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Abstract 

Genetic diversity represents a population’s evolutionary potential, as well as its demographic 

and evolutionary history. Advances in DNA sequencing have allowed the development of 

new and potentially powerful methods to quantify this diversity. However, when using these 

methods best practices for sampling populations and analyzing data are still being developed. 

Furthermore, while effects of the landscape on spatial patterns of genetic variation have 

received considerable attention, we have a poorer understanding of how genetic diversity 

changes as a result of temporal variation in environmental and demographic variables. Here, 

I take advantage of advances in DNA sequencing to investigate genetic diversity at single 

nucleotide polymorphisms (SNPs) across space and time in a model system of the butterfly, 

Parnassius smintheus. 

I used double digest restriction site associated DNA sequencing to genotype SNPs in P. 

smintheus from populations in Alberta, Canada. To develop recommendations for analyzing 

data, I tested the effect of varying the maximum amount of missing data (and therefore the 

number of SNPs) on common population genetic analyses. Most analyses were robust to 

varying amounts of missing data, except for population assignment tests where larger 

datasets (with more missing data) revealed higher-resolution population structure. I also 

examined the effect of sample size on the same set of analyses, finding that some (e.g., 

estimation of genetic differentiation) required as few as five individuals per population, while 

others (e.g., population assignment) required at least 15.  

I used the SNP dataset to investigate factors shaping patterns of genetic diversity at different 

spatial scales and across time. At a larger spatial scale but a single time point, both weather 

(snow depth and mean minimum temperatures) and land cover (the distance between 

meadow patches) predicted genetic diversity and differentiation. At a smaller spatial but 

longer temporal scale, I used a smaller SNP dataset to show that genetic diversity is lost over 

repeated demographic bottlenecks driven by winter weather, and subsequently recovered 

through gene flow. My work contributes to understanding how genetic diversity is shaped in 

natural populations, and points to the importance of both land cover and weather (and 

specifically, variability in weather) to this process.  
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Summary for Lay Audience 

Genetic diversity describes differences in DNA sequence among individuals of the same 

population or even between species. In principle, it is this diversity that allows populations to 

adapt over time when their environment changes. Understanding what factors influence the 

diversity of natural populations is a central question for both evolutionary biology and for 

conservation biology (where preserving genetic diversity of endangered populations is a key 

goal). 

I used a new way to measure DNA sequence differences among individuals to assess genetic 

diversity and to ask what ecological factors are important for maintaining that diversity in the 

Rocky Mountain Apollo butterfly (Parnassius smintheus). This method allows thousands of 

genetic differences to be identified across an individual’s genome. Because this method is 

new and there are few established guidelines relative to older methods, I tested different 

ways to process my data. I looked at how to choose which genetic differences to include, as 

well as how many individuals to sample from each population to get accurate results. I found 

that compared to some older methods of measuring genetic differences, I was able to sample 

fewer individuals per population.  

I then used the DNA sequence differences I had identified to look at what environmental 

factors affect genetic diversity in populations from the Rocky Mountains of western Alberta. 

I found that populations that experience less snow and more extreme winter temperatures 

have lower genetic diversity. This occurs because these conditions can lead to dramatic 

reductions in population size, which in turn reduce genetic diversity. Populations surrounded 

by more forest, as opposed to meadows, also have lower genetic diversity and are more 

genetically different from other populations. This is because forest limits how easily the 

butterflies can move among populations.  

My work provides real-life evidence of how weather and climate, the physical landscape, and 

changes in population size are expected to affect a population’s genetic diversity. Since 

climate change will lead to both increased weather extremes and increased forest cover in 

mountain landscapes, it is likely to result in losses of genetic diversity from populations of 

the Rocky Mountain Apollo. 
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Chapter 1  

1 General introduction 

1.1 Genetic diversity and population genetics 

Genetic diversity – the total heritable variation within a population – represents the 

evolutionary potential of that population. Contemporary genetic diversity also reflects a 

population’s demographic and evolutionary history (Epps & Keyghobadi, 2015; 

Templeton, Routman, & Phillips, 1995; Vandergast, Bohonak, Weissman, & Fisher, 

2007). The field of population genetics is concerned with evaluating the amount and 

distribution of genetic diversity within and among populations, and uncovering the 

processes that have shaped that genetic diversity (Halliburton, 2004). Population genetic 

theory is based on the understanding that four fundamental processes – mutation, 

selection, genetic drift, and gene flow – are responsible for determining how genetic 

diversity is distributed within and among populations.  

Mutations are changes in DNA sequence; examples include insertions, deletions or 

inversions of sequences, as well as point mutations where a single nucleotide changes 

state. Mutations are the ultimate source of genetic diversity, and the rate at which 

mutations occur differs depending on the category of DNA (e.g., mitochondrial vs 

genomic; Ballard & Whitlock, 2004) as well as across taxa (Britten, 1986). Selection 

occurs when individuals have differential survival and reproductive success based on 

heritable traits, and results in certain genotypes being represented at higher or lower 

frequencies in subsequent generations (Halliburton, 2004). Depending on the type of 

selective pressure a population experiences, selection can act either to maintain or to 

decrease genetic diversity. Genetic diversity tends to decrease at loci under stabilizing or 

directional selection, where a specific phenotype and its underlying genotype consistently 

have the highest fitness (Lewontin, 1964). In contrast, genetic diversity is maintained 

under various forms of balancing selection, which can include heterozygote advantage 

(where heterozygous genotypes have highest fitness), frequency dependent selection 
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(where genotypes occurring at lower frequencies have higher fitness; Brisson, 2018), as 

well as temporally or spatially varying selection (Bürger & Gimelfarb, 2002).  

Genetic drift refers to changes in allele frequencies that occur between generations due to 

stochastic sampling of alleles in finite populations (e.g., due to differential mating 

success among individuals, recombination during meiosis, etc.; Halliburton, 2004). 

Genetic drift, over time, results in a decrease in genetic diversity as rare alleles may be 

lost by chance between generations; this effect is more dramatic in smaller populations, 

where each individual represents a larger proportion of the total population. Gene flow, 

or the movement of alleles among populations, is the result of dispersal followed by the 

successful reproduction of the dispersed individual. Gene flow can introduce new genetic 

variation into populations and has a homogenizing effect on the variation among different 

populations. Models of gene flow (e.g., Wright’s island model and models of isolation by 

distance) show that the allele frequencies of populations are more similar when they 

share greater rates of gene flow (Bohonak, 1999; Wright, 1943). Overall, the amount of 

genetic diversity in a population at any time is determined by the balance among 

mutation, selection, genetic drift and gene flow (Wright, 1931). 

Population genetics began as a primarily theoretical field in the early part of the last 

century, aimed at incorporating the principles of Mendelian inheritance into the 

framework of evolution by natural selection (B. Charlesworth & Charlesworth, 2017). 

The field was initially built on theoretical developments, with empirical data from natural 

populations available primarily from key systems in which visible morphological traits 

had a relatively simple heritable basis (B. Charlesworth & Charlesworth, 2017), or from 

inversion polymorphisms that could be assessed by karyoptyping, for example in 

Drosophila pseudoobscura populations (Sturtevant & Dobzhansky, 1936). The use of 

molecular approaches to quantify genetic variation in natural populations was not 

initiated until the 1960s, with the first assessment of variation at allozymes in populations 

(Hubby & Lewontin, 1966; Lewontin & Hubby, 1966). Since that groundbreaking study, 

empirical data collected at the molecular level, describing genetic variation within and 

among natural populations, has increased dramatically (Casillas & Barbadilla, 2017). 

Methods for sequencing DNA or otherwise assessing variation at the DNA level have 
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continued to evolve with increasing rapidity, providing population geneticists with 

increasing power to quantify and study the genetic diversity of natural populations (Levy 

& Boone, 2019).   

1.2   Molecular markers 

Even with advances in sequencing technology, it is still difficult and expensive to assess 

diversity across the entire genome. Instead, molecular markers are used that are assumed 

to reflect the overall diversity of the genome. Molecular markers are biological molecules 

that can be interrogated through a variety of methods to reveal the underlying DNA 

sequence variation. These methods include approaches that differentiate protein 

allozymes, assess DNA structure, and, at the finest scale, record nucleotide sequences. 

The most useful markers for assessing population genetic structure are co-dominant, 

DNA-level markers (Fu, 2000; Milligan & McMurry, 1993). Co-dominant markers 

provide information about both alleles carried by each individual, whereas dominant 

markers only indicate the presence or absence of a dominant allele and cannot distinguish 

between heterozygotes and homozygotes, thereby complicating the process of estimating 

population allele frequencies.  

Some molecular markers reflect differences in the genome that may affect an organism’s 

fitness; this includes mutations that change the level of gene expression (e.g., mutations 

in a promotor region), as well as mutations in expressed sequences. Such markers are 

called non-neutral molecular markers, or, when more clearly known to be under 

selection, adaptive molecular markers. These non-neutral markers include protein 

allozymes (e.g., in the lizard Podarcis tiliguerta; Capula, 1996), and DNA sequences for 

regions of the genome known or hypothesized to have a function (e.g., the major 

histocompatibility complex; Campos, Posada, & Morán, 2006; Charlesworth, 2006). In 

contrast, neutral molecular markers reflect differences in the genome that are not believed 

to affect an organism’s fitness (Holderegger, Kamm, & Gugerli, 2006). As they do not 

typically result in differences in external phenotype, neutral molecular markers are 

usually observed through direct interrogation of the DNA sequence. At the population 

level, variation at neutral molecular markers reflects primarily the effects of drift and 
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gene flow (Holderegger et al., 2006). Variation at adaptive molecular markers is also 

influenced by drift and gene flow, but additionally by selection (Kirk & Freeland, 2011). 

The use of molecular markers has evolved with the available technology. Early molecular 

markers, such as protein allozymes (Hubby & Lewontin, 1966), were non-neutral. DNA 

sequences could be used as molecular markers with the development of the Sanger 

sequencing method (Sanger, Nicklen, & Coulson, 1977) and the Maxam-Gilbert method 

(Maxam & Gilbert, 1977). However, manual DNA sequencing was too costly and time 

consuming to assess multiple loci across the sample sizes required for population genetic 

studies. Other molecular markers were developed based on using gel electrophoresis to 

assess differences in the lengths of DNA fragments among individuals, rather than the 

actual sequence of DNA fragments. The first of these were restriction fragment length 

polymorphisms (RFLPs; Botstein, White, Skolnick, & Davis, 1980). In this method, 

DNA is first digested with restriction enzymes. The resulting fragments are run out on an 

agarose gel and exposed to short probe sequences of DNA, which are labelled either 

radioactively or fluorescently and allow a subset of the fragments on the gel to be 

visualized. Mutations in restriction enzyme cut sites produce different sizes of DNA 

fragments (as restriction enzymes are unable to bind and cleave if the cut site is mutated), 

and therefore a different pattern of bands among individuals who carry that mutation. 

Differences in the frequency of individuals carrying these mutations could then be 

examined across populations (Beaumont & Nichols, 1996). The specificity of RFLPs as a 

molecular marker was improved with the development of the polymerase chain reaction 

(PCR) as a method to amplify DNA (Mullis et al., 1986). In PCR-RFLP, rather than 

digesting all DNA, specific regions of the genome are first amplified and only those 

regions are digested and analyzed (Maeda et al., 1989).  

The development of PCR also allowed entirely novel types of molecular markers to be 

developed. The random amplified polymorphic DNA (RAPD) method uses a random 

primer (usually approximately 10 bp in length) to amplify any sections of the genome 

that are flanked by the complement to the primer sequence (Welsh & McClelland, 1990; 

Williams, Kubelik, Livak, Rafalski, & Tingey, 1990). Similar to mutations in restriction 

enzyme cut sites for RFLP markers, mutations in the primer binding sites prevent 



5 

 

amplification and result in a different banding pattern. RAPD markers are relatively 

cheap and easy to assess for large numbers of individuals; however, they suffer from a 

lack of reproducibility (Jones et al., 1997) and are a dominant marker, which provides 

less information per locus than co-dominant RFLPs.  

Amplified fragment length polymorphisms (AFLPs) were developed as a more reliable 

alternative to RAPD markers, while still not requiring any prior information about the 

sequence of the genome (e.g., as would be required for PCR-RFLP or microsatellites, see 

below; Vos et al., 1995). Like RFLPs, AFLPs are partially the result of mutations in 

restriction enzyme cut sites that produce different banding patterns when visualized on a 

gel. By using two restriction enzymes that leave “sticky” ends after cutting, adapter DNA 

sequences with complementary sticky ends can be ligated and only fragments with a 

different adapter sequence at each end will be amplified. To reduce the number of 

restriction fragments, during PCR amplification the primers are designed to be 

complementary to the adapter sequences plus an additional one to three random bases, so 

that only fragments with the restriction enzyme cut site plus an additional short 

nucleotide sequence are amplified (Vos et al., 1995). This provides the benefits of PCR-

RFLP, where only a small amount of starting DNA is required, without needing to know 

the flanking sequences to develop the primers. The major downside of AFLPs is that they 

are a dominant marker – the band for a particular locus will be present if at least one 

allele has the unmutated restriction enzyme cut site.  

Microsatellites – regions of the genome where a short sequence motif of nucleotides (1-6 

bp) is repeated in tandem – were proposed as a novel molecular marker after they were 

shown to be hypervariable in the fruit fly Drosophila melanogaster and in humans 

(Tautz, 1989). Most microsatellites do not have a function and are presumed to reflect 

neutral genetic processes, although there are some exceptions (e.g., a small number of 

microsatellites resulting in diseases in humans; Brouwer, Willemsen, & Oostra, 2009) 

and it is possible for microsatellites to be physically linked to areas of the genome under 

selection. In contrast, the location of the mutations underlying RFLP, RAPD, and AFLP 

markers are typically not known, although most likely fall outside of expressed regions of 

the genome. Microsatellite discovery is more time consuming and expensive than 
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optimizing an AFLP protocol (i.e., choosing appropriate restriction enzymes) because it 

involves first finding microsatellites in the genome and then sequencing flanking regions 

to design PCR primers. However, after microsatellites are developed it is easier to 

prepare samples for genotyping than when using AFLPs. Microsatellite preparation 

requires only a PCR reaction, as compared to the restriction enzyme digestion, adapter 

ligation, and PCR of AFLP preparation. Microsatellites also have the advantage both of 

being a co-dominant marker (unlike dominant AFLPs), having high reproducibility, and 

being hypervariable. Their hypervariability (a result of slippage during DNA replication, 

resulting in alleles of different lengths) means that once a microsatellite region is 

discovered in the genome it is likely to have multiple alleles; as a result, each 

microsatellite marker is more informative than other (e.g., ALFP) markers. 

Microsatellites were the most commonly used molecular marker in population genetic 

studies after techniques for their discovery and genotyping were developed in the 1990s 

(Hodel et al., 2016). While they still remain a popular choice, single nucleotide 

polymorphisms have emerged as an alternative marker.  

DNA sequence data were theoretically able to be used as molecular markers since the 

development of Sanger and Maxam-Gilbert sequencing, but in practice required both the 

development of PCR as well as automations to the Sanger sequencing method to be 

readily applied to generate data on genetic variation at the population level. DNA 

sequence data from natural populations can be used to explore the process of selection, 

for example by sequencing and comparing the haplotypes of candidate loci (i.e., loci 

hypothesized to be under selection) among populations. Sequences of highly conserved 

genes (e.g., mitochondrial DNA) are useful in exploring evolutionary relationships 

among species and populations, as well as historical patterns of population size and 

connectivity (Avise et al., 1987; Ramos-Onsins & Rozas, 2002; Templeton et al., 1995). 

When DNA sequences are used as molecular markers, the entire haplotype of the 

sequenced locus is typically used. Alternatively, point mutations – or single nucleotide 

polymorphisms (SNPs) – can be extracted from sequence data and used as individual 

molecular markers. Outside of the whole genome sequencing of model species, SNPs 

outside of expressed sequences historically had to be discovered through fairly laborious 

processes. For example, a common method was exon primed intron crossing, where PCR 
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primers were developed based on conserved exon sequences and used to sequence and 

search for SNPs in neighbouring introns. SNP panels developed using these methods and 

used for population genetic studies often include less than 20 SNPs (e.g., Ledoux et al., 

2012; Tay, Behere, Heckel, Lee, & Batterham, 2008; White, Endersby, Chan, Hoffmann, 

& Weeks, 2015). The power of these small SNP panels to detect population genetic 

patterns are often compared to that of microsatellites. While each individual SNP, with 

typically only two observed alleles, is less informative than a highly variable 

microsatellite locus (Schopen, Bovenhuis, Visker, & Arendonk, 2008), small SNP panels 

are still suitable for estimating population parameters including genetic differentiation 

and diversity (Coates et al., 2009). Nonetheless, such small SNP panels were not 

frequently used in population genetic studies relative to microsatellites. However, in taxa 

such as the Lepidoptera where microsatellite discovery is made difficult by low 

microsatellite frequency and the repetition of flanking sequences among different 

microsatellite loci (Zhang, 2004), AFLPs and small SNP panels are sometimes used as 

alternatives to microsatellites (e.g., Collier et al., 2010; Fountain et al., 2016; Gradish, 

Keyghobadi, & Otis, 2015). Until the mid- to late 2000’s, the size of SNP panels was 

traditionally limited by the cost of developing and sequencing each SNP locus, but the 

development of next-generation sequencing methods vastly increased the size of SNP 

panels that could be developed and genotyped for population genetic studies in non-

model organisms. 

1.3 Next-generation sequencing and molecular markers 

First-generation DNA sequencing methods – Sanger and Maxam-Gilbert sequencing – 

are typically used to sequence small numbers of relatively long (up to 1000 bp) DNA 

sequences. Second-generation, or next-generation (NGS), sequencing refers to several 

techniques developed in the early 2000s and implemented on different sequencing 

platforms (pyrosequencing: Roche 454, ligation sequencing: SOLiD, sequencing by 

synthesis: Illumina HiSeq) (Liu et al., 2012). Next-generation sequencing differs from 

first-generation sequencing in that many short (initially up to 150 bp) sequences are 

sequenced simultaneously, and at a much smaller cost per base pair. These shorter 

sequences make next-generation sequencing arguably less suitable for characterizing 
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entire candidate loci compared to Sanger sequencing, but are very suitable for genotyping 

many independent SNP loci. One application of NGS is to genotype known SNP loci 

(e.g., in known expressed sequences or, as previously, developed using exon priming 

intron crossing) for many more individuals than would be possible at the same cost and 

effort as using Sanger sequencing. Another is to use NGS to discover and genotype 

previously unknown SNPs across the genome. While it is possible to use NGS platforms 

to sequence the entire genome of multiple individuals (in order to assess variation at all 

possible sites in the genome) this is still both costly and time consuming when processing 

the tens or hundreds of individuals typical of population genetic studies. To address this 

issue, over the past decade several methods have been developed to isolate a replicable 

subsample of the genome from which SNPs can be identified (e.g., Baird et al., 2008; N. 

R. Campbell, Harmon, & Narum, 2015; Elshire et al., 2011; Peterson, Weber, Kay, 

Fisher, & Hoekstra, 2012). This approach is called “reduced representation” sequencing, 

referring to using this isolated subsample of the genome to represent the rest of the 

unsequenced portions of the genome.  

One of the earliest of these reduced representation sequencing approaches is restriction 

site associated DNA sequencing, or RADseq (Baird et al., 2008). In the original RADseq 

methodology, a single restriction enzyme is used to digest genomic DNA, which is then 

ligated with flanking “adapter” DNA sequences recognized by the Illumina sequencing 

platform. To further shorten the restricted DNA sequences, the original protocol uses a 

sonicator to mechanically shear the fragments. Alternatively, a modified protocol called 

double digest RAD sequencing (ddRADseq) cuts the DNA with a second restriction 

enzyme with a different recognition site, producing a more consistent fragment length 

than the random mechanical shearing of the original protocol (Peterson et al., 2012). In 

both cases, the reduced representation occurs by retaining only a certain size range of 

DNA fragments for sequencing (typically between 100-500 bp) and discarding fragments 

outside of this size range. 

RADseq and other reduced representation sequencing approaches allow for the 

genotyping of thousands or, for some approaches, tens of thousands of SNPs. In some 

ways these SNP panels are similar to, but much larger than, the SNP panels previously 
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used for population genetic studies, being co-dominant, biallelic markers that can be 

either neutral or non-neutral. However, the reduced representation approach leads to 

several key differences compared to SNP panels designed using Sanger sequencing. With 

Sanger sequencing, the polymorphic site is either known in advance, or can be easily 

identified by comparing otherwise identical (in sequence and length) DNA sequences. 

When using reduced representation sequencing, especially for species without a reference 

genome, polymorphic sites are initially unknown. SNPs must be identified in silico using 

bioinformatics pipelines (e.g., Stacks, PyRAD) that align the millions of DNA sequences 

produced into likely copies of the same locus, then search for polymorphic sites among 

alleles of each putative locus. This approach has several implications for the genotyped 

SNPs. Overall, much less is known about the characteristics of each SNP, including their 

potential function, putative neutrality, and linkage status.  

SNPs genotyped through reduced representation sequencing also have considerably 

higher rates of missing data, where individuals are by chance not genotyped at some SNP 

loci and are therefore “missing” genotype data at those loci (Andrews, Good, Miller, 

Luikart, & Hohenlohe, 2016; Crotti, Barratt, Loader, Gower, & Streicher, 2019; Gautier 

et al., 2013). The approach used to identify SNPs from raw NGS output impacts the 

characteristics of the resulting SNP panel. Intuitively, it seems safest to use the most 

stringent parameters at all stages of SNP genotyping, from the initial stages of SNP 

identification (e.g., requiring more identical reads to identify an allele or allowing fewer 

differences among alleles) to later stages of filtering to determine which SNPs will be 

retained for analysis (e.g., setting a maximum amount of missing data per locus). 

However, both too stringent and too lenient parameters can lead to biases and errors in 

the ensuing SNP panel (Catchen, Hohenlohe, Bassham, Amores, & Cresko, 2013; 

Mastretta-Yanes et al., 2015). For example, using too stringent parameters early in SNP 

identification can lead to a locus being identified as distinct, when in reality it is actually 

an allele of another identified locus (Catchen, Hohenlohe, Bassham, Amores, & Cresko, 

2013; Mastretta-Yanes et al., 2015). The same parameters set too leniently can 

erroneously call multiple distinct loci as alleles of a single locus (Catchen et al., 2013; 

Mastretta-Yanes et al., 2015). After SNPs are called, parameters are chosen to determine 

which SNPs are retained for analysis; this process is referred to as filtering, where SNPs 
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that do not meet the chosen parameters are removed from the dataset. At this stage, 

filtering too leniently results in SNP panels with high amounts of missing data, which 

may adversely affect some population genetic analyses (e.g., Shafer et al. 2017). On the 

other hand, filtering too stringently both reduces the number of SNPs available for 

analysis and disproportionately removes SNPs at loci that experience higher mutation 

rates (Huang & Knowles, 2016). In many cases decisions around filtering and parameter 

selection are not transparent, perhaps based on the assumption that the quantity of 

markers will outweigh any bias or error introduced at any specific marker (Mastretta-

Yanes et al., 2015). Based on a small number of studies that examine the effects of 

filtering SNP panels on population genetic analyses, some analyses (including population 

assignment and isolation by distance) are sensitive to filtering parameters such as the 

maximum amount of missing data per locus while others, including estimates of FST, are 

not (Chattopadhyay, Garg, & Ramakrishnan, 2014; Shafer et al., 2017). 

RADseq, alongside genotyping-by-sequencing (Elshire et al., 2011), is one of the original 

approaches to reduced representation sequencing for simultaneous SNP discovery and 

genotyping; subsequent protocols are often modified versions of RADseq and follow a 

similar naming system (E. O. Campbell, Brunet, Dupuis, & Sperling, 2018). The trade-

off among these various protocols is often between the number of markers returned, the 

cost and labour of sequencing, and the reliability that all the markers will be sequenced 

for each individual (Scheben, Batley, & Edwards, 2017). For example, double-digest 

RADseq returns fewer SNPs on average than single-digest RADseq (Flanagan & Jones, 

2018), but by using two enzymes to fragment the genomic DNA, rather than random 

shearing, the genome is more reliably subsampled and there is less variation in the 

number of reads among individuals (Peterson et al., 2012). 

1.4   Parnassius smintheus as a model system 

Studying the amount and distribution of genetic diversity in natural populations is a 

fundamental component of population genetics research (Halliburton, 2004). Population 

genetic theory can be applied to understand the demographic histories of populations 

(e.g., inferring recent bottlenecks using contemporary allele frequencies; Luikart, 

Allendorf, Cornuet, & Sherwin, 1998), and natural populations can be used to test and 
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validate population genetic theory (e.g., observing a bottleneck, and looking for the 

expected changes in allele frequencies in subsequent generations, e.g., Cammen et al., 

2018; Suárez, Betancor, Fregel, Rodríguez, & Pestano, 2012).  

There are many considerations when selecting a study system for population genetic 

research, particularly when working on animals. For example, studying a species at risk 

may provide important, species-specific data for conservation work, but also means 

working with small population sizes and limitations to sampling (e.g., non-lethal or non-

invasive sampling). Alpine insect populations are particularly interesting study systems, 

both for being insects and occupying an alpine habitat. Insects, with their often short 

generation times and large populations relative to vertebrates, allow researchers to 

potentially collect large sample sizes. Alpine species provide potential models for 

responses to climate change, and are particularly vulnerable to climate change effects 

(Grabherr, Gottfried, & Pauli, 2010). They face similar habitat range shifts as non-alpine 

species, with their preferred climatic envelopes shifting not only poleward, but also 

upward in elevation and altitude. However, while it is potentially feasible for some non-

alpine (i.e., lower elevation) species to track their shifting habitat along altitudinal 

gradients, alpine species are limited in the extent to which their habitable range can shift 

in elevation; eventually, they simply run out of space. In the absence of adapting locally 

to changing climatic conditions, such species may instead rely on long-distance dispersal 

events to neighbouring alpine habitat along a latitudinal gradient to avoid extinction 

under climate change scenarios (Brooker, Travis, Clark, & Dytham, 2007).  

One alpine insect that has been well studied in both populations genetic and ecological 

contexts is the butterfly Parnassius smintheus, a species found throughout the Rocky 

Mountains (Guppy & Shepard, 2001). This species possesses several traits that makes it a 

good candidate for population genetic research. It is a relatively common butterfly, 

occurring in many locations where there is suitable habitat and often at high abundance, 

and is easily identified. Individuals are also relatively large (3-5 cm wingspan) and slow 

fliers, able to be caught readily using hand nets. Parnassius smintheus has very specific 

habitat requirements, specifically alpine meadows containing the larval hostplant Sedum 

lanceolatum, so habitat patches can be easily identified and delineated.   
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A set of populations of P. smintheus occurring on Jumpingpound Ridge, and other nearby 

ridges, in Alberta has, in particular, been the subject of intensive study for the past 25 

years (Caplins et al., 2014; Jangjoo, Matter, Roland, & Keyghobadi, 2016; Keyghobadi, 

Roland, & Strobeck, 1999; Matter, Keyghobadi, & Roland, 2014; Roland, Keyghobadi, 

& Fownes, 2000). Jumpingpound Ridge occurs within a mixed-use area (with both public 

hiking trails and commercial natural gas extraction) close to the University of Calgary 

Barrier Lake Field Station. The ridge includes a network of Sedum-containing meadows 

separated by forest. Many of these meadows contain P. smintheus populations that are 

connected by dispersing individuals (Roland et al., 2000). The Jumpingpound P. 

smintheus populations were surveyed initially in 1995. Individuals in each population 

were captured with hand nets, marked with unique three letter codes, released and re-

captured over a three-week period (Roland et al., 2000). Tissue samples were taken from 

the wings of a subset of captured individuals and used for microsatellite genotyping 

(Keyghobadi et al., 1999). In every year since 1995, mark-recapture data has been 

collected from these populations (Matter et al., 2014; Roland & Matter, 2016). In many 

but not all of these years (Fig. 1) wing clips have also been collected (Caplins et al., 

2014; Jangjoo et al., 2016; Keyghobadi et al., 1999). The initial analyses stemming from 

the 1995 and 1996 surveys used both dispersal rates from mark-recapture (Roland et al., 

2000) and genetic distances calculated from the genotyped wing clips (Keyghobadi et al., 

1999) to identify landscape features that influence dispersal and the resulting genetic 

structure. These studies identified forest as a key determinant of dispersal in P. 

smintheus: individuals move approximately half as frequently through forest than through 

meadow (Roland et al., 2000). Populations display both patterns of isolation by distance 

and isolation by resistance: more distant populations are more genetically different, and 

populations separated by forest are more differentiated, for a given geographic distance, 

than populations separated by open, non-forested land cover  (Keyghobadi et al., 1999). 

