 5/u - VOiyda
.= Ny + - + Np. (4.3.153)
We start with Ny. By (4.3.152), we have
Ny =46 / Do Odx
- —5/82A‘1V : (m)-édx—(s/a2A—1v - (30970) - Oz
+6 / 020,A™0 - O

= N21 —+ NQQ + N23. (43154)

Using respectively Holder’s inequality, the boundedness of the Riesz transform, Lemma 4.3.4,
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Lemma 4.3.5 and Cauchy’s inequality we get

Ny = —5/82A1V (- V) - 0dx
< B0A7Y - (u - V) 2 ]
< cbllu - V| =]16]] 2
< cdlfu- V] 2| 0]] 2
< &6 |ul| oo | V| 2 |1]] 2
< o6 [ul| 2|0y V]| 2 16]] -2
< clull g2 |01 116 2

< cauuum(ualauip + Hé’u;). (4.3.155)

By Holder’s inequality, the boundedness of the Riesz transform, Lemma 4.3.2 and

Cauchy’s inequality

Nyy = —6 / B ATV - (U0y7) - Adx
< 00|02 - (w2050) | 216 2
< 8|00 2|6 2
< 0 0a| g 12 12 6] 2
< 0|07 |32 | 210 2
< cblul 2| Oria || 2|10 2

< el (N0ril3 + 1)), (4.3.156)
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For N3, we use respectively integration by parts and Plancherel’s theorem
N23 = 5/8282A15 561%

— 5/32A%§. A" 20dx

— 5l10:A715]2.

:52 %@h&)?d&
keZ R K8
k20

<5y [ Glok.&)Pde = sloadle (43.157)
kez

where A = (—A)% and we have used the fact that the oscillation part has the hori-
zontal mode equal to 0, or 6(0, &) = 0.

Combining (4.3.155), (4.3.156), (4.3.157) and (4.3.154) we get
Na < | (u,6) 2 (1OnT 3 + 181172 ) + 62811 (43.158)
Due to Holder’s inequality and Cauchy’s inequality with epsilon,
Ny =~ / il < 5|32 72 < 02|00l + A3 (43,159

To bound Ny, we use respectively, Lemma 4.3.1, Holder’s inequality, Lemma 4.3.3,

Lemma 4.3.5 and Cauchy’s inequality
Ny:=96 / u/%adx

zé/u-V@adx—5/u~V{[2adx

J/

=0
< cdllu- Vil 2 0] 2
< cbull || Vil| 2 1012
< cbull =100V T2 | 2102

< ¢bull =)0 1 6] 2

< callulle (lorial3 + 19113:). (4.3.160)
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By Lemma 4.3.5,
N5 = 6[|ua||72 < c8||Ovizll72 < cdl|onal3.
Due to Holder’s inequality, Lemma 4.3.5 and Cauchy’s inequality,
Ng := —(577/835@6&
< 61030 2 | | 2
< 068026111101 | .2

< ¢8|80]| 11 || 0| 2
< o (10013 + 0nal3 ).
Using Lemma 4.3.4 and Lemma 4.3.5, we get
N7 = 5/%@32§dx
1 1 1
< cd|uz| 71|01z 721|020 ;2| 02020 2 || 2| 2
< c6||0]| 2] Or ] 1

To deal with Ng, we split it first into three terms using Lemma 4.3.1,

—_——

Ng ::5/u-V§{[2dx

zé/u-vgﬁgdl‘—5/u~vg@d$

v~

=0

= / @10,0pdz + 6 / W 0isde + 0 / us 000 dx
:= Ngi + Ngp + Ngs.
By the inequality (4.3.11) and divergence free condition of u, we have
Ng; := 5/01015@72@

1 1 ~
< d||Ovun 2|2l 2 |92zl £21] 010 2

< |01 2| Onil 1
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By integration by parts, Holder’s inequality, Lemma 4.3.2 and Cauchy’s inequality
Ngp =0 / w0, 0isd
=4 / W00, Uzdx
< 5HU_1HL§;§ "561@"L1
< o[l g 16| 21101 2 .2
< collull i 19112 n ]

< collullz (19122 + 101l ). (4.3.166)
Due to the inequality (4.3.11), Lemma 4.3.5 and the divergence-free condition of u
Ngg = 5/U282§7jéd$
=0 / T20s0tizd
_ SRt L~
< c0||Ovual| 2wzl 2|02tz 7211020 2

< c8|ona|F ||6]] = (4.3.167)
In view of (4.3.164), combining (4.3.165), (4.3.166) and (4.3.167) we get
Ny < cdll(u, 0) = (101730 + 161132 ) (4.3.168)

Inserting (4.3.158), (4.3.159), (4.3.160), (4.3.161), (4.3.162), (4.3.163) and (4.3.168)
in (4.3.153) leads to

d _ ~ ~ _ ~
—0= (i3, 0) < =01101132 + e (uw, )]l = (I nitl3 + 1613 )

5 ~ _ -
+ U012 + s (Iniil + 10201 ). (4.3.169)
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Putting (4.3.118), (4.3.148) and (4.3.169) together, we obtain

d N ~ o~ N ~
= (B + 10 — 5(a2,0)) + 20 0rTys -+ 20001
< el (w,0) 2 (T3 + 105013 + 161132
35~ ) .
= S22 + el e, 0) L (0000 + 132
+ ca(ualauip + Haﬁuip). (4.3.170)
Now, by Theorem 4.3.6, if ¢ > 0 is sufficiently small and |lugl|z2 + ||fo]|z2 < €, then
|(w(t),0(t))|| 2 < ce. Hence we get
d N ~ o~ N ~
(B -+ 180 — 5(E2,0)) + 20 lorTlys + 20001
< ce(|0nitl + 10115 + 61132
= 300182 + coe (Nonailz + 18112
1 1012 + coe( [|Ovullz + (16122
+c5<|\a{dH§,l + Haﬁuip). (4.3.171)
Choosing € > 0 such that ce < min(%, %) we get
(Wl + 181 — 8(2.8)) + 2003 + 20110:0
dt H! H! 2; 1U][ g1 MIO2Y1 g
510 . 5~
< < (0wl + 19:01%: ) + ZI9113
35, =0 O (1~ .
— 210122 + 5 (10l + 119112
+ o (lloril3 + 110:013: )
5 ~ B ~
< — 7101132 + o (Iniils + 19a01% ). (4.3.172)
Choosing 0 > 0 such that c¢d < min(v,7, §), we obtain
d (i~ 0112 ~ 7 ~112 0112 0 5o
== (1103 + 18113 — 02, 8)) + vl onialy +ml0al3 + Z180E < 0. (43.173)

Due to the choice of §, we have
Lri~e 012 ~
5 (Il + 1013 ) = 82, 6) > o,
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or

(@il + 1617)-

DN o

1 ~ _ ~ o~
5 @l + 1013) < Mfallz + 1615 — 3(a2,0) <

For any 0 < s < t, integrating (4.3.173) in time yields

1, - ~ ¢ _ ~ O~
5 (@@l + 10117 +/ (Wlnilzs +nll0a0 15 + 7 10122) dr
3 ~
< S 5 + 16(5)l17)-
Especially, for any 0 < s <'t,

@)1 + 1607 < 3(1a(s)l[7n + 16(s)]7) (4.3.174)

and

| 10 -+ nloudl + 1805 dr < € < .
Combining with the time integral bounds from Theorem 4.3.6,
/OOO 19ve]%e dt < oo, /OOO 100]2 dt < o0 and /Ooo 1026]1% dt < oo,
we obtain
/OOO(Hﬂ(t)H?{l + 110(2)131) dt < oo, (4.3.175)
Applying Lemma A.1.3 to (4.3.174) and (4.3.175) yields
(@) 7 + 1007 < e(t+8)7

and the asymptotic behavior, as t — oo,

(@)1 + 16 [152) — 0.

This completes the proof of Theorem 4.3.7. |
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APPENDIX

A.1 Sobolev Spaces and Preliminary Inequalities

Throughout this Appendix, €2 denotes an open subset of the n-dimensional space R".

Definition A.1.1 Lebesgue space LP(Q2) (1 < p < o0) is the vector space of the
functions v : Q — R for which |ul? is Lebesgue integrable on Q (i.e. [, |u(x)Pdr <

00). It is a Banach space with respect to the norm

|l e ) = (/Q lu(z) P dx)é

L>(Q) is the Banach space of the measurable functions which are defined on Q and

bounded outside a set of measure zero. It is equiped with the norm
[l Lo (o) = ess sup |u(z)].
z€eQ

In what follows, We list several fundamental inequalities associated with Lebesgue

spaces.

Theorem A.1.1 (Hdélder’s inequality) Assume 1 < p,q < 0o, 110 + 5 = 1. Then,
/ luv| dz < ||ul|ze@l|v]|Le)  Yu € LP(Q2), Yv € L4(Q).
Q

Definition A.1.2 Given a multi-index o = (au, ..., o) of non-negative integers, let
la] = a1 + -+ + . The differential operator, D®, of order |a| is given by

olal

= o a9 °
0x "' 0x5*...0xon

Da

Definition A.1.3 Suppose u, D% € L*(Q). If

/Q u()D(x) d = (~1) / D u(x)é(x) d,
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for all test functions ¢ € C3°, then we say that D*u s the week partial derivative of

u of order «.

Definition A.1.4 (Sobolev Space) For a given integer m > 0 and a real number

1 < p < oo, the Sobolev space W™P(Q) is defined as
WmP(Q) :={ue LP(Q) : D*u € LP(Q) for all 0 < |a] <m}

which 1s equipped with the norm

1

(S Iptull)” i 1< <o,

0<|ar|<m

> ||D%ul| if p=4o0.

0<|a|<m

leullyms =

Note that LP(Q) = W?(Q), and for the special case p = 2 we denote H™(Q)) =

Wm™P(Q). More generally, for any s > 0,

w= ([O+igpriaere)’ <o

[l
The space H® is called the inhomogeneous Sobolev space.

In the rest of the present Appendix, we recall some basic inequalities used throughout

the dissertation.

Proposition A.1.1 Let a,b be any real numbers and let p,q be real numbers con-

nected by the relationship % + % =1. Then

ab < ~(a®*+b?), (Cauchy’s inequality)

NO| —

bZ
ab < ea® + " Ve >0, (Cauchy’s inequality with epsilon)
€

al  be
ab < —+ —.  (Young’s inequality)
p q
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Lemma A.1.2 (Gronwall’s inequality) Assume p(t) > 0, ¢(t) > 0 and y(t) > 0
are continuous functions on [0, T]. Assume that ¢ (t) exists and y(t) is integrable on

0,7]. If
¢
o) <c(t)+ [ A(r)p(r)dr for any te 0.7),
0
then
¢
p(t) < ¢(0)eo 17 +/ ¢ (t)el- &% dr for any t € 0, T).
0
FEspecially, when c(t) = 0 would imply that p(t) =0 for any t € [0, 7.

Lemma A.1.3 Let f = f(t) be a nonnegative function satisfying , for two constants

Co >0 and C; > 0,
/000 f(r)ydr < Cy and f(t) < Cif(s) forany 0<s<t. (A.1.1)
Then, for Cy = max{2C1 f(0),4CoC1} and for anyt > 0,
ft) < Co(141)71 (A.1.2)
Furthermore, f(t) has the following large-time asymptotic behavior,
tli)rglotf(t) =0.
Proof. For all 0 <t <1, we have by (A.1.1),
f(t) < CLf(0) <201 £(0) (L+1)7" (A.13)
Due to (A.1.1), for any ¢t > 1,

ez [ swarz [ o i =)

or

ft) < 2C,Cit™ <A4CCL(1+1)7 (A.1.4)
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Hence (A.1.3) and (A.1.4) imply (A.1.2) for Cy = max{2C} f(0),4C,C} }.

It remains to prove that tlim t f(t) = 0. By the second property in (A.1.1), we have
—00

2C 1tf(s)dsZZ tf(t)ds:tf(t).

t/2 t/2

By the first property in (A.1.1),

+o00
g [ s =0
hence
t +oo +o0
A, = A, S e f (=0
Thus,
t
= 1 > i > 0.
0=2C, tlg_noo ” f(s)ds > tl}gloo tf(t) >0
This completes the proof of Lemma A.1.3. [ |

A.2 Basic Functional Analysis Results

In this appendix, we recall some essential results in functional analysis which are
necessary in our work.

The following Proposition is taken from [[58],p.21].

Proposition A.2.1 (Abstract bootstrap principle). Let I be a time interval, and for
each t € I suppose we have two statements, a “hypothesis” H(t) and a “conclusion”

C(t). Suppose we can verify the following four assertions:

(a) (Hypothesis implies conclusion) If H(t) is true for some time t € I, then C(t)

15 also true for that time t.

(b) (Conclusion is stronger than hypothesis) If C(t) is true for some t € I, then

H(t') is true for all t' € I in a neighbourhood of t.

(c) (Conclusion is closed) If t1,to, ... is a sequence of times in I which converges to

another time t € I, and C(t,) is true for all t,, then C(t) is true.
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(d) (Base case) H(t) is true for at least one time t € I. Then C(t) is true for all

tel
Definition A.2.1 Let X and Y be two normed vector spaces, with norms || - || x
and || - ||y respectively. We say that X is continuously embedded in'Y and we write

X =Y, if the following conditions hold
(a) X CY
(b) There exists an M > 0 such that ||z||y < M||z||x  for allz € X.

Definition A.2.2 Let X and Y be two normed vector spaces, with norms || - ||x and
|- Iy respectively and suppose that X CY. We say that X is compactly embedded in

Y, and write X CCY, if the following conditions hold
(a) X is continuously embedded in'Y .

(b) The embedding of X into Y is a compact operator: any bounded set in X is
totally bounded in'Y , 1.e. every sequence in such a bounded set has a subsequence

that is Cauchy in the norm || - ||y.

Lemma A.2.2 (Aubin-Lions).Let X; — Xo — X3 be three Banach spaces with the
first embedding being compact and the second being continuous. Let T > 0. For

1 <p,q<+o0, let
W ={ue LP(0,T; X1),0u € LY0,T; X3)}.
Then
(i) If p < 0o, then the embedding of W into LP(0,T; Xs) is compact;
(ii) If p =00 and q > 1, then the embedding of W into C(0,T; Xs) is compact.

Lemma A.2.2 states that any bounded sequence in W has a convergent subsequence

in LP(0,T; Xs).
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