
Western University Western University

Scholarship@Western Scholarship@Western

Digitized Theses Digitized Special Collections

2011

POLICY BASED THIRD PARTY WEB SERVICE MANAGEMENT POLICY BASED THIRD PARTY WEB SERVICE MANAGEMENT

Md Sakibul Hasan

Follow this and additional works at: https://ir.lib.uwo.ca/digitizedtheses

Recommended Citation Recommended Citation
Hasan, Md Sakibul, "POLICY BASED THIRD PARTY WEB SERVICE MANAGEMENT" (2011). Digitized
Theses. 3652.
https://ir.lib.uwo.ca/digitizedtheses/3652

This Thesis is brought to you for free and open access by the Digitized Special Collections at
Scholarship@Western. It has been accepted for inclusion in Digitized Theses by an authorized administrator of
Scholarship@Western. For more information, please contact wlswadmin@uwo.ca.

https://ir.lib.uwo.ca/
https://ir.lib.uwo.ca/digitizedtheses
https://ir.lib.uwo.ca/disc
https://ir.lib.uwo.ca/digitizedtheses?utm_source=ir.lib.uwo.ca%2Fdigitizedtheses%2F3652&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ir.lib.uwo.ca/digitizedtheses/3652?utm_source=ir.lib.uwo.ca%2Fdigitizedtheses%2F3652&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:wlswadmin@uwo.ca

POLICY BASED THIRD PARTY WEB SERVICE MANAGEMENT

(Thesis format: Monograph)

by

Md Sakibul Hasan

Graduate Program in Computer Science

A thesis report submitted in partial fulfillment

of the requirements for the degree of

Master of Science

!
/

The School of Graduate and Postdoctoral Studies

The University of Western Ontario

London, Ontario, Canada

© Md Sakibul Hasan 2011

THE UNIVERSITY OF WESTERN ONTARIO

School of Graduate and Postdoctoral Studies

CERTIFICATE OF EXAMINATION

Supervisor:

Dr. Hanan Lutfiyya

Supervisory Committee:

Examiners:

Michael James Katchabaw

Sylvia L. Osborn

Stuart A. Rankin

The thesis by

Md Sakibul Hasan

entitled:

Policy based third party web service management

is accepted in partial fulfillment of the

requirements for the degree of

Master of Science

Date Chair of the Thesis Examination Board

Abstract

Service-oriented computing potentially can help businesses respond more quickly and more

cost-effectively to changing market-conditions. Web services are the basic building elements

of service-oriented architecture. There are often expectations expected from services that are

related to non-functional aspects (i.e. response time, availability) of the web service. The

non-functional requirements are referred to as Quality of Service (QoS) requirements. Service

Level Agreements (SLAs) are contracts between service providers and service consumers by

which the service providers are bound to maintain a certain level of the Quality of Service.

SLAs specify conditions on metrics, that represent some aspect of run-time behaviour, that are

to be satisfied at run-time. Monitoring of services is needed to determine when SLAs are vio

lated. Adaptive recovery actions are taken to maintain the quality of the service promised on

the SLAs. Policies are used to guide the decision making process to determine the appropriate

action.

In this work a new system architecture which uses policies to manage web services is pro

posed and a prototype is implemented to validate the architecture. In this system policies could

be added, modified or deleted at system run time. The management task is totally handled by

the third party and so, management tasks on the client end are reduced.

The results of the conducted experiments validates the functionality of our proposed archi

tecture and proves that the overhead of using the architecture is less.

Keywords: Web Service, Web Service Management, Web Service Policy

Acknowledgements

First of all I would like to thank my supervisor, Prof. Hanan Lutfiyya, for her guidance and

assistance. She was very helpful and encouraging in choosing the topic of this thesis and

pursuing the research. Thanks to her for the help and inspiration she extended. I would like

to give a nod to my fellow students and DiGS members for being an excellent sounding board

for both ideas and the venting of frustrations. I would also like to thank faculty members and

Staff of the Department of Computer Science for making my studying here highly enjoyable.

And many thanks go to my beloved family and friends for their understanding and endless love

through the duration of my Masters program.

tv

Contents

Certifícate of Examination ii

Abstract iii

Acknowledgements iv

List of Figures x

List of Tables xi

1 Introduction 1

1.1 Problem statement... 2

1.2 Thesis fo c u s .. 2

1.3 Thesis organization.. 3

2 Background and Related work 4

2.1 Basic concepts... 4

2.1.1 Service Oriented Architecture (SOA).. 4

2.1.2 Web serv ice ... 5

SOAP (Simple Object Access P ro toco l).. 6

WSDL (Web Services Description Language)... 6

UDDI (Universal Description, Discovery and Integration)...................... 8

2.1.3 Types of web services... 8

Protocol category .. 8

v

10

10

11
12

12

12
13

13

13

14

14

14

15

15

15

17

17

18

19

19

22

22

23

23

24

25

25

Level of simplicity c a te g o ry

2.1.4 Web service com position......................

2.1.5 QoS attributes of web serv ices

Performance..

Dependability...

Security/Trust...

Cost/Payment...

Web service monitoring......................................

2.2.1 Quality of Service (QoS) monitoring . .

2.2.2 Basic monitoring techniques................

Internal agents in messaging framework

External intermediaries.........................

Code level instrumentation...................

2.2.3 Proposed monitoring infrastructures . .

Grand S la m ..

Distributed Monitor Architecture

SLM Engine..

Performance M onitor............................

A daptivity...

2.3.1 Web service failure and f a u l t

2.3.2 Recovery A ctions..................................

P o l ic y ..

2.4.1 What is policy...

2.4.2 Policies for self-healing web services .

Reactive p o lic ie s

Predictive policy

Research gap ...

vi

3 Architecture 26

3.1 P o lic ie s ..26

3.1.1 Service selection policy.. 26

3.1.2 Violation po licy ...27

3.1.3 Recovery policy ...28

3.2 System O verview .. 29

3.3 System Components... 30

3.3.1 Client Agent (CA) ...30

Configuration.. 31

C o lle c to r .. 31

L o g s.. 31

Synchronizer.. 32

3.3.2 Provider Agent (PA) .. 32

3.3.3 Third Party Agent (T P A)... 34

Registration... 34

Negotiator.. 34

Contract Repository... 34

L o g s..34

Event Generator... 35

Diagnosis M odule.. 35

Recovery A gent... 35

3.4 Work flow of the system .. 36

3.4.1 Registration... 36

Client registration.. 36

Provider registration ... 36

3.4.2 Define p o lic ie s ... 37

3.4.3 Find services and create S L A ... 37

Vll

Finding service p ro v id e r ... 37

Create S L A ... 38

3.4.4 Recording service request information... 39

3.4.5 Synchronize logs of service invocations.. 40

3.4.6 M on ito ring ... 40

3.4.7 R eco v e ry .. 42

4 Implementation 43

4.1 Implementation of system components...43

4.1.1 Client Agent... 43

Configuration.. 43

C o lle c to r .. 44

L o g s ..44

Synchronizer.. 44

4.1.2 Provider A g e n t ...44

4.1.3 Third Party A gent...45

Registration and Negotiator.. 45

Contract Repository and L o g s ..45

Event Generator...45

D iagnosis.. 45

Recovery A g e n ts ..45

4.2 D atabase..46

5 Validation 48

5.1 Evaluation...48

5.2 V alidation...48

5.2.1 Functionality testing ... 49

5.2.2 Overhead te s t in g ..53

viii

6 Conclusions and Future work 55

6.1 Conclusions..55

6.2 C ontributions...56

6.3 Future W ork ..57

Bibliography 58

Curriculum Vitae 61

ix

List of Figures

2.1 SOA Architecture [22] ... 5

2.2 SOAP Message [32]... 7

2.3 WSDL Message [1 8] .. 9

2.4 Web service monitoring component proposed by Josef Spillner [27] 16

2.5 Web service monitoring component proposed by Sandro Reichert [2 8] 18

2.6 Web service monitoring component proposed by Akhil Shahai [2 6].................... 19

2.7 Web service monitoring component proposed by Farhana H. Zulkemine [39] . . 20

3.1 System Architecture... 30

3.2 Client Agent and Third Party Agent components and their interaction....................33

4.1 Database of prototype... 47

5.1 Service time v io la tio n s ...52

5.2 Availability violations..52

5.3 Scenario 1 - Normal service invocation..53

5.4 Scenario 2 - Service invocation through our proposed architecture53

x

List of Tables

3.1 logs table of Logs data storage of T P A .. 35

5.1 Service directory of third p a r ty .. 49

5.2 Overhead testing result (* RPT = Request Processing Time)............................... 54

xi

Chapter 1

Introduction

Service-oriented computing [23] introduces the concept of assembling application components

(services) into an application where the services communicate with each other. This appli

cation can span multiple organizations and computing platforms. The applications are often

aligned with a business process. Service-oriented computing potentially can help businesses

respond more quickly and more cost-effectively to changing market conditions. Web services

are the basic building elements of service-oriented architecture. There are often expectations of

services that are related to non-functional aspects of the web service. For example, there may

be expectations on the response time, availability etc. The non-functional requirements are

referred to as Quality of Service (QoS) requirements. Service Level Agreements (SLA)s [26]

are contracts between service providers and service consumers by which the service providers

are bound to maintain a certain level of the Quality of Service. SLAs specify conditions on

metrics, that represent some aspect of run-time behaviour, that are to be satisfied at run-time.

Monitoring of services is needed to determine when SLAs are violated. Adaptive recovery ac

tions are taken to maintain the quality of the service promised on the SLAs. Policies are used

to guide the decision making process to determine the appropriate action.

1

C hapter 1. Introduction 2

1.1 Problem statement

Web services are loosely-coupled, self-contained, self-describing software modules that per

form a predetermined task. Monitoring is required to ensure that SLAs are satisfied. The

ability to respond to SLA violations is also important. Responses are application specific and

thus the use of policies is useful. Determining if an SLA has been violated and responses to

SLA violations are examples of management tasks. Current work usually has the client imple

ment the management tasks. The disadvantage is that a client typically has limited knowledge

of the behaviour of the various services that the application is composed of. For example,

assume an application being used by the client consists of two web services: WS1 and WS2.

