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ABSTRACT

The two-dimensional je t flow o f a Newtonian fluid at moderate Reynolds number, 

emerging from a channel and flowing along one moving plate, while the other plate is 

stationary, is examined theoretically in this study. In this case, the equations o f motion 

are reduced by expanding the flow field about the basic Couette flow. Inertia is assumed 

to be large enough, allowing asymptotic development in terms o f the inverse Reynolds 

number. A boundary layer forms adjacent to the free surface, and a classical boundary- 

layer analysis is applied to find the flow at the free surface and elsewhere. The influence 

o f this boundary layer is investigated by the aid o f the method o f matched asymptotic 

expansions. The flow velocity is obtained as composite expansion by matching the flow 

between the core region and the inner and outer layers. The influence o f wall velocity on 

the shape o f the free surface is emphasized. The formulation allows the determination o f 

the steady state flow and free surface profiles analytically, which can serve as boundary 

condition for computational je t flow further downstream.

Keywords: Couette flow, asymptotic analysis, coating flow.
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CHAPTER-1

INTRODUCTION

1.1 General introduction

W hen a real fluid flows along a solid boundary, it will acquire a shear stress at the 

boundary. W hile the fluid is detaching itself from a channel or a tube, at the channel exit, 

the fluid will experience a sudden change in shear stress i.e. the shear stress drops 

discontinuously from a non-zero value at the wall to zero value on the free surface. This 

is stress singularity. In any theoretical analysis, stress singularity is the most difficult 

problem to deal with. However, the computational approach which has prevailed over 

theoretical analysis for most flow problems, but this is not the case for flows with the 

singularity. Because, in case o f the computational approach, the entire flow field has to 

be discretized which will incorporate singularity region and then the flow field is difficult 

to handle numerically if  a satisfactory level o f  accuracy is sought. In this case, asymptotic 

analysis can be a good alternative which can avoid the singularity.

In the current study, the effect o f wall movement on the two-dimensional steady je t o f an 

incompressible fluid near the channel exit at moderately large Reynolds number is 

examined. The flow configuration corresponds, generically, to a je t inside a channel, 

flowing or depositing onto a moving wall as it emerges out o f the channel i.e. the flow 

behavior is o f Couette type. The basic flow configuration is illustrated schematically in 

figure 1.1. At the channel exit, the flow will incur singularity.

At large Reynolds number, the upstream diffusion o f the stress singularity is small, and 

the distortion o f the original parallel streamlines far upstream is also small. The vorticity 

generated at the leading edge where the stress singularity occurs diffuses laterally in the 

normal direction and ultimately contaminates the entire flow field. However, the 

diffusion is much more significant outside the channel, and is convected downstream, 

eventually reaching the moving wall.
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In the current thesis, the flow near the channel exit is closely examined, and the influence 

o f inertia and wall velocity is emphasized. Inertia is assumed to remain relatively 

important, allowing the asymptotic development o f  the flow field in terms o f the inverse 

Reynolds number. As the methodology o f asymptotic analysis tends to avoid singularity, 

the present thesis does not need to deal with singularity.

Asymptotic analyses identify two distinct flow regions: a boundary layer region near the 

free surface, extending but not including the singular point, and a core region where the 

flow remains close to fully developed. The inclusion o f the singularity is not essential in 

this case given the similarity character o f the flow in the boundary layer region. Note that 

the boundary layer region extends both upstream and downstream from the singularity. 

However, although the flow does not remain fully developed as it approaches the exit, the 

thickness o f  the boundary layer upstream o f the exit is generally small at high Reynolds 

number, and is often ignored.

Boundary layer theory deals with precisely the asymptotic behavior near the free surface 

at large Reynolds number. A brief review o f  the boundary layer theory is given next.



Moving wall 

---------------»

Fluid

Stationary wall

Figure 1.1. Schematic illustration of the basic flow configuration.
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1.2 Boundary layer concept and analogy with moving wall jet

Boundary layers are thin regions in the flow where viscous forces are important. L. 

Prandtl (1904) was the first person who gave the idea o f boundary layer or frictional 

layer. Although the name boundary layer originally referred to the layer o f fluid next to 

the wall, the term may also be applied to a je t or a thin shear layer between two streams 

o f different velocities.

The concept o f boundary layer, therefore, implies that flows at high Reynolds numbers 

can be divided up into two regions: an inviscid flow in the major portion o f the flow 

where viscosity is neglected (this is called inviscid outer flow) and boundary layers near 

the walls where viscosity must be taken into account. It is seen that the division o f the 

flow field into the inviscid outer flow and the boundary layer leads to considerable 

simplifications in the theoretical treatment o f  high Reynolds number flows.

Consider the flow on a plate moving at velocity C. The continuity and Navier-Stokes 

equations for a two-dimensional steady incompressible flow in Cartesian coordinates are 

given by

du dv . 
—  +  —  =  0 
dx dy

(1.1)

du du
u —  + v —  = 

dx dy

dv dv 
u —  + v —  = 

dx dy

1 dpr  4-n a2u
I U

p dx vdx2

1 dp r 32vT" U
P dy ^dx2

a V

dy2 ,

a V

dy2,

(1.2)

(1.3)

where u and v are the velocity components in the x and y directions, respectively, p is the 

density, p is the pressure, and v is the kinematic viscosity o f the fluid at a point. Thus, u 

and v are the streamwise and transverse (wall normal) velocities, respectively, inside the 

boundary layer. Using the usual scaling analysis, it can be shown that the above equations 

o f motion reduce within the boundary layer to become
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du dv _ 
—  +  —  =  0 
dx dy

(1.4)

du du 1 dp d2u
U--- + V----= ------- —+ U--- -

dx dy p dx dy

dy

(1.5)

(1.6)

The asymptotic analysis also shows that v, the transverse velocity, is small compared to 

u, the streamwise velocity, and that variations in flow in the streamwise direction are 

generally much lower than those in the transverse direction. Since the static pressure p is 

independent o f y, then pressure at the edge o f the boundary layer is the pressure 

throughout the boundary layer at a given streamwise position. The external pressure may 

be obtained through an application o f Bernoulli's equation. Let U be the fluid velocity 

outside the boundary layer, where u and U are both parallel. Note that U is different than 

the moving plate velocity. This gives upon substituting for p the following result

du du TTdU d 2u
u —  + v —  = U —  + u — r- 

dx dy dx dy
(1.7)

For a flow in which the static pressure p also does not change in the direction o f the flow 

then

dx

Therefore, the equation o f motion simplifies to become

du du d2u
u —  + v —  = o — -  

dx dy dy

(1.8)

(1.9)

The above analysis is for any instantaneous laminar or turbulent boundary layer, but is 

used mainly in laminar flow studies.

For a flat plate the boundary conditions are the following:



At y=0(wall): 

At y=Ô(x):

u=C, v=0 (no slip), 

u=U(x).
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(1.10)

O f closer relevance to the current moving wall je t problem is the situation where the flow 

far from the moving plate is at rest. In this case, U  = 0. The next step is to find the 

similarity solution for the boundary layer equations. A similarity solution is a form o f 

solution in which at least one co-ordinate lacks a distinguished origin; more physically, it 

describes a flow which 'looks the same' either at all times, or at all length scales. 

Following Blasius, using co-ordinate transformation, the dimensionless velocity profile 

u/C is taken as a function o f x\:

n=y
f  n

Vv x J
(1.11)

Substituting (1.11) into (1.9) the nonlinear PDE changes to third-order nonlinear ODE for 

f, namely

r + I f r = o
2

( 1.12)

with the boundary conditions

At r| = 0: f = 0 ,  f '=  1; r| —> oo: f '=  0.

This problem is described briefly in Schlichting (2000) and more elaborately by Sakiadis 

(1961).

The typical configuration o f a wall je t is shown in figure 1.2, which illustrates the 

analogy between the current problem and boundary layer at a moving plate o f Schlichting 

(2000).
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Figure 1.2: Analogy between current problem and boundary layer at moving plate.
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1.3 Practical relevance to the problem:

Moving wall jet flow has been mainly examined in the context of the coating process. 

Coating is defined as a process by which a thin liquid layer of uniform thickness is 

applied to a fixed/moving surface to be used in a variety of natural and industrial 

processes. Coating flows are the flows taking place in coating processes. Variety of 

coating processes are used in practice such as wire coating, slot coating, dip coating, 

knife coating, roll coating etc.

Wire coating by extrusion is a continuous process practiced primarily in the 

manufacturing of wires and cables. A schematic representation of a coating die is shown 

in figure 1.3(a). Quoting Mitsoulis (1986), “The bare wire is introduced into the rear of a 

cross-head die and travels through the mandrel and guider tip. The polymer melt is 

extruded around the wire to form a coating surface.” In a dip-coating process, “a substrate 

is dipped into a liquid coating solution and then is withdrawn from the solution at a 

controlled speed. Coating thickness generally increases with faster withdrawal speed. The 

thickness is determined by the balance of forces at the stagnation point on the liquid 

surface. A faster withdrawal speed pulls more fluid up onto the surface of the substrate 

before it has time to flow back down into the solution. The thickness is primarily affected 

by fluid viscosity, fluid density, and surface tension.” (http://www.ytca.com/dip_coating)

In the slot die process (http://www.tciinc.com/coating.html), the coating is squeezed out 

by gravity or under pressure through a slot and onto the substrate. If the coating is 100% 

solid, the process is termed 'extrusion* and in this case, the line speed is frequently much 

faster than the speed of the extrusion. This enables coatings to be considerably thinner 

than the width of the slot. In slot coating process, if the pressure is negligible during the 

coating flow coming out, the idea can be relevant to the current problem.

Finally, knife coating is a process which relies on a coating being applied to the substrate 

which then passes through a 'gap' between a 'knife' and a support roller. As the coating 

and substrate pass through, the excess is scraped off. This process can be used for high 

viscosity coatings and very high coat weights, such as plastisols and rubber coatings.

http://www.ytca.com/dip_coating
http://www.tciinc.com/coating.html
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(b)
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(c)

(d)

Figure 1.3: Schematic illustration of different coating processes, including (a) wire 

coating, (b) dip coating, (c) slot coating and (d) knife coating configurations. Right- 

hand figure in (b) is taken form Middleman (1978)
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Perhaps the closest application o f the current study is related to blade coating and wire 

coating, which will be discussed in detail below.

1.4 Literature review

In this section, studies relevant to practical and fundamental aspects o f the current 

problem will be reported, especially in relation to blade coating and wire coating, as well 

as studies on moving wall je t flows and the asymptotic methodologies. A schematic 

illustration o f the blade coating process is given in figure 1.4. Blade coating flow 

configuration represents flow in the narrow nonuniform channel formed between a fixed 

blade o f prescribed shape and a plane substrate moving parallel to itself. Typically, and as 

the figure shows, blade coating involves the movement o f the substrate as well as the 

action o f a pressure gradient, which are both responsible for the flow.

The driving pressure is not imposed but is due to the contraction ahead o f the exit (figure 

1.4). However, there is no study, to our knowledge, that addresses the flow downstream 

from the channel exit. Ross et al. (1999) examined blade coating, but limited their study 

to the flow upstream from the exit for both Newtonian and weakly non-Newtonian fluids, 

using lubrication theory. The current problem in this thesis, illustrated in figure 1.1, is 

related to blade coating flow. In fact, if  the contraction upstream from the exit is not 

severe, or the straight section o f the channel in figure 1.4 is long, then the action o f the 

driving pressure becomes negligible near the exit compared to the action o f the moving 

substrate. In this case, the flow upstream o f the exit is o f the Couette type. This will be 

the assumption in the current thesis which is not unrealistic. Indeed, figure 1.5 illustrates 

the flow behavior near and upstream from the tube exit in the case o f wire coating. In this 

case, the Couette flow is clearly evident near the exit. Note that figure 1.5 can be 

regarded as a magnification o f the flow near the exit in figure 1.3a.

Extensive literature can be found on wire coating flows involving both Newtonian and 

viscoelastic liquids. However, as in the case o f blade coating, most o f the studies in wire 

coating also focused on the flow upstream from the die exit and not on the shape o f the 

actual coat. Some exceptions can be noted. Middleman (1978) examined high speed wire 

coating by withdrawal from a bath o f viscoelastic liquid. In his work, the thickness o f
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Figure 1.4: Schematic illustration of blade coating flow (from Ross et al. 1999).

VELOCITY FIELD

Figure 1.5: Typical velocity profile development obtained from the non-isothermal 

analysis in numerical analysis o f wire coating.( from Mitsoulis et al 1988)
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liquid coating is concerned which can be entrained by a wire or filament withdrawn 

vertically through the free surface o f a large quiescent liquid bath. It showed the features 

o f the system o f interest, which might form a model o f industrial systems for use in 

producing solid plastic coatings on wires, or for putting “finish” solutions onto textile 

fibers prior to dyeing and/or processing into fabric.

Mitsoulis (1986) used finite element analysis to simulate the flow o f polymers through 

wire-coating dies for both Newtonian and power law fluids. The effect o f normal stresses 

was examined through a simple viscoelastic constitutive equation. Nonisothermal wire 

coating was studied to obtain the temperature field within the melt. The effect o f a slip 

condition at the solid boundaries was also examined. The determination o f the coating 

melt free surface was carried out through an iterative numerical procedure. The finite 

element solution provides details about the existence and extent o f recirculation regions, 

about hot spots due to viscous dissipation, and also captures the stress singularities 

present at the impact o f the melt with the wire and at the exit from the die. Later, 

Mitsoulis, Wagner & Heng (1988) carried out a numerical simulation o f wire-coating o f 

low-density polyethylene for both theory and experiments. The wire-coating process has 

been analyzed numerically for a particular die design employed by DuPont Co. in high

speed industrial operations. Both the lubrication approximation theory for power-law 

fluids under isothermal conditions and a fully two-dimensional finite element analysis 

under nonisothermal conditions were used. Although for polymer melt flows in general, 

Re «  1 and the creeping flow approximation is valid, in high-speed wire coating Re may 

be as high as 10 and the inertia terms should be included.

From a more fundamental perspective, as mentioned earlier, the current problem is 

closely related to the laminar boundary-layer flow on a moving continuous flat surface. 

This problem was investigated early by Sakiadis (1961), who adopted two methods to 

obtain the flow profile. One method involves the numerical determination o f the 

similarity solution o f the boundary-layer equations and the other is an integral method, 

based on an assumed velocity profile that satisfies the appropriate boundary conditions. 

Good agreement was obtained between the results o f these two methods o f solution (see
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also Schlichtling 2000). The literature on wall je t flow along a moving wall is limited in 

comparison to the stationary wall je t problem. The wall je t is created when fluid is 

discharged from a slot and spreads along a plate. This kind o f flow along a stationary 

plate and in a stagnant fluid was investigated early by Glauert (1956) who gave a 

similarity solution. A complete analysis o f this flow can be found in the textbook o f 

Schlichting and Gersten (2000)and a good review is presented by Magyari and Weidman 

(2006). Therefore a lot o f  studies on wall je t o f  different shapes o f nozzles or walls have 

been reported. On the other hand, the flow patterns o f two dimensional wall je t when the 

wall is moving have not been ascertained. This is in fact one o f the motives behind the 

present study. A flow field formed by a moving flat plate and a two dimensional wall je t 

running parallel to it was experimentally studied by Maki (1983). Mahmood (1987) 

considered a laminar wall je t from a momentum source at the leading edge on a wall 

which is moving in the same direction with uniform velocity. For small distance along 

the wall a solution was found by using a natural coordinate expansion in powers o f x 12. 

For large distance, the asymptotic solution is approached and then he applied a numerical 

solution to jo in  two coordinate expansions. More recently, the flow o f a laminar wall je t 

along a moving plate was also considered by Pantokratoras (2010). The governing 

boundary-layer equations are converted into non-dimensional form and are solved 

numerically. However, an interesting observation from the paper is that the correct 

velocity profile is obtained when less step size is used and this profile is similar to current 

thesis. It was found that as x increases the influence o f the moving wall increases and the 

maximum velocity approaches the plate which supports the current analysis.

The rest o f this section comprises the literature survey from the point o f view o f the 

methodology i.e. asymptotic analysis used to solve the current problem. Asymptotic 

analysis has been successfully adopted for flows in the visco-capillary range (Goren & 

Wronski 1966, Ruschak & Scriven 1977, Higgins 1982) and, more closely to the present 

problem, in the visco-inertial range (Tillett 1968, Philippe & Dumargue 1991). In this 

regard, however, little focus has been on je t flow taking inertia into account. Tillett 

(1968) analyzed the moderately inertial laminar free je t flow near the channel exit using 

the method o f matched asymptotic expansions. Tillett was able to obtain the asymptotic 

contraction ratio o f the je t far downstream using an integral analysis. The results were in
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good agreement with the experimental results found by Middleman & Gavis (1961). 

Consequently, the method o f matched asymptotic analysis proved to be a very successful 

tool in examining the flow structure o f  the je t near the channel exit. Miyake et al (1979) 

carried out a similar analysis on a vertical je t o f inviscid fluid taking into account gravity 

effect. They considered far downstream flow regions to match with ‘near-exit’ flow and 

thus extended the validity o f  the methodology described by Tillett (1968) to the far 

downstream region from the exit. Philippe & Dumargue (1991) also applied a similar 

analysis to Tillett’s for viscous axisymmetric vertical jets, emphasizing the interplay 

between the effects o f gravity and inertia on the free surface shape and the velocity 

profile. A local similarity transformation was carried out by Wilson (1985) for the 

axisymmetric viscous-gravity je t o f the boundary layer type flow close to the free surface. 

Asymptotic analyses have also been successfully implemented for non-Newtonian flows. 

See, for instance, the work o f Denier & Dabrowski (2004) on boundary layer flow, and 

the work o f Zhao & Khayat (2007) for the spreading o f a liquid jet.

Free surface and interfacial flows are inherently complicated because o f the unknown 

position o f the surface or interface. The presence o f the stress singularity adds 

considerably to the complexity o f  the problem and solution. Both analytical and 

computational solution methodologies have been pursued in the literature. A combination 

o f analytical and numerical treatments has also been proposed (Shi, Breuer & Durst 

2004). As mentioned earlier, in a computational approach, the entire flow domain must 

be discretized, including the singularity and its surrounding region, both upstream and 

downstream from the exit. Higher accuracy is achieved through mesh refinement, which 

captures more effectively the singularity but leads simultaneously to the presence o f 

stronger flow gradients that are difficult to handle numerically (Pasquali & Scriven 

2002). In order to circumvent the difficulty with the unknown free surface, Tsukiji & 

Takahashi (1987) wrote the flow equations in a curvilinear coordinate system related to 

the network comprising the streamlines and their orthogonal trajectories. Although this 

approach simplifies the implementation o f the boundary conditions, it complicates the 

flow equations.
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1.5 Concluding remarks

In conclusion, most o f  the studies in the literature assumed negligible Reynolds number 

and emphasized the relation between the properties o f the coating fluid and the interfacial 

behaviour o f  the coating layer. The present study attempts to examine the blade coating 

flow at moderate Reynolds number, well below the transition regime which corresponds 

approximately to Re = 1500 for channel flow. Correlations o f surface properties are 

obtained in terms o f the wall velocity and inertia so that better control can be achieved in 

a coating process to obtain desired level o f  coating thickness. The method o f matched 

asymptotic expansions is used to obtain the flow near the free surface (inner layer) and in 

the core region.
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CHAPTER-2

GENERAL PROBLEM AND BOUNDARY LAYER FLOW NEAR THE FREE SURFACE

2.1 Governing equations

Consider the two-dimensional flow of an incompressible fluid of density p and viscosity p, 

emerging from a channel of width D. The flow configuration is schematically depicted in figure

2.1 in the (X, Z) plane. The X axis is taken along the stationary wall and the Z axis is chosen in 

the transverse direction across the channel. The channel exit coincides with X = 0. The flow is 

induced by translation of upper wall, moving at velocity C. The stream function of the basic 

Couette flow is obtained from

>j/ -  SL—
D 2

(2.1)

Non-dimensional variables are introduced by measuring lengths with respect to D and 

stream function with respect to CD. In this case, the Reynolds number, Re, is given by

Re =
DC
v

(2.2)

where v is the kinematic viscosity. Now, (2.1) will turn out to be the leading order solution in the 

core region, and is conveniently introduced here as

Vo (2.3)

In this study, Re is assumed to be moderately large. The non-dimensional conservation of 

momentum equation for the laminar steady flow takes the following form

VzVxz V x V zz" Px (Vxxz Vzzz) (2.4a)
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V zV xX  +  V xV xZ  ~  Pz (V xxx  +  V x zz ) (2.4b)

2.2 Kinematic and Dynamic boundary conditions

Kinematic boundary condition implies that there is no component of velocity in the transverse 

direction. In other words there is no flow across the free surface i.e. kinematic boundary condition 

is a no penetration condition. If the tangential velocity component is v , then the component of 

velocity in the normal direction v.n = 0

Kinematic condition also means that free surface is itself a streamline. Therefore,

dh dh ofr dx ,
w  = —  = —  H--------- = uhv

dt dt dx dt

In terms of stream function, the above equation can be written as follows

ch\f cty dh _ 
— + — —  = 0 
dx dz dx

(a)

From the chain rule, we know that,

dV = ^ d x  +
dx

d\\f 
dz

dz

Now differentiating d\|/ with respect to x,

d\|/ _  <9v|/ dvj/ dz
dx dx dz dx

On the free surface z = h(x). Therefore we can write,

d\\f _  dvj/ dvj/ dh
dx dx dz dx

(b)

From equation (a) and (b), it can be concluded that dv|i = 0 , or v|/ = constant.
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Stationary Plate

Figure 2.1: Schematic illustration of the 2D moving wall jet flow. Note that the all notations

are dimensional.

Figure 2.2: Schematic illustration of dynamic boundary condition
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Dynamic boundary condition (see figure 2.2) on the free surface means that there is no traction 

condition on the free surface.

t = cr.n = a xx Gxz

^ZX ®77

n,

n.
= 0

where for 2-D,cr = Gxx a xz

^ZX ^ 77

So, the following can be written

CTxxn x + °x z nz ^

^ZX^X ^77^7 — 0

(C)

(d)

For viscous fluid,

_ du .
CTxx = -P  + 2P = -P  + 2M¥xz

OX

® x z  ~  CTZX — P
du dw^l , x
f e + ä r r M('t ,z z _ ¥ x x )

_ dw
Ozz = - P  + 2n —  = - P  -  2|JV(/zx dz

Now, components of normal h are

- c  J 1ru  = , and n ,  =
f2+ l

So equation (c) and (d) read

C ( P "*■ ̂ M-Vxz) p ( m̂ zz Ĥxx) ^

p(V zz V xx)( C )"*■( P ^PVxz) ^
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Finally, we can say that for x > 0, the kinematic and dynamic boundary conditions at the free 

surface, z = ^ ( x ) ,  are as follows

v ( x , z = < ; ) = o (2.5a)

P + ¿ [ ^ x z  + C(Vzz -  Vxx )]  = 0 (2.5b)

PC -  ̂ - ( 2VxzC -  Vzz + Vxx ) = 0 Re
(2.5c)

A prime denotes total differentiation. Inside the channel (x 

must be satisfied, namely,

< 0), the following conditions

\j/z = 1 \|/x = 0 at z=l (2.6a)

\j/z = 0 at z=0 (2.6b)

z2
\i/ —> —  as x —» - o o  

2
(2.6c)

The flow is supposed to have the basic Couette profile (2.3) to lowest order and is modified when 

the fluid leaves the channel in the form of the wall jet. Quoting Tillett (1968), “when the fluid 

detaches itself from the wall of the channel, the removal of the wall stress causes a boundary 

layer to form in a region near the free surface. In this region, the linear velocity profile adjusts 

itself so as to satisfy the condition of zero traction at the free surface. In the inviscid limit, this 

condition would not be imposed since there is no (viscous) mechanism for the stress singularity to 

diffuse, and all the conditions of the problem would be satisfied by postulating that the linear 

profile continues unchanged in the jet region. However, no uniqueness theorem exists for this 

inviscid problem, and it is conceivable that other solutions might exist.” Nevertheless, it is 

assumed in this paper that the fully developed Couette flow is everywhere the proper inviscid 

limit. “With this assumption, the flow in the core of the jet is, to lowest order, not affected by the 

flow in the boundary layer region” near the free surface although the boundary layer is expected 

to induce perturbations to the basic Couette flow, when higher order terms are included, both for
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the flow upstream and downstream from the channel exit. This assumption is similar to the one 

made by Smith (1979) for the tube flow with severe constriction, where the flow field in the core 

region, to leading order, satisfy the inviscid equations of motion.

Figure 2.3 illustrates schematically the different flow regions for the moving wall jet. In each 

region, different physical mechanisms dominate the flow with corresponding characteristic length 

scales. In particular, for the flow outside the channel, the region close to the free surface, the 

inner region, is shear dominated and the flow is of the boundary layer type. In between the inner

region and the moving wall, the core region, both shear ( — ) and elongation ( —  ) prevail as a
dz dx

result of the high proportion of the Couette character of the flow and the contracting jet. The core 

region also extends upstream from the exit. At the channel exit, x = 0, the shear stress undergoes 

a step change from a non-zero value (of dimensionless value 1) at the lower wall, z = 0, to zero at 

the free surface, z = C,(x). The effect of this drop diffuses upstream inside the channel (x < 0) over 

a distance x0 where fully developed Couette flow is recovered, and downstream (x > 0) toward 

the moving wall over a distance x ^ , at which point the flow is entirely of the boundary layer

type. The current study is concerned with the flow outside the channel where the similarity 

solution in the inner region is matched onto the core solution. This core solution is then matched 

with the core solution inside the channel at the channel exit. Another layer also exists close to the 

upper wall which is denoted as the outer layer as shown in figure. It is important to observe that 

no matching is required for the similarity solution in the streamwise direction, and the flow 

singularity at the origin is entirely avoided in the solution process. This results in a major 

advantage of the current formulation compared to alternative solution methods. The problem is 

now examined by considering separately the flow near the free surface (inner region), the flow in 

the core region, and the flow in the vicinity of the moving wall (outer region). The composite 

flow is obtained upon matching the solutions at the interface between the two regions. Part of the 

formulation in each layer is similar to the free jet formulation carried out by Tillett (1968).
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0 x«

Figure 2.3: Schematic illustration of the computational domain, including the inner, outer 

and core regions. All notations are dimensionless.
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2.3 The flow in the inner layer close to the free surface

To examine the boundary layer structure near the free surface, let, y = z —C (x). In the

momentum equation (2.4), the higher order derivatives multiplied by e will vanish, to leading 

order. Therefore we cannot use regular perturbation analysis. To solve this problem we take a 

small parameter £ to magnify the region close to the free surface and change the scaling in the 

transverse direction by writing y= sr|. It is to be noted that 8 = Re*" and a is to be determined. As a 

result we will be able to use regular perturbation expansion to solve the momentum equation in 

the new coordinate system (inner region) and the higher order derivatives will not vanish. As our 

analysis is similar to that of the flat plate boundary layer, we assume that the height C, of the free 

surface is of the same order of magnitude as the boundary layer thickness, and write £(x) = sh(x), 

and henceforth work with h. In this case, h(x) = 0 (1 )  as £ —►(), i.e. C, tends to 0 with e. In the 

matching process, in chapter 3, it will be shown that h = 0(1) indeed. Following Tillett (1968), 

the following change of coordinates is introduced, namely,

(2.7)

in (2.4a) and (2.4b), it is concluded that

(2 .8a)

VnM'e.a, + + h V n + h '( 'i/ iiv ^  “  ) = “ P'1

(2 .8b)
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The aim is to find a solution of the transformed equations of (2.4) in the form of an “inner 

expansion” in e. In order to match this to the core Couette flow, it is necessary to have \\r ~ y2 as q 

—► oo in the inner region, to lowest order in e. Therefore, v|/ must be of order e2. Similarly to jet 

flow (Tillett 1968), the value of a is determined by requiring that the convective and viscous 

terms balance, leading to a = 1/3.

Actually, there is another possibility for the value of alpha which is 1. For this value of a, it 

shows that to the lowest order, the inertia becomes negligible and the flow acts as creeping flow 

and the convective and viscous terms balance are observed only for higher order terms. The 

streamwise and depthwise velocity components, u and w, respectively, are now expressed in 

terms of the stream function as

1
U = \ | / z = - V q  

8 1
(2.9a)

w  = - y x = - ^ + h V n (2.9b)

From (2.9a), it is obvious that u is of order e. Considering the fact that u in the inner region must 

match the velocity in the core region: u  —> z , it is also inferred that u must be of order e inside 

the inner region. The order of w can be found using the continuity equation when written in 

terms of inner variables, or

eus -  eh'u  ̂+ = 0

Thus, w is of order e2. The momentum conservation equations can be re-written as

— = —£ (p^ — h P r|) £ Vqriri

+8 - h  \j/nT| -2hvj/^T1T1 + h

+ h + h'(vnV^Ti - '  ) = -P n

-E 2 (n n t l - h V ^ ) - e 4 i ^ - h ' | - l  V

(2.10)

(2 .1 1 a)

(2 .1 1 b)
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The boundary conditions on the free surface r| = 0 are obtained from (2.5a)-(2.5c) to read

\\f = 0 (2 .1 2 a)

e (h 'p  + \|/Tir1) - £ :
'' d_

&
- h ' A

A2
\|/ + 2h ,(\j/^T1 - h V T1T1) = 0 (2 .12 b)

p + s 2 (2 v |/^  -  h 1VrjT! ) -  £4h ' i A _ h ' A f
d r j

\|/ = 0 (2 . 12 c)

The inner expansion for vp begins with a term in e2. This is assumed, until there is evidence to the 

contrary. Thus, the expansion proceeds in powers of £ so that

¥ (4 ,i1) = e2 ' î '2 ( ^ i 1 ) + E V 3 ( ^ i 1) + -  (2.13)

Similarly, h is expanded as

M ^ )  = e 1C(4) = h 0 ( ^ ) + e h , ( 4 ) + - (2.14)

From (2.11)-(2.14), it is concluded that p is of order e4. Thus,

p ( ç ,n ) = e4P4 (Ç>n ) ■+ e5p5 (V n ) ■+• • ■• (2 -1 5)

The velocity components are expanded as

u(^,r|)=£U] (Ç>T|)+82U2 (Ç»ti)h—  (2.16)

w(Ç,T|) = e2W2(Ç,r|)+s3W3(Ç)T |)+ - (2.17)

In this case, Uj = 4 ^ ,  U2 = 4% and W2 = - 4 ^  + hV ^»  etc.
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2.3.1 Flow in the inner region to O^e2 j

To leading order, the momentum equation, (2.1 la) reads

V 2S n - V 2T1T1 = 'I /2T1T1T1
(2.18)

The corresponding boundary conditions are obtained from (2.12a) and (2.12b), namely

^ 2 f e 0) = ^ 2T1T1f e 0) = 0 (2.19)

To complete the problem  for ¥ 2, another boundary condition is required. This is the 

matching condition, which will be obtained in chapter 3, namely

^2(^11)—  as r| —>00 (2 .20)

To leading order, the problem is similar to the case of the free jet (Tillett 1968) with different 

boundary conditions. A similarity solution can be carried out for ¥ 2; which is written here as

4>2 ( ^ r , )  = 4 2/3f2 (0 ) (2.21)

where 0 = r|£'1/3 is the similarity variable. The equation for f2(0) is given by

3f "  + 2 f2f2* - f ^ = 0 (2.22)

subject to the following boundary conditions from (2.19) and (2 .20):

f2 (0) =  f j ( 0) =  0 (2.23a)

f2 (0) ~ -  as 0 co (2.23b)
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An equation similar to (2.22) was investigated by Goldstein (1966) and revisited by Tillett 

(1968). For large 0, an asymptotic solution is possible to obtain, subject to condition (2.23b), 

namely

f2 (0 « ,)= (e + c *y
2

+ 0 exp
(  2  A

- - e 3
l  9 J (2.24)

where Ci is a constant determined from the numerical integration. The detail can be found in 

Appendix. Problem (2.22)-(2.23) is solved as an initial-value problem, where equation (2.22) is 

integrated subject to conditions (2.23a) and a guessed value of the slope at the origin. The 

problem was solved using Matlab’s ODE45 subroutine which can be used to find the solution for 

an initial value problem. The slope (f2') is adjusted in the program until reasonable matching up 

to 3rd decimal is achieved between the solution and the asymptotic form (2.23b) at large 0, or,

more precisely, between f2 and 1. The integration is carried out over the domain [0,0^], where

0 ^ is a relatively large value of 0 where matching is secured to within an imposed tolerance.

The value of Ci is then determined upon matching the numerical solution and its asymptotic 

counterpart (2.24). Figure 2.4 displays the dependence of f2, f2 and f2" on 0. In this figure the 

curve of f2 represents the behaviour of the similarity function with respect to the similarity

variable 0. Note that, to this order, u = ex f j . Of particular interest is the slope at the origin

f2'(0) which is directly related to the velocity at the free surface. From the figure it is seen that f2' 

adjusts itself to behave linearly at shorter distance from origin, while the slope of f2" increases 

linearly very close to origin and then attains a constant value. For the purpose of the discussion 

here, it is convenient to observe that the initial slope is given approximately by

^2 (0) ~ 1-6212 and the value of Ci is approximately equal to 0.9266. We can conclude from

figure 2.4 that the velocity near the free surface increases linearly with height and further 

downstream the shear stress at the free surface attains a constant value.



0

Figure 2.4: Variation of the similarity function f2 with 0.
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2.3.2 Flow in the inner region to 0 | f 3 j 

To the next order in e, (2.1 la) gives

*2n *3* , + *311*2*1 * *2S*3nri -  * 2 ^ * 3 *  = * 3 w ,  (2.25)

subject to the boundary conditions from (2 .12a) and (2 .12b), namely

'¥ 3& 0 )  = '¥ 3r]r]& 0 )  = 0 (2.26a)

The matching condition from chapter 3 is

vF 3(^ ,r|) ~ 0 as r) ->  oo (2.26b)

Since the equation and all three boundary conditions are homogeneous, then the solution to the 

problem is simply vF 3(^1,q ) = 0 everywhere. Therefore, we do not need to seek the similarity

solution for 4 ^  and proceed to the next order to acquire a better idea of the velocity profile.

2.3.3 The higher-order j boundary layer

To the next order in e i.e. 0 (e4), the x momentum equation (2.1 la) gives

^ n n n  +  - ' V f e ^ G  (2.27)

where

G = p4 4 +ho^2nn +2hoŸ 2 Ç n n (2-28)

To find the corresponding expression for G we must first calculate the pressure; this is found 

from z momentum equation (2.8b) together with the dynamic boundary condition (2.12c). These 

give

P4„ fen ) = - ^ _1 {4f2fi -  t(f22 + 2f2f2' + 3f2j }  = - f e ^ 1 fe(4f22-2tf2f2' -3tf2 +3f2)
2 __i d

27 d0



31

where t = 0 + Cj. Integrating P4ti with the boundary condition of

_2

i d t o ) — | f 3 S « »

we find that,

2 2 

P4 f e n )  = - ^ ^  3 (4 f22 - 2 t f 2f 2 - 3 t f 2" + 3 f 2 ) - ^  3 f ' (0)

Therefore, from equation (2.28), we can write,

_5
G = ^ 3 g(e) 

where

g = ^ t ( 4 f 2f2 - 2 t f 22)

+ ^ ( 4 f 2 2 - 2 t f 2f2 - 3 t f 2'+ 3 f i )

- | ( t f 2 - f 2 + | t 2f2") + ^ f ^ ( 0).

After evaluating G, in order to match R.H.S. & L.H.S of (2.27) we have to choose a similarity 

variable fo r'P 4(£ ,r|). A similarity solution can be carried out for vF4(^,r|)in  the form

_2
4 '4(5,r1) = q"3f4(e) (2.29)

Where the equation for f4(0) is given by,

fff 2  p « 2  p fp  ̂ 2  p ffp
f4 + 3 f2f4 + j f2 f4 ~ 3 f2 f4 = g (2.30)

The boundary conditions at rj = 0 are, from (2.12a) and (2.12b),
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y 4f e 0) = 0 and ^  = 2h ^ - h ^ 2T1

In terms of f4 , from (2.31) it can be written as,

f4(0) = 0, f4’ (0) = - c , f 2'(0)

The corresponding results for (2.30) are

8 - - < 3 g = ^ f 2 (0) + O(e 9 )

giving asymptotically a particular integral

4 - - « 3- _ f 2'( 0) + O(e » )

And complementary function

-2 ,3
B4t + 0 ( e  9 )

We have, in any case

f4 ( e ) ~ B 4t - ^ f 2'( 0) + o ( r 2)

(2.31)

(2.32)

(2.33)

(2.34)

Figure 2.5 shows the variation of similarity function f4 with 0. The figure suggests that f4 linearly 

increases with 0. f4r increases when 0 is small, but remains constant with the increase in 0 and

there is rapid decrease in f4" and later it achieves a constant trend while 0 is increasing.



e

Figure 2.5: Variation of similarity function f^with 0
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Therefore, from equation (2.16), the general expression of the velocity to fourth order becomes

u ( x ,0 ) = ex1/3f2 (0 ) + £3x ^ 4 (0 )

In particular, at the free surface, 

u (x ,z  = <;) = 1.6212ex1/3 + 1 .0496£3x_1

(2.35)

(2.36)

Note that the depthwise velocity component at the free surface will become available once the 

free surface height is determined. Figure 2.6a illustrates the dependence of the free surface

velocity on inertia. Figure 2.6a displays the u (x ,z  = £) profiles for e = 0.1, 0.2, 0.3. Both the

figure and equation (2.36) suggest that u (x ,z  = increases monotonically with x. The apparent

decrease of the surface velocity with increasing inertia observed in figure 2 .6a is due to the non- 

dimensionalization process used. A more realistic picture is reported in figure 2.6b. Here the 

stream wise velocity is multiplied by the Reynolds number. It is observed in figure 2.6b that with 

the increase in velocity, Re increases.
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0 1 2 3 4 5
x

(a)

0  1 2 3 4 5
x

Figure 2.6: (a) Streamwise velocity u(x, z =  ̂) versus x for different c and (b) Scaled 

streamwise velocity u(x,z = £ )  versus x
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2.4 Boundary layer growth

Although the free surface height is not available until matching is carried out, the boundary layer 

thickness, 8(x), or thickness of the inner region (refer to figure 2.3), can be determined at this 

stage. Expression (2.35) and the asymptotic forms (2.24) and (2.34) allow the determination of 

8(x) and its explicit dependence on e. On the other hand, it is helpful to first estimate the 

boundary layer thickness using dimensional arguments, and the length and velocity scales 

introduced in section 2.1. In this case, the boundary layer thickness may be expressed in terms of

a dimensionless transverse diffusion time, t, as 8 ~
f  t V '2

vRey
from the order of magnitude analysis

of the x momentum equation. The velocity at the surface may be expressed in terms of the 

corresponding axial convection length as u (x ,z  = ~ y . Eliminating t, and noting from (2.36)

that u ( x ,z  = £,) ~ 1.621 2 e x 1 /3  to leading order, yield the following estimate:

S ( x ) ~
x V /2

u R e J  Vl.6212

n1/3 

R eJ
(2.37)

Some important observations can be deduced from the expression above. As expected, the 

boundary layer thickness grows with position and diminishes with inertia. In comparison with

(  x Y / 3 . (  x Y /4gravity driven jet flow (Wilson 1985), 8 behaves like —  instead of —  . In fact, the
VR e )  VRgJ

viscous relaxation length, x ^ ,  can be estimated upon setting 8(x00) = 1 in expression (2.37), 

leading to

Xoo =
1.62123/2

= 1.62123/2Re (2.38)

Expressions (2.37) and (2.38) predict that the boundary layer thickness diminishes with 

increasing relaxation distance. The relaxation length is simply proportional to Re. Interestingly, 

both the actual (dimensional) viscous relaxation length and the shear stress at the lower wall 

increase linearly with C, and the relaxation length increases like D2. F o rx > x a0, the boundary
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layer contains the entire jet width and the nature of the flow depends on the fully developed flow 

in the channel.

For a more accurate estimate of 8, consider first the variation of the velocity profiles with respect 

to height, r|, at different x position and e, displayed in figure 2.7. The figure shows the gradual 

flattening of the velocity profile near the free surface as inertia decreases. The boundary layer 

height coincides with the level at which the asymptotic and inner velocity profiles begin to 

merge, as demonstrated in the figure. The influence of inertia on the boundary layer thickness is 

illustrated in figure 2.8, where the dependence of 8(x) on e is shown. The boundary layer 

thickness typically grows with position x. Eventually, the inner region continues to grow with 

position as the film contracts, at which point the boundary layer prevails over the entire film 
width.

2.5 Conclusion

The inner region was analyzed in this chapter. The objective of the inner region was to 

find the solution of the equations of motion in the form of an “inner expansion” in e. The 

higher order solution was pursued in the inner region in order to achieve the free surface 

velocity and boundary layer thickness.
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0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

Figure 2.7: Dependence of streamwise velocity profiles for different € on height, r|, for 

different x position at epsilon=0.1,0.2, 0.3 . Solid line indicates asymptotic behavior.



Figure 2.8: Dependence of boundary layer 8(x) on different €
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CHAPTER-3

JET PROFILE AND COM POSITE FLOW

3.1 The Flow in the outer layer close to the moving wall

To examine the boundary layer structure near the upper layer, let y = 1 - z. In this case, 

the scaling in the transverse direction is changed by writing y = yr|, where y = R e'p is the 

small parameter in the problem and p is to be determined. Following Tillett (1968), the 

following change o f  coordinates is introduced, namely,

x = ^, z = i - r n (3.1)

The aim is to find a solution o f  the transformed equations o f  (2.4) in the form o f an 

“outer expansion” in y. In order to match this to the core couette flow, it is necessary to 

have y  ~  1/2 as r| —► oo in the outer region, to lowest order in y. Therefore, y  must be o f 

order 1. Similarly to je t flow (Tillett 1968), the value o f P is determined by requiring that 

the convective and viscous terms balance.

_A P
i +l
p¥ ^ ^ - ^ ¥ ^ = - 7  P l j - Y v r  ' ¥ , , t , t , - Y  ' ¥ i & n (3.2a)

¥ n¥ ^ - ¥ 4¥ ^ = P n -V ^P
Ì-1

¥ ^ - 7 ^
l +i

¥ « 6 (3.2b)

In this case, p = 1, and y = e3 . The components u, the streamwise velocity, and w, the 

transverse velocity, are now expressed in terms o f the stream function as

1
u  = y z = — y «  

Y
(3.3a)

w  = - y x = - y ^ (3.3b)
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From (3.3a), it is obvious that u is o f order 1/y. Considering the fact that u in the outer 

region m ust match the velocity in the core region: u  —» z , it is also inferred that u must 

be o f  order 1/y inside the outer region. The order o f  w can be found using the continuity 

equation when written in terms o f inner variables, or

—  W v ,  = 0y u ^ - w ^ (3.4)

Thus, w is o f  order 1. The momentum conservation equations (3.2) are re-written as

VçVr|r| “  T Vr|r|r| Y VÇÇri (3.5a)

"V ç'l'Çn = Pîl ' I  V ® (3.5b)

The boundary conditions on the upper wall r\ = 0 are obtained from (2.6a) to read

vj/^ = - y  a n d \ \ f^ = 0 (3.6a)

( 4 —» —° ° .n )= (3.6b)

The expansion proceeds in powers o f y so that

N»(in) = Ÿo (in) + (in) + V2̂  (in )+ (3.7)

From (3.5), it is concluded that p is o f order 1. Thus,

p(in)=P0 ( in )+yPi (in)+r2P2(in )+ (3.8)

The velocity components are expanded as

»(in )=r”lu-i ( in )+u0 (in )+yu, (in)+ (3.9)
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w ( i n ) = w 0 ( i n ) + yW, ( i n ) + Y2w 2 ( i n ) +• ■ ■ O -io )

In this case, U-i = - ¥ 0̂  U 0 =  - Ui =  - ¥ 2̂  and W 0 = - 'P 04, etc.

To leading order, the equation for %  and corresponding boundary conditions read

(311a>

V o ^ - V o ^ ^ P o n - ^ n  (311b)

subject to

'Po^ ( i n = 0) = 'Po,, ( i n = 0) = o, >i'0 ( i n ^ c o ) = i  (3 . 12 )

The solution to this problem is vF0 (^,ri) = ^ ,  P0ti(^ ,rj) = 0. Thus, Po(^,r|) does not

change with height, and will have to match the leading order term in the core region. In 

this case, since the pressure is o f  O^e3 j in the core region, then P0 (<;,r|) = 0

To order y , the problem is governed by

V i ^ T i  " ^ O q q  "  V i q q  — 'i ' l w i  (3.13a)

V «  - ^ i ^ n = Pin - ^ q q  (313b)

^ lq q q  = ^lq (^ jTl) = ^ l^ q q  = ®

^  (^,r| = 0) = 0,'FlT1(^r, = 0) = - l ,'F 1(^Ti->oo) = -n  

The solution of this problem is (2;,r|) = -r|

To order y2, one has
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’V o * , )  + 'P i^ iS n  + V 2f ; n - ' 4'o |4 ' 2nn
= —P0!; — l̂ Occi] — ^  2t|T|r|

W o «  + 4'.„ 4' i « + W a *  - W o S n  -  W i «  -  W 2«

= p2 n - 4,2 ^ n _ 4'o5«

4’2 ^ U .’l = 0) = 0 ,4 '2n(5,i1 = 0) = ri, 4 '2 f e n ^ < » )  = | r i 2

P04 f e l l)  = - ^ 2 ^ = 0

P2n (? .n ) = 'P 2^ = °

1 2The solution to this problem is (£>Tl) =~T1

3.2The flow in the core regions (inside and outside the channel)

It is convenient to define the core region as comprising the core regions outside the 

channel (x > 0) and inside the channel upstream from the exit (x < 0). Ultimately, the 

flows inside and outside the channel must match at the channel exit (x = 0). However, 

this matching is only required between the two core regions. In contrast, given the 

boundary layer character of the inner regions (inside and outside the channel), similarity 

solutions can be sought separately. In other words, the presence of the singularity at the 

origin (x = 0, z = 0) prohibits any matching, but can be totally avoided in the current 

formulation. In this case, the inner solution inside the channel (x < 0) is not required for 

the determination of the flow outside the channel, and therefore will not be discussed any 

further.

In the core region, which is far from the region near z = 0, equations (2.4) must be 

solved, and are conveniently rewritten here as

VzVxZ VxM*zz “  Px+£ (Vxxz "*■ Vzzz) (3.15a)

Vz^XX "*■ Vx^xz — Pz e (^xxx "^Vxzz) (3.15b)



44

In this case, \\r and p are represented by the following expansions:

\|/(x ,z ) = v o  (x ,z )  + e i^  (x ,z )  + • • • (3.16a)

p (x ,z )  = p o (x ,z )  + ep1 (x ,z )  + --- (3.16b)

v|/m (m > 0) are higher order terms that denote the deviation from the basic flow due to its

interaction with the boundary layer. Expansions (3.16) are similar to (2.1) for the flow 

with constriction (Smith 1979). Note, however, that, in contrast to (3.16a), Smith’s 

leading order term in (2 . 1 ) does not exactly correspond to fully developed flow, but still

channel.” Based on these assumptions, upon inserting expressions (3.16) into equations 

(2.4), a hierarchy o f equations is obtained to each order. To leading order p0(x, z) = 0. For 

m  = 1 and 2, the matching conditions obtained in section 3.3, and the condition \|/m>o(x -»  

-  oo, z) = 0, lead to the vanishing o f the stream function and pressure everywhere. More 

explicitly,

For m  = 1, one has

Upon eliminating pi from (3.17a) and (3.17b), the following equation is obtained for \}q:

satisfy the inviscid equations o f motion. Quoting Tillett (1968), “Since the governing 

equations are elliptic (in x), this deviation will extend also to the region x < 0 in the

VOzVlxz VOzzMflx ~ Plx (3.17a)

VOzVlxx ~ Plz (3.17b)

(3.18)
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o d^where V2 = — -  + —- .  Noting that Wj = -vj/lx , the following boundary-value problem in
dx2 dz2

the ranges -oo < x < oo and 0 < z < 1 is concluded:

V2wj = 0 (3.19)

w 1 (x ,l)  = 0,

w j(x ,0) = 0 for x < 0,

W] (x ,z  —> 0) = 0 = -^ i(x )  for x > 0,

Wj bounded as |x| -> oo.

The matching condition obtained in section 3.3 gives Xi(x) = 0. In this case, the (unique) 

solution to the boundary-value problem (3.19) is w i(x, z) = 0 for any x and z. 

Consequently, and since vj/i(x —> - oo, z) = 0, then \j/i(x, z) and pi(x, z) must vanish 

everywhere.

For m = 2, 3 following the similar procedure, W2 and w3 vanishes and consequently \j/2(x 

z), y 3(x z), p2(x, z) and p3(x, z) also vanishes everywhere. More explicitly,

V l(x , z) =  V|/2 (x, z) =V|/3 (x, z )=  P !(x , z) =  p2 (x, z) = p 3 (x, z )=  0

3.3 M atching process

This section is introduced in order to find out the way how the flow behaves outside the 

channel. To do this, matching at the interface o f the inner and core region is necessary. 

As there is another region near the upper wall outside the channel, matching is also 

required between the outer and the core region. However, it is found that the flow in the 

outer region behaves as the flow in the core region (Couette) and that is why it will not be 

discussed in this section. On the other hand by matching between inner and core, the free 

surface behavior is obtained.

The matching rule employed by Van Dyke (1964) is adopted here, namely

EnHm't' = HmEnV|/ (3.20)
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where m and n are integers. Here, En is the core-expansion operator, which truncates 

immediately after the term  o f order sn where the expansion is expressed in terms o f  core 

variables. Hm is the corresponding inner-expansion operator. For successful application 

o f  the matching rule (3.20), the stretching transformation between the inner and core 

variables must be in the canonical form y = er|. In this case, the core expansion must be 

written in terms o f  y, not z; otherwise (3.20) can be satisfied only approximately. It is 

required that the two expressions in (3.20) be exactly the same, for all m  and n. Recall

z 2
that, to leading order, the stream function in the core region is Vo “  ~ , which can be 

expressed using expansion o f  \|/ (3.16), in the core region in terms o f y and h, leading to

(y  + eh)2 t . 
vj/ =  - --------------— +  0 ( e ) (3.21)

Consider first m = 2 and n = 0. Applying Eo on (3.21) gives

E 0>v = Ç  (3.22)

As this expression must be in inner variables when the operator H 2 is applied, Eoy is 

rewritten in the form:

E oV =
2 2 ST|

(3.23)

Therefore,

H 2E 0V = i y -  = ^ -  (3.24)

To leading order, the inner expansion for the stream function is obtained from (2.13) as 

\j/ = s2 vF 2 . Thus H 2\|/ = £2vF 2 and therefore,
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E0H 2V = E 0 (e2 'F 2 ) (3.25)

This leads to ~ “  for large rj. Large r| means far from the inner region to the core

region. This is the condition in (2.20) or equivalently (2.23b). Recall that this condition 

led to the determination o f  f2. Consequently, from (2.13), (2.21) and (2.24), at large 0

H 2V = z2xV 2 = s V /3f2 = e2^2/3 = e2^ /3
( n r 1/3 + c ,) :

(3.26)

W hen (3.26) is expressed in terms o f core variables, it becomes:

H 2V = y
2

.1/3„ „ „  e / 1/3 V^ r  + yec1x + — ( q x  J (3.27)

leading to

E0H 2v|/ = ■— (3.28)

as required. So it can be seen that for n = 0 and m = 2, the inner and core expansions 

match, and (3.20) is satisfied. Similarly, taking n = 0 and m = 3, leads to

H 3E 0v|/ =
2 2 e r\

(3.29)

E0H 3V = E 0 (e2 'I '2 + 83'î ' 3 )

which, upon matching with E qK^vi/ , leads to ¥ 3  ~  0 , and consequently to condition 

(2.26b).

Next, (3.20) is considered with m = 2 and n = 1.
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ElV = ~ + y£h0 + evj/j (x, y + ch0 ) (3.30)

Expanding about y,

Vi (x, y + eh0) = Vi (x, y) + sh0\|/ly(x, y) + (£h0 )‘ Vlyy(x,y)

Expanding the terms on the right-hand side about y = 0,

V 1( x ,y  + 8h0) = M/1(x,0) + yv|/ly (x,0) + ^-vj/lyy(x,0) + 8h0\(/ly (x,0) + ch0yvj/lyy(x,0)
(Eho)2+ • Vlyy(x,0)

In this case, (3.30) reduces to

2 v2Ejvj/ = - y  + yeh0 + ei^ (x,0) + eyv|J ly  (x,0) + e-^-\j/lyy (x,0) (3.30a)

In terms o f  inner variable, y = erj,

£2 2 £3 2
E,\)/ = —^ -  + £2T|h0 +EVI/J (x ,0 )  + E2r|X)/ly (x,0)h--- Vlyy (x ,0 ) (3.31)

In this case, noting that y = erj is small, one has

H 2E lV  =  y  +  y£h0 +  e V l ( x > 0 )  +  e y y iy  (x ,  0 ) (3.32)

On the other hand, applying E 1H2 on the inner expansion (2.13) and using (3.26) gives

e 1h 2V = y  + e q x 1/3y (3.33)
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Comparing (3.32) and (3.33) leads to \\fi(x, 0) = 0. As wn = - vj/nx, this leads in turn to the 

homogeneous boundary condition X\(x)  = -v|/lx (x,0) = 0 for the governing equation o f  Wi

(3.18). Since the unique solution o f  (3.18) is w i(x, z) = 0 everywhere it can be concluded 

that \j/i(x, y) = 0 everywhere is a solution for this problem (3.18). From this, one 

concludes that, \j/ly (x,0) = 0 , which also satisfies matching. The remaining terms in

(3.32) and (3.33) then yield the result ho(x) = Cix13. In this case, the free surface height is

The vanishing o f  \|/i(x, z) means that, to the order e, there is no interaction between the 

boundary layer and the core flow. In other words, as y i(x , z) = 0 everywhere, there is no

given by

(3.34)

outcome from the m atching at the interface between the inner and the core region The 

form o f  ho(x) obtained also ensures that (3.20) is satisfied for m = 3 and n = 1. The next 

step is to determine \|/2(x, z) and hi(x) by considering an analogous matching process to 

the above, using m = n = 2 .

+ 82v|/2 ( x ,0 ) + e2y\|/2y ( x ,0 ) (3.35)

In terms o f inner variable, y = erj,

+ 82\|/2 (x ,0) + e3r|\|/2y (x ,0)

So,

+ e2\|/2 (x ,0)

and
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E 2H 2m/ = - y +  q e y x 1/3 + y  c?x 2/3 (3.36)

This yields the fact that vj/2(x, 0) = 0 in the core expansion, concluding that v|/2(x, z) = 0 

everywhere, reflecting the absence o f interaction between the boundary layer and the core 

flow also to order e .The next step is to determine hi(x) and vj/3(x, 0). For n = m = 3, one 

obtains

H 3E3V = ^ -  + eyho + £ 2
, h o 

y h i + f + e3h0h1 + 83\j/3 (x , 0) (3.37)

E 3H 3\i/ = E 3 (e 2vF 2 ) = ~ + ysc lX 1/3 + y  ( q x 1/3 ) (3.38)

Upon matching, the height o f the free surface to the next order is determined, namely

h i ( x ) = ° (3.39)

Also, the boundary condition, which is required to solve the boundary value problem in 

the core region, is obtained. Thus,

\|/3 ( x ,0) = 0 (3.40)

For m=n=4

y 2H 4E 4y  = —  + eyh0 + e , ho
yh>+ T

+c3hohj + e3yh2 + e4 -t"h 0h 2 + \|/4 ( x ,0 )

-n a
= H 3E 3vj/ + e yh2 + 8 + h 0h 2 +\j/4 ( x ,0 )

E4FI4i|/= y +  yecjx1/3 + y c 2x2/3 +ye3B4x ^ e ^ B ^ x  2/3 
= E3H3\j/ + ye3B4x_1 + e4B4CiX_2/3
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Comparing H4E4i|/ andE4H4Vj/, it is found that, h 2 = B4x 1 and v)/4 (x ,z  = 0) = 0

Even though w4(x, z) is not evaluated, it can be conjectured from the homogeneous 

solution of wi, W2 and W3, that w4(x, z) will be zero everywhere leading to i|/4(x, z) = 0 

everywhere. However, the important result reached here from the matching process is the 

height o f the free surface which is

C, (x) = s q x ^ 3 + e3B4x 1 (3.41)

3.4 Jet profiles

Figure 3.1 displays the dependence o f free surface height on inertia. The surface profiles 

suggest a significant thickening of the film when inertia increases. The singularity is 

present in the free surface at the channel exit because of x'1 term. For the surface to

exhibit minimum or maximum,- - --- = 0 , resulting i
dx m xm =

/  2^3/4
3B4e2 '

V

In this case,
J

recall Ci = 0.9266, andB4 =1.0496. The surface exhibits a maximum at a location given 

i3/4
by xm = [3.399s2 J

Figure 3.2 depicts the variation of surface curvature with inclination, (|), for s = 0.1, 0.2, 

0.3. It shows that the curvature increases with <J), reaching a maximum at some 

inclination, and decreases rapidly as <j> 0° .

Figure 3.3 displays the asymptotic and numerical streamwise velocity profiles based on 

the inner layer solution (2.35), along with the free surface height. Note that the difference 

between figure 3.3 and figure 2.7 is that, the free surface height was not yet obtained in 

figure 2.7, and this latter was drawn in the (rj, x) plane.
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X

Figure 3.1: Variation o f free surface height £(x) with position x at different e

4>

Figure 3.2: Curvature versus O
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0  0.5 1 1.5 2 2.5 3 3.5 4 4.5
x

Figure 3.3: Variation of stream wise velocity profiles with z position for different x 

at 8 = 0.1,0.2, and 0.3. Dashed lines indicate asymptotic behavior.
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3.5 Composite flow

The objective of this section is to find out the composite velocity profile (streamwise and 

transverse) and pressure profile outside the channel. Following Van Dyke (1964), the 

composite expansion operator is defined by

-  (E„ + Hn -  EnHn ) (3.42)

This expression provides a uniform approximation to order en over the whole width of the 

jet. In this section, the composite flow field is obtained.

For n = m = 4,

E4\|/ = E4
2 2 

^ -  + ys^h0 +eh1 + e2h 2 + s 3h3J + -Y |ho  + 28^ ^  + e2h2 + 2e2h0h 2 j

xr2 _2u2y , _u  , _3u , e h0 , 04iSo, E4vj/ = —  + yeh0 + ye h2 + ------ + e h0h2
2 2

H4V = £2'¥2 + e3'I'3 + E4vil4 = s2Ç2/3f2(0) + £4iT2/3f4(e)

E4H4M/ = E4 (e2i;2/3f2 ( 0 ) + £ V 2/3f4(0))

= Y  + yEqx1/3 + y ( c , x 1/3 ) + ys3h2 + s4h0h2

From eqn. (3.42), in this case,

E4v| / - E 4H4v|/ = 0

So, the composite expansion for the stream function becomes,

C4\|/ = H4\j/ + E4v|/ -  E4H4vj/ = e2Ç2/3f2(0) + e4^“2/3f4(9) (3.43)

The following expressions for the streamwise and transverse velocity components:



(3.45)c 4 w = - y  r 1/3 [2 f2 -  (9 + c, )f2' ] + y  i f  5/3 [2 f4 + (0 + c ,) f4 -  3B4fi ]

These expressions dictate how the velocity profile changes over the width of the jet up to 

the fourth order. The influence of inertia on the flow field (velocity and pressure) at 

different x positions between the free surface and the moving wall are shown in figures 

3.4, 3.5 and 3.6. The u profiles in figures 3.4-3.6a indicate that the flow behaves close to 

fully developed at the channel exit, exhibiting a singularity like x '1 and further 

downstream, the u profile flattens at a location x. Further downstream, the flow is 

entrained by moving wall. In figure 2.6(a) the u profile shows singularity but the figure 

3.4-3.6a this singularity is not visible because the profile was not drawn very close to 

exit. The w profiles show that the transverse velocity gradually diminishes with x after 

the jump at the channel exit. Figure 3.4-3.6b also shows that the transverse component of 

the flow is essentially absent except very close to the free surface. The velocity reflects 

the strong presence of both shear and elongation in the flow. Near the channel exit, 

elongation is clearly dominant at the free surface where most of the dissipation rate is 

concentrated. Further downstream, most of the dissipation occurs above the free surface. 

The pressure profiles in figure 3.4-3.6c suggest that the pressure changes rapidly near 

channel exit and further downstream pressure becomes essentially constant for any z 

position. There is a small departure of pressure from zero across the inner layer close to 

the free surface. This is expected given the vanishing of the normal force at the free 

surface and the dominance of shear over elongation rate. For a moving wall, the pressure 

remains finite, in fact maximum, at the wall.

3.6 Conclusion

The analysis of outer and core regions were performed in this chapter. Also the matching 

rule o f Van Dyke (1964) was employed to obtain the boundary condition for the inner 

region and the shape of the unknown free surface. Again, composite matching was 

applied to find out the composite velocity profile (streamwise and transverse) and the 

pressure profile outside the channel.
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X
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Figure 3.4: Variation of (a) streamwise velocity, (b) transverse velocity and (c) 

pressure profiles with position for £ = 0.1. Note: streamwise velocity and transverse 

velocity are drawn on same scale. The vertical dashed line is the origin at each

position.
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0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Figure 3.5: Variation of (a) streamwise velocity, (b) transverse velocity and (c) 

pressure profiles with position for £ = 0.2. Note: streamwise velocity and transverse 

velocity are drawn on same scale. The vertical dashed line is the origin at each

position.
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X

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Figure 3.6: Variation of (a) streamwise velocity, (b) transverse velocity and (c) 

pressure profiles with position for £ = 0.3. Note: streamwise velocity and transverse 

velocity are drawn on same scale. The vertical dashed line is the origin at each

position.
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CHAPTER-4

CONCLUSION AND FUTURE W ORK

4.1 Conclusion

The thesis examines theoretically the two-dimensional moving wall je t flow emerging 

from a channel at moderate Reynolds number, but below the transition limit. In this case, 

the equations o f  m otion are reduced by expanding the flow field about the basic Couette 

flow. Inertia is assumed to be large enough, allowing asymptotic development in terms o f 

the inverse Reynolds number. A boundary layer forms adjacent to the free surface as a 

result o f  the singularity at the channel exit. This singularity is caused by the drop in the 

shear stress from its nonzero value at the wall inside the channel to a zero value at the 

free surface. A classical boundary-layer analysis is applied to find the flow at the free 

surface and elsewhere. The influence o f  this boundary layer is investigated by the aid o f 

the method o f matched asymptotic expansions.

The flow near the free surface is obtained using a similarity solution since this flow is 

confined to a thin inner layer that is o f the boundary layer type. The similarity profile 

does not need to be matched with the flow inside the channel at the singular point. The 

method thus avoids completely the presence o f  the singularity, which is a major source o f 

difficulty if  the problem were to be solved numerically. A similar treatment is also 

carried out over a thin layer region near the moving plate. The flow in the core region is 

then matched to the inner and outer layers. Thus, the flow velocity in the streamwise and 

depthwise directions is obtained as composite expansion by matching the flow between 

the core region and the inner and outer layers. The influence o f  wall velocity on the shape 

o f the free surface is emphasized. The formulation allows the determination o f the steady 

state flow and free surface profiles. It is found that the je t surface becomes singular very 

close to the exit. Thus the current method is not valid very close to the exit or very far 

downstream.
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4.2 Future work

The m ethod can thus be used to provide the correct boundary conditions to determine the 

je t development further downstream. The specification o f adequate boundary conditions 

is often a major problem in this case. Another extension o f the current work is 

axisymmetric flow exiting an annular tube, with the inner tube moving at some velocity. 

This problem is directly related to the process o f wire coating. The work would thus 

provide the shape o f  the coating layer on the moving cylinder. Heat transfer aspects, 

which have been neglected in the present thesis, can be incorporated in the analysis. This 

is an important extension since cooling is often associated with the coating process.
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APPENDIX

Asymptotic solution of f2(0)

In this appendix, we follow Tillett’s (1968) approach to determine the asymptotic solution. 

From the equation of f2(0) in (2.22),

f2 + | f 2 f 2 - ^ 2 2 =0 (A l)

where the boundary conditions are,

f2(0) =  f$(0) =  0 (A2)

Setting t = 0 + c, where c is arbitrary, and

f2(t) = a tz + g(t) (A3)

where a is a constant. The function at2 satisfies (A l) but not the boundary condition. From (A3),

f2' = 2 a t + g \  f2' = 2 a  + g", f2" = g" (A4)

Substituting (A4) into (A l) we get

2 i 4 4 2 1 o
g" + - a t 2g ' -  - a t g '  +  - a g  + - g g "  -  - g ' 2 = 0 (A5)

Omitting the quadratic terms from (A5) we get,

2 ? 4 4g m +  - a t V  -  - a t g '  + - a g  = 0
3 3 3

(A6)

Two solutions of (A5) are g = t and g = t2. To find a third, Tillett set g(t) = th(t). Therefore,
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g' = h  + th', g ' = 2h ' + th", g" = 3h" + th"

Substituting (A7) into (A6) we get the following,

h" +
V

—1 2 ? ̂  3t 1 + —a t 2
3 J h ' = 0

—1 2 2
Let, P (t) = 3t + — a t  and h" = f . Therefore (A8) can be written as,

f '  + P ( t) f  = 0

e i P(,)d,f' + P (,)e iP(t)d,f  = 0

l e i » P(t)dt =  e ^ P<Udt ^  |p ( t)d t  = P ( t) e ^ P<l>dt[From Leibniz theorem] 

Substituting (A11) in (A 10) we achieve the following,

J m d t f f + d j p ( m = 0
dt

d_
dt

sJgpCt)dft
=  0

e ^ P<t)dtf  = constant 

f  =  C e ^ P<‘>d‘ = h '

Then,

Jp(t)dt = | a t 3

(A7)

(A8)

(A9) 

(A 10) 

(A l l )

(A 12)

(A13)

Therefore the general solution of (A6) becomes,
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g(t) = At2 + Bt + Ce 9a* | _ ^ _  + O( r 6) |  = 0

Taking A= B= 0, we get the asymptotic solution,

2  *3 r~ — at [ ci
f2( t ) ~ a t 2 + C e  9 —  -

U a 2t6
+ .

(A 14)

(A15)
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