In 1999, a broader genetic survey of 27 P. smintheus populations was conducted in the 

Rocky Mountain foothills and front ranges (including the Banff and the Kananaskis 

regions in Alberta) to examine how landscape features at a larger spatial scale than a 

single ridgeline affect population structure (Keyghobadi, Roland, & Strobeck, 2005). The 

study area was divided into three regions: East Kananaskis, where Jumpingpound Ridge 
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is located, is a region of greater forest cover and more fragmented alpine meadow habitat, 

whereas both West Kananaskis and Banff have larger and more connected alpine 

meadows. The patterns of genetic differentiation observed at this scale, and the 

differences in genetic diversity and structure among the three regions, were consistent 

with the importance of meadow connectivity to P. smintheus dispersal that was observed 

on Jumpingpound Ridge. Patterns of isolation by distance, lower differentiation among 

populations overall, and higher within-population diversity were present in Banff and 

West Kananaskis as compared to East Kananaskis; in East Kananaskis the greater 

amounts of forest cover on the landscape appear to limit movement and gene flow, 

leading to these patterns.   

In 2003, populations of P. smintheus at Jumpingpound Ridge rapidly collapsed in size. 

On average, populations declined by 86% in the estimated adult population size 

compared to the previous year (Caplins et al., 2014; Jangjoo, Matter, Roland, & 

Keyghobadi, 2020). Population sizes recovered to pre-collapse levels by 2007. In 2010 a 

second demographic bottleneck was observed, with estimated population sizes declining 

by 75% on average from the previous year (Jangjoo et al., 2020). While the decline in 

average estimated population size was similar between the two bottlenecks, the second 

bottleneck lasted longer with population sizes remaining at a similarly low level through 

2011 before beginning to increase in 2012. Most recently the populations appear to have 

collapsed in 2019 and remained low in the summer of 2020.  

Annual population size change in P. smintheus is associated with weather and climate 

conditions. Specifically, years with higher population growth are associated with 

moderate values of the Pacific Decadal Oscillation (PDO) index, while extreme values of 

winter PDO (indicating either wet/cold or warm/dry years) are associated with population 

declines (Roland & Matter, 2013). As winter PDO had a stronger relationship with P. 

smintheus population growth than PDO overall, poor over-wintering conditions were 

hypothesized to drive population declines, including the extreme demographic bottleneck 

events (Roland & Matter, 2013). For example, at one extreme of PDO warm and dry 

winters may result in too little snow cover to insulate eggs, while at the other cold and 

wet winters may result in egg freezing during extreme cold snaps or before sufficient 
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snow has accumulated. However, the demographic bottlenecks remained difficult to 

predict a priori based solely on PDO conditions. Specifically, a bottleneck in the 

Jumpingpound Ridge populations was predicted for the summer of 2015 based on the 

high PDO values observed in the winter of 2014 (Matter & Roland, 2015); however, no 

bottleneck occurred that year. As a result, additional potential weather predictors of 

population growth were considered. By using data from a local snow pillow and weather 

station, a finer scale model considering weather at Jumpingpound Ridge found a stronger 

relationship between November temperature and snowfall and population growth than a 

model using PDO as a predictor (Roland & Matter, 2016).  

Demographic bottlenecks are expected to have potentially strong genetic consequences 

for a population. Typically, a bottleneck results in a loss of genetic diversity and a 

breakdown of patterns of genetic differentiation (e.g., isolation by distance) as alleles are 

lost by chance in each population (Allendorf, 1986; Chakraborty & Nei, 1977). The 

repeated bottlenecks in the Jumpingpound Ridge populations and their subsequent 

recoveries, combined with the ongoing mark-recapture and tissue sampling of these 

populations, provide the opportunity to test these theoretical genetic consequences. By 

measuring genetic diversity within and among the P. smintheus populations on 

Jumpingpound Ridge before, during and after the bottlenecks, a pattern of a loss of 

genetic diversity through genetic drift, followed by a recovery of genetic diversity 

through gene flow, has emerged (Caplins et al., 2014; Jangjoo et al., 2016, 2020). 

1.5 Overview of Thesis 

Here, I use a next-generation sequencing approach to develop new SNP datasets to 

examine genetic variation in Parnassius smintheus at two spatial scales, as well as over 

time. I demonstrate the importance of landscape and weather in shaping genetic variation 

at a broader spatial scale, and I show how genetic drift, gene flow, and potentially 

selection shape genetic variation over repeated bottlenecks at a smaller spatial scale. By 

developing these SNP datasets and evaluating their strengths and weaknesses when 

applied to this system, I also contribute a new method of quantifying genetic variation in 

the ongoing study of this unique and informative study system.  
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In Chapters 2 and 3, I focus on the development, limitations, and strengths of a reduced 

representation sequenced SNP dataset. In Chapter 2, I evaluate how filtering SNP 

datasets by changing the maximum permitted amount of missing data affects common 

population genetic analyses. In Chapter 3, I explore the hypothesis that the large number 

of SNPs produced by reduced representation sequencing can allow for few individuals to 

be sampled per population (while retaining the power to detect population genetic 

patterns). 

In Chapters 4 and 5, I use the SNP dataset developed and tested in Chapters 2 and 3 to 

examine the factors underlying spatial and temporal variation in genetic diversity in P. 

smintheus populations. In Chapter 4, I assess the contributions of weather and landscape 

to patterns of genetic diversity across P. smintheus populations separated by tens to 

hundreds of kilometers. Specifically, I test site-specific metrics of landscape (e.g., patch 

size) and weather (e.g., average temperature in November) as predictors of either genetic 

distance or genetic diversity. In Chapter 5, I examine how genetic diversity and 

differentiation change over two demographic bottleneck events in the Jumpingpound 

Ridge populations. Here, I derive a smaller SNP dataset, from the larger dataset used in 

Chapters 2-4, that is suitable for genotyping the small quantities of DNA extracted from 

the wing clips collected at this site. By using a SNP panel, rather than the previously used 

microsatellites, to characterize the populations on Jumpingpound Ridge, I can examine 

changes at both putatively neutral and expressed loci to assess how genetic diversity 

changes over repeated bottlenecks as a result of genetic drift, gene flow, and potentially 

selection.  
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Chapter 2  

2 The effect of missing data in RADseq-generated SNP 
datasets on common population genetic analyses 

2.1 Introduction 

Population genetics studies have benefited from next-generation sequencing (NGS) 

techniques, which have allowed simultaneous de novo genotyping across many loci 

without the need for a reference genome (Davey & Blaxter, 2010). In comparison to 

traditional genetic markers such as microsatellites, single nucleotide polymorphism 

(SNP) datasets that are next generation sequenced have lower genotyping success rates 

(where loci are not genotyped in some individuals) and higher error rates (Hodel et al., 

2017). However, the large number of loci (typically in the 1000’s, compared to dozens 

for microsatellites) mean that analyses can recoup some of the power lost to inaccuracies 

(Hodel et al., 2017).  

This trade-off between power, gained through a large number of genetic markers, and 

accuracy is also seen among different SNP datasets, especially those generated through 

reduced representation sequencing. Reduced representation sequencing approaches, where a 

subset of the genome is sequenced on a NGS platform, are increasingly a common way to 

generate large SNP datasets (Casillas & Barbadilla, 2017; Sunde, Yıldırım, Tibblin, & 

Forsman, 2020). These approaches can lead to both genotyping failure or miscalled SNPs, 

with a trade-off between the total number of SNPs included in a dataset and the inclusion of 

SNPs with high rates of genotyping failure. Genotyping failure or miscalling in such 

datasets can occur due to mutations in sites proximate to the SNP locus or stochastic 

errors in library preparation and sequencing. In many reduced representation sequencing 

protocols, restriction enzymes are used to fragment DNA, and DNA adjacent to cut sites 

in some of these fragments is then sequenced. A mutation in a particular cut site would 

prevent a restriction fragment from being produced, DNA sequencing of that fragment 

would not occur, and any SNPs present in that fragment would not be called for 

individuals carrying that mutation (Luca, Hudson, Witonsky, & Rienzo, 2011). This 

“allelic dropout” is analogous to null alleles in microsatellites, where amplification is 
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prevented due to mutations in the PCR primer binding site (Callen et al., 1993). In both 

cases, heterozygotes that carry a single copy of the mutated site are erroneously called as 

homozygotes, as only one of the two alleles is sequenced or observed. In addition to 

allelic dropout resulting from cut site mutations, errors in library preparation can occur 

and also result in heterozygotes being called as homozygotes (Rokas & Abbot, 2009). 

This occurs when there are insufficient reads (i.e., the number of times a DNA fragment 

was sequenced) of the second allele during sequencing, and only one allele is called. The 

second allele can be lost at several points in library preparation, including during PCR, 

where differences in amplification efficiency between alleles results in allele-biased PCR, 

during size selection of restriction fragments, where a small proportion of fragments at 

the desired size are removed along with the undesired fragments, and as a result of low 

read numbers during the sequencing process (Davey et al., 2013; Huang & Knowles, 

2016).  

The consequences of genotyping error in reduced representation datasets on population 

genetic analyses have been studied mostly in the context of allele dropout. Simulated 

datasets including allele dropout show inflated differentiation among populations, and 

either over- (Gautier et al., 2013) or under-estimated diversity within populations 

(Arnold, Corbett-Detig, Hartl, & Bomblies, 2013). In addition to allelic dropout (where a 

single allele is not called), reduced representation SNP datasets also face the problem of 

missing data. Missing data occurs when, for some individuals, neither allele is called. 

This occurs for the same reasons a single allele is not called – either both alleles have 

dropped out due to being homozygous for cut site mutations, or there are too few reads 

for either allele to be called. The problem of entirely missing genotypes at some loci 

resulting from library preparation error (and not allelic dropout) has been anticipated 

(Pool, Hellmann, Jensen, & Nielsen, 2010; Rokas & Abbot, 2009), but has not been 

broadly studied in the context of implications for population genetic analyses (but see 

Chattopadhyay, Garg, & Ramakrishnan, 2014 and Shafer et al., 2017).  

Where genotyping has failed for some individuals at a particular locus, a key decision for 

the researcher is whether to retain that locus for analysis, given that some proportion of 

individuals will have missing data at that locus. This decision is made by applying a cut-
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off for accepting a certain percent of individuals where genotyping has failed; the more 

stringent the criteria for maximum genotyping failure (i.e., the lower the proportion of 

individuals with missing data at a locus that are permitted), the more loci that will be 

excluded from the final dataset (Huang & Knowles, 2016). Using stringent cut-offs 

(<10% of individuals permitted to have missing genotypes at a given locus) results in 

biases when reconstructing phylogenetic histories (Huang and Knowles 2016), and 

reduces the power of individual genetic assignment (Chattopadhyay et al., 2014) and the 

estimated strength of isolation by distance (IBD; i.e., the correlation between genetic and 

geographic distances between populations; Shafer et al., 2017). These biases may result 

from having small SNP datasets and excluding especially informative SNP loci (i.e., 

those with low minor allele frequencies). Conversely, using lenient (>60%) cut-offs 

produces larger SNP datasets but arguably at the cost of adding lower quality loci. While 

estimation of some parameters, such as global genetic differentiation, appear robust to the 

use of lenient cut-offs for missing data, other parameters and analyses are more sensitive; 

for example, the degree of IBD (i.e., the correlation coefficient between geographic and 

genetic distance) is lower in datasets with lenient cut-offs compared to datasets with 

intermediate cut-offs (Shafer et al., 2017). 

Existing studies on the effects of varying the cut-off for missing genotypes on population 

genetic analyses are limited by either using a small number of individuals (n=10; 

Chattopadhyay et al 2015) or few levels of missingness (3; Shafer et al., 2017). 

Quantifying the sensitivity of population genetic analyses to finer variations in the 

permitted amount of missing data is important for informing best practices in analyzing 

NGS SNP datasets. Here, I examine how different levels of maximum permitted missing 

data affect the accuracy of inferences about genetic diversity and differentiation in 

populations of the butterfly Parnassius smintheus. I use SNP datasets generated by 

double digest restriction site associated DNA sequencing (ddRADSeq; Peterson, Weber, 

Kay, Fisher, & Hoekstra, 2012) to explore how varying the maximum permitted 

percentage of individuals that have missing genotypes at a given locus, henceforth 

referred to as the permitted proportion of “missing data” (and as a result, the number of 

SNPs) affects several common population genetic analyses: genetic differentiation, IBD, 

and population assignment. This approach results in datasets that vary both in their 
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number of SNPs and their proportion of missing data; while these variables are 

confounded, this reflects the real trade-off between dataset size and quality present in 

SNP datasets and allows decisions around that trade-off to be examined. 

Parnassius smintheus populations in western Alberta have been previously studied at two 

spatial scales; this previous research provides a baseline understanding of the ecology and 

genetics of these systems. The populations of P. smintheus that I genotyped have been 

previously characterized by microsatellite loci, and show a significant pattern of IBD 

(Keyghobadi, Roland, & Strobeck, 2005). In these P. smintheus populations, most sample 

sites are expected to contain a single population, with few or no individuals expected to 

be immigrants from another sampled population (or a nearby population that acted as a 

stepping stone for dispersal). Both microsatellite and mark-recapture studies have also 

been conducted on a different set of populations on Jumpingpound Ridge, Alberta, and 

used to characterize genetic patterns (including significant IBD), dispersal rates and 

changes in population size (Caplins et al., 2014; Jangjoo, Matter, Roland, & Keyghobadi, 

2016; Keyghobadi, Roland, & Strobeck, 1999). These studies allow me to evaluate both 

the precision of SNP datasets that vary in the level of missing data, and their accuracy 

relative to known population genetic and ecological metrics. Analyses on the same set of 

populations can have different results when using SNPs versus microsatellites (e.g., 

Jeffries et al., 2016; Lemopoulos et al., 2019); however, the difference is typically power 

to detect a pattern (e.g., IBD) rather than in the type of pattern detected. 

I hypothesized that including more SNPs would increase the power of population genetic 

analyses, but that including lower quality (i.e., with more missing data) SNPs would 

decrease accuracy by adding random errors to the data. I therefore predicted that there 

would be an intermediate level of missing data, and resulting SNP dataset size, that 

would most accurately estimate population genetic patterns. However, previous studies 

demonstrate that the effect of missing data depends on the population genetic analysis 

used. Analyses that require the estimation of fewer parameters (e.g., global genetic 

differentiation) are more robust to missing data, while analyses that require the estimation 

of more parameters (e.g., analyses of spatial genetic structure) are most powerful when 

using an intermediate level of missing data (Shafer et al, 2017). I predicted that 
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parameters of diversity (allelic richness and expected heterozygosity) and global genetic 

differentiation (FST) would be minimally impacted by the amount of missing data per 

SNP dataset, because these analyses require the estimation of fewer parameters. I 

predicted that analyses of IBD and population assignment, which require the estimation 

of many parameters, would be more sensitive to the amount of missing data. Specifically, 

I predicted that compared to datasets with intermediate levels of missing data, the 

strength of IBD and the number of populations identified would be lower in the most 

stringent and most permissive dataset. In the most stringent dataset this would be a result 

of the low number of SNPs, and in the most permissive dataset a result of introducing 

random errors to the data. 

2.2 Methods 

2.2.1 Study species and sampling 

Parnassius smintheus is an alpine butterfly, typically occurring at high elevations in 

meadows above the treeline, whose range extends from Yukon to New Mexico (Guppy & 

Shepard, 2001). My study populations are located in alpine meadows in the Rocky 

Mountains of western Alberta. Here, P. smintheus populations fly from July to September 

and lay eggs which overwinter as first instar larvae. Larvae emerge after snowmelt and 

feed on their hostplant, Sedum lanceolatum.  I examine a subset of the populations 

sampled in western Alberta that were previously characterized using microsatellite loci 

by Keyghobadi et al. (2005). Whole Parnassius smintheus adults were collected in 1995 

and 1996 from 21 sites located in three regions (East Kananaskis, West Kananaskis, and 

Banff) of western Alberta (Keyghobadi et al. 2005; Figure 2.1; Table 2). Individuals were 

caught using hand nets and stored at -80 °C in glassine envelopes. 
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Figure 2.1 Parnassius smintheus individuals were sampled from 21 populations in 

Alberta, from 3 regions: Banff (    ), East Kananaskis (   ), and West Kananaskis (   ). 

Inset shows the extent of sampling sites in Alberta, Canada. Map data: Esri, NASA, 

NGA, USGS, Esri Canada, Esri, HERE, Garmin, Safegraph, FAO, METI/NASA, USGS, 

EPA, NRCan, Parks Canada.  
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Table 2.1 Parnassius smintheus individuals were sampled from 21 populations in 

Alberta, from 3 regions: Banff (B), East Kananaskis (EK), and West Kananaskis (WK). 

Numbers refer to the sampling locations on Figure 2.1. 

Population No. on map Region Sample size Latitude Longitude 

Cascade 1 1 B 11 51.3424 -115.5287 

Flint Peak 2 B 38 51.4227 -115.7399 

FortyMile Creek 3 B 20 51.3405 -115.7165 

North Cascade 1 4 B 16 51.4654 -115.8105 

Panther Mtn 5 B 36 51.5257 -115.6395 

Mount Peechee 6 B 9 51.2088 -115.3510 

Snow Creek 7 B 32 51.5657 -115.7537 

Stony Creek 8 B 38 51.4024 -115.6548 

Mount Baldy 9 EK 13 50.9651 -115.0297 

E (Lusk Ridge) 10 EK 13 51.0091 -114.9697 

Forget-Me-Not Ridge 11 EK 20 50.7514 -114.7675 

Moose Mtn 12 EK 19 50.9426 -114.8065 

Powderface Ridge 13 EK 20 50.8470 -114.8602 

Volcano Ridge 14 EK 9 50.6964 -114.7118 

Elk 15 WK 8 50.5942 -115.0150 

Fortress Mtn 16 WK 39 50.8260 -115.2239 

Mount Kent 17 WK 36 50.7180 -115.1806 

Mount Kidd 18 WK 12 50.8812 -115.1894 

Mist Mtn 19 WK 12 50.5369 -114.8879 

Pigeon Mtn 20 WK 19 51.0219 -115.2067 

Wedge 21 WK 36 50.8470 -115.1278 
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2.2.2 SNP library preparation 

I used DNeasy Blood and Tissue kits (Qiagen, Germantown, MD) to extract DNA from 

the head and thorax of between 8 and 38 individuals collected at each of 21 sites, for a 

total of 501 individuals. I treated DNA extractions with RNAse before digestion with the 

restriction enzymes NlaIII and EcoRI-HF (New England Biolabs, Ipswich, MA). I 

performed restriction enzyme digestion for 3 hours at 37 ℃ in a total volume of 50 ul, 

with each digestion containing: 200 ng DNA, 1X CutSmart buffer, 10 Units NlaIII, 20 

Units EcoRI-HF, and 1 µg bovine serum albumin. I purified DNA after restriction 

enzyme digestion using Sera-Mag solid-phase reversible immobilization beads (GE 

Healthcare Life Sciences, Chicago, IL). For each individual, I used 75 µl of SPRI beads 

to bind DNA, followed by two washes with 75% ethanol and elution in 40 µl of nuclease-

free water. I estimated the concentration of digested DNA using a Qubit fluorometer 

(Thermo Fisher Scientific, Waltham, MA), and standardized concentrations to the lowest 

observed across all samples to be combined in a single lane for sequencing. 

Adapter sequences, including Illumina sequences and barcodes for individual 

identification (Table A1), were ligated to the digested DNA. I performed ligation 

reactions at 16 ℃ for 8 hours in a 45 µl volume including: standardized digested DNA, 

1100 Units T4 ligase (New England Biolabs, Ipswich, MA), 1X T4 ligase reaction buffer, 

3.80 pmol adapter P1 (for NlaIII cut sites), and 2.72 pmol adapter P2 (for EcoRI cut 

sites). I heat killed ligation reactions at 65 ℃ for ten minutes followed by a ramp down at 

1.3 ℃ per minute to a final temperature of 21 ℃. I pooled ligated DNA across groups of 

40-50 individuals, and size selected for fragments between 200 and 500 bp using Sera-

Mag solid-phase reversible immobilization beads (SPRI; GE Healthcare Life Sciences, 

Chicago, IL). I amplified the pooled, size selected DNA by PCR using i5 and i7 Illumina 

primers with an additional barcode as per Rašić, Filipović, Weeks, & Hoffmann (2014) in 

a total volume of 10 µl including: 1X PCR Phusion master mix (New England Biolabs, 

Ipswich, MA), 2 µM forward primer, 2 µM reverse primer, 1 µl pooled ligated DNA. 

PCR conditions were: denaturation at 95 ℃ for 30 s, followed by 9 cycles of 98 ℃ for 10 

s, 62 ℃ for 30 s, 72 ℃ for 120 s, and finally 72 ℃ for 5 min. I used SPRI beads (at 0.8 

times the reaction volume) to clean the PCR reactions, and used an Agilent 2100 
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Bioanalyzer to verify size selection. Libraries containing 80-100 individuals (representing 

2 pooled sets of 40-50 individuals, where each pool was amplified with one of two 

differently barcoded reverse PCR primers) were sequenced on a single lane of an 

Illumina HiSeq 2500 sequencer. 

I used the program STACKS (Catchen, Hohenlohe, Bassham, Amores, & Cresko, 2013) 

to process the raw sequence data and call SNPs. I used the de novo pipeline to align 

sequences and call SNPs, as no published reference genome was available for Parnassius 

smintheus or closely related species. I set parameters for alignment and SNP calling as 

recommended by Mastretta-Yanes et al. (2015): a minimum stack depth of three reads 

(m), a maximum of three nucleotides differing between reads in an assembled stack (n), a 

maximum difference of two nucleotides between combined stacks (M), and a maximum 

difference of four nucleotides between assembled stacks and additional aligned reads (N). 

I further filtered SNPs using a minor allele frequency cutoff of 5%. To minimize 

incidences of linked SNPs in the dataset, I included only SNPs from the forward reads for 

analysis. Also, in instances of multiple SNPs being present per read, I included only a 

single SNP per read. I excluded all individuals that had low genotyping success from 

further analysis, by removing individuals where alleles were identified at fewer than 50% 

of loci (in a preliminary SNP dataset generated by permitting a maximum of 20% missing 

data per locus).  

2.2.3 Filtering SNP datasets for missing data 

Starting with all SNP loci that were remaining after applying the above analysis 

parameters, I created six different SNP datasets that varied in the maximum permitted 

percentage of individuals (combined across all populations) that have missing genotypes 

at a given locus; that is, the datasets varied in what I will refer to as the permitted 

proportion of “missing data”. To generate the six datasets, I used maximum cut-offs of 

10, 15, 20, 25, 30, and 40% missing data per locus. For example, a cut-off of 10% meant 

that all loci where more than 10% of individuals were not successfully genotyped would 

be excluded. Therefore, the cut-off of 10% was the most stringent and resulted in the 

smallest SNP dataset. Conversely, the cut-off of 40% was the most lenient and resulted in 

the largest SNP dataset. 
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2.2.4 Genetic diversity, differentiation and isolation by distance 

I calculated three metrics of genetic diversity for each population (averaged across all 

loci in each SNP dataset) using the statistical software R (R Core Team, 2015): allelic 

richness (using the hierfstat package, Goudet 2005), and expected and observed 

heterozygosity (using the adegenet package, Jombart, 2008). I assessed whether allelic 

richness differed among SNP datasets using linear mixed models with population as a 

random effect. I applied a logit transformation to expected and observed heterozygosity, 

and used linear mixed models (with population as a random effect) to assess whether 

SNP dataset predicted the transformed values. I used the multcomp package (Bretz, 

Hothorn, & Westfall, 2010) to assess whether either allelic richness or expected 

heterozygosity differed significantly (after a Bonferroni correction) between any pair of 

SNP datasets. I also calculated average minor allele frequency and genotype frequencies 

across all populations within each dataset (using the packages adegenet and 

mixIndependR, Song, Woerner, & Planz, 2021).  

I calculated global FST using the hierfstat package (Goudet, 2005) to assess genetic 

differentiation among all sampled populations. I also calculated pairwise FST between all 

pairs of populations using the hierfstat package in R, which calculates Weir and 

Cockerham’s FST estimate (Weir & Cockerham, 1984), and calculated ninety-five percent 

confidence intervals using 999 bootstraps. I used maximum likelihood population effects 

(MLPE) mixed models (Clarke, Rothery, & Raybould, 2002) from the R package nlme 

(Pinheiro et al., 2015) to assess the degree and significance of IBD. The response variable 

was pairwise FST. I estimated the fixed effect, geographic distance between populations, 

as the Euclidian distance between the centroids of each sampling site. To account for 

non-independence between the population pairs I used the corMLPE package (Pope, 

2020) to apply random effects to each pairing. Models were estimated with a maximum 

likelihood (ML) approach, for comparison of models across datasets and to a null model 

of the form FST~1. I used a restricted maximum likelihood (REML) approach to obtain 

unbiased estimates of model coefficients to determine the slope of IBD from each dataset. 
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2.2.5 Population clustering and assignment 

I used two population assignment software packages, fastSTRUCTURE (Raj, Stephens, 

& Pritchard, 2014) and Geneland (Guillot, Mortier, & Estoup, 2005), to assign 

individuals to putative populations of origin and estimate the number of distinct 

populations identifiable in each dataset. Both packages use a Bayesian approach to assign 

individuals to populations in Hardy-Weinberg equilibrium. FastSTRUCTURE is a 

Python package based on the commonly used population structure software 

STRUCTURE (Pritchard, Stephens, & Donnelly, 2000), and assigns individuals to a 

number of populations (K) set by the user. The user can then perform post-hoc analyses 

to determine the value of K best supported by their data. In fastSTRUCTURE, this is 

performed with the built-in chooseK function that estimates the number of model 

components (populations) that are contributing to the model. The function estimates two 

K values. K*Ɛ represents the number of populations that optimizes marginal likelihood. 

K*∅C represents the number of populations that explain almost all of the ancestry in the 

dataset. K*Ɛ is a more stringent indicator of strong contributions to population structure, 

while K*∅C is more permissive and includes populations that contribute more weakly to 

overall structure. K*Ɛ therefore is typically smaller than K*∅C. I used fastSTRUCTURE 

rather than STRUCTURE because it is designed to accommodate very large SNP datasets 

that would be prohibitively complex for STRUCTURE to run. Unlike STRUCTURE, the 

number of iterations stops automatically once the model converges. I ran 

fastSTRUCTURE from k=2 to k=30 and used the chooseK function to estimate K*Ɛ and 

K*∅C. I repeated this 10 times to get 10 estimates of K*Ɛ and K*∅C for each SNP dataset. 

Due to the non-independence of the data (as each of the 10 replicates used the same SNP 

dataset) I could not use traditional statistical methods to test for significant differences in 

K*Ɛ and K*∅C, and instead looked for trends across the SNP datasets.  

I also used Geneland (Guillot, Mortier, & Estoup, 2005) to estimate the number of 

populations in each dataset. Geneland was designed to directly estimate the number of 

populations best supported by the data, and subsequently assign individuals to those 

populations. I ran Geneland 10 times per dataset, setting the possible range of populations 
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from 1 to 30 over 100 000 iterations with a spatial model and a correlated allele 

frequency model. In the post-processing stage I removed the burn-in period as the first 

200 out of 1000 saved iterations. The run with the lowest posterior probability after 

removing the burn-in was identified as the best representation of the data. I defined the 

estimated number of populations in a given dataset as the modal number of populations 

appearing throughout the MCMC iterations of the best run for that dataset. I calculated 

the standard deviation in population number within the best run, as well as the standard 

deviation in average population number among all runs for each dataset. 

2.3 Results 

I genotyped a total of 501 individuals from 21 sites. After filtering out individuals with 

low genotyping success, a total of 456 individuals were left for further analysis. The six 

SNP datasets with different cutoffs for missing data ranged in size from 12 291 SNPs at 

40% missing data to 37 SNPs at 10% missing data (Table 2.1).  

2.3.1 Genetic diversity, differentiation, and IBD 

Mean allelic richness (averaged across all populations in each dataset) tended to decrease 

as the maximum missing data cut-off was decreased from 40 to 15%; however, the 

highest mean allelic richness (1.25±0.02) was measured in the 10% missing data dataset 

(Figure 2.2). Mean expected heterozygosity increased as the cut-off for missing data was 

increased from 10 to 40% (Figure 2.2). Mean observed heterozygosity did not differ 

significantly among datasets, except for at 10% missing data (Figure 2.2). Mean minor 

allele frequency increased consistently with the amount of missing data (Table 2.2). The 

proportion of major allele homozygote loci (across all loci and all individuals) declined 

from 84 to 80% as missing data increased, while minor allele homozygote loci increased 

from 1.8 to 7% and heterozygote loci remained steady at 13-14% (Table 2.2).  

Mean pairwise FST across datasets ranged from 0.072 in the 10% missing data dataset to 

0.086 in the 40% missing data dataset. Estimates of pairwise FST tended to increase with 

the allowed percentage of missing data, with pairwise FST being significantly higher 

when calculated using the 40% missing data dataset than when using the 10 and 15% 
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missing data datasets (Figure 2.3). Global FST was highest in the 40% missing data 

dataset (0.085) and lowest in the 15% missing data dataset (0.074; Table 2.2).  

Significant IBD was observed using all SNP datasets. The coefficient of the relationship 

between geographic distance and genetic distance was similar across datasets, and did not 

show a trend with the level of missing data. (Table 2.2).    

2.3.2 Population clustering and assignment 

The largest dataset at 40% missing data and with >12,000 SNPs was used only for 

analyses of genetic diversity and differentiation; due to the large memory and time 

requirements it was excluded from population assignment analyses.  

Using Geneland, when looking at both the single best run as well the modal number of 

populations identified across all 10 runs, results were consistent across most datasets: 

individuals were clustered into either 15 or 16 populations for all datasets except for the 

one with 10% missing data (Figure 2.4). At 10% missing data, individuals were clustered 

into 8 populations in the single best run and 9 populations when considering all runs. 

For fastSTRUCTURE, I examined the number of populations strongly contributing to 

structure (K*Ɛ) separately from the number of populations that had weaker contributions 

to structure (K*∅C). Mean K*Ɛ (number of populations strongly contributing to population 

structure, averaged across 10 replicates) was very similar at 15, 20, and 25% missing data 

(Figure 2.5a). Mean K*Ɛ was somewhat lower at 10% missing data (where only a single 

population was identified) and higher at 30% missing data (where five populations were 

identified). K*∅C varied more among datasets than K*Ɛ. While K*∅C remained similar at 

15, 20, and 25% missing data, it was much higher for both the largest dataset at 30% 

missing data and the smallest at 10% missing data (Figure 2.5b). However, in the dataset 

with 10% missing data most individuals were being assigned to populations that did not 

correspond to the population from which they had been sampled. This was in contrast to 

the 30% missing data dataset, where a high number of populations were identified with 

individuals mostly assigned to their population of origin. 

 



35 

 

Table 2.2 Six ddRADSeq SNP datasets for the alpine butterfly Parnassius smintheus 

were generated by varying the maximum percent missing data per locus, and each was 

used to calculate basic population genetic parameters including global FST and pairwise 

FST. MAF is the mean minor allele frequency across all loci in the dataset. The strength of 

isolation by distance was estimated using MLPE models, and the coefficient of 

geographic distance was estimated using a REML approach.  

 

Percent 
missing 

data 
# SNPs Global FST 

Mean pairwise 
FST ± s.d. MAF 

Coefficient of 
geographic 

distance 

10% 37 0.0760 0.0721 ± 0.0483 0.087 1.17E-03 

15% 339 0.0745 0.0724 ± 0.0411 0.098 
 

1.06E-03 

20% 1098 0.0814 0.0823 ± 0.0473 0.110 
 

1.23E-03 

25% 2485 0.0790 0.0805 ± 0.0453 0.120 
 

1.17E-03 

30% 4760 0.0824 0.0845 ± 0.0471 0.130 
 

1.20E-03 

40% 12291 0.0846 0.0863 ± 0.0476 0.140 
 

1.19E-03 
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Figure 2.2 Boxplots for three measures of genetic diversity (allelic richness, expected 

heterozygosity, and observed heterozygosity) estimated for each of 21 Parnassius 

smintheus populations. Each metric was calculated using six SNP datasets (shown on x-

axis) that differed in maximum permitted missing data and therefore the total number of 

loci. Boxes show central 50% of values and the median, across populations. Tails 

represent values within 1.5 times the interquartile range, and points represent values 

outside 1.5 times the interquartile range. Letters indicate significant differences 

calculated from linear mixed models, with population as a random effect. 
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Figure 2.3 Boxplots for pairwise FST, estimated between each pairwise combination of 

21 Parnassius smintheus populations, for six SNP datasets (shown on x-axis) that 

differed in maximum permitted missing data and therefore the total number of loci. 

Boxes show central 50% of values and the median, across populations. Tails represent 

values within 1.5 times the interquartile range. Letters indicate significant differences 

calculated from linear mixed models, with population as a random effect. 
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Figure 2.4 Boxplots of the number of populations estimated along the MCMC chain 

using Geneland in the single best run (lowest maximum likelihood), for 21 Parnassius 

smintheus populations across six SNP datasets (shown on x-axis). Boxes show central 

50% of values and the median, for the single best of 10 runs. Tails represent values 

within 1.5 times the interquartile range, and points represent values outside 1.5 times the 

interquartile range. 
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Figure 2.5 Boxplots of a) the K*Ɛ estimator in fastSTRUCTURE and b) the K*∅C 

estimator in fastSTRUCTURE, for 21 Parnassius smintheus populations across six SNP 

datasets (shown on x-axis). Both estimators were generated using the chooseK.py 

function in fastSTRUCTURE. Boxes show central 50% of values and the median, across 

10 runs. Tails represent values within 1.5 times the interquartile range, and points 

represent values outside 1.5 times the interquartile range. 
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2.4 Discussion 

2.4.1 Genetic diversity  

Two measures of genetic diversity, allelic richness and expected heterozygosity, were the 

most sensitive to the level of missing data, with both increasing as more missing data was 

permitted. However, observed heterozygosity did not show the same pattern, and did not 

differ among SNP datasets. These trends were driven by increases in the minor allele 

frequency in datasets with more missing data, which caused both allelic richness and 

expected heterozygosity to increase. Importantly, the increased minor allele frequency 

was driven primarily by having more minor allele homozygotes in the datasets with more 

missing data; however, observed heterozygosity did not increase because the overall 

proportion of heterozygotes did not significantly change. As the frequency of minor allele 

homozygotes increased, without additional observed heterozygotes, expected and 

observed heterozygosity diverged increasingly with the amount of missing data.  

Loci with higher proportions of missing data (i.e., more genotyping failures) therefore 

tended to have higher minor allele frequencies, and fewer heterozygotes than expected 

given their allele frequencies. It appears that as the amount of permitted missing data 

increases, heterozygote genotypes either fail to be called altogether, or may be incorrectly 

genotyped as homozygotes (i.e., only one of the two alleles is called). Heterozygote 

genotypes are more difficult to call correctly from RADseq data than are homozygotes. 

When processing RADseq data, multiple reads of a given sequenced fragment are 

identified and combined to identify alleles (Catchen, Hohenlohe, Bassham, Amores, & 

Cresko, 2013); setting a minimum stack depth (number of identical reads necessary to 

designate an allele) prevents spurious alleles and loci from being called (Catchen et al., 

2013; Mastretta-Yanes et al., 2015). However, for a heterozygote to be genotyped 

correctly, both alleles must meet the minimum stack depth to be identified and assigned 

to the same locus. This makes it possible for heterozygotes to be erroneously genotyped 

as homozygotes if one allele is not sequenced in enough copies to be called, or not to be 

genotyped at all if sequences of both alleles fall short of the cut-off to be called. 
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2.4.2 Genetic differentiation and isolation by distance 

Estimates of genetic differentiation, both globally and between population pairs, were 

mostly robust across datasets, despite FST being calculated based on expected 

heterozygosity, which had more significant differences across datasets. Shafer et al 

(2017) found a similar pattern, with pairwise FST and observed heterozygosity being 

robust across three datasets, while nucleotide diversity (as with allelic richness and minor 

allele frequency here) was lower in the dataset with the least missing data. Wright’s FST 

essentially describes the reduction in mean expected heterozygosity in a group of isolated 

or semi-isolated populations compared to if all individuals in those populations were able 

to mate randomly (Wright, 1969); FST is higher with greater differences between the 

expected heterozygosity of the total population and the mean expected heterozygosity of 

the subpopulations. I found that FST did not change significantly across most SNP 

datasets; this indicates that the ratio of mean expected heterozygosity of individual 

populations to the expected heterozygosity for the entire set of individuals is mostly 

consistent across the datasets. As a result, patterns of IBD among populations also 

remained consistent, as neither geographic nor genetic (i.e., pairwise FST) distances 

differed significantly among most SNP datasets. 

2.4.3 Population assignment 

The accuracy of population assignment can be assessed by two criteria: whether the 

number of populations identified is close to the number of known populations sampled, 

and whether individuals are being assigned to a reasonable population (i.e., their sample 

site, or a site within dispersal distance). For both criteria, I found that population 

assignment was broadly robust to missing data, with the clear exception of the smallest, 

most stringent dataset (10% missing data; 39 SNPs). At 10% missing data, individuals 

were either assigned to many fewer populations than were in the sample (and were 

identified using the larger SNP datasets) or were assigned to a larger number of 

populations that often did not correspond to the spatial locations of sample sites. Datasets 

with more permissive thresholds for missing data did not introduce noise and reduce the 

accuracy of population assignment; in some cases (here, using fastSTRUCTURE to 

identify populations that contribute weakly to structure) the most permissive 30% 
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missing data dataset was closest at identifying the expected number of populations in the 

sample. Larger SNP datasets (independent of the level of missing data) typically provide 

greater accuracy for both the number of populations identified and in assigning 

individuals to their source population (Guillot & Santos, 2010). As discussed above, the 

SNP loci with higher amounts of missing data are also more likely to have genotyping 

errors (specifically, misgenotyping heterozygotes as homozygotes). However, these 

added loci also have higher minor allele frequencies. Rare alleles (i.e., at loci with low 

minor allele frequency) are often considered highly informative and important to include 

in population genetic studies (Marandel et al., 2020).  

However, loci with low minor allele frequencies can also add noise to analyses; for 

example, using loci with higher minor allele frequencies better reflected population 

structure of the golden-crowned kinglet (Regulus satrapa) than when including loci with 

lower minor allele frequencies (Linck & Battey, 2019). This may be because for loci with 

very low minor allele frequencies, very few individuals will be heterozygous or 

homozygous at the minor allele. As a result, there is a greater impact of sampling error 

and the true allele frequencies are harder to estimate accurately. With respect to 

estimating population differentiation, even if the minor allele frequency is similar across 

all sampled populations, the likelihood of sampling an individual carrying a copy of the 

minor allele will be low in all populations; on the rare occasion that such an individual is 

sampled, its population will erroneously appear more genetically distinct than is truly the 

case. Overall, the positive impact of including loci with higher minor allele frequencies 

may balance out the negative impact of higher genotyping errors in more permissive 

datasets, allowing the additional SNPs in datasets with more missing data to increase the 

accuracy of population assignment. 

2.4.4 The usefulness of small SNP datasets 

For many population genetic analyses, datasets as small as approximately 350 to 1000 

SNPs (with 15-20% permitted missing data) were sufficient to infer population genetic 

patterns. While these datasets may appear small compared to the numbers of SNPs that 

are often used in population genetic studies using RADseq (i.e., in the 1000s to tens of 

thousands, Puckett, 2017), it is congruent with the number of SNPs sufficient to assess 
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genetic diversity, differentiation, and population structure in other studies. Genetic 

differentiation (i.e., FST) can be assessed using as few as 20 to 75 SNPs (depending on the 

degree of differentiation), when sample sizes are high (i.e., more than 40 individuals per 

population, Morin, Martien, & Taylor, 2009). In a set of five simulated populations, 1000 

SNPs with less than 10% missing data were always sufficient to detect population 

structure (using STRUCTURE) even when populations had only recently diverged; with 

more differentiated populations, population structure was detectable with fewer than 200 

SNPs (Haasl & Payseur, 2011). For AFLPs, a similar biallelic (although dominant) 

molecular marker, the number of loci required for population assignment (using the 

methods of Paetkau, Calvert, Stirling, & Strobeck, 1995) ranged from 50 to 400, 

depending on the degree of differentiation and the number of populations considered 

(Campbell, Duchesne, & Bernatchez, 2003).  

With the many variations of RADseq available, several of which result in even more 

SNPs being called than ddRADseq, it is common to see SNP dataset sizes in the 

thousands to tens of thousands used in population genetic studies (Puckett, 2017). 

However, limitations to the amount and quality of DNA that can be extracted from some 

sampled tissues (particularly when samples are highly degraded, or are contaminated) can 

limit the success of these techniques (Blair, Campbell, & Yoder, 2015; Graham et al., 

2015; Hart, Meyer, Johnson, & Ericsson, 2015). RADseq and related techniques amplify 

and sequence all DNA fragments in a sample; low starting concentrations or degradation 

of the target DNA increases the chances of amplifying background DNA and identifying 

spurious SNPs (Leese et al., 2012). Calling spurious SNPs is especially a problem in 

species without a reference genome, which would otherwise allow loci that do not align 

to the reference genome to be filtered out (Leese et al., 2012). One option for researchers 

in this situation is to use RADseq, or related methods, to identify SNPs in a small number 

of high quality samples, then use more direct methods of SNP genotyping that are robust 

to low DNA quantity and quality to genotype lower quality samples at a subset of 

identified loci (e.g., Norman, Street, & Spong, 2013; Siccha-Ramirez et al., 2018; 

Tysklind et al., 2019). In the Western rattlesnake Crotalus oreganus, a small number of 

SNPs (362) genotyped using the Genotyping-in-Thousands by sequencing method 

provided comparable results to a larger RADseq dataset (8281 SNPs) in estimating 
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genetic differentiation and population assignment, and allowed non-invasive clocal swabs 

rather than blood samples as a source of DNA (Schmidt, Campbell, Govindarajulu, 

Larsen, & Russello, 2020). Overall, when RADseq is difficult to apply due to sample 

quality problems, or when large SNP datasets are too computationally demanding, trade-

offs in the quality, informativeness and number of loci appear such that SNP datasets as 

small as approximately 350 SNPs are sufficient. 

2.4.5 Recommendations for filtering SNP datasets 

I found that the optimal level of missing data depended on the intended use of the dataset. 

For some analyses, including assessing FST and IBD, the missing data threshold does not 

seem to be an important consideration. For others, especially the number of populations 

identified by fastSTRUCTURE and Geneland population assignment, a more permissive 

threshold and a resulting larger SNP dataset allows more populations to be identified. 

However, very permissive missing data thresholds result in very large SNP datasets that 

are difficult to work with. Here, the largest SNP dataset (~12 000 SNPs) could be used 

for some analyses (e.g., estimating genetic diversity and differentiation) but not for 

population assignment, as a result of computational and time constraints. Given that for 

many analyses continuing to add SNPs past a moderately sized dataset does not affect the 

interpretation of results (and can be computationally intensive), a moderately sized 

dataset (~350-1000 SNPs), generated with an intermediate level of permitted missing 

data (15-20%), is appropriate for most analyses.  
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Chapter 3  

3 Minimum sample sizes for population genetic analyses 
when using RADseq-generated SNP datasets 

3.1 Introduction 

Estimating genetic diversity and differentiation is core to empirical population genetic 

studies and provides insight into many processes with population-level consequences, 

such as dispersal, changes in population size, and selection (Allendorf, 1986; Kreitman, 

2000; Slatkin, 1987). When designing population genetics studies, there is a trade-off 

between the number of individuals sampled per population and the number of populations 

surveyed. For a fixed cost, many individuals from few populations, few individuals from 

many populations, or an intermediate number of both individuals and populations may be 

studied. Both population number and sample size per population are important aspects of 

sampling design (Aguirre-Liguori, Luna-Sánchez, Gasca-Pineda, & Eguiarte, 2020; Hale, 

Burg, & Steeves, 2012; Morin, Martien, & Taylor, 2009). Achieving a minimum sample 

size per population is important to accurately reflect measures of genetic diversity and 

differentiation (e.g., allelic richness and FST: Morin et al., 2009; Nazareno, Bemmels, 

Dick, & Lohmann, 2017). The number of populations sampled is also important however, 

as sampling multiple populations distributed across the landscape minimizes the 

possibility of spurious inferences (Anderson et al., 2010; Beerli, 2004; Oyler-McCance, 

Fedy, & Landguth, 2013). In addition to increasing the total number of different 

populations that can be surveyed and minimizing genotyping costs, there are other 

compelling reasons to sample the minimum necessary number of individuals per 

population to accurately reflect the genetic structure. This includes when using lethal 

sampling or sampling that otherwise decreases fitness, as well as when sampling is 

difficult or time consuming, such as when sampling cryptic species or in locations that 

are difficult to access.  

The minimum number of individuals per population required to accurately reflect 

commonly used population genetic metrics varies depending on the type and number of 

molecular marker used, the metric in question, and idiosyncrasies of the study system 
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(Flesch, Rotella, Thomson, Graves, & Garrott, 2018; Sunde, Yıldırım, Tibblin, & 

Forsman, 2020). Increasing the total information provided per individual by changing the 

type or number of molecular markers used is one potential approach to offset lower 

sample sizes. For microsatellites, both the number and the variability of loci (i.e., the 

number of alleles per locus) are important. For a given sample size, increasing the 

number of independent microsatellite loci increases the power to detect historical 

bottlenecks (Hoban, Gaggiotti, & Bertorelle, 2013), and both microsatellite number and 

variability contribute to the power to detect isolation by distance (IBD) and isolation by 

resistance (Landguth et al., 2012). Increasing the number of microsatellite loci used can 

also compensate for sampling fewer individuals per population; adding microsatellite 

markers was more efficient than adding additional individuals when testing for historical 

bottlenecks (Hoban et al., 2013). When using STRUCTURE to estimate population 

number, increasing either the number of microsatellites used or the number of individuals 

sampled allowed the known total number of populations to be detected (Evanno, 

Regnaut, & Goudet, 2005). 

For microsatellites, a sample size of 20-30 individuals per population is commonly 

recommended for calculating parameters such as allelic richness, expected 

heterozygosity, and FST (Hale, Burg, & Steeves, 2012; Pruett & Winker, 2008). However, 

as single nucleotide polymorphisms (SNPs) have become more commonly used in 

population genetic studies, this broadly recommended sample size has been called into 

question (Willing, Dreyer, & Oosterhout, 2012). At the level of individual loci, SNPs are 

less informative than microsatellites because they are biallelic (while microsatellites are 

typically multiallelic) and therefore more SNP loci are necessary to achieve a similar 

power to detect genetic patterns. For small SNP panels, the power to detect genetic 

differentiation is determined both by SNP number and number of individuals sampled. 

When simulating populations with different levels of genetic differentiation, sampling 

more than 40 individuals per population greatly increased the power for all sizes of SNP 

panel, while for the smallest SNP panel (20 SNPs) the power to detect differentiation 

never approached that of the larger panels (50 and 75 SNPs) even at the largest sample 

sizes (Morin, Martien, & Taylor, 2009). With the development of next-generation 

sequencing techniques it is now routine to generate very large SNP datasets (i.e., with 
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thousands of loci) for costs comparable to genotyping a microsatellite panel, although 

there is debate as to whether the per sample cost is in fact greater for SNPs (Puckett, 

2017) or microsatellites (Kraus et al., 2015). Extending the trend observed by Morin et al. 

(2009), these very large SNP panels were predicted to allow for even fewer individuals to 

be sampled per population while retaining the power to detect genetic patterns (Willing et 

al., 2012). This prediction had held true for some study systems and some analyses; for 

example, sample sizes of four to six (Willing, Dreyer, & Oosterhout, 2012) or two 

(Nazareno, Bemmels, Dick, & Lohmann, 2017) have been shown to be sufficient to 

accurately estimate FST, and sample sizes of 6-8 were sufficient to accurately estimate 

heterozygosity and the number of effective alleles (Nazareno et al., 2017). However, 

these studies were limited to examining variation within and between only two 

populations. In a slightly larger study of four bighorn sheep populations, using 

approximately 14 000 SNPs, a minimum sample size of 25 was recommended for both 

kinship analyses and estimates of FST (Flesch, Rotella, Thomson, Graves, & Garrott, 

2018). The effect of sample size on population clustering when using SNPs is even less 

clear than for analyses of diversity and differentiation, and has not been addressed using 

some of the most commonly applied genetic clustering and assignment approaches such 

as STRUCTURE (Pritchard, Stephens, & Donnelly, 2000) and Geneland (Guillot, 

Mortier, & Estoup, 2005). Where population clustering and assignment has been 

examined using an alternative Bayesian approach (Paetkau, Slade, Burden, & Estoup, 

2004), the success of population assignment continued to increase with sample size up to 

the maximum sample of 34 individuals (Benestan et al., 2015). 

 Here, I use populations of the alpine butterfly Parnassius smintheus to explore how 

sample size affects estimation of genetic diversity, differentiation, and population 

clustering when using SNPs as a molecular marker. These populations, located in western 

Alberta, are among a larger set of populations that have been previously characterized 

using microsatellites (Keyghobadi, Roland, & Strobeck, 2005). In the larger study, 

populations were located in three distinct geographic regions, each displaying different 

patterns of genetic differentiation; here, the populations I examine are drawn from two of 

the geographic regions (Banff and West Kananaskis). Populations in these regions had 

lower genetic differentiation (global FST) and significant IBD (i.e., a correlation between 
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pairwise genetic and geographic distances) compared to populations from the third region 

(East Kananaskis). Parnassius smintheus has also been studied extensively using mark-

release-recapture methods (Keyghobadi, Roland, & Strobeck, 1999; Matter, Keyghobadi, 

& Roland, 2014; Roland, Keyghobadi, & Fownes, 2000). The maximum observed 

dispersal distance of a P. smintheus individual was approximately 1.7 km (Roland et al., 

2000); given that P. smintheus inhabits distinct alpine meadows and the closest 

populations in my dataset are separated by approximately 6 km, it is unlikely that there is 

extensive dispersal and gene flow among these populations.  

These characteristics – low but detectable genetic differentiation, the presence of IBD, 

and the availability of relatively large samples from multiple distinct populations – 

provide an opportunity to test the effect of sample size in an empirical system in which 

considerable demographic and genetic data are already available. I use a reduced 

representation sequencing approach – double digest restriction site associated DNA 

sequencing (ddRADseq; Peterson, Weber, Kay, Fisher, & Hoekstra, 2012) – to genotype 

P. smintheus individuals at hundreds to thousands of SNP loci. I tested the hypothesis 

that sampling a larger portion of the genome compensates to an extent for sampling a 

smaller proportion of the population, such that SNP datasets with several hundreds or 

thousands of loci (e.g., generated through ddRADseq) allow accurate inferences to be 

made with relatively small numbers of sampled individuals (Willing et al, 2012; 

Nazareno et al., 2017). I defined the minimum sample size as the lowest sample size that 

produces results similar to those from the complete dataset for a given analysis. 

Minimum sample size depends not only on the number of genetic markers in a dataset 

(Morin, Martien, & Taylor, 2009), but also on the type of analysis; estimation of expected 

heterozygosity and FST (Willing et al, 2012; Nazareno et al., 2017) require fewer 

individuals than population clustering analyses (Benestan et al., 2015). I therefore also 

hypothesized that analyses where fewer parameters are estimated (e.g., expected 

heterozygosity, global FST) require fewer individuals to be sampled to make accurate 

inferences, as compared to analyses where many parameters are estimated (e.g., 

population assignment). 



54 

 

I predicted that as more individuals are sampled, the results of common population 

genetic analyses (including estimation of allelic richness, expected heterozygosity, FST, 

IBD, and population assignment) would approach that of the complete dataset. I predicted 

that for SNP datasets with hundreds or thousands of loci, the minimum sample size 

would be lower than that commonly recommended for microsatellite datasets (i.e., fewer 

than 20 individuals). I also predicted that there would be an interaction between SNP 

dataset size and minimum sample size, where the minimum sample size required for a 

given analysis would decrease when using larger SNP datasets. Finally, I predicted that 

the minimum sample size would be lower for estimating basic parameters of diversity 

and differentiation (i.e., global FST, allelic richness, expected heterozygosity) than for 

more complex analyses of population structure (IBD, population clustering).  

3.2 Methods 

3.2.1 Data collection 

Twenty seven alpine meadows with populations of Parnassius smintheus were initially 

sampled in 1995 - 1999; individuals were captured using hand nets and stored in glassine 

envelopes at -80℃ (Keyghobadi, Roland, & Strobeck, 2005). Of these, seven sampling 

sites had greater than 35 remaining voucher samples available for DNA extraction and 

genotyping. For these seven sites, I extracted DNA from the head and thorax of either 40 

individuals or the maximum number of available samples (Table 3.1) using a DNeasy 

Blood and Tissue kit (Qiagen, Germantown, MD). I used this extracted DNA to prepare a 

ddRADseq library. I digested DNA with the restriction enzymes NlaIII and EcoRI, 

labelled with adapters as per Râsíc et al (2014), and selected for fragments between 200 

and 500 bp in length using Sera-Mag solid-phase reversible immobilization beads (SPRI; 

GE Healthcare Life Sciences, Chicago, IL). After PCR amplification, I sent libraries for 

sequencing on an Illumina HiSeq 2500 platform.  

I assembled reads de novo using the Stacks pipeline (Catchen, Hohenlohe, Bassham, 

Amores, & Cresko, 2013). I set the assembly parameters as: a minimum stack depth of 3 

(m), a maximum difference of 3 nucleotides among reads per stack (n), a maximum 

difference of 2 nucleotides when combining stacks (M), and a maximum difference of 4 
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nucleotides when adding additional reads to an assembled stack (N). I excluded SNPs 

with a minor allele frequency of less than 5% from analysis, and included only one SNP 

per restriction fragment for analysis. I excluded any individuals with fewer than 50% of 

loci successfully genotyped (for loci with a maximum of 20% missing data across all 

individuals). Genotyping succeeds when there are sufficient reads at a locus for the 

Stacks pipeline to call a SNP for a given individual. 