WS2 may be slow causing WS1 to be slow. The client communicates with the application

using WS1. It is relatively easy for the client to detect that WS1 is slow but the client may

not have sufficient information to realize that WS2 may be the problem. Identifying the source

of a problem requires the client’s enterprise to continuously monitor and analyze behaviour

to determine the source of a problem and the response to the problem. An infrastructure is

needed to support this. Service selection is also something that should be supported. For many

clients it may be desirable to outsource the infrastructure to a third party. Different clients use

different criteria and hence this infrastructure should be able to accommodate this. This can

be done using policies. However, little work shows how policies can be incorporated into the

infrastructure to support multiple client needs.

1.2 Thesis focus

This thesis focuses on the design of a policy-based third party architecture for web service

management, the implementation of a prototype of that architecture, and the validation of the

architecture by evaluating the prototype. We propose a new system architecture which uses

policies. Policies could be added, modified or deleted at system run time. Our proposed system

is a third party management architecture where the client and the provider have to register to

C hapter 1. Introduction 3

use the services provided by the third party system. The client defines three types of policy.

The first type of policy provides hints to the third party system on criteria to be used in selecting

a service. The second type of policy is used to specify what constitutes a SLA violation (from

the client’s view) and the third type of policy is used to specify what action is to be taken in

response of SLA violations. Based on the policy defined by the clients, the third party system

monitors the quality of the provided service and takes recovery action if any violation occurs.

The advantage of using a third party for management is that this can be integrated with service

discovery. The complexity of management and service discovery can be hidden from clients

and providers by outsourcing this functionality. The uniqueness of our architecture is that we

introduced policies in a third party system to manage web services which makes the system

automated and responsive on SLA violations.

1.3 Thesis organization

The remainder of this thesis is organized as follows: Chapter 2 covers Background and Related

Work, including key definitions, concepts and a review of the current research relevant to web

service monitoring, adaptivity and policies. Chapter 3, Architecture, describes the architecture

of our proposed policy based third party management system for web services. Chapter 4,

Implementation, describes the implemented prototype of our proposed architecture. Chapter

5, Validation, details the testing of our implemented prototype and evaluate the proposed ar

chitecture. Finally, Chapter 6, Conclusion, provides some final conclusions and presents ideas

and thoughts for future research in the area.

Chapter 2

Background and Related work

This chapter presents key definitions and concepts, and reviews the current research relevant to

web service monitoring, adaptivity and policies. Section 2.1 introduces basic concepts useful

for understanding this work. Section 2.2 presents different aspects of web service monitoring

and some monitoring mechanisms proposed in different papers. Section 2.3 describes failures

in web service scenario and reasons for these failures; and actions to recover from these fail

ures. Section 2.4 describes the application of policies. Finally, Section 2.5 presents gaps in

current research in web service management.

2.1 Basic concepts

This section describes the basic concepts related to web services. The discussion includes

Service Oriented Architecture, platform elements and type of web services and web service

composition.

2.1.1 Service Oriented Architecture (SOA)

The World Wide Web Consortium (W3C) refers to Service Oriented Architecture as “ A set of

components which can be invoked, and whose interface descriptions can be published and dis-

4

C hapter 2. Background and R elated work 5

Figure 2.1: SOA Architecture [22]

covered” [16]. According to Component Based Development and Integration [16] SOA refers

to “The policies, practices, frameworks that enable application functionality to be provided

and consumed as sets of services published at a granularity relevant to the service consumer.

Services can be invoked, published and discovered, and are abstracted away from the imple

mentation using a single, standards-based form of interface”. A service-oriented architecture

is essentially a collection of services. These services communicate with each other. The com

munication can involve either simple data passing or it could involve two or more services

coordinating some activity.

2.1.2 Web service

The basic building block of service-oriented architecture is the web service. A web service [31]

is a self-contained, self-describing software module that performs a predetermined task. An ex

ample task is the following: “verify a customer’s credit history”. Web services are application

components that provide an API that is accessible via Hypertext Transfer Protocol (HTTP) and

are executed on a remote system host where the requested services reside. Web services com

municate using open protocols to complete tasks, solve problems, or conduct transactions on

behalf of a user or application. Web services communicate over private or public network to

virtually form a single logical system.

The main platform elements of web services are SOAP (Simple Object Access Protocol),

C hapter 2. Background and Related work 6

WSDL (Web Services Description Language) and UDDI (Universal Description, Discovery

and Integration). [31]

SOAP (Simple Object Access Protocol)

SOAP [33] is an XML-based protocol used to access web services and to allow independent

services to exchange information over HTTP. It is a format for sending messages used by

services to communicate over the Internet. SOAP is platform and language independent and

allows an application to get around firewalls. This format is standardized by the World Wide

Web Consortium (W3C) [6]. As an example of how SOAP can be used, a SOAP message

could be sent to a web-service-enabled web site, e.g., a real-estate price database, with the

parameters needed for a search. The site would then return an XML-formatted document with

the resulting data, e.g., prices, location, features. Since the data is returned in a standardized

machine-parseable format, it could then be integrated directly into a third-party web site or

application.

Figure 2.2 is an example of a SOAP message. A SOAP XML document instance is called

a SOAP message or SOAP envelope. It is carried as the payload of other network protocols

like HTTP. The SOAP message consists of an Envelope (line 7) element containing an optional

Header element (line 11) and a mandatory Body element (line 17). The optional SOAP Header

element contains application-specific information (e.g., authentication, payment, etc.) about

the SOAP message. The mandatory SOAP Body element contains the actual SOAP message

intended for the ultimate endpoint of the message.

WSDL (Web Services Description Language)

WSDL [35] is an XML-based language which is used to locate and describe web services. It is

a specification schema that describes web services by specifying the API of a web service that

C hapter 2. Background and R elated work 7

1
2
3
*
s
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23

POST /Instock HTTP/1.1
Host: www.exomple.org
Content-Type: application/soap+xml; charset=utf-8
Content-Length: nnn

<?xml version«"]..0"?>
<soap:Envelope
xmlns:soap="http://www.w3.org/2001/12/soap-envelope"
soap:encodingStyle-”http://www.w3.org/2001/12/soop-encoding">

<soap:Header>
<m:Trons xmlns:m="http://www.w3schools.com/tronsaction/"
soop:actor»"http://www.w3schools.com/appml/">234
</m:Trans>

</soap:Header»

<soap:Body xmlns:m="http://www.example.org/stock"»
<m:GetStockPrice»
<m:StockName>IBM</m:StockName»

</m:GetStockPri ce>
</soap:8ody>

</soap:Envelope»

Figure 2.2: SOAP Message [32]

can be used by external entities. WSDL describes the contract for application communication.

Web services can be made accessible by using WSDL definitions to generate code that knows

precisely how to interact with the web service described, and hides details in sending and re

ceiving SOAP messages over different protocols.

A WSDL document is a XML document which contains a set of definitions to describe a

web service. Figure 2.3 contains an example of a WSDL message. The PortType element (line

37) describes a web service, the operations that can be performed, and the messages that are

involved. It can be compared to a function library in a traditional programming language. The

Message element (line 29,33) defines the data elements of an operation. The Types element

(line 9) defines the data types that are used by the web service. For maximum platform neu

trality, WSDL uses XML Schema syntax to define data types. The Binding element (line 44)

defines the message format and protocol details for each port. A WSDL document can also

contain other elements, like extension elements, and a service element (line 57) that makes it

possible to group together the definitions of several web services in one single WSDL docu-

http://www.example.org
http://wtwv
http://www.w3.org/2001/12/soap-encoding
http://www.w3schools.com/transaction/
http://www.w3schools.com/appml/%22%3e234
http://www.example.org/stock

C hapter 2. Background and R elated work 8

ment.

UDDI (Universal Description, Discovery and Integration)

UDDI [34] is a directory service where companies can register and search for Web services.

The description of web service interfaces which are written in WSDL are stored in UDDI.

UDDI is an open industry initiative enabling businesses to publish service listings and dis

cover each other and define how the services or software applications interact over the Internet.

Communication to the UDDI occurs through the SOAP protocol.

2.1.3 Types of web services

Web services can be categorized based on two different criteria. These are described in this

section.

Protocol category

Web services can be divided into two types based on the protocol used: SOAP based “Big”

web services and “RESTful” web services [1].

• SOAP based “Big” web services: Big web services use XML messages that use the

SOAP standard. In such systems, there is often a machine-readable description of the

operations offered by the service written in WSDL. The architecture of such web services

indicate complex non-functional requirements such as transactions, security, trust etc.

• “RESTful” web services RESTful web services require minimal resources for build

ing. WSDL service-API definitions are not required for RESTful web services. This

is why RESTful web services are inexpensive and their adoption rate is currently high

[1], RESTful web services are stateless and a caching infrastructure can be leveraged for

performance boosting. In existing web sites web service delivery and aggregation can be

easily enabled using RESTful style.

1
2
3
4
s
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
2S
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
SO
SI
52
S3
S4
SS
S6
S7
S8
S9
60
61
62
63
64

2. Background and R elated work 9

<?xml version-”1.0"?>
«definitions name="StockQuote"

targetNamespace-"http://example.com/stockquote.wsdl"
xmlns: tns=''http: //example. com/stockquote. wsdl"
xmlns:xsdl-"http://example.com/stockquote.xsd"
xmlns:soap-"http://schemas.xmlsoap.org/wsdl/soap/"
xmlns-"http://schemas.xmlsoap.org/wsdl/">

<types>
«schema targetNamespace-"http://example.com/stockquote.xsd"

xmlns-"http://www.w3.org/2000/10/XMLSchema">
«element name="TradePri ceRequest">
<complexType>

<all>
«element name-"tickerSymtool" type="string"/>

</all>
</complexType>

«/element»
«element name="TradePrice">

«complexType»
<all>
«element name="price" type-"float"/»

</all>
«/complexType»

«/element»
«/schema»

«/types»

«message name-"GetlastTradePriceInput">
«part name-"body" element-"xsdl:TradePriceRequest"/>

«/message»

«message name="GetLastTradePriceOutput">
«part name-"body" element="xsdl:TradePrice"/>

«/message»

<portType name-“StockQuotePortType">
«operation name="GetLastTradePrice"»

«input message="tns:GetLastTradePriceInput"/>
«output message-"tns:GetLastTradePriceOutput"/>

«/operation»
</portType»

«binding name="StockQuoteSoapBinding" type-"tns:StockQuotePortType"»
«soap¡binding style-"document" transport-"http://schemas.xmlsoap.org/soap/http"/>
«operation name="GetLastTradePrice"»
«soap:operation soapAction-"http://example.com/GetLastTradePrice"/»
«input»

<soap:body use-"literal"/>
«/input»
«output»

«soap:body use-"literal"/>
«/output»

«/operation»
«/binding»

«service name="StockQuoteService">
<documentation»My first service</documentation>
«port name="StockQuotePort” binding="tns:StockQuoteSoap8inding"»

«soap:address location-"http://example.com/stockquote"/»
«/port»

«/service»

«/definitions»

Figure 2.3: WSDL Message [18]

http://example.com/stockquote.wsdl
http://example.com/stockquote.wsdl%e2%80%9d
http://example.com/stockquote.xsd
http://schemas.xmlsoap.org/wsdl/soap/%e2%80%9d
http://schemas.xmlsoap.org/wsdl/%e2%80%9d
http://example.com/stockquote.xsd
http://www.w3.org/2000/10/XMLSchema
http://schemas.xmlsoap.org/soap/http%22/
http://example.com/GetlastTradePrice%22/
http://example.com/stockquote%22/

C hapter 2. Background and Related work 10

Level of simplicity category

Based on the simplicity and usages of web services, web services can be categorized in two

types: Simple web services and complex web services [11].

• Simple web services: The web services which provide request/response type function

ality and do not support transactions are simple web services. These kind of web services

are informational. These services provide access to content through interaction with an

end user by means of simple request/response sequences, or alternatively may expose

back-end business applications to other applications.

• Complex web services: The web services which support transactions and provide a

framework for business-to-business collaborations and business process management are

complex web services. Complex web services typically involve the assembly and invoca

tion of many pre-existing services found in diverse enterprises to complete a multi-step

business interaction.

2.1.4 Web service composition

Web service composition provides an open, standards-based approach for connecting web

services together to create higher-level business processes. Services provided by different

providers can be merged to create a new service which is referred to as a Composite web

service. Web service composition is defined in [2] [39] [5]. Anis Charfi [2] states that web ser

vice composition provides a means to create value-added web service by combining existing

web services. Farhana H. Zulkemine [39] states that Web services can be composed to create

complex business processes that span multiple organizations. Boualem Benatallah [5] states

that a composite Web service is an umbrella structure that aggregates multiple other elementary

and composite Web services, which interact according to a given process model.

C hapter 2. Background and Related work 11

Today businesses need to quickly adapt to customer needs and market conditions. This is

why businesses need to be flexible internally and externally. Web services offer the greatest

potential of weaving together multiple services dynamically into a composite service system

representing a business process [13] . This allows businesses to be adaptable.

Service orchestration [30] [37] and service choreography [38] are two different approaches

for web service composition. In service orchestration there is a central controller process which

controls and co-ordinates all the web services involved in the application. This central process

can be a web service as well. The constituent web services do not know that they are par

ticipating in a higher-level business process. How the constituent web services will be called

and what will be the control flow are known only to the central controller process. The other

web services simply serve the requests whenever called. On the other hand in service chore

ography, there is no central controller process. All the constituent web services know when to

call, whom to interact, when to execute operations etc. Service choreography can be viewed

as a collaborative effort of many participating web services and as there is no controller hence

all the web services need to know the actual business process and things involved in it like

message exchanges, time of call, etc. The Web Services Business Process Execution Language

(WS-BPEL) [36] specification defines a language to specify service orchestration and Web

Services Choreography Description Language (WSCDL) [7] is a language to specify service

choreography.

2.1.5 QoS attributes of web services

Web services have functional and non-functional requirements. Non-functional requirements

of web services are also known as Quality of Service (QoS) requirements. QoS attributes of a

web service refer to the quality aspect of a web service. A QoS attribute represents some aspct

of run-time behaviour. Anton Michlmayr [15] defines a QoS model where QoS attributes of

web services are grouped into four categories: performance, dependability, security/trust and

C hapter 2. Background and R elated work 12

cost/payment. Each category consists of related metrics (attributes) that represent some aspect

of run-time behaviour. These are briefly described in this section.

Performance

Performance metrics include service time, latency, response time, throughput and scalability.

Service time represents the time it takes for a service to execute a request. Latency is the

time that is needed for the client request to reach the service. The response time measures

the overall time needed for the request at the service consumer. Throughput represents the

number of service requests that can be processed within a given time period. Scalability defines

performance behavior of a service when the throughput increases.

Dependability

Availability and Accuracy are dependability related attributes that address the ability of ser

vices to avoid frequent and severe failures. These attributes are measured for service. Avail

ability represents the probability that a service is up and running. Accuracy defines the ratio of

successful service executions in relation to the total number of requests.

Security/Trust

Security for web services means providing authentication, authorization, confidentiality, trace

ability and data encryption. Authentication refers to the identification of users who can access

service and data. Authorization means users should be authorized so that only authorized users

can access the protected services. Confidentiality refers data that only authorized users can

access or modify the data. Traceability means that it should be possible to trace the history of

a service when a request was serviced. Data encryption means that data should be encrypted.

C hapter 2. Background and Related work 13

Cost/Payment

Price and Penalty fall in this category. Price refers to the money that a client has to pay to

use the service. Penalty represents the compensated amount the service provider will pay a

customer if the contract is being violated by them.

2.2 Web service monitoring

It is critical that web services be monitored to ensure that Quality of Service (QoS) require

ments are satisfied. This section describes the necessity of monitoring, monitoring of QoS

attributes, basic monitoring techniques, monitoring of composite web services and some mon

itoring mechanism proposed on different articles.

2.2.1 Quality of Service (QoS) monitoring

Quality of service plays an important role in service oriented system. Quality of services at

tributes could be classified as deterministic and non-deterministic. Deterministic QoS attributes

are known before a service is invoked such as price. Non-deterministic QoS attributes are un

known at service invocation time such as service time, availability etc. Monitoring is needed

for measuring non-deterministic attributes.

Quality of services is guaranteed by Service level agreement (SLA). Service Level Agree

ments (SLA)s [26] are signed contracts between two parties for satisfying clients, managing

expectations, regulating resources and controlling costs. An SLA has a set of Service level

Objectives (SLOs) [26]. A Service-Level Objective (SLO) is a condition on a QoS attribute.

For example, “the response time should be less than 5000 milliseconds”. An SLA consists of

SLOs. To ensure that SLAs are satisfied, efficient monitoring of the SLAs is needed.

C hapter 2. Background and R elated work 14

2.2.2 Basic monitoring techniques

The SOAP messaging protocol is typically used for web service communication. Information

is carried through the SOAP messages. The typical mechanism [39] used to monitor web ser

vices is through message interception. There are several ways to monitor web services through

message interception. These are briefly described in this section.

Internal agents in messaging framework

One approach to message interception is to have internal agents in the messaging framework

at the servers that host the web services [39]. The task of these agents is to collect data by in

tercepting messages and send this data to an external agent that is responsible for maintaining

this data. These internal agents are considered as a standard part of the messaging framework

and provide monitoring data as a service. The advantage of this approach is that since the agent

is an internal part of the messaging framework there is less overhead on communication and

there is no bottleneck or point of failure [39]. On the other hand the management of this agent

is complicated as there is a need to modify the messaging framework to update the agent.

External intermediaries

Another approach is to have external intermediaries [29] which reside between the service

provider and the service consumer that intercept messages which are transferred between the

service provider and the service consumer. The intermediaries are separate entities from the

messaging framework and thus are easier to manage. On the other hand, it requires an addi

tional level of message redirection which causes overhead on communication, possible bottle

necks and a point of failure.

Chapter 2. Background and Related work 15

Code level instrumentation

Another monitoring technique is code level instrumentation [39] that provides various mon

itoring and reporting functions. There is a well defined application programming interface

(API) for these monitoring and reporting functions. The advantage of this technique is that it

can report extensive and accurate monitoring data whereas the cost of maintaining the code

can be considerable. It would be an efficient solution to the monitoring problem by publishing

management web services for querying performance data or getting automated event notifi

cations from the service providers. However, it requires that the service provider implements

customized management frameworks.

2.2.3 Proposed monitoring infrastructures

Extensive research has been done on monitoring QoS attributes of web services and several

monitoring infrastructures are proposed. This section describes some of these monitoring in

frastructures.

Grand Slam

Josef Spillner [27] proposed a monitoring module called Grand Slam. Grand Slam consists of

several parts. A core monitor module manages and controls the other modules. It installs a trig

ger in the database which notifies of additions or removals of SLAs. The measurement module

interacts with sensors that monitor QoS attributes. The measurement module assumes that

there are existing sensors. The sensors are not part of the SLAM infrastructure. The measured

values of the QoS attributes are compared to threshold values. For each QoS attribute, there is

a lower threshold value and an upper threshold value. The values between the lower and upper

threshold values are referred to as the critical area. If the measured value of the QoS attribute

is not within the critical area then a violation occurs. The measurement module returns mea

sured values to the core monitor module. The core monitor module stores the measurements

C hapter 2. Background and Related work 16

OSGi Platform

GrandSLAM.Core

iiiil
AggregatorBundles ' M easurem entBundles
processes which have

different tasks based on
the measured values from
the monitoring processes

processes which takes over
. measurement jobs

• i
• I — — — — — — — — — —
•■]— ------------- --- ---------------*.......* •

l 1 »
. , W ebServIceBundles AppllcatlonBundles

« ¡ ¡ « « l i l i provides web service - direct integration of
Interfaces for monitoring results into. » dashboards and applications

WS discoveries - cooperative monitoring

Figure 2.4: Web service monitoring component proposed by Josef Spillner [27]

and results of the comparisons of the measurements to critical areas into the database. Grand

SLAM’s aggregators are started by the monitor core but work independently from it. In Grand

SLAM there are three aggregators: One generates aggregated values of a QoS attribute (e.g.

service time, availability) like average, minimum and maximum. A second aggregator creates

scalar vector graphics which contain pie and line charts and there is an aggregator that creates

XML files with a ranking of the monitored services based on the aggregated values generated

by the first aggregator. The fourth part is an Axis 2 server. On this server, a web service is

deployed which allows an invocation from a service discovery. The task of this web service is

to register and unregister service level agreements which have to be observed. This system is

graphically illustrated in Figure 2.4.

C hapter 2. Background and Related work 17

Distributed Monitor Architecture

Josef Spillner also [28] proposed a distributed monitor architecture consisting of one Service

Management Platform (SMP) and several distributed Tradeable Service Runtime (TSR) servers

for hosting services. Web services are deployed on TSRs. Once a customer has negotiated a

contract via the SLA Manager’s SLA Negotiation component, the resulting SLA is stored in the

SLA Repository and the SLA Manager sends a message to the SLA Monitoring Coordinator

that a new SLA is available. The SLA Monitoring Coordinator on the TSR then starts the

appropriate monitoring sensors. The monitoring sensors collect data from various sources and

compares the data with expected values of QoS attribute as defined by SLOs. The sensors

are assumed to be provided by other parties. It then stores the monitoring data to the local

Monitoring Database found on the TSR. A central monitoring backend of SMP collects the

monitoring data from the local Monitoring Database of a TSR and merges it into a central

database found at the SMP. Consumers can access the monitored data via Monitoring as a

Service (MaaS) and do calculations that allow for detection of SLA violations. In case of an

SLA violation, the SLA Monitoring component triggers the adaptation coordinator to start one

of the adaptation mechanisms. This system is graphically illustrated in Figure 2.5.

SLM Engine

Akhil Shahai [26] proposed a SLM Engine for monitoring SLAs. The management compo

nents of the SLM engine are coordinated by the SLM Process Controller. Whenever the SLM

Engine receives an SLA as input the SLM process is initiated. The SLA is sent to the SLA

customizer component that in turn creates the SLOs and stores those SLOs in the SLA repos

itory. Once configured, the SLA evaluator is activated to start evaluation of the SLOs. The

SLA evaluator compares the data collected from various sources against thresholds defined on

QoS parameters. If the result of the comparison indicates a violation then it is maintained as

a violation record in the violation engine component. The SLA evaluator is installed at both

the client side and the server side and so it is able to be evaluated at any side based on the

C hapter 2. Background and R elated work 18

1

Figure 2.5: Web service monitoring component proposed by Sandro Reichert [28]

availability of measurement items. If however, a QoS attribute is measured at the client side

(e.g. availability), and some others are at the server side (e.g. service time), then the evaluation

takes place at the server side. In this case the client side monitoring data is transferred to the

server side. The Measurement exchange protocol is used to transfer these measurements. This

system is graphically illustrated in Figure 2.6.

Performance Monitor

Farhana H. Zulkemine [39] proposed the Performance Monitor (PM) for monitoring SLAs.

The PM takes a set of negotiated SLAs and a workflow description as input and monitors

the performance of the component services to verify that the SLAs are satisfied. The PM is

comprised of two subsystems: a Primary Subsystem (PS) and multiple Secondary Subsystems

(SS). The SSs monitor service performance at the service providers’ locations using code level

instrumentation [39] monitoring techniques and send the reports to the PS. The PS accepts

monitoring requests, receives monitoring reports, analyzes the reports to verify SLAs, and ac-

C hapter 2. Background and Related work 19

Figure 2.6: Web service monitoring component proposed by Akhil Shahai [26]

cordingly generates notifications for the respective service consumers.The PS has Performance

Monitor Web Service, Workflow Analyzer, Performance Monitor Database and Report Ana

lyzer components to accomplish these tasks. This system is graphically illustrated in Figure

2.7.

2.3 Adaptivity

QoS violations occur because of different system failures and these failures are caused by

faults. This section describes different failures, reasons for these failure and actions to recover

from these failures.

2.3.1 Web service failure and fault

The IEEE Standard Glossary of Software Engineering Terminology defines failure and fault

[12]. According to IEEE, failure is the inability of a system or component to perform its

C hapter 2. Background and R elated work 20

SLAs &
Workflow

Workflow
Analyzer

Report to the
client

Performance
Monitor

Expanded PM module

Primary Subsystem of the
Performance Monitor

Certified QoS
Reputation

Knowledgebase

Error Tracking
and Recoven'

(To other
components
in CSMM)

SOAP
message

Reports to

© SOAP Messaging
Framework
Secondary Subsystem - On the server

hosting Web services

Figure 3: Architecture of the Performance Monitor

Figure 2.7: Web service monitoring component proposed by Farhana H. Zulkemine [39]

Chapter 2. Background and Related work 21

required functions within specified performance requirements. IEEE defined that a fault is (1)

A defect in a hardware device or component; (2) An incorrect step, process, or data definition

in a computer program. A fault is the cause of failure and failure is the result of fault. W. He

[10] defined several kinds of failures which caused QoS violations.

• Functional failure: A functional failure means a component of the system has failed

because of software bugs or hardware faults in the system. As an example, a web ser

vice may be unavailable as a result of hardware failures such as a computer hard drive

crashing.

• Operational failure: An operational failure occurs when a system or some participant

service is unavailable due to communication problems or unpredictable load. No more

new requests can be accepted. As an example, the heavy load of a web service makes it

unable to accept new requests.

• Semantic failure: A semantic failure occurs if interacting operations between two partic

ipants are not compatible. For example, if there is a hotel reservation web service and

a car rental web service that are interacting with each other but do not use same time

format, a failure may occur during message exchange.

• Privacy failure: A privacy failure occurs if a service is inaccessible because the service

is privacy sensitive and would not disclose information to everybody. For instance, a car

rental web service may require customers’ age or their detailed travel schedules, while

other web services would not expose this information because of their privacy policies.

• Security failure: A security failure arises when data are accessed without enough cre

dential or authority, or without special secure link. As an example, a web service only

accepts SOAP messages over the secure HTTP, while the SOAP messages are sent over

standard HTTP. In that case a security failure will occur.

C hapter 2. Background and Related work 22

2.3.2 Recovery Actions

Service oriented recovery actions are dependant on the internal structure or orchestration of the

service. The recovery actions [8] that could be applied on the web services as a remedy for

QoS violations include the following:

• Retry web service invocation: If the service is unavailable temporarily, possible action

is to suspend the execution of the process and retry the invocation of the unavailable

services.

• Substitute web services: If a service is considered to be definitely unavailable, then it is

required to substitute the failed service with new similar service.

• Reallocate resources o f web services: If the fault that causes the QoS violation is a lack

of hardware of software resources then a possible action is to reallocate resources to the

web service.

• Change o f process structure: Modifying the process structure takes place if service sub

stitution or reallocation can not solve the problem. The new process is defined by study

ing the log of old process and applied on the system. For example, if the whole task of

a composite web services has some processes and shuffling the order of processes does

not impact on the final result, then changing the process order can solve the problem.

2.4 Policy

Policies can be used to guide decision making in management systems. This section defines

policy and describes different policy languages and application of policies on web service

scenano.

Chapter 2. Background and R elated work 23

2.4.1 What is policy

Emil C. Lupu [14] defined that a policy is information that can be used to modify the behavior

of a system without the need for re-compiling or re-deployment of the system. In the context of

web service management, a policy can be defined as “a high level statement as to how business

requirements should be processed in the management system” [25], Policies are used to guide

the management system’s decisions and actions. Policies can be associated with or attached

to a service or interactions. Interactions that policies can be applied to include authentication,

authorization, auditing, privacy protection, routing, performance etc.

Policies can take several forms. The most common form of a policy associates an event

with one or more rules of conditions and actions. An event represents a change of state that is

of interest. Notifications of events are through messages. The rules of a policy are evaluated

by a management component when a notification of the event is received by that management

component. The rules are used to determine the actions to be taken in response to the event.

Another form of policy is an assertion which defines a condition that must be satisfied by the

system that the policy applies to.

There are several languages for specifying policies including IETF, Ponder, KAoS, Rei

and WS-Policy [24], Policy languages are used to standardize the policies and to organize the

business logic of a system properly.

2.4.2 Policies for self-healing web services

To automatically maintain the desired conditions on QoS attributes is referred to as self-healing.

Self-healing requires monitoring of system behaviour to determine possible degradation, diag

nosis to determine the root cause of the degradation and a repair process which may require

the execution of one or more actions. In this section we describe how policies can be used to

determine actions[4].

C hapter 2. Background and Related work 24

Reactive policies

The following are reactive policies [9] which can be used to determine possible actions to

recover from a degradation of system behaviour:

• Retry policy: This policy is activated by an event indicating a degradation of service

behaviour. The retry policy will invoke the same faulty service hoping that the failure

is transient. The condition used to determine if the action can be taken is if the number

of retries has not exceeded some threshold value and that the service is idempotent. The

service is idempotent if the response of each request produce the same value every time.

• Substitute policy: Substitute policy is activated by an event which indicates a degradation

of service quality. This policy will substitute the faulty service and dynamically bind to a

replacement service that offers equivalent functional and QoS properties. One condition

that is used to determine if the action can be taken is if the number of retries exceeded

some threshold value. The replacement service should leave the process in an equivalent

state that was expected from the substituted service. In some case a faulty service could

be replaced by a service composition that has equivalent effects as the faulty service.

• Parallel execution policy: This policy is activated by an event indicating a degradation

of service behaviour. The policy will find out other services that offers equivalent func

tional and QoS properties. It will then invoke all of these services and wait for the first

responding service. This strategy is more suitable for data lookup services and freely

available services such as web search.

• Dynamic binding policy: This policy is activated with indicating of service quality degra

dation. This policy will perform a structure change which will impact an indication the

flow of execution of the whole process. The policy can either change the direction of flow

of the process or use some control command (i.e. skip, wait, start, terminate, suspend

and resume a process activity) to manipulate the execution result.

C hapter 2. Background and Related work 25

Predictive policy

In a predictive self-healing policy, the monitoring services cooperate with the prognosis ser

vices to predict service degradation and to act appropriately by reconfiguration plans. In this

scenario, policies are defined which can predict future possibilities of degrading QoS properties

by analysing historical data of web services and take proactive actions to get rid of possible

future degradation of QoS properties. These proactive actions may include adapting service

composition by switching locally or remotely between different web service instances.

