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Vancouver, BC, Canada

Background: The impact of exercise on cognition in older adults with hypertension and

subjective cognitive decline (SCD) is unclear.

Objectives: We determined the influence of high-intensity interval training (HIIT)

combined with mind-motor training on cognition and systolic blood pressure (BP) in older

adults with hypertension and SCD.

Methods: We randomized 128 community-dwelling older adults [age mean (SD):

71.1 (6.7), 47.7% females] with history of hypertension and SCD to either HIIT or a

moderate-intensity continuous training (MCT) group. Both groups received 15min of

mind-motor training followed by 45min of either HIIT or MCT. Participants exercised

in total 60 min/day, 3 days/week for 6 months. We assessed changes in global

cognitive functioning (GCF), Trail-Making Test (TMT), systolic and diastolic BP, and

cardiorespiratory fitness.

Results: Participants in both groups improved diastolic BP [F (1, 87.32) = 4.392, p =

0.039], with greatest effect within the HIIT group [estimated mean change (95% CI):

−2.64 mmHg, (−4.79 to −0.48), p = 0.017], but no between-group differences were

noted (p = 0.17). Both groups also improved cardiorespiratory fitness [F (1, 69) = 34.795,

p < 0.001], and TMT A [F (1, 81.51) = 26.871, p < 0.001] and B [F (1, 79.49) = 23.107, p

< 0.001]. There were, however, no within- or between-group differences in GCF and

systolic BP at follow-up.

Conclusion: Despite improvements in cardiorespiratory fitness, exercise of high- or

moderate-intensity, combined with mind-motor training, did not improve GCF or systolic

BP in individuals with hypertension and SCD.

Clinical Trial Registration: ClinicalTrials.gov (NCT03545958).
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INTRODUCTION

Hypertension is associated with cognitive impairment in
older adults (Iadecola et al., 2016), contributing heavily to
cerebrovascular (Dichgans and Leys, 2017) and Alzheimer’s
disease pathophysiology (Rodrigue et al., 2013). Healthy
older adults with subjective cognitive decline (SCD) may
experience subtle cognitive deterioration due to brain pathology
accumulating years before clinical diagnoses (Buckley et al.,
2015). Individuals with history of both hypertension and SCD
may be at higher risk of dementia because of increased
cerebrovascular disease and neurodegenerative burden
(Uiterwijk et al., 2014). Despite greater risk, the effects of
non-pharmacological interventions to ameliorate cognition in
these individuals remain unknown.

Exercise has been associated with improved cognition
(Lautenschlager et al., 2008), and has been shown to positively
impact both brain function (Voss et al., 2010) and structure
(Erickson et al., 2011) in older adults, but evidence is
limited in those with hypertension (Smith et al., 2010). High-
intensity interval training (HIIT) is a modality of exercise
training that yields similar or greater cardiorespiratory fitness
improvements compared to conventional, moderate-intensity
continuous training (MCT) (Wisløff et al., 2007). In clinical
populations, HIIT has been shown to lower blood pressure
(BP) to a greater extent compared to MCT, including within
hypertensive patients (Pescatello et al., 2015). The effects of HIIT
on cognition in older adults is understudied, as most trials have
employed only MCT protocols (Northey et al., 2017). Further,
with growing interest on multidomain interventions to improve
cognition (Kivipelto et al., 2018), combining HIIT with mind-
motor training approaches seems appealing. Square-stepping
exercise (SSE) (Shigematsu et al., 2008) is a novel type of mind-
motor training associated with positive effects on cognition (Gill
et al., 2016); however, SSE has yet to be studied in individuals with
hypertension and SCD.

In this study, we investigated the effects of combining HIIT
with SSE on cognition and BP in older adults with a history
of hypertension and SCD. We hypothesized that HIIT plus SSE
would yield superior improvements in both BP and cognition
outcomes compared to an active control group.

METHODS

Study Design and Participants
We conducted a 6-month, single-blind, two-arm randomized
controlled trial based in the community following a pragmatic
approach (Ford and Norrie, 2016). Participants were
randomized to either intervention (HIIT) or comparator
(MCT) groups. Randomization (1:1) was conducted via
www.randomization.com with randomly selected block sizes
(e.g., 4, 6, 8) (Friedman et al., 2010). Block randomization was
used to avoid statistical challenges posed by clustering with
simple randomization or sample size imbalance and loss of
power (Friedman et al., 2010), while ensuring similar sample
sizes in both groups at every 4, 6, or 8 blocks. Each participant
had a 50% chance of being randomized to either group. No

demographic characteristics or other factors were considered in
the randomization procedure.

We included individuals whomet the following criteria: (1) 55
years of age or older; (2) presented with a history of controlled or
uncontrolled stage 1 hypertension, or taking antihypertensive BP
medication (Leung et al., 2017); (3) had preserved instrumental
activities of daily living (scoring >6/8 on the Lawton-Brody
Instrumental Activities of Daily Living scale (Lawton and Brody,
1969)]; (4) presented with signs of SCD (defined as answering yes
to the question: “Do you feel like your memory or thinking skills
have gotten worse recently?”), as employed in previous exercise
studies (Barnes et al., 2013); (5) preserved objective cognitive
performance defined by scoring ≥26 on the Montreal Cognitive
Assessment (MoCA) (McLennan et al., 2011) combined with
study physician consult; and (6) able to comprehend the study
letter of information and provide written informed consent.

Participants were excluded if they presented with: (1)
significant neurological conditions or psychiatric disorders
(e.g., diagnosis of Alzheimer’s disease or vascular dementia,
Parkinson’s disease, stroke <1 year prior); (2) history of severe
cardiovascular conditions [e.g., recent (<1 year) myocardial
infarction] or symptomatic cerebrovascular disease; (3)
significant orthopedic conditions; or (4) untreated clinical
depression (i.e., score >15 on the Centers for Epidemiologic
Studies Depression scale (Lewinsohn et al., 1997) combined with
study physician consult). Participants were also excluded for
any other factors that could potentially limit their ability to fully
participate in the study.

All research participants provided written informed consent
prior to partaking in any of the research activities. The Western
Health Sciences Research Ethics Board approved the study and
the trial was registered within ClinicalTrials.gov (NCT03545958)
on May 22, 2018.

Interventions
Participants in both groups engaged in a 60-min, group-
based, combined exercise program. Each session began with
15min of mind motor training (i.e., SSE) followed by 45min
of either HIIT or MCT. The interventions were conducted
with ≤30 participants/session, 3 days/week on non-consecutive
days, for 6 months at the local YMCA. Participants used
stationary bikes during HIIT or MCT and were coached by
qualified fitness instructors with student volunteer assistance.
Exercise intensity during HIIT and MCT was prescribed
individually using training heart rate (HR), determined via
exercise testing (see “Cardiorespiratory fitness” subsection)
(American College of Sports Medicine, 2014). Intensity was
monitored using chest-based HR monitors with a group
tracking system (MyzoneTM) and via the modified 10-point
Borg Rating of Perceived Exertion (RPE) scale (Borg, 1982).
To increase motivation and ensure compliance with intensity
protocol, each participant individual HR and % of HRmax
achieved were continuously displayed to participants on a large
screen during the exercise sessions. Intensity was stimulated
via continuous increments in speed and/or resistance on the
stationary bikes.
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Mind-Motor Training
The SSE program is a group-based, visuospatial workingmemory
task with a stepping response (see Figure 1) (Shigematsu et al.,
2008). The training protocol entails the reproduction of complex
stepping patterns on a gridded floor mat (2.5m × 1m).
The stepping patterns are demonstrated by an instructor and
participants are expected to memorize and then attempt to
reproduce each pattern. The complexity of these patterns is based
on the number of steps, order and direction of foot placement
on the mat. Complexity was increased gradually in each session
with the introduction of new patterns once 80% of participants
had learned and repeated each pattern twice. The SSE sessions
were conducted in groups ≤6 participants/mat, and participants
were encouraged to assist each other by providing visual and
verbal cues.

High-Intensity Interval Training
Each HIIT session was composed of a 5 to 10-min warm-up, a
25-min main activity, and a 5 to 10-min cool down. The 25-min
main activity included 4 bouts of different exercise intensities
(Molmen-Hansen et al., 2012). In each bout, participants received
4min of high-intensity cycling (starting at 80–90% HRmax, and
progressing toward 85–95% HRmax) followed by 3min of active
rest (aiming for 40–60% HRmax) (Molmen-Hansen et al., 2012).
This HIIT protocol was deemed safe to be implemented in
our study as it was originally designed to reduce systolic (SBP)
in patients with essential hypertension at baseline (Molmen-
Hansen et al., 2012), and has been safely applied to several other
clinical populations (Mezzani et al., 2012). Exercise intensity
was monitored throughout the HIIT sessions with volunteers
collecting HR and RPE once during warm-up and cool-down,
as well as during each active and rest period. Participants were
verbally encouraged by instructors to achieve the prescribed
exercise intensity in each high-intensity, 4-min active period.
Progression was made gradually over the course of the study
during each session until participants were able to comfortably
reach and/or maintain the high-intensity training zone (i.e.,
80–95% HRmax) during the active high-intensity periods.

Moderate-Intensity Continuous Training
Each MCT session consisted of a 5 to 10-min warm-up, a 25-
min continuous cycling at moderate-intensity (starting at 60–
80% HRmax) component, and a 5 to 10-min cool down. Exercise
intensity was monitored throughout the MCT sessions with
volunteers collecting HR and RPE once during warm-up and
cool-down, and every 5min within the 25-min main component.
Participants were also encouraged verbally by instructors to
maintain their HR within the moderate-intensity training zone
during each exercise session (i.e., 60–80% HRmax).

Measurements
Participants attended baseline measurements prior to study
randomization (i.e., blind baseline assessments). We collected
clinical and demographic information, and performed
cardiovascular, cardiorespiratory and cognitive assessments
over 2 days. Baseline and 6-month follow-up measurements
were conducted by trained assessors; at follow-up, assessors were

blinded to group allocation for assessment of BP and cognition.
All follow-up measurements were performed within 1–2 weeks
after the end of the study intervention.

Cognition Assessment
Global cognitive functioning (GCF) was the primary outcome
of this study, derived from the Cambridge Brain Sciences
(CBS) battery (Hampshire et al., 2012). The CBS battery
contains 12 non-verbal, culturally independent cognitive
tasks covering four broad cognitive domains (i.e., memory,
reasoning, concentration, and planning, see details in
Supplementary Methods) (Hampshire et al., 2012). It is a
fully automated, computerized adaptive testing platform and has
been used to effectively evaluate cognition in several large-scale
studies (Wild et al., 2018). The tasks were conducted using
laptops with access to internet provided by study personnel.
Before each task, participants practiced with a tutorial under the
guidance of a trained assessor. Assessors provided assistance as
necessary but were instructed not to intervene once participants
completed the tutorial and data collection began. The outcome
measure was derived based on participant scores on each of the
12 CBS tasks. Following previous methods (Gill et al., 2016),
task scores were z-transformed and averaged to create domain-
specific composite scores. These composite scores were then
averaged to create a GCF score, used as the primary outcome.
Domain-specific scores were retained for secondary analysis.
Additionally, we administered the paper-based Trail-Making
Test (TMT) to assess changes in lower-level cognitive processes
(e.g., processing speed, set-shifting) (Reitan, 1992). This measure
was included since it is a commonly used test in exercise studies
due to its sensitivity to capture the effects of exercise on cognition
in older adults (Boa Sorte Silva et al., 2020a).

Blood Pressure Assessment
Automated office SBP was the co-primary outcome in this
study. Measurements were obtained by trained technicians
with an automated monitor (Watch BP Office, Microlife AG,
Switzerland), with standardized cuff size and position. The left
arm was preferred for BP assessments across all participants
whenever possible (i.e., exceptions were severe discomfort caused
by muscle injuries or scar tissue from previous surgeries).
Nonetheless, the same armwas used for both baseline and follow-
up assessments to ensure consistency within participants. After
a 5-min seated resting period, BP was collected four times with
1-min intervals (Leung et al., 2017). The first BP measurement
was discarded and the average of the last three SBP readings
were used for analysis. We also retained the last three measures
of diastolic BP (DBP) and resting HR as secondary outcomes.
We performed BP measurements within 1–2 weeks after the end
of the study intervention but no earlier than 24 h after the last
exercise session attended by the study participants. Furthermore,
to minimize the influence of other external factors, participants
were asked to take their medication as usual, refrain from alcohol
consumption and vigorous exercise 24 h prior to assessment,
refrain from caffeine intake on the day of assessment, and were
asked void their bladder before BP measurements.
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FIGURE 1 | Participants performing the square-stepping exercise.
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Cardiorespiratory Fitness
We conducted maximal exercise testing (Gibbons et al.,
1997) using a treadmill (Quinton R© TM55) connected to
a desktop computer equipped with the Q-StressTM Cardiac
ScienceTM software, Version 4.5 (Cardiac Science Corp., USA).
The maximal test ended once participants had subjectively
reached their maximum capacity and asked for the test
to be stopped. The test was also ended under the study
physician’s recommendations. We monitored HR via exercise
echocardiogram (ECG) with electrodes (10-lead) connected to
participant’s chest. The Bruce (Bruce et al., 1973) treadmill
test was applied in this study and we retained time to
exhaustion, estimated metabolic equivalent (MET), and HRmax
for secondary outcome analysis.

Samples Size
A meta-analysis (Colcombe and Kramer, 2003) suggested that
exercise improves cognition with an overall effect size of d= 0.48.
Further, Cornelissen and Fagard (2005) reported that exercise
training is associated with an overall 6.9 mmHg reduction in
SBP hypertensive patients, with an effect size of d = 0.85
(Morris, 2008). Considering a greater effect of exercise on SBP,
we estimated our sample size using an approximate effect size
for cognition. Based on this, with 63 participants per group,
our study would have 80% power at the 5% significance level
to detect a moderate effect size of d = 0.55 (Lachin, 1981). We
estimated a dropout rate of 20% during the 6-month period,
which increased our calculation to 70 participants per group.
This proposed sample size is in line with previous investigations
(Lautenschlager et al., 2008).

Statistical Analyses
We analyzed the outcome data based on an intent-to-treat
approach, using linear mixed effects regression models for
repeated measurements (LMM) (Fitzmaurice et al., 2004). We
included all randomized participants, regardless of missing data
at follow-up (Fitzmaurice et al., 2004). Time was considered
as a repeated, categorical variable included as a fixed effect in
addition to group and group-by-time interaction (Fitzmaurice
et al., 2004). For primary outcomes, we examined the difference
between groups in estimated mean change in GCF and SBP from
baseline to 6 months.

For our secondary outcomes, we examined changes
in domain-specific cognition (i.e., memory, reasoning,
concentration, and planning), TMT parts A and B, cardiovascular
outcomes (i.e., office DBP and resting HR), and cardiorespiratory
fitness (i.e., time to exhaustion, METs achieved and HRmax).
We also conducted sensitivity analyses adjusting for age, sex,
MoCA scores, baseline cardiorespiratory fitness (i.e., time to
exhaustion), as well as history and/or medication use for diabetes,
cardiovascular disease (including hypertension), and depression.

Furthermore, to handle missing data and perform
confirmatory analysis in both primary outcomes, we first
conducted complete-case analysis including only participants
who completed baseline and 6-month assessment. Second, we
used multiple imputation under the assumption that data were
missing at random [Little’s MCAR test: χ2(137) = 159.99, p =

0.087]. Following previous methods (Ten Brinke et al., 2020), we
created 40 imputed datasets using random number generation
and repeated the LMM for both GCF and SBP. The results of
each LMM were pooled across all imputed datasets.

Additionally, we used post-hoc analyses to investigate
subgroup effects on primary outcomes based on sex, and baseline
median values for SBP and cardiorespiratory fitness (i.e., time
to exhaustion). We based our interpretation of study results on
estimation and associated 95% confidence intervals (CI). For all
subgroup analyses, we adjusted p using the Benjamini-Hochberg
false discovery rate approach (Benjamini and Hochberg, 1995),
with an adjusted significance threshold p ≤ 0.005.

Analyses were performed on IBM R© SPSS R© Statistics, Version
24 (IBM Corp, USA), and R, Version 3.6.1 (http://www.R-
project.org).

RESULTS

Enrollment and Adherence
Participant flow during the study is shown Figure 2. The study
period ran between July 2018 and March 2020. Participant
demographic information and clinical characteristics are
presented in Table 1, while baseline outcome measures are
reported in Table 2. Overall, at baseline, participants included
(n = 128) had preserved cognitive function (McLennan et al.,
2011), were mostly Caucasian, highly educated (Table 1), and
had “greater than average” cardiorespiratory fitness (Mandsager
et al., 2018) compared to normative data (see Table 2). Average
attendance to the exercise sessions was 54% for the MCT group
and 51% for the HIIT group, with no differences between groups
[t(126) = 0.45, p= 0.65].

Adherence to exercise intensity was monitored using
%HRmax and RPE data collected during the exercise sessions.
Figure 3 demonstrates average exercise intensity for both HIIT
and MCT groups in each exercise session. The data indicate that
both groups exercised at different intensities as prescribed in the
study protocol, with participants in the HIIT group exercising at
higher intensities [mean (standard deviation), %HRmax= 85.01
(6.93), RPE = 6.29 (1.24)] compared to those in the MCT group
[%HRmax = 75.91 (6.28), RPE = 4.68 (1.20)]. An independent
samples t-test comparing average exercise intensity achieved by
each participant across all exercise sessions revealed that indeed
the HIIT group performed at higher intensity as indexed by
%HRmax [t(110) = 7.28, p < 0.001] and RPE [t(110), = 7.00, p <

0.001] data collected.

Outcomes
Main results (intention-to-treat approach) are shown in Table 3.
Complete-case and multiple-imputation data analysis revealed
similar results (see Supplementary Table 1).

Cognition
There were no significant within- or between-group differences
in GCF or any of the domain-specific composite scores at
6 months (see Table 3 and Figures 4, 5); sensitivity analyses
indicated that results remained unchanged in fully adjusted
models (Table 3). While there were no differences between
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FIGURE 2 | Study CONSORT diagram to illustrate participant flow throughout the study.
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TABLE 1 | Participant demographics and clinical characteristics.

Baseline descriptorsa HIIT (n = 65) MCT (n = 63) Total (n = 128) p-valueb

Demographics

Age, yr 71.7 (6.3) 70.4 (7.1) 71.1 (6.7) 0.27

Females, n (%) 32 (49.2) 29 (46.0) 61 (47.7) 0.85

Caucasian, n (%) 56 (86.2) 57 (90.5) 113 (88.3) 0.76

Education, yr 16 (3.2) 16.6 (3.6) 16.3 (3.4) 0.38

MoCA, score 26.9 (1.6) 26.8 (1.5) 26.8 (1.6) 0.81

MMSE, score 29.2 (1.1) 29.2 (1.0) 29.2 (1.0) 0.96

CES-D, score 9.0 (7.3) 8.8 (7.1) 8.9 (7.2) 0.83

IADL 7.9 (0.3) 7.9 (0.3) 7.9 (0.3)

Height, cm 166.7 (9.2) 167.7 (11.3) 167.2 (10.3) 0.57

Weight, kg 81.5 (17.1) 85.4 (21.5) 83.4 (19.4) 0.25

BMI, kg/m2 29.3 (5.8) 30.3 (6.5) 29.8 (6.2) 0.38

Diagnosed comorbidities, n (%)

Hypertension 51 (78.5) 49 (77.8) 100 (78.1) 1.00

Arthritis 23 (35.4) 25 (39.7) 48 (37.5) 0.75

Diabetes 11 (16.9) 13 (20.6) 24 (18.8) 0.76

Depression 4 (6.2) 12 (19.0) 16 (12.5) 0.053

Medication usage, n (%)

Blood pressure 53 (81.5) 53 (84.1) 106 (82.8) 0.88

Cholesterol 31 (47.7) 33 (52.4) 64 (50.0) 0.72

Diabetes 9 (13.8) 13 (20.6) 22 (17.2) 0.43

Depression 6 (9.2) 11 (17.5) 17 (13.3) 0.27

Arthritis 6 (9.2) 5 (7.9) 11 (8.6) 1.00

Blood thinners 3 (4.6) 4 (4.8) 7 (5.5) 0.97

aData presented as mean (standard deviation) unless otherwise indicated. bSignificance for independent samples t-test for continuous variables, or Chi-square test for independence for

categorical variables. HIIT, high-intensity interval training; MCT, moderate-intensity continuous training; MoCA, Montreal Cognitive Assessment; MMSE, Mini-Mental State Examination;

CES-D, Center for Epidemiologic Studies Depression Scale; IADL, Instrumental Activities of Daily Living Scale.

TABLE 2 | Study baseline measures.

Baseline outcomesa HIIT (n = 65) MCT (n = 63) Total (n = 128) p-valueb

Cognition, z score

GCF 0.004 (0.553) −0.004 (0.594) 0 (0.571) 0.94

Memory −0.03 (0.609) 0.031 (0.695) 0 (0.651) 0.60

Concentration −0.01 (0.745) 0.01 (0.752) 0 (0.746) 0.88

Planning 0.031 (0.791) −0.032 (0.839) 0 (0.812) 0.66

Reasoning 0.023 (0.668) −0.024 (0.739) 0 (0.702) 0.71

Blood pressure, mm Hg

Systolic 129.8 (16.0) 128.8 (16.0) 129.3 (15.9) 0.73

Diastolic 73.3 (8.3) 72.8 (8.7) 73.1 (8.5) 0.75

Trail-Making Test, s, median (IQR)

Part A 36.0 (28.0, 44.0) 32.0 (28.0, 41.7) 34.5 (28.0, 43.0) 0.39

Part B 65.0 (49.0, 94.5) 68.0 (49.0, 92.0) 65.2 (49.0, 92.75) 0.81

Cardiorespiratory fitnessc

Time to exhaustion, min 7.0 (2.3) 6.9 (2.2) 6.9 (2.2) 0.93

Maximum intensity, METs 8.6 (2.4) 8.6 (2.2) 8.6 (2.3) 0.97

Maximum heart rate, bpm 144.2 (18.4) 144.9 (18.8) 144.5 (18.5) 0.85

aData presented as mean (standard deviation) unless otherwise indicated. bSignificance for independent samples t-test for continuous variables. cExercise stress test data available

from 118 (HIIT = 62, MCT = 56). HIIT, high-intensity interval training; MCT, moderate-intensity continuous training; GCF, global cognitive functioning; IQR, interquartile range; METs,

metabolic equivalent.
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FIGURE 3 | Group average for exercise intensity achieved over the course of the exercise sessions as indexed by %HRmax (A) and RPE (B). For the HIIT group, data

shown represent average exercise intensity at the 2-min mark within each 4-min bout of HIIT exercise. For MCT group, the data indicate average exercise intensity

collected at 4 different timepoints within the each MCT session (i.e., at 5, 10, 20, and 25min during the main MCT component, i.e., after 5 to 10min of warm-up).

%HRmax, percentage of maximum heart rate; RPE, rating of perceived exertion; HIIT, high-intensity interval training; MCT, moderate-intensity continuous training.

groups, we did observe improvements in both groups in
processing speed [F(1, 81.51) = 26.871, p < 0.001] and mental
flexibility/executive functioning [F(1, 79.49) = 23.107, p < 0.001]
measured using the paper-based TMT A and B, respectively.
Nonetheless, the more complex TMT set-shifting score (Part
A-B) did not change over time in either group (see Table 3).
These findings for TMT A and B remained significant in fully
adjusted models [Part A: F(1, 89.65) = 21.572, p < 0.001, and Part
B: F(1, 86.84) = 10.947, p < 0.001].

Blood Pressure
No significant changes were seen for SBP or resting HR and
results remained unchanged in fully adjusted models. Both
groups improved DBP at follow-up [F(1, 87.32) = 4.392, p= 0.04],
and while changes were driven by a greater reduction in the HIIT
group, the between-group difference did not reach statistical
significance. Change in DBP remained significant for the HIIT
group [estimated mean change (95% CI): −2.41 mmHg, (−4.69
to −0.12), p = 0.039] in fully adjusted models (Table 3)]. We
repeated our analysis excluding 9 participants who had changes
in their BP medication and found that DBP changes remained
significant within the HIIT group [estimated mean change (95%
CI): −2.47 mmHg, (−4.83 to −0.10), p = 0.041, n = 119].
Further subgroup analyses revealed reduction in SBP for HIIT
participants with high SBP at baseline (i.e., those with SBP≥ 128
mmHg). This improvement was statistically superior compared
to participants with low BP in both HIIT and MCT subgroups at
the adjusted significance threshold (p ≤ 0.005), see Figure 6.

Cardiorespiratory Fitness
Cardiorespiratory fitness improved in both groups at follow-
up as demonstrated by a greater time to exhaustion [F(1, 69)

= 34.795, p < 0.001, Figure 7] and METs achieved [F(1, 69.84)
= 22.303, p < 0.001]; however, no between-group differences
were noted. Results remained significant in fully adjusted models
for time to exhaustion [F(1, 69.13) = 35.985, p < 0.001] and
METs achieved [F(1, 72.87) = 21.841, p < 0.001]. Subgroup
analyses revealed that significant changes in time to exhaustion
were driven by greater improvements among females within
the MCT group and males within the HIIT group at adjusted
significance threshold (p ≤ 0.005, see Figure 7). Also, within
group improvements at 6 months were driven mainly by
enhanced performance on participant with greater fitness at
baseline, see Supplementary Table 4).

Adverse Events
We documented 12 study-related adverse events, 6 in the HIIT
group and 6 in the MCT group. These adverse events were low-
back pain (5), hip soreness (2), hypertensive crisis (1), knee
soreness (2), and muscle soreness (2), and were resolved within
the duration of the study.

DISCUSSION

The goal of our study was to investigate the impact of a 6-
month HIIT with mind-motor training intervention on vascular
and cognitive outcomes, compared to an active control group, in
older adults with history of hypertension and SCD.

The effectiveness of exercise to improve cognition in those
with hypertension remains to be determined, as there is dearth
of RCTs on aerobic exercise to improve cognition in older
adults with hypertension. Pierce and colleagues conducted a
4-month RCT comparing the effects of aerobic exercise on
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TABLE 3 | Within- and between-group differences from baseline to 6 months by randomization group.

Within-group estimated mean change (95% CI) Between-group differences (95% CI)

Outcomesa HIIT (n = 65) p Value MCT (n = 63) p Value 6 months (n = 128) p Value

Cognition, z score

GCF

Unadjusted −0.02 (−0.12 to 0.08) 0.67 0.06 (−0.04 to 0.16) 0.23 −0.08 (−0.22 to 0.06) 0.25

Adjusted −0.03 (−0.14 to 0.08) 0.64 0.04 (−0.07 to 0.14) 0.48 −0.06 (−0.21 to 0.08) 0.38

Memory

Unadjusted −0.02 (−0.18 to 0.14) 0.83 0.12 (−0.03 to 0.28) 0.11 −0.14 (−0.36 to 0.08) 0.20

Adjusted −0.004 (−0.17 to 0.16) 0.96 0.11 (−0.05 to 0.27) 0.19 −0.11 (−0.34 to 0.11) 0.31

Concentration

Unadjusted −0.10 (−0.29 to 0.08) 0.28 0.08 (−0.10 to 0.25) 0.40 −0.18 (−0.43 to 0.08) 0.18

Adjusted −0.14 (−0.33 to 0.06) 0.18 0.05 (−0.15 to 0.24) 0.63 −0.18 (−0.45 to 0.08) 0.17

Planning

Unadjusted 0.02 (−0.21 to 0.25) 0.89 −0.04 (−0.26 to 0.18) 0.69 0.06 (−0.26 to 0.38) 0.71

Adjusted −0.04 (−0.28 to 0.21) 0.77 −0.04 (−0.28 to 0.20) 0.75 0.002 (−0.33 to 0.33) 0.99

Reasoning

Unadjusted 0.06 (−0.16 to 0.27) 0.60 0.14 (−0.06 to 0.35) 0.18 −0.08 (−0.38 to 0.21) 0.57

Adjusted 0.05 (−0.18 to 0.27) 0.68 0.10 (−0.12 to 0.32) 0.39 −0.05 (−0.35 to 0.26) 0.76

Blood pressure

Systolic, mmHg

Unadjusted −2.58 (−6.62 to 1.46) 0.21 1.16 (−2.76 to 5.07) 0.56 −3.74 (−9.36 to 1.89) 0.19

Adjusted −0.24 (−4.52 to 4.04) 0.91 2.86 (−1.32 to 7.06) 0.18 −3.11 (−8.84 to 2.62) 0.28

Diastolic, mmHg

Unadjusted −2.64 (−4.79 to –0.48) 0.017 −0.53 (−2.63 to 1.56) 0.62 −2.11 (−5.11 to 0.90) 0.17

Adjusted −2.41 (−4.69 to –0.12) 0.039 −0.47 (−2.71 to 1.78) 0.68 −1.94 (−5.01 to 1.13) 0.21

Resting heart rate, bpm

Unadjusted −1.76 (−4.81 to 1.29) 0.26 0.54 (−2.40 to 3.48) 0.72 −2.3 (−6.53 to 1.94) 0.28

Adjusted −1.35 (−4.48 to 1.77) 0.39 1.19 (-1.86 to 4.24) 0.44 −2.54 (−6.72 to 1.64) 0.23

Trail-Making Testb

Part A

Unadjusted −0.07 (−0.11 to −0.03) <0.001 −0.07 (−0.10 to −0.03) 0.001 −0.005 (−0.06 to 0.05) 0.86

Adjusted −0.06 (−0.10 to −0.02) <0.003 −0.07 (−0.11 to −0.03) <0.001 0.01 (−0.04 to 0.07) 0.69

Part B

Unadjusted −0.07 (−0.11 to −0.03) 0.001 −0.06 (−0.09 to −0.02) 0.002 −0.01 (−0.06 to 0.04) 0.68

Adjusted −0.06 (−0.10 to −0.01) <0.009 −0.05 (−0.09 to −0.005) 0.029 −0.01 (−0.7 to 0.04) 0.69

B minus A

Unadjusted −0.002 (−0.05 to 0.05) 0.93 0.001 (−0.05 to 0.05) 0.97 −0.003 (−0.07 to 0.07) 0.93

Adjusted 0.01 (−0.04 to 0.07) 0.64 0.03 (−0.03 to 0.08) 0.31 −0.01 (−0.09 to 0.06) 0.69

Cardiorespiratory fitnessc

Time to exhaustion, min

Unadjusted 1.12 (0.63 to 1.62) <0.001 0.93 (0.45 to 1.42) <0.001 0.19 (−0.51 to 0.88) 0.59

Adjusted 1.14 (0.64 to 1.63) <0.001 0.95 (0.46 to 1.44) <0.001 0.19 (−0.51 to 0.88) 0.59

Intensity, METs

Unadjusted 1.18 (0.58 to 1.78) <0.001 0.83 (0.24 to 1.43) 0.007 0.35 (−0.50 to 1.20) 0.42

Adjusted 1.14 (0.54 to 1.74) <0.001 0.83 (0.24 to 1.42) 0.006 0.31 (−0.53 to 1.15) 0.47

Maximum heart rate, bpm

Unadjusted −0.24 (−4.91 to 4.42) 0.92 0.65 (−3.95 to 5.25) 0.78 −0.89 (−7.44 to 5.66) 0.79

Adjusted −0.29 (−4.95 to 4.36) 0.90 0.64 (−3.96 to 5.24) 0.78 −0.93 (−7.48 o 5.61) 0.78

aCalculated from linear mixed effects regression models that included group (HIIT or MCT), time (baseline and 6 months), and group × time interaction terms. Results are presented

as intention-to-treat approach. Bold numbers indicate significant differences. Adjusted models account for the influence of age, sex, Montreal Cognitive Assessment score, baseline

cardiorespiratory fitness, as well as history or medication use for diabetes, cardiovascular disease, and depression. bLog10 transformation applied. cData available from 118 (HIIT =

62, MCT = 56). CI, confidence interval; HIIT, high-intensity interval training; MCT, moderate-intensity continuous training, GCF, global cognitive functioning; METs, metabolic equivalent.
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FIGURE 4 | Baseline and follow-up means for global cognitive function (A, group mean and 95% CI) and estimated mean change from baseline to 6 months (B,

estimated mean change and 95% CI). CI, confidence interval; HIIT, high-intensity interval training; MCT, moderate-intensity continuous training.

measures of executive function, memory, and processing speed
in hypertensive young and older adults (29–59 years of age)
compared to strength training, or a wait-list control group (Pierce
et al., 1993). No differences between groups were observed after
the intervention in any outcome. In an RCT administering a
4-month, multi-domain lifestyle intervention (i.e., diet, exercise
and caloric restriction) to young older adults with hypertension,
Smith and colleagues reported that those who engaged in an
exercise program in addition to diet and caloric restriction
improved executive function, memory and learning compared to
a usual care control group, with positive effects also in VO2max
and BP (Blumenthal et al., 2010; Smith et al., 2010). Taken
together, these findings may suggest an additive benefit of aerobic
exercise to cognition in adults with hypertension, however, due to
fairly young samples involved in both RCTs and the uncertainty
about the cognitive status of participants at baseline, their results
may not be generalized to an older population of persons with
hypertension and SCD. Also, these investigations only applied
exercise protocols of MCT therefore, the effects of HIIT on
cognition in this population has yet to be determined.

Our study is the first, to our knowledge, to investigate
the impact of HIIT and mind-motor training on cognition
and BP in older adults with a history of hypertension and
SCD. Our assumptions were that by targeting BP control with
HIIT and potentially amplifying cognitive improvements with
supplementary mind-motor training, we would observe greater
synergistic benefits to cognition. Strong evidence supports
aerobic exercise as an effective therapy to lowering BP and
managing hypertension (Pescatello et al., 2004).We hypothesized
that these effects would, in turn, alleviate cerebrovascular
burden and yield cognitive improvements and/or prevent decline
(Baumgart et al., 2015). Despite lack of changes of GCF, our

program did positively impact lower-level cognitive functioning
measured via the TMT A and B, likely resulting from improved
processing speed in both groups. Nonetheless, the more complex
TMT set-shifting score (Part A-B) did not improve over time
(Varjacic et al., 2018).

Our results indicated that the exercise program did not
have the hypothesized effect on the study primary outcomes.
At the end of the study, GCF remained unchanged despite
improvements in cardiorespiratory fitness. Very few studies
have conducted a similar investigation, with one trial reporting
no changes in cognition in hypertensive middle-aged adults
(Pierce et al., 1993). Therefore, it is plausible that our null
findings on GCF signifies that hypertensive older adults with
SCD may be less responsive to the benefits of HIIT and mind-
motor training in higher-level cognitive functioning. This is
possibly due to greater severity of hypertension burden on
brain structure and function, which is prevalent in frontal-
cortical and subcortical regions (Dichgans and Leys, 2017;
Alber et al., 2019). This is reasonable considering that HIIT
seems to impart benefits on memory in otherwise healthy
older adults, as reported by Kovacevic et al. (2019) following
a similar HIIT protocol. Another plausible explanation is that
HIIT may not in fact be superior to MCT when assessing
a range of different outcomes, including cognition, in older
adults with a history of hypertension. Considering the recent
findings of a systematic review and meta-analysis (Malmberg
Gavelin et al., 2020), where small to medium effect sizes were
observed for combined sequential exercise and cognitive training
on cognition, it is also plausible that our study was underpowered
to find significant effects.

We also reported no effects on SBP within or between groups.
This finding was surprising and does not align with previous
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FIGURE 5 | Baseline and follow-up means for domain-specific cognitive function (A,C,E,G, show group mean and 95% CI) and estimated mean change from

baseline to 6 months (B,D,F,H show estimated mean change and 95% CI). CI, confidence interval; HIIT, high-intensity interval training; MCT, moderate-intensity

continuous training.
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FIGURE 6 | Baseline and follow-up means for systolic blood pressure readings (A,C, group mean and 95% CI) and estimated mean change from baseline to 6

months (B,D, estimated mean change and 95% CI). (A,B) Display changes for the entire sample, while (C,D) display changes within subgroups stratified by baseline

systolic blood pressure readings. #, significant changes over time at adjusted significance threshold (p ≤ 0.005); See Supplementary Table 2 for further details. ‡,

greater changes compared to HIIT Low BP [difference between groups (CI): −12.14 mmHg (−19.98 to −4.30), p = 0.003] and MCT Low BP [−14.28 mmHg (−22.22

to −6.35), p = 0.001] at adjusted significance threshold (p ≤ 0.005). CI, confidence interval; HIIT, high-intensity interval training; MCT, moderate-intensity continuous

training; High BP, high systolic blood pressure at baseline; Low BP, low systolic blood pressure at baseline.

research on exercise and BP control in hypertensive patients
(Molmen-Hansen et al., 2012; Pescatello et al., 2015). A plausible
explanation for our BP results is that our sample included
individuals with controlled and uncontrolled hypertension at
study entry, which could have led to mixed response to our
training protocol. Another investigation showed blunted SBP

response in older adults with controlled hypertension following
HIIT and MCT (Iellamo et al., 2014). Molmen-Hansen et al.
(2012) reported significant SBP reduction in middle-aged adults
following a similar HIIT protocol, and their sample only included
individuals with uncontrolled BP at baseline. Our subgroup
analysis offered confirmation to this hypothesis with HIIT having
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FIGURE 7 | Baseline and follow-up means for time to exhaustion during exercise stress tests (bar plots, group mean and 95% CI) and estimated mean change from

baseline to 6 months (scatterplots, estimated mean change and 95% CI). (A,B) Display changes for the entire sample, while (C,D) display changes stratified by males

and females. *, significant changes over time; #, significant subgroup changes over time at adjusted significance threshold (p ≤ 0.005), with improvements in females

within the MCT group [estimated mean change (95% CI): 1.61min (0.9 to 2.33), p = 0.00003] and males within the HIIT group [1.47min, (0.87 to 2.07), p =

0.000006]. See Supplementary Table 3 for further details. HIIT, high-intensity interval training; MCT, moderate-intensity continuous training.

the greatest effect on participants with high BP at study entry
compared to individuals with low BP across groups.

Despite lack of changes in SBP, we reported reduction in DBP
following the program within the HIIT group. Noteworthy, 9
participants reported changes in their BP medication throughout
the study. We repeated our analysis excluding these participants
and DBP changes remained significant within the HIIT group,

which may strengthen our results. These findings may hint
at a specific positive impact of HIIT on DBP control in this
population, similar to the results by Iellamo et al. (2014);
however, this can be considered a small effect size and more
conclusive evidence is warranted. As such, even though our
findings and previous literature suggest HIIT could positively
impact DBP to greater extent in hypertensive older adults,
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while also possibly improving SBP in those with uncontrolled
BP (Molmen-Hansen et al., 2012; Iellamo et al., 2014), HIIT
and MCT may in fact have similar effects in this population.
Furthermore, the extent to which these potential improvements
will reflect cognitive enhancements remains to be determined.

It is possible that the high attrition rate and low adherence
to the exercise sessions may have hindered greater effects of
our program. It is plausible that these shortcomings were a
result of the demands of taking part in an exercise program
centered at guaranteeing that participants complied with the
exercise intensities prescribed. We used objective and subjective
measures of exercise intensity, including immediate continuous
feedback, to ensure compliance with the training protocols.
These considerations, however, remain speculative and these
shortcomings should be carefully considered in future exercise
studies with this population.

LIMITATIONS

We included individuals with controlled and uncontrolled
hypertension, and did not account for the effects of diet, smoking,
alcohol intake and physical activity levels (Gottesman et al.,
2017). Adjusting for these factors could have impacted study
results, especially past physical activity levels and sedentary
time—considering that these are modifiable risk factors for
cardiovascular disease and have been shown to impact cognition
across the life span (Falck et al., 2017). The usage of BP
medication that decreases HR in this population also poses a
challenge for accurately prescribing exercise intensity based on
%HRmax—hence, RPE was also used to mitigate this issue in the
current study. Furthermore, approximately 84% of participants
achieved 80% or more of their age-predicted HRmax (208 –
0.7 × age) (Tanaka et al., 2001) at baseline, suggesting that any
HR-lowering effect of BP medication did not have a substantial
impact on our sample. We also noted a trend for differences
between groups in history of depression (Table 1), with the MCT
group including more patients with this condition. Adjusting
for history of depression in the models showed that it had a
significant contribution to models of cardiorespiratory fitness
(all p < 0.017), however it did not change overall study results.
Future studies should consider exploring this relationship of
cardiorespiratory fitness improvements and depression in older
adults with hypertension.

Also, although the CBS cognitive battery is grounded in
well-validated neuropsychological tests (Hampshire et al., 2012),
it has not been widely used in exercise studies and it may
lack sensitivity in our clinical sample. That said, this seems
unlikely, because the tasks have previously been shown to
be highly sensitive to subtle cognitive differences related to
disease or pharmacological intervention. For example, the test of
planning (the Hampshire Tree Task) is sensitive to performance
differences between specific genotypes in early Parkinson’s
disease (Williams-Gray et al., 2007); tests of paired-associates
learning, such as the one employed in this study, are able to
distinguish between first-episode schizophreniform psychosis
and established schizophrenia (Wood et al., 2002) and the Token

Search task used here has been used to detect increases in spatial
working memory in children with attention deficit/hyperactivity
disorder following a low dose of methylphenidate
(Mehta et al., 2000).

We were unable to collect neuroimaging or biomarker data in
this trial, and accordingly, this limits our ability to fully assess the
impact of HIIT compared to MCT on underlying mechanisms
for cognitive improvement. As well, another potential limitation
is that we did not include a non-exercising control group in the
current study. The lack of such control group poses a challenge
to determine whether our results reflect the effects of extrinsic
mechanisms, especially for cognition. Aerobic-based exercise
does appear to have a positive effect on cognition compared to
controls, and is already recommended as a non-pharmacological
approach to mitigate dementia risk (Livingston et al., 2020; Yu
et al., 2020). Meanwhile, our overarching goal was to determine
whether exercising at higher intensity would be superior to
a moderate intensity intervention. That is, modulating key
elements of an intervention to further refine exercise prescription
in clinical populations at risk of dementia, as we have done in
the past (Gill et al., 2016; Gregory et al., 2017; Heath et al.,
2017; Shellington et al., 2017; Boa Sorte Silva et al., 2018, 2020b).
As such, the inclusion of non-exercising control group was not
within the scope of the current study.

Lastly, participants were predominantly Caucasian, highly
educated and functionally independent, limiting generalizability
of our findings. Exercise sessions for the final wave of participants
ended 3 weeks earlier due to closures caused by the COVID-19
pandemic, which also prevented 13 participants from attending
their final assessment (impacting our attrition rate).

FUTURE DIRECTIONS

Future studies should emphasize comprehensive multidomain
interventions for individuals with hypertension and SCD. This
is relevant since pharmacological therapies to treat hypertension
do not seem to reduce dementia risk (Williamson et al., 2019).
Emerging evidence suggests synergistic effects on cognition
and SBP as a result of exercise, a healthy diet and weight
management in hypertensive middle-aged adults (Smith et al.,
2010). Replicating these findings in older adults with SCD and
hypertension could allow refinement of lifestyle interventions to
reduce dementia risk.

CONCLUSIONS

In this trial involving community-dwelling older adults with
history of hypertension and SCD, aerobic exercise of either high
or moderate-intensity, combined with mind-motor training,
did not improve cognition or SBP, despite improvements in
cardiorespiratory fitness and lower-level cognitive functioning.
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