3.2.2 SNP datasets and subsampling 

First, I generated three SNP datasets of differing size by including loci with a maximum 

of 15, 20, and 30% missing data. Missing data refers to the percent genotyping success 

per locus; setting the maximum percent missing data to 15% means that any locus where 

more than 15% of all individuals failed to genotype would be excluded. Datasets with 

lower permitted missing data thresholds are more exclusive, and therefore include fewer 

SNPs. This resulted in three SNP panels with 339, 1098, and 4760 loci, respectively. For 

each of the three SNP panels, I first calculated all population genetic metrics for the 

complete dataset (i.e., using all individuals sampled for each population) as the baseline 

for comparison to subsampled datasets. To investigate the effects of sample size on 

population genetic analyses, I randomly subsampled individuals from each population.  

I simulated different sample sizes by randomly subsampling a set number of individuals 

from each population, without replacement, and performed population genetic analysis 

using each of the subsampled datasets at each of the three SNP panels. I did not re-run the 

entire Stacks pipeline for each set of subsampled individuals, but instead included all 

SNPs called from each of the three original panels (i.e., derived from the full dataset of 

all samples individuals). I did this to control for the effect of calling SNPs from different 

numbers of individuals, which would have resulted in fewer SNPs called when fewer 

individuals were originally included. While this would be a real consequence of 

designing a study with a smaller individual sample size, I was interested here in isolating 

only the effects of having fewer individuals for the same SNP panel(s). 
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Table 3.1 Basic information for each of seven Parnassius smintheus populations (AR: 

allelic richness; HE: expected heterozygosity). Populations were sampled from three 

regions: Banff (B), East Kananaskis (EK), and West Kananaskis. 

 

Population Sample size Region AR HE 

Fortress Mtn 39 WK 1.80 0.17 

Flint Peak 38 B 1.75 0.18 

Mount Kent 36 WK 1.77 0.16 

Panther Mtn 36 B 1.79 0.18 

Snow Creek 32 B 1.83 0.19 

Stony Creek 38 B 1.83 0.20 

Wedge 36 WK 1.81 0.17 
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I simulated sample sizes of 2, 5, 10, 15, 20, and 25 individuals per population by 

randomly selecting individuals, without replacement, using the gpSampler command 

from the diveRsity package in the statistical software R (R Core Team, 2015). I 

subsampled 100 replicate groups of individuals for each sample size, resulting in 500 

subsampled individual datasets. Each of these 500 individual datasets was analyzed at 

each of the three SNP panels, for a total of 1500 analyzed datasets.  

3.2.3 Genetic diversity and differentiation 

For all 1500 resulting datasets, I calculated allelic richness (using the hierfstat package, 

Goudet 2005), and expected and observed heterozygosity (using the adegenet package, 

Jombart, 2008). So that allelic richness would be comparable across datasets, I rarified to 

four alleles (the lowest number of sampled alleles across all datasets, corresponding to  

sample sizes of n=2 individuals). To assess population differentiation, I calculated global 

FST as described by Nei (1972) using the hierfstat package (Goudet, 2005). To assess IBD 

I used two common approaches: Mantel tests (Mantel, 1967; Smouse, Long, & Sokal, 

1986), and maximum likelihood population effects (MLPE) mixed models (Clarke, 

Rothery, & Raybould, 2002). I calculated Mantel’s r (the correlation coefficient between 

pairwise distances, Mantel, 1967) as the correlation between Nei’s pairwise FST (Nei, 

1973), estimated using the adegenet package, and geographic distance, measured as the 

linear distance between the centroids of the meadows where each population was 

sampled. I also calculated the coefficient of geographic distance using mixed models in 

the R package nlme (Pinheiro et al., 2015), with a random effect implemented in the 

corMLPE package (Pope, 2018) to account for the pairwise nature of the data. I estimated 

coefficients using a restricted maximum likelihood approach. For both Mantel’s r and 

MLPE model coefficients, I recorded the proportion of subsampled datasets where 

significant IBD (p < 0.05) was observed.  

3.2.4 Population clustering 

I used two approaches, as implemented in the softwares fastSTRUCTURE (Raj, 

Stephens, & Pritchard, 2014) and Geneland (Guillot et al., 2005), to test the effects of 

sample size on the number of populations identified. The populations sampled were 
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sufficiently geographically distant from one another that little or no gene flow should 

occur between most pairs of populations (Roland, Keyghobadi, & Fownes, 2000). 

Therefore, I would expect the number of populations identified to be equal to the number 

of populations sampled (n=7). I did not use all 1500 SNP datasets for population 

clustering, due to the constraints of computing time. Instead, for both approaches, and for 

each sample size (n=2, 5, 10, 15, 20, 25), and missing data combination, I selected 10 

replicate subsampled datasets (out of the 100 used to calculate population differentiation 

above), for a total of 210 separate analyses for each approach. 

The first approach I used, implemented in fastSTRUCTURE, is a variant of the 

commonly used STRUCTURE program, and is designed to accommodate large SNP 

panels (Raj, Stephens, & Pritchard, 2014). FastSTRUCTURE assigns individuals to each 

of K populations, where a range of possible K’s is set by the user. I set the range of K to 

be 1 to 10 populations, as it is common practice to estimate k for several more 

populations than are expected to be present in the sample (in this case, seven). After 

running across the selected range of K’s, I used the chooseK.py function to calculate two 

metrics, K*Ɛ and K*∅C, which reflect the likely numbers of populations in the dataset. K*Ɛ 

is the number of populations that maximizes the maximum likelihood of the model, and 

is typically a lower value than K*∅C, which is the number of populations required to 

explain nearly all of the ancestry in the dataset. Each fastSTRUCTURE analysis was run 

through 10 replicates, and across these replicates I calculated the median K*Ɛ and K*∅C 

value for each subsampled dataset. 

The second approach I used was implemented in the program Geneland (Guillot, Mortier, 

& Estoup, 2005). Like fastSTRUCTURE, Geneland uses a Bayesian approach to 

population clustering. The approach differs from fastSTRUCTURE in two major ways: it 

directly estimates the number of populations in a sample, and it incorporates the 

geographic coordinates of each sample. FastSTRUCTURE, and the original 

STRUCTURE program, were designed originally for individual assignment to a number 

of populations as set by the user; in STRUCTURE if the user wanted to estimate the 

number of populations in the dataset, they had to use additional post hoc analyses (e.g., 

estimating delta K,  Earl & vonHoldt, 2012; Evanno, Regnaut, & Goudet, 2005). The 
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model used by Geneland estimates the number of populations at each iteration of the 

model, and then assigns each individual the probability of originating from each 

identified population (Guillot et al., 2005). As with the fastSTRUCTURE analysis, I set 

the range of possible population numbers to be between 1 and 10, and ran each of the 210 

subsampled datasets through 10 replicates. I allowed the model to run over 100 000 

iterations, using the correlated allele frequency model. I used the post-processing tools in 

Geneland to calculate average posterior probability for each replicate, and kept the results 

from the highest probability replicate for each dataset. For each of these best replicates, I 

recorded the modal population number (i.e., the number of populations identified most 

often across all iterations of the model). 

3.2.5 Comparisons across different sample sizes 

Where the effects of sample size or number of loci on population genetic analyses have 

been examined, the main objective has been to determine the minimum number of 

individuals sampled (or number of SNPs used) at which the value of the metric of interest 

stabilizes (Willing, Dreyer, & Oosterhout, 2012). Typically, increasing the sample size 

changes the metric of interest (bringing it closer to the true population value), but each 

individual added provides diminishing returns in terms of additional information. 

Eventually, the metric stops changing directionally with additional sample size and 

reaches a plateau. Studies do not typically attempt to use statistical methods to identify 

the sample size at which this plateau is reached; instead, the median value of the metric 

(averaged across the subsampled datasets) with the interquartile range is plotted against 

sample size, and the sample size at which the metric appears to reach an asymptote is 

visually determined. I use this approach here to determine the minimum sample size 

required to estimate diversity, differentiation, and the number of distinct populations 

identified using fastSTRUCTURE and Geneland, and to compare this sample size across 

the three SNP panels. 
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3.3 Results 

3.3.1 Complete dataset 

Overall, results for the complete datasets were similar for all SNP panels, with the 1098 

and 4760 SNP panels being the most similar (Table 3.2). Values of expected 

heterozygosity, allelic richness, global FST, and Mantel’s r were all somewhat lower when 

calculated using 339 SNPs compared to 1098 or 4760 SNPs. The number of populations 

identified using Geneland was five when using both 339 and 1098 SNPs, and six when 

using 4760 SNPs. K*Ɛ from fastSTRUCTURE was the same (K*Ɛ = 2) across all SNP 

panels. K*∅C from fastSTRUCTURE was the only metric for which the value calculated 

using 4760 SNPs was lower (K*∅C = 2.5) than when using either 339 or 1098 SNPs (K*∅C 

= 4). 

3.3.2 Genetic diversity and differentiation 

Across the 100 subsampled datasets for each SNP panel and sample size combination, 

median allelic richness ranged from 1.31 (339 SNPs, five individuals) to 1.50 (4760 

SNPs, two individuals). For all SNP panels, using sample sizes of two resulted in much 

higher and more variable (i.e., with a larger interquartile range) estimates of allelic 

richness than all other sample sizes (Figure 3.1). For two of the three SNP panels (339 

and 1098 SNPs), estimates of median allelic richness for sample sizes larger than two 

were close to allelic richness estimated with the complete dataset. Median allelic richness 

estimated using the 4760 SNP panel was noticeably different than the other two panels. 

For this panel, all subsampled datasets resulted in higher estimates of allelic richness than 

the complete dataset.  

Median expected heterozygosity (across all populations for each subsampled dataset) 

ranged from 0.18 (339 SNPs, all sample sizes) to 0.22 (4760 SNPs, all sample sizes). 

Median expected heterozygosity varied little across sample sizes, and was equal or very 

close to the expected heterozygosity of the complete dataset for all sample sizes (Figure 

3.2). Larger sample sizes resulted in smaller interquartile ranges, except for the increase 

from 20 to 25 individuals where the interquartile range remained consistent. 
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Median global FST ranged from 0.061 (339 SNPs, 25 individuals) to 0.078 (4760 SNPs, 

two individuals). For all SNP datasets (339, 1098, and 4760 SNPs), median global FST for 

sample sizes above two was close to global FST calculated from the complete dataset 

(Figure 3.3). Sample sizes of two and to a lesser extent five had more outliers and larger 

interquartile ranges than larger sample sizes. 

Median Mantel’s r ranged from 0.19 (4760 SNPs, two individuals) to 0.97 (4760 and 

1098 SNPs, complete dataset). Sample sizes of two, five, and ten resulted in visibly lower 

estimates of Mantel’s r than larger sample sizes, and tended to have both larger 

interquartile ranges and more extreme outliers (Figure 3.4). Sample sizes of 15 and above 

resulted in estimates of Mantel’s r that were consistently close to Mantel’s r calculated 

from the complete dataset. For all SNP panels, Mantel’s r calculated using the complete 

dataset was high (r = 0.92, 0.96, 0.97, for 339, 1098, and 4760 SNPs, respectively). 

Significant IBD was observed in all subsampled datasets when using all sample sizes 

higher than two individuals, for all SNP datasets (except when using 4760 SNPs and a 

sample size of five, where 99% of subsampled datasets had significant IBD). When using 

a sample size of two, 55% of subsampled datasets had significant IBD when using the 

339 and 1098 SNP panels, and 27% had significant IBD when using the 4760 SNP panel.  

Median coefficients estimated using MLPE mixed models ranged from 5.1E-04 (4760 

SNPs, five individuals) to 7.0E-04 (1098 SNPs, two individuals). Sample sizes of two 

resulted in more variable coefficient estimates than larger sample sizes, with larger 

interquartile ranges and more extreme outliers (Figure 3.5). For all sample sizes larger 

than two, median coefficient estimates were very close to the MLPE coefficient 

calculated using the complete dataset, with little variation and very few outliers. The 

coefficient for the effect of geographic distance was significant for all subsampled 

datasets when using sample sizes higher than two. When using a sample size of two, the 

percentage of subsampled datasets with significant coefficients were as follows: 92% 

using 339 SNPs, 99% using 1098 SNPs, and 93% using 4760 SNPs.   

 

 



62 

 

Table 3.2 Population genetic metrics estimated using all individuals sampled from each 

of seven Parnassius smintheus populations (n=36-40 per population). Estimates were 

derived using each of three SNP datasets of different sizes (339, 1098, and 4760 SNPs), 

where SNP number was increased by changing the level of maximum missing data at 

each locus (15, 20 and 30%, respectively). Metrics included: expected heterozygosity 

(HE) averaged over loci and populations, allelic richness (AR) averaged over loci and 

populations, global FST, the Mantel test coefficient (Mantel r) for the correlation between 

pairwise FST and geographic distance, the number of population clusters detected using 

Geneland, and the number of population clusters detected using the K*Ɛ and K*∅C 

estimators in fastSTRUCTURE. 

 

 339 SNPs 1098 SNPs 4760 SNPs 

HE 0.18 0.19 0.22 

AR 1.32 1.34 1.34 

Global FST  0.061 0.064 0.064 

Mantel r 0.92 0.97 0.97 

Geneland 5 5 6 

K*Ɛ 2 2 2 

K*∅C 4 4 2.5 
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Figure 3.1 Effects of differing samples sizes (number of individuals sampled per 

population) on estimates of allelic richness across a set of seven Parnassius smintheus 

populations. Populations were subsampled 100 times for each sample size of between 

two and 25 individuals per population. Boxes show central 50% of values and the 

median, across subsampled datasets. Tails represent values within 1.5 times the 

interquartile range, and points represent values outside 1.5 times the interquartile range. 

Allelic richness estimated with all available individuals per population (n=36-40) is 

represented with a dashed line. Allelic richness was estimated using three SNP datasets of 

different sizes, generated with different levels of maximum missing data per locus: 339 

SNPs (15% missing data), 1098 SNPs (20% missing data), and 4760 SNPs (30% missing 

data). 
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Figure 3.2 Effects of differing samples sizes (number of individuals sampled per 

population) on estimates of expected heterozygosity across a set of seven Parnassius 

smintheus populations. Populations were subsampled 100 times for each sample size of 

between two and 25 individuals per population. Boxes show central 50% of values and 

the median, across subsampled datasets. Tails represent values within 1.5 times the 

interquartile range, and points represent values outside 1.5 times the interquartile range. 

Expected heterozygosity estimated using all available individuals per population (n=36-

40) is represented with a dashed line. Expected heterozygosity was estimated using three 

SNP datasets of different sizes, generated with different levels of maximum missing data 

per locus: 339 SNPs (15% missing data), 1098 SNPs (20% missing data), and 4760 SNPs 

(30% missing data). 
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Figure 3.3 Effects of differing samples sizes (number of individuals sampled per 

population) on estimates of global FST among seven Parnassius smintheus populations. 

Populations were subsampled 100 times for each sample size of between two and 25 

individuals per population. Boxes show central 50% of values and the median, across 

subsampled datasets. Tails represent values within 1.5 times the interquartile range, and 

points represent values outside 1.5 times the interquartile range. Global FST estimated 

using all available individuals per population (n=36-40) is represented with a dashed line. 

Global FST was estimated using three SNP datasets of different sizes, generated with 

different levels of maximum missing data per locus: 339 SNPs (15% missing data), 1098 

SNPs (20% missing data), and 4760 SNPs (30% missing data). 
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Figure 3.4 Effects of differing samples sizes (number of individuals sampled per 

population) on estimates of Mantel's r, for the correlation between pairwise FST and 

geographic distance, among seven Parnassius smintheus populations. Populations were 

subsampled 100 times for each sample size of between two and 25 individuals per 

population. Boxes show central 50% of values and the median, across subsampled 

datsets. Tails represent values within 1.5 times the interquartile range, and points 

represent values outside 1.5 times the interquartile range.. Mantel's r estimated using all 

available individuals per population (n=36-40) is represented with a dashed line. Mantel's 

r for the correlation between pairwise FST and geographic distance was estimated using 

three SNP datasets of different sizes, generated with different levels of maximum missing 

data per locus: 339 SNPs (15% missing data), 1098 SNPs (20% missing data), and 4760 

SNPs (30% missing data). 
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3.3.3 Population clustering 

The median number of populations identified using Geneland (for the highest likelihood 

run for each of ten subsampled datasets per sample size) ranged from three (4760 and 339 

SNPs, five individuals) to six (4760 SNPs, complete dataset). Lower sample sizes tended 

to result in fewer populations being identified, although the importance of sample size 

varied depending on which SNP panel was used (Figure 3.6). For the 339 SNP panel, 

sample sizes of 15, 20 and 25 were equivalent both in their median estimate of population 

number and their interquartile ranges, with a median overall estimate equal to the number 

of populations identified in the complete dataset. For the 1098 SNP panel, sample sizes of 

20 and 25 were equivalent to the complete dataset, with almost no variation (with the 

exception of a single outlier each) among subsampled datasets. The 4760 SNP panel 

produced more variable results. No subsample dataset resulted in a median number of 

populations identified equal to that of the complete dataset, and sample size was not 

predictive of interquartile range.  

Median K*Ɛ (the number of populations identified using fastSTRUCTURE that 

maximized maximum likelihood) ranged from two (for almost all cases) to three (all SNP 

panels, two individuals). For sample sizes of ten and above for all SNP panels, there was 

no variation in the value of K*Ɛ identified across replicates (Figure 3.7). The estimated 

value of K*∅C was more variable both across different sample sizes and SNP panels. Each 

increase in sample size resulted in an increase in the number of populations identified up 

to the number of populations identified using the complete dataset (Figure 3.8). The 

exception to this was when using the 4760 SNP dataset, where the number of populations 

identified using the complete dataset was lower than when using sample sizes of 15, 20, 

or 25 individuals.  
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Figure 3.5 Effects of differing samples sizes (number of individuals sampled per 

population) on estimates of the coefficient of the relationship between pairwise FST and 

geographic distance estimated with MLPE mixed models, among seven Parnassius 

smintheus populations. Populations were subsampled 100 times for each sample size of 

between two and 25 individuals per population. Boxes show central 50% of values and 

the median, across subsample datasets. Tails represent values within 1.5 times the 

interquartile range, and points represent values outside 1.5 times the interquartile range. 

The coefficient as estimated using all available individuals per population (n=36-40) is 

represented with a dashed line. The MLPE mixed model coefficient was estimated using 

three SNP datasets of different sizes, generated with different levels of maximum missing 

data per locus: 339 SNPs (15% missing data), 1098 SNPs (20% missing data), and 4760 

SNPs (30% missing data). 
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Figure 3.6 Effects of differing samples sizes (number of individuals sampled per 

population) on the number of population clusters identified using Geneland for seven 

Parnassius smintheus populations. Populations were subsampled 10 times for each 

sample size of between two and 25 individuals per population, and run for 10 iterations. 

The modal number of populations identified along the Monte Carlo chain was identified 

for the best (i.e., maximum likelihood) iteration. The number of population clusters 

estimated using all available individuals per population (n=36-40) is represented with a 

dashed line. The number of population clusters was estimated using three SNP datasets of 

different sizes, generated with different levels of maximum missing data per locus: 339 

SNPs (15% missing data), 1098 SNPs (20% missing data), and 4760 SNPs (30% missing 

data). Boxes show central 50% of values and the median. Tails represent values within 

1.5 times the interquartile range, and points represent values outside 1.5 times the 

interquartile range. 
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Figure 3.7 Effects of differing samples sizes (number of individuals sampled per 

population) on the number of population clusters identified using the K*Ɛ estimator in 

fastSTRUCTURE for a set of seven Parnassius smintheus populations. Populations were 

subsampled 10 times for each sample size of between two and 25 individuals per 

population, and run for 10 iterations. K*Ɛ (the number of populations that maximizes the 

maximum likelihood of the model) was estimated using the chooseK.py function in 

fastSTRUCTURE. The number of populations clusters estimated using all available 

individuals per population (n=36-40) is represented with a dashed line. The number of 

population clusters was estimated using three SNP datasets of different sizes, generated 

with different levels of maximum missing data per locus: 339 SNPs (15% missing data), 

1098 SNPs (20% missing data), and 4760 SNPs (30% missing data). Boxes show central 

50% of values and the median, across subsample datasets. Tails represent values within 

1.5 times the interquartile range, and points represent values outside 1.5 times the 

interquartile range. 
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Figure 3.8 Effects of differing samples sizes (number of individuals sampled per 

population) on the number of population clusters identified using the K*∅C estimator in 

fastSTRUCTURE for a set of seven Parnassius smintheus populations. Populations were 

subsampled 10 times for each sample size of between two and 25 individuals per 

population, and run for 10 iterations. K*∅C (the number of populations required to explain 

nearly all of the ancestry in the dataset) was estimated using the chooseK.py function in 

fastSTRUCTURE. The number of populations clusters estimated using all available 

individuals per population (n=36-40) is represented with a dashed line. The number of 

population clusters was estimated using three SNP datasets of different sizes, generated 

with different levels of maximum missing data per locus: 339 SNPs (15% missing data), 

1098 SNPs (20% missing data), and 4760 SNPs (30% missing data). Boxes show central 

50% of values and the median, across subsampled datasets. Tails represent values within 

1.5 times the interquartile range, and points represent values outside 1.5 times the 

interquartile range. 
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3.4 Discussion 

The power to accurately estimate population genetic parameters is constrained both by 

the number and information content of molecular markers, and the number of individuals 

sampled (Hale et al., 2012; Morin et al., 2009; Schopen, Bovenhuis, Visker, & Arendonk, 

2008). Using more molecular markers, in theory, allows for accurate analyses at lower 

sample sizes (Landguth et al., 2012); based on this premise, large SNP panels developed 

using next-generation sequencing (including RADseq) were proposed to allow for the use 

of much lower sample sizes than possible when using markers such as microsatellites 

(Willing et al., 2012). Here, SNP panels developed using double digest RADseq did not 

compensate for extremely low sample sizes (two individuals per population) for any type 

of analysis. For most analyses, a sample size of 10 was the minimum for results to be 

comparable with larger sample sizes (~40 individuals), and population clustering 

analyses required at least 15 individuals per population. SNP dataset size did not affect 

minimum sample size for any analysis, indicating for this range of dataset size (339-4760 

SNPs) the number of individuals sampled is much more important than the number of 

genetic markers for determining the outcome of analyses. 

3.4.1 Genetic diversity and differentiation  

For estimating measures of genetic diversity, different minimum sample sizes have been 

reported for different measures and in different systems. In a study of two Acacia species, 

sample sizes of two were sufficient to estimate allelic richness and observed 

heterozygosity, but sample sizes of six or eight (depending on population) were required 

to estimate expected heterozygosity (Nazareno et al., 2017). Using two populations of the 

beetle Harmonia axyridis and 3000 SNPs, sample sizes of four were the minimum 

required to estimate allelic richness and observed and expected heterozygosity (expect in 

one population, where a sample size of six was required for observed heterozygosity) (Li 

et al., 2020). My results were more consistent with Li et al. (2020), with sample sizes of 

two being too low and sample sizes of five and higher producing estimates reasonably 

consistent with the estimates from the complete sample. For allelic richness particularly, 

my results suggest that using sample sizes of ten and higher with 1098 or more SNPs is 
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produces the most accurate results, but sample sizes as low as five result in slightly lower 

but overall very similar estimates. 

Sample sizes as low as two individuals per population have been reported to be sufficient 

to accurately estimate global FST when using at least 1098 SNPs (Nazareno, Bemmels, 

Dick, & Lohmann, 2017; Willing et al., 2012). Here, a sample size of two resulted in 

higher median FST and markedly greater variance in FST than sample sizes of five and 

higher, even when using 1098 or more SNPs. A notable difference between the design of 

my study and those concluding that two individuals are sufficient for FST estimation is 

that those studies included only two empirical (Nazareno et al., 2017) or modelled 

(Willing et al., 2012) populations, whereas I examined differentiation among seven 

populations. While this means that I necessarily included more individuals in total in my 

analyses (e.g., a total of 14 rather than four individuals, for a sample size of two 

individuals per population), estimating differentiation among more than two populations 

allows for additional sources of variation. With more populations considered, there is a 

greater overall probability that a sample, particularly a small one, from any one 

population will have outlying allele frequencies; this would result in greater variation 

among subsampled datasets than might be observed in a simpler, two-population system. 

At higher sample sizes the chance for outlying subsamples decreases, and my results 

become more consistent with previous studies that included fewer populations: for 

sample sizes of five and above (and particularly above ten), global FST is consistent 

across both sample size and SNP number. 

For accurate estimation of FST using the Weir and Cockerham method (as here) both high 

(>0.4) and low (<0.01) levels of true population differentiation require somewhat larger 

minimum sample sizes (six individuals) than moderately differentiated (0.05-0.2) 

populations (Nazareno et al., 2017). For populations with low genetic differentiation, low 

sample sizes can result in genetic differentiation not being detected, and for highly 

differentiated populations low sample sizes are more likely to overestimate differentiation 

(Nazareno et al., 2017). Among the populations of P. smintheus examined in my study, 

global FST estimated using the complete dataset ranged from 0.061 to 0.064, which falls 
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within the moderately differentiated range where low sample sizes are less likely to result 

in over- or under-estimates of FST. 

The minimum sample size required to estimate IBD depended both on the test used, and 

whether the strength, or simply the significant presence, of IBD was estimated. The 

capacity to detect significant IBD (i.e., p < 0.05) was more robust to low sample sizes 

than the capacity to estimate the strength of IBD, (i.e., Mantel’s r or MLPE model 

coefficients). The effect of sample size on the quantification of IBD has not been 

previously studied in detail. In simulated populations, sample size did not affect the 

estimation of the strength of isolation by resistance using partial Mantel tests (Landguth 

et al., 2012); however, the smallest sample size examined in that study was ten 

individuals per population. While I found that using a sample size of ten did result in 

somewhat more variable and lower Mantel’s r than larger sample sizes, the effect of a 

small sample size was much more noticeable when using sample sizes of two and five 

individuals. Nonetheless, in many cases (i.e., when using MLPE mixed models, or 

estimating the significance of IBD using Mantel tests), I found that a sample size of five 

individuals per population was sufficient regardless of the number of SNPs. However, I 

note that the correlation between geographic and genetic distance among my sampled 

populations was unusually high, with values of Mantel’s r approaching one (i.e., perfect 

correlation) when using all samples per population. Among populations with weaker 

IBD, higher sample sizes may be required to more accurately estimate pairwise genetic 

distances and allow IBD to be detected.  

3.4.2 Population clustering 

For any molecular marker, the accuracy of population clustering is improved by 

increasing sample size, and accurate population clustering often requires higher sample 

sizes than analyses of genetic diversity and differentiation (Fumagalli, 2013). For 

example, when using microsatellites sample sizes of 20-30 are routinely recommended 

for estimating genetic diversity metrics (Hale, Burg, & Steeves, 2012; Pruett & Winker, 

2008). The number of individuals per population recommended for population clustering 

varies, but is generally more than 20 individuals and in some cases more than 50 

individuals per population (Bjørnstad & Røed, 2002; Evanno, Regnaut, & Goudet, 2005).  
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For SNPs, the effect of sample size on population clustering has not been extensively 

studied using approaches such as Structure and Geneland. Using assignment approaches 

developed by Paetkau et al. (2004), the assignment of individuals of the lobster Homarus 

americanus to their source populations was assessed using large SNP panels (3000 SNPs) 

and sample sizes of ten to 34 individuals (Benestan et al., 2015). Assignment success was 

poor at ten individuals, and at the maximum of 34 assignment was improved but 

approximately 20% of individuals were still not successfully assigned to their source 

population. Here, I found that the minimum sample size needed to accurately estimate the 

number of distinct populations depended on the approach. When using the K*∅C estimator 

of fastSTRUCTURE, the effect of sample size was consistent with Benestan et al. (2015), 

where sample sizes of 20 and above resulted in population numbers close to that 

calculated from the complete dataset, but still with imperfect clustering; here, the number 

of populations identified was always fewer than the total number of populations sampled 

(seven). A similar pattern was seen when using Geneland, but with a lower minimum 

sample size of 15 individuals.  

Overall, the number of distinct populations I identified was greater when using Geneland 

compared to either fastSTRUCTURE estimator. Estimates derived from Geneland and 

fastSTRUCTURE are rarely directly compared; when both were used to examine the 

population structure of Osteoglossum species (Souza et al., 2019) and Arapaima gigas 

populations (Oliveira et al., 2020), the same number of populations were identified using 

both approaches. Geneland is more frequently used in conjunction with the original 

Structure approach, especially when the use of Structure is not limited by a large SNP 

dataset. The number of populations identified are often similar between the two 

approaches (Coulon et al., 2008; Pometti, Bessega, Saidman, & Vilardi, 2014). While 

fastSTRUCTURE was developed to allow for similar but faster population assignment 

(and therefore allowing the use of large SNP datasets), it does not incorporate all of the 

model components included in Structure (Raj et al., 2014). Notably, it does not have an 

option to include the population of origin as a prior, whereas Geneland uses sampling 

coordinates as a prior (Guillot et al., 2005; Raj et al., 2014), which may be contributing to 

the greater number of populations identified here when using Geneland. 
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3.4.3 Recommendations for minimum sample size 

The minimum sample size required to accurately assess genetic differentiation, diversity, 

and population clustering depends on the study system: in addition to the number and 

variability of the molecular markers used (Bjørnstad & Røed, 2002; Nazareno et al., 

2017), factors such as the number of populations sampled and the true degree of genetic 

structuring among populations affect the necessary minimum sample size (Flesch et al., 

2018). For example, my results suggest that including more populations may increase the 

required minimum sample size when assessing genetic differentiation (e.g., as compared 

to Nazareno et al., 2017 and Willing et al., 2012). Differences among study systems (i.e., 

the number of populations sampled and their degree of genetic differentiation) make it 

difficult to provide universal recommendations for a minimum sample size across study 

systems and analyses. When trying to minimize sampling, one option is to conduct a pilot 

study to examine how sample size affects the outcomes of all anticipated analyses, and to 

choose the highest minimum sample size across analyses. Given that the number of 

populations sampled affects this outcome, this pilot study would have to include many if 

not all of the populations included in the final analyses. This approach would be useful 

for populations in long term studies where sampling is expected to reoccur. When 

sampling occurs only once, and a low sample size is desirable (due to factors such as 

cost, difficulty in locating individuals, or when studying species at risk), the choice of 

sampling size should consider the number of populations sampled and the expected 

degree of genetic differentiation among populations (with increased sample size required 

when genetic differentiation is expected to be lower). For systems like the P. smintheus 

populations examined here, where multiple populations are sampled and genetic 

differentiation is detectable but not high, the following sample sizes may be used as a 

baseline when using large SNP datasets. If only analyses of differentiation and diversity 

are of interest, five individuals per population will likely be sufficient in many systems. If 

analyses of IBD will be conducted, sample sizes should be increased to 10-15 

individuals. Likewise, if population clustering analyses will be conducted, using fewer 

than 15 individuals seems likely to underestimate the number of clusters detected.  
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Chapter 4  

4 Weather and landscape affect genomic diversity and 
differentiation in the alpine butterfly Parnassius 
smintheus 

4.1 Introduction 

A population's genetic diversity both predicts its evolutionary potential and reflects its 

history. Quantifying patterns of genetic diversity is therefore useful in itself when 

surveying specific populations, such as those of conservation or management concern, 

and understanding their likelihood of persisting under changing conditions (Lande, 1988). 

But, patterns of genetic diversity can also be used more broadly to test hypotheses about 

what environmental factors, such as weather or habitat amount, have shaped or continue 

to shape a population’s dynamics (e.g., population size, rates of immigration/emigration, 

birth/death rates; Manel, Schwartz, Luikart, & Taberlet, 2003). This approach is 

especially useful when genetic samples are more easily collected than behavioral or 

demographic data; because a population’s dynamics ultimately shape genetic diversity, 

the factors affecting population dynamics can be indirectly identified through those that 

are found to significantly predict patterns of genetic diversity (Beichman, Huerta-

Sanchez, & Lohmueller, 2018; Manel et al., 2003). Understanding what factors and 

processes affect population dynamics is important from a conservation perspective, 

where it is critical to understand the conditions necessary to maintain populations at risk. 

By analyzing data from natural populations we can also support or refute hypotheses 

about which environmental factors are important in shaping population dynamics, and 

which of these relationships are generalizable across taxa and which are species-specific.  

Rates of dispersal and fluctuations in population size are both important demographic 

factors that drive patterns of genetic diversity in natural populations. When loci are not 

under balancing selection, genetic diversity tends to be lost over time; alleles are lost 

from a population when, by chance, they are not passed to the next generation (i.e., 

individuals carrying an allele do not reproduce, their progeny do not survive, or that allele 

is not inherited by surviving progeny; Wright, 1931). This loss of genetic diversity, called 
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genetic drift, is mediated by population size. Smaller populations undergo drift more 

quickly, as individual chance events have a greater proportional impact when there are 

fewer individuals reproducing (Nei, Maruyama, & Chakraborty, 1975). Populations often 

experience higher rates of drift than would be expected for their census (i.e., total count) 

population size (Nei et al., 1975). Factors that increase the pace of drift include unequal 

sex ratios, non-random mating (Frankham, 1995), and historical fluctuations in 

population size (Vucetich, Waite, & Nunney, 1997); these factors result in an “effective” 

population size that is almost always smaller than the census (i.e., total count) population 

size (Nei et al., 1975). 

In addition to lower genetic diversity within populations, a set of populations undergoing 

drift will become more different from each other over time as alleles are lost 

independently and by chance from each of the separate populations (Wright, 1943). The 

effects of drift can be countered by gene flow, where alleles move among populations 

(Slatkin, 1987). Dispersal, or the movement and settlement of individuals away from 

their natal populations, results in the movement of alleles among populations and is the 

basis for gene flow. Higher rates of dispersal are thus associated with both lower genetic 

differentiation among populations, as those populations will tend to share more alleles, 

and higher genetic diversity within populations, as alleles lost through drift are replaced 

by alleles introduced by gene flow (Bohonak, 1999). 

One key environmental factor that can influence population size and dispersal is land 

cover. Land cover refers to the physical material (e.g., vegetation such as forest or 

grassland, bare rock or earth, or open water) that covers the land surface in a particular, 

spatially delimited area  (Kerr & Ostrovsky, 2003). The amount and distribution of land 

cover surrounding a population, both locally and regionally, is a key determinant of the 

availability of suitable habitat (Store & Jokimäki, 2003), and the carrying capacity for 

that species (e.g., Livolsi, Williams, Coluccy, & Dibona, 2021). Land cover also 

contributes to patterns of dispersal. For many species, land cover facilitates or impedes 

movement among populations (Henein & Merriam, 1990). Individuals may move more 

readily or successfully through habitat that provides necessary resources (e.g., food, 

water, shelter from predators; Henein & Merriam, 1990; Pérez-Espona, McLeod, & 
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Franks, 2012), whereas other types of land cover may reduce movement or survival by 

presenting a physical barrier to movement or by simply lacking resources (e.g., Castillo et 

al., 2016; Funk et al., 2005).  

Weather is both a spatially and temporally varying factor that can affect population size 

and dispersal. Local weather conditions can be advantageous or detrimental for survival 

or reproduction of a particular species, which can drive population size up or down, 

respectively (e.g., Chase, Nur, & Geupel, 2005; Lewellen & Vessey, 1998). Weather can 

directly reduce or enhance individual movement; for example, in the butterfly Parnassius 

mnemosyne both average rates of emigration and movement within habitat patches 

increases with temperature and solar radiation (Kuussaari, Rytteri, Heikkinen, Heliölä, & 

von Bagh, 2016). As with land cover, there are long-term patterns of weather (i.e., 

climate) that vary in predictable ways among populations, resulting in geographic 

variation in population size and dispersal. Weather is also variable across different time 

scales; in some cases, this variation is cyclical (e.g., in association with El Niño and other 

climatic oscillations), and in others is stochastic (e.g., isolated severe weather events).  

This variability in weather across years can drive cycles of population growth and 

decline; more variable weather conditions may then be associated with greater variability 

in population size and a lower resulting effective population size. This is especially true 

for insect species with short and/or non-overlapping generations where a single year with 

poor conditions can result in a population size collapse. Weather is an important driver of 

population growth in insects including the mountain pine beetle Dendroctonus 

ponderosae (Preisler, Hicke, Ager, & Hayes, 2012), the seed feeding bug Lygaeus 

equestris (Solbreck, 1991), the spittlebug Philaenus spumarius (Halkka, Halkka, Halkka, 

Roukka, & Pokki, 2006), and in butterfly species including the cabbage white Pieris 

brassicae (Roy, Rothery, Moss, Pollard, & Thomas, 2001) and the Rocky Mountain 

Apollo Parnassius smintheus (Roland & Matter, 2016). In P. spumarius and P. 

smintheus, the fluctuations in weather believed to be driving fluctuations in population 

size are associated with long-term climate cycles (the North Atlantic Oscillation and the 

Pacific Decadal Oscillation, respectively). The periodic nature of these climate cycles and 

the associated periodic unfavourable conditions mean that observed declines in 

population size are likely to be experienced repeatedly rather than as a one-time event.  
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A population network of the alpine butterfly Parnassius smintheus in western Alberta, 

Canada has been the subject of a long-term mark recapture study (since 1995), providing 

insight into how landscape and weather affect dispersal and population growth. Dispersal 

rates are associated with land cover (Keyghobadi, Roland, & Strobeck, 1999); based on 

both recapture frequency and genetic distances, P. smintheus disperses less frequently 

through forest than through meadow. Population growth rates are associated with early-

winter weather (Roland & Matter, 2016). Periodic network-wide population bottlenecks 

have been observed in these populations and are likely driven by early-winter egg 

mortality during particularly cold or warm years (Matter, Doyle, Illerbrun, Wheeler, & 

Roland, 2011; Roland & Matter, 2013, 2016); eggs freeze when exposed to temperatures 

below -28 °C if they are not protected by an insulating layer of snow. This occurs both in 

cold years with an early onset of low temperatures prior to sufficient snowfall, as well as 

in warm years where frequent thaws reduce snow cover (Matter et al., 2011; Roland & 

Matter, 2013, 2016); Additionally, in warm years with little snow cover eggs exposed to 

warm temperatures for several consecutive days in early winter may emerge prematurely 

(Matter et al., 2011; Roland & Matter, 2013, 2016). These bottlenecks are associated with 

changes in genetic diversity and differentiation; patterns of isolation by distance broke 

down as pairwise genetic differentiation increased after two documented bottlenecks, 

while allelic richness decreased immediately after the more severe of the two documented 

bottlenecks.  

These documented relationships among weather, demography, and genetics of P. 

smintheus are based on a geographically restricted set of populations; importantly, 

weather varies only among years with little spatial variation. Here, I explore whether 

these relationships are generalizable at a larger scale, among populations separated by 

tens of kilometers. I test hypotheses about which, if any, landscape and weather variables 

contribute to patterns of genetic differentiation and diversity in P. smintheus, based on 

the variables identified in previous research. I predict that weather variables predicted to 

be associated with higher P. smintheus egg survival (moderate average temperature, 

fewer extreme temperature events, and greater snow cover) will be associated with higher 

genetic diversity and lower genetic differentiation, as a result of less frequent and/or less 

severe bottlenecks and overall more stable population size. I predict that higher total 
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amounts of open landcover surrounding sampling sites will reflect better habitat quality 

and quantity and support larger populations, and thus be associated with greater diversity 

and lower differentiation. I also predict that sampling sites with greater connectivity to 

surrounding patches of open habitat will allow greater dispersal among populations, thus 

maintaining higher genetic diversity and lower differentiation as alleles are exchanged. I 

thereby test the relative importance of weather versus landscape variables on genetic 

differentiation and diversity, as well as the relative importance of mean weather 

conditions over time versus variability and extremes in those conditions. 

4.2 Methods 

4.2.1 Genetic data collection  

Parnassius smintheus individuals were collected from 21 alpine meadows in western 

Alberta in 1995, 1996 and 1999. Sampling sites were separated by ~6 to 120 km. The 

sites were located in three distinct geographic regions: Banff (n=8), West Kananaskis 

(n=7), and East Kananaskis (n=6). Adults were captured using hand nets and whole body 

samples were stored in glassine envelopes at -80 °C until DNA extraction. I used DNeasy 

blood and tissue kits (Qiagen, Germantown, MD) to extract DNA from the head and 

thorax of 501 individuals. I conducted double digest restriction site associated DNA 

sequencing using a starting amount of 200 ng of DNA per individual. I digested DNA 

with the restriction enzymes NlaIII and EcoRI-HF (New England Biolabs, Ipswich, MA). 

I tagged restricted DNA as per Rašić, Filipović, Weeks, & Hoffmann (2014) before 

pooling and size selecting for fragments between 200 and 500 bp using Sera-Mag solid-

phase reversible immobilization beads (SPRI; GE Healthcare Life Sciences, Chicago, 

IL). I amplified the size selected library by PCR (see Chapter 2 for PCR conditions). Size 

selection was verified using an Agilent 2100 Bioanalyzer before libraries were sequenced 

on an Illumina HiSeq 2500.  

I called single nucleotide polymorphisms (SNPs) using the Stacks pipeline (Catchen, 

Hohenlohe, Bassham, Amores, & Cresko, 2013) with the following parameter values: a 

minimum stack depth of 3 reads (m), a maximum of 3 nucleotides differing between 

reads in an assembled stack (n), a maximum difference of 2 nucleotides between 
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combined stacks (M), and a maximum difference of 4 nucleotides between assembled 

stacks and additional aligned reads (N). I filtered the SNP dataset to exclude individuals 

with low coverage (less than 50% of loci genotyped), and subsequently by data coverage 

per locus (loci with less than 80% of individuals genotyped were excluded).  

4.2.2 Population genetic variables 

With the filtered SNP dataset, I estimated two variables that represent genetic diversity 

and differentiation at the level of individual populations, respectively: expected 

heterozygosity and distance-weighted mean Nei’s D (Nei, 1972). I chose Nei’s D 

specifically because it is not dependent on heterozygosity as are other measures of 

genetic differentiation (e.g., FST; Meirmans & Hedrick, 2011). I used the R (R Core Team 

2015) package pegas (Paradis, 2010) to determine the percent of loci in each population 

that departed from Hardy-Weinberg equilibrium. I used the R package diveRsity 

(Keenan, McGinnity, Cross, Crozier, & Prodöhl, 2013) to calculate the mean expected 

heterozygosity (HE) across loci. I used the R package adegenet (Jombart, 2008; Jombart 

& Ahmed, 2011) to calculate pairwise Nei’s D between each population and all other 

sampled populations. For each population, I estimated the mean pairwise Nei’s D to all 

other populations in the dataset, weighted by the geographic distance to each other 

population (i.e., mean distance-weighted Nei’s D). This provided a site-specific, distance-

weighted measure of genetic differentiation. The weights were set as: e-d, where d is the 

pairwise geographic distance in kilometers between the centroids of sampling sites.  

4.2.3 Landscape data 

I obtained landcover maps as 25x25m rasters from the Canadian Forest Service’s Earth 

Observation for Sustainable Development of Forests. I used ArcMap to combine all high 

elevation meadow and barren rock into a single category of “open” landcover. All other 

landcover types were binned to a second category. This includes forests, which restrict 

movement in mark-recapture studies, and areas below elevations of 1900m where P. 

smintheus is not typically observed regardless of landcover type (Guppy & Shepard, 

2001). I extracted landcover rasters from a 1, 2, and 5 km radius around the centroids of 

each sampling site using the clip function in ArcMap. I used FragStats to calculate the 
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percent of open landcover (PLAND) and the mean distance between open patches for 

each site (ENN_MN).  

4.2.4 Weather data 

For each sampling site, I obtained modelled historical weather data from Natural 

Resources Canada’s interpolated spatial models (Hutchinson et al., 2009). I chose a set of 

weather variables representing several hypotheses of how weather could affect population 

genetic variables, based on variables that predict changes in P. smintheus population 

growth rates at a smaller spatial scale (Table 4.1). I summarized these variables for each 

site across all available years of data (1960-2015), as well as for the 5, 10, and 20 years 

preceding sampling in 1995.  

I primarily examined early-winter (November) weather variables because of their 

importance in determining P. smintheus population growth (Roland & Matter, 2016). I 

also included two variables that had been previously examined and did not predict 

changes in P. smintheus population size: July temperature and February snow depth 

(Roland & Matter, 2016). I included July temperature to determine whether any trends in 

November temperature could be differentiated from temperature during another 

biologically significant time of the year (i.e., flight season), and February snow depth to 

examine whether any trends in November snow depth were specific to November or 

would be observed throughout the winter.  

I obtained 1 km gridded snow depth estimates from the National Operational Hydrologic 

Remote Sensing Center’s SNODAS (snow data assimilation system) model (National 

Operational Hydrologic Remote Sensing Center, 2004). The SNODAS model is updated 

daily using a suite of modelled and remotely sensed variables including snow cover, 

precipitation, temperature, and solar radiation. I extracted snow depth from the grid cells 

containing the centroids of each sampled meadow for all years of available data (2010-

2019). Although the SNODAS snow depth data were collected after the genetic data, it 

seems reasonable to extrapolate that meadows (as a result of their geography) are likely 

to experience similar relative patterns of snowfall even if average snowfall may be 

shifting over time. 
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4.2.5  Models 

I used all landscape and weather variables individually as fixed effects in separate models 

for each of two response variables: expected heterozygosity and Nei’s D. For all 

predictors other than mean November temperature, I predicted a linear relationship 

between the predictor and the genetic response variable. However, I hypothesized that 

moderate mean November temperatures would provide the best conditions for P. 

smintheus larval survival, with survival being reduced by both extreme warm and cool 

conditions (Roland & Matter, 2016). I thus used a quadratic model of the form mean 

November temperature + (mean November temperature) 2~Nei’s D or HE.  

I built linear models in R, and used the MuMIn package to calculate corrected Akaike’s 

Information Criterion (AICC). I considered models within two AICC of the best (i.e., 

lowest AICC) model to also have strong support, and models within 4 of the best model to 

have some support (Burnham & Anderson, 2002). I fit models using maximum likelihood 

estimation for assessing model performance with AICC, and again with restricted 

maximum likelihood to estimate model parameters. After running models with all 

predictors individually, I also examined models with two predictor variables: the best 

(i.e., lowest AICC) landscape and the best weather variables of interest (i.e., November 

weather variables). I compared the AICC of these models to the models with the 

individual best landscape and weather predictors to determine whether the combined 

model including both weather and landscape variables better explained the data than 

models with single predictors. I also compared the proportion of variance explained (R 2) 

by the best landscape, best weather, and combined models.  

I examined the residuals of all models that performed better than the null for linearity, 

normality, and equal variance. I also calculated Moran’s I using the package ape (Paradis 

& Schliep, 2019) to test for spatial autocorrelation in residuals. I used the R package 

nlme to examine the same set of fixed effects with the addition of region (Banff, East 

Kananskis, and West Kananaskis) as a random effect.  
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Table 4.1 A summary of all weather and landcover variables used as predictors in linear 

models explaining genetic diversity and differentiation in populations of Parnassius 

smintheus. All factors hypothesized to result in higher frequency of demographic 

bottlenecks would be expected to reduce effective population size, and therefore lead to 

reduced genetic diversity and greater genetic differentiation. 

Variable  Category Definition Associated Hypothesis 

Mean 
November 
temperature 
(℃) 

Weather The mean temperature 
recorded daily for 
November, averaged 
across all November days 
1960-2015 

Moderate November 
temperatures maintain P. 
smintheus population size by 
preventing egg/larval 
mortality in early winter.   

Mean 
November 
daily high 
(℃) 

Weather The highest temperature 
recorded daily in 
November, averaged 
across all November days 
1960-2015. 

Warmer November 
temperatures may maintain P. 
smintheus population size by 
preventing egg freezing. 
However, warm temperatures 
associated with snow melt, 
increased metabolic rate or 
precocious hatch may also 
increase the risk of mortality 
and therefore bottlenecks.    

Mean 
November 
daily low 
(℃) 

Weather The lowest temperature 
recorded daily in 
November, averaged 
across all November days 
1960-2015. 

Sites with colder nighttime 
temperatures on average may 
carry greater risk of egg 
freezing, and therefore of 
bottlenecks.  

Mean 
November 
snow depth 
(m) 

Weather The daily November 
snow depth as modelled 
by SNODAS, averaged 
across all November days 
2010-2018. 

Snow cover insulates eggs 
from supercooling 
temperatures. Sites with 
greater snow cover should 
experience fewer bottlenecks 
in population size. 

November 
extreme 
temperature 
events 

 

Weather The total number of 
times temperatures in 
November were observed 
above 6 °C or below -28 
°C from 1960 to 2015. 

November temperatures 
above 6 °C or below -28 °C 
may result in higher egg 
mortality (see below).  
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Table 4.1 Continued    

November 
extreme high 
temperature 
(℃) 

Weather The total number of 
times temperatures in 
November were observed 
above 6 °C from 1960 to 
2015. 

Same hypothesis as for 
‘Mean November daily high’, 
but the number of extreme 
events may be more 
important that the mean 
value.  November 
temperatures above 6 °C 
specifically are associated 
with negative population 
growth.   

November 
extreme low 
temperature 
(℃)  

Weather The total number of 
times temperatures in 
November were observed 
below -28 °C from 1960 
to 2015. 

Same hypothesis as for 
‘Mean November daily low, 
but the number of extreme 
events may be more 
important that the mean 
value. Parnassius smintheus 
eggs freeze below -28 °C.   

Lowest mean 
November 
snow depth 
(m) 

Weather The mean snow depth as 
modelled by SNODAS 
across all days in 
November, for the year 
between 2010 and 2018 
with the lowest mean 
November snow depth. 

Same hypothesis as for 
‘Mean November snow 
depth’, but extreme lows in 
snow cover may be more 
important than overall means.  

Percent 
landscape as 
open (%) 

Landscape For a 5 km buffer around 
the centroid of each 
sampled meadow, the 
percent of the landscape 
composed of high 
elevation open land 
cover.  

Open land cover facilitates 
dispersal. Greater amounts of 
open land cover should 
maintain greater genetic 
diversity and reduce genetic 
differentiation between sites.  

Mean of 
Euclidean 
distance 
between open 
patches (m) 

Landscape For a 5 km buffer around 
the centroid of each 
sampled meadow, the 
mean distance between 
neighbouring patches of 
high elevation open land 
cover.  

Open land cover facilitates 
dispersal. Patches of open 
land cover that are more 
contiguous and less 
fragmented should allow for 
greater dispersal, maintaining 
genetic diversity and 
reducing differentiation 
between sites.  
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4.3 Results 

4.3.1 Genetic data 

I sequenced 501 P. smintheus individuals and generated an initial permissive SNP dataset 

filtering for 60% coverage at each locus. Using this initial dataset, individuals with data 

at fewer than 50% of the 12 291 loci were dropped, leaving 456 individuals for further 

analysis. The final sample size per population ranged from 8 to 39 individuals (Table 

4.2). Loci with genotypes for at least 80% of these individuals were retained for analysis, 

for a final dataset of 1098 SNPs.  

On average, 15% of all loci across all populations were out of Hardy-Weinberg 

equilibrium. The lowest observed proportion of loci out of equilibrium in any population 

was 7%, and the highest was 28%. On average, loci in Banff and West Kananaskis 

populations were more likely (both at 16%) than in East Kananaskis populations (11%) to 

be out of equilibrium. This was typically (for ~75% of loci) due to an excess of 

homozygotes. Expected heterozygosity ranged between 0.11 – 0.2, and mean distance-

weighted Nei’s D ranged between 0.0075 – 0.0401 (Table 4.2).  
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Table 4.2 Basic information for each of 21 Parnassius smintheus populations (Nei’s D: 

mean distance-weighted Nei’s D; HE: expected heterozygosity; HWE: proportion of loci 

out of Hardy-Weinberg equilibrium). Populations were sampled from three regions: 

Banff (B), East Kananaskis (EK), and West Kananaskis. Nei’s D, HE, and HWE were 

estimated from 1098 SNP loci. 

 

Population Region Sample 
size 

Nei's D HE HWE 

Cascade 1 B 11 0.015 0.17 0.08 

Flint Peak B 38 0.012 0.18 0.22 

FortyMile Creek B 20 0.015 0.17 0.13 

North Cascade 1 B 16 0.016 0.17 0.15 

Panther Mtn B 36 0.009 0.19 0.22 

Mount Peechee B 9 0.040 0.12 0.07 

Snow Creek B 32 0.009 0.19 0.19 

Stony Creek B 38 0.010 0.20 0.24 

Mount Baldy EK 13 0.030 0.14 0.08 

E (Lusk Ridge) EK 13 0.030 0.15 0.09 

Forget-Me-Not Ridge EK 20 0.018 0.17 0.11 

Moose Mtn EK 19 0.015 0.14 0.16 

Powderface Ridge EK 20 0.014 0.17 0.13 

Volcano Ridge EK 9 0.018 0.12 0.07 

Elk WK 8 0.027 0.11 0.08 

Fortress Mtn WK 39 0.011 0.17 0.28 

Mount Kent WK 36 0.008 0.17 0.24 

Mount Kidd WK 12 0.013 0.13 0.09 

Mist Mtn WK 12 0.027 0.15 0.08 

Pigeon Mtn WK 19 0.027 0.16 0.12 

Wedge WK 36 0.012 0.17 0.23 
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4.3.2 Landscape and weather  

The average temperature in November among all sites and all years of available data was 

-6.4 °C; the warmest site had an average November temperature of -4.8 °C and the 

coolest site had an average temperature of -7.8 °C. (Supplemental Table 4.1). Mean 

November snow depth ranged from 17.5 cm to 63.5 cm, with an average of 34.8 cm. 

Several pairs of weather variables were highly correlated (r>0.7). These included: July 

and November daily highs (r=0.96); July and November daily lows (r=0.89); mean 

February snowfall and mean November snowfall (r=0.93); minimum February snowfall 

and minimum November snowfall (r=0.78); mean and minimum November snowfall 

(r=0.78); and mean and minimum February snowfall (r=0.91). The two landscape 

variables (percent total open landscape and mean distance between open patches) were 

moderately correlated (r=-0.56, p=0.0077). In addition, the daily low November 

temperature (i.e., lowest daily temperature averaged across all November days and years) 

was moderately negatively correlated (r=-0.53, p=0.013) with the lowest observed mean 

November snow depth, indicating that sites with higher minimum daily temperatures 

tended to experience more extreme low snow depths.  

4.3.3 Model output 

I considered weather data over varying time spans and landscape data with varying buffer 

sizes; only results for the full time span (all data; 1960-2016) and largest buffer size (5 

km) are presented here, as there were the scales for which the fixed effects best predicted 

genetic distance and heterozygosity (Table 4.3). I also examined models with a random 

effect incorporating region and found no difference compared to models without random 

effects, and so only present here the linear models without random effects. All supported 

linear models were examined for spatial autocorrelation in their residuals, and no spatial 

autocorrelation was found (p=0.2-0.9).  

Expected heterozygosity was best explained by the mean distance between open-cover 

patches, for the landscape in a 5 km radius around each site (Table 4.3). Lower distances 

between patches were associated with higher HE (Figure 4.1). Four additional single 

variable models had some support (i.e., were within 4 AICc of the best model), including 
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mean November daily lows, mean July daily lows, lowest mean November snow depth, 

and lowest February mean snow depth. For mean November and July daily lows, colder 

temperatures were associated with higher HE (Figure 4.1). For the lowest mean November 

and February snow depth, greater snow depth was associated with higher HE (Figure 4.1). 

I examined models combining mean distance between open-cover patches with either 

lowest mean November snow depth or mean November daily lows. Both of these 

combined models were within 2 AICC of the best model and were therefore supported.  

Mean distance-weighted Nei’s D was best explained by the model combining mean 

distance between open-cover patches, and mean November snow depth (Table 4.4). 

Among the single variable models the best supported model was mean November snow 

depth, where greater snow depth was associated with lower genetic distances (Figure 

4.1). One other single variable model – mean distance between open-cover patches – was 

strongly supported (i.e., within 2 AICC of the best model); lower distances between 

patches were associated with lower genetic differentiation. Four additional single variable 

models had some support (i.e., were within 4 AICC of the best model); these included 

lowest mean February snow depth, lowest mean November snow depth, mean February 

snow depth, and mean November daily lows.  

 

 

 

 

 

 

 

 



95 

 

 

Figure 4.1 Relationships between expected heterozygosity or mean distance-weighted 

Nei’s D and their best single predictors (including weather variables only in November) 

for Parnassius smintheus populations. The blue line indicates the predicted variable and 

the grey bar indicates the 95% confidence interval.  
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4.4 Discussion 

Both landscape connectivity and early winter weather explain genetic diversity and 

differentiation in P. smintheus populations. The genetic consequences of population 

collapses putatively driven by early-winter weather have been observed in a smaller scale 

study with time series data (Caplins et al., 2014; Jangjoo, Matter, Roland, & Keyghobadi, 

2016); I demonstrate here that these effects can also be seen in a single, larger scale 

snapshot of populations across Alberta.  

4.4.1 Relative importance of dispersal and population size 
fluctuation 

Landscape connectivity and weather models were both supported as predictors of P. 

smintheus genetic differentiation and diversity. Landscape connectivity primarily reflects 

potential for dispersal, while November temperature and snow depth likely drive changes 

in population size by affecting larval mortality. Based on model performance neither 

dispersal nor changes in population size seem to play a dominant role in shaping genetic 

diversity or differentiation; rather, both have similarly important roles. In other systems, 

the roles of landscape and weather in shaping genetic structure are highly dependent on 

the species and area under study. In some cases, including in the cotton bollworm 

Helicoverpa armigera (Zhang et al., 2018) and the dragonfly Orthetrum coerulescens 

(Herzog & Hadrys, 2017), weather affects population growth (and as a result genetic 

diversity) more strongly than land cover.  

It is often difficult to disentangle the effects of weather from landscape – weather can 

affect the landscape, and the landscape can also affect weather patterns. In Papilio 

machaon and Papilio zelicaon, climate variables such as solar radiation accounted for 

more genetic variation than habitat variables; however, the open, high elevation hilltops 

preferred by the adults are also where total solar radiation tends to be the highest (Dupuis, 

Cullingham, Nielsen, & Sperling, 2019). Similarly, in the Tasmanian devil (Sarcophilus 

harrisii) temperature is a significant predictor of gene flow, but likely because 

temperature affects land cover (e.g., vegetation). For the cyprinid Squalius valentinus 
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strong seasonal fluctuations in weather are important drivers of genetic structure, but it is 

the effects of weather (especially precipitation) on the seascape that affects population 

size and dispersal (Perea & Doadrio, 2015). The populations of P. smintheus I examine 

here are valuable in that while there is likely some interaction between climate and 

landscape (as is always the case), the effects of weather and land cover on population size 

and dispersal are discrete and can be evaluated separately. The relationships between 

snow depth and genetic diversity and differentiation support the hypothesis that weather 

affects larval survival and therefore population size directly. Likewise, landscape 

configuration (i.e., the connectivity of open land cover) appears to affect dispersal rates 

directly; the amount and configuration of open land cover may be partially determined by 

climate, but the actual effects of land cover on P. smintheus dispersal are not dependent 

on weather conditions (Matter et al., 2011).  

Understanding the separate effects of weather and landscape on populations is important 

when trying to predict how those populations will respond to changing environmental 

conditions. Many populations are experiencing weather changes as a result of climate 

change; as a result, trying to analyze how populations are responding to specific changes 

in landscape (e.g., changes in human land use) is made more difficult by the background 

of climate change. In the dragonfly O. coerulescens genetic diversity declined following 

the clearing of their canal habitat; however, the decline was likely due to a drought that 

occurred several years later than the changes to their habitat (Herzog & Hadrys, 2017). 

Without accounting for the effects of weather conditions, erroneous conclusions about the 

cause of the decline may have been reached; in conservation efforts, this can lead to 

recommendations (e.g., habitat restoration) that will not address the true source of 

population declines (e.g., more severe weather brought on by climate change).  

4.4.2 Landscape connectivity and configuration 

Landscape connectivity within a 5 km radius, but not landscape composition, predicted 

both expected heterozygosity and Nei’s genetic distance for populations of P. smintheus. 

In a study of the same set of P. smintheus populations examined here, both landscape 

composition and configuration across entire regions were associated with genetic 

differentiation and diversity (as estimated with microsatellites); specifically, the East 
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Kananaskis region, which  had both the most forest cover and most fragmented high 

altitude open land cover, also had the greatest global genetic differentiation and lowest 

within-population diversity compared to the less forested and thus higher connectivity 

West Kananaskis and Banff regions (Keyghobadi, Roland, & Strobeck, 2005). In that 

study, landscape composition was measured across entire regions as opposed to locally 

(within the 5 km radius around each sampling site) and was thus strongly confounded 

with connectivity across the region – if there is more open land cover, populations are 

more likely to have more open land cover connecting them. At a smaller scale (<12 km), 

P. smintheus dispersal and patterns of genetic differentiation are correlated with land 

cover composition between pairs of meadows (Keyghobadi et al., 1999; Roland, 

Keyghobadi, & Fownes, 2000), which is another measure of the landscape that 

potentially confounds composition and connectivity. By using separate measures of 

composition (percent open land cover) and connectivity (distance between open patches), 

I show that landscape connectivity has distinct effects on genetic diversity and 

differentiation.  

The importance of landscape connectivity but not composition informs what mechanisms 

are driving patterns of genetic differentiation and diversity. Landscape connectivity is 

associated with the ability of P. smintheus to disperse between populations, whereas 

landscape composition at this scale (a 5 km radius) represents the amount of available 

habitat. An association between landscape composition and population genetic 

parameters could indicate that available habitat was limiting population size (i.e., with 

less habitat, smaller populations would be more vulnerable to the effects of drift). Habitat 

area does limit effective population size in some species, including the tiger salamander 

Ambystoma californiense, where effective population size is correlated with breeding 

pond size (Wang, Johnson, Johnson, & Shaffer, 2011). This does not appear to be the 

case here; although there are no available estimates of population size, based on the 

expected heterozygosity there is no evidence that effective population size is limited by 

the amount of open landcover. Other factors and associated mechanisms may play a 

greater role than habitat size in limiting effective population size and thus genetic 

diversity. This could include population bottlenecks, as observed in a P. smintheus 

population network on Jumpingpound Ridge in the East Kananaskis region; average 
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effective population size would be limited by the low population numbers immediately 

following a bottleneck, rather than the maximum population size supported by the 

meadow. Specifically, the effective population size would be estimated as the harmonic 

mean of annual population sizes, where years with extremely low population size have an 

outsized effect on NE (Vucetich, Waite, & Nunney, 1997). Alternatively, landscape 

composition as measured by open landcover may not reflect appropriate P. smintheus 

habitat - the host plant, Sedum lanceolatum, is likely not present in all areas categorized 

as “open”. This could explain why landscape connectivity and not composition predicted 

genetic patterns; landscape that contributes to connectivity need merely be unforested to 

allow for P. smintheus movement, whereas landscape that contributes to habitat must 

contain the host plant. This could be addressed in future research by modelling the 

distribution of S. lanceolatum based on its habitat requirements and observed 

occurrences. Using a map of S. lanceolatum distribution instead of open landcover would 

better represent potential P. smintheus habitat and allow for more accurate quantification 

of habitat composition. Using both open landcover and predicted host plant landcover, 

and comparing separately how the composition and connectivity of each is associated 

with genetic metrics could also illuminate the relative contributions of P. smintheus 

dispersal (mediated by open landcover) and potential maximum effective population size 

(mediated by host plant availability) on genetic patterns. 

That the configuration of habitat is important to a population’s persistence and size, 

beyond the total amount of habitat available, has been accepted in conservation, 

population ecology, and landscape genetics (Cushman, Shirk, & Landguth, 2012; Hanski 

& Ovaskainen, 2000; Robert, 2009). The habitat amount hypothesis was proposed as an 

alternative to this paradigm; Fahrig (2013) hypothesized that patch size and isolation did 

not contribute significantly to the total species richness or size of populations, and that 

total habitat area (and not how it is configured) was the primary factor. Fahrig suggested 

that in studies where patch size and isolation had been identified as predictors of species 

richness or population size (and arguably by extension, genetic structure), these factors 

were just a proxy for habitat area. Since the proposal of the habitat amount hypothesis, 

there have been many studies that both support (e.g., Camargo, Boucher‐Lalonde, & 

Currie, 2018; Gardiner, Bain, Hamer, Jones, & Johnson, 2018; Melo, Sponchiado, 
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Cáceres, & Fahrig, 2017; Watling et al., 2020) and refute (e.g., Evju & Sverdrup-

Thygeson, 2016; Haddad et al., 2017; Lindgren & Cousins, 2017) it. Although not 

designed to test the habitat amount hypothesis, this study joins those that do not fully 

support it; specifically, the presence of a significant relationship of genetic distance and 

diversity in P. smintheus with the distance between open patches, but not with total open 

area, indicates that the configuration of land cover is important. Here, distance among 

open patches and total open area are not independent (and are moderately correlated), 

which in theory makes it more difficult to distinguish between the effects of patch 

isolation and habitat area. However, because habitat amount was not a significant 

predictor at all, it cannot be underlying the relationship between patch distance and 

genetic distance and diversity. As discussed above, one caveat is that open land cover 

does not represent habitat per se, rather land cover over which P. smintheus can more 

easily disperse. Because open land cover is linked to dispersal rates, it follows that its 

configuration should be more important than its total amount, as any effect it has on 

genetic structure should be linked to its effects on dispersal. Performing a similar analysis 

on land cover containing the host plant could lead to different conclusions, and potential 

support for the habitat amount hypothesis, if total habitat amount were to emerge as a 

significant predictor of genetic structure.  

4.4.3 Early-winter weather 

Winter weather conditions, particularly snow depth, had an important effect on both 

genetic differentiation and diversity. Populations that experienced less snow cover in 

November (both across all years of available data and for the year of lowest observed 

snow depth) were more genetically differentiated from other populations (Figure 4.1). 

And, expected heterozygosity was lower in populations with the lowest observed mean 

November snow depth across all years (Figure 4.1). Lower snow cover is expected to 

result in higher larval mortality, through freezing or early hatching (Matter et al., 2011; 

Roland & Matter, 2013, 2016), and therefore more frequent or severe bottlenecks. More 

frequent or severe bottlenecks in turn would result in higher rates of genetic drift that 

would drive up differentiation from other populations and reduce local heterozygosity. 

Snow depth is positively associated with survival in other insect species that overwinter 
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as larvae. In species such as the moth Helicoverpa armigera higher snow cover is 

believed to protect larvae from cold stress, as temperature under a snow pack tends to be 

higher than air temperature (Huang, 2016). Theoretically, snow pack can also buffer 

larvae against experiencing metabolic stress from warm spells; however, the warmer 

average temperature under snowpack results in higher metabolic rates and, in some 

species, higher mortality compared to larvae overwintering above the snowpack (Irwin & 

Jr, 2003). The positive effect of snow depth on genetic diversity, and its negative effect 

on genetic differentiation, in P. smintheus may reflect the greater importance of buffering 

against freezing than any cumulative effects of higher metabolic rates under snow cover. 

Furthermore, the relationship between lowest mean snow depth (an extreme weather 

condition variable) and both genetic differentiation and heterozygosity may indicate that 

there is a threshold minimum snow depth below which larval mortality greatly increases 

and a bottleneck (or otherwise severe population decline) occurs. 

Cooler November daily low temperatures were unexpectedly associated with greater 

genetic diversity and lower genetic distances in P. smintheus populations. As eggs freeze 

below -28 °C (Matter et al., 2011), I anticipated that cooler early-winter temperatures 

would drive more frequent declines in population size resulting in higher rates of genetic 

drift, lower genetic diversity, and greater differentiation among populations, which I did 

not observe. It is possible that cooler overnight temperatures prevent premature larval 

development and hatching. However, in that case I would also expect that cooler average 

temperatures (not just the minimum temperature reached overnight) would also reduce 

premature hatching, and there was no relationship between mean November temperature 

and genetic metrics. As there is no clear mechanism by which colder minimum 

temperatures alone should promote genetic diversity, then the apparent effect of daily 

minimum temperature may reflect the effect of a correlated weather variable. 

Specifically, cooler overnight temperatures are predicted to be associated with greater 

snow cover, as the insulating snow prevents heat stored in the ground during the day to 

be transferred to the air resulting in cooler nighttime temperatures (Mote, 2008). Indeed, 

the variable of mean November daily minimum temperature was significantly negatively 

correlated with November snow depth in the year with the lowest snowfall – and it is 

snowfall in these years that is predicted to drive bottlenecks and reduce genetic diversity. 
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In addition to snow depth in November and mean daily minimum temperatures in 

November, equivalent weather variables in other months (snow depth in February and 

mean daily minimum temperatures in July) were also significant predictors of genetic 

diversity and differentiation. My focus on November weather conditions was based on 

Roland and Matter (2016), where November temperatures (including mean, maximum, 

and minimum temperatures) and snowfall emerged as important predictors of P. 

smintheus population growth relative to weather in all other months. Here, I was unable 

to differentiate the influence of early-winter weather from other correlated weather 

variables. My results support the importance of temperature and over-wintering snow 

depth in shaping genetic patterns, likely as a result of their effects on population growth 

rates. It is possible that July daily minimum temperatures reflect a different process than 

the assumed effects of winter temperature and snow depth on egg survival; however, 

given the field experiments on egg survival, and the previous models of population 

growth, it is more likely that the correlation of daily minimum temperatures throughout 

the year explains the relationship between July daily minimums and genetic diversity and 

differentiation. The differences between these results and those of Roland and Matter 

(2016) likely reflect the different spatial and temporal scales of the studies, as well as the 

differences between modelling population growth and genetic measures. My results 

reflect broader spatial patterns among populations at a single point in time, whereas 

previous models have considered a much smaller spatial scale with 20 years of 

population size data (Roland & Matter, 2016). Additionally, there is often a time lag 

between changes in population size and changes in patterns of genetic diversity (Epps & 

Keyghobadi, 2015); with changes in population size being more immediately affected by 

weather, the relationship between specific weather variables and population size would 

be more easily distinguished than between weather and genetic diversity and 

differentiation.  

4.4.4 Conclusions 

I show here that both weather and landscape play a role in shaping genetic diversity and 

differentiation in P. smintheus populations. This likely reflects the importance of winter 

weather, especially snow depth, on larval survival and consequently on annual variation 
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in population size, and of connectivity of open landscape patches on P. smintheus 

dispersal. These results suggest that changing weather and climate conditions can be as 

important as habitat and landscape in affecting populations and their genetic diversity. In 

the context of conservation or re-introduction of threatened species, while land cover may 

be improved through intervention, weather is out of our immediate control. Nonetheless, 

weather patterns should be assessed when setting conservation priorities; for example, 

sites that experience more frequent extreme weather events may not benefit from habitat 

restoration if any positive effects of restoration are offset by declines due to weather. 

Furthermore, if the effects of specific weather variables (e.g., temperature, precipitation) 

on populations can be distinguished, this information may be used to prioritize sites for 

conservation or restoration that match optimal values of those variables.  

Landscape, specifically the connectivity of open landcover patches, was also a significant 

predictor of P. smintheus genetic diversity and differentiation. As P. smintheus disperses 

more easily through open than forested land cover (Roland, Keyghobadi, & Fownes, 

2000), greater connectivity of open land covers at high altitudes likely reflects greater 

dispersal among populations. As has been previously concluded in landscape genetic 

studies and is also seen here, landscape connectivity should be an important component 

of habitat restoration separate from the total area of restored habitat. For example, if P. 

smintheus habitat were to be conserved, it may be more beneficial for genetic diversity to 

preserve connectivity among habitat patches rather than fewer, larger habitat patches, 

especially given the role of density-independent weather factors in driving local census 

and effective population sizes.  
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Chapter 5  

5 Repeated bottlenecks in a butterfly population network 
temporarily disrupt patterns of genomic diversity and 
differentiation 

5.1 Introduction 

Natural populations experience fluctuations in population size due to both density 

dependent and independent factors (Nicholson, 1954). A bottleneck is said to occur when 

there is a sudden and extreme reduction in population size, for example due to increased 

mortality or the founding of a new population from a small number of individuals (Nei, 

Maruyama, & Chakraborty, 1975). Bottlenecks are expected to result in a loss of genetic 

diversity. First, a loss of genetic diversity (specifically allelic richness) is expected to 

occur immediately after a bottleneck as only alleles retained by the surviving individuals 

remain in the population (Allendorf, 1986). Until the population grows in size and 

recovers from the bottleneck, genetic diversity will continue to be lost at a higher rate 

given the stronger effects of genetic drift in small populations (Nei et al., 1975). Not all 

populations are isolated, however, and when migrants are exchanged bottlenecks can also 

affect spatial patterns of genetic differentiation (e.g., isolation by distance; IBD) in the 

network of connected populations. Populations are expected to become more 

differentiated immediately after a bottleneck as different alleles are lost by chance in each 

population, unrelated to their location and connectivity to other populations (Chakraborty 

& Nei, 1977).  

When testing these predictions in natural populations, different approaches have been 

taken depending on when the sampling occurs relative to the occurrence of the 

bottleneck. When sampling for genetic data occurs significantly later than a demographic 

bottleneck is known or hypothesized to have occurred, studies may focus on confirming 

or refuting historical bottlenecks and describing long-term population trends (e.g. 

Gattepaille, Jakobsson, & Blum, 2013; Pilot et al., 2014; Stoffel et al., 2018). When a 

bottleneck is known to have recently occurred, or there is sampling during and after the 

bottleneck, questions of how genetic diversity and differentiation are changing can be 
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more directly addressed. In some of these cases, the expected loss of allelic richness 

(Fauvelot, Cleary, & Menken, 2006), increase in differentiation (Kekkonen, Hanski, 

Jensen, Väisänen, & Brommer, 2011), and loss of population structure has been 

observed. However, severe declines in population size do not always result in decreased 

genetic diversity (Le Gouar et al., 2009; Suárez, Betancor, Fregel, Rodríguez, & Pestano, 

2012) or increased differentiation among populations; it is therefore important to 

empirically demonstrate the genetic consequences of a demographic bottleneck instead of 

relying solely on theoretical expectations. In some systems bottlenecks may not result in 

loss of diversity because immigration restores allelic diversity post-bottleneck. Even in 

systems where there is known to be no or very low levels of immigration, a bottleneck 

may not affect the measured allelic richness if the population size recovers quickly and 

the effects of the bottleneck are limited to any alleles lost in a single round of high 

mortality (Le Gouar et al., 2009; Suárez et al., 2012). 

In addition to their effects on overall genetic diversity and population structure, 

bottlenecks can affect genetic diversity at expressed, functional loci (i.e., non-neutral 

loci) in several ways. In the absence of selection, bottlenecks reduce functional genetic 

diversity in the same way that neutral diversity is lost (i.e., through the effect of drift). 

This occurs when the genotype at a functional locus does not affect whether an individual 

survives and reproduces in whatever conditions caused the bottleneck (whether the 

bottleneck occurred because of increased mortality or through a founder event). The 

reduction of genetic diversity at specific functional loci is often of concern in the 

conservation of populations at risk. A broad reduction in functional genetic diversity is 

predicted to reduce the evolutionary potential of a population (Frankham et al., 1999), 

and the loss of diversity both genome-wide (Reed & Frankham, 2003) and at specific loci 

(e.g., the major histocompatibility complex; Agudo et al., 2012; Wegner, Kalbe, Milinski, 

& Reusch, 2008) is associated with lower fitness. Studies concerned with specific loci 

often focus on whether balancing (e.g., Gos, Slotte, & Wright, 2012; Sutton, Nakagawa, 

Robertson, & Jamieson, 2011) or directional (e.g., Windig, Veerkamp, & Nylin, 2004) 

selection pressures unrelated to the cause of a bottleneck can maintain the presence of 

minor alleles despite genetic drift. In addition to allele frequencies at functional loci 

changing via drift, they may also change via selection if certain phenotypes are better 
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able to survive the conditions that caused the bottleneck. If the bottleneck is driven by a 

factor that acts relatively suddenly (e.g., extreme weather, disease outbreak), the rapid 

loss of less fit individuals should be associated with abrupt changes in allele frequencies. 

This pattern is similar to the artificial selection in animal and crop domestication, where 

population size is repeatedly reduced according to which individuals carry a desired 

phenotype.  

Many studies of genetic change at functional loci during bottlenecks are concerned with 

the implications of lost genetic diversity on population survival and evolutionary 

potential, whereas the actual selection pressures that may be present during the bottleneck 

are less frequently considered (Frankham, 2005; Ørsted, Hoffmann, Sverrisdóttir, 

Nielsen, & Kristensen, 2019). This may be due to the stochastic nature of many 

bottlenecks, where disease outbreaks or extreme weather conditions are considered to be 

unusual, one-time occurrences and any novel selective pressures would be of little long-

term interest. However, there are prominent examples that come from studying changes 

in the morphology of birds before and after extreme weather events, although these 

studies typically do not try to establish that a bottleneck had occurred in the strict genetic 

sense (but rather are based on direct observation of an extreme decline in population 

size). Bumpus (1899) famously presented hypotheses regarding the survival of house 

sparrows (Passer domesticus) after a winter storm; further analyses of his observations 

provide support for sex-based selection for larger body size in males and intermediate 

size in females (Johnston, Niles, & Rohwer, 1972). A drought on Isla Genovesa in the 

Galápagos drove down population numbers of the cactus finch Geospiza conirostri and 

selected for individuals with beaks shaped appropriately for foraging on arthropods 

(Grant & Grant, 1989). Long-term population monitoring has been crucial to the study of 

selection on finches in the Galápagos, as it provides data from before and after extreme 

weather events and allows perturbations in population size to be detected (Boag & Grant, 

1981; Grant & Grant, 1989).  

Genetic changes during bottlenecks have historically been characterized using both non- 

functional and functional loci. Early work used allozymes to assess the loss of allelic 

richness versus others measures of diversity such as heterozygosity, finding, as predicted, 
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that allelic richness was lost more easily and was a more reliable genetic indicator of a 

recent bottleneck (Leberg, 1992). As microsatellites were discovered and developed as 

genetic markers, their greater variability gave them more power to detect the loss of 

allelic richness and the change in the distribution of minor allele frequencies (i.e., a shift 

to more loci with intermediate frequencies as rare alleles are lost) (Luikart, Sherwin, 

Steele, & Allendorf, 1998). Targeted sequencing of functional loci was combined with 

microsatellite genotyping to compare changes in functional allele frequencies to a non- 

functional (i.e., neutral) baseline (e.g., Oliver & Piertney, 2012; Sutton et al., 2011).  

Single nucleotide polymorphisms have been increasingly used in population genetic 

studies in general as an alternative to microsatellites as new sequencing and genotyping 

technologies have been developed. Initially relatively few SNPs (<100) were used in 

population genetic studies; as whole genome sequencing and related techniques that 

subsampled the genome (e.g., restriction site associated DNA sequencing) were 

developed, it became common to see large SNP (>1000-10 000) datasets being used to 

answer population genetic questions (Andrews, Good, Miller, Luikart, & Hohenlohe, 

2016). Large, genome-wide panels of single nucleotide polymorphisms are of particular 

interest when disentangling long-term demographic history, as patterns of linkage allow 

the identification of bottlenecks that occurred too long ago for any changes to allelic 

richness to be detectable (Achaz, 2009; Ramos-Onsins & Rozas, 2002). However, whole 

genome sequencing remains expensive, and in some cases low quantity or quality DNA 

prevents high quality RAD-seq from succeeding. Smaller panels of SNPs are again being 

developed for either higher throughput analysis (Jardine et al., 2016; Tabuloc et al., 

2019), or for use with poorer quality samples (Natesh et al., 2019) in population genetic 

studies. As these smaller panels are used as a replacement for microsatellites in assessing 

genetic diversity, they should also be useful in the study of genetic changes during 

bottlenecks. Compared to largely neutral microsatellites, these SNP panels have the 

added benefit of assessing changes in allele frequency of functional loci in addition to 

overall changes in genetic diversity, in a single genotyping run.  

Smaller SNP panels are often developed from a larger existing dataset, such as from 

whole genome sequencing or RAD-sequencing. Criteria for narrowing down typically 
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thousands of potential SNPs to a panel of a few hundred depend on the anticipated uses 

of the panel. In some cases, SNP panels are intended to answer a specific question, such 

as diagnosing the population of origin of an individual (e.g., Muñoz et al., 2015); in this 

case, SNPs are chosen to be highly informative at distinguishing populations. In other 

cases, SNP panels are intended to be a replacement for larger RAD-seq datasets, which 

are assumed to represent both neutral and non-neutral variability at randomly distributed 

locations across the genome. To develop a representative SNP panel, criteria include 

ensuring that loci have a sufficiently high minor allele frequency that the anticipated 

sample size will display polymorphism, and that loci are not statistically linked. Including 

a set of known functional loci (if a transcriptome is available to identify expressed 

sequences) is useful when both neutral and selective processes are under study. Selecting 

functional loci can be difficult in the absence of candidate loci or a specific hypothesis 

about how selection is acting. Choosing loci that contribute to a variety of cellular 

functions gives the most flexibility for future study and, arguably, better represents the 

genome (an important consideration if the functional loci will also be included in general 

population genetic analyses).   

To study the effect of fluctuating population size over time on genetic diversity and 

differentiation, I moved from studying Parnassius smintheus populations separated by 

tens of kilometers to a population network located on a single ridge in the East 

Kananaskis region, where populations are separated by a maximum of ~9 km. 

Populations on Jumpingpound Ridge have been studied since 1995, using both genetic 

and mark-recapture data. An index of adult population size in each meadow each year has 

been estimated using Craig’s method (Craig, 1953). During this time, two network-wide 

bottleneck events have been observed, where the index of adult population size across the 

network declined by 60-100% from one year to the next (Caplins et al., 2014), but 

subsequently increased again within one to two years. The first population bottleneck 

occurred in 2003 and the second spanned 2010 to 2011, with population sizes remaining 

very low in both years. The mechanism underlying these bottlenecks has not been 

definitively proven, but there is evidence that unfavourable early winter conditions can 

result in high egg mortality (Roland & Matter, 2013, 2016). Specifically, warm early 

winter conditions resulting in low snow cover, as well as extreme cold snaps before 
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sufficient snow cover has accumulated, are both predicted to cause egg mortality by 

freezing (Roland & Matter, 2013, 2016). Very low population numbers were observed 

again in 2019, although it is unclear yet whether this was driven by early winter 

conditions or unusual spring weather. This system allows for the study of changes in both 

neutral genetic patterns (e.g., genetic diversity and spatial genetic structure) and 

potentially adaptive genetic variation over two periods of population size collapse and 

recovery. Key to the study of adaptive change in this system is that the mechanism 

driving collapse is likely consistent – overwintering egg mortality as a result of weather 

conditions – such that selective pressures should be similar during both collapses.  

Previous work on the Jumpingpound Ridge bottlenecks has used microsatellites to track 

changes in allelic richness and patterns of IBD across those events. Populations tended to 

lose allelic richness only after the second, more protracted bottleneck, and the rapid 

recovery of allelic richness after that bottleneck was mediated by connectivity to 

neighbouring populations (i.e., populations with greater potential for immigration 

recovered allelic richness more quickly) (Caplins et al., 2014; Jangjoo, Matter, Roland, & 

Keyghobadi, 2016). Patterns of IBD broke down during both bottlenecks but were 

present before the first bottleneck and were quickly restored before the second 

bottleneck. Here I use SNPs to assess how genetic diversity, including at functional loci, 

changes over these two bottlenecks in P. smintheus populations on Jumpingpound Ridge. 

I develop a moderate sized SNP panel suitable for genotyping DNA extracted from wing 

clips, using a selection of loci initially sequenced in a RADseq library (see Chapter 2).  I 

expect that some alleles will be lost by chance as population size drops during 

bottlenecks, so that overall (functional and non-functional) allelic richness will be lower 

in years immediately after bottlenecks. Populations will lose different alleles by chance, 

so patterns of IBD that are present prior to the bottlenecks will be lost as populations 

become more differentiated regardless of their location or connectivity. As immigration 

reintroduces alleles, I expect that allelic richness will increase several generations after 

the bottleneck and that patterns of IBD will be reestablished. I also expect that a small 

number of functional loci may consistently oscillate in allele frequency over bottlenecks 

as a result of fluctuating selection pressures, and that their function (or the function of 
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loci linked to them by their proximity in the genome) is related to surviving the 

overwintering conditions that drive up mortality and underlie the bottleneck events.  

5.2 Methods 

5.2.1 Sampling location 

Parnassius smintheus populations on Jumpingpound Ridge, Alberta, have been 

monitored using mark-recapture since 1995 (Goff, Yerke, Keyghobadi, & Matter, 2018; 

Keyghobadi, Roland, & Strobeck, 1999; Roland, Keyghobadi, & Fownes, 2000). A 

population has been defined as all individuals sampled within a distinct meadow along 

the ridgeline, where such meadows are often but not always separated by non-habitat 

forest matrix (Figure 5.1). While true census population sizes are not known, Craig’s 

method (Craig, 1953) is used to provide indices of population size in each meadow, and 

to ascertain how populations sizes are changing from year to year (Matter, Keyghobadi & 

Roland 2014). These indices show that population size fluctuates temporally and that 

these fluctuations are not necessarily synchronous among the different populations, 

except for in the years of the network-wide bottlenecks (Figure 5.2).  

The centroids of meadows are separated by as few as several hundred meters, to as many 

as nine kilometers for the most distant pair of populations examined here, as measured 

along the ridge-top. Individuals are observed dispersing along the top of the ridge and are 

not expected to frequently move through the lower elevation forest on the sides of the 

ridge, so the distances between pairs of meadows are measured along the ridgeline 

(Keyghobadi et al., 1999). Individuals are occasionally observed dispersing between 

neighbouring meadows, and more rarely between non-neighbouring meadows and 

meadows separated by forest (Roland et al., 2000). 

5.2.2 Sample collection 

Populations are surveyed by mark-recapture during the adult flight season, which is 

typically a five to six week period in July to early August. Meadows are typically visited 

three to four times each season; individuals are hand netted and each is marked with a  
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Figure 5.1 Parnassius smintheus individuals were sampled from 14 meadows on 

Jumpingpound Ridge. Light coloured areas indicate unforested areas, including meadows 

above tree-line. Each sample site is identified by a letter, and yellow points indicate the 

centroids of the sampled meadows. Map data: Maxar Technologies.  
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Figure 5.2 Parnassius smintheus population size indices for 17 populations on 

Jumpingpound Ridge, Alberta across years. Some populations represented here were 

excluded from my genetic analysis due to low sample size. An index of the size of each 

population was estimated using Craig’s method based on mark-recapture data for all 

years except for 1997-2000, where population size was estimated based on Pollard 

transects and converted to be comparable to Craig’s method estimates (as in Roland & 

Matter, 2013). Boxes show central 50% of values and the median, across populations. 

Tails represent values within 1.5 times the interquartile range, and points represent values 

outside 1.5 times the interquartile range. Data are from S. Matter (pers. comm.) 
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unique ID code indicating the population of origin. From approximately every third 

individual marked, a wing clip (small piece of wing tissue, approximately 0.25 cm2) is 

sampled (Roland et al., 2000) as a source of DNA. I used wing clips collected in 1995, 

2005, 2008, and 2013, from 16 P. smintheus populations on Jumpingpound Ridge. The 

first three years bracket a population bottleneck that occurred in 2003, including a pre-

bottleneck year (1995), an immediate post-bottleneck year (2005), and a recovery year 

(2008). The years 2008 and 2013, in turn, bracket the second population bottleneck that 

began in 2010 and extended into 2011. Some populations had a low number of sampled 

individuals available for genotyping in some years; I retained only those samples with 

five or more individuals (see Chapter 2 for the effects of low sample size on population 

genetic analyses).  

5.2.3 SNP panel development and genotyping 

I extracted DNA from wing clips using a DNeasy Blood and Tissue Kit (Qiagen, 

Germantown, MD), and genotyped DNA at 171 SNP loci on a MassARRAY iPlex Gold 

platform (Sequenom, CITY). The iPlex platform uses a PCR reaction to first amplify the 

region flanking each SNP (~40-60 bp in each direction). After PCR, primers bind directly 

adjacent to the SNP of interest and are extended with mass-modified dideoxynucleotides. 

Different alleles are differentiated by the weight differences from the mass-modified 

nucleotide added at the polymorphic site, as detected using MALDI-TOF mass 

spectrometry.   

I developed the 171 SNP panel from an initial restriction site associated DNA sequencing 

(RADseq) library (see Chapter 1). For iPlex primers to bind, only RADseq loci with at 

least 30bp of flanking region around a SNP, and without a second SNP in the flanking 

region, could be used. I filtered loci that met these conditions for statistical linkage, using 

the software PLINK to remove the fewest SNPs necessary to generate an unlinked SNP 

dataset. I used Magic-BLAST (Boratyn, Thierry-Mieg, Thierry-Mieg, Busby, & Madden, 

2019) to match these loci against a transcriptome that was previously generated from 

RNA isolated from the thorax of adult butterflies captured during flight (Jangjoo, 2018). I 

defined loci that had at least a 90% match as expressed, functional loci. I identified 

Putative functions for functional loci using Trinotate (Bryant et al., 2017) (Table B1). I 
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chose functional loci for the final SNP panel to represent a range of cellular functions, in 

rough proportion to their representation among the available functional loci. Non-

functional loci included all loci that had less than 10% match against the transcriptome, 

but also a greater than 90% percent match against a P. smintheus short read whole 

genome library (Allio et al., 2020). It is possible that some loci classified as “non- 

functional” using these criteria may in fact be expressed in body tissues outside of the 

thorax, or at an earlier life stage.  

In addition to the functional loci identified from the RADseq library, I included six 

variable sites from the phosphoglucose isomerase (Pgi) locus identified by Jangjoo et al 

(2019). Phosphoglucose isomerase is a metabolic enzyme responsible for one of the early 

steps in glycolysis, the conversion of glucose-6-phosphate to fructose-6-phosphate. 

Phosphoglucose isomerase genotype is associated with phenotypic variation in a number 

of arthropods, including movement speed and thermal stress response in the beetle 

Chrysomela aeneicollis (Rank, Bruce, McMillan, Barclay, & Dahlhoff, 2007) and mating 

success, flight performance, and lifespan in several Colias butterflies (W. B. Watt, 

Wheat, Meyer, & Martin, 2003; Ward B. Watt, 1977; Ward B. Watt, Carter, & Blower, 

1985). In Melitaea cinxia, the Glanville fritillary, Pgi genotype is a predictor of flight 

metabolism and dispersal ability (Mitikka & Hanski, 2010; Niitepõld et al., 2009). All six 

Pgi SNPs included here are non-synonymous. Two of the Pgi SNPs (1018 and 1129) 

were included because preliminary analyses showed some fluctuation in allele frequency 

with population bottlenecks (Jangjoo, pers. comm.). SNP 1018 codes for a non-polar 

amino acid at the major allele (Ala) and polar amino acid at the minor allele (Thr), while 

SNP 1129 codes for polar amino acids at both alleles (Ser and Thr). I also included two 

SNPs that had variable sites that translated to a polar amino acid at one allele and a non-

polar amino acid at the other (626: Phe and Ser; 1241: Gln and Leu), as well as two Pgi 

SNPs that each had a variable site that coded for either both polar (28: Asp and Tyr) or 

both non-polar (1612: Val and Ile) amino acids at the alternate alleles (Jangjoo, 2018). 

The final SNP panel was composed of six Pgi loci, 35 functional loci, and 130 putatively 

non-functional loci.  
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5.2.4 Neutral population genetic analyses 

I examined how measures of genetic diversity and differentiation change across the 

cycles of population bottlenecks. I used all SNPs to estimate these basic population 

genetic parameters.  

I calculated the proportion of SNPs out of Hardy-Weinberg equilibrium in each 

population per year using the hw.test function in the pegas (Paradis, 2010) package in the 

statistical software R (R Core Team, 2017). I calculated allelic richness per locus in each 

population each year using the allelic.richness function in the R package hierfstat 

(Goudet, 2005). I rarified allelic richness to 10 alleles, as the smallest sample size per 

population was 5 diploid individuals. I averaged allelic richness across all loci to get a 

population estimate of mean allelic richness. I calculated expected heterozygosity per 

population per year using the Hs function in the adegenet package (Jombart, 2008). I 

examined whether allelic richness and expected heterozygosity differed significantly 

among years using linear mixed effects models implemented in the package nlme 

(Pinheiro et al., 2015), with year as a predictor and population as a random effect. I used 

contrasts (implemented in the R package lsmeans; Lenth, 2016) to compare allelic 

richness and expected heterozygosity between all pairs of years, as well as between pre-

bottleneck and post-bottleneck years combined. I used a Bonferroni correction to account 

for multiple comparisons.  

I calculated global genetic differentiation among all populations in each year as Weir and 

Cockerham’s estimate of global FST using the wc function in the R package hierfstat. 

Genetic differentiation between population pairs was estimated as Nei’s corrected genetic 

distance (Nei, 1978) using the R package gstudio (Dyer, 2014). In this system, pairwise 

genetic distance has previously been measured with microsatellite data using both Nei’s 

genetic distance (Keyghobadi et al., 1999) and pairwise FST (Caplins et al., 2014); for this 

SNP dataset, Nei’s genetic distance had a stronger linear relationship to geographic 

distance and so was used. I tested the significance of the relationship between genetic 

distance and geographic distance along the ridgeline (i.e., IBD) using two complementary 

statistical methods: Mantel tests and maximum likelihood population effects (MLPE) 

models (Clarke, Rothery, & Raybould, 2002; Mantel, 1967). I implemented Mantel tests 
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using the mantel function from the package vegan (Oksanen et al., 2019), using the 

Spearman correlation method. The Mantel statistic represents the correlation between two 

pairwise distance matrices (here, a matrix of pairwise distances between meadow 

centroids, and a matrix of pairwise Nei’s D between populations), and its statistical 

significance is assessed via matrix permutation. For MLPE models, I used the R package 

nlme (Pinheiro et al., 2015) to run generalized least square models fitting Nei’s genetic 

distance to geographic distance between sites; the model included a correlation structure 

accounting for the pairwise nature of my data, as implemented in the R package 

corMLPE (Pope, 2018).  

5.2.5 Analyses of signatures of selection 

Population bottlenecks may be associated with temporally fluctuating selection. When 

environmental conditions change across a bottleneck (either as the driver of the 

bottleneck or in response to it), selection pressures will also change. I examined allele 

frequencies of all loci, including both functional and putatively non-functional, across all 

four sampled years for signatures of selection. Putatively non-functional loci were 

included because they may be unexpressed but still under selection (e.g., a promotor 

region), or they may be linked to nearby loci that are under selection. Furthermore, 

although loci defined as non-functional are not found in the available P. smintheus 

transcriptome, the transcriptome is only of adults caught in flight during the day. It is still 

possible that loci classified as non-functional could be expressed (and experiencing 

selection) at other life stages, or under other conditions. As evidence of fluctuating 

selection, I looked for fluctuations in allele frequencies, which would be expected if 

divergent selection pressures are experienced in population collapse years versus 

recovery/stable years. I also looked for signatures of directional selection as loci whose 

minor allele frequency either consistently increased or decreased across the entire 

sampling period (i.e., from 1995 to 2013).  

I used linear mixed effect models to identify loci whose minor allele frequency differed 

significantly and consistently between pre-bottleneck and post-bottleneck years, 

indicating possible fluctuating selection. The minor allele frequency was calculated 

across all individuals, separately for each population each year. I linearized minor allele 
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frequency at the level of the population using a logit transformation of: minor allele 

frequency + 0.001. The offset of 0.001 was necessary because some populations had 

minor allele frequencies of zero (where the minor allele was not seen) or one (where only 

the minor allele was seen). The minor allele was defined globally, as the less common 

allele across all genotyped individuals (pooled across populations), so that in some 

populations the globally defined minor allele was actually the more common allele. I 

used pre-bottleneck (1995 and 2008) versus post-bottleneck (2005 and 2013) as a single 

factor with two levels to predict the transformed minor allele frequency. Population was 

included as a random factor. 

I also used linear mixed effect models to identify loci whose minor allele frequency 

showed a significant increasing or decreasing trend from 1995 to 2013, indicating 

potential directional selection. In these analyses, year was coded as a numerical value, 

with the first year of sampling as the origin (i.e., from 0 in 1995 to 18 in 2013). Allele 

frequency was again logit transformed with an offset of 0.001, and population was 

included as a random factor.  

For both analyses, I considered loci to be potentially experiencing fluctuating or 

directional selection if the p-value for the predictor term was less than 0.05. Data for loci 

that were identified as such were then plotted as boxplots and examined for consistent 

trends. Loci where an oscillating or directional trend was observed over at least three of 

the four sampled years were retained; this eliminated loci where a single outlying year 

drove significance in the linear models. 

5.3 Results 

5.3.1 SNP dataset 

After excluding populations with fewer than five individuals, there were between seven 

and 12 populations used for analysis in each year (1995:11, 2005:12, 2008:11, 2013:7) 

for a total of 567 individuals (Table 5.1). Neutral population genetic analyses were 

conducted using the data from all successfully genotyped SNPs, while analyses for 

signatures of selection were conducted using only those SNPs that were successfully 

genotyped and polymorphic in the datasets across all four years, for a total of 144 SNPs.  
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Most SNPs were in Hardy-Weinberg equilibrium within populations in a given year; on 

average, 10% of SNPs were out of HWE (Table 5.1).  

The sample from population S in 1995 was an outlier in both allelic richness and 

expected heterozygosity; its allelic richness was above and expected heterozygosity was 

below the median for all samples by a factor greater than 1.5 times the interquartile 

range. This sample was also influential in analyses as it drove significant differences in 

allelic richness between 1995 and 2005. Therefore, I removed data from population S for 

the year 1995 from all analyses; data from population S were included for years 2005 and 

2008, and there were insufficient individuals sampled in 2013. Allelic richness for 

population R in 1995 was just marginally above the median for all samples by a factor of 

1.5 times the interquartile range, but since this sample was not an outlier in any other 

variables or highly influential, it was included in analyses.   

5.3.2 Neutral population genetic analyses 

Global FST was higher in both post-bottleneck years than in pre-bottleneck years, and was 

highest in 2013 (Table 5.2). Allelic richness fluctuated over time and in concert with the 

observed demographic bottlenecks. Mean allelic richness was significantly lower in the 

post-bottleneck year 2013 than in both pre-bottleneck years, 1995 and 2008 (Figure 5.3, 

Table 5.3). Mean allelic richness in 2005 was also lower than in 1995 and 2008, although 

the difference was marginally non-significant (0.05<p<0.1). Pre-bottleneck years (1995 

and 2008) did not differ in allelic richness from each other, and post-bottleneck years 

(2005 and 2013) did not differ from each other.   

Mean expected heterozygosity was significantly lower in 2005 than in other years, 

including after the second bottleneck in 2013 (Figure 5.4, Table 5.3). Mean expected 

heterozygosity did not differ significantly among any other pair of years (i.e., expected 

heterozygosity did not significantly decrease in 2013 after the second bottleneck). 

Patterns of IBD among populations also appeared to fluctuate over time, although Mantel 

tests and MLPE models detected IBD with differing sensitivity. Both methods detected  
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Figure 5.3 Mean allelic richness (rarefied to 10 alleles and averaged across 144 SNP 

loci) for 14 populations of Parnassius smintheus across four years. The years 1995 and 

2008 were each before an observed demographic bottleneck, and the years 2005 and 2013 

were each after an observed demographic bottleneck. Bars indicate standard deviation 

among populations in each year. 
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Table 5.2 Genetic differentiation and diversity metrics, averaged across 14 populations 

of Parnassius smintheus, using a panel of 144 SNPs, in each of four years. Two years 

(1995 and 2008) were each before an observed demographic bottleneck, and two years 

(2005 and 2013) were each after an observed demographic bottleneck. Metrics include 

global FST (estimated as in Weir & Cockerham, 1984), allelic richness (AR; rarefied to 10 

alleles), and expected heterozygosity (HE). 

 

Year Global FST AR HE 

 
[95% CI] Mean S.D. Mean S.D. 

1995 0.013 [0.007, 0.020] 1.69 0.031 0.22 0.01 

2005 0.020 [0.013, 0.027] 1.65 0.042 0.21 0.011 

2008 0.012 [0.008, 0.016] 1.69 0.014 0.22 0.005 

2013 0.036 [0.030, 0.043] 1.65 0.027 0.22 0.008 
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Figure 5.4 Mean expected heterozygosity (averaged across 144 SNP loci) for 14 

populations of Parnassius smintheus across four years. The years 1995 and 2008 were 

each before an observed demographic bottleneck, and the years 2005 and 2013 were each 

after an observed demographic bottleneck. Bars indicate standard deviation among 

populations in each year. 
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Table 5.3 The relationship between year and two measures of genetic diversity (AR: 

allelic richness; HE: expected heterozygosity) for 14 populations of Parnassius 

smintheus, estimated using linear mixed effects models. The years 1995 and 2008 were 

each before an observed demographic bottleneck, and the years 2005 and 2013 were each 

after an observed demographic bottleneck. Differences in genetic diversity between each 

pair of years were characterized using contrasts, with the associated p-values corrected 

for multiple comparisons using a Bonferonni correction. ‘Coef” represents the estimated 

model coefficient for the preditor ‘year’, for each level of contrast. ‘Pre vs post 

bottleneck’ represents a contrast of both pre-bottleneck years versus both post-bottleneck 

years. 

 

Contrasts                   AR                    HE 

 
coef p-value coef p-value 

1995 vs 2005 0.0317 0.05 0.0115 0.024 

1995 vs 2008 0.0025 1 -0.0066 0.47 

1995 vs 2013 0.0407 0.019 -0.0002 1 

2005 vs 2008 -0.0292 0.054 -0.0181 0.0001 

2005 vs 2013 0.0090 1 -0.0116 0.046 

2008 vs 2013 0.0382 0.024 0.0065 0.74 

Pre vs post 

bottleneck 
0.0699 0.0014 0.0179 0.74 
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significant IBD among populations in 1995 and no IBD in 2005 (Table 5.4). IBD was 

only detected in 2008 using a Mantel test, and in 2013 using a MLPE model. For the two 

pre-bottleneck years where IBD was expected, the pattern of IBD as detected by Mantel 

tests was weaker in 2008 than 1995 (Figure 5.5). 

5.3.3 Analyses of signatures of selection 

Fifteen loci had minor allele frequencies that differed significantly between pre- and post-

bottleneck years, consistent with fluctuating selection. Minor allele frequency showed a 

significant increase or decrease with year at 18 other loci, consistent with directional 

selection. After controlling for the false discovery rate using the Benjamini-Hochberg 

method, no loci had a significant fluctuating allele frequency (i.e., differed significantly 

between pre- and post-bottleneck years) and three loci showed a significant directional 

change in minor allele frequency. All three of these loci showed a consistent directional 

change in allele frequency for at least 3 of the 4 years sampled. The mean frequency of 

the minor allele at locus PS_1032489 declined over time from 0.50±0 in 1995 to 

0.40±0.034 in 2013 (averaged across all populations; Figure 5.6). All individuals were 

heterozygous at locus PS_1032489 in 1995; the majority of individuals remained 

heterozygous in other years, but the appearance of major allele homozygotes drove the 

reduction in minor allele frequency. Minor allele homozygotes at this locus were only 

observed in 2005 (n=8). The mean frequency of the minor allele at locus PS_9044 

increased over time from 0.03±0.04 in 1995 to 0.18±0.09 in 2013, and that at locus 

PS_77233 increased in frequency from 0 to 0.08±0.06 (Figure 5.6).  
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Table 5.4 The strength and significance of isolation by distance among 14 Parnassius 

smintheus populations, in each of four different years, characterized using Mantel tests 

and maximum likelihood population effects (MLPE) models. Pairwise genetic distances 

were calculated as Nei’s corrected genetic distance (Nei, 1978), and geographic distances 

as the distance along the ridgeline connecting the centroids of meadows. ‘r’ is the Mantel 

correlation coefficient, and ‘coef’ is the estimated coefficient from the MLPE mixed 

model. 

 

Year Mantel MLPE 

 
r p-value coef p-value 

1995 0.67 0.001 0.0062 0 

2005 0.057 0.4 0.00038 0.66 

2008 0.44 0.006 0.00042 0.22 

2013 0.22 0.19 0.006 0.04 
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Figure 5.5 The relationship between Nei’s corrected genetic distance (Nei, 1978) and 

geographic distance across 14 Parnassius smintheus populations, in each of four different 

years. Geographic distance was measured along the ridgeline and between the centroids 

of each populated meadow. The years 1995 and 2008 were each before an observed 

demographic bottleneck, and the years 2005 and 2013 were each after an observed 

demographic bottleneck. 
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Figure 5.6 Mean minor allele frequency of three SNP loci (PS_9044, PS_77233, and 

PS_1032489) whose minor allele frequency changed significantly from 1995 to 2013, as 

measured across 14 Parnassius smintheus populations using linear mixed effects models. 

Bars indicate standard deviation among populations in each year.  
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5.4 Discussion 

5.4.1 Changes in genetic diversity over two bottlenecks 

Genetic diversity is expected to be lost during population bottlenecks. Only alleles 

represented in the surviving individuals will remain (Allendorf, 1986), and additional 

alleles may continue to be lost rapidly through genetic drift as long as population sizes 

remain low (Nei et al., 1975). Both the minimum population size reached, and the 

number of generations at low population size, are expected to contribute to greater 

genetic loss of genetic diversity. However, this expectation has not often been tested 

empirically. Considering only the minimum population size reached, among pinniped 

species the modelled likelihood to have experienced very severe past declines in 

population size is associated with lower contemporary allelic richness (Stoffel et al., 

2018). There is also some evidence that in laboratory populations of D. melanogaster the 

minimum population size reached has a stronger impact on the loss of allelic richness 

than the length of the bottleneck, but only based on comparison of a short, severe 

bottleneck to a long bottleneck with a higher minimum population size (England et al., 

2003).  

I found that allelic richness in P. smintheus populations decreased during bottlenecks but 

rebounded fairly quickly as population sizes recovered within a few generations. The 

duration of the bottleneck did appear to be important in affecting the loss of allelic 

diversity. The 2010-2011 bottleneck lasted longer than the 2003 bottleneck, with 

population numbers remaining very low over two generations (i.e., years) rather than for 

a single generation (Jangjoo, Matter, Roland, & Keyghobadi, 2016). Previous studies in 

this system using microsatellites have found that allelic richness declined over the 2010-

2011 bottleneck but showed no trend over the 2003 bottleneck (Caplins et al., 2014; 

Jangjoo et al., 2016). Here, allelic richness estimated using SNPs similarly declined 

significantly over the longer 2010-2011 bottleneck, and trended downwards, though not 

significantly so, over the shorter 2003 bottleneck. A second metric of genetic diversity, 

expected heterozygosity, does not follow the same pattern as allelic richness. Expected 
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heterozygosity estimated with microsatellites does not fluctuate across bottlenecks 

(Caplins et al., 2014; Jangjoo et al., 2016), and I found that expected heterozygosity at 

SNPs was only reduced across the 2003 bottleneck. Expected heterozygosity is expected 

to be less sensitive to bottlenecks than allelic richness, especially in markers such as 

microsatellites where rare alleles may be lost with little impact on mean heterozygosity 

(Allendorf, 1986; Spencer, Neigel, & Leberg, 2000). A loss of allelic richness, but not 

necessarily of expected heterozygosity, is therefore expected during bottlenecks, as seen 

for example in populations of the squirrel Spermophilus lateralis (McEachern, Van 

Vuren, Floyd, May, & Eadie, 2011).  

While the loss of allelic richness during bottlenecks is ultimately the result of genetic 

drift, its recovery as population sizes increase again is likely due to gene flow mediated 

by dispersal among neighbouring populations. That is, novel alleles are re-introduced to 

populations via immigration from other nearby populations. Across both bottlenecks in 

this system, there is evidence that allelic diversity at microsatellites recovered most 

quickly in those populations having higher connectivity to other populations in the 

network, and therefore higher potential for incoming gene flow (Caplins et al., 

2014,.Jangjoo et al., 2016). The primary evolutionary process determining allelic 

diversity in this system therefore shifts between genetic drift during periods of population 

decline and gene flow during periods of population recovery (Jangjoo et al. 2020). 

Furthermore, this shift between gene flow and drift as the dominant influence occurs very 

rapidly, as seen after the 2003 bottleneck where allelic richness was recovered extremely 

quickly. For the populations where allelic richness at SNPs decreased between 1995 and 

2005, that allelic richness was recovered again by 2008. Allelic richness was thus 

recovered within three generations of the samples taken in 2005, and five generations of 

the beginning of the bottleneck in 2003.  

In populations where recovery of genetic diversity is driven by immigration, rather than 

being limited to novel mutations over a longer time span, differences in immigration 

rates, generation time, effective population size, and population spatial configurations 

make it difficult to generalize how long recovery of allelic richness should take. In the 

ground squirrel Spermophilus lateralis, recovery of allelic richness post bottleneck was 
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achieved within just over 1 generation due to high rates of immigration (McEachern, Van 

Vuren, Floyd, May, & Eadie, 2011). Organisms with more limited dispersal opportunities 

such as the parasitic louse Geomydoecus aurei take at least 45 generations to approach a 

stable plateau of allelic richness after a founder event (Demastes, Hafner, Hafner, Light, 

& Spradling, 2019). For P. smintheus populations on Jumpingpound ridge, the number of 

generations required for the recovery of allelic richness may be around five generations, 

based on the time between the bottleneck in 2003 and the recovery of allelic richness in 

2008. This relatively rapid response is likely a result of a combination of factors in 

particular a moderately high immigration rate among neighbouring populations (Roland 

et al. 2000) and a short generation time (Epps & Keyghobadi 2015). Genotyping 

individuals from additional years after 2013 will provide further insight into the temporal 

dynamics of genetic diversity in this system. Importantly, without an observed plateau of 

allelic diversity across several years or knowledge of the demographic history prior to 

1995, it is unclear whether the level of allelic richness observed in 2008 is what would be 

expected at near equilibrium conditions. The samples collected between 2013 and the 

most recent bottleneck in 2019 may shed light on this either in the form of an observable 

plateau or a continued recovery of allelic richness. 

5.4.2 Changes in genetic differentiation over two bottlenecks 

As population sizes decrease and genetic drift becomes stronger during bottlenecks, 

different alleles are lost by chance in different populations. As a result, those populations 

become more genetically differentiated. Spatial patterns of genetic structure among 

populations, particularly patterns of IBD, are also likely to be disrupted as the random 

genetic differentiation of populations is independent of their spatial distance. 

Subsequently, as populations recover in size, gene flow among them allows nearby 

populations to again share common alleles, reducing differentiation overall and re-

establishing IBD. Overall, and consistent with microsatellite data (Caplins et al. 2014; 

Jangjoo et al. 2020) I saw the expected increase in genetic differentiation and loss of IBD 

across the 2003 bottleneck, a decrease in differentiation and partial recovery of IBD by 

2008, and another increase in differentiation with some loss of IBD again in 2013 (Figure 

5.5, Table 5.4). These patterns provide further support for the shifting importance of drift 
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and gene flow in this population network as population sizes fluctuate. There are few 

studies outside of the work on P. smintheus examining how genetic differentiation and 

spatial population genetic structure change across a bottleneck. This requires genetic 

sampling both before and after what is often an unpredictable event, and in a set of 

interconnected populations. It can often be simpler to compare population networks with 

different demographic histories; for example, in sockeye salmon, populations that 

spawned in the tributaries of one lake believed to have undergone a founding bottleneck 

lack the IBD seen in other, nearby lakes (Ramstad, Woody, Sage, & Allendorf, 2004).  

Detection of significant IBD in 2013 using MLPE models was unexpected and had not 

been observed in analyses based on microsatellites (Jangjoo et al., 2020). It is worth 

noting that although I detected significant IBD in 2013 but not in 2008 using MLPE 

models, when plotted the 2008 data look more consistent with typical IBD patterns than 

the 2013 data (Figure 5.5). The 2013 data presented here differ somewhat from those 

analyzed using microsatellites; due to restricted available samples, I analyzed fewer 

populations (six versus nine). Among the populations I could not include were those 

located at the ends of Jumpingpound Ridge, resulting in a smaller spatial extent of my 

analyses compared to the previous microsatellite-based analyses. Additionally, a higher 

proportion of large, well-connected populations met my minimum sample size 

requirements in 2013 than in other years. Meadows like L and M that maintain large 

populations and are centrally located with more opportunities for dispersal tend to lose 

less microsatellite allelic diversity and regain it faster after bottlenecks (Caplins et al., 

2014; Jangjoo et al., 2016). It is possible that these populations with higher connectivity 

that were disproportionately included in 2013 exchanged more individuals and started to 

restore a pattern of IBD, which would otherwise not have been observed if smaller, less 

connected populations had been included. 

5.4.3 Signatures of oscillating and directional selection 

Superimposed on the shifting relative influence of drift and gene flow among populations 

through bottleneck events are also potential selection pressures that I was able to explore 

using my SNP data. Among the loci whose allele frequencies changed directionally and 

significantly across bottlenecks, one locus (PS_1032489) was found in the adult P. 
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smintheus transcriptome. Using the Basic Local Alignment Search Tool from NCBI, the 

closest related and sequenced locus is from the diamondback moth, Plutella xylostella, 

and is predicted to encode an RNA-directed DNA polymerase whose function is 

predicted based on its similarities to the mobile element jockey found in Drosophila 

melanogaster (You et al., 2013). RNA-directed DNA polymerases, also called reverse 

transcriptases, use an RNA template to encode double stranded DNA. The mobile 

element jockey may have been introduced into Drosophila species from retroviruses 

(Priimägi, Mizrokhi, & Ilyin, 1988), and is now present at 67 copies in the D. 

melanogaster genome (Kaminker et al., 2002). While mobile elements do not inherently 

have a function for the host organism besides their own self-replication, some mobile 

elements have been coopted by the host. For example, the Iris gene in Drosophila species 

was derived from an insect retrovirus, and putatively functions to defend against infection 

from other retroviruses (Malik & Henikoff, 2005). Other mobile elements can affect an 

organism’s phenotype directly when insertion is close to an expressed region. In D. 

melanogaster, a spontaneous jockey insertion decreased alcohol dehydrogenase activity, 

possibly affecting the ability of a nearby enhancer to bind to its promoter (White & 

Jacobson, 1996). 

The nature of the changes in genotype at this locus are interesting. In 1995 all individuals 

sampled were heterozygous at this locus; in following years, the decrease in minor allele 

frequency is driven by the appearance of individuals that were homozygous at either the 

major or minor allele. Although the low number of minor allele homozygotes may 

indicate selection for heterozygotes and against minor allele homozygotes, the presence 

of such adult homozygotes in 2005 at least indicates that the genotype is not lethal. This 

deviation from Hardy-Weinberg equilibrium may be driven by a heterozygote advantage 

at PS_1032489 or another linked locus prior to 1995, after which the potential fitness 

advantage of the heterozygote appears to have declined. The long-term (i.e., found post-

2005) appearance of only the major allele homozygote indicates that there is more than a 

relaxation of heterozygote advantage, otherwise the minor allele homozygote would also 

have increased in frequency as the locus moved towards Hardy-Weinberg equilibrium. 

Furthermore, the proportion of major allele homozygotes decreases somewhat in 2008 

relative to 2005 and 2013. Taken together this may indicate the appearance of selection 
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for the major allele or a linked locus during subsequent bottlenecks, which is driving an 

overall pattern of directional selection.  

For loci whose allele frequencies changed significantly and directionally, such changes in 

allele frequency may be driven by environmental variables that have been changing over 

this time span. One such variable is summer temperature, which has been increasing over 

the time period studied here. The average temperature in July has risen by about 1.3°C 

since 1990 in the area around Jumpingpound Ridge (based on 5 year averages, 1988-1992 

and 2010-2014, from Natural Resources Canada data presented in Chapter 3). Ambient 

temperature controls and can exert selection on many biochemical, physiological and 

behavioural traits in insects (Bing & Le, 2005; Sinclair, Addo-Bediako, & Chown, 2003). 

For example, allozymes may have different optimal temperatures, such that the efficiency 

of metabolic processes changes with ambient temperature; in the butterfly Melitaea 

cinxia, optimum flight temperature changes depending on the genotype at the 

phosphoglucose isomerase locus (Niitepõld et al., 2009). Parnassius smintheus adults fly 

and mate in July, so an increase in average temperature could select for individuals that 

function better at higher temperatures. A visual examination of historical July 

temperature data (Hutchinson et al., 2009) shows that temperature only begins to increase 

around 1990. The relatively recent changes in temperature could explain why changes in 

allele frequency continue to be seen; if the selection pressure had been operating over a 

longer period, alleles may have already been fixed or reached an equilibrium between any 

competing selection pressures.  

Another relevant environmental change is the decrease in snowfall, over both the entire 

winter and in November specifically. Reduced snowfall results in a diminished blanket of 

insulating snow cover, which increases the risk of mortality by exposing overwintering 

eggs to ambient air temperatures. First, reduced snow cover can increase the probability 

of premature emergence or increased metabolic activity (thus reducing energy stores) in 

early winter as a result of exposure to warm air temperatures (Roland & Matter, 2013, 

2016). Conversely, it increases the risk of eggs freezing through exposure to temperatures 

below the lower lethal limit during particularly cold periods. Snow cover on 

Jumpingpound is decreasing over time (Filazzola, pers. comm.), but year to year variation 
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in snow cover superimposed on that trend is also likely part of what drives periodic 

bottlenecks (i.e., low snow cover coupled with unusually high or low November 

temperature; Roland & Matter, 2013, 2016). Although no locus had significant 

fluctuations in allele frequency, this does not rule out the possibility that these bottleneck 

conditions are driving observed directional patterns. If there is no temporally varying 

balancing selection (i.e., alleles selected for during bottlenecks are not selected against 

during recovery periods), or if the opposing selection pressure is weak relative to the 

selection pressure experienced during the bottleneck, then the occurrence of two 

bottlenecks in a relatively short time span could lend the appearance of consistent 

directional selection.  

Regardless of whether winter conditions might be a source of continuous, directional 

selection or periodic, fluctuating selection, these sources of egg mortality may select for 

individuals that have a higher temperature threshold for emergence, greater energy 

storage, or mechanisms that increase freeze avoidance. One butterfly tolerant of warm 

winters is Papilio glaucus, as compared to its congener P. canadensis (a species with 

which it occasionally hybridizes). Unlike P. glaucus pupae, P. canadensis pupae lose 

body weight, likely as a result of increased metabolism, when overwintering temperatures 

increase (Mercader & Scriber, 2008). Given the variation observed between these are 

different but very closely related, species, it is plausible that there is also intraspecific 

variation in temperature-dependent metabolic enzyme activity upon which selection 

could act. Furthermore, in the case of selection driven by egg freezing, P. smintheus 

individuals with greater expression levels of glycerol, mannitol, and trehalose (known 

cryoprotectants in the related P bremeri; Park, Kim, Park, Lee, & Lee, 2017) may survive 

better. In the context of freeze avoidant species, cryoprotectant expression levels may be 

heritable and shift the lower lethal temperature downward (Morey, Venette, & Hutchison, 

2013). Alternately, the lack of significant fluctuations at any SNP locus may indicate that 

surviving a bottleneck event has no genetic basis. Snow cover varies spatially within 

Jumpingpound meadows (Roland, Filazzola, & Matter, 2021); the eggs that survive 

bottlenecks may simply be those laid in areas that happened to accumulate greater snow 

cover, rather than representing individuals with greater cold tolerance.  



142 

 

5.4.4 Conclusions  

Repeated, extreme fluctuations in the size of natural populations provide an empirical 

system in which to test theories of how bottlenecks affect neutral genetic diversity and 

differentiation. When different cycles of population size increase and decrease are driven 

by consistent processes, and are associated with similar selective pressures, there is an 

additional opportunity to study changes at functional loci potentially driven by selection. 

I found that in a network of populations of P. smintheus, the relative importance of 

genetic drift and gene flow appeared to shift across two bottlenecks. Consistent with 

previous data from microsatellite markers, genetic diversity and population structure 

were lost through drift at low population sizes, and then rapidly recovered (within five 

generations) as dispersing individuals reintroduced alleles among local populations. By 

using a SNP panel rather than neutral markers, I also showed that for a small proportion 

of loci, allele frequency changed directionally over the period of study, indicating that 

those loci are potentially under directional selection. The ongoing development of a P. 

smintheus genome will be important for exploring selection pressures further, as it may 

expose potential functions of, or other loci linked to, those SNPs where significant 

directional change was observed. A recent bottleneck in 2019 is also an exciting 

opportunity to further test the conclusions of this study, both to test for the repeated loss 

of overall genetic diversity and spatial genetic structure, and to examine whether 

directional patterns of change at putatively selected SNPs continue. 
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Chapter 6  

6 General Discussion 

6.1 Overview 

My thesis adds to the growing body of work that takes advantage of advances in DNA 

sequencing technology to investigate the processes that shape genetic diversity in natural 

populations. I used single nucleotide polymorphisms identified through a reduced 

representation sequencing approach to investigate how genetic diversity is shaped by 

environmental factors across two spatial and temporal scales in the alpine butterfly 

Parnassius smintheus. My first objective was to develop and test a reduced representation 

sequencing protocol for P. smintheus, which I used to inform decisions around how to 

best process data for different population genetic analyses (Chapter 2) and to make 

recommendations for the minimum sample sizes for future surveys (Chapter 3). My 

second objective was to apply this dataset to two sets of natural P. smintheus populations 

sampled at different spatial and temporal scales (i.e., a broader spatial extent at a single 

time point, and a finer spatial extent over multiple years), to assess what factors shaped 

patterns of genetic diversity through the processes of gene flow, genetic drift, and 

selection (Chapters 4 and 5).  Throughout my thesis, my major contributions include 

making valuable recommendations for data processing and sampling for future studies 

using a reduced representation approach, and providing evidence for how landscape, and 

variability in weather, affect patterns of genetic diversity.   

6.2 The future of molecular markers in population genetics  

The most popular molecular marker at any given time in the history of population 

genetics has depended on the technology of the era. With each new advance, old 

molecular markers have largely become outdated (Schlötterer, 2004). Large datasets of 

single nucleotide polymorphisms, as genotyped by reduced representation or whole 

genome sequencing, are among the newest of these markers (Casillas & Barbadilla, 

2017). Although the use of SNPs is becoming increasingly common, microsatellites 
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remain a popular choice (Garrido-Cardenas, Mesa-Valle, & Manzano-Agugliaro, 2018; 

Puckett, 2017). As recently as 2018, the number of published studies investigating 

genetic structure using SNPs genotyped by reduced representation sequencing were only 

10% of the number that used microsatellites (Sunde, Yıldırım, Tibblin, & Forsman, 

2020). Some reasons that microsatellites remain popular include their ease of use, 

affordability, and comparability with previously published studies that used the same 

microsatellite markers (Hodel et al., 2016). Microsatellites have also become easier to 

develop, as potential microsatellite markers can be identified in silico from the whole 

genome sequences of one or more individuals (Hodel et al., 2016).   

Reduced representation sequencing approaches such as RADseq are used because whole 

genome sequencing of many individuals is costly (Fuentes-Pardo & Ruzzante, 2017). As 

the cost of whole genome sequencing continues to fall and available computing power 

increases, reduced representation sequencing may become unnecessary and be replaced 

by whole genome resequencing. However, both reduced representation and especially 

whole genome sequencing have stricter minimum DNA quantity and quality 

requirements than other markers, including microsatellites and other SNP genotyping 

techniques (e.g., MassARRAY) (Campbell & Narum, 2009; Jordon-Thaden et al., 2020). 

For example, the wing clips taken from P. smintheus individuals at Jumpingpound Ridge 

yield sufficient DNA for microsatellite and MassARRAY SNP analysis, but not enough 

for RADseq. Whole genome amplification is a potential solution to low starting DNA 

quantities; however, it is both costly and can result in biases in amplification, the 

introduction of artifacts, the amplification of off-target (e.g., contaminating DNA) 

sequences (Sabina & Leamon, 2015), and lower numbers of loci sequenced than non-

amplified libraries (Medeiros & Farrell, 2018). As part of Chapter 5 I attempted whole 

genome amplification of wing clip DNA followed by RADseq, and was unsuccessful – 

the resulting RADseq libraries were dominated by a small number of highly replicated 

sequences. Although the availability of a whole genome sequence for comparison would 

alleviate some of the errors introduced by whole genome amplification (e.g., by screening 

out primer artifacts and off-target sequences), the process remains costly and, in my 

experience with P. smintheus wing clips, prone to errors. Given the current state of both 

whole genome sequencing and whole genome amplification, for studies with limited 
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starting DNA both microsatellites and targeted SNP panels will remain the viable options 

for molecular markers for the near future.  

6.3 Contributions to the Parnassius smintheus model 

system 

Parnassius smintheus populations in western Alberta have now been extensively studied 

for the past 26 years. Previously developed tools for their study have included mark-

recapture protocols (Roland, Keyghobadi, & Fownes, 2000), microsatellite markers 

(Keyghobadi, Roland, & Strobeck, 1999), SNP markers within the phosphoglucose 

isomerase gene (Jangjoo, 2018), an adult transcriptome (Jangjoo, 2018), and recently, a 

shotgun sequenced genome (Allio et al., 2020). Some of these, including mark-recapture 

and collection of wing clips for genetic analysis, are used as part of the annual survey of 

the Jumpingpound populations. Others, such as the transcriptome, have been used to 

investigate specific questions, such as whether expression levels differ between recently 

dispersed and non-dispersed individuals (Jangjoo, 2018), but have continued to have 

important and unanticipated secondary uses in subsequent projects. For example, I used 

the transcriptome as a tool to differentiate expressed and non-expressed SNP loci when 

choosing which SNPs to include in the panel I used in Chapter 5. This abundance of tools 

and datasets, in combination with extensive genetic and dispersal data collected annually 

over many years, make the Jumpingpound Ridge P. smintheus populations an emerging 

model system in empirical landscape and population genetics.  

I developed two novel genomic tools for P. smintheus that I then used to generate two 

different datasets. First, in Chapters 2, 3, and 4 I used a ddRADseq approach to genotype 

P. smintheus individuals from populations across western Alberta at thousands of SNP 

loci. In doing so, I both developed a protocol (i.e., identified restriction enzymes, 

appropriate fragment size selection, and optimal PCR conditions) for ddRADseq for 

whole body P. smintheus samples, as well as created a dataset that may be used to 

address additional landscape and population genetic hypothesis. I expect that the 

ddRADseq dataset may be used in the future to continue to address questions of how 

landscape affects genetic structure in P. smintheus. For example, I did not examine how 
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the distribution and density of the larval host plant Sedum lanceolatum could affect 

genetic diversity, separately from the size of each meadow patch. Furthermore, future 

studies could make use of the ddRADseq data I generated to investigate loci that may be 

underlying local adaptation among populations of P. smintheus in the foothills and front 

ranges of the Rocky Mountains. 

Second, in Chapter 5 I developed a small SNP panel of a few hundred loci, including 

both expressed and putatively non-expressed loci, that I used to genotype individuals 

from the Jumpingpound Ridge populations across four years (1995, 2005, 2008, and 

2013). This SNP panel is currently being used to examine the genetic effects of an 

experimental extinction on Jumpingpound Ridge, as well the effects of the demographic 

bottlenecks on inbreeding and fitness. This novel tool that I developed may continue to 

be used in the future in conjunction with, or as a replacement for, microsatellite 

genotyping of the Jumpingpound Ridge populations, which has been extensively used in 

past studies (Caplins et al., 2014; Jangjoo, Matter, Roland, & Keyghobadi, 2016, 2020; 

Keyghobadi, Roland, & Strobeck, 1999). 

6.4 Weather variability and genetic diversity  

Both weather and climate (the long-term average of weather) affect the abundance and 

persistence of populations, which in turn affects their genetic diversity. Populations at the 

edge of their species’ climatic envelope are predicted to have lower rates of reproduction 

and survival than populations at more optimal conditions, resulting in lower and more 

variable population sizes and therefore decreased genetic diversity over time. This is seen 

in the lizard Ameivula ocellifera, where populations in regions with more favourable 

climate conditions (e.g., higher temperature seasonality) have greater genetic diversity 

than populations occupying less favourable conditions (Oliveira et al., 2018). In the trout 

Oncorhynchus mykiss, higher average precipitation during the winter is associated with 

greater genetic differentiation, potentially as a result of greater spring runoff driving 

higher embryo mortality (Hand et al., 2016). Another mechanism by which weather and 

climate affect genetic diversity is through local adaptation. Patterns of isolation by 

environment, where genetic distances between populations are larger when differences in 
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their local environments are greater, emerge when there is local adaptation to 

environmental conditions which reduces the successful survival and reproduction of 

dispersers (Wang & Bradburd, 2014). For example, differences in alkalinity and chemical 

compounds between lakes is a predictor of genetic differentiation in the brine shrimp 

Artemia franciscana, likely due to reduced hatching and survival outside of their natal 

conditions (Frisch et al., 2021).  

In the above examples, and indeed in most empirical population and landscape genetic 

studies, static climate variables (e.g., long-term average temperature or precipitation) are 

often used when assessing the impact of climate on genetic variation. Furthermore, where 

variability in weather and climate is considered, it is often as average intra-annual 

variability; for example, temperature seasonality in the study of the lizard A. ocellifera 

refers to the long-term average of the difference between maximum and minimum 

temperatures within each year (Oliveira et al., 2018). However, inter-annual variability in 

both weather (e.g., droughts, extreme temperatures) and climate (e.g., El Niño-Southern 

Oscillation, Pacific Decadal Oscillation) are also important drivers of population size and 

genetic diversity. Uncommon but extreme weather, such as extreme high or low 

precipitation or severe storms, can have long-lasting impacts on population genetics. 

When weather events cause bottlenecks, genetic diversity may be lost both genome-wide, 

as alleles are lost both during the initial decline in population size and through stronger 

genetic drift for as long as the population size remains low (Clark, Marchand, Clifford, 

Stechert, & Stephens, 2011), and at any loci experiencing selection during the weather 

event, such as loci that increase drought resistance (Whitney et al., 2019 but see Dillon et 

al., 2015). As climate change is associated not only with shifting average conditions, but 

also with increasing weather variability and more frequent extreme weather events, 

incorporating weather variability when modelling biological patterns and processes, 

including predictors of genetic diversity, is increasingly important. Studies of both 

current distributions of genetic diversity, such as in the bettong Bettongia gaimardi (Proft 

et al., 2021), and models of genetic diversity under various climate change scenarios, 

such as for the woodpecker Dendrocopos medius (Cobben et al., 2011) confirm that 

increased weather variability is associated with lower genetic diversity.   
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In Chapter 4, I looked at whether average and extreme weather conditions were 

predictors of genetic diversity and differentiation in P. smintheus populations at a broad 

(tens to hundreds of kilometers) spatial scale. In Chapter 5, I examined the genetic 

consequences of repeated bottlenecks, which are likely driven by early winter weather, on 

the Jumpingpound Ridge populations. In Chapter 4, I found that both average (mean 

daily low temperatures) and extreme weather (the lowest November snow depth over a 

10 year period) predicted genetic diversity and differentiation. These results were 

congruent with the immediate effects of the bottlenecks examined in Chapter 5; 

specifically, at the larger scale populations with lower snow cover, which is expected to 

result in more frequent and severe demographic collapses (Roland & Matter, 2016), were 

more genetically differentiated from other populations and had lower expected 

heterozygosity. These results at the larger scale are consistent with how the 

Jumpingpound populations lost genetic diversity after each bottleneck. Both sets of 

results support the importance of weather variability (in this case, variability in snow 

cover specifically) on genetic diversity.  

Interestingly, at Jumpingpound Ridge there is no observed long-term decline in genetic 

diversity despite the observed bottlenecks; while genetic diversity is lost in each 

population in the short term, it is recovered within several years to pre-bottleneck levels 

as a result of gene flow (Caplins et al., 2014; Jangjoo et al., 2016, 2020). This apparent 

difference between the potential effect of years with low snow cover on genetic diversity 

at Jumpingpound Ridge (i.e., a temporary decline and recovery, but no long-term change) 

versus among the more widely distributed P. smintheus populations (i.e., a predictor of 

differences in genetic diversity among populations) likely reflects the different spatial 

and temporal scales covered in Chapters 4 and 5. While the Jumpingpound populations 

may individually be losing and then recovering genetic diversity through each bottleneck, 

the average genetic diversity across the Jumpingpound metapopulation (like other 

populations in the East Kananaskis region) is lower than other P. smintheus populations 

that experience different weather and landscape conditions (e.g., greater meadow 

connectivity and snow cover). Here, using data from two spatial and temporal scales I 

have provided complementary evidence for the way that genetic diversity can be reduced 

through reduced population sizes (as seen at a smaller spatial but longer temporal scale; 
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Chapter 5, and what landscape and weather variables are associated with those losses (at 

a larger spatial scale, but observed at a single point in time; Chapter 4).  
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Appendix A 

Table A1 Barcoded Illumina adapter and PCR primer sequences used during double 

digest restriction site associated DNA sequencing. Barcodes are bolded for all sequences. 

P1 adapters ligated to NlaIII cut sites, and P2 adapters ligated to EcoRI cut sites. PCR 

primers were Illumina i5 (forward) and i7 (reverse), with added barcodes on the reverse 

primer. Individuals pooled and sequenced in a single Illumina Hiseq lane all received a 

unique combination of adapter and primer barcodes.   

 

Adapter/primer Sequence 

Adapter P1 ACACTCTTTCCCTACACGACGCTCTTCCGATCTCATGCATG 

 ACACTCTTTCCCTACACGACGCTCTTCCGATCTTGCACATG 

 ACACTCTTTCCCTACACGACGCTCTTCCGATCTACGTCATG 

 ACACTCTTTCCCTACACGACGCTCTTCCGATCTGTACCATG 

 ACACTCTTTCCCTACACGACGCTCTTCCGATCTCTAGCATG 

 ACACTCTTTCCCTACACGACGCTCTTCCGATCTAGCTCATG 

 ACACTCTTTCCCTACACGACGCTCTTCCGATCTTCGACATG 

 ACACTCTTTCCCTACACGACGCTCTTCCGATCTGATCCATG 

 ACACTCTTTCCCTACACGACGCTCTTCCGATCTGGTTGCATG 

 ACACTCTTTCCCTACACGACGCTCTTCCGATCTGAGTGGCATG 

 ACACTCTTTCCCTACACGACGCTCTTCCGATCTGCCAATCATG 

 ACACTCTTTCCCTACACGACGCTCTTCCGATCTCCAACACATG 

 ACACTCTTTCCCTACACGACGCTCTTCCGATCTCTGTAACATG 

 ACACTCTTTCCCTACACGACGCTCTTCCGATCTAGTTCCACATG 

 ACACTCTTTCCCTACACGACGCTCTTCCGATCTTATAATGCATG 

 ACACTCTTTCCCTACACGACGCTCTTCCGATCTTACAGCACATG 

 ACACTCTTTCCCTACACGACGCTCTTCCGATCTCGATGTACATG 

 ACACTCTTTCCCTACACGACGCTCTTCCGATCTGGTAGCACATG 

 
 

Adapter P2 AATTCATGAGATCGGAAGAGCGAGAACAA 

 AATTTGCAAGATCGGAAGAGCGAGAACAA 

 AATTACGTAGATCGGAAGAGCGAGAACAA 

 AATTGTACAGATCGGAAGAGCGAGAACAA 

 AATTTCGAAGATCGGAAGAGCGAGAACAA 

 
 

Forward Primer AATGATACGGCGACCACCGAGATCTACACTCTTTCCCTACACGACG 

Reverse Primer 1 
CAAGCAGAAGACGGCATACGAGATACATCGGTGACTGGAGTTCAGACG
TGTGC 

Reverse Primer 2 
CAAGCAGAAGACGGCATACGAGATATTGGCGTGACTGGAGTTCAGACG
TGTGC 
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Appendix B 

Table B2 Trinotate gene ontology functional categories and possible specific functions, 

assigned to the 39 expressed Parnassius smintheus loci genotyped on the Sequenom 

MassARRAY iPLEX platform. 

 

Locus ID Category Possible functions 

CLocus_99187 Cell function 
Apoptosis; transcription; chaperone 
protein 

CLocus_9025 Cell function Membrane protein 

CLocus_28174 Cell function Phosphate bond hydrolysis 

CLocus_162616 Cell function Cell cycle regulation 

CLocus_40552 Cell function ATP synthase  

CLocus_27673 Cell structure Cell movement; neuron development 

CLocus_15073 Development  Segmentation protein runt 

CLocus_70308 Developmental Insect development (Drosophila) 

CLocus_63430 DNA repair DNA repair 

CLocus_263637 DNA repair Histone related 

CLocus_124730 Heat shock protein DNAj Heat Shock Protein 

CLocus_689 Histone Histone 

CLocus_45337 Immune 
Innate immunity by binding to 
peptidoglycans 

CLocus_92401 Immune response Putative defense protein, antimicrobial 

CLocus_111905 Metabolism Nicotine response – mitochondrial 

CLocus_141537 Metabolism Protease 

CLocus_29804 Metabolism Cytochrome b; ETC 



162 

 

CLocus_77750 Metabolism Glycogen/glycan biosynthesis 

CLocus_22919 Metabolism Lipid catabolism 

CLocus_91307 Organism-level 
Microtubule; involved in 
movement/hearing 

CLocus_4488 Organism-level Neurotransmission (exocytosis) 

CLocus_28873 Organism-level Signal transduction 

CLocus_111588 Organism-level Cuticle melanization and sclerotization 

CLocus_6191 Organism-level Hearing (cilia); courtship  

CLocus_87605 Organism-level Insect molting hormone  

CLocus_46539 Organism-level Insect molting hormone  

CLocus_1032489 Polymerase RNA directed polymerase 

CLocus_986766 Polymerase Polymerase 

CLocus_69474 Protein modification Modifies cullin proteins 

CLocus_348206 Protein modification Protein glycosylation 

CLocus_45989 Transcription mRNA processing and export 

CLocus_2336 Transcription DNA binding 

CLocus_113788 Transcription Transcription regulation 

CLocus_81019 Transcription Zinc finger protein 

CLocus_119355 Transcription Zinc finger protein 

CLocus_130947 Transcription Mitochondrial transcription regulation 

CLocus_1050198 Transport Microtubule based transport 

CLocus_953305 Transport Transmembrane transport 

CLocus_184151 Transport Potassium channel 
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