2.5 Research gap

Web services are a loosely-coupled, self-contained, self-describing software module that per

forms a predetermined task. QoS monitoring is required to ensure the integrity and quality of

the service. In this chapter we discussed QoS monitoring of web service based on QoS re

quirements and policies. An overview of different monitoring mechanisms is given. In these

mechanisms, management tasks are often found on the client side and there is a lack of the use

of policies to determine actions to respond to QoS violations. It may be feasible to have a third

party management to carry out the management tasks of client. The third party management

system would manage on behalf of multiple clients. The management decisions for different

clients are often based on different criteria. Policies can be used to influence decision making.

Chapter 3

Architecture

This chapter describes the architecture of our proposed policy based third party management

system for web services. Section 3.1 describes policies that we have used in our architec

ture. Section 3.2 provides an overview of the system. The remaining sections describe the

functionality of each component of the system and the interactions among the various system

components.

3.1 Policies

In our proposed architecture we have defined three types of policies: service selection policy,

violation policy and recovery policy,

3.1.1 Service selection policy

For a type of service there may be more than one service instance. Composition requires that

a service instance be chosen. This service instance selection should result in a service that

satisfies the QoS requirements of the composition. We assume that the QoS requirements can

be characterized by desired values of attributes where an attribute represents some aspect of

run-time behaviour. Service selection can be guided by service selection policies defined by

26

C hapter 3. Architecture 27

the clients. The general form of a service selection policy is the following:

POLICY policy name {

ServiceType (service type name),

QoSParameters {

(attributeName, lowerbound, upperbound, rateofChange,priority),

}

}

An example of a policy that can be used for service selection is presented in Example 1.

Example 1:

POLICY selection-xyz {

ServiceType (xyz),

QoSParameters {

(ServiceTime, 2000, 4000, 100, 1),

(Availability, 0.7, 0.9, 0.05, 3),

(Cost, 20, 90, 10, 2),

}

>

3.1.2 Violation policy

Another type of policy is used to define what constitutes a violation of an SLA. The general

form is the following:

C hapter 3. A rchitecture 28

POLICY policy name {

serviceType (service type name),

QoSParameters {

(attributeName, maxNumViolations),

}

}

An example of a policy that can be used for detecting violations is presented in Example 2.

Example 2:

POLICY violation-xyz {

ServiceType (xyz),

QoSParameters {

(ServiceTime, 5),

(Availability, 5),

}

}

3.1.3 Recovery policy

When the system detects a SLA violation, it will take recovery actions. These actions are

guided by recovery policies that are defined by the client. The general form of a recovery

policy is the following:

POLICY policy name {

serviceType (service type name),

QoSParameters {

(vioIationType, action),

}

}

C hapter 3. A rchitecture 29

An example of a policy that can be used for taking recovery action is presented in Example 3.

Example 3:

POLICY recovery-xyz {

ServiceType (xyz),

QoSParameters {

(ServiceTimeViolation, changeProvider),

(Availability Violation, doNothing),

}

>

3.2 System Overview

Our proposed policy based third party management system does the monitoring and manage

ment of SLAs on behalf of the client. The basic system architecture is presented in Figure 3.1.

There are main three components: (1) The Client Agent which processes and manages data on

the client side; (2) The Provider Agent which processes data related to the server; and (3) The

Third Party Agent which is responsible for negotiation, SLA management, diagnosis of SLA

violations and determining recovery actions. To use the system, clients and providers register

with the third party. We assume that the registration process includes the negotiation of a SLA.

When a client uses the service of the provider the client invokes a request which is intercepted

by the Client Agent. The Client Agent executes pre-defined processing task requests and sends

requests to the Provider. The Provider Agent intercepts requests, executes pre-defined process

ing tasks and forwards requests to the provider. The provider’s response is intercepted by the

Provider Agent. The Provider Agent adds information to the response and forwards the mod

ified response to the Client. The Client Agent intercepts the response, processes the response

and stores information about the service invocation in a local database. The Client Agent then

sends the response to the client. The local database is continuously synchronized with the cen-

C hapter 3. A rchitecture 30

Third Party
Agent

r \ r r -
Provider
Agent

> r \

Client Client Agent Provider

__y V_____ _>

Figure 3.1: System Architecture

tral database of the Third Party Agent. The Third Party Agent analyses the data to determine

SLA violations and actions in response to those violations.

This approach essentially reflects message interception by a process that is not part of the

messaging framework. The advantage of this approach is that if the messaging framework

changes it is easier to make changes to the Client Agent and the Provider Agents.

3.3 System Components

The system consists of three major components. This section describe the details of each of

these components.

3.3.1 Client Agent (CA)

The Client Agent component is a proxy for a client which is provided by the Third Party when

the client registers with the Third Party system. The Client Agent is installed on the client

side and every service request is intercepted by the Client Agent. The Client Agent has two

data storage components: Configuration and Logs. The Client Agent also has two processing

components: Collector and Synchronizer.

C hapter 3. A rchitecture 31

Configuration

The Configuration data storage component is responsible for storing information that is needed

to configure the Client Agent. For invoking a specific type of service the information needed

includes the service type, Provider Agent’s address, port number and operation address in the

Configuration data storage component. The service type represents the type of service that the

client is requesting. Every service type is associated with a group of policies (Service selection

policy, violation policy and recovery policy) which is defined by the client. A policy identifier

uniquely identifies this group of policies. The Provider Agent’s address is an IP address where

the Provider Agent is installed. The port number is the port number of the machine where

the Provider Agent is listening for service requests. The operation address is the address of

a specific operation that the client wants to invoke and it is in the form of a URI (Uniform

Resource Identifier).

Collector

The task of the Collector is to forward the service request to the Provider Agent associated

with the service request, return the response from the service to the client and maintain a log of

service requests. The Client invokes a service request mentioning the desired type of service.

This service request is intercepted by the Collector. The Collector uses the service type to find

the information needed for invoking the requested service from the Configuration data storage.

The Collector then forwards the service request to the Provider Agent. When a response for a

requested service is received from the Provider Agent, the Collector parses the response and

stores QoS data (service time, availability) for that service invocation in the Logs data storage

component. The Collector then forwards the response to the Client.

Logs

Logs is a data storage component of the Client Agent which stores information of the service

request. For each service request the Policy Identifier, SLA Identifier, Provider Agent’s ad

C hapter 3. Architecture 32

dress, port number, operation address, starting time of the request, end time of the request,

processing time of the request, service time of the request (time taken by the provider to pro

cess the service) and availability of the provider is stored. This stored data is uploaded to the

central data storage of the Third Party Agent by the Synchronizer processing component at

regular intervals.

Synchronizer

The task of the Synchronizer is to synchronize the service invocation data found in the Logs

data storage of the Third Party Agent with the service invocation data of the Logs data storage

of the Client Agent. The Synchronizer runs at regular time intervals to determine if there is

any new data in the Logs data storage of the Client Agent. Every time the Synchronizer runs,

it re-initializes the Logs data storage of the Client Agent. Thus for each check, the data in the

Logs represents data that is not in the central repository. When the Synchronizer finds new data

in the Logs data storage of the Client Agent it uploads the new data to the Logs data storage of

the Third Party Agent.

3.3.2 Provider Agent (PA)

The Provider Agent functions as a proxy for the service from the Provider. It is provided by the

third party and the Provider installs it on its machine as a contract term of it being registered

with the third party. The task of the Provider Agent is to calculate the service time which is the

time taken by the server to process the requested service. When the Provider Agent receives

the service request from the Client Agent it starts a timer, forwards the request to the Provider

and waits for the response from the Provider. When it receives the response from the Provider

it stops the timer. The elapsed time between the start and end of the timer is used to represent

the service time. The Provider Agent then sends the calculated service time to the Client Agent

by appending the information with the response to the service invocation. This data is used by

the Third Party Agent to detect SLA violations.

C hapter 3. A rchitecture 33

Third Party Agent

Registration

e
Negotiator

Contract Reposatory
Recovery Diagnosis

Module
Event

GeneratorAgent

Client Agent

Synchronizer

Configuration Logs

Input from Client Output to Server Agent
Collector

Input from Server AgentOutput to Client

Figure 3.2: Client Agent and Third Party Agent components and their interaction

C hapter 3. Architecture 34

3.3.3 Third Party Agent (TPA)

The Third Party Agent is responsible for management and decision making to respond to SLA

violations. The TPA has several sub-components. These are described as follows.

Registration

Clients and providers register with the third party through the Registration module of the TPA.

After registration, providers send a specification of their services to be placed in the service

directory of the TPA. Providers specify the supported range of QoS parameters (service time,

availability and price) for each service it is providing.

Negotiator

The task of the Negotiator is to create SLAs. When the client wants to use a specific type

of service, the client defines service selection policy, violation policy and recovery policy for

that type of service. Based on the threshold limit defined in the service selection policy, the

Negotiator searches for a service from the service directory. If the Negotiator finds a service,

it creates an SLA between that service provider and the client for that service.

Contract Repository

The Contract Repository is a data storage component of TPA which stores the SLAs and Poli

cies in a system readable format.

Logs

Logs is the other data storage component of the TPA. It is synchronized with the Logs data

storage of the Client Agent. Logs data storage component contains a table which stores service

request information. Each entry in the Logs represents information about a service invocation.

The information is presented in Table 3.1

C hapter 3. A rchitecture 35

Column Name Description
id Primary key for the table

contracted Id of the SLA
host Address of the Provider Agent of the contracted provider
port Port number of the server on which Provider Agent is running
uri URI of the contracted service

start_time Time when the request is invoked by the client
end_time Time when the response is sent to client by Client Agent

processing-time Time taken by Client Agent to process the request
service-time Time taken by server to process the request
availability Indicates whether the request is served successfully or not

Table 3.1: logs table of Logs data storage of TPA

Event Generator

The Event generator uses SLAs and SLA violation policies to generate events that represent

SLA violations. SLA violation policies specify the number of times that an SLA is violated

before an event is generated. The Event generation maintains a table where each entry corre

sponds to an SLA. For each entry there is an attribute that represents the number of violations.

When the number exceeds what is specified in the SLA violation policy then an event is gen

erated. The generated events are the input of the Diagnosis Module.

Diagnosis Module

The Diagnosis Module uses events as input for its diagnosis algorithm. The output of this

module is the root cause that is causing SLAs to be violated. The output of the Diagnosis

module is used by the Recovery Agent.

Recovery Agent

The Recovery Agent takes input from the Diagnosis module, analyses the input and executes

reactive actions based on the recovery policy defined by the client to prevent the SLA viola

tions.

C hapter 3. Architecture 36

3.4 Work flow of the system

In the proposed system there are three parties: client, provider and third party. This section

describes the interactions between these parties.

3.4.1 Registration

Both the client and the provider need to be registered with the third party. This is done through

the use of the Registration module.

Client registration

The Client provides its information (i.e. Name, Address, Contact number) in the format ex

pected by the third party. The Client also provides information for payment. This information

is used to pay the service charge for the services provided by the third party. The Client also

has to pay the third party for finding and composing the services. The Third party provides the

client Client Agent software. The Client installs this software.

Provider registration

The Service Provider provides its basic information (i.e. Name, Address, Contact number)

when it registers with the TPA. The Service Provider also has to pay the third party service

manager for TPA facilities such as the service directory. This requires that the Service Provider

provides information needed for payment. The Service provider provides a specification of all

of its services with supported range of QoS parameters (service time, availability and price)

to the service directory of the third party service manager so that those services can be found

by the Negotiator of the TPA. The Third party provides the service provider with the Provider

Agent software. The service provider installs this software.

C hapter 3. Architecture 37

3.4.2 Define policies

When a client wants to use a specific type of service, it defines policies for the use of that

service. These policies were described in Section 3.1.

3.4.3 Find services and create SLA

The Negotiator finds a service provider that meets client needs based on the service selection

policy defined by the client. The SLA is then made between the client and the provider to to

allow the client to use the service of the provider. The steps are described as follows.

Finding service provider

The Negotiator of the TPA uses the client defined selection policies to find an appropriate

service in the service directory of TPA. Algorithm 1 describes the algorithm for finding an

appropriate service. First, all active services of the desired service type are retrieved from the

service directory (line 1). The service time threshold is set to the lower bound limit of ser

vice time defined in the service selection policy (line 3), the availability threshold is set to the

upper bound limit of availability defined in the service selection policy (line 4) and the price

threshold is set to the lower bound limit of price defined in service selection policy (line 5).

A search of the list of service instances is carried out to find a service where the service time

of the service is less than the service time threshold (line 11), the availability of the service

is greater than the availability threshold (line 12) and the price of the service is less than the

price threshold (line 13). If an appropriate service is found then that service is selected (line

19). If there found several appropriate service, then one service will be selected among them

based on the priority defined by the client (line 17). If no service is found then each of the

thresholds are increased by the change rate defined in the policy (line 21, 22, 23) and the list

is searched again. This search will continue until the service time threshold reaches the upper

bound limit, the availability threshold reaches the lower bound limit and the price threshold

C hapter 3. Architecture 38

reaches the upper bound limit defined in the policy (line 8). If there is no appropriate service

then no service will be selected.

Algorithm 1 Find Appropriate Service
1: S erviceList <— Get all services of the service type defined in the policy
2:

3: for all services o f ServiceList do
4: ServiceTimeThreshold <— PolicyDefinedServicetimeLowerbound
5: AvailabilityThreshold *— PolicyDefinedAvailabilityUpperbound
6: PriceThreshold «— PolicyDefinedPriceLowerbound
7:
8: while ServiceTimeThreshold != PolicyDefinedServicetimeUpperbound AND

AvailabilityThreshold != PolicyDefinedAvailabilityLowerbound AND
priceThreshold != PolicyDefinedPriceUpperbound do

9:
10: Find a service from ServiceList where
11: S erviceTimeThreshold > S erviceTime AND
12: AvailabilityThreshold < Availability AND
13: PriceThreshold > Price
14:
15: if found then
16: if found several services then
17: select one service among them based on the priority defined by the client
18: end if
19: return the service as proper service
20: else
21: S erviceT imeThreshold <— S erviceT imeThreshold + S erviceT imeChangeRate
22: AvailabilityThreshold <— AvailabilityThreshold + AvailabilityChangeRate
23: PriceThreshold <— PriceThreshold + PriceChangeRate
24: end if
25: end while
26: end for

Create SLA

After service provider selection, the Negotiator creates an SLA between the service provider

and the client. This SLA should include the conditions of the service usage. Service usage can

be defined in one of the following ways:

C hapter 3. A rchitecture 39

• Time basis: The SLA specifies that the client uses the service for a fixed length of time

(i.e. 15 days, 30 days). The SLA specifies the amount of payment to be paid for that

time period.

• Quota basis: The SLA specifies that the client uses the service for a fixed number of

requests (i.e. 1000 service requests). The SLA specifies the one time pre-paid amount

to be paid for that number of service invocations. The contract should be renewed when

the quota is reached.

• Every service invocation basis: The SLA specifies that the client uses the service and

the client has to pay a fixed amount for each service request. A bill is issued to the client

periodically (e.g. by-weekly/monthly) for using the service during that period.

3.4.4 Recording service request information

Each service request and response of the client is intercepted by the Client Agent. The service

invocations are stored in the Logs data storage component by the Collector module of the Client

Agent. The following occurs after a request is invoked by a client.

• When a client invokes a service request it is intercepted by the Client Agent.

• After the Client Agent intercepts the request, it retrieves the required information from

the Configuration Data Storage component. This is used to call the Provider Agent of the

service being requested. The Client Agent then sends the service request to the Provider

Agent.

• The Provider Agent processes the incoming service request to determine the service to be

invoked. It then forwards the service request to that server which is serving the requested

service.

• The provider generates a response for the request. It then sends back that response to the

client which invoked the request. The Provider Agent intercepts the response message.

C hapter 3. Architecture 40

• After intercepting the response, the Provider Agent appends the calculated service time

(time that is taken by the server to process the service request) to the response and sends

the modified response to proper client.

• The Client Agent intercepts the response message modified by the Provider Agent, parses

the response message to get the QoS data (service time, availability) of that invocation. It

then stores this information along with other information (contract identifier, port num

ber, operation address, processing time etc.) in the Logs data storage component. It then

forwards the response to the client.

3.4.5 Synchronize logs of service invocations

The Client Agent uses the Synchronizer component for updating the Logs Data Storage com

ponent of the TPA with the data from the Client Agent’s Logs Data Storage component. The

Synchronizer runs at fixed time intervals and checks the Logs data storage component of the

Client Agent to keep track of appearance of new data. If it finds any new data, it uploads the

new data to Logs data storage component of TPA.

3.4.6 Monitoring

The Event Generator component of TPA runs in fixed time intervals and monitors the data in

the Logs data storage component of TPA to generate events representing SLA violations.

Algorithm 2 describes the generation of service time violation events. At first, all the logs

which have not yet been processed for monitoring are retrieved (line 1). For each log entry the

service time is evaluated to determine if there is a SLA violation (line 4). If there is a violation

then the count of evaluations is compared to a threshold value specified in a SLA violation

policy (line 5). If the count exceeds the threshold then an event indicating an SLA violation is

generated (line 6). Otherwise the counter is increased by one (line 8).

Chapter 3. Architecture 41

Algorithm 2 Service time Violation event generation
1: LogList <— Get all logs for which monitoring is not done
2:

3: for Every log o f LogList do
4: if ReceivedS erviceTime > ExpectedS erviceTime then
5: if S erviceTimeViolationLimit > PolicyDefinedS erviceTimeViolationLimit then
6: Generate Service time Violation event
7: else
8: S erviceT imeViolationLimit <— S erviceT imeViolationLimit + 1
9: end if

10: end if
11: end for

Algorithm 3 describes the generation of availability violation events. At first, all the logs

which have not yet processed for monitoring are retrieved (line 1). For each log entry if it is

found that the service is unavailable (line 4), then current availability rate is evaluated to deter

mine if there is a SLA violation (line 6). If there is a violation then the count of evaluations is

compared to a threshold value specified in a SLA violation policy (line 7). If the count exceeds

the threshold then an event indicating an SLA violation is generated (line 8). Otherwise the

counter is increased by one (line 10).

Algorithm 3 Availability Violation event generation
1: LogList <— Get all logs for which monitoring is not done
2:

3: for Every log of LogList do
4: if Service unavailable for current invocation then
5: Calculate Cur rent Availability Rate
6: if Current Availability Rate < ExpectedAvailabilityRate then
7: if PolicyDefinedAvailabilityViolationLimit > AvailabilityViolationLimit then
8: Generate Availability Violation event
9: else

10: AvailabilityV iolationLimit <— AvailabilityViolationLimit + 1
11: end if
12: end if
13: end if
14: end for

C hapter 3. Architecture 42

3.4.7 Recovery

The Diagnosis module analyses events to determine root cause. The result of Diagnosis mod

ules is the input of the Recovery Agent. The Recovery Agent makes a decision on an action in

reaction to the SLA violation. Changing the current provider of the client to a new one is one

possible action. Another recovery action is to do nothing.

Chapter 4

Implementation

This chapter describes the implemented prototype of our proposed architecture.

4.1 Implementation of system components

We have implemented the Client Agent, the Provider Agent and the Third Party Agent. The

implementation details of these components are described in this section.

4.1.1 Client Agent

The Client Agent has two processing components (Collector and Synchronizer) and two data

storage components (Configuration and Logs). Implementation details of these components

are described in this section.

Configuration

A text file is used to store the configuration information for the Client Agent. Each line of

the Configuration text file represents information needed to invoke a specific service instance.

Each line consists of the service type, its corresponding policy identifier of the group of poli

cies (service selection policy, violation policy and recovery policy), current SLA identifier,

43

C hapter 4. Implementation 44

host address of the Provider Agent, port number on which the Provider Agent is listening to

requests, and the operation address of the service of the provider.

Collector

The Collector is a proxy and so we needed to build a client-server mechanism to implement

the Collector. The Collector is a client of a Provider Agent and it is a server for a client.

Communication is done through the Apache HttpClient API [3]. After the Collector receives

the response from Provider Agent, it writes information related to the service request into Logs

by using a file handler of Java [20].

Logs

Logs is a text file where information for each service request is stored by the Collector. Each

line of the Logs text file contains information about a single service request.

Synchronizer

The Synchronizer is implemented using Java Thread Programming [21]. The Client Agent

starts the Synchronizer which is a thread. The thread checks the Logs on a certain interval for

new data. If there is any new data in Logs the data is uploaded to the Logs component of the

Third Party Agent. JDBC API [19] is used to upload new data at Logs of Third Party Agent.

4.1.2 Provider Agent

The Provider Agent is a proxy and so we built a client-server mechanism to implement the

Provider Agent. The Provider Agent is a client of a provider and it is a server for the Client

Agent. Communication is done through the Apache HttpClient API [3]. After the Provider

Agent receives the response from the provider it appends the calculated service time to the

response and forwards it to the client.

C hapter 4. Implementation 45

4.1.3 Third Party Agent

The implementation details of the third party agent are described in this section.

Registration and Negotiator

We have implemented a web interface by which clients and providers register with the system.

The client defines policies through this web interface. The provider also use this web interface

to provide information about its services.

Contract Repository and Logs

We used MySQL database [17] to implement the Contract Repository and the Logs data storage

components. We created a table named slas to store the contracts and a table named logs where

each entry represents information about a service request.

Event Generator

The Event Generator is implemented using Java Thread Programming [21]. The TPA starts

the Event Generator which is a thread. The thread evaluates new data from Logs based on

the SLAs of Contract Repository in a fixed time interval and generates events if any violation

occurs. To store the events we created a table named events.

Diagnosis

We did not implement this module. This is future work.

Recovery Agents

The Recovery Agent is implemented using Java Thread Programming [21]. The TPA starts the

Recovery Agent which is a thread. The thread analyses the events and takes necessary recovery

actions to recover the SLA violation. The actions can be changing the current provider of the

client to a new one or to do nothing.

C hapter 4. Implementation 46

4.2 Database

A MySQL database [17] is used by the Third party to store different information (i.e. contracts,

logs, events, client and provider informations etc.). For our prototype, we have ten tables. The

clients and providers tables are used to store information of clients and providers. The services

of providers are stored in a services table. Clients define policies that are saved in the policies

table. The service types table represents different types of services supported by the third party.

The violation types table stores different violation types (e.g. service time violation, availability

violation) which could be evaluated by the system. When a SLA is violated, the provider is

blacklisted for that client. This information is stored in the blacklisted services table. The slas

table represents the contracts made between the clients and the providers. The logs table is

synchronized with the Logs data storage component of the Client Agent continuously. Events

which represent SLA violations are saved in the events table. The relationship among these

tables is shown in Figure 4.1.

C hapter 4. Implementation 47

_ J clients
id INT

O name VARCHAR(255)
> address TEXT
j contact no VARCHAR(255)
j email address VARCHAR(255)

host VARCHAR(255)

o port INT

±
T
I
I

_J policies
d INT

✓ cfcent Id INT
y service type id INT

servicetime upperbound INT
servcctvne lowerbound INT
serveettne chan gerate INT
serveettne violationltnit INT
serveettne pnorty INT
avadabiiy upperbound FLOAT
avaiability lowerbound FLOAT
availability changer ate FLOAT
availability violâtionlimit INT
availability priority INT
pree upperbound FLOAT
price lowcrbound FLOAT
price changer ate FLOAT
price viola tionlimit INT
price pnorty INT

►

_ j providers ▼
id INT
name VARCHAR(255)
address TEXT
contact no VARCHAR(255)
email address VARCHAR(255)

----- K

_ J service types ▼

d INT
O deserpton VARCHAR(255)

►

r----- •<
44---------1

1] services
id INT

» service type id INT
y provider id INT

host VARCHAR|45)
■ port INT
operation address VARCHAR(45)
service ime INT

y avadaWity FLOAT
price FLOAT

------- K ___I
J s l a s

I
I

i .

I _ _

_ J events

id INT
polcy id INT

* sla id INT
^ y violation type id INT

expected FLOAT
received FLOAT

X --------- J

id INT
y policy id INT
y service id INT

servcetvne violation INT
availability violation INT
availabrfrty positive INT
avadabiHy negative INT
start date VARCHAR(255)
end dato VARCHAR(255)

I
I
I
l
t

--------- K

J logs

K) INT
s policy id INT
> sla id INT
. host TEXT

port INT
uriTEXT
start ttne VARCHAR(255)
end ttne VARCHARi255)
processng time INT
servee ttne INT
availability INT

3] violation types ▼

id INT
deserpton VARCHAR(255>

>1--

Figure 4.1 : Database of prototype

Chapter 5

Validation

This chapter presents an evaluation of the proposed architecture. Section 5.1 defines objectives

and metrics of the evaluation. Section 5.2 describes the experiments and the results from these

experiments.

5.1 Evaluation

Evaluation consisted of two parts: testing the functionality of the prototype and determining

overhead. The main goal of the proposed architecture is to reduce the management task of

clients. This is done with a third party that has some of the management functionality. Since

different clients have different needs, there is a need to tailor management for each client. This

is done through the use of polices. Part of our evaluation includes testing the system under

various scenarios. Another part of our evaluation focusses on measuring overhead.

5.2 Validation

The experiments, made to validate our proposed architecture are described in detail in this

section.

48

C hapter 5. Validation 49

5.2.1 Functionality testing

For testing we used six machines with centOS 5.3 operating system running on those machines.

We used three machines as providers (alfalO.syslab.csd.uwo.ca, alfall.syslab.csd.uwo.ca and

alfal2.syslab.csd.uwo.ca), two machines as clients (alfa05.syslab.csd.uwo.ca, alfa06.syslab.csd.uwo.ca)

and one machine as a third party (alfa01.syslab.csd.uwo.ca). Clients and providers are regis

tered with the system. For a specific type of service (subtraction) each of the providers placed

their services in the service directory of the third party. The parameters defined by the providers

are as follows:

Provider Service Type Service Time Availability Price
alfal O.syslab.csd.uwo.ca subtraction 2200 0.75 25
alfal 1 .syslab.csd.uwo.ca subtraction 3100 0.8 20
alfal 2.syslab.csd.uwo.ca subtraction 2750 0.7 40

Table 5.1: Service directory of third party

After that one client (alfa05.syslab.csd.uwo.ca) defined policies for using “subtraction” type of

service. The policies defined by the client were as follows:

POLICY selection-subtraction {

ServiceType (subtraction),

QoSParameters {

(ServiceTime, 2000, 3100, 100, 1),

(Availability, 0.7,0.9,0.05, 3),

(Cost, 20, 90, 10, 2),

}

}

C hapter 5. Validation 50

POLICY violation-subtraction {

ServiceType (subtraction),

QoSParameters {

(ServiceTime, 5),

(Availability, 5),

}

}

POLICY recovery-subtraction {

ServiceType (subtraction),

QoSParameters (

(ServiceTimeViolation, changeProvider),

(AvailabilityViolation, changeProvider),

)

The other client (alfa06.syslab.csd.uwo.ca) also defined policies for using the “subtraction”

type of service. The policies defined by that client were as follows:

POLICY selection-subtraction {

ServiceType (subtraction),

QoSParameters {

(ServiceTime, 2100, 3200, 100, 2),

(Availability, 0.65,0.85,0.05, 1),

(Cost, 15, 50, 10, 3),

}

}

C hapter 5. Validation 51

POLICY violation-subtraction {

ServiceType (subtraction),

QoSParameters {

(ServiceTime, 4),

(Availability, 3),

}

}

POLICY recovery-subtraction {

ServiceType (subtraction),

QoSParameters {

(ServiceTime Violation, changeProvider),

(AvailabilityViolation, changeProvider),

}

}

Within this environment all aspects of the system were tested to provide confidence in the

correctness of the implementation.

Testing involved using policies with very low threshold values. This allowed for a simula

tion of violations. Figures 5.1 and 5.2 illustrate for one test what happens when service time

and availability violations occur respectively. The client was never informed about the provider

change. This experiment validated that our implemented prototype reduces the management

task for the client. Also the prototype took all the decisions based on the policies defined by

the client which validates our proposed architecture.

C hapter 5. Validation 52

Figure 5.2: Availability violations

Chapter 5. Validation 53

5.2.2 Overhead testing

Scenario 1: In a normal scenario, where a client directly invokes a service, the invoked request

of the client goes directly to the provider and the provider generates a response for that invoked

service request. The generated response comes to the client directly. We can graphically rep

resent the scenario in Figure 5.3.

Figure 5.3: Scenario 1 - Normal service invocation

Scenario 2: In our architecture, when the client invokes a service request the service request

is intercepted by our Client Agent and Provider Agent before the provider receives the request.

When the provider receives the request it generates a response for that request and sends it

back to the client. This response is also intercepted by the Client Agent and the Provider Agent

before reaching the client. We can graphically represent the scenario in Figure 5.4.

‘\
Provider
Agent

r

Client Client Agent Provider

-

Figure 5.4: Scenario 2 - Service invocation through our proposed architecture

The Client Agent and the Provider Agent carry out processing tasks for collecting data

which is used for management purpose. The metric used for measuring the overhead is request

processing time. This is the time between the the client invoking a service request and the time

C hapter 5. Validation 54

that it receives a response. The difference in request processing time between the two scenarios

is the overhead.

We developed a client application (OverheadTester) which invokes a service request on ev

ery second. The application starts a timer when it invokes the service request and stops the

timer when it receives the response. We did the overhead testing on four types of services. On

every service type, we ran two instances of this client application (OverheadTester) for the two

scenarios. We ran those applications for about 1.5 hours which generates about 5000 service

requests for each scenario. The result is described in the Table .

Service Type RPT* in Scenario 1 (ms) RPT* in Scenario 2 (ms) Overhead (ms)
subtraction 203.61124 206.54614 2.9349

addition 323.6219 326.62256 3.00066
multiplication 483.53406 486.56967 3.03561

getPolicies 934.81173 937.83672 3.02499

Table 5.2: Overhead testing result (* RPT = Request Processing Time)

The request processing time is the summation of processing time at client end, network

time and service time (time taken by the provider to process the service request and generate

response). The service time for each of the services is not same and so the resultant request

processing time differs for each services.

The overhead generated for these four service types (2.9349 milliseconds, 3.00066 millisec

onds, 3.03561 milliseconds and 3.02499 milliseconds) are very close and so we can consider

the average of these experiments as the approximate overhead which can be generated by our

implemented prototype. From these experiments we can come to a decision that the overhead

generated by our proposed architecture is reasonably less.

Chapter 6

Conclusions and Future work

This thesis relates to the area of web service management and the focus is on design and

implementation of a policy based third party architecture for managing web services. Section

6.1 presents the conclusions. Section 6.3 presents possible future work.

6.1 Conclusions

Our proposed policy based third party management system is used to dynamically manage the

use of web services. Policies are used to guide decision making by the third party system.

Having the clients provide the policies allows for the third party to base its decisions that is

client specific.

The architecture is flexible. Management tasks such as selecting a service and determining

the action in response to SLA violations are guided by the clients by using policies from the

clients. Currently we use three kind of policies (service selection policy, violation policy and

recovery policy) but the architecture is flexible enough that it is possible to introduce a new

type of policy. The architecture supports the change of policies at run-time which allows the

clients to change their requirements in run-time. This feature is validated with functionality

testing using the environment presented in chapter 5.

55

C hapter 6. C onclusions and Future work 56

Our architecture is modular. Each module gets input from a specific module and the gen

erated output of the module goes as input to another specific module. This kind of behaviour

makes each module loosely coupled but highly cohesive. It makes the architecture easy to en

hance. Each module can be outsourced or separately built and can be used as a plug-in of the

architecture

We successfully reduced the management task to be carried out by clients. Most of the

management tasks are carried out by the third party. The client tells the third party which type

of service it is looking for. It is the third party that selects a service for the client based on the

requirements of the client. The third party monitors for SLA violations and changes services as

a recovery action to recover SLA violations. By using the third party the client does not need

to concern itself with managing the service quality.

We validated the functionality of our architecture by implementing a prototype for the

architecture and carrying out experiments for several scenarios. We also showed that our ap

proach generates minimal overhead.

6.2 Contributions

By using our proposed architecture the complexity of management and service discovery can

be hidden from clients and providers by outsourcing this functionality to third party. We have

used policies in a third party management system so that decision making tasks of the third

party can be automated and this automation is customized for each clients. It helps the third

party to respond promptly. Client gets uninterrupted service usage while SLA gets violated as

new SLA is built instantly based on previously defined policies of client.

Chapter 6. Conclusions and Future work 57

6.3 Future Work

There is a good deal of room for improvement in several modules. The algorithms for selecting

a service and checking for violations are very simple with support for a few conditions. These

algorithms can be made more complex and support more conditions. Several more parameters

(throughput, accuracy, authentication) can be introduced to increase the performance of these

algorithms.

With the increased number of clients and providers in the system the log generation rate

will increase too. It will also increase the workload of the event generator. In that case to

increase the performance of the event generator we can implement a distributed event gener

ator. A distributed event generator will process multiple logs in parallel and thus increase the

performance of event generator

In our implemented prototype, we did not implement the diagnosis module. The task of the

diagnosis module is to analyse events and find out the root cause of a SLA violation. We leave

this for future work.

Bibliography

[1] Oracle and/or its affiliates. The java ee 6 tutorial - types of web services. [Online; accessed

24-August-2010].

[2] Mira Mezini Anis Charfi, Rainer Berbner and Ralf Steinmetz. On the management re

quirements of web service compositions. In Monique Calisti, Marius Walliser, Stefan

Brantschen, Marc Herbstritt, Thomas Gschwind, and Cesare Pautasso, editors, Emerging

Web Services Technology, Volume II, Whitestein Series in Software Agent Technologies

and Autonomic Computing, pages 97-109. Birkhuser Basel, 2008.

[3] Apache. Httpclient overview. [Online; accessed 24-February-2011].

[4] R. Ben Halima, K. Drira, and M. Jmaiel. A qos-oriented reconfigurable middleware

for self- healing web services. In Web Services, 2008. ICWS ’08. IEEE International

Conference on, pages 104-111,2008.

[5] Boualem Benatallah, Marlon Dumas, and Zakaria Maamar. Definition and execution

of composite web services: The self-serv project. Data Engineering Bulletin, 25:2002,

2002.

[6] World Wide Web Consortium. Soap. [Online; accessed 27-October-2010].

[7] World Wide Web Consortium. Web services choreography description language version

1.0. [Online; accessed 2-November-2010].

58

BIBLIOGRAPHY 59

[8] M. Fugini E. Mussi B. Pernici P. Plebani D. Ardagna, C. Cappiello. Faults and recovery

actions for self-healing web services. 15th Int. World Wide Web Conf., 2006.

[9] A. Erradi, P. Maheshwari, and V. Tosic. Recovery policies for enhancing web services

reliability. In Web Services, 2006. ICWS ’06. International Conference on, pages 189

-196,2006.

[10] W. He. Recovery in web service applications. In e-Technology, e-Commerce and e-

Service, 2004. EEE ’04. 2004 IEEE International Conference on, pages 25 - 28, 2004.

[11] IBM. Types of web services. [Online; accessed 28-October-2010].

[12] IEEE. Ieee standard glossary of software engineering terminology. [Online; accessed

9-December-2010].

[13] Paul Lipton. Composition and management of web services. [Online; accessed 29-

November-2010].

[14] E.C. Lupu and M. Sloman. Conflicts in policy-based distributed systems management.

Software Engineering, IEEE Transactions on, 25(6): 852 -869, 1999.

[15] Anton Michlmayr, Florian Rosenberg, Philipp Leitner, and Schahram Dustdar. Com

prehensive qos monitoring of web services and event-based sia violation detection. In

Proceedings o f the 4th International Workshop on Middleware for Service Oriented Com

puting, MWSOC ’09, pages 1-6, New York, NY, USA, 2009. ACM.

[16] Microsoft Corporation MSDN. Understanding service-oriented architecture. [Online;

accessed 27-October-2010].

[17] MySQL. Mysqkthe world’s most popular open source database. [Online; accessed 24-

February-2011].

[18] Anders Mller and Michael Schwartzbach. Wsdl example. [Online; accessed 29-

November-2010].

BIBLIOGRAPHY 60

[19] Oracle. Jdbc overview. [Online; accessed 24-February-2011].

[20] Oracle. Lesson: Basic i/o. [Online; accessed 24-February-2011].

[21] Oracle. Thread. [Online; accessed 24-February-2011].

[22] Inc. O’Reilly Media. An introduction to service-oriented architecture from a java devel

oper perspective. [Online; accessed 22-November-2010].

[23] Michael P. Papazoglou, Paolo Traverso, Schahram Dustdar, and Frank Leymann. Service-

oriented computing: State of the art and research challenges. Computer, 40:3845, 2007.

[24] Tan Phan, Jun Han, J.-G. Schneider, T. Ebringer, and T. Rogers. A survey of policy-based

management approaches for service oriented systems, pages 392 -401, mar. 2008.

[25] Stephan Reiff-Marganiec and Kenneth J. Turner. Use of logic to describe enhanced com

munications services. In Proceedings o f the 22nd 1FIP WG 6.1 International Confer

ence Houston on Formal Techniques for Networked and Distributed Systems, FORTE

’02, pages 130-145, London, UK, 2002. Springer-Verlag.

[26] Akhil Sahai, Vijay Machiraju, Mehmet Sayal, Aad P. A. van Moorsel, and Fabio Casati.

Automated sla monitoring for web services. In DSOM ’02: Proceedings o f the 13th

IFIP/IEEE International Workshop on Distributed Systems: Operations and Manage

ment, pages 2 841 , London, UK, 2002. Springer-Verlag.

[27] Josef Spillner and Jan Hoyer. Sla-driven service marketplace monitoring with grand slam.

In Boris Shishkov, Jos Cordeiro, and Alpesh Ranchordas, editors, 1CSOFT (2), pages 71

74. INSTICC Press, 2009.

[28] Josef Spillner, Matthias Winkler, Sandro Reichert, Jorge Cardoso, and Alexander Schill.

Distributed contracting and monitoring in the internet of services. In DAIS ’09: Proceed

ings o f the 9th IFIP WG 6.1 International Conference on Distributed Applications and

Interoperable Systems, pages 129-142, Berlin, Heidelberg, 2009. Springer-Verlag.

BIBLIOGRAPHY 61

[29] Peter Trger, Harald Meyer, Ingo Melzer, and Markus Flehmig. Dynamic provisioning

and monitoring of stateful services. In Proceedings o f the 3rd International Conference

on Web Information Systems and Technology (WEBIST 2007), pages 434^138, Setbal,

Portugal, 2007. INSTICC.

[30] Dr. Do van Than. Web service orchestration: An open and standardised approach for

creating advanced services. [Online; accessed 29-November-2010].

[31] W3Schools. Introduction to web services. [Online; accessed 24-August-2010].

[32] W3Schools. Soap example. [Online; accessed 29-November-2010].

[33] W3Schools. Soap tutorial. [Online; accessed 29-November-2010].

[34] W3Schools. Wsdlanduddi. [Online; accessed 22-November-2010].

[35] W3Schools. Wsdl tutorial. [Online; accessed 29-November-2010].

[36] Wikipedia. Business process execution language. [Online; accessed 2-November-2010].

[37] Wikipedia. Orchestration (computing). [Online; accessed 29-November-2010].

[38] Wikipedia. Web service choreography. [Online; accessed 29-November-2010],

[39] Farhana H. Zulkemine, Patrick Martin, and Kirk Wilson. A middleware solution to mon

itoring composite web services-based processes. In SERVICES-2 ’08: Proceedings o f the

2008 IEEE Congress on Services Part II, pages 149-156, Washington, DC, USA, 2008.

IEEE Computer Society.

	POLICY BASED THIRD PARTY WEB SERVICE MANAGEMENT
	Recommended Citation

	tmp.1650317052.pdf.BUQS3

