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Archival Report

Glutamate and Dysconnection in the
Salience Network: Neurochemical, Effective
Connectivity, and Computational Evidence
in Schizophrenia
Roberto Limongi, Peter Jeon, Michael Mackinley, Tushar Das, Kara Dempster, Jean Théberge,
Robert Bartha, Dickson Wong, and Lena Palaniyappan

ABSTRACT
BACKGROUND: Functional dysconnection in schizophrenia is underwritten by a pathophysiology of the gluