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Abstract
Prolyl Oligopeptidase (POP), a member of the prolyl endopeptidase family, has a role in 

several neurological disorders. Its primary function is to cleave an oligopeptidase, including 
neuroactive peptides. On the other hand POP with a Z-Pro-prolinal (ZPP) inhibitor may revert 
memory loss from neurological disorders, amnesic agents and aging. Here, the crystal structure 
of POP protein with ZPP inhibitor (Protein Data Bank PDB) and without ZPP inhibitor is 
studied using classical molecular dynamics simulations and the POP-ZPP complex behaviour 
is compared with pure POP. The basic analysis of the structures, included measuring radius 
of gyration and root mean square deviation which proved that POP structure with non-bonded 
ZPP and without ZPP are stable and maintain their structure over the entire simulation time. 
Moreover, principal component analysis (PCA) is used to analyze the motions of the structures 
by extracting the normal modes of motions in POP with and without presence of ZPP inhibitor.

Keywords: Prolyl Oligopeptidase, POP, Z-Pro-Prolinal, ZPP, Molecular Dynamics, MD, 
Inhibitor Ligands, Principal Component Analysis, PCA, Memory Loss.
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Chapter 1 

Introduction

The building blocks of all living organisms are cells [4]. Cells can be divided into two large 
groups: prokaryotic and eukaryotic cells. Eukaryotes have a nucleus and prokaryotes don’t. 
[ 120].

Eukaryote has a plasma membrane that separates the interior of the cell from the surrounding. 
Everything inside of the cell is called cytoplasm. The cytoplasm contains all the structures 
needed to keep the cell alive and functioning including the cell nucleus. Most of the dry mass 
of a cell is composed of proteins. To analyze the electrical or biochemical activity of cells, 
information can be obtained by studying the proteins. In addition to being the building blocks 
of the cells, the proteins carry out almost all of the cell functions. For example, enzymes 
(which are a type of protein) provide sophisticated molecular surfaces that are required for 
many chemicals reactions inside the cells.
Proteins inserted in the plasma membrane form channels and pumps that control the entry and 
exit of small molecules into or out of the cell. Some of the proteins carry messages from cell to 
cell, while others transmit signals from the plasma membrane into the nucleus. Some proteins 
act as very small molecular machines with moving parts to propel molecules inside the cell 
(e.g. kinesin), untangle supercoiled DNA molecules (e.g. topoisomerase) etc. [2]. Other spe
cialized proteins perform as antibodies, hormones, toxins, anti-freeze molecules, elastic fibres, 
ropes or sources of luminescence [2].
Therefore, in order to understand the behaviour of cell and the human body, proteins must 
be studied first. Proteins are divided into different categories based on their functionality. The 
most important protein groups are enzymes (catalysts of chemical reactions), structural proteins 
(supporters of the cell and tissue structure), transport proteins (carriers of small molecules or 
ions), motor proteins (movement creators), storage proteins (storing small molecules or ions), 
signalling protein (carriers of signals between cells), receptor proteins (signal detectors and 
transmitters working through the cell), gene regulatory proteins (turning genes on and off by 
binding with them) and special purpose proteins.

1



2 Chapter 1. Introduction

Dipeptide

Figure 1.1: A peptide bond. This covalent bond forms when the carbon atom from the carboxyl 
group of the amino acid shares electrons with the nitrogen atom (blue) from the amino group of 
the second amino acid. As indicated, a molecule of water is lost in this condensation reaction. 
The figure is licensed under Creative Commons Attribution-Share Alike 2.5 Generic license. 
Source: Wikipedia. [112].

Proteins have very complex structures, which allow them to function for different purposes. 
Protein molecules are made up of a long chain of amino acids which are linked to their neigh
bors by covalent peptide bonds (Fig. 1.1). The repeating sequence of atoms along the chain 
is called the polypeptide back bone. Each type of protein has a different sequence of amino 
acids (differs in their side-chains), accounting for the diversity of proteins. Most of the cova
lent bonds within the chain let the joining atoms rotating freely about the bond. Therefore, the 
polypeptide back bone can fold up in different ways where the system has the lowest energy. 
Each of the folded chains is constrained through many different non-covalent bonds, which are 
formed by atoms in the polypeptide backbone and by atoms in the amino acid side chains [2]. 
These weak bonds are hydrogen bonds, ionic bonds and van der Waals attractions described in 
chapter three.
In most of the proteins two regular patterns (secondary structure) are most likely to be present. 
The folding patterns are a helix and ¡3 sheets (Fig. 1.2). These two patterns are very common 
because they result from hydrogen bonding between N-H and C = 0  groups in the polypeptide
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back bone without involving the side chains of amino acids. They are formed by many different 
amino acid sequences.
The proteins have a variety of different chemical groups at their surface, which define the way 

they react with other molecules. Biological properties of a protein are defined by the interac
tions of that protein with other molecules. For example, antibodies can attach to viruses or 
bacteria to help the body to defend itself. Proteins stick or bind to other molecules differently. 
They can bind very tightly or weakly and the bond can lost over a larger or shorter time. How
ever, each protein can bind to one or a few molecules among all the molecules that come close 
to it. A ion, small molecule or macro-molecule that can bind to a specific protein is called a lig
and for that protein. The ligands can bind to the proteins by a set of weak non-covalent bonds: 
hydrogen bonds, ionic bonds, van der Waals attractions and hydrophobic interactions. Since 
one bond is too weak to have an effective interaction many of those weak bonds should be 
formed at the same time. To have such a condition the surface contours of the ligand molecule 
should fit very closely to the protein (Fig. 1.3)
The region in the protein that the ligand binds to is called binding site. The binding site is 

usually a cavity in the protein surface, which is formed due to the specific arrangement of 
amino acids (tertiary structure of a protein). The amino acids in the binding site can belong to 
different parts of the polypeptide chain that have come close together when the protein folds. 
Different regions of the protein surface can provide binding sites for different ligands.
In chapter two, further biophysical background on amino acids and prolyl oligopeptidases is 
presented. Prolyl Oligopeptidase family is a group of enzymes that contains four enzymes: pro
lyl oligopeptidase (POP), oligopeptidase B, dipeptidy 1-peptidase IV and acylaminoacyl pepti
dase. POP has a role in cell degeneration and apoptosis [83] which lead to characteristic cell 
changes and death but specific inhibitors of this peptidase (Z-pro-prolinal) reverts memory loss 
produced by neurological disorders, amnesic agents and ageing [168], Therefore we studied 
POP with ZPP in my work.
Chapter three, provides a brief background on the methods. To study the dynamic properties 
of POP, we used molecular dynamics. In this chapter MD’s subdivisions are explained while 
focusing on classical molecular dynamics. Moreover, different kinds of potentials and force 
fields are discussed and the suitable ones for the purpose of the present work are selected. The 
thermostats and their specific behaviour are discussed and the proper one is selected.
In chapter four, the procedure to setup the classical molecular dynamics simulations, details of 
the simulation and the analysis are explained.
Finally, in chapter five the results of the simulations are presented. The dynamic properties of 
the POP with and without a ligand inhibitor (ZPP) are compared.
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(D)

Figure 1.2: The regular conformation of the polypeptide backbone observed in the a  helix and 
P sheet. (A),(B) and (C) display the a  helix, in which the N-H of the peptide bond is hydrogen- 
bonded to the C = 0  of a neighboring peptide bond located four amino acids away in the same 
chain. (D), (E) and (F) display a ft sheet; in this secondary structure, adjacent peptide chains 
run in opposite (anti parallel) directions. The individual polypeptide chains (strands) in a 
sheet are held together by hydrogen-bonding between peptide bonds in different strands, and 
the amino acid chains in each strand alternately project above and below the plane of the sheet. 
(A) and (D) show all the atoms in the polypeptide backbone, but the amino acid side chains 
are truncated and denoted by R. In contrast, (B) and (E) show the backbone atoms only, while 
(C) and (F) display the shorthand symbols that are used to represent the a  helix and p  sheet in 
ribbon drawing of proteins. The figure is licensed under Creative Commons Attribution-Share 
Alike 2.5 Generic license. Source: Pukiwiki [84].
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Figure 1.3: The binding of a ligand to a protein. The ligand must fit precisely into the the 
protein bonding site in order to from many weak bonds simultaneously. The figure is licensed 
under Creative Commons Attribution-Share Alike 2.5 Generic license. Source: Wikipedia 
[165].



Chapter 2

Biological Background

2.1 Definitions and terminology

Proteins are made up by structural units called amino acids. Structurally, amino acids are 
molecules that contain an amine group (that contains a basic nitrogen atom with a lone pair 
Fig. 2.1), a carboxylic acid group (carboxyl group (-COOH)) and a side-chain that varies be
tween different amino acids. In other words, the amino acids are organic molecules built of the 
key elements of carbon, hydrogen, oxygen, nitrogen and sulphur.
The chemical or molecular formula for the ar-amino acids is H2NCHRCOOH, where R is an 
side-chain (Fig. 2.1). The amino group is attached to the carbon atom which is closest to the 
carboxylate group (called the a-carbon).

When the amino acids are joined together they can either form short polymer chains called 
peptides or longer chains called polypeptides or proteins. Each amino acid within the chain 
is attached to two neighboring amino acids except ones at the end. Proteinogenic or natural 
amino acids are a group of amino acids found naturally in proteins. There are twenty proteino
genic (standard) amino acids [2]. There are many other amino acids called non-proteinogenic 
or non-standard.
Within the 22 standard amino acids, 20 are geneticaly encoded (Fig. 2.2), Cystine and hydrox- 

yproline are uncommon amino acid which are not shown in the figure. Cystine is a dimeric 
amino acid formed by the oxidation of two cysteine residues that covalently link to make a 
disulfide bond. Hydroxyproline differs from proline by the presence of a hydroxyl (OH) group 
attached to the C atom. Proteins that increase the rate of chemical reactions (working as cat
alyzers) are called enzymes. In enzymatic reactions, the molecules at the beginning of the 
process (substrates) are converted into different molecules (products). Almost all chemical re
actions in a biological cell are accelerated by enzymes.
Enzymes that cut peptide bonds are called proteinases or peptidases, e.g. serine peptidases.
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Alpha-Carbon

Amino Group
Side Chain Carboxylic Acid Group

Figure 2.1: Structural formula of an amino acid with the amino group, carboxyl group and side 
chain (R group).The figure is licensed under Creative Commons Attribution-Share Alike 2.5 
Generic license. Source: Wikipedia [118]

Exopeptidase enzymes catalyse the removal of an amino acid from the end of a protein. En- 
dopeptidase or endoproteinase peptidases break peptide bonds of nonterminal amino acids. 
Therefore, endopeptidases cannot break down peptides into monomers but exopeptidases can 
break down proteins into monomers (amino acids). A specific case of endopeptidases are 
oligopeptidases, which have oligopeptides instead of proteins as their substrate. Oligopeptides 
are peptides of a small number (3-40) of component amino acids as opposed to a polypeptide. 
In the following section, a specific group of enzymes, the prolyl oligopeptidase family, is ex
plained in order to create a better understanding of the subject of this thesis.

2.2 The Prolyl Oligopeptidases (POPs)

The prolyl oligopeptidase family (POPs) are enzymes that belongs to a new class of serine pep
tidases and cannot hydrolyze peptides containing more than about 30 residues. POPs cleave 
peptide bonds at the carboxy group of proline residues. POP was first discribed in the 1991. 
Rennex et al. analyzed the amino acid sequence of a prolyl endopeptidase (prototype pro
lyl oligopeptidase) from pig brain [137] (Fig. 2.3). Since the mentioned prolyl endopepti
dase hydrolyses only oligopeptides (not proteins), in contrast with the proly endopeptidases 
from various species of bacteria that can degrade immunoglobulin A, it was renamed to pro
lyl oligopeptidase (prototype prolyl oligopeptidase) [137].Then dipeptidyl peptidase IV, acy- 
laminoacyl peptidase and oligopeptidase B were included to the prototype prolyl oligopepti
dase [137,132] and made this POPs family (Fig. 2.3).
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Figure 2.2: Structure of the 20 amino acids that are encoded which these amino acids found 
naturally in proteins.The figure is licensed under Creative Commons Attribution-Share Alike
2.5 Generic license. Source: Wikipedia [10].
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Obtaining the structure for every protein by experimental methods such as X-ray crystallogra
phy is tedious and time consuming. But by using homology modeling useful structural mod
els can be created to study the proteins. Homology modeling or comparative modeling of a 
protein involves constructing a 3D model of the required protein and an experimental three- 
dimensional structure of a homologue protein. Homologue proteins have a common evolution
ary origin and they share sequences or have three-dimensional similarities.
The crystal structures of the members of the prolyl oligopeptidases family show that the en
zymes contain a peptidase domain with an a//? hydrolase fold, and its catalytic triad is covered 
by the central tunnel of an unusual seven-bladed /2-propeller that operates as a gating filter, 
excluding large, structured peptides from the active site.
The catalytic triad, serine (Ser), aspartate (Asp) and histidine (His), are the residues inside the 
active site which work together to break peptide bonds on polypeptides. The catalytic triad 
involved in the catalytic actions are concentrated in the carboxyl terminal region. The carboxyl 
terminal (or C-terminus, carboxy-terminus, C-terminal tail, C-terminal end, COOH-terminus, 
Fig. 2.4) is the end of the protein or peptide that has a free carboxyl group (-COOH).
The members of the family are important targets of drug design. Prolyl oligopeptidase is in
volved in amnesia, depression and blood pressure control, dipeptidyl peptidase IV in type 2 
diabetes and oligopeptidase B in trypanosomiasis [132].

The four peptidases have similar three-dimensional homology structure which have been 
explained. They have specific distinctions which explain why they are different types of pep
tidases. The prolyl oligopeptidase and oligopeptidase B are endopeptidases which are found 
in the cytosol of cells. Acylaminoacyl peptidase and dipeptidyl peptidase IV are exopepti
dases. Acylaminoacyl peptidase is a cytoplasmic omega peptidase. Dipeptidyl-peptidase IV is 
a membrane-bound enzyme that cleaves dipeptides from the amino terminus of oligopeptides. 
The amino terminus (also known as N-terminus, NH2-terminus, N-terminal end or amine- 
terminus, Fig.2.4) is the start of a protein or polypeptide terminated by an amino acid with a 
free amine group (-NH2).
The selectivity for oligopeptides with less than roughly 30 amino acid residues, is an important 

property of this family which has been analyzed by studying the three-dimensional structure of 
prolyl oligopeptidase. In this thesis our focus is on POP that is explained in the next section.

2.2.1 Prolyl oligopeptidase

POP was discovered in the human uterus as an oxytocin-degrading enzyme [101, 163] (oxy
tocin is a mammalian hormone acts primarily as a neuromodulator). This peptidase was orig-
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Figure 2.3: Amino Acid Sequence and Sec- ondary Structure of Prolyl Oligopeptidase The 
sequence from porcine brain (Rennex et al., 1991) is shown in the top row. Residues different 
in the human lymphocyte enzyme (Vanhoof et al., 1994) are shown in the second row. The 
third strand within the (3 sheets of the propeller domain always terminates with an aspartate 
residue (boxed). Members of the catalytic triad (Ser554, His680, and Asp641) are also boxed. 
The secondary structure as- signment is made according to DSSP (Kabsch and Sander, 1983). 
The figure was produced with ALSCRIPT (Barton, 1993). From [137] with permission. ©: 
Elsevier
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Figure 2.4: A tetrapeptide (example: Val-Gly-Ser-Ala) with green highlighted N-terminal 
or-amino acid (example: L-valine) and blue marked C-terminal or-amino acid (example: L- 
alanine). Amino terminus is the start of a protein or polypeptide which is terminated by an 
amino acid with a free amine group (-NH2) and The carboxyl terminal is the end of the amino 
acid chain that has a free carboxyl group (-COOH). The figure is licensed under Creative Com
mons Attribution-Share Alike 2.5 Generic license. Source: Wikipedia [92].

inally named post-proline cleaving enzyme because it hydrolyzes the peptide bond on the car
boxyl side of proline residues. Later, its another name, prolyl endopeptidase, was recom
mended with respect to the enzyme nomenclature. Finally, it was named prolyl oligopeptidase 
to emphasize the special characteristics of the enzyme that are explained next [132].
POP is present in most organisms and tissues. It also has been cloned from different sources 
such as porcine brain [136, 139], Flavobacterium meningosepticum [166, 29, 44], human 
lymphocytes [158, 147], mouse brain [82], bovine brain [167], Sarcophaga peregrina [125], 
Aeromonas hydrophila [94] and Pyrococcus furiosus [140, 65]. The mouse prolyl oligopep
tidase gene has been extensively studied and the structure and localization of it are resolved
[96]. A decrease in serum POP activity has been observed in patients suffering from different 
stages of depression [111].
By studying inhibitors of POP in more details about physiological effects of this enzyme can 
has been obtained. POP has been proven to have negative effects on memory loss that is caused 
by neurological disorders, amnesic agents and aging [168,132] but inhibiting POP has shown 
positive reactions in the mouse model of accelerated senescence by suppressing the forma
tion of amyloid /3-peptide in neuroblastoma (a type of nerve cancer) cells [146] and is thus 
preventing amyloid-like depositions. However, specific inhibitors do not affect the formation 
and degradation of /3-amyloid peptides and /3-amyloid precursor protein related to Alzheimer 
disease [131]. This behaviour can be explained by the fact that the POP does not hydrolyze 
large peptides and proteins. POP also has a role in the blood pressure regulation by participat
ing in the renin-angiotensin system which regulates the blood pressure through metabolism of
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bradykinin and angiotensins [164].
The peptidase domain of POP, which is catalyzing the cleavage of the peptide bond, is located 
at the carboxyl terminus. By studying pig brain POP, the active sites were identified to be 
Ser554 [139] and His680 [152].
The most important structural information was obtained from the 1.4x 10~n m resolution crystal 
structures of POP and it is complex with benzyloxycarbonyl-pro-prolinal (Protein Data Bank 
codes lqfm and lqfs) [55]. A very close homologue of human POP which is porcine POP 
has been crystallized on its own (PDB database ID 1H2W) and with a benzyloxycarbonyl-pro- 
prolinal (also called Z-pro-prolinal (ZPP)), (Fig. 2.6) inhibitor (PDB database code 1QFS) 
covalently bound to the serine 554 residue through a hemiacetal bond [55]. ZPP inhibitor has 
a hydrophobic head which sterically blocks the active site and an aldehyde tail that forms a re
versible covalent hemiacetal bond with the SER555 residue of the catalytic domain (Fig. 2.5). 
In this thesis we used the structure of the complex of porcine POP with ZPP (1QFS).

POP has two domains: the catalytic and propeller domain. The peptidase or catalytic domain 
is built up of residues 1 - 7 2  and 428 -  710. The residues 73 -  427 build the propeller domain. 
The peptidase domain has a characteristic a/fi hydrolase fold [126, 149, 34, 145] containing a 
central eight-stranded P  sheet (See Fig. 1.2). All of the eight strands except the second one are 
aligned parallel to each other. However, the f3 sheet itself is significantly twisted; it is parted 
into two wings by two helices on one side and six helices on the other side (Fig. 2.8) [116]. 
The propeller domain is based on a sevenfold repeat of four-stranded antiparallel p  sheets. The 
P  sheets are twisted and radially arranged around their central tunnel (Fig. 2.8 and Fig. 2.9) 
and facing each other. Their structural stability is sourced predominantly from hydrophobic 
interactions. The rest of the known propeller proteins differ in their structure from POP by 
having a closed loop (also known as the velcro) between their first and last blades [155]. The 
velcro will be explained with the G protein as an example. The G (guanine nucleotide-binding) 
proteins are a family of proteins that transmit chemical signals from outside the cells. In the 
P  subunit of G proteins, the velcro is closed. The closure is caused by the hydrogen bonds 
in the main chain that connect one p  sheet from the amino terminus and three antiparallel P 
sheets from the carboxyl terminus. In the six-, seven- and eight-bladed propellers the velcro is 
closed in a similar way [155,14]. However, in smaller four-bladed proteins such as C-terminal 
domain in hemopexin and collagenase the Velcro is closed by forming a disulphide (SS-bond) 
bond between the first and last blades [51,107]. In contrast, the POP does not stabilize the cir
cular structure by this system: only hydrophobic interactions between the first and last blades 
keep the Velcro closed. The /3-propeller is attached to the catalytic domain by the two con
necting polypeptide main chains by forming hydrogen bonds and salt bridges but mainly with 
hydrophobic forces.
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Figure 2.5: A snapshot of the structure of POP with ZPP front view, the protease catalytic 
domain is shown in purple and the seven-bladed ̂ -propeller that acts as a gating filter mecha
nism is shown in yellow. The ZPP inhibitor inside the central cavity is bound to the protease 
catalytic domain through a reversible hemiacetal bond.
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Figure 2.6: The chemical structure of ZPP. The three fragments within the ZPP molecule that 
we have defined, PROl, PR02 and PHE, are shown. From [95] with permission. ©: Taylor 
and Francis.

Figure 2.7: Structure of porcine POP. The ribbon diagram is color-ramped blue to red from the 
amino to carboxyl terminus. The catalytic residues are shown in ball and stick representation. 
From [132] with permission. ©: Springer
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The active site composed of the catalytic triad (Ser554, Asp641, His680) is located in a large 
cavity at the interface of the catalytic and /? propeller domains [55].
Proteases have different mechanisms in selecting substrates to prevent uncontrolled protein 
degradation. The entrance of the propeller in front of the active site is approximately 4 x  10~12m 
which is is very narrow compared to an average peptide which is approximately 6 -  12x 10-12m. 
The entrance is enlarged when blades 1 and 7 (the open blades) are partially separated. This 
system restricts the access to the active site preventing large peptides from accidental hydroly
sis while still giving access to the rest of them. This mechanism was verified by synthesizing a 
disulphide bond between blades 1 and 7, resulting in inactivating the enzyme [56]. Moreover, 
the oscillating propeller blades on the enzyme act as a gating filter during catalysis [132]. It 
has been observed that the propeller of the hyperthermophilic enzyme (a prolyl oligopeptidase) 
opens to a large extent at high temperatures in order to hydrolyze proteins such as azocasein 
[65, 132,64],

2.2.2 Oligopeptidase B

Oligopeptidase B was initially found in E. coli bacteria [128, 127] where it was associated to 
have trypsin-like specificity, cleaving peptides at lysine and arginine residues [128], Oligopep
tidase B is also found in protozoan parasites, such as Trypanosoma cruzi (related to Chagas 
disease in humans) [28], and the African trypanosomes (causing nagana in cattle and sleeping 
sickness in humans). The oligopeptidase B enzyme has been found to be a cytosolic protein 
causing osmotic shocks [128]. The catalytic triad of oligopeptidase B is composed of Ser532, 
Asp617 and His 652 [93]. Oligopeptidase B from E. coli has approximately 25% similarity to 
POP of porcine brain [93]. Moreover, the homology is higher in the peptidase domain specially 
around the catalytic groups compared to the propeller domain.

2.2.3 Dipeptidyl-peptidase IV

Unlike POP and oligopeptidase B, dipeptidyl-peptidase IV is a dimer (two proteins bound 
together), an exopeptidase, a glycoprotein (oligosaccharide covalently attached to protein side- 
chains), an ectoenzyme (any enzyme found outside of a cell) and bound to the cell membrane. 
Dipeptidyl-peptidase IV mainly cleaves dipeptides with proline residue. Also it cleaves the 
alanine from the amino terminus of oligopeptides [33, 80]. Its cellular localization and en
zymatic properties are different from those of other dipeptidy 1-peptidases. The specificity 
of dipeptidyl-peptidase IV is similar to that of dipeptidyl-peptidase II. In contrast, neither
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Figure 2.8: General structure of POPs family (e.g. acylaminoacyl-peptidase). The a  helices 
are shown as yellow cylinders, (3 strands in the N-terminal domain are shown in blue, and J3 
strands in the C-terminal domain are shown in red. The two cysteine residues in acylaminoacyl- 
peptidase (Cys416 and Cys453 of lEV6.pdb) located in the C-terminal domain form a disulfide 
bridge between helices a6 and a l  and are shown as green circles. From [19] with permission. 
©: Elsevier
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Figure 2.9: Two cysteine residues in Acylaminoacyl-peptidase (Cys416 and Cys453 of 
lEV6.pdb [148]) a  helix, /? sheet, N-terminus and C-terminus are shown in this figure. In 
Cystein amino acids the green atoms are sulphur which make disulphid bond.

N-terminal

a-helix Cys 416

C-terminal

(3-sheet
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His 680

Ser 554

Asp 641

Figure 2.10: Side view of POP (1QFS PDB code [55]). The catalytic domain the /1-propeller
domain and the catalytic triad are shown



C
at

al
yt

ic
 d

om
ai

n

2.2. The Prolyl Ougopeptidases (POPs) 19

Figure 2.11: Side view of Oligopeptidase B(2XE4 PDB code [115]). The catalytic domain and
/3-propeller domain is shown also The catalytic triad are shown
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dipeptidyl-peptidase I nor dipeptidyl-peptidase III cleave at proline residue [77]. 
Dipeptidyl-peptidase IV has many different functions in cells. In intestinal adrenal brush- 
border membranes, the dipeptidyl-peptidase IV affects peptide degradation and amino acid 
scavenging. In a study with rats lacking dipeptidyl-peptidase IV resulted in drastic weight loss 
to them [154],
Dipeptidyl-peptidase IV reduces signals by cleaving exterior peptide mediators. It also affects 
signal transduction (DNA is transfer from one gene to another) or adhesion acting as a receptor 
in both processes. Also, the enzyme is involved in cell-extracellular matrix interactions espe
cially with collagens (animal proteins) [85].
Dipeptidyl-peptidase IV cleaves the amino-terminal His-Ala or Tyr-Ala dipeptides from glucagons 
like peptide-1 (GLP-1) and gastric inhibitory polypeptide (GIP). GLP-1 and GIP stimulate in
sulin release. Therefore, the dipeptidyl-peptidase IV inhibitors can reduce degradation of the 
peptides and increasing the release of insulin. Accordingly, these inhibitors have been very 
helpful in drug design for type 2 diabetes [46,161].
The amino acid sequences of dipeptidyl-peptidase IV have been determined from different 
species of mammals and bacteria by complementary DNA (cDNA) cloning and sequencing. 
The bacterial enzymes have shorter residues compared to those of human (766), rat (767) and 
murine (760) (Fig. 2.3). In Flavobacterium meningosepticum and Porphyromonas gingivalis 
the dipeptidyl-peptidase IV has 811 and 723 residues, respectively, with a 16-residue signal 
peptide. The rat enzyme has a short cytoplasmic tail (6 residues), a transmembrane section (23 
residues) and a long extracellular peptide chain (738 residues) [124]. For the mouse enzyme, 
the residues of the catalytic triad are Ser624, Asp702 and His734 [36].

2.2.4 Acylaminoacyl peptidase

Acylaminoacyl peptidase, also known as acyl-amino-acid-releasing enzyme, acylpeptide hy
drolase and acylaminoacyl peptide hydrolase, acts as a catalyst in the removal of an N-acylated 
amino acids from blocked peptides [88]. Acylaminoacyl peptidase cleaves peptides with dif
ferent N-terminal acyl groups, such as acetyl, chloroacetyl, formyl and carbamyl [86]. Blocked 
peptides containing two or three amino acids are hydrolyzed faster than longer peptides [87], 
but the N-terminally blocked proteins are not a target of this enzyme. [52].
In contrast to POP and oligopeptidase B, which are monomers, and dipeptidyl peptidase IV, 
which is a dimer, acylaminoacyl peptidase has four identical subunits. It has been obtained 
from human erythrocytes [88], ovine liver [52], bovine liver [57], rabbit muscle [134], bovine 
lens [32] and porcine intestinal mucosa [135]. The sequences of human, porcine and rat acyl-
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Figure 2.12: Side view of dipeptidyl-peptidase IV(1J2E PDB code [74]). The catalytic domain,
the /2-propeller domain and the catalytic triad are shown
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aminoacyl peptidase have 732 residues and their sequences are over 90% identical to each 
other. The members of the catalytic triad are Ser587, His707 and Asp675 [132]. 
Acylaminoacyl peptidase has also been purified and cloned from the thermophilic archaeon 
Pyrococcus horikoshii [81]. It is found to be 100 residues shorter than the mesophilic acy
laminoacyl peptidases, and is a dimer rather than a tetrameric enzyme [132, 81].
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n

Ser 445

Asp 524

His 556

Figure 2.13: Side view of acylaminoacyl peptidases (1VE6 PDB code [20]). The catalytic
domain, the yS-propeller domain and the catalytic triad are shown



Chapter 3

Background on Methods

3.1 Introduction

Molecular Dynamics (MD) is a computer simulation of physical movements of atoms and 
molecules. It is a versatile tool to study equilibrium and transport properties of materials, e.g. 
alloys or liquid solutions. [53]. MD simulations is a bridge between experiment and theory. 
It share many concepts with the real experiments. For instance, to measure the temperature 
of a liquid solution, a sample of the solution should be prepared and a thermometer must be 
inserted in it. Then, the temperature is measured in certain intervals for a period of time. MD 
simulation may test something that are difficult or impossible in laboratory. The MD simula
tion for the former experiment starts with preparing the sample in the simulation domain, i.e. 
a model system is created with N particles and Newton’s equations of motions are solved until 
the system establishes a steady state in which the properties of the system do not change in 
time. This is called equilibration. After that the properties of the system can be analyzed (or 
measured). The quality of the simulated and real measurements both depend on factors such 
as proper model preparation, correct sampling periods [32]. Theoretical models of biophysical 
systems are too complicated to be analytically solved unless they are simplified by large ap
proximations.
The numerical simulations help to understand the behaviour of complicated theories and eval
uate the parameters obtained from experiments. Numerical simulations resolve microscopic 
details of the system that are impossible or extremely hard to observe with experimental meth
ods. Numerical simulations can also be used to validate and develop hypotheses made based 
on limited experiments. Computer simulations can be thought of as a tool to perform extremely 
controlled experiments, where every detail of the system can be adjusted. [63]
In the following sections, a summary of the different molecular dynamics approaches is pre
sented.

24
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3.2 Method

MD simulations can be divided into different categories depending on the method of calculating 
the forces within a given molecular system:

3.2.1 Ab Initio Molecular Dynamics (AIMD)

Ab initio MD simulations have been designed for studies of electronic systems since computa
tional molecular dynamics system by using quantum mechanical approaches. In this approach 
the nuclei are treated as quantum particles with quantum mechanics path formula and the elec
tronic degrees of freedom are treated based on electronic structure theory. This method has 
more accuracy than other MD simulations (Fig. 3.1). Simulation systems consist typically of
about 10-1000 atoms and simulation times are limited to a maximum of about 0.1 ns [162],
Ab initio MD is based on Newton’s equation of motion as well as the Schrodinger equation so 
this method reduces the equations from a fully quantum description (Schrodinger’s equation) 
to a classical description (Newton’s equation). One can divide the ab initio method into three 
sections:

1. Born-Oppenheimer Molecular Dynamics
In Born-Oppenheimer MD, assume that the motions of electrons and nuclei can be sep
arated from each other. The nuclei are propagated by integration of Newtons equation, 
means fixed nuclei position (nuclei is much heavier than electrons) at time and solve the 
equation stationary Schrodinger’s equation:

M,R  = -V / min |( 'P 0 \Het\ VP0)} . (3.1)

£ 0T 0 = HelV 0 (3.2)

where Mt and 'To are the mass of nucleus I  and electronic ground state and Eq is energy 
of the nuclei at ground state. Hei is time-dependent via the nuclear coordinates {/?/(f)}. 
If we use KohnSham density functional theory to calculate E0 when given KohnSham 
orbitals’ (O, are orthonormal) and position of 0th nuclear, an approximate electronic 
Hamiltonian (H*s ) must be calculated by iterative wave function optimization at each 
time step. The eigenvalue of H*s is calculated (E0).
Density functional theory (DFT) is a quantum mechanical modelling method used in 
evaluating the electronic structure of many-body systems (usually at the ground state). 
The Kohn-Sham DFT (KS DFT), is used to simplify the intractable many-body problem 
of interacting electrons in a static external potential [100, 129, 45]. The reduced prob
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lem only involves tractable non-interacting electrons moving in an effective potential the 
effective potential includes the external potential and the effects of Coulomb interactions 
between the electrons (including the exchange and correlation interactions).

2. Car-Parrinello Molecular Dynamics

The Car-Parrinello method [25] based on density functional theory is constructed to be 
based on the use of the electron density function. Because the Car-Parrinello method 
is MD combined with DFT in the adiabatic case, Car and Parrinello [25] introduced 
an extended Lagrangian which yields the forces achive on the electrons if differential 
to the possible orbitals interpreted as classical field, similar as for the classical nuclei. 
In Car-Parrinello MD simulations, the electronic density-functional theory is used to 
approximate the local density to compute the energies and densities of the electrons 
[138] or only of the valence electrons if the pseudo potential approximation is used. The 
Car-Parrinello method assumes that the system is in its electronic ground state and that 
electrons adiabatically follow the nuclear motions. Therefore motion of nuclei and elec
trons can be separated to maintain the system in the electronic ground state, the electronic 
energy must be minimized in each time step [26, 114].

3. Non-Born-Oppenheimer QM/MM molecular dynamics

A quantum mechanical (QM)/molecular mechanics (MM) framework implementation of 
an extended non-adiabatic AIMD approach can solve the problems related to size limi
tation of previously described methods in this chapter. In QM/MM framework, the elec
trons in the QM subsystem are described by a total wave-function ('PeA//A/A/) which sat
isfies the time-dependent Schrodinger equation (TDSE) in environments with no photo
chemical reactions . The QM/MM coupling is defined through a Hamiltonian M)
which is a function of all the nuclear coordinates in the QM and the MM subsystems
[ 102].

3.2.2 Classical Atomistic Molecular Dynamics

Classical MD simulations can be used to study the natural time evolution of classical many- 
body systems on a time scale of the order of 10-14-10-8 second. The resolved state of the 
system for these time scales are suitable for the study of many structural and dynamical prop
erties. However, the relevant fluctuations must diminish on time scales significantly shorter
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Macroscale

Mesoscale

Atomistic level

Times: ~1 millisec and above 
Lengths: over 1 micrometer 
Example: anything visible to the naked eye 
Methods: finite elements, phase fields

Times: 10 ns to milliseconds 
Lengths: 10 nm -1 micrometer 
Example: microphase separation of polymers 
Methods: dissipative particle dynamics

Times: ~nanoseconds 
Lengths: -nanometers 
Example: molecular interactions 
Methods: atomistic molecular dynamics
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Subatomistic level Times: femto to picoseconds 
Lengths: over 1 micrometer 
Example: electronic structure 
Methods: ab initio methods

Figure 3.1: Different time scales and length scales of typical computational methods and bio
logical entities related to the various length scales. The dilemma between speed and accuracy 
is always present in simulations: it is always a trade-off between the two. In analogy to the 
various simulation methods at different time scales and length scales, it is not possible to use 
single experimental methods to cover all properties. Figure courtesy of Dr. M. Karttunen.
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than the order of 10-8s [53]. Classical MD simulations are able to reach time scales of the 
order of 100 ns.
Details of classical MD simulation in section 3.4.

3.2.3 Coarse Grained Classical Molecular Dynamics

Approximate coarse-grained models are used to study systems containing very many molecules 
for long of times. For example, colloidal suspensions involve dispersions of mesoscopic 
(10nm-l/rm) solid particles ( Fig. 3.1), where each of the particles consist of 106-109 of atoms 
[108, 53]. These make it nearly impossible to perform a classical MD simulation to observe 
several thousand colloids over an experimentally relevant time interval (milliseconds to sec
onds). Therefore, colloidal suspensions must be modelled using coarse-grained models.
The conventional all-atom methods for MD simulations need large amounts of computer mem
ory and require long processing times. Moreover, the simulations for systems with long time 
scales (e.g. larger than 10ns) would require extensive amount of processing due to the large 
number of timesteps the simulation should go through. Therefore, the reduced scale (coarse
grained) models should replace the all-atom methods [53], because in coarse grained method 
instead of using every atom of system (classical MD), it use a group of atoms [53]. Coarse- 
graning approaches are needed to study systems with length scales in 10-12 m -10-9 m and time 
in 10ns- 0.01s (Fig.3.1) [159].
In some coarse graining methods, e.g. data partitioning [117], the derivation of interaction [17] 
potentials between CG particles is targeted at thermodynamic properties like energies and free 
energies. These methods are recommended for processes whose hydrophilicity or hydropho- 
bicity arguments are more significant.
There are also structure-based coarse graining methods [110] in which the CG interactions 
are selected in a way that the model can generate specific structure properties that are com
monly expressed by radial distribution functions. The distributions functions must be generated 
from all-atom molecular simulations [119, 109, 142]. Although the structure-based methods 
are suitable to re-insert atomistic coordinates, their performance in predicting thermodynamic 
properties and high-order structural correlations of the system is not clearly verified [141], 
Another group of CG models uses a force matching method [48,13] to predict CG force field to 
minimize the difference between the force in the atomistic system and the CG forces. This can 
be done by optimizing the CG interactions to create a many-body multi-dimensional potential 
of the mean force [122, 160, 141].
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3.3 Integration

In order to solve the equations of motion which are nothing but differential equations, they 
must be properly discretized in time and space. The equations are integrated with respect to 
time. The accuracy and efficiency of the simulation is directly sensitive to the integration for 
Newton’s equation of motion (eq. 3.3).

m, (3.3)

where E is the potential energy of the system that is obtained by the force-field (F, force over 
ith particle), ~Xi distance from ith particle to others particle and dt time step.
For instance, the Verlet scheme in one dimension can be represented as:

x(t + At) = 2x{t) -  x(t -  At) + (A,)2—  + 0((A,)4), (3.4)
m

which indicates the scheme has accuracy of order of (A,)4. The Verlet scheme for the equations 
of motion can be represented as:

~r (t + At) -  r (t) + Atv(t) + (At)2
2 m

(3.5)

~v (t + At) -  T ( „  + iA (( f ( '  + Ai) + F ( ,) ) 
2 m m

(3.6)

Leap-frog integration scheme is one of the most common schemes, which is a version of Verlet 
scheme. The leap-frog scheme for the equations of motion can be represented as:

_>/ Am _>/ Am F ( t ) A
v (i + i )  = v r y ) + —

~r ( t  +  A t )  = ~r ( t ) + ~ v  i t  +  ^ - j A t

(3.7)

(3.8)

The leap-frog algorithm is time-reversible and preserves volume in phase space which 
are both important in Hamiltonian systems. Energy is conserved in short term and even the 
long term energy error is still small [75, 53, 121]. Since the MD simulations produce average 
properties of ensemble of particle, the exact trajectories and consequently the small drifts are 
less important. A disadvantage in leap-frog method is that the positions and velocities of
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the particles are not calculated at the same time. However, the inconvenient related to this 
fact can be alleviated by averaging the velocities at plus and minus half a step and using the 
simultaneous velocities.

3.4 Force-Field

For an MD simulation the equations of motion must be solved using computational methods. 
As the initial setup the coordinates and momenta for all the particles in the system set up. 
Since in classical MD the quantum effects are not explicitly incorporated in the formulations, 
the time-dependent Newton’s equations of motion are solved:

(Fxì ->
m‘l F  = F‘ =

aE(PI) (3.9)

where E  is the potential energy of the system that is obtained by the force-field (xi is distance 
from ith particle to others particle).

The energy (E) is a function of the atomic positions (R) for all of the atoms in the system. 
The atomic positions are normally in Cartesian coordinates. Energy is decomposed into to 
two parts: bonded (internal) and non-bonded (external) energy. The bonded energy {Ebonded) 
corresponds to the bonds, angles and bond rotations in a molecule. These energy terms are 
typically described within a single molecule for atoms that are no further than 1,2 or 3 covalent 
bonds away from each other, respectively. The non-bonded energy {Enon_bonded) represents the 
interactions between the atoms that do not share a bond or atoms that are separated by three or 
or more covalent bonds.

Vf/?) — Ebonded +  Enon-bonded (3.10)

The Ebonded term (covalent term) is a sum of three terms:

Ebonded — Ebond-stretcb + E angle-bond +  E rotate-angle-bond (3.11)

bond strain: Ebond. stretch (Fig. 3.2,a) is a harmonic potential representing the interaction 
between atomic pairs where atoms are separated by one covalent bond. It is the approximation 
to the energy of a bond as a function of displacement from the ideal bond length (r°.). The force 
constant {kbtj) implies the strength of the bond. The ideal bond lengths (r?.) and force constants 
(&f.) are defined for each pair of bound atoms and depend on the type of atoms or constituents. 
The values for bonded interactions are obtained from experimental methods (X-ray crystallog
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raphy and spectroscopy) as well quantum mechanical calculations [15].

fob
= £  J  ( '« - '•? ,)  (3-12)

ij
(3.13)

The force constant is usually determined using experimental data, e.g. infrared stretching 
frequencies, or quantum mechanical calculations. Moreover, the bond length is determined 
from high resolution crystal structures or microwave spectroscopy data, 
angle strain: Eang^bond (Fig- 3.2,b) is a harmonic potential related to deviations of the bond 
angles (0) from the their ideal values (0°). The values of 0° and k?ijk depend on the type of atoms 
constituting the angle. They actually represent the deviation from an ideal geometry. Since they 
are penalty functions, the sum of them should be close to zero in a perfectly optimized structure.

(3.14)

(3.15)

torsional potential: E rotate-angie-bond (Fig- 3.2,c) represents the torsion angle potential func
tion. It models the presence of steric barriers between atoms separated by 3 covalent bonds. 
This term causes a rotation, described by a dihedral angle (<Piju) and coefficient of symmetry 
(n -  1,2,3) (Vnijki) around the middle bond. This potential is assumed to be periodic and is 
often expressed as a cosine function.

E  rotate-angle-bond =  Y - l Y j  [ 1 +  C0S ~  ^ J k l)]  ( 3 -1 6 )
i,j,k,l n

These energy terms are typically described within a single molecule for atoms that are no 
further than 1, 2 or 3 covalent bonds away from each other (dihedral angle), respectively.

The non-bonded interaction is sum of the LJ interaction energy (E u )  and the electrostatic 
interaction energy (Eekctroslalic).

•non-bonded =  E u  +  E electrostatic (3.17)

The LJ interactions are include repulsive and attractive forces between two atoms. The repul-



32 Chapter 3. Background on M ethods

(°) (d)

Figure 3.2: Ball-and-spring representations of (a) bond stretching, (b) angle bending, (c) tor
sion, and (d) nonbonded interaction.

sive force arises at short distances due to strong electron-electron interaction. The attractive 
force (dispersion force), originates from fluctuations in the charge distribution in the electron 
clouds. The fluctuation in the electron distribution on one atom or molecule creates a dipole 
that will induce another dipole on the other atom, which then leads to an attractive force. Both 
the repulsion and attraction effects are zero at long distances, but the repulsion force acts only 
at short distances while the attraction act at longer distances. Therefore, the atoms would stay 
at a distance which creates a minimum energy system. The value of energy at the minimum 
(s) and the optimal separation of atoms (rm) depend on the type of these atoms. Note that rm is 
roughly equal to the sum of LJ radii of the atoms.
The LJ interaction is most often modelled using the Lennard-Jones (LJ) potential (Eq. 3.18). 

The LJ potential implements the interaction energy using the atom-type dependent constant C6
and C 12. Values of C6 and C 12 are determined by experiments such as non-bonding distances

. . c®.
in crystals and gas-phase scattering measurements. In the LJ interactions repulsion term is -f-

rij
cjf

and dispersion term is -ft.

ELennard-Jones ~~ ^  ^
non-bondedpairs

r r n
C ij

i 2

r*6 \
'-'ij

IJ /

(3.18)

The LJ potential may also be written as:

~ ^  ’
‘J

( erf. Y|
‘j

r12
r

\\ i j  / v i j  ) )

(3.19)



3.4. F orce-F ield 33

Figure 3.3: Lennard-Jones Interaction, e  is the depth of the potential and rm is distance in 
that potential, <x is that distance which potential is zero. The figure is licensed under Creative 
Commons Attribution-Share Alike 2.5 Generic license. Source: Wikipedia [104].

The electrostatic interaction between a pair of atoms (Eeiectrostatic) is represented the electrostatic 
interactions between all the charged atom pairs by Coulomb potential:

Ucoul (3.20)

The so is the electrical permittivity of space and ri; is the distance between two atoms having 
charges g, and qj.
In my work we used cut-off radius for LJ interactions and Coulomb interactions. They can be 

modified by a shift function to replace the truncated forces by forces that are continuous and 
have continuous derivatives at the cut-off radius. The shift function produces a considerable 
modification of the Coulomb potential but for LJ potential is minor. Then coulomb potential 
was modified by using Particle-Particle Particle-Mesh (PPPM), Ewald, or PME [1]. In this 
thesis we used Particle-mesh Ewald (PME). So first would explain Ewald summation: In nor
mal Ewald summation [32], a generic interaction potential (e.g. coulomb potential) (<p(r)) is 
separated into two terms: a short-ranged part <psr(r) that sums quickly in real space and a long- 
ranged part <pir(r) that sums quickly in Fourier space. The basic idea of particle mesh Ewald
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Potential

Figure 3.4: Coulomb potential; interaction between two particles of opposite charge(e.g. elec
trons) for lower part and upper part is for two same charge(e.g. electron and proton), r distance 
between two particles The figure has been released into the public domain, source: srikant.org 
[151].

summation is to replace the direct summation of interaction energies between point particles.

Etotal = Y j ^ ri ~ r‘) = Esr + Elr (3-21)
Uj

Where, Esr is the sum of the short-ranged potential in real space (particle part):

Esr = Y  VsriT] -  n) (3.22)
ij

and Eir is a summation in Fourier space of the long-ranged part:

Elr = Y  |p(»f <3'23)
k

<btr and p(k) are the Fourier transforms of the potential and the charge density.
Both of the above summations converge quickly (exponential convergence) [50, 41, 42, 103] 
in real and fourier spaces. The summations E sr and Etr converge with a high rate in real and 
fourier spaces so that they can be truncated without increasing the numerical error with lower 
the numerical effort. The Fourier transform p(k) of the charge density field is obtain by the Fast
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Fourier transform (FFT) method by evaluating the density field on a discrete lattice in space. 
[103]
The final Elotai-couiomb would be as:

E total-coulomb ~ (3.24)

that

E l r  =

k  k ± Q

(3.25)

E s r  = \  Z ~ ~ e rfc ( V a r j 'X (3.26)
z  i * j  r 'J

N

II (3.27)
k

also Emai-couiomb includes a self interaction (a point charge interacts with charge cloud), so Esetf  
will be:

Eseif  = - ( - ) *  f V  (3.28)
7T *r~ ri=l

One of the limitations in these methods rises from using a fixed set of atom types to determine 
the parameters for the force field. Usually, the atom types are used to define an atom in a 
particular bonding situation. For instance, an aliphatic carbon atom will be different from a 
carbon atom found in a Histidine ring. However, in the simulations, instead of presenting each 
atom in the molecule as a unique one described by unique set of parameters, the atom types 
are grouped into certain number of sets to minimize the number of atom types and maximize 
simulation speed.
Tom Draden [49], for updating Ewald summation, proposed Particle-mesh Ewald [72]. PME 
uses a fixed cutoff in the direct sum also it uses B-spline interpolation of the reciprocal space 
structure factors onto a regular grid which obtain forces by analytic differentiation of the ener
gies and it permit to use of fast Fourier transforms to calculate the reciprocal sum be efficient 
[49]. This method is arbitrarly accurate and scales as N \og(N ) with respect to system size 
instead of order of N 2 in Ewald summation and is faster than Ewald summation on medium to 
large systems [72].
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3.5 Thermostat

There are two ensembles that require the temperature be constant: the canonical ensemble 
(NVT) and the isothermal-isobaric ensemble (NPT).
In the canonical ensemble (NVT), the number of particles (N), system volume (V) and temper
ature (T) are constant. In NVT ensemble, the energy of endothermic and exothermic processes 
is exchanged with a thermostat.
In classical MD simulations by using Newton’s equations of motion the energy is constant and 
so the simulations are performed in the microcanonical ensemble (NVE ensemble), where the 
volume, the number of particles and the energy are controlled. But in experiments, the temper
ature is often keep constant instead of the energy.
Thermostats keep the temperature of the system constant so that NVT and NPT ensembles can 
be correctly created.
The following relation shows the instantaneous value of the temperature in terms of the kinetic 
energy and the particle momentum:

where, P, is momentum of atom the ith and Nc is the number of constraints and 3N -  Nc 
represents the number degrees of freedom and Kb is the Boltzmann constant. The average 
temperature (T) is identical to the macroscopic temperature.
In the isothermal-isobaric ensemble (NPT), the number of particles (N), pressure (P) and tem
perature (T) are conserved. To obtain a NPT ensemble a barostat is needed in addition to a 
thermostat. An example of the NPT conditions is a flask open to ambient temperature and 
pressure.
A number of thermostats are available to add and remove energy from the boundaries of an 
MD system to approximate the canonical ensemble. The most common methods to control 
the temperature are velocity rescaling, the Nose-Hoover thermostat, Nose-Hoover chains, the 
Berendsen thermostat and Langevin dynamics [144].
The temperature control and evaluating the trajectories generated by molecular dynamics sim
ulations are the most important issues that must be resolved [5, 53]. In classical molecular 
dynamics the microcanonical ensemble NVE is generated due to the conservation laws of 
Hamiltons equations. In NVE, the the number of particles, volume and the energy are kept 
constant. The most basic temperature control method is to rescale the velocities until the sys
tem is equilibrated at the target temperature. In addition, the energy conservation must be 
observed to ensure correct NVE ensemble sampling, to choose integration time-step and to

(3.29)
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monitor numerical errors [24],
In contrast, Nose thermostat controls the temperature without using a random number and also 
providing a conserved quantity. This has made Nose thermostat very popular but it can exhibit 
non ergodic behavior.
Berendsen thermostat fixes the total kinetic energy by adding a first order equation for the 
kinetic energy to the Hamiltons equations [22]. This kinetic energy is originated from the dif
ference between the instantaneous kinetic energy and its target value. Berendsens thermostat is 
stable and physically justifiable but it does not have a conserved quantity and is not associated 
to a well defined ensemble.

3.5.1 Velocity Scaling

Since most of the experiments are carried out under conditions that do not represent the mi- 
crocanonical ensemble (NVE), in order to examine the behaviour of the system at a specific 
temperature, a NVT simulation should be performed with employing a thermostat. Moreover, 
when a thermostat is applied to a simulation, the steady energy drifts caused by the accumula
tion of numerical errors can be avoided. Velocity scaling can be used to keep the temperature 
of the system constant.
If the velocities are multiplied by a factor A, the corresponding temperature change will be:

AT =
1
2 ~  NdfkB

(3.30)

AT = (A2 -  1)7X0 (3.31)

A = Æ (3.32)
V7X0

where T (t) is the temperature at time t.
Therefore, to control the temperature of the system one can multiply the velocities at each 
time step by the factor A = where T{t) is the current temperature calculated from the
kinetic energy and To is the desired temperature. However, in this approach the fluctuations in 
temperature present in the canonical ensemble are not accounted for.

Berendsen Temperature Coupling

The Berendsen thermostat [22] rescales the velocities of particles in the system to control the 
simulation temperature. In this method, a heat bath with the target temperature is weakly 
coupled to the system. Since, the thermostat reduces the fluctuations of the kinetic energy
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of the system it does not produce trajectories, which are consistent with the microcanonical 
ensemble. With this thermostat, any deviations from the designed temperature exponentially 
decay with a temperature relaxation time (t):

d T _ Tq- T  
d t t

(3.33)

where, r  is the coupling parameter (temperature relaxation time), controlling the coupling 
strength between the bath and the system. Therefore change in temperature between two time 
steps can be written as:

AT = - (T o  -  T(t)) (3.34)
T

And the scaling factor for the velocities is:

A2
To

T(t -  f  )
- 1  . (3.35)

The term T(t -  j )  has emerged due to the usage of leap-frog algorithm integration in time. 
The value of r  should be chosen carefully, In practice, r  is obtained experimentally. With very 
large value r  (t —> oo) the Berendsen thermostat is inactive and the simulation creates a mi
crocanonical ensemble. With very small values of r  temperature fluctuations are suppressed 
reward unrealistic state. With r  being the same as the timestep 6t, the Berendsen thermostat 
would just perform velocity scaling. Values of r  in the order of O.lps are typically used in MD 
simulations of condensed-phase systems.
It is worth to note that the thermostat does not generate a correct canonical ensemble for small 
systems but it can result in roughly correct approximations for large systems containing hun
dreds to thousands molecules. This scheme is efficient in adjusting the system temperature to 
the target temperature which makes it suitable for most simulations.
Commonly, the Berendsen scheme is used to take the system to an initial equilibrium state. 
Afterwards, the properties are calculated using Nose-Hoover thermostat, that is capable of 
generating trajectories consistent with a canonical ensemble [79].

Parrinello and Bussi

The Parirrinello-Bussi thermostat is based on velocity scaling methods where velocities of all 
the particles are rescaled with a factor obtained from kinetic energy.
The method is also an extension of Berendsen thermostat with an added random force which
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is constructed to implement the correct distribution for kinetic energy. With properly chosen 
relaxation time for the thermostat, the trajectories of the particles will remain approximately 
unchanged. While producing a correct canonical distribution, a quantity similar to energy in 
micro-canonical systems is available that can be monitored as a measure of simulation error. 
The Parirrinello-Bussi method starts with multiplying the velocities of all the particles by the 
same factor a , calculated from the total kinetic energy K and its target value K:

a  = (3.36)

K  must be selected in such a way that the random changes in the kinetic energy leave the 
canonical distribution unchanged. The value for K  can be selected from the previous value 
of K. First the system is updated for one time-step with Hamiltons equations using a time- 
reversible area-preserving integrator such as velocity Verlet [153]. Afterwards, the kinetic 
energy is calculated and marched one more time-step in time using an auxiliary continuous 
stochastic dynamics which can preserve canonical distribution:

P(K)dK  oc K ^ ^ d K ,  (3.37)

where N f is the number of degrees of freedom and /? is the inverse temperature. Finally, the the 
velocities are rescaled to enforce the new value of the kinetic energy [73].
The dynamics is described by a first-order differential equation in K. The auxiliary dynamics on 
K is one-dimensional and its associated Fokker-Planck equation [59] represents a zero-current 
solution:

dK  = (D{K) ^ § ^  + ? ~ P -)d t + yj2D(K)dW, (3.38)
O K  o K

where D{K) is an arbitrary positive definite function of K, dW  is a Wiener noise. The distribu
tion of Eq. 3.37 is inserted in the mention differential equation:

dK  ,  ( + » £ > ) *  + V 5 5 5 E # «  (3.39,

This can be used to generate the correct canonical distribution. The above equation is in
dependent on the choice of the function D(K). However, D(K) has effects on the speeds of 
equilibration. D(K) is chosen to be

D(K) =
IK K
Nf r  ’

(3.40)
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where the arbitrary parameter r  has the dimension of a time and determines the time-scale of 
the thermostat such as in Berendsens formulation. This leads to a very transparent expression 
for the auxiliary dynamics

T V N f yjT
(3.41)

Without the stochastic term this equation reduces to that of the standard thermostat of Berend- 
sen. In the limit r  = 0, the stochastic evolution is instantly thermalized and this algorithm 
reduces to a simple the stochastic velocity-rescaling method. On the other hand, forr —> oo, 
the Hamiltonian dynamics is recovered. When a system is far from equilibrium, the algorithm 
leads to fast equilibration like the Berendsen thermostat [24],
Therefore cause of this method is a velocity rescales method, it is more ergodic than the 
Nosé-Hoover thermostat [24] and we used it for our work.

3.5.2 Nose-Hoover Temperature Coupling

As mentioned before, the Berendsen thermostat is usually used to relax the system temperature 
to a target temperature in a few possible numerical iterations. To take the system to a correct 
canonical ensemble a method originally introduced by Nose and developed by Hoover is im
plemented. Their method consists of a heat bath as an integral part of the system introducing 
s, associated with a mass Q > 0 as well as a velocity s. Q determines the coupling between the 
reservoir and the system to control the temperature fluctuations, s is a time-scaling parameter. 
The time scale in the extended system is increased by an amount of s.

dt = sdt (3.42)

Since the atomic coordinates are identical in both systems:

r = r, r = s~lr, s = s and s = s~ls (3.43)

The Lagrangian for the extended system is:

L  = £  y  s2rf -  U(r) + l-Q &  -  gKbT0 In S (3.44)
i

The first two terms of the Lagrangian represent the kinetic energy and the potential energy of 
the real system, respectively. The additional terms are the kinetic energy of s and the potential, 
chosen to ensure that the algorithm produces a canonical ensemble. The parameter g is chosen
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g = Ndf in real-time sampling (Nose-Hoover formalism) and g = Ndf + 1 for virtual-time 
sampling (Nose-formalism), Ndf  represents the system degree of freedom. This leads to the 
Nose equations of motion.

n

s

Fi 2 s f t
lUiS2
J _  ' 
Qs IV l

5
\

m sr f -  gbTo
)

(3.45)

(3.46)

These equations sample a microcanonical ensemble in the extended system (r, p, t).
Although, the energy of the simulation is kept constant, the energy in the real system is not 
constant. The fluctuations of s along with the heat transfer occurring between the system and 
a heat bath keep the system temperature.
However, since the stretched time scale in the Nosé equations is a virtual variable, the dynami
cal properties of a system can not be extracted when this thermostat is used. Nosé and Hoover, 
reformulated the the Nosé equations in terms of real system variables:

S  = Î , s = ss , ¡5 = S2!  + S S 2

8̂ II r = Sr, r = s2r + sr2

(3.47)

(3.48)

and with substituting

s
7 = -s

the Lagrangian equations of motion can be written as

n

7
g T0 

Ndf m

(3.49)

(3.50)

(3.51)

In both of the algorithms, the virtual mass Q and extended system energy Ee should be care

fully handled.
Very large values for Q (loose coupling) may result in inadequate temperature control since the 
thermostat will simulate a microcanonical ensemble when Q -» oo.
In theory, any finite positive mass should lead to the generation of a canonical ensemble, but 
if Q becomes too large, too many simulation iterations will be required to obtain the canonical 
distribution.
On the other hand, very small values for Q (tight coupling) may cause high-frequency tern-
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perature fluctuations. $ may oscillate at a very high frequency which takes it away from the 
resonance frequency of the real system leading in decoupling it from the physical degrees of 
freedom (slow exchange of kinetic energy).
As a more realistic choice for the coupling strength, the Nose equations of motion can be 
expressed as:

• = _L J - I l
^  Tnh \Ndf T(t)

with the effective relaxation time being:

t 2
NH NdfkbT0

(3.52)

(3.53)

The relaxation time can be estimated when calculating the frequency of the oscillations for 
small deviations ôs from the average (s) [123, 79,76].



Chapter 4

Structural Properties

4.1 Introduction

In this research GROMACS [150] (GROningen MAchine for Chemical Simulations) version 
4.5.3 [1,71] was used. GROMACS was developed at the University of Groningen, The Nether
lands, in the early 1990s. This is well suited for parallelization on processor clusters. It is a very 
fast program for molecular dynamics simulation. It does not have a force field of its own, but 
is compatible with GROMOS [30], OPLS-AA [90], AMBER [27], and ENCAD [105] force 
fields [150]. The protein structure studied in the present work is Prolyl oligopeptidase from 
porcine muscle with covalently bonded inhibitor Z-Pro-Prolinal (ZPP) (PDB code 1QFS [54]). 
Here we first simulate POP protein alone, then put ZPP inhibitor in the cavity tunnel of POP 
and simulate POP with non-bonded ZPP.
All atom types of ZPP and POP are accessible in the OPLS [89] force field. OPLS-AA/L 
all-atom force field (Optimized Parameters for Liquid Simulations) are functions potential de
veloped for proteins.
For water, the TIP3P (transferable intermolecular potential 3P) [91] model was used. Partial 
charges on ZPP were taken from previous study by K. Kaszuba et al. [95]. The Partial charges 
at ZPP were calculated by fitting electrostatic potential of the molecule using the restrained 
electrostatic potential (RESP) method [21]. The electronic structure and the electrostatic po
tential were calculated with the 6 -  3 1G* basis set [143], compatible with the OPLS force field. 
A unit cell containing the protein and ZPP was defined with the dimension of 10x10x10 nm3 
which was filled with water. This create a solvated system that contains a charged protein. In 
order to neutralize the system and create buffer saline conditions (140 mM salt concentration), 
potassium and chloride ions were added. Potassium was used instead of sodium to achieve a 
more realistic simulation of the conditions inside a living cell where potassium is the dominant 
anion [95]. Although the difference between K + and N a+ may seem negligible at this level of
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Time (ps)

Figure 4.1: Potential energy of the system is minimized to sure each particle are in the right 
position

description, it has been shown that even the parameterization of the atomic-level ion force field 
is a topic of concern [11,130].
Before starting the dynamics, the system must be checked to ensure there are no steric clashes 
or inappropriate geometry. The structure was relaxed through a process called energy mini
mization (EM). Prior to MD simulations, the energy of the structure was minimized using the 
steepest-descent algorithm (200 steps) in order to remove close contact between atoms which 
occurs after removing the covalent bonds. When the system is at an energy minimum (Fig. 
4.1), the MD simulation can be started.

To begin MD, the solvent and ions must be equilibrated around the protein. Running unre
strained dynamics at this point may cause the system to collapse. The reason is that the solvent 
is mostly optimized within itself, and not necessarily with the solute. The solvent temperature 
must be taken to the desired level set in the simulation. Also it should establish the proper 
orientation about the solute (the protein). When the system is taken to the correct temperature, 
pressure should be applied to the system until it reaches the proper density. In equilibrating 
the protein-ligand complex (POP with bonded ZPP), ZPP is added to restraints of POP and 
temperature is added coupling groups (is controlled to be constant).
Equilibration is often conducted in two phases. The first phase is conducted under an NVT 
ensemble (constant number of particles, volume, and temperature). This ensemble is also re-
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Figure 4.2: Temperature of the system in NVT equilibration: Temperature of the system 
quickly reaches the target value (303 K).

ferred to as isothermal-isochoric or canonical. In NVT, the temperature of the system should 
reach a plateau at the desired value. If the temperature has not yet stabilized, additional time is 
required. We will conduct a 140ps NVT equilibration to achieve this state.
Figure 4.2 shows that the temperature of the system quickly reaches the target value (303 K), 

and remains stable over the remainder of the equilibration.
The previous step, NVT equilibration, stabilized the temperature of the system. Prior to data 
collection, we must also stabilize the pressure (and thus also the density) of the system. Equi
libration of pressure is conducted under the NPT ensemble, where the number of particles, 
pressure, and temperature are all constant. The ensemble is also called the isothermal-isobaric 
ensemble, which closely resembles experimental conditions.
After completion of the two equilibration phases, the system is well-equilibrated at the desired 
temperature and pressure. At this point the position restraints can be released production MD 
can be started for data collection.

4.2 Simulation details

The initial structure for POP with non-bonded ZPP was taken from K. Kaszuba et al. [95] 
where was performed MD study of the ZPP inhibitor non-bound in the binding cavity with the
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POP was studied for 100ns. The present work focuses on two sets of simulation for the protein 
POP. The first set covers the protein itself and the second set is the protein (POP) with ZPP 
inhibitor.
At the first stage, the ZPP inhibitor was removed from the original POP with ZPP simulations 
provided by K. Kaszuba et al. [95]. Afterwards, the system was simulated for 50 ns more. 
Then the ZPP inhibitor was added to POP and the system was equilibrated, then the simulation 
for POP with non-bonded ZPP was continued for 50 ns. However, the charge group for ZPP 
was modified from the original version in K. Kaszuba et al. [95] for compatibility issues with 
the newest GROMACS version (4.5.3).
For the MD simulations, the POP molecule was immersed in a box of water with the dimen
sions of 10 x 10 x 10 nm. The solvated simulation box contained a total of 99099 atoms (11219 
atoms are protein, 80 ions are Cl ions, 85 ions are K and the rest of atoms are water atoms) for 
POP without ZPP and 98599 atoms for POP with ZPP inhibitor (11219 atoms are protein, 46 
atoms are ZPP inhibitor, 80 ions are Cl, 85 are K ions and the rest of atoms are water).
The following parameters were used for the simulation. The algorithm used for integrating 
Newton's equations of motion was the leap-frog algorithm. The first stage of the simulation 
started at 0 time with 2 fs timesteps. The integrations were taken for each timestep and contin
ued until time 50 ns for all simulations. Periodic boundary conditions with the usual minimum 
image convention were used in all three directions. Cut-off distance for the short-range neigh
bor list is 1.0 nm. Fast Particle-Mesh Ewald [35] electrostatics were employed for electrostat
ics. Distance for the Coulomb force cut-off was set to 1.0 nm.
Simulations were performed at constant temperature of 303 K. The V-rescale thermostat (See 
Section 3.5.1: Parrinello and Bussi) was used to keep the system temperature constant.
The LINCS (LINear Constraint Solver) algorithm [70] was used to reset bonds to their correct 
lengths after an unconstrained update.
The POP, ZPP, water, potassium, sodium and chlorine were coupled separately to the tempera
ture bath. Time constant for temperature coupling was set to 0.1 K.
Simulations were performed with Parrinello-Rahman barostat which includes Extended-ensemble 
pressure coupling where the box vectors are subject to an equation of motion. The equation 
of motion for the atoms is coupled to this barostat. No instantaneous scaling takes place. The 
pressure coupling time constants was set to 0.5 kJ mol~x nm~3.

4.3 Measurements

We will study changes in the structure over the whole simulation time. There are two indicators 
for large structural changes in protein: the radius of gyration and the root mean square deviation
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(RMSD).

4.3.1 Radius of Gyration

To analyze structural changes of a protein and have a rough measure for the compactness of a 
structure, one can calculate the radius of gyration of the structure (Rg). If a protein is stably 
folded, it will likely maintain a relatively steady value of Rg. If a protein unfolds, its Rg will 
change over time. Rg is defined as:

(4.1)

where,

(4.2)

is the centre of mass of the molecular structure (it can be protein, backbone, C-alpha).

4.3.2 Root Mean Square Deviation

The root mean square deviation (RMSD) of certain atoms in a molecule with respect to a ref
erence structure can be calculated by least-square fitting the structure to the reference structure 
( i.e. structure at t = 0). RMSD at time t, is calculated by

RM S D(t) =
~ rk{t = 0))2 
N

(4.3)

where, rk{t) is the position of the kth particle at time t. Least-square fitting does not have to 
use the same atoms as those used in the calculation of the RMSD. For example a protein is 
usually fitted on the backbone atoms (N, C-alpha, C), but the RMSD can be computed for 
the backbone or the whole protein. In this calculation, we use the RMSD of heavy-atoms to 
compare the spatial deviation between structures in time with the structure at reference time (t 
= 0 ps.) Typically, the RMSD of protein should not change more than 3-12 within a nanosecond 
of MD simulation time [1].
Our analysis also includes the fluctuations in the RMSD (RMSFs). When a dynamical system 
fluctuates about some well-defined average position the RMSD from the average over time is 
referred to as the RMSF or root-mean-square fluctuation.
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The trajectories of the simulations were also visualized using the VMD (Visual Molecular 
Dynamics) package [78]. Also, the normal modes visualization are obtained with the help of 
Dynatraj online software [18].

4.4 Normal Modes

Normal mode analysis (NMA) is a simulation technique to analyze large-scale motions of bio
logical molecules with complex shape changing motions [61, 106, 23]. This method was usu
ally used in the experimental techniques of infrared and Raman spectroscopy. NMA is recently 
being used to predict the functional motions of large molecules such as proteins. The motions 
in the protein that perform a task for the molecule (e.g. binding protein to other molecules) are 
functional motions.
NMA is essentially a form of harmonic analysis. The purest form the NMA provides accu
rate results by using exactly the same force fields as used in molecular dynamics simulations. 
However, at the physiological temperatures, one of the assumptions in the method is not always 
correct. The conformational energy surface at an energy minimum can not always be approxi
mated by a parabola over the range of thermal fluctuations at living body temperatures. It has 
been shown that the harmonic approximation breaks down in a way that the state point reaches 
multiple minimum states with different energies (instead of performing a harmonic motion in 
a single energy minimum) [12, 47]. At the functioning temperatures, these limitations in the 
assumptions must be carefully considered.
Performing an NMA involves three major steps. First, if the analysis is done in Cartesian co
ordinates, the conformational potential energy must be minimized as a function of the atomic 
Cartesian coordinates. Next, the second derivatives of the potential energy with respect to the 
mass-weighted atomic coordinates must be calculated in form of a matrix, called the Hessian 
matrix. Finally, the Hessian matrix must be diagonalized to obtain its eigenvalues and eigen
vectors (the normal modes). The first and last steps involve extensive numerical calculations 
which can be very extensive for large molecules. The diagonalization process demands CPU 
time and large amount of memory because it involves diagonalization of a 3N x 3N matrix, 
where N is the number of atoms in the molecule.

Theory

NMA is usually performed in vacuum where the potential energy of N-atom molecule is a 
complex function of its 3N coordinates. The potential function is usually written with respect 
to the Cartesian coordinates [23] composed of bonded and nonbonded energy terms. At a
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minimum, the potential energy function U can be expanded in a Taylor series in terms of the 
mass-weighted coordinates, where Ax, is the displacement of the ith coordinate from
the energy minimum and m, is mass of the corresponding atom. Knowing that the linear term 
is zero at an energy minimum, and writing the expansion up to the quadratic level, U will be:

U =
<92U

(4.4)

The above relation shows that the energy surface can be approximated by a parabola character
ized by the second derivatives evaluated at the energy at the minimum. The basic assumption 
of NMA of biomolecules at physiological temperatures is that the fluctuations occur within this 
parabolic energy surface. However, at these temperatures the state point moves on a complex 
energy surface with multiple minima, and reaches different energy levels [12]. The second 
derivatives in Eq. 4.4 form the Hessian matrix. By diagonalizing the Hessian, its eigenvectors 
and eigenvalues can be obtained:

Fw;- = o/jWj. (4.5)

where w7 is the jth  eigenvector and co2 is the yth eigenvalue. The above equation leads to 3N 
eigenvector equations, where each eigenvector specifies a normal mode coordinate using:

3JV

Qj = Y j wt& ’ (4,6)
(=i

Note that the sum is over the elements of w7 and also |w7| = 1. These normal mode coordinates 
oscillate harmonically and independently of each other each with the angular frequency, ojj. 
Therefore, if Aj is the amplitude and ej is the phase, the harmonic motion can be written as:

Qj = Aj cos(o)jt + £j). (4.7)

These normal mode coordinates are linear combinations of the atom based Cartesian coordi
nates, as shown in Eq. 4.6. Considering a single normal mode, j, the displacements are:

VVw
A Xij = —=AjCOs(a)jt + £j) (4.8)

Therefore, in the yth mode, the relative displacements of the Cartesian coordinates are specified 
by the elements of w7 . This implies each normal mode specifies a pattern of atomic displace
ment. For example, in a multidomain protein, this pattern of displacement can represent the
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relative movement of two domains in the molecule [67].
If the frequency of the oscillations is lower, the fluctuations of the corresponding normal mode 
coordinate are larger [60]. Usually the lowest frequency modes are compared with functional 
modes obtained from experimental methods (e.g., a pair of x-ray structures, one bound to a 
functional ligand and the other unbound). The overlap with the jth  mode can be defined as

Computing the Normal Modes

As mentioned before, the first step to an NMA is energy minimization. In some cases, the 
actual minimum energy cannot be found because of overstepping. This can present a problem 
for NMA, where very precise location of the minimum is required. The Hessian matrix must 
be calculated and then diagonalized in order to determine the eigenvalues and eigenvectors. 
Because of the large size of this matrix (3N x 3N matrix, N being the number of atoms in the 
molecule), this stage often presents memory problems for large molecules. The NMA results 
are usually compared with the experiments. The overlap with a functional mode derived from 
experiments (such as two x-ray structures) are calculated by Equation 4.9. The experimental 
displacement (Ax*xp) needs to be calculated from the experimental structures that are oriented 
in the same way as the minimized structure used for the NMA. Usually a least-squares best fit 
routine is used to superpose the two experimental structures on the minimized structure.

4.4.1 Principal Component Analysis

The molecular dynamics simulations of the biological molecules are very hard to analyze in 
terms of identifying the motions within the molecules or functional motions. Principal com
ponent analysis (PCA) [58, 8, 99] is an excellent tool to solve this problem. Similar to NMA, 
PCA also incorporates the assumption that the major collective modes of fluctuation dominate 
the functional dynamics. The vast majority of protein dynamics can be described by a few 
number of collective degrees of freedom [8]. By using PCA, main modes of the collective 
motion can be filtered from the complex local fluctuations. The dynamics along each mode of 
motion can be separately analyzed and visualized. Since the principal modes of motion can 
usually represent the protein function, the dynamics in the low-dimensional subspace spanned 
by the main modes are called essential dynamics [8], meaning that principal modes are essen
tial for the function of the molecule. Similarly, the subspace representing the major modes of

[113]:

(4.9)



4.4 . N ormal M odes 51

collective fluctuations is called the essential subspace. A small set of all the number of degrees 
of freedom of the system dominates the molecular dynamics in a biomolecule. This simplifies 
the analysis and interpretation of molecular dynamics trajectories. Moreover, enhanced sam
pling algorithms that search the essential subspace in either a systematic or exploratory fashion 
can be developed on this basis [62, 9, 38, 37].
In NMA of a molecular dynamics simulation, the potential is assumed to be harmonic which 
is not the case in PCA. Thus, PCA can be used to study the degree of anharmonicity in the 
molecular dynamics of a simulated system. In proteins at physiological temperatures, the ma
jor modes of collective fluctuation are dominated by anharmonic fluctuations [8, 69] and the 
protein dynamics has been described as diffusion among multiple minima [98,7,97]. On short 
timescales, the dynamics are dominated by fluctuations within a local minimum; this local min
imum can be finely approximated by the local normal modes. On longer timescales, the large 
fluctuations are dominated by a largely anharmonic diffusion between multiple wells [68].
As mentioned earlier, in NMA the modes representing the largest fluctuation have the lowest 
frequencies. Also in PCA, the largest-amplitude modes usually represent the slowest dynami
cal transitions. Note that in PCA, no assumptions are implied regarding the harmonicity of the 
motion and the modes are usually sorted according to variance instead of frequency.

Theory

To perform a PCA, a matrix based on the fluctuations in position must be formed. It is ob
tained by a superposition of positions to a common reference structure and creating variance 
covariance matrix of positional fluctuations:

C = ((x(t) -  <x»(x(t) -  <x»r ) (4.10)

where, <> denotes ensemble averaging. In the above equation, the coordinates x are demon
strated as a function of time but they can exist in any order. For instance, they can represent a 
molecular dynamics trajectory or a set of experimental structures. C is a symmetric matrix that 
can be diagonalized by an orthogonal coordinate transformation T:

C = TATr (4.11)

where, A is the diagonal (eigenvalue) matrix and T contains the eigenvectors of C in each 
column. The eigenvalues A correspond to the mean square coordinate fluctuations; therefore, 
each of them has a contribution to all the principal components of the total fluctuation. The 
eigenvectors are usually sorted such that their eigenvalues are in decreasing order. Note that
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for a system of N atoms, the matrix C has 3N x 3N elements. At least 3N configurations must 
be introduced in constructing the C matrix to generate 3 N - 6  eigenvectors with nonzero eigen
values. Six of the eigenvalues with their corresponding eigenvectors are related to the overall 
rotation and translation of the molecule must be exactly zero. In the case where only M config
urations are available (where M  < 3N), at most M  -  1 nonzero eigenvalues with corresponding 
eigenvectors will be obtained. With p t being the ith eigenvector of C (i.e. the ith column of 
T), the projection of the original configurations onto each of the principal components helps in 
obtaining the principal coordinates pi(t):

Pi(t) = pt ■ (x(r)- < x >). (4.12)

It is worth to mention that the variance < p] > is equal to the eigenvalue A,. For visualization 
purposes, the above projection can be transformed back to the Cartesian coordinates:

x'(t) = p(t) -pi+ < x > . (4.13)

To compare two sets of eigenvectors, p  and v, their inner products can be calculated:

I i j=P rV j .  (4.14)

Subspace overlaps are usually calculated by summation of the squared inner products:

n m

0 ?  = £ £ > , v , ) 2. (4.15)
(=1 ;=1

O™ is a measure that depicts the amount of the n-dimensional subspace of set p  which is con
tained within the m-dimensional subspace of set v. To achieve full overlap (O = 1), m should 
be larger than n [68].

4.4.2 PCA of Structural Ensembles

A PCA or essential dynamics analysis may be performed for a molecular dynamics trajectory 
or any other structural ensemble. The PCA consists of three main steps. The first step is to 
superimpose the configurations from the ensemble. This is necessary to filter the internal mo
tions from overall rotation and translation of the molecule. The filtering is usually carried out 
by a least-squares fit of each of the configurations onto a reference structure. Next, a variance- 
covariance matrix is constructed using the fitted trajectory. The resulting matrix is symmetric;
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the off-diagonal elements hold the covariances of the atomic displacements relative to their re
spective averages for each pair of atoms. The variances of each atom displacements are located 
along the diagonal of the matrix. If the atoms move together in the same direction, the positive 
covariances reach higher values. In contrast, anti-correlated motions result in largest negative 
covariances. The displacements with no correlation have near-zero covariances. Thereafter the 
variance-covariance matrix is diagonalized. Diagonalization of this matrix results in a set of 
eigenvectors and eigenvalues that must be sorted such that the eigenvalues are in decreasing 
order. Note that the eigenvalues represent the variance along each of the corresponding col
lective modes (eigenvectors). A small number of modes can be sufficient to describe the main 
constituents of the total fluctuation. At the final step, the original trajectory is decomposed 
with respect to the principal components. The trajectory must be projected onto each of the 
principal modes in order analyze the time behavior and distribution of each of the principal co
ordinates. The projections provide a representation of the sampled distribution in configuration 
space. They can also be helpful in comparing multiple ensembles along the principal modes of 
collective fluctuation. To visualize the motion along the principal coordinates, the projections 
onto principal coordinates must be translated back into Cartesian space.
In contrast to standard NMA, a PCA can be carried out on any subset of atoms. For the pro
teins, usually only C-alpha or backbone atoms are taken into account. This approximation is 
very critical in simulating large proteins with a number of atoms. By taking only the C-alpha 
or backbone atoms the required memory space and processor power in order to diagonalize the 
covariance matrix is significantly reduced while the main collective modes remain very simi
lar to an all-atom analysis [8, 156]. Moreover, the backbone-only analysis will automatically 
exclude the artificial apparent correlations between slow side-chain fluctuations and backbone 
motions.
An all-atom PCA can also be compared with results from a standard NMA. In this type of 
analysis (a.k.a quasi-harmonic analysis), the fluctuations in PCA must be calculated from mass- 
weighted displacements [66]. In all-atom analysis an approximation can be employed to limit 
the computations to calculation of only the principal modes of fluctuation. This eliminates the 
need to store and diagonalize the full matrix [156]. The PCA technique has many other appli
cations aside from the analysis of molecular dynamics trajectories. For example, PCA can be 
used to derive the principal modes from sets of x-ray structures [157] or to compare simulation 
data with experimental conformations [43, 40, 3]. PCA is also helpful in determining search 
directions from multiple homologous structures in homology modeling [133].

Convergence of PCA Results Derived from Molecular Dynamics Simulations
One can use the principal components obtained from different simulations or simulation parts 
to compare the major directions of configurational space and sampled regions which aids in
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analyzing similarity and convergence. The sub-nanosecond molecular dynamics simulations 
for proteins are known to have a significant sampling problem which causes a poor overlap 
between the principal components extracted from multiple parts of these trajectories [16, 31]. 
Although the individual principal components may not be the same, the subspaces derived from 
the major principal components converge rapidly. They are also consistent within different 
simulation results and between simulations and experiments [43, 3, 6, 39]
Principal coordinates with high cosine content usually indicate a nonconverged trajectory. But 
the lack of convergence of the dynamics along a set of modes does not mean that the directions 
of such modes or the subspace they span are not converged. When an acceptable converged 
trajectory is achieved, the thermodynamic properties can be calculated in form of ensemble 
averages. They can be mapped onto the principal coordinates to visualize the properties such 
as free energy landscapes.
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Results

The results from classical MD simulations for Prolyl Oligopeptidase (POP) with and without 
Z-pro-prolinal (ZPP) are presented in this chapter. First the POP protein without ZPP inhibitor 
is simulated for 50ns. Afterwards, the ZPP inhibitor is put in the binding cavity of the POP, but 
without the hemiacetal bond; so ZPP is free to move all over the binding cavity.
The POP protein structure is studied and properties such as radius of gyration, root mean square 
deviation (RMSD) and fluctuations of root mean square deviation (RMSFs) are calculated and 
compared with the previous simulations [95] where ZPP inhibitor is in the binding cavity of 
the POP without the hemiacetal bond activated. Also, the simulated radius of gyration (Rg) and 
RMSD and RMSD fluctuation of the POP protein with ZPP inhibitor and without ZPP inhibitor 
are compared. The principal component analysis (PCA) method is employed to examine dy
namics of the protein molecule and its principal modes of motion. The displacements of the 
atoms of POP molecule are examined for an isolated POP and POP with the presence of ZPP, 
in order to determine whether ZPP can find a way to slip outside of the protein or not. As we 
explained before, for PCA of the protein (POP or POP with ZPP) C-alpha or backbone atoms 
are taken into account.

5.1 Prolyl Oligopeptidase without ZPP

5.1.1 Root Mean Square Deviation

Fig. 5.1 presents the time development of the root mean square displacement (RMSD) of the 
protein backbone atom over 50ns (the whole simulation time). The RMSD values become 
bounded roughly in between 0.15nm and 0.2nm after the simulation reaches a stable condition. 
Therefore, the simulation is considered to be stable after 25 ns.

55
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RMSD
Backbone after Isq fit to Protein

Figure 5.1: Time development of the root mean square displacement (RMSD) of the protein 
backbone atom (POP without ZPP) over the whole simulation time.

Fig. 5.2 shows the RMSD values for POP with non-bonded ZPP from reference [95]. Fig. 
5.1 and Fig. 5.2 demonstrate similar behaviour for both cases.

5.1.2 Radius of Gyration (Rg)

Fig. 5.3 presents time development of the radius of gyration (Rg) of the POP without ZPP over 
50ns. The Rg time history indicates a stable behaviour for the whole simulation time.

Fig. 5.4 presents Rg for POP with non-bonded ZPP from reference [?]. Comparing Fig. 5.3 
and Fig. 5.4 shows that both POP without ZPP and POP with non-bonded ZPP have roughly
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Figure 5.2: Time development of the root mean square displacement (RMSD) of the POP with 
non-bonded ZPP backbone atom over the whole simulation time (From [95] with permission. 
©: Taylor and Francis)
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Figure 5.3: Time development of the Radius of Gyration (Rg) of the POP without ZPP over the 
whole simulation time.
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Figure 5.4: Time development of the Radius of Gyration (Rg) of the POP with non-bonded ZPP 
over the whole simulation time (From [95] with permission. ©: Taylor and Francis)

equal radius of gyration. Note that the observed small diiference in Rg has originated from the 
presence of ZPP.

Radius of gyration for backbone of the POP is shown Fig. 5.5. The Rg for backbone of the 
molecule follows the same trend as the molecule Rg but the values are approximately 0.05nm 
lower than those observed for the whole molecule.

5.1.3 Root Mean Square Displacement Fluctuations

The RMSF values are calculated for the C-alpha atoms. The RMSFs are used to describe the 
basic dynamics of the protein. In Fig. 5.6 the lower fluctuations for the rigid structural ele-
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Figure 5.5: Time development of the Radius of Gyration (Rg) of the backbone over the whole 
simulation time for POP without ZPP.
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RMS fluctuation

Atom

Figure 5.6: RMSFs of the C-alpha atoms for POP without ZPP corresponding to the residues 
measured from the entire molecular dynamics run. The RMSFs show small values for the rigid 
structural elements and larger values for the ends and loops. The large values are: 21GLY, 
122ASP, 196LYS, 198ASP, 271ASN.

ments and larger values for the ends and loops can be easily seen; this is exactly as expected 
for most of the protein simulations.

Fig. 5.6 and Fig. 5.7 are slightly different from each other due to the presence of ZPP inside 
POP.

The larger values in Fig. 5.6 show that the loops formed by ASP (198), ASN (271), ASP 
(122) and GLY (21) residue are flexible. The mentioned loops and residues are shown in Fig. 
5.8 and Fig. 5.9.
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Figure 5.7: RMSFs of the C-alpha atoms for POP with non-bonded ZPP corresponding to the 
residues measured from the entire molecular dynamics run. The RMSFs show small values 
for the rigid structural elements and larger values for the ends and loops (From [95] with 
permission. ©: Taylor and Francis)
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198Asp

21 Gly

196Lys

271Asn

Figure 5.8: The residue number for the largest values of the RMS fluctuations for POP without 
ZPP. In the Fig. the ASP (198), ASN (271), ASP (122) and GLY (21) residues are labeled in 
their loops.
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Figure 5.9: Same as Fig. 5.8 but viewed from different angle for POP without ZPP.
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Figure 5.10: Time development of the root mean square displacement (RMSD) of the protein 
backbone atom of POP with non-bonded ZPP over the whole simulation time (50ns).

5.2 Prolyl Oligopeptidase with ZPP

5.2.1 Root Mean Square Displacement

Fig. 5.10 presents the time development of the root mean square displacement (RMSD) of 
the protein backbone atoms for POP with non-bonded ZPP over 50ns (the whole simulation 
time). The RMSD values become bounded roughly in between 0.15nm and 0.19nm after the 
simulation reaches a stable condition. The simulation is considered to become stable after 25 
nano seconds.
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Figure 5.11: Time development of the Radius of Gyration (Rg) of the protein over the whole 
simulation time (50ns) for POP with non-bonded ZPP.

5.2.2 Radius of Gyration (Rg)

Fig. 5.11 presents time development of the Radius of Gyration (Rg) for the POP with ZPP over 
50ns. The Rg time history indicates a stable behaviour for the whole simulation time. Fig. 5.3 
and Fig. 5.11 demonstrate similar radii of gyration after approximately 20 nano seconds. The 
difference between them is due to the presence of ZPP.

Fig. 5.12 shows radius of gyration of the backbone atom over the whole simulation (50ns) 
time for POP with non-bonded ZPP. Fig. 5.11 and Fig. 5.12 have the same trend but the Rg for 
the backbone is lightly shifted below the Rg for the protein.

Fig. 5.13 presents the radius of gyration of POP and ZPP over the whole simulation (50ns)
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Figure 5.12: Time development of the Radius of Gyration (Rg) of the backbone atom over the 
whole simulation (50ns) time for POP with non-bonded ZPP.
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Radius of gyration

Figure 5.13: Time development of the Radius of Gyration (Rg) of the both POP and ZPP over 
the whole simulation time for POP with non-bonded ZPP.

time for POP with ZPP. This figure is similar to Fig. 5.11, but in Fig. 5.13 the ZPP is consid
ered in calculations. The peaks in Fig. 5.13 have appeared in presence of ZPP.

5.2.3 Root Mean Square Displacement of Fluctuations

RMSF values are calculated for the C-alpha atoms. As previously mentioned, the RMSFs are 
small for the rigid structural elements and the large RMSFs belong to loops and ends. With the 
same rational, it can be concluded that in Fig. 5.14 larger values of RMSFs belong to IMet and 
710Pro end residues. The loops that include 21Gly, 34Pro, 58Pro, 196Lys, 230Asp, 270SER, 
323Glu, 345Arg, 368Thr, 415Glu, 462Leu, 603Asp, 494His and 686Val residues have the 
greatest values. The mentioned residues are labeled in Fig. 5.15 and Fig. 5.16.
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5.3 Principal Component Analysis

5.3.1 POP without ZPP

Fig. 5.17 shows that only a few of the eigenvalues of the covariance matrix have large values. 
The first few large eigenvalues are important in analyzing the protein. These eigenvalues corre
spond to the main modes of motions in the proteins. As it is clear, only the first few eigenvalues 
are large, and the eigenvalues after 5th one can be neglected which also implies the first few 
modes of motion are important.

Fig. 5.18 (RMSFs of the C-alphas for first eigenvector of POP without ZPP) confirms that 
residues 196LYS and 271ASN are more flexible as demonstrated in the Fig. 5.6 (RMSFs of 
the C-alphas for POP without ZPP). These residues are labeled in Fig. 5.8 and Fig. 5.9.

Fig. 5.18 shows the first eigenvector of POP. It is observed that 196Lys, 198Asp and 
271Asn have the largest movements. This can also be seen in Fig. 5.19 by examining the 
length of the arrows attached to the residues.

Fig. 5.20 presents the RMSF vaules of the second eigenvector corresponding to C-alpha 
atoms in POP without ZPP. The peaks which are larger than 0.1 nm in the graph belong to the 
motions of the residues 21Gly, 196Lys, 198Asp and 271Asn. The motion of these residues are 
shown in Fig. 5.21 and Fig. 5.22.

5.3.2 POP with ZPP

Eigenvectors for POP with free ZPP inside cavity are arranged from highest to lowest values 
and shown in Fig. 5.23. As expected, only the first few eigenvalues are large, and the eigenval
ues after 5th one can be neglected. This means only the first few modes of motion are important.

Fig. 5.24 shows RMSFs of the C-alpha atoms for first eigenvector of POP with free ZPP. 
The peaks larger than 0.1 nm in this graph belong to the ends and loops containing IMet, 
21Gly, 34Pro, 230Asp, 270Ser, 323Glu, 345Agr, 603Leu, 707Asp and 710Pro residues. These 
residues are labeled in Fig. 5.25. Note that the ZPP atom is not shown to maintain the clarity
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RMS fluctuation

Figure 5.14: RMSFs of the C-alpha atoms for POP with non-bonded ZPP corresponding to the 
residues measured from the entire molecular dynamics run. The RMSFs show small values for 
the rigid structural elements and larger values for the ends and loops. The large values of the 
RMS fluctuation are at ends and loops. The loops that include 21Gly, 34Pro, 58Pro, 196Lys, 
230Asp, 270SER, 323Glu, 345Arg, 368Thr, 415Glu, 462Leu, 603Asp, 494His and 686Val 
residues have the greatest values. These residues are shown in next two figure (in different 
viewing angle).
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Figure 5.15: The residues with larger values of the RMSD fluctuation which appeared as peake 
values in Fig. 5.14 for POP with non-bonded ZPP. The loops that include 21Gly, 34Pro, 58Pro, 
196Lys, 230Asp, 270SER, 323Glu, 345Arg, 368Thr, 415Glu, 462Leu, 603Asp, 494His and 
686Val residues have the greatest RMSD values.
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Figure 5.16: Same as Fig. 5.15 but viewed from a different angle for POP with non-bonded 
ZPP.
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Eigenvalues of the covariance matrix

Figure 5.17: Eigenvalues of POP without ZPP which are arranged from highest to lowest. 
These eigenvalues correspond to the main modes of motions in the proteins. Only the first few 
eigenvalues are large, and the eigenvalues after 5th one can be neglected which also means 
only the first modes are important.
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R M S fluctuation (nm)

Figure 5.18: RMSFs of the C-alpha atoms for first eigenvector of POP without ZPP corre
sponding to the residues measured from the entire molecular dynamics run. The RMSFs have 
small values for the rigid structural elements and larger values for the ends and loops. The 
peaks relate to residues 196LYS and 271ASN which have larger movements.
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198Asp

196Lys

Figure 5.19: The loops containing residues 196LYS, 198ASP and 271ASN have more dis
placements compared to the rest of the loops. They can in fact open and close and control the 
access to cavity- POP without ZPP, from first eigenvector for C-alpha atoms.
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R M S fluctuation (nm)

Figure 5.20: RMSFs of the C-alpha atoms for second eigenvector of POP without ZPP corre
sponding to the residues measured from the entire molecular dynamics run. The peaks which 
are larger than 0. lnm  in the graph belong to the motions of the residues 21Gly, 196Lys, 198Asp 
and 271Asn.
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Figure 5.21: The loops containing the residues 271ASN,196LYS, 198ASP and 21GLY have 
longer movements compared to the rest of loops. Therefore, They can open and close the 
opening to the protein cavity (also shown in Fig. 5.8 and Fig. 5.9)- POP without ZPP, second 
eigenvector, C-alpha atoms.
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Figure 5.22: Same as Fig. 5.21 but viewed from a different angle.
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Eigenvalues of the covariance matrix

Figure 5.23: Eigenvalues of POP with non-bonded ZPP, arranged from highest to lowest. These 
eigenvalues correspond to the main modes of motions in the protein. As expected, only the first 
few eigenvalues are large, and the eigenvalues after 5th one can be neglected.
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of the figure.

Fig. 5.26 shows RMSFs of the C-alpha atoms for the second eigenvector of POP with free 
ZPP. The peaks larger than 0.75nm in this graph belong to the loops containing 34Pro, 415Glu, 
686Val residues. These residues are labeled in Fig. 5.27. Note that the ZPP atom is not shown 
in the demonstration.



5.3. Principal Component A nalysis 81

R M S fluctuation (nm )

Figure 5.24: RMSFs of the C-alpha atoms for first eigenvector of POP with free ZPP corre
sponding to the residues measured from the entire molecular dynamics run. The RMSFs have 
small values for the rigid structural elements and larger values for the ends and loops. The 
peaks larger than 0.1 nm in this graph belong to the ends and loops containing IMet, 21Gly, 
34Pro, 230Asp, 270Ser, 323Glu, 345Agr, 603Leu, 707Asp and 710Pro residues.
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Figure 5.25: RMSFs of the C-alpha atoms for first eigenvector of POP with free ZPP cor
responding to the residues measured from the entire molecular dynamics run. The residues 
mentioned in Fig. 5.24 are labeled here. The arrows show direction and magnitude of move
ments. Note that the ZPP atom is not shown for clarity.
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Figure 5.26: RMSFs of the C-alphas for second eigenvector of POP with non-bonded ZPP 
corresponding to the residues measured from the entire molecular dynamics run. The peaks 
larger than 0.75nm in this graph belong to the loops containing 34Pro, 415Glu, 686Val residues. 
These residues are labeled in Fig. 5.27. Note that the ZPP atom is not shown for clarity.



84 Chapter 5. Results

415Glu
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Figure 5.27: RMSFs of the C-alphas for second eigenvector of POP with free ZPP correspond
ing to the residues measured from the entire molecular dynamics run. The residues mentioned 
in Fig. 5.26 are labeled here. Note that ZPP is not shown for clarity of the figure.
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Conclusion

Prolyl oligopeptidase (POP), a member of the prolyl endopeptidase, is a proline-specific en- 
dopeptidase that cleaves oligopeptides (<30 residues) at C-side of an internal proline e.g. neu
roactive peptides. POP is known to have a role in neurological disorders. However, specific 
inhibitors of POP revert memory loss produced by neurological disorders, amnesic agents and 
aging. POPs strongest inhibitor, Z-Pro-prolinal (ZPP), has a hydrophobic head that blocks the 
active site which leads to a change in action of the POP. ZPP also has an aldehyde tail that 
forms a reversible covalent hemiacetal bond with the Ser554 residue of the catalytic domain. 
In this study, we performed extensive 50 ns MD simulations of POP with ZPP and without 
ZPP inhibitor. The simulations of the system are setup for POP with the ZPP located in the 
protein pocket as found in the crystal structure but without a covalent bond with the protein. 
Also, POP without ZPP is simulated to validate the results with the previous research avail
able. In the present work, ZPP can freely move inside the binding pocket and probe various 
regions of the environment, interacting in non-specific ways with various groups so we chose 
such a setup to be able to study the possible route to the active site. Results of the simulation 
of POP with non-bonded ZPP are compared with results of POP to achieve behaviour of ZPP 
inhibitor in cavity tunnel. Our simulations showed that the POP structure is very stable on the 
simulated timescale. To validate the simulations, the basic measurements on POP without ZPP 
are compared with previous research. The root mean square deviations for protein were similar 
to those obtained by [95] Kaszuba et al. A slight difference was observed due to the difference 
in temperature of the systems simulated in the presented work (303 Kelvin) and [95] Kaszuba 
et al. (310 kelvin). The radius of gyration for C-alpha carbons were compared and found to 
be similar while showing the POP was stable in whole simulation. More basic characteristic 
for POP with ZPP were compared with POP without ZPP. These results demonstrate that the 
protein is stable in whole simulation period when the ZPP is added to system. A principal com
ponent analysis was performed for POP and POP with ZPP. Although simulations on POP with

85
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ZPP have previously been done by K. Kaszuba et al., but the PCA for POP has not been yet 
accomplished. Here, the results from PCA are analyzed in order to get a better understanding 
of the movements of the molecules. The first mode of motions obtained from PCA analysis for 
POP indicates that the loops which include Lysl96 and Asn271 residues have largest move
ments. The motions of the loop containing Lysl96 can remove/grant access to the inside of 
the cavity through the velcro-rip, while the loop with Asn271 residue controls the access to 
^-propeller tunnel. The second mode from PCA of POP shows that loops which contain Gly21 
and Lysl96 residues move towards/away each other in a way that they can control the entry 
point to the velcro-rip.

The PCA for POP with ZPP shows that the movements of POP are more limited with the 
presence of ZPP inhibitor which can disable most of the activities of POP related to its unique 
pathways. The first mode of motions from PCA for POP with ZPP indicates that the loops 
which include residues Gly21, Pro34, 230Asp, 270Ser, 323Glu, 345Agr and 603Leu have 
some movements but these motions are relatively smaller when compared with POP without 
ZPP. These movements do not seem large enough to open either of the pathways so that ZPP 
can freely escape the cavity. The second mode of motions for POP with ZPP show that the 
loops which contain Pro34, Glu415 and Val686 residues have the largest movements compared 
to the rest of the molecule but they are smaller than those related to POP without ZPP. As future 
work, the simulation run time should be extended to longer periods to get a better understanding 
of the smulation.
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