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Abstract

Diabetes is a prevalent metabolic disease characterized by impaired insulin secretion, action,
or both. Bl-integrin is a key receptor that regulates cell-ECM interactions and is important in
maintaining beta-cell functions, including insulin secretion. However, little is reported about the
relationship between B1-integrin and the exocytotic proteins involved in insulin secretion. This
study examined the influence of ECM-mediated 1-integrin activation on exocytotic machinery
involved in insulin secretion using rat insulinoma (INS-1) cells. Collagen IV (COL 1V) promoted
INS-1 cell adhesion, spreading, and insulin secretion. Additionally, these cells displayed changes
in levels and localization of exocytotic proteins involved in insulin secretion. B 1-integrin antibody
blocking on cells cultured on COL IV showed significantly reduced adhesion, spreading, and
insulin secretion along with reduced exocytotic protein levels. Additionally, f1-integrin blocking
influenced the localization of exocytotic proteins at varied time points of glucose stimulation.
These results indicate that specific ECM-integrin interactions are critical for proper beta-cell

function.

Keywords: B1-integrin, exocytotic proteins, extracellular matrix, collagen IV, INS-1 cells,

beta-cell, glucose-stimulate insulin secretion
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Summary for Lay Audience

Diabetes is defined as chronic high blood sugar resulting from impaired insulin release, action,
or both. Insulin is a hormone produced by beta-cells, a pancreatic cell type, which functions to
decrease blood sugar. Islet transplants and bioartificial pancreas replacements are techniques under
investigation for the treatment of diabetics. However, there are many shortcomings with these
technologies which have been suggested to be, in part, due to the loss of the normal external
cellular environment. The environment of a cell plays a major role in its function. Integrins are a
family of proteins found on the outside of cells which communicate information about the
environment to the cell and vice versa. f1-integrins comprise a major family of integrin receptors,
and Pl-integrin signalling in beta-cells is well known to be important for insulin secretion.
However, it is not known how B1-integrin influences the machinery required for insulin secretion.
This study aimed to determine how B1-integrin signaling influences the machinery involved in
insulin secretion to enhance insulin secretion. The INS-1 rat beta-cell line was used as it expresses

B1-integrin and secretes insulin similar to normal physiology.

INS-1 cells were examined following culture on different protein ligands of B1-integrin. Of
the different proteins, collagen IV was found to provide the greatest enhancement of glucose
stimulated insulin secretion (GSIS). We then looked specifically at the machinery involved in
insulin secretion and found increases in both overall protein amounts and where they were located
within cells. To validate that the changes we were observing were due to interactions between
collagen IV and PB1-integrin, B1-integrin was blocked prior to culturing on collagen IV. Cells that
had Bl-integrin blocked had decreased GSIS. Furthermore, these cells have alterations in the

machinery involved in insulin secretion. Overall, this adds a novel method by which B1-integrin

il



influences insulin secretion and underscores the importance of collagen IV-Bl-integrin

interactions in the proper functioning of beta-cells.
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Chapter 1

1. Introduction

1.1.Significance of thesis

B1-integrin has proven to be important in many aspects of beta-cell function and survival (17,
26, 85), and it has been shown that B1-integrin plays a multifaceted role in the regulation of insulin
secretion (39, 51, 90). There is a great deal of research focusing on the influence of insulin
secretion by [l-integrin, the cytoskeleton, and Soluble N-Ethylmaleimide Sensitive-Factor
Attachment Protein Receptor (SNARE) proteins individually (43, 89, 90, 107, 113). However,
little to no reports reveal information regarding interplay between B1-integrin and SNARE proteins
in regulating insulin exocytosis. Our lab has previously shown that blocking 31-integrin on INS-1
cells cultured on collagen IV caused reduced insulin secretion (51). Additionally, mice with beta-
cell specific Bl-integrin knockout (KO) display impaired insulin secretion and decreased islet
SNARE mRNA expression (78). This project aimed to explore the relationship between B1-
integrin activation by distinct extracellular matrix (ECM) protein ligands and SNARE proteins in
the regulation of insulin secretion. The findings from this study expand on the understanding of
how the extracellular environment influences beta-cell activity, specifically how ECM-f1-integrin
interactions regulate exocytotic machinery involved in insulin exocytosis. Understanding the
effects of extracellular interactions on insulin secretion can aid development of islet transplantation
and bioartificial endocrine pancreas therapies, and thus seeks to improve islet-cell based treatments

for diabetes.



1.2.The Pancreas

The pancreas is a critical organ with roles in digestion and metabolic homeostasis. These roles
are regulated by specialized exocrine and endocrine tissue compartments that synthesize and
secrete digestive enzymes or glucose homeostasis hormones, respectively. Although both
functions are critical for normal physiology, majority of the pancreas is comprised of exocrine
tissue while only around one percent of the pancreas is endocrine tissue. This endocrine tissue is
found in clusters, known as islets of Langerhans, scattered throughout the pancreas which increase
in density from head to tail (proximal to distal) (94). Within each islet, five different hormone-
producing cell types exist; glucagon producing alpha-cells, insulin producing beta-cells, pancreatic
polypeptide producing PP-cells, somatostatin producing delta-cells, and ghrelin producing
epsilon-cells (88). The cell type ratio and organization within islets varies between species,
however, across species beta-cells are conserved as the major islet cell type (10, 79). The main
role of beta-cells is to secrete insulin in response to hyperglycemia. Once in circulation, insulin
acts on peripheral tissues to promote the uptake of glucose, thus facilitating a decrease in blood

glucose levels.

1.2.1. Diabetes Mellitus

Diabetes mellitus is a metabolic disease characterized by hyperglycemia due to impaired
insulin secretion, action, or both. According to the International Diabetes Federation, 451 million
people lived with diabetes in 2017, a number expected to rise to 692 million by 2045 (15). Type 1
diabetes (T1DM) is an autoimmune disease whereby pancreatic beta cells are destroyed and

accounts for approximately 5-10% of diabetic patients (124). Type 2 diabetes (T2DM) is a



progressive disease often associated with obesity and is characterized by insulin resistance that can

ultimately lead to beta cell failure (124).

In addition to the rigorous monitoring of hyperglycemic events in patients, hypoglycemia and
secondary complications remain major concerns for diabetic patients even with well-controlled
glycemia. Therefore, current research efforts work to develop treatments that can maintain
euglycemia in a manner similar to normal physiology (80). One rigorous treatment protocol
currently available to TIDM patients that have complications with blood glucose regulation is
pancreatic islet transplantation. Although this treatment is successful, its shortcomings include a
shortage on donors, suboptimal long-term efficacy, and the requirement of immunosuppressive
therapy (7). To circumvent these limitations, research is also being done to develop a bioartificial
endocrine pancreas, a device of islets, stem-cell derived or xenogeneic, encapsulated in a
semipermeable immune-protective membrane (80). Ideally this would provide long-term
euglycemia, in a less invasive manner and without immunosuppression or donor requirement (7).
Unfortunately, current attempts at a bioartificial endocrine pancreas have revealed several
challenges including diffusional distance, sufficient vascularization, and continued requirement of
immunosuppression (80). Many factors influence the shortcomings of both islet isolation and
bioartificial pancreas procedures. However, it has been hypothesized that the lack of a proper ECM
is a major contributor and that the restoration of these components can recapitulate the

physiological endocrine pancreas (12).

1.3.Insulin Secretion

The production and release of insulin from pancreatic beta cells, and its major role in glucose

homeostasis was discovered 100 years ago by Sir Frederick Banting and Charles Best. The process



of glucose-stimulated insulin secretion (GSIS) begins with increased blood glucose levels and
glucose uptake into beta-cells through the glucose transporter (GLUT) 1 (human) or 2 (rodent).
Next, glycolysis ensues resulting in an increased ATP:ADP ratio (62). ATP acts on the ATP-
sensitive potassium (Katp) channel, a channel which normally functions to maintain resting
membrane potential, leading to its closure and subsequent membrane depolarization (18). This
depolarization activates L-type voltage-gated Ca?* channels, which increases intracellular Ca?*
levels and stimulates fusion of insulin-containing granules with the plasma membrane (PM) via
SNARE complexes (119) (Figure 1.1). Insulin secretion occurs in a biphasic pattern consisting of
a transient robust first phase lasting around 10 minutes followed by a second phase of sustained

release lasting 30 minutes to a few hours (24).
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Figure 1.1: A diagrammatic representation of glucose stimulated insulin secretion from pancreatic

beta cells.

The figure was adapted from Wang and Thurmond 2009 (113) and modified by MB using

Servier Medical Art Templates (https://smart.servier.com/).



1.3.1. SNARE Proteins

SNARE proteins are transmembrane and membrane-associated proteins involved in mediating
membrane fusion. They can be categorized into two groups based on the membrane they associate
with: target-SNARES (t-SNARES) associated with the PM, or vesicle-SNARES (v-SNARES)
associated with the vesicle membrane (96). There are many types of SNARE proteins found in
mammalian cells; they share a common SNARE motif involved in formation of the SNARE
complex which mediates membrane fusion (118). In the complete SNARE core complex there are
two t-SNARE proteins (a SNAP and a Syntaxin) and one v-SNARE protein (vesicle-associated
membrane protein (VAMP)), that interact with another via SNARE motifs (113). The major
SNARE proteins involved in beta-cell insulin exocytosis are SNAP25, Syntaxinl A, and VAMP2

(118) (Figure 1.2).

In addition to the core SNARE complex proteins, the Munc18 family of proteins are associated
with Syntaxins and play a critical role in the formation of the SNARE-complex (86). Beta-cells
express three Muncl8 isoforms Muncl8-1, -2, and -3 (70, 71). Muncl8 proteins are well
documented to interact with Syntaxins. Muncl8-1 and Muncl8-2 pair with PM-localized
Syntaxins 1-3, while Munc18-3 only pairs with Syntaxin4 (101, 102). Studies of beta-cell specific
Munc18-1 deficiency in mice demonstrated impaired first phase of insulin secretion (70), and
depletion of Munc18-2 in rat islets disabled SNARE complex formation causing dysfunctional
beta-cell insulin exocytosis (55). Additionally, Munc18-1 is suggested to play a role in assisting
the conformational change of SyntaxinlA from its closed to open state that occurs following

glucose stimulation (4, 118).



In a basal state, the key SNARE proteins remain unattached, and Munc18-1 is in a complex
with SyntaxinlA in its closed state (Figure 1.2A). Under glucose stimulation the Syntaxinl A-
Munc18-1 interaction is altered and Syntaxinl A undergoes a conformational change to its open
state (19). Additionally, insulin vesicles are transported to the PM thus facilitating SNARE

complex formation and membrane fusion (Figure 1.2B).
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Figure 1.2: A simplified schematic of SNARE-mediated insulin vesicle exocytosis in beta-

cells.

(A) In a basal state, SNARE proteins SNAP25, Syntaxinl A, and VAMP2 remain unattached,
and Munc18-1 is bound to SyntaxinlA in its closed conformation. (B) With glucose stimulation,
Syntaxin is released from its closed conformation and the insulin vesicle is brought to the
membrane. This allows for SyntaxinlA, SNAP25, and VAMP2 to join, resulting in membrane
fusion and subsequent insulin exocytosis. The figure was adapted from Rorsman and Renstrom

2003 (91) and modified by MB using Servier Medical Art Templates (https://smart.servier.com/).



1.3.2. Cytoskeleton Role in Insulin Secretion

The association between insulin granule secretion and the cytoskeleton has been observed as
early as the 1960s (54). Prior to exocytosis, insulin granules are translocated to the membrane, a
process which relies on microtubules and F-actin remodeling (69). In an unstimulated state,
cortical F-actin in beta-cells sits below the PM in a dense network where it is suggested to block
granule movement (90, 106) (Figure 1.3A). This network is disrupted with glucose stimulation
allowing insulin secretion to occur through SNARE-mediated vesicle exocytosis (43, 72, 106)
(Figure 1.3B). In support of this, insulin granule secretion is observed when cells are treated with
latrunculin B, an actin disrupting agent (106). Furthermore, in MING6 cells, glucose, but not KCI,
administration diminished cortical actin localization, a finding that remained even with
jasplakinolide treatment, an actin polymerizing agent (69). Thus, glucose plays a major role in

actin cytoskeleton alterations observed during insulin secretion.

Insulin granule localization and secretion has also been suggested to be influenced by
cytoskeleton-SNARE protein interactions. Microtubules are responsible for transporting insulin
granules from the cell interior to the periphery where F-actin, but not G- actin, brings the granules
in close proximity to t-SNARE complexes (113) (Figure 1.3A). In MING6 cells and isolated mouse
islets, jasplakinolide treatment increased insulin granule localization to the PM, and only with the
addition of glucose, not KCIl, was a visible diminishment in cortical actin and decrease in
Syntaxinl A and F-actin interactions observed (69). Thus, during beta-cell activation and insulin
secretion, signaling upstream of the Katp channel appears to be required for mediating changes in
the actin cytoskeleton and its interaction with SyntaxinlA. Once this occurs the subsequent

increase in intracellular Ca?* can further enhance insulin granule secretion.
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Figure 1.3: A simplified schematic of cytoskeletal involvement in beta-cell insulin secretion

(A) In the basal state, microtubules are responsible for transporting insulin granules from the
cell interior to the periphery. F-actin sits in a dense network at the plasma membrane where it has
been demonstrated to form a complex with Syntaxinl A and block granules from reaching the PM.
(B) Upon stimulation, the actin network is disrupted and Syntaxinl A is released making SNARE
complexes at the PM available for vesicles to bind to and facilitating insulin secretion. The figure
was adapted from Wang and Thurmond 2009 (113) and modified by MB using Servier Medical

Art Templates (https://smart.servier.com/).
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Actin remodeling is commonly regulated by small Rho-family GTPases. This family of
proteins includes Rho, Rac, and Cdc42. Cdc42 has been found to be of particularly importance
during GSIS, localizing with insulin granules, and associating with Syntaxin 1A and VAMP2
where it is hypothesized to be involved in targeting granules to “active sites” at the PM for
exocytosis (1, 65, 69, 113). Cdc42 is also a protein recruited to integrin activation sites (1, 65)
providing evidence of a link between integrins and SNARE proteins in the regulation of insulin

secretion.

Another mechanism by which F-actin is thought to mediate insulin secretion is through its
association with Syntaxinl and Syntaxin4, both of which have been shown to be involved in
insulin secretion (97). Specifically, F-actin associates with Syntaxinl and Syntaxin4 at basal
conditions, and following glucose stimulation and actin changes, this interaction is significantly
reduced (43, 97, 106). Selective competitive disruption of F-actin-Syntaxin4 binding in MING6 cells
enhances GSIS by increasing PM granule accumulation and Syntaxin4 accessibility (43). It is
hypothesized that the binding of Syntaxin4 to F-actin prevents granule docking, while glucose-
induced binding of Syntaxin4 to granules promotes SNARE complex formation and vesicle fusion
(43). Interestingly, simply releasing Syntaxin4 from F-actin linkage is not sufficient for SNARE
complex formation, indicating involvement of other regulatory mechanisms in the assembly of the

SNARE complex (43).

1.4.Extracellular Matrix

Tissues and organs contain a non-cellular component known as the extracellular matrix (ECM)
(103). Broadly, the ECM has the following main functions: (1) act as a scaffold to support cells,

(2) communicate information about the environment to the cell and (3) influence cell behaviours
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such as development, cell adhesion, and homeostasis (103). There are two classes of ECM: the
interstitial matrix (IM) which surrounds cells, and the pericellular matrix which is in close contact
with cells (i.e., basement membranes (BMs)). ECM composition varies between tissue types,
demonstrating specialized roles in cell function. Commonly found ECM components include
collagens, elastin, fibronectin, laminins, glycoproteins, proteoglycans and glycosaminoglycans
(103). In addition to structural proteins, the ECM houses hormones, growth factors, and cytokines

all of which influence cellular behavior (5).

1.4.1. Pancreatic ECM

Within the pancreas, there is a great deal of BM surrounding islets, vessels and acinar cells,
with minimal IM present (8). At the endocrine-exocrine interface, the BM consists of a peri-insular
capsule which has roles in directing morphogenesis during embryonic development as well as
tissue regeneration after injury (38). Both human and mouse peri-islet BMs have been reported to
contain collagen IV, agrin, perlecan, and laminins, although specific isoforms vary between
species (8). The interstitial ECM is a highly variable network of ECM proteins and polysaccharides
located between islet cells, containing collagens I, II, III and VI, fibronectin, fibrillin-2 and
matrilin-2 (8). Additionally, a laminin-rich ECM is also present in the endothelial BM of islet
capillaries (2, 8). Thus, pancreatic islets are in a complex extracellular environment that influences

cellular activity.

The ECM facilitates several functions within beta-cells during development and post-natal life.
In support of its various functions, ECM composition has been found to vary at different stages of
development (111, 121). Islet precursors express vitronectin, fibronectin and collagen IV and when

islet formation begins, collagen IV and laminin act as the major ECM components (2).
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Functionally, ECM components have been shown to improve cell adhesion, survival and insulin
release in mature beta-cells (112). The ECM has also been suggested to be important for
maintenance of beta-cell polarity, aiding in providing insulin secretion toward the vasculature (2,

26).

1.4.2. Fibronectin

Fibronectin is a glycoprotein found as a soluble component of plasma and an insoluble portion
of the ECM (74). It has numerous interactions with integrins and its major receptor is a5 1 integrin
(60, 74). Fibronectin is an important ECM component that supports pancreatic islets. Isolated
porcine islets incubated with a fibronectin-mimicking peptide designed to bind to o531 was found
to increase fibronectin production indicating a potential for isolated islets to generate their own
ECM with appropriate integrin receptor activation (6). Additionally, culture on a fibronectin
substrate increased expression of islet cell markers in the differentiation of hepatic oval cells,
which demonstrates that fibronectin may also be important for maintaining an islet endocrine cell

phenotype (56).

1.4.3. Laminins

Laminins comprise a family of glycoproteins most prominently found in BMs (20). Evidence
of laminin isoform expression within pancreatic vessel BMs has been found, thus interaction with
islet cells can occur (44). Laminin appears to play a role in promoting the development of islet
cells (25, 111). Additionally, human mesenchymal stem cells cultured in insulin-producing cell
induction and differentiation medium had increased expression of pancreatic precursor cell

markers and genes governing insulin expression in the presence of laminin 411 (82). Moreover,
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when these cells were transfused into streptozotocin (STZ)-treated rats, a treatment that eliminates
the majority of endogenous beta-cells and induces severe hyperglycemia, a rapid and significant
drop in fasting blood glucose, improved symptoms and survival, and significantly decreased
HbA 1c was observed (82). These findings may indicate that enriching developing endocrine cells
with laminin can help specify beta-cell fate. It has also been demonstrated that laminin improves
islet function and survival. Human islets encapsulated in collagen IV combined with specific
laminin sequences had improved survival compared to islets in capsules without ECM proteins,

even when exposed to inflammatory cytokines which are known to impair beta-cell function (57).

1.4.4. Collagens

Collagens are the most abundant ECM protein in vertebrates (92). As with the other ECM
proteins, collagens have been shown to play a major role in numerous cell functions. There are

two collagens of focus in this thesis: collagen I and collagen IV.

Collagen I is the most highly expressed collagen throughout the body and is notably found in
bone, ligaments, skin and arteries (27, 76). It forms organized fibrils that provide strong structural
support as well as a point of cellular attachment (76). Collagen I has been suggested to play a role
in the organization of islets during development. Islets isolated from neonatal rat pancreases were
cultured on collagen I-coated dishes and covered with an overlay of gelling collagen I solution.
This induced reorganization of endocrine cells into three-dimensional islet-like organoids in a
manner which maintained the characteristic distribution of cell types found in vivo (64). Collagen
I has also been found to promote function in developed islets. The incubation of isolated Wistar
rat islets with collagen I alone, or with collagens I and IV, was found to improve glucose stimulated

insulin secretion for up to 11 days ex vivo (66).
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Collagen 1V is the major collagen found in BMs where it forms complex networks that have
been demonstrated to influence cell adhesion, migration, and differentiation (49, 76). Collagen IV
has been noted to act as a binding substrate for multiple cell types via integrin and non-integrin
receptors (49). In pancreatic islets, collagen IV has been found to be present within the peri-islet
capsule and can directly interact with islet cells (40). This interaction has been demonstrated to be
important for beta-cell function. Islets isolated from mice and seeded on collagen IV-modified
scaffolds were found to significantly reduce the time required to achieve post-transplantation
euglycemia when transplanted in STZ-induced diabetic mice (120). Additionally, these scaffolds
were found to reduce early-stage apoptosis and improve viability (120). Islets isolated from human
fetal and adult pancreases were found to have significantly increased migration when cultured on
collagen IV compared to other ECM proteins (47). Human fetal islets also demonstrated a
significant increase in insulin secretion when cultured on collagen I'V-coated plates compared to
poly-L-lysine and bovine serum albumin (BSA)-coated surfaces. This increase was determined to
be mediated in part through alf1 signaling (47). Our lab has previously shown INS-1 cells
cultured on collagen IV-coated plates display increased cell adhesion, viability, and insulin
secretion as a result of Bl-integrin signaling, further supporting that specific collagen-integrin

interactions are important for beta-cell survival and function (51).

1.5.Integrins and ECM

For the ECM to influence cellular fate, cells require specialized receptors that provide the
connection between the external and internal environments. One major family of receptors that
provides such interactions are integrins. Integrins are dimeric cell adhesion molecules consisting

of a and B subunits that mediate cell-ECM and cell-cell interactions (37). Having both extracellular
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and cytoplasmic domains allows integrins to mediate “inside-out” and “outside-in” signaling (53).
They link extracellular components to the cytoskeleton and stimulate intracellular signaling
pathways imperative for function. Signaling through integrins is often achieved via focal
contacts/adhesions where focal adhesion kinase (FAK), a nonreceptor tyrosine kinase, is recruited
and interacts with various signaling molecules (89). In beta-cells, integrin signaling through FAK
has been demonstrated to have a role in numerous functions including glucose-stimulated insulin
secretion (GSIS), survival, and cell adhesion, demonstrated that ECM-induced integrin signaling

regulates beta-cells (23).

1.5.1. pl-Integrin

B1-integrin is the most prevalent B-integrin subunit and has been shown to pair with numerous
o subunits enabling their binding to different ligands including ECM proteins as listed in Table
1.1 (2, 11, 35, 81, 98, 111). As a result, B1-integrin has roles in various cellular processes for a
number of cell types including pancreatic beta-cells (98, 111). In human and rodent fetal islets,
B1-integrin has been shown to be involved in cell adhesion, survival, development, and insulin
expression (111, 121). In developed islets, f1-integrin has been shown to be important for beta-
cell survival, insulin secretion, and adhesion (17, 53, 77). These findings demonstrate that 31-
integrin is important throughout beta-cell development into their mature state within islets.
Research has also demonstrated roles for specific o subunits in complex with B1-integrin. o331
was shown to be involved in ECM attachment and spreading in isolated rat islets and RIN-2A cells
(48), and also acts as a regulator for the migration of CK19+/ PDX-1+ putative pancreatic
progenitors of human fetal pancreatic epithelial cells on netrin-1 (122). a5 has also been suggested

to be involved in signaling pathways protecting against cell death as decreased a5 expression
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during culture of rat islets was paralleled by increased islet apoptosis (112). In hESCs,
differentiation to insulin-secreting beta-cells was achieved by seeding cells on an acellular ECM
with conditioned media (68). During this process, expression of a1, oV, and 1 subunits were
found to increase; a2, a3, a5 and a6 subunits fluctuated in cells but ultimately were higher than
control conditions, while 5 expression decreased during differentiation (68). Implantation of
these cells led to recovery in STZ-induced diabetic mice after four weeks, where the mice
displayed glucose levels and glucose tolerance that was similar to mice not treated with STZ (68).
Emphasizing the direct and overall role of B1-integrin as a regulator in insulin secretion, beta-cell
specific Bl-integrin KO mice display impaired insulin secretion in response to in vivo glucose
challenge (17, 77). Overall, B1-integrin activation has been demonstrated to be critical for beta-

cell development as well as mature function.

17



Table 1.1: B1-integrin subunits and their associated ligands
Integrin Ligand

alpl collagen, laminin
a2f1 collagen, fibronectin, laminin
a3p1 collagen, fibronectin, laminin

a4l fibronectin
asSpl fibronectin

a6B1 laminin
a7p1 laminin
adpl fibronectin
alOBl | collagen
allpfl | collagen

avpl fibronectin

Adapted from Stupack and Cheresh (2002) and Plow et al. (2000).
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1.5.2. pl-integrin, FAK and Insulin Secretion

Integrin receptors do not contain kinase domains and rely on other proteins to initiate their
signaling pathways. Focal adhesions are a diverse group of proteins found at sites of adhesion
between integrins (or proteoglycans) and the cytoskeleton (115). Focal adhesion protein
composition varies with receptor and cell type. A common protein, and primary signaling
molecule, found at integrin focal adhesions is FAK which is activated via tyrosine phosphorylation
(115). A major result of FAK activation is changes in the cytoskeleton (Figure 1.4) (89, 93). In
addition to integrin activated FAK, there is ample evidence of glucose stimulated FAK activation
mediating cytoskeletal changes observed in insulin secretion. Glucose stimulation in primary rat
beta-cells activates focal contacts containing FAK, paxillin, and ERK1/2 (89). Mice with beta-cell
specific FAK KO fail to demonstrate changes in cortical actin density and have impaired in vivo
insulin secretion in response to glucose stimulation (14). These beta-cells also had reduced insulin
granules near the PM and failed to increase membrane-associated granules with glucose
stimulation (14). This suggests that FAK regulates actin dynamics to control insulin granule

trafficking as well as insulin secretion.

B1-integrin expression and activation has been demonstrated to influence FAK/ERK signaling
in beta-cells. Mice with a beta-cell specific Pl-integrin KO displayed reduced FAK
phosphorylation and impaired insulin secretion (77). Isolated fetal human islets displayed reduced
FAKD™% with anti-B1-integrin treatment (93) and B1-integrin siRNA transfection also reduced
INSULIN mRNA that was able to be rescued by FAK overexpression (93). Previous work by our
lab demonstrated that INS-1 cells cultured on collagens I and IV and blocked with a B1-integrin

antibody significantly decreased insulin content, GSIS, and FAK phosphorylation (51).
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Cumulatively, this supports a signaling link between B1-integrin and FAK activity that is required

to induce insulin production and beta-cell function.

Another downstream effector of FAK is BCL-2-associated athanogene 3 (BAG3), a
multifunctional protein shown to be involved in several cellular processes including cytoskeletal
arrangement and insulin secretion (99). lorio et al. examined BAG3 in 3-TC-6 cells and found that
in basal conditions, BAG3 is a co-chaperone protein that interacts with SNAP25 to inhibit it from
interacting with v-SNARE complexes, thus preventing insulin secretion (39). Upon glucose-
stimulation, BAG3 is phosphorylated and it’s interaction with SNAP2S5 is lost, promoting SNARE
complex formation (39). Although, a direct link between integrins and BAG3 has yet to be
established in beta-cells, FAK has been suggested to be responsible for phosphorylating BAG3 as
FAK inhibition was found to abolish BAG3 phosphorylation and reduced SNAP25-Syntaxinl A
interactions (39). BAG3 was also identified in epithelial cancer cells as an important factor in cell
adhesion to the integrin-dependent ligand fibronectin versus adhesion to poly L-ornithine, a
proteoglycan-dependent ligand (41). Iwasaki et al. also found BAG3 to have roles in regulating
activity of Racl, a small Rho GTPase linked to actin rearrangement (1, 41). Overall, these findings
suggest that BAG3 may have a critical role in insulin secretion, and that FAK can affect BAG3
activity, but further investigation is required to establish a link between beta-cell integrin signaling

and BAG3.
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Figure 1.4: Pathway of FAK signaling leading to insulin exocytosis

FAK activation, whether by glucose stimulation or integrin activation, has been shown to
facilitate insulin secretion via multiple pathways. (1) FAK phosphorylation of BAG3 releases it
from SNAP25, allowing SNAP25 to participate in the formation of SNARE complexes utilized in
insulin exocytosis. (2) FAK activation of ERK1/2 is involved in cytoskeletal rearrangement
utilized in insulin exocytosis. (3) FAK is an upstream modulator of Cdc42, a common actin
remodeling protein found to be involved in targeting insulin vesicles to the membrane for

exocytosis.
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1.5.3. Link Between Integrins and SNARE Proteins

Evidence of a relationship between integrins and exocytotic machinery has been described in
neurons. Laminin-mediated B1-integrin activation was shown to be responsible for cytoskeletal
rearrangement and controlling VAMP7-regulated exocytosis and neurite development of cortical
neurons in mice (29). Following inhibition of upstream signaling molecules involved in the Bl
integrin-signaling pathway, neuritogenesis was able to be rescued by over expressing VAMP7
(29). This provides evidence for a direct interaction between integrin signaling and the exocytotic
machinery involved in vesicle release. However, despite commonalities in machinery, these

relationships have not been reported in pancreatic beta-cells.

Integrin activation has also been demonstrated to alter SNARE-mediated exocytosis in human
platelets (123). LPS-activated platelets have increased release of a-granules, an abundant platelet
granule type (123). SNAP23, VAMPS, Syntaxin2A, and Munc18a have been shown to be major
factors involved in a-granule release and are influenced by LPS-activation in platelets (123).
allbB3 integrin, the most abundant platelet surface integrin, is also involved in platelet activation
(123). PKC6, a known outside-in mediator of allbB3 integrin signaling, had increased expression
with LPS activation. Upon PKC6 inhibition, decreased Munc18a expression, phosphorylation and
association with SNAP23, Syntaxin2A, and VAMP was observed as well as decreased PM
localization for Muncl8c and VAMPS8 (123). This provides evidence of integrin-mediated

regulation of exocytosis via modulation of SNARE proteins.

1.6.Insulin Secreting Cell Line (INS-1 Cells)
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Although islets can be isolated from animals models for the ex vivo investigation of integrin-
induced insulin release, the isolation procedure is time-consuming and resulting samples are
limited by low proliferation rates (79). Because of this, a great deal of research has been done to
develop proliferative cell lines which display beta-cell-like characteristics, most notably the ability

to secrete insulin in response to glucose challenge.

One of the major beta-cell lines studied is the rat insulinoma cell line (INS-1). INS-1 cells were
introduced by Asfari et al. in 1992 from cells isolated from an x-ray induced rat transplantable
insulinoma (3). The major advantage of this cell line is its responsiveness to glucose within the
normal physiological range (95). From the original INS-1 parent line, subsequent clones were
developed to further improve cell function by transfecting the original INS-1 cells with the human
insulin gene (34). Hohmeier et al. demonstrated that the INS-1 832/13 clone developed in this
work displayed characteristics comparable to islets. It was the most responsive to glucose
challenge, had effective Katp channel-dependent and -independent GSIS, contained high insulin
content, and was responsive to numerous known potentiators of insulin secretion in islets (34).
Furthermore, the INS-1 832/13 clone demonstrated stable insulin secretion for longer than six
months of culture (34). Studies by our laboratory found that INS-1 832/13 cells express a variety
of integrins including a1-6, oV, and B1 (51). Thus, INS-1 832/13 is a good line to use in the
proposed study to examine the precise mechanisms of B1-integrin and SNARE protein interplay
in the regulation of insulin secretion. However, it is important to keep in mind the potential for

differences between a cancer cell line compared to primary beta-cells or in vivo islets.

1.7.0bjectives and hypothesis of present study
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Objective: To determine how beta-cell B1-integrin-ECM interactions promote exocytotic proteins

for insulin secretion.

Hypothesis: In pancreatic beta-cells, Bl-integrin enhances protein level and alters cellular

localization of exocytotic machinery to facilitate insulin secretion.

Specific Aims

1. Determine which B1-integrin-ECM interactions influence exocytotic protein levels and
localization in beta-cells

2. Examine how PB1-integrin-ECM interactions alter focal adhesions and SNARE protein
localization in beta cells during GSIS

3. Examine if blocking B1-integrin could change beta cell adhesion and spreading, insulin

secretion, and alterations in exocytotic protein level and localization

Specific Questions:

1. Which ECM protein(s) most influences INS-1 cell adhesion and spreading?

2. Which ECM protein(s) promote insulin secretion and the exocytotic machinery
involved?

3. How does collagen IV influence exocytotic proteins and focal adhesions during GSIS?

4. What role does B1-integrin play in the collagen IV-mediate changes observed in INS-

1 cell insulin secretion and exocytotic machinery?
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Chapter 2

2. Methods

2.1.INS-1 Cell Culture and ECM Coating of Tissue Culture Plates

INS-1 832/13 cells (a gift from Dr. Christopher Newgard, Duke University Medical Center,
USA) were cultured to 90% confluency prior to passage and experimentation in RPMI-1640 media
with L-glutamine (Gibco, Amarillo, Texas, USA) containing 10% fetal bovine serum (FBS;
Invitrogen, Burlington, ON, Canada), 10mmol/L HEPES (Sigma, St. Louis, MO, USA), 1 mmol/L
sodium pyruvate (Invitrogen), and 50umol/L B-mercaptoethanol (Sigma). Cells were incubated at

37°C in 5% COa.

For experimentation, 12- or 96-well tissue culture plates (Fisher Scientific, Ottawa, ON,
Canada), or 4- or 8-wells cell culture chamber slides (Nunc Labtek, Fisher Scientific) were
precoated with one of the ECM proteins listed in Table 2.1 or 1% bovine serum albumin (BSA;
Sigma) as control. ECM protein precoating concentrations and incubation times listed in Table
2.1 were based on previous work from our lab and as indicated by the manufacturer (52). INS-1
cells were incubated on pre-coated plates for 24 hours at 37°C plus 5% CO; in serum-free media.
Serum-free media (SFM) consisted of RPMI-1640 media with L-glutamine (Gibco), 23.8mM
NaHCO; (Fisher Scientific), 1% BSA (Sigma), 25mM HEPES (Sigma), Spg/mL transferrin, and

0.1puL/mL IGF-1. Three to six cell passages were used for each set of experiments (n=3-6).

2.2. Functional Blocking of B1-integrin
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INS-1 cells were incubated with hamster anti-rat B1-integrin antibody (CD29, Sug/ml, BD
Biosciences, Mississauga, ON, Canada) (anti-B1), hamster IgM isotype-matched negative control
(5pg/ml, BD Biosciences) (IgM) or untreated in serum free media (control) for 1 hour at 37°C, 5%
CO; prior to being plated on collagen IV pre-coated plates or chamber slides and cultured for 24

hours.

2.3.Cell Adhesion and Spreading Assay

For the cell adhesion assay, 5x10* INS-1 cells were plated on 96-well tissue culture plates pre-
coated with different ECM proteins or BSA (control) as listed in Table 2.1. For the 1-integrin
blocking experiments, INS-1 cells were pretreated with Bl integrin blocking antibody, IgM or
control prior to plating on collagen IV pre-coated tissue culture plates. Cells were cultured in
serum-free media for 3 hours. All wells were rinsed twice using 1x PBS to remove non-adhered
cells. Six random fields were imaged per well using a Leica DMIRE2 microscope (Leica
Microsystems) at 40x magnification. After 24 hours in culture, cells were analyzed for the cell
spreading assay. Imaging was captured at six random fields per well at 40x magnification using a
Leica DMIRE2 microscope. Cells that adhered or spread were counted and normalized to the
control groups. Data is expressed is as fold change versus control. Each experiment was performed

in triplicate with six repeats per group.

2.4.Glucose Stimulated Insulin Secretion (GSIS) Assays

2.4.1. 96-well Tissue Culture Plate GSIS

1x10° INS-1 cells were cultured on 96-well tissue culture plates pre-coated with different ECM

proteins or BSA (control) as listed in Table 2.1. For the B1-integrin blocking experiments, INS-1
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cells were pretreated with 1 integrin blocking antibody, IgM or control prior to plating on
collagen IV pre-coated tissue culture plates. Cells were cultured in serum-free media for 24 hours.
Overnight media was collected to determine basal insulin secretion. Wells were gently rinsed twice
with no glucose RPMI-1640 (Sigma) plus 0.5% BSA. Cells were then incubated in RPMI-1640
(Sigma) plus 0.5% BSA with 2.2mmol/L glucose for 1 hour followed by 1 hour with 22mmol/L
glucose to analyze glucose-stimulated insulin secretion. Media was collected after each treatment
to analyze insulin secretion in response to glucose stimulation. Cells were then harvested to
determine cellular insulin content. Insulin concentrations were determined by a Stellux
chemiluminescent high range rodent insulin ELISA kit (Alpco, Salem, NH, USA). Static GSIS
stimulation index was calculated and expressed as the ratio of insulin secretion at 22mM over
2.2mM glucose stimulation (51). Insulin content was normalized to protein concentration. INS-1
cell protein concentration was determined via Bradford assay using Bradford dye (Bio-Rad
Laboratories, Mississauga, ON, Canada) and BSA (0-0.5mg/mL) as a standard. Each experiment

was performed in technical triplicates with 4-5 biological repeats per group.

2.4.2. Chamber slide time-dependent insulin secretion during INS-1 cell GSIS

1.5x10° INS-1 cells were cultured on 4- or 8-well cell culture chamber slides (Nunc Labtek,
Fisher Scientific) pre-coated with BSA or collagen IV. For the B1-integrin blocking experiments,
INS-1 cells were pretreated with B1 integrin blocking antibody, IgM or control prior to plating on
collagen IV pre-coated chamber slides. Cells were cultured in serum-free media for 24 hours, then
media was harvested, and cells were immediately fixed for the basal condition. For glucose treated
cells, cells were first rinsed twice with no glucose RPMI plus 0.5% BSA followed by glucose

stimulation in RPMI plus 0.5% BSA media containing of one of four conditions: (1) 2.2mmol/L
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glucose for 30 minutes (L30), or 22mmol/L glucose for (2) 5 minutes (H5), (3) 30 minutes (H30),
or (4) 60 minutes (H60). Media was collected at each time point and insulin secretion was
determined using a Stellux chemiluminescent high range rodent insulin ELISA kit (ALPCO). Cells
were then fixed for immunofluorescence staining as described in 2.6.1 Chamber Slide

Immunofluorescence Analysis.

2.5.Protein Extraction and Western Blotting

INS-1 cell protein was extracted by incubating cells in Nonident-P40 lysis buffer (Nonident-
P40, phenylmethylsolfonyl fluoride, sodium orthovanadate [Sigma] and complete protease
inhibitor cocktail tablet [Roche; Mississauga, ON, Canada]) for 20 minutes on ice followed by
sonication and centrifugation at 13 000 rpm (12 879 x g) for 20 minutes at 4°C. The supernatant
was collected and frozen at -80°C. Protein concentrations were determined via Bradford assay
using Bradford dye (Bio-Rad Laboratories, Mississauga, ON, Canada) and BSA (0-0.5mg/mL) as

a standard.

An equal amount (25ug) of lysate proteins from each experimental group was separated by
either 10 or 12% sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-page).
Following separation, proteins were transferred to nitrocellulose membrane (Bio-Rad Laboratories
Inc.; Mississauga, ON, Canada) by running on ice for 2 hours at 250mA. Transfer was confirmed
using Ponceau S dye (Sigma-Aldrich). Membranes were washed in Tris buffer-saline with 0.1%
Tween-20 (TBST; Sigma) followed by blocking in 5% non-fat dry milk (2.5mL TBS, 50uL NP-
40 [Sigma] in 50 mL double distilled H,O with pH adjusted to 7.4) at room temperature (RT) for
1 hour or overnight at 4°C. Primary antibodies were incubated overnight at 4°C and concentrations

are listed in Table 2.2. Membranes were washed 3 times for 5 minutes in TBST and subsequently
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incubated in anti-rabbit or anti-mouse IgG, HRP-linked secondary antibodies (Cell Signaling
Technology, Whitby, ON) for 1 hour at RT. Cells were then washed 3 times for 5 minutes in TBST.
Chemiluminescent detection (ECL, PerkinElmer, Waltham, MA) was used to visualize proteins of
interest and membranes were imaged on a Versadoc version 4.6.9 (Bio-rad Laboratories Inc.)
imaging system. Reference protein (GAPDH) and total proteins were used to normalize protein
bands of interest and protein phosphorylation levels, respectively. Probing for total protein levels
was completed after immersing the membrane in a mild stripping buffer (200mM glycine [Fisher
Scientific], 3.5mM SDS [Sigma], and 10uL/mL Tween-20 in double distilled water with pH
adjusted to 2.2) for 10 minutes at RT, washing in TBST 3 times for 5 minutes, and incubating for
1 hour in milk blocking solution. Densitometric quantification of bands was determined by Image
Lab software (Bio-Rad Laboratories). Data is expressed as fold-change from control, all protein

levels are normalized to loading control or total protein (51).

2.6.Immunofluorescence Analysis

INS-1 cells were cultured on 12-well plates pre-coated with ECM proteins, or BSA (control),
as listed in Table 2.1 in serum-free medium for 24 hours. Cells were harvested and fixed in 4%
paraformaldehyde for one hour at RT before being washed with 1x PBS. Cells were then embedded
in 2% agarose gel and treated with a standard protocol for dehydration and paraffin embedding

(52).

4um sections from each group were taken and placed on slides. Sections were deparaffinized
and rehydrated followed by blocking in 10% normal goat serum for 1 hour at RT. If indicated in
Table 2.2, sections were treated with heat-induced antigen retrieval solution (citrate pH 6.0) to

remove PFA-induced cross-links and improve antibody detection. Sections were then probed with
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primary antibodies at the appropriate dilutions (Table 2.2) and incubated overnight at 4°C.
Sections were incubated with secondary antibodies (Table 2.2) conjugated with either fluorescein
isothiocyanate (FITC) or tetramethyl rhodamine isothiocyanate (TRITC) (Jackson
Immunoresearch, West Grove, PA) for 1 hour at RT the following day. Nuclei were counterstained
with 4’-6’-diamidino-2-phenylindole (DAPI) (1:1000 dilution; Sigma-Aldrich). Positive staining
images were captured using a Nikon Eclipse Ti2 confocal microscope (Nikon, Mississauga, ON)
set to 60x magnification with oil (Nikon). Imaging was captured at 6-7 random areas per section
with a minimum of 3 repeats per group. Displayed images are representative of staining found in
each group. Negative controls were determined by adding secondary antibodies alone to rule out

non-specific binding.

2.6.1. Chamber Slide Immunofluorescent Analysis

After time-dependent chamber slide GSIS, INS-1 cells cultured on chamber slides were fixed
in 4% paraformaldehyde (PFA) for 20 minutes at RT. Cells were then treated with 0.2% Triton for
30 minutes followed by appropriate dilution of primary antibodies (Table 2.2), with incubation
performed as described above. Stained images were captured using a Nikon Eclipse Ti2 confocal
microscope set to 60x magnification with oil. Imaging was captured at 6-7 random areas and
visually analyzed for changes in protein localization within the cell and intensity. Displayed

images are representative of staining found in each group.

2.6.2. Colocalization Analysis

Double immunofluorescence staining for SNAP25 (green) and VAMP2 (red) was performed

to examine colocalization, and co-stained images were captured using a Nikon Eclipse Ti2
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confocal microscope set to 60x magnification with oil. A minimum of 50 cells per experimental
group were imaged. For each image, regions of interest (ROI) were generated by manually tracing
around groups of cells to limit background noise. Colocalization analysis was performed on each
ROI using NIS-Elements software (Nikon) using the co-localization function. Manders coefficents
were determined to examine changes in overlap irrespective of intensity. Manders overlap
coefficient, which analyzes the overall overlap between proteins of interest, and Manders
colocalization coefficients (M1 and M2), which describe the above-background pixels of one
protein of interest that overlap with another protein of interest amount of overlap, were reported,

and averaged for all ROI in each experimental group.

2.7 .Fluo-4 Ca*' Imaging

1x10° INS-1 cells were pretreated for 1 hour with Bl-integrin blocking antibody, IgM, or
untreated control followed by culture on collagen IV pre-coated 35mm glass bottom dishes
(Cedarlane, Burlington, ON, Canada) for 24 hours in serum-free media. Cells were rinsed twice
with HBSS and incubated with 4 uM Fluo-4 AM (Abcam) in HBSS (Sigma) for 30 min at 37°C,
5% CO- followed by 30 min at RT. Cells were then imaged using a Nikon Eclipse Ti2 confocal
microscope set to 60x magnification with oil. Cells were imaged for 15 seconds in order to
determine basal Fluo-4 levels. High glucose (22mM) was then added, and cells were imaged for

15-minute time series with images taken every 8 seconds.

FIJI was used for analysis, where ROIs were drawn around stimulated cells and mean grey
value was plotted over time. To account for differences in Fluo-4 uptake, mean grey values during

glucose stimulation were normalized to the mean grey values in the first 15 seconds of imaging
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prior to glucose addition. Area under curve (AUC) was measured for each trace and averaged for

the cells in each image using GraphPad Prism.

2.8. Statistical Analysis

Data are expressed as means = SD. Statistical significance was determined using a one-way
ANOVA followed by Tukey’s post-hoc test, if significant. For examining differences in rate of
insulin secretion, a two-way ANOVA was used. Differences were considered statistically
significant when p<0.05. Analysis was performed using GraphPad Prism 7.0 (GraphPad Software,

Inc.).
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Table 2.1: List of ECM Proteins

ECM Dilution Dilutant Incubation Company

Protein

Fibronectin Spg/mL Serum-free media 1 hour Fisher Scientific, Ottawa,
ON, Canada

Laminin 6ug/mL 1x PBS 2 hours Sigma, St. Louis, MO, USA

Rat tail Sug/mL 0.02M Acetic Acid 1 hour Wang Lab (51)

Collagen I

Collagen IV~ 19.8 pg/mL  0.05M HCl 1 hour Santa Cruz Biotechnology
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Table 2.2: List of Antibodies

Primary Antibody

Dilution

Company

Mouse Anti-BAG3
Rabbit Anti-pBAG3
(Tyrd57)

Rabbit Anti-B1-integrin
Mouse Anti-B1-integrin

Rabbit Anti-FAK
Rabbit Anti-pFAK
(Tyr397)

Mouse Anti-GAPDH
Rabbit Anti-Muncl8
Phalloidin

Mouse Anti-SNAP25
Rabbit Anti-VAMP2
Anti-Vinculin

Secondary Antibody
Goat Anti-Mouse

Goat Anti-Rabbit

Anti-Mouse HRP-linked
Anti-Rabbit HRP-linked

1:50/1:1000Y
1:50

1:1000Y
1:50

1:2000%
1:1000%

1:2000%
1:100*/1:1000W
1:25 000
1:50/1:1000%
1:200/1:500%
1:50

Dilution
1:50

1:50

1:500-3000%
1:500-3000%

* Citrate Antigen Retrieval (pH 6.0) used

WUsed in western blot probing

Santa Cruz Biotechnology Inc, Dallas, TX, USA
Antibodies-online Inc., Limerick, PA, USA

Millipore Sigma, Saint Louis, MO, USA
Abcam Inc., Cambridge, MA, USA
Invitrogen, Burlington, ON, CA
Invitrogen, Burlington, ON, CA

Santa Cruz Biotechnology Inc, Dallas, TX, USA
Abcam Inc., Cambridge, MA, USA

Abcam Inc., Cambridge, MA, USA

Santa Cruz Biotechnology Inc, Dallas, TX, USA
Abcam Inc., Cambridge, MA, USA

Millipore Sigma, Saint Louis, MO, USA

Company

Jackson Immunoresearch, West Grove, Pam
USA

Jackson Immunoresearch, West Grove, Pam
USA

Cell Signaling Technology, Whitby, ON, CA
Cell Signaling Technology, Whitby, ON, CA
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Chapter 3

3. Results

3.1.Collagen IV enhances INS-1 cell adhesion and spreading

Cell adhesion and subsequent spreading are early indicators of cell-ECM interactions (87). To
examine how Pl-integrin ligands; fibronectin (FIB), laminin (LAM), collagen I (COL I), and
collagen IV (COL IV) influence INS-1 cell adhesion and spreading, cells were plated and analyzed
after 3 and 24 hours, respectively. After 3 hours of culture on ECM-coated tissue culture plates,
INS-1 cells displayed varied levels of increased adhesion, depending on the ECM protein,
compared to the BSA-coated control (CTRL) (Figure 3.1A). Quantitative analysis demonstrated
that COL IV provided the greatest increase in adhesion out of all experimental groups and was
significantly higher than CTRL and LAM conditions (p<0.01, p<0.05, respectively) (Figure
3.1B). After 24 hours of culture, it was found that all ECM proteins improved cell spreading
compared to CTRL conditions (Figure 3.1A) with mean fold changes from CTRL of 8.1, 40.4,
26.9, and 62.2 for FIB, LAM, COL I, and COLIV groups, respectively (Figure 3.1C). Statistically
significant differences in cell spreading were observed between COL IV and CTRL (p<0.01), and

COL 1V and FIB (p<0.01).
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Figure 3.1: Collagen IV enhances INS-1 cell adhesion and spreading

(A) Phase contrast images taken 3- and 24-hours following INS-1 cell plating on BSA (CTRL),
fibronectin (FIB), laminin (LAM), collagen I (COL 1), or collagen IV (COL IV) pre-coated tissue
culture plates to determine cell adhesion (3 hours) and spreading (24 hours), respectively. Scale
bar: 50um. Quantification of INS-1 cell (B) adhesion and (C) spreading. Data are expressed as
fold-change vs. CTRL (mean + SD, n=6 experiments/treatment group, all done in triplicate).
*p<0.05, **p<0.01 vs. CTRL or as indicated. Determined by one-way ANOVA followed by

Tukey’s multiple comparisons test.
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3.2.Collagen IV enhances INS-1 cell glucose stimulated insulin secretion and insulin content

The major function of beta cells is to secrete insulin. We examined if different ECM proteins
can influence the amount of insulin secreted under basal conditions and in response to glucose
stimulation. Under basal conditions, no differences were found between experimental groups for

insulin secretion (Figure 3.2A).

The effects of ECM on INS-1 cell GSIS was next examined. INS-1 cells were washed with
glucose-free media and incubated in 2.2 mM glucose (low glucose) for 1 hour followed by 1 hour
of 22 mM glucose (high glucose). From this, the stimulation index, the ratio of insulin secretion
from high over low glucose stimulation, was determined. Consistent with the adhesion and
spreading results, COL IV had the greatest stimulation index compared to other ECM groups, with

a mean index 3.4-fold higher than CTRL (p<0.05) (Figure 3.2B).

Finally, insulin content within the cells was examined. Although all experimental groups were
found to have increased insulin content compared to CTRL, the COL IV group displayed the

largest increase, with a 3.2-fold difference compared to CTRL (p<0.05) (Figure 3.2C).
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Figure 3.2: Collagen IV enhances glucose-stimulated insulin secretion (GSIS) and content in

INS-1 cells

(A) Basal insulin secretion, (B) GSIS stimulation index (ratio of insulin secretion from high
glucose: low glucose stimulation), and (C) insulin content of INS-1 cells cultured on BSA, FIB,
LAM, COL I, or COL IV pre-coated plates. Insulin content was measured and normalized to
protein content determined by a Bradford assay. Each experiment was performed in triplicate and
data are expressed as fold-change vs. CTRL (mean + SD, n=3-6 experiments/treatment group)

*p<0.05 vs. CTRL determined by one-way ANOVA followed by Tukey’s post-hoc test.
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3.3.ECM proteins impact INS-1 cell exocytotic protein level and localization

To determine whether the effect of ECM protein enrichment on INS-1 cell insulin secretion is
associated with changes in exocytotic proteins, Munc18-1 and SNARE total protein levels and

localization were examined using western blot and immunofluorescence microscopy.

Munc18-1, a SNARE-associated protein involved in orchestrating the assembly of SNARE
complex formation, was found to be influenced by cell-ECM interactions. Immunofluorescent
staining revealed a notable increase in Munc18-1 cytoplasmic puncta with COL IV cells (Figure
3.3A, B). INS-1 cells cultured on COL IV were found to have significantly increased Munc18-1
protein levels when compared to the FIB group (p<0.05), and a notable increase compared to

CTRL (p=0.1026) (Figure 3.3C, D).

Interestingly, SNAP25, a SNARE complex protein involved in insulin exocytosis, was found
to have increased membrane protein localization and intensity in LAM and COL IV compared to
other groups (Figure 3.4A, B). When examining total protein level, SNAP25 was found to be
significantly higher in cells cultured on LAM when compared to CTRL cells (p<0.05) and although
increased in the COL IV group, no statistically significant differences were found (p=0.3961)

(Figure 3.4C, D).

Finally, VAMP2, another SNARE protein involved in INS-1 cell insulin exocytosis, did not
appear to visually change when cultured on different ECM proteins (Figure 3.5A, B). Although
protein levels varied, no significant differences in VAMP2 were observed between groups when

examined via western blot analysis (Figure 3.5C, D).
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Figure 3.3: Collagen IV enhances Munc18-1 expression and protein levels in INS-1 cells

(A) Representative confocal images of the SNARE protein Munc18-1 (red) and nuclei (blue)
in INS-1 cells cultured on BSA, FIB, LAM, COL I, or COL 1V pre-coated plates. (B) Magnified
images of the highlighted region for each group. Scale bar: 10um. (C) Representative blotting
images and (D) western blot analysis of Munc18-1 protein levels. Data are normalized to GAPDH,
a loading control, and expressed as fold-change vs. CTRL (mean + SD, n=4 experiments/treatment

group). *p<0.05 determined by one-way ANOVA followed by Tukey’s multiple comparisons test.
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Figure 3.4: Some ECM proteins influence SNAP25 expression and protein level in INS-1 cells

(A) Representative confocal images of the SNARE protein SNAP25 (red) and nuclei (blue) in
INS-1 cells cultured on BSA, FIB, LAM, COL I, or COL IV pre-coated plates. (B) Magnified
images of the highlighted region for each group. Scale bar: 10um. (C) Representative blotting
images and (D) western blot analysis of SNAP25 protein levels. Data are normalized to GAPDH,
a loading control, and expressed as fold-change vs. CTRL (mean + SD, n=3-5
experiments/treatment group). *p<0.05 determined by one-way ANOVA followed by Tukey’s

multiple comparisons test.

45



A CTRL COL1 COL1V

CTRL FIB LAM COLI COLIV

VAMP2 | % R —

GAPDH | S s

D 2.5=
-
O
> 2.0+
|—
30
-g S 4.5
2o T
~ g 1.0-
oG -I-
2T 0.5
> é ——
0.0

1 ] 1 1
CTRL FIB LAM COLI COLIV

46



Figure 3.5: ECM proteins do not appear to influence VAMP2 expression and protein levels in

INS-1 cells

(A) Representative confocal images of the SNARE protein VAMP2 (red) and nuclei (blue) in
INS-1 cells cultured on BSA, FIB, LAM, COL I, or COL IV pre-coated plates. (B) Magnified
images of the highlighted region for each group. Scale bar: 10um. (C) Representative blotting
images and (D) western blot analysis of VAMP2 protein levels. Data are normalized to GAPDH,
a loading control, and expressed as fold-change vs. CTRL (mean + SD, n=3-5
experiments/treatment group). *p<0.05 determined by one-way ANOVA followed by Tukey’s

multiple comparisons test.
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3.4.Collagen IV increases visual overlap of SNAP25 and VAMP2

Analysis of SNAP25 and VAMP2 immunofluorescent co-staining revealed COL IV produces
minor changes in colocalization between the two proteins. Manders coefficient, a measure of the
degree of overlap between proteins of interest irrespective of intensity, was used to quantify the
degree of overlap between the two proteins. Manders overlap coefficient, which examines the
overall overlap between the two proteins of interest, did not differ between groups, with mean
values ranging from 0.75 to 0.78 (Figure 3.6A). Next, Manders colocalization coefficients, the
values which describe the above-background pixels of one protein of interest that overlap with
another protein of interest, were examined. M1, the coefficient describing the amount of SNAP25
which overlaps with VAMP2, was not found to differ (Figure 3.6B). However, M2, the coefficient
describing the amount of VAMP2 which overlaps with SNAP25, was increased in COL IV cells
compared to other groups, albeit not significantly (Figure 3.6C). Specifically, mean M2 values
were 2.76, 1.54, 2.21, 1.92, and 3.56 for CTRL, FIB, LAM, COL I, and COLIV, respectively.
Representative colocalization images for each group were displayed in Figure 3.6D. An increase
in the visual colocalization, seen in yellow, of SNAP25 and VAMP2 was observed in COL IV

compared to other groups (Figure 3.6E).
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Figure 3.6: Collagen IV increases visual overlap of SNAP25 and VAMP2

(A) Manders overlap coefficient, (B) Manders M1 colocalization coefficient and (C) Manders
M2 colocalization coefficient of INS-1 cells cultured on BSA (CTRL), FIB, LAM, COL I, COL
IV pre-coated plates (mean + SD, n=3-5). (D) Representative confocal images of the SNARE
proteins SNAP25 (green) and VAMP2 (red) in INS-1 cells cultured on ECM and CTRL. (E)

Magnified images for CTRL and COL IV groups. Scale bar: 10pm.

50



3.5.ECM proteins promote INS-1 cell B1-integrin, FAK, and BAG3 protein levels

B1-integrin was found to be increased in intensity and membrane-associated puncta in COL I
and COL IV groups (Figure 3.7A, B). Both COL I and COL IV also displayed slight increases in
protein levels, although these changes were not statistically significant (Figure 3.7C, D). FAK, a
major signaling modulator for B1-integrin, phosphorylation was also examined. No significant
differences between groups were found although LAM, COL I, and COL IV groups had higher
phosphorylation compared to CTRL (1.27, 1.14, and 1.29, fold-increases vs. CTRL, respectively)

(Figure 3.7E, F).

BAG3, an accessory protein associated with insulin exocytosis, was found to be influenced by
cell-ECM interactions. Cytoplasmic total BAG3 staining was visually increased in FIB, COL I,
and COL IV vs. CTRL (Figure 3.8A). Particularly, a notable increase in COL IV intensity was
observed compared to CTRL (Figure 3.8B). No significant changes were observed in protein

levels of BAG3 between groups (Figure 3.8D).

Phosphorylated BAG3, which has been demonstrated in previous research to be involved in
SNARE complex formation (39) was also changed. In CTRL, sparse cytoplasmic localization with
less density of staining of phosphorylated BAG3 staining is observed in contrast to the ECM
groups (Figure 3.8E, F). No major changes in localization between experimental groups is
observed with only a minimal increase in puncta observed for the COL IV group (Figure 3.8 E,

F).
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Figure 3.7: ECM proteins impact 31 Integrin localization but not protein levels or FAK

phosphorylation in INS-1 cells

(A) Representative confocal images of B1-integrin (green) and nuclei (blue) in INS-1 cells
cultured on BSA, FIB, LAM, COL I, or COL IV pre-coated plates. (B) Magnified images of the
highlighted region for each group. Scale bar: 10um. (C) Representative blotting images and (D)
western blot analysis of Bl-integrin protein levels. (E) Representative blotting images and (F)
western blot analysis of phosphorylated FAK (pFAK). B1-integrin protein levels are normalized
to GAPDH, a loading control, and pFAK levels are normalized to total FAK (tFAK) levels. Data
are expressed as fold-change vs. CTRL (mean + SD, n=3-4 experiments/treatment group). Data

was analyzed using a one-way ANOVA followed by Tukey’s multiple comparisons test.
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Figure 3.8: Collagen IV enhances BAG3 localization and ECM proteins impact pBAG3

localization

(A) Representative confocal images of BAG3 (red) and nuclei (blue) in INS-1 cells cultured
on BSA, FIB, LAM, COL I, or COL 1V pre-coated plates. (B) Magnified images of the highlighted
region for each group. Scale bar: 10um. (C) Representative blotting images and (D) western blot
analysis of BAG3 protein levels. Data are normalized to GAPDH, a loading control, and expressed
as fold-change vs. CTRL (mean + SD, n=3-4 experiments/treatment group). (E) Representative
confocal images of phosphorylated BAG3 (red) and nuclei (blue) in INS-1 cells cultured on BSA,
FIB, LAM, COL I, or COL IV pre-coated plates. (F) Magnified images of the corresponding

highlighted area for each group. Scale bar: 10pm.
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3.6.Collagen IV promotes focal adhesion complex formation in INS-1 cells

Focal adhesion complexes are complex PM-associated macromolecular assemblies that
interact with ECM-integrin activation sites and physically connect with the actin cytoskeleton to
recruit focal adhesion-associated proteins such as vinculin. To determine the influence of collagen
IV on focal adhesion complexes, INS-1 cells were cultured on chamber slides precoated with
collagen IV (COL 1V) or BSA (CTRL) for 24 hours, and then stimulated with different glucose
conditions. In general, CTRL cells remained rounded with weak actin staining and less vinculin at
the cell periphery compared to COL IV cells (Figure 3.9A). COL IV cells also demonstrated
intense actin stress fibers with increased amount of positive vinculin staining at the cell periphery
were observed when compared to CTRL (Figure 3.9B) consistent with the idea that collagen IV
promotes focal adhesion complex formation. The differences between groups remained consistent
across all tested glucose stimulation conditions (Figure 3.9Ab-e, Bb-e). Actin in CTRL cells
appears to be relatively unchanging in CTRL cells regardless of glucose treatment (Figure 3.9Ab-
e). However, actin staining in COL IV cells is generally homogenous across the cell periphery
under basal conditions, with only some areas of intensity while with glucose stimulation induced
some areas with intense actin staining and others without (Figure 3.9Bb-e). This indicates that
collagen IV support in INS-1 cells induces alterations in the actin cytoskeleton in response to

glucose.
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Figure 3.9: Collagen IV promotes focal adhesion complex formation during GSIS

Representative confocal images of vinculin (red) and phalloidin (cyan) in INS-1 cells cultured
on (A) CTRL or (B) COL IV coated chamber slides. Five groups are shown (a) no treatment
following overnight incubation (basal), (b) low glucose (2.2mmol) for 30 minutes (L30), high
glucose (22mmol) for (¢) 5 minutes (H5), (d) 30 minutes (H30), or (e) 60 minutes (H60).
Magnified images of the highlighted region for each group are shown at the bottom of each panel.

Arrows indicate areas of interest. Scale bar: 10pum.
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3.7.Collagen IV alters SNARE and exocytotic proteins staining in INS-1 cells during GSIS

SNARE proteins SNAP25 and VAMP2, both involved in beta-cell insulin secretion, were
also examined at different time points and concentrations of glucose stimulations. In CTRL
conditions, cells at basal showed SNAP25 located in both the membrane and cytoplasm (Figure
3.10a). In the COL IV group, membrane staining is more defined, suggesting increased t-SNARE
complexes at the membrane under basal conditions (Figure 3.10Ba). At L30, both groups showed
increased SNAP25 cytoplasmic staining in increased compared to basal, and while CTRL cells
lost membrane-associated localization, COL IV had some areas of intense membrane staining
(Figure 3.10Ab, Bb). At H5, COL IV cells showed weak membrane-associated localization, while
by H30 there are areas with intense membrane-associated localization (Figure 3.10Bc, Bd). In
contrast, the CTRL group showed increased SNAP25 membrane localization at HS which is lost
at H30 (Figure 3.10Ac, Ad). At H60, CTRL membrane localization is regained, and cytoplasmic
staining is also intense (Figure 3.10Ae). In COL IV at H60, cells maintained SNAP25 membrane

localization between cell-cell and cell-ECM contacts (Figure 3.10Be).

VAMP2 was also examined during GSIS. At basal conditions both CTRL and COL IV
cells had areas of dense staining located in the cytoplasm and near the membrane (Figure 3.11Aa,
Ba). At L30, COL IV cells displayed slight increased intensity of cytoplasmic staining compared
to CTRL (Figure 3.11Ab, Bb). At H5, CTRL cells showed areas of dense cytoplasmic localization
similar to that observed under basal conditions, and this localization was more dispersed at H30
(Figure 3.11Ac, Ad). In COL IV cells, H5 and H30 conditions were similar, and VAMP2 was less
dense and intense than CTRL cells (Figure 3.11B¢, Bd). At H60, CTRL had consistent VAMP2

localization throughout the whole cell with no areas of denser staining (Figure 3.11Ae).
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Contrastingly, COL IV maintained the areas of denser VAMP2 staining, and gained some

membrane-associated localization (Figure 3.11Be).
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Figure 3.10: SNAP2S5 staining in INS-1 cells during GSIS

Representative confocal images of SNAP25 (green) in INS-1 cells cultured on (A) CTRL
or (B) COL IV coated chamber slides. Five groups are shown (a) no treatment following overnight
incubation (basal), (b) low glucose (2.2mmol) for 30 minutes (L30), high glucose (22mmol) for
(¢) 5 minutes (HS5), (d) 30 minutes (H30), or (e¢) 60 minutes (H60). Magnified images of the
highlighted regions for each group are shown at the bottom of each panel. Arrows indicate areas

of interest. Scale bar: 10pm.

62



(a) Basal (b) L30 (d) H30 (e) HO60

g° @ WM @

63



Figure 3.11: VAMP?2 staining in INS-1 cells during GSIS

Representative confocal images of VAMP2 (red) in INS-1 cells cultured on (A) CTRL or (B)
COL 1V coated chamber slides. Five groups are shown (a) no treatment following overnight
incubation (basal), (b) low glucose (2.2mmol) for 30 minutes (L30), high glucose (22mmol) for
(¢) 5 minutes (HS5), (d) 30 minutes (H30), or (e¢) 60 minutes (H60). Magnified images of the

highlighted regions for each group are shown at the bottom of each panel. Scale bar: 10um.
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3.8.Collagen IV impacts SNAP25 and VAMP2 visual colocalization and rate of insulin secretion

during GSIS in INS-1 cells

Colocalization of SNAP25 and VAMP2 during GSIS were examined in the conditions
described above. Across the varied glucose stimulation conditions, the amount of overlap does not
vary in CTRL cells compared to the basal condition (Figure 3.12Ab-e). In COL 1V cells, basal,
L30, H30, and H60 conditions all appear to have similar levels of overlap and don’t significantly
vary compared to CTRL (Figure 3.12Aa-b, d-e, Ba-b, d-e). In contrast, at H5, COL IV cells
displayed increased SNAP25 and VAMP2 staining and enhanced overlap compared to other

groups and CTRL (Figure 3.12Bc).

In addition to examining SNARE proteins during varied glucose stimulation conditions, the
rate of insulin secretion was also determined for each condition. It was found that the rates of
insulin secretion (ng/mL/minute) at basal and L30 conditions did not differ between groups
(Figure 3.12C). However, COL 1V displayed higher rates of insulin secretion compared to CTRL
at H5 (COL IV 7.82 vs. CTRL 6.14 ng/mL/minute) and H60 (COL IV 1.16 vs. CTRL 0.68

ng/mL/minute) but not at H30 (COL IV 1.40 vs. CTRL 1.6 ng/mL/minute) (Figure 3.12C).
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Figure 3.12: Collagen IV impacts SNAP25 and VAMP?2 visual colocalization and rate of insulin

secretion during GSIS in INS-1 cells

Representative confocal images of SNAP25 (green) and VAMP?2 (red) in INS-1 cells cultured
on (A) CTRL or (B) COL IV coated chamber slides. Five groups are shown (a) no treatment
following overnight culture (basal), (b) low glucose (2.2mmol) for 30 minutes (L30), high glucose
(22mmol) for (¢) 5 minutes (HS), (d) 30 minutes (H30), or (e) 60 minutes (H60). Magnified images
of the highlighted regions for each group are shown at the bottom of each panel. Scale bar: 10um.
(C) Rates of insulin secretion of INS-1 cells cultured on BSA (CTRL) or collagen IV (COL IV)
after one of five treatments described above. Data are expressed as mean rate of insulin secretion

(ng/mL/minute) + SD (n=4-6 experiments/group).
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3.9.Blocking B1-integrin impacts INS-1 cell B1-integrin localization but not total protein level

B1-integrin localization and protein levels were examined in INS-1 cells following treatment
with B1-integrin blocking antibody and compared to control groups. A notable decrease in
membrane-associated and cytosolic puncta was observed in the anti-B1 group compared to controls
(Figure 3.13A, B). However, no effect on was seen on total 31-integrin protein levels (Figure
3.13C, D). FAK, a major signaling molecule for 1-integrin-mediated downstream signaling, was
also examined. Anti-B1 treated cells reduced FAK phosphorylation compared to controls, although

not significantly (p=0.1127) (Figure 3.13E, F).

3.10. Blocking B1-integrin reduces INS-1 cell adhesion and spreading on collagen IV

To determine if B1-integrin plays a role in adhesion and spreading, INS-1 cells were pretreated
with either a B1-integrin blocking antibody (anti-B1), I[gM-matched (IgM) control, or untreated
control and cultured on collagen IV-coated plates for 24 hours. Anti-B1 INS-1 cells displayed
decreased cell adhesion and spreading on collagen IV-coated plates (Figure 3.14A).
Quantification of adhesion revealed a significant decrease in adhesion for anti-B1 vs. control
groups (p<0.0001) (Figure 3.14B). Additionally, at the 24-hour mark, INS-1 cells spreading was
found to be significantly lower in cells treated with the B1-integrin antibody block compared to

controls (p<0.001, p<0.05, respectively) (Figure 3.14C).
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Figure 3.13: Blocking B1-integrin impacts INS-1 cell B1-integrin localization but not protein level

(A) Representative confocal images of Bl-integrin (green) and nuclei (blue) in INS-1 cells
pretreated with anti-f1-integrin (anti-B1) or IgM-matched control (IgM), or untreated (control)
and cultured on collagen IV coated plates. (B) Magnified images of the corresponding highlighted
area for each group. Scale bar: 10um. (C, E) Representative blotting images and (D, F) western
blot analysis of Bl-integrin protein levels and phosphorylated FAK (pFAK), respectively. B1-
integrin protein levels are normalized to GAPDH, a loading control, and pFAK levels are
normalized to total FAK (tFAK) levels. Data are expressed as fold-change vs. control (mean = SD,

n=3 experiments/treatment group).

70



uoIsaypy

Surpeaidg

kK

L]
Control

o 2 "
- - =]
O (onuo) 'sadduey) pjog) urpedrds PO

skeskokok

<

sk

T
Control

o 2 o

- =

g (jonuo) ‘sa duey)) p[og) UOISYPY [PD

2
=l

71



Figure 3.14: Blocking B1-integrin decreases INS-1 cell adhesion and spreading on collagen IV

(A) Phase contrast images taken 3- and 24-hours following INS-1 cells pretreated with anti-
Bl-integrin (anti-B1) or IgM-matched control (IgM), or untreated (control) and cultured on
collagen IV coated plates, to determine cell adhesion and spreading, respectively. Scale bar: S50pum.
Quantification of INS-1 cell (B) adhesion and (C) spreading. Data are expressed as fold-change
vs. control (mean + SD, n=6 experiments/treatment group, all done in triplicate). *p<0.05,
*#p<0.01, ****p<(0.0001 vs. anti-B 1. Determined by one-way ANOVA followed by Tukey’s post-

hoc test.
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3.11. Blocking B1-integrin reduces INS-1 cell insulin secretion when cultured on collagen IV

To determine if f1-integrin played a role in insulin secretion, INS-1 cells were pretreated with
either a B1-integrin blocking antibody (anti-f1), IgM-matched (IgM) control, or untreated control
and cultured on collagen IV-coated plates for 24 hours. The examination of basal insulin secretion
revealed that anti-Blcells displayed an approximate 40% significant decrease in basal insulin
secretion compared to both controls (p<0.05) (Figure 3.15A). The GSIS stimulation index was
reduced approximately 60% in anti-B1 cells, significantly lower than controls (p<0.05) (Figure
3.15B). Finally, anti-B1 cells displayed an approximate 35% decrease in cellular insulin content

compared to controls, but statistical significance was not reached (Figure 3.15C) (p=0.06).

3.12. Blocking Bl-integrin did not influence Ca®" signaling during GSIS

Fluo-4 staining was used to examine whether reduced GSIS in the anti-B1 group is associated
with alterations in Ca®" levels. No notable changes in intensity traces (Figure 3.16A) or visual
differences in intensity (Figure 3.16B) of Fluo-4 following glucose stimulation between anti-f31
and control groups (untreated and IgM) were observed. Quantification of intensity traces AUC

further demonstrated no significant differences between groups (Figure 3.16C).
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Figure 3.15: Blocking B1-integrin decreased INS-1 cell glucose-stimulated insulin secretion.

(A) Basal insulin secretion, (B) GSIS stimulation index (ratio of insulin secretion from high
glucose: low glucose), and (C) insulin content + SD of INS-1 cells pretreated with anti-f 1-integrin
(anti-B 1) or IgM-matched control (IgM), or untreated (control) and cultured on collagen IV coated
plates. Insulin content was first normalized to protein content determined by a Bradford assay.
Each experiment was performed in triplicate and data are expressed as fold-change vs. anti-f1.

(mean = SD, n=3-6, *p<0.05 vs. anti-B1, one-way ANOVA, Tukey’s post-hoc test).

75



Fold Change in Fluorescent Intensity (A.U.)

2.0q

B

2

— Control
— IgM
— Anti-B1

T
Control

IgM

0.54
0. T
S S S
& & &
Time (min)
C
15+
= 10+
<
Q
=)
<
=
Qﬂ} 5-
=

Anti-p1

76

Control

IgM

B

Basal

High Glucose (22mM)




Figure 3.16: Blocking B1-integrin did not influence glucose-stimulated Ca2+ signaling

(A) Representative intensity traces of Ca®" intensity (Fluo-4) in INS-1 cells pretreated with
anti-B1-integrin (anti-B1) or IgM-matched control (IgM), or untreated (control) and cultured on
collagen IV coated plates, normalized to basal conditions Arrow indicates timing of glucose
addition to reach final concentration of 22mM. (B) Representative z-stack images of Fluo-4 treated
cells at basal and high glucose conditions (22mM). Scale bar: 10um. (C) Mean area under the
curve (AUC) (arbitrary units [A.U.]) of intensity traces = SD for control, [gM, and anti-B1 cells

(n=3 experiments/treatment group).
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3.13. Blocking B1-integrin impacted some, but not all, INS-1 cell SNARE protein localization

and protein levels

To determine the influence of B1-integrin signaling on exocytotic proteins involved in insulin
secretion, Munc18-1 and SNARE proteins localization and protein levels were examined using
immunofluorescence and western blot analysis. Munc18-1 was not found to be influenced by B1-
integrin signaling. Indeed, no changes in localization were observed, and cells maintained intense
cytoplasmic and membrane puncta in all groups (Figure 3.17A, B). Munc18-1 protein levels also
were not found to significantly differ between groups (Figure 3.17C, D). Interestingly, SNAP25
was found to be influenced by 1-integrin signaling. With anti-f1 treatment, membrane-associated
SNAP25 localization was found to be reduced compared to both control groups, although
localization at cell-cell contacts was still observed (Figure 3.18A, B). This was complemented by
a significant reduction of SNAP25 protein levels in anti-B1 treated INS-1 cells compared to both
controls (p<0.05) (Figure 3.18C, D). Finally, VAMP2 was also found to be impacted by the B1-
integrin blocking antibody. A notable decrease in visual cytoplasmic localization was observed in
anti-B1 treated INS-1 cells compared to controls (Figure 3.19A, B). Additionally, a significant
reduction in VAMP?2 protein levels was found in anti-1 treated INS-1 cells compared to control

conditions (p<0.01, p<0.05) (Figure 3.19C, D).

To further our analysis, BAG3 and pBAG3 were also examined. Visually, there was a decrease
in total BAG3 intensity in the cytoplasm and a decrease in the size of clusters observed in anti-31

cells compared to controls (Figure 3.20A, B). However, no significant changes in BAG3 protein

levels were found (p=0.1891) (Figure 3.20C, D). When examining phosphorylated BAG3, less
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cytoplasmic staining intensity in anti-f1 treated INS-1 cells was noted, and no major changes were

observed between control treatments (Figure 3.20E, F).
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Figure 3.17: Blocking fB1-integrin did not influence INS-1 Muncl8-1 protein levels and

localization

(A) Representative confocal images of Munc18-1 (green) and nuclei (blue) in INS-1 cells
pretreated with anti-B1-integrin (anti-B1) or [gM-matched control (IgM), or untreated (control)
and cultured on collagen IV coated plates. (B) Magnified images of the highlighted region for each
group. Scale bar: 10um. (C) Representative blotting images and (D) western blot analysis of
Munc18-1 protein levels. Protein levels are normalized to GAPDH, a loading control. Data are

expressed as fold-change vs. control (mean + SD, n=3-4 experiments/treatment group).
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Figure 3.18: Blocking B1-integrin decreased INS-1 cell SNAP25 protein levels and localization

(A) Representative confocal images of SNAP25 (red) and nuclei (blue) in INS-1 cells
pretreated with anti-f1-integrin (anti-B1) or IgM-matched control (IgM), or untreated (control)
and cultured on collagen IV coated plates. (B) Magnified images of the corresponding highlighted
area for each group. Scale bar: 10um. (C) Representative blotting images and (D) western blot
analysis of SNAP25 protein levels. Protein levels are normalized to GAPDH, a loading control.
Data are expressed as fold-change vs. control (mean + SD, n=3-4 experiments/treatment group).

*p<0.05 vs. anti-B1 determined by one-way ANOVA followed by Tukey’s post-hoc test.

83



Control Anti-pB1

Control IgM  Anti-B1

VAMBP2 | w—— -

GAPDH | v wmmmy S

1.5+

sk
1.0+

0.5+

VAMP2 Protein Level
(fold change vs. control)

0.0

] ]
Control IgM Anti-B1

84



Figure 3.19: Blocking B1-integrin decreased INS-1 cell VAMP2 protein levels and localization

(A) Representative confocal images of VAMP2 (red) and nuclei (blue) in INS-1 cells
pretreated with anti-f1-integrin (anti-B1) or IgM-matched control (IgM), or untreated (control)
and cultured on collagen IV coated plates. (B) Magnified images of the corresponding highlighted
area for each group. Scale bar: 10um. (C) Representative blotting images and (D) western blot
analysis of VAMP2 protein levels. Protein levels are normalized to GAPDH, a loading control.
Data are expressed as fold-change vs. control (mean + SD, n=3-4 experiments/treatment group).
*p<0.05, **p<0.01 vs. anti-B1 determined by one-way ANOVA followed by Tukey’s post-hoc

test.
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Figure 3.20: Blocking B1-integrin decreased BAG3 staining intensity, and slightly diminishes

pBAG3 intensity

(A) Representative confocal images of BAG3 (red) and nuclei (blue) in INS-1 cells pretreated
with anti-B1-integrin (anti-B1) or IgM-matched control (IgM), or untreated (control) and cultured
on collagen IV coated plates. (B) Magnified images of the highlighted region for each group. Scale
bar: 10um. (C) Representative blotting images and (D) western blot analysis of BAG3 protein
levels. (E) Representative confocal images of pBAG3 (red) and nuclei (blue) in INS-1 cells
pretreated with anti-B1-integrin (anti-B1) or [gM-matched control (IgM), or untreated (control)
and cultured on collagen IV coated plates. (F) Magnified images of the highlighted region for each
group. Scale bar: 10um. Protein levels are normalized to GAPDH, a loading control. Data are

expressed as fold-change vs. control (mean + SD, n=3-4 experiments/treatment group).
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3.14. Blocking B1-integrin weakened focal adhesion complex formation during GSIS

In the basal condition, control cells have intense actin filament stress fibers and clusters of
vinculin at the cell periphery while anti-B1 cells have weaker actin staining, a round cell shape,
and membrane-associated vinculin (Figure 3.21Aa, Ba). When exposed to low glucose (L30),
control cells had increased actin intensity and increased clusters of vinculin at the periphery
(Figure 3.21Ab, Bb). With anti-B1 treatment in L30, there were alterations in actin cytoskeleton
with some areas of intense staining at the periphery, and there was an increase in clusters of
vinculin compared to basal conditions (Figure 3.21Cb). At high glucose conditions H5 and H30,
actin and vinculin were similar to L30 conditions in control cells (Figure 3.21Ac, d, Be, d). With
anti-B1 cells at these time-points, the intensity of vinculin was increased with slightly more
clusters, while actin remained the same (Figure 3.21Cc, d). At H60, all groups had an increase in
vinculin intensity and cluster localization at the periphery along with areas of strong actin staining

(Figure 3.21e).
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Figure 3.21: Blocking B1-integrin reduced INS-1 cell focal adhesions complex formation during

GSIS

Representative confocal images of vinculin (red) and phalloidin (cyan) in INS-1 cells that were
(A) untreated (control) or pretreated with (B) IgM-matched control (IgM) or (C)anti-f1-integrin
(anti-B1). All cells were cultured on collagen IV-coated chamber slides. Five groups are shown (a)
no treatment following overnight incubation (basal), (b) low glucose (2.2mmol) for 30 minutes
(L30), high glucose (22mmol) for (¢) 5 minutes (HS), (d) 30 minutes (H30), or (e) 60 minutes
(H60). Magnified images of the corresponding highlighted for each group are shown at the bottom

of each panel. Scale bar: 10um.
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3.15. Blocking B1-integrin impacted SNARE localization during GSIS

To determine the role of B1-integrin during GSIS, SNARE proteins were examined after $1-
integrin blocking using the previously described concentrations and timings of glucose-
stimulation. At basal conditions, SNAP25 membrane localization, outside of cell-cell contacts,
was decreased in the anti-f1 group compared to controls (Figure 3.22a). At L30, no notable
differences were observed between groups (Figure 3.22b). At HS, all groups had a decrease in
membrane staining but, this change was least evident in the anti-B1 group that also displayed high
intensity and localization at cell-cell contacts, a finding not observed in controls (Figure 3.22¢).
By H30, control groups regained membrane localization while anti-f1 membrane localization
remained weak, and cell-cell contact localization and intensity remained high (Figure 3.22d). At

H60, all groups appear to lose the defined membrane staining (Figure 3.22e).

VAMP2 was also examined during at the above time-points during GSIS. At basal conditions,
control cells had some areas of dense staining while anti-B1 did not (Figure 3.23a). With glucose
stimulation, no major changes were observed with between groups (Figure 3.23b, ¢, d). However,
control cells show areas with increased density at H60 that is not present in anti-B1 conditions

(Figure 3.23e).

91



A (a) Basal (b) L30 ) (d) H30

S g

N

(b) L30 (c) H5 (d) H30

Ay

)

oA

(b) L30 (c) H5 (d) H30 (e) H60

5 B &

92



Figure 3.22: Blocking B1-integrin impacted INS-1 cell SNAP25 localization during GSIS

Representative confocal images of SNAP25 (green) in INS-1 cells that were (A) untreated
(control) or pretreated with (B) [gM-matched control (IgM) or (C) anti-B1-integrin (anti-f1). All
cells were cultured on collagen IV-coated chamber slides. Five groups are shown (a) no treatment
following overnight incubation (basal), (b) low glucose (2.2mmol) for 30 minutes (L30), high
glucose (22mmol) for (¢) 5 minutes (HS5), (d) 30 minutes (H30), or (e) 60 minutes (H60).
Magnified images of the highlighted regions for each group are shown at the bottom of each panel.

Arrows indicate areas of interest. Scale bar: 10pum.
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Figure 3.23: VAMP2 was minimally influence by f1-integrin block

Representative confocal images of VAMP2 (red) in INS-1 cells that were (A) untreated
(control) or pretreated with (B) IgM-matched control (IgM) or (C)anti-f1-integrin (anti-B1). All
cells were cultured on collagen IV-coated chamber slides. Five groups are shown (a) no treatment
following overnight incubation (basal), (b) low glucose (2.2mmol) for 30 minutes (L30), high
glucose (22mmol) for (¢) 5 minutes (HS5), (d) 30 minutes (H30), or (e) 60 minutes (H60).
Magnified images of the highlighted regions for each group are shown at the bottom of each panel.

Arrows indicate areas of interest. Scale bar: 10pum.
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3.16. Blocking Bl-integrin reduces SNAP25 and VAMP?2 visual colocalization and rate of

insulin secretion during GSIS in INS-1 cells

Colocalization of SNAP25 and VAMP2, observed as yellow fluorescence, during GSIS were
examined in the conditions described above. Across all conditions, control groups displayed some
overlap of SNAP25 and VAMP?2 while anti-f1cells showed little to no overlap (Figure 3.24A, B,
C). When comparing different glucose treatments, control groups displayed the same pattern as
described above (see Results section 3.8) where a major increase in overlap was observed in H5
compared to other conditions (Figure 3.24A, B). However, no changes in overlap were observed

in the anti-B1 group when comparing between any conditions (Figure 3.24C).

In addition to examining SNARE proteins during varied glucose stimulation conditions, the
rate of insulin secretion was determined for each condition. Anti-B1 treatment was found to
decrease the rate of insulin secretion 25-50% in all treatment groups compared to control, except
for the H30 treatment (Figure 3.24D). The largest decrease was observed in H5 treatments

(Control 3.47 and IgM 4.69 vs. anti-f1 2.14 ng/mL/min).

Overall, this thesis demonstrates that interaction of collagen IV and B1-integrin were found to
augment INS-1 cell insulin secretin, in part due to alterations in the exocytotic proteins involved.
Taken together, these results add to the growing body of knowledge regarding the critical role of

B1-integrin in beta-cell function.
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Figure 3.24: Blocking B1-integrin impacted SNAP25 and VAMP2 colocalization and rate of

insulin secretion in INS-1 cell GSIS

Representative confocal images of SNAP25 (green) and VAMP2 (red) in INS-1 cells that were
(A) untreated (control) or pretreated with (B) IgM-matched control (IgM) or (C)anti-f1-integrin
(anti-B1). All cells were cultured on collagen IV-coated chamber slides. Five groups are shown (a)
no treatment following overnight incubation (basal), (b) low glucose (2.2mmol) for 30 minutes
(L30), high glucose (22mmol) for (¢) 5 minutes (HS), (d) 30 minutes (H30), or (e) 60 minutes
(H60). Magnified images of the highlighted region for each group are shown at the bottom of each
panel. Arrows indicate areas of interest. Scale bar: 10um. (C) Rates of insulin secretion of INS-1
cells untreated or pretreated with IgM-matched control or anti-B1 and cultured on collagen IV after
one of five treatments described above. Data are expressed as mean rate of insulin secretion

(ng/mL/minute) + SD (n=3-6 experiments/group).
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Chapter 4

4. Discussion

Islet transplantation and bioartificial pancreas treatments for diabetics are limited by several
factors including the number of eligible donors required, immunosuppression, and longevity of
treatment (28, 36). Identifying factors that enhance the function of beta-cells can be advantageous
in efforts to improve these treatments. This study highlights the importance of collagen IV-
activated B1-integrin and subsequent changes in exocytotic proteins that lead to augmented insulin
secretion in INS-1 cells. Not only was collagen IV found to alter overall protein levels and
localization of exocytotic proteins, but it was also found to change exocytotic protein localization
throughout glucose-stimulated insulin secretion (GSIS). Bl-integrin was demonstrated to be
responsible for some of the changes observed as they were diminished with B1-integrin antibody
blocking. This underscores the importance of the collagen IV-B 1-integrin interaction regarding the
mechanics of insulin secretion from beta cells. In reference to cell-based therapies for diabetics,
this work suggests specific integrin-ECM interactions should be taken advantage of to optimize

these procedures.

4.1.Collagen IV enhanced INS-1 cell adhesion and spreading

Integrins are known mediators of cell-ECM interactions and it is well described that integrin
activation can provide increased adhesion and spreading (46, 61). The Pl-integrin ligands,
fibronectin, laminin, collagen I and collagen IV, which are all expressed in pancreatic islets, were

tested to establish cell-ECM interactions in the INS-1 cell line. It was determined that collagen IV
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provided the greatest enhancement in adhesion and spreading compared to other experimental

groups (Figure 3.1).

Given the important of adhesion sites in vivo and the disruption of ECM that occurs during
islet isolation procedures used in islet transplantation, exploration in the impact of ECM factors
on beta cell function has been done with the goal of improving graft survival. Many ECM proteins
have been demonstrated to promote adhesion in islets and beta-cells. Laminin has been
demonstrated to be essential for isolated rat beta-cell adhesion on 804G matrix (75) and was found
to promote adhesion of human islets (73). Culturing on fibronectin has been demonstrated to
produce the greatest amount of adhesion in porcine islet cells compared to laminin, collagen I,
gelatin, poly-L-lysine, and control (21). Our study agrees with previous findings of our lab stating
that collagen IV is an optimal ECM protein for INS-1 cell adhesion and spreading (51). In support
of this, Kaido et al. demonstrated collagen IV promoted beta-cell mobility in both fetal and adult
human islets (47). Additionally, in porcine islets, adhesion was found to be the greatest following
3 hour culture on collagens I or IV compared to fibronectin, laminin, fibrinogen, and BSA (67).

This underscores the importance of collagen IV-beta-cell interactions within beta-cells.

4.2 .Collagen IV enhanced INS-1 cell insulin secretion and influenced protein level and localization

of exocytotic proteins

Once integrin-ECM interactions are established, downstream signaling mediates functional
changes within cells. Given the major function of beta-cells is insulin secretion, basal and glucose-
stimulated insulin secretion and insulin content were examined. INS-1 cells cultured on collagen
IV were found to have statistically significant increased insulin secretion compared control

(Figure 3.2), which matches previous work from our lab (51). Collagen IV has been demonstrated
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to augment insulin secretion by other studies as well. For example, primary human islets cultured
on collagen IV microwells were found to have increased glucose-stimulated insulin secretion
compared to control conditions (30). Fetal human islets also displayed significant increased insulin
secretion for cells cultured on collagen IV-coated plates compared to poly-L-lysine and BSA (47).
Isolated mouse islets cultured for 24-hours on collagen IV-modified scaffolds had increased

stimulation index compared to fibronectin, laminin, and control (120).

Given the alterations in insulin secretion, INS-1 cells cultured on the different ECM proteins
were then further examined for protein level and localization changes in exocytotic proteins and
cell-ECM signaling proteins. Overall, collagen I'V consistently provided the greatest impact on the
examined proteins. This group displayed increased protein levels and intensity of cytoplasmic
puncta of Munc18-1 as well as increased membrane localization of SNAP25 (Figures 3.3-3.5).
Taken together, these results indicate that cell-ECM interactions impact SNARE protein(s)
expression which, in turn, influences insulin secretion from INS-1 cells. There is a great deal of
research supporting alterations in exocytotic proteins impacting exocytosis (42, 70, 97). However,
there is little research on the impact of cell-ECM interactions on exocytotic proteins. One study
examined the impact of culturing isolated rat islets on fibronectin and found that after six days, a
significant increase in Munc18-1, SNAP25, and Syntaxinl A expression was observed (22). Thus,
our research provides novel information in the relationship between collagen IV and exocytotic

proteins.

In addition to exocytotic proteins, B1-integrin, FAK, and BAG3 were examined since they are
all signaling proteins demonstrated to impact insulin secretion. In the collagen IV group, B1-

integrin, BAG3, and FAK phosphorylation protein levels appeared to be trending to increase but
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did not reach statistical significance (Figures 3.7-3.8). However, immunofluorescent staining
changes were still observed. B1-integrin had increased intensity and membrane associated puncta
and BAG3 had increased intensity in cells cultured on collagen IV and cytoplasmic staining of
phosphorylated BAG3 was increased in all ECM groups compared to control (Figures 3.7-3.8).
Given the inhibitory role of BAG3 and promotive role of phosphorylated BAG3 on insulin
secretion (39) it is interesting that no major changes of phosphorylated BAG3 were observed in
the collagen IV group compared to the other experimental groups. However, when describing the
role of BAG3 phosphorylation in insulin secretion lorio et al. observed that phosphorylation was
a result of glucose stimulation. Thus, it seems that collagen IV increases total BAG3, but the
regulation of BAG3 phosphorylation is achieved through other means such as the presence of
glucose. Not only were changes in individual proteins found, but an increase in the amount of
VAMP2 that colocalized with SNAP25 was found in the collagen IV group. This research
demonstrated collagen IV-B1-integrin signaling — likely mediated via FAK — is also involved in
mediating changes in exocytotic protein levels, localization, and interaction as well as influencing
regulatory proteins such as BAG3. Understanding the relationship between cell-ECM signaling
and the components of insulin secretion is critical for determining the optimal ECM environment

for pancreatic beta-cell function.
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4.3.Collagen IV impacted the mechanics of exocytotic proteins during GSIS

Focal adhesion contact sites are initiated by interactions of integrins with the ECM. They
connect integrins with actin and are sites where cytoskeletal proteins bind to act as scaffolds for
signaling proteins that mediate effects on cell behaviour (115, 116). In beta cells, focal adhesions
have been demonstrated to have a role in many processes including fetal islet differentiation, beta-
cell mass, improved beta-cell survival, and glucose stimulated insulin secretion (31, 90, 93, 108).
Our study demonstrated major differences between INS-1 cells cultured on collagen IV or BSA
(control) with regards to focal adhesion complex formation. Across all conditions, INS-1 cells
cultured on collagen I'V were highly spread with intense actin stress fibers and vinculin staining at
the cell periphery compared to control cells which remained round and had weak actin and vinculin
staining (Figure 3.10). These findings indicate increased formation of focal adhesion complexes
with collagen IV that supports the previously described enhanced adhesion and spreading (Figure
3.1) in INS-1 cells cultured on collagen I'V. Signaling through focal adhesions is well documented
to impact glucose stimulated insulin secretion, most notably via FAK, a protein commonly
associated with focal adhesion complexes. For example, glucose stimulation alone has been
demonstrated to significantly increase FAK phosphorylation (89) which has also been shown to
mediate actin remodeling (89) and to phosphorylate BAG3(39), both of which are involved in

insulin secretion.

Although there is a great deal of research examining the role of exocytotic proteins in beta-cell
insulin secretion, there is little, if any, research examining localization changes of these proteins
at different points of glucose stimulation. In general, SNAP25 membrane localization was

increased and some minor differences in VAMP2, specifically areas of density, were observed in
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collagen IV cells compared to control (Figure 3.10, 3.11). Interestingly, when comparing five-
minutes post high glucose stimulation, opposing effects were observed between control and
collagen IV cells. Intense membrane associated SNAP25 localization and areas of dense
cytoplasmic VAMP2 are observed after five minutes of high glucose stimulation in control and
thirty minutes of high glucose stimulation in collagen IV cells (Figure 3.10Ac, Be, 3.11Ac, Be).
This may indicate differences in the spatial timing of insulin secretion that are influenced by

external ECM support.

Overlap of SNAP25 and VAMP2 was also examined. Overall, collagen IV cells displayed
increased overlap between SNAP25 and VAMP2 compared to control cells (Figure 3.12A, B),
and this was especially prominent following five minutes of high glucose stimulation (Figure
3.12Bc¢). Although the interaction between SNAP25 and VAMP?2 is well described to occur at the
plasma membrane to mediate insulin granule exocytosis (104), the majority of overlap observed
is found in the cytoplasm. Interestingly, SNAP25, traditionally associated with the plasma
membrane, has been demonstrated to be localized in neuronal synaptic vesicles along with
Syntaxinl A and VAMP2 (110). There are multiple hypotheses for the function of vesicle-
associated t-SNARESs including protein recycling, sequential/compound exocytosis, and fusion
between vesicles (32, 110). Sequential exocytosis, referred to as the “most massive mode of
exocytosis” (50), has been documented to occur in mouse pancreatic islets and was associated with
redistribution of SNAP25 onto membrane of vesicles (100). Thus, it is possible collagen IV

increases insulin secretion via increased sequential exocytosis.

Finally, when examining insulin secretion, differences in the rate of insulin secretion were

observed between groups. Little research displays time course data of insulin secretion in INS-1
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cells (63). However, it is widely accepted that there are two phases of insulin secretion, where the
first phase consists of a transient insulin spike lasting approximately ten minutes followed by a
second phase of sustained insulin release typically at a slower rate than the first phase (105). This
study demonstrates a notable increase in the rate of insulin secretion in response to five and sixty
minutes of high glucose stimulation in INS-1 cells cultured on collagen IV compared to control
cells, indicating the augmentation provided by collagen IV-INS-1 cell interactions influences both

phases of insulin secretion with an emphasis in phase I.

In summary, these findings suggest that collagen IV-INS-1 cell interactions induce focal
adhesion contacts as well as alterations in SNARE protein localization and colocalization. These
results appear to influence the rate of insulin secretion and further emphasizes the importance of

ECM-cell interactions in the enhancement of beta-cell function.

4.4.31-integrin is mainly responsible for changes in exocytotic proteins observed in INS-1 cells

cultured on collagen IV

Integrins containing a 1-integrin subunit comprise the largest subgroup of integrin receptors
(13). Bl-integrin is known to be expressed in INS-1 cells (51), and collagen IV is a known B1-
integrin ligand (109). Thus, our lab next aimed to determine if the effects observed from INS-1
cells cultured on collagen IV described above were mediated via signaling from collagen IV-f1-
integrin interactions. To do this, INS-1 cells received a B1l-integrin blocking antibody pre-

treatment (anti-f1), [gM-matched control (IgM) or no treatment (control).

First, B1-integrin protein levels and localization were examined to validate the (1-integrin

blocking antibody. Anti-B1 cells displayed a major decrease in B1-integrin puncta but no change
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in protein levels (Figure 3.13A-D). Integrins cluster at points of ECM-integrin interactions (114)
so0, a decrease in puncta indicate deceased collagen IV-1-integrin interactions in the anti-31 cells.
It is unsurprising that no change was determined in total 1-integrin protein as the blocking
antibody acts to prevent interactions between [1-integrin and its ligands rather than alter protein

levels.

Blocking B1-integrin resulted in significant decreases in adhesion and spreading (Figure 3.14),
and basal insulin secretion and GSIS stimulation index (Figure 3.15) when compared to controls.
This indicates collagen IV-B1-integrin interactions have a key role in promoting INS-1 cell insulin
secretion. To ensure changes in insulin secretion were not a result of alterations in Ca?" signaling,
Fluo4 was used to measure Ca?" concentrations before and during high glucose. No changes were
found between groups (Figure 3.16). These findings match previous work from our lab
demonstrating that collagen IV-B1-integrin interactions promote cell adhesion, spreading, and
insulin secretion in INS-1 cells (51, 52). Additional evidence of B1-integrin’s role in these beta-
cell functions has also been demonstrated in other model systems (17, 77, 84). Overall, our results
taken with others support that $1-integrin is important for beta-cell adhesion, spreading, and
insulin secretion. However, the influence of B1-integrin on the exocytotic machinery involved in

insulin secretion has yet to be established and is examined in this study.

When examining some of the SNARE proteins involved in insulin secretion, it was determined
that Bl-integrin signaling impacts SNAP25 and VAMP2, but not Muncl8-1. Anti-B1 cells
displayed no changes in Muncl18-1 cellular localization or protein levels compared to controls
(Figure 3.17). This indicates the altered localization and increased protein levels observed in

collagen IV cells compared to control are not due to collagen IV-B1-integrin interactions but to

106



one of the several other collagen IV-receptor interactions (9). Thus, the collagen IV-B1-integrin

interactions impacting insulin secretion are not mediated via changes in Munc18-1.

Contrastingly, SNAP25 was found to have significantly decreased protein levels and
membrane localization (Figure 3.18) and VAMP2 was found to have a notable decrease in visual
cytoplasmic localization and significantly reduced protein levels in anti-B1 cells compared to
controls (Figure 3.19). This suggests a link between collagen IV-B1-integrin mediated signaling
and these SNARE proteins supporting previous research from our lab which found decreased
SNAP25, VAMP2, and Syntaxin]l A mRNA expression and immunofluorescent staining in islets
of beta-cell specific Bl-integrin knockout mice (77). Although this relationship has yet to be
explored in beta-cells outside of our lab, some research has linked the external environment with
exocytotic proteins in neurons. Reelin, an extracellular matrix molecule, was found to impact
SNAP25 protein levels as reelin mutant mice had significantly decreased SNAP25 protein levels
in hippocampal and cortical tissue (33). In addition, laminin engagement via 1 integrin was found
to be responsible for cytoskeletal rearrangement controlling VAMP7-mediated exocytosis and

neurite development (29).

Finally, BAG3, a protein demonstrated to have regulatory roles in insulin secretion, was
examined (39). Total BAG3 was found to be decreased in staining intensity, and phosphorylated
BAG3 was found to be of less cytoplasmic staining intensity in anti-f1 cells compared to controls
(Figure 3.20). BAG3 has been shown to bind to SNAP25 and prevent SNARE complex formation
and upon phosphorylation by FAK, this interaction is disrupted freeing SNAP25 and allowing for
SNARE-mediated exocytosis to ensue (39). Pl-integrin blocking may result in a two-fold

influence on BAG3 activity: (1) decreased total BAG3 availability impacting the proper regulation
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of insulin secretion in beta cells, and/or (2) decreased B1-integrin signaling which may prevent
FAK-mediated BAG3 phosphorylation and thus SNAP25 release. Overall, these results along with
alterations in insulin secretion provide ample evidence of a novel role for f1-integrin signaling on

SNARE-mediated insulin exocytosis in beta-cells.

To further explore this relationship, focal adhesions, SNAP25, and VAMP2 were examined
during GSIS in INS-1 cells. Unsurprisingly, focal adhesion sites are greatly impaired in the anti-
B1 group. Although minor changes are observed with glucose stimulation, overall anti-B1 cells
have weaker actin staining, a round cell shape, and membrane-associated vinculin compared to
controls (Figure 3.21). Focal adhesions are dynamic protein clusters recruited to activated integrin
sites in order to facilitate cell signaling and influence changes in the actin cytoskeleton (89). Most
research linking focal adhesions to insulin secretion demonstrates the role of focal adhesions or
FAK in mediating changes in the actin cytoskeleton (14, 89). However, focal adhesions have also
been demonstrated to be involved in targeting the location of insulin secretion. /n vivo insulin is
secreted into the blood stream, and in mice, the vascular face of beta cells are enriched with B1-
integrin and proteins of focal adhesions (26). These sites were suggested to be involved in targeting
insulin secretion to the vasculature as preincubation with a FAK inhibitor disrupted targeted

granule fusion in isolated mouse islets (26).

In anti-B1 cells, SNAP25 was found to have decreased membrane localization in basal
conditions and only minor changes in localization with glucose stimulation compared to controls
(Figure 3.22). For VAMP2, anti-B1 cells did not display the increased areas of density observed
in controls at basal and H60 (Figure 3.23). This suggests effects downstream of collagen IV-B1-

integrin interactions also mediate changes that effect exocytotic protein localization during insulin
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secretion. Interestingly, under all glucose conditions, anti-B1 cells displayed considerably
decreased overlap between SNAP25 and VAMP2 compared to controls. As previously mentioned,
SNAP25 localization in neurons was found in VAMP-rich vesicles and this was suggested to be
involved in membrane-associated protein recycling, sequential exocytosis, and/or fusion between
vesicles (110). Sequential exocytosis has also been documented to occur in mouse pancreatic islets
and was associated with redistribution of SNAP25 onto the membrane of vesicles (100). Together
this provides preliminary data supporting the idea that collagen IV-B1-integrin interactions lead to

alteration in sequential exocytosis.

In support of the alterations in exocytotic machinery during GSIS, the rate of insulin secretion
was found to be decreased 25-50% in all treatment conditions compared to control groups except
for H30 (Figure 3.24). This further emphasizes the link between enhanced insulin secretion
observed in INS-1 cells cultured on collagen IV and the effects of collagen IV-Bl-integrin

signaling.

In summary, the results of the B1-integrin antibody blocking studies showed that B1-integrin,
through many methods, impacted insulin secretion. A summary of these findings can be found in
Figure 4.1. Overall, this adds to the growing body of evidence demonstrating the importance of

B1-integrin signaling on pancreatic beta-cell function.
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Figure 4.1: Summary of the effects of collagen IV and B1-integrin on regulation of SNARE

A number of factors involved in the machinery of INS-1 cell insulin secretion were found to
be impacted by P1-integrin signaling in this study. Collagen IV-B1-integrin signaling initially
increases focal adhesion sites and FAK phosphorylation. Activated FAK leads to phosphorylation
of BAG3, leading to the release of SNAP25, as determined by lorio et al. Resulting from a
currently unknown signaling pathway VAMP2 localization changed, SNAP25 increased
membrane localization and protein levels, and colocalization of the two proteins was increased.
However, Munc18-1 had increased cytoplasmic puncta and protein levels due to collagen IV,

which was not influence by blocking B1-integrin signaling. Together, all of these effects work to
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4.5.Limitations

INS-1 cells are a good model for pancreatic beta-cell insulin secretion as their secretion
patterns are similar to what is observed in vivo (79). However, this is a cell line developed from x-
ray induced insulinoma in rats (79). This is disadvantageous for three main reasons: (1) differences
exist between human and rodent pancreatic islets (59); (2). INS-1 cells are cancer derived and
therefore possess neoplastic characteristics not observed in vivo limiting the application of results
to human beta cells; and (3) cancer cell types have been demonstrated to create their own unique
ECM environments which impact cell-ECM interactions (117). Additionally, this study looked at
the isolated effects of singular ECM proteins on INS-1 cell functions. In reality, a number of other
extracellular factors as well as different cell types are present in vivo and in cell-based diabetic
therapies, both of which would impact the function of beta-cells. Finally, the signaling pathway(s)
initiated by collagen IV-fB1-integrin interactions were not elucidated in this project. Although a
relationship was determined between B1-integrin signaling and exocytotic machinery, how these
changes occur was not. f1-integrin associated with a number of o subunits, and utilizes multiple
signaling pathways to achieve functional changes in cell behavior including MAPK/ERK and

PI3K/AKT pathways (52, 84, 89, 93)

4.6.Conclusions and Significance

B1-integrin and its downstream signaling is well described to be important to beta-cell insulin
secretion (14, 51, 77, 89, 93). The results of the presented study add to this body of knowledge by
providing additional mechanisms by which B1-integrin signaling impacts insulin secretion. First,
collagen IV-Bl-integrin interactions are shown to augment INS-1 cell adhesion and spreading

which subsequently results in development of focal contact sites where 1-integrin is activated.
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These interactions were demonstrated to be directly linked to insulin secretion. Further exploration
revealed collagen IV-Bl-integrin signaling impacts multiple components of the machinery
involved in insulin secretion. Specifically, SNAP25 and VAMP2 protein levels, localization, and
their colocalization was impacted by collagen IV-B1-integrin signaling. Overall, this underscores

the importance of the external environment on optimal beta-cell function.

Diabetes is currently a disease with no cure. Although islet transplantations are performed, and
bioartificial pancreas technology continues to improve, both treatment options have serious
shortcomings. Understanding the optimal external environment that promotes essential integrin-
ECM interactions will allow for further enhancements in these treatments, bringing us one step

closer to a cure.

4.7 Future Studies

Characterization of the effects modulated by cell-ECM interactions in beta functions are
critical for developing an optimal extracellular environment in cell-based therapies for diabetics.
This study has demonstrated collagen IV to be an essential component of the beta-cell ECM due
to its direct effects on insulin secretion, specifically the exocytotic proteins involved. However,
important questions still need to be answered. For example, by which signaling pathways are the
changes in exocytotic proteins achieved? Pl-integrin can signal through different signaling
pathways, thus identifying which are utilized to achieve these results is important. Could a cyclical
relationship exist between integrins and exocytotic proteins? Integrins depend on exocytotic
machinery to be delivered to the plasma membrane and thus, impacting exocytotic machinery
could impact their own transport. This work is supported by previous work on cancer cells which

revealed a role for SNARE proteins in the delivery of integrins to the plasma membrane, although
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specific SNARE proteins involved in this process appear to vary (16, 58, 83). How does the
collagen IV-Bl-integrin interaction influence cells long term? A major drawback of islet
transplantation is its efficiency long term, where only 25-50% of patients are insulin dependent
five years following transplantation (45). This study only examined effects of the collagen IV-f1-
integrin interaction after 24 hours of culture. Therefore, future studies need to examine long-term
effects. Additionally, chamber slide studies used in this study only examine proteins at a certain
timepoint of glucose stimulation. Since changes in proteins can occur within seconds, it would be
interesting to observe time-course data. This may elucidate minute changes that occur on a much

smaller time scale than investigated in this study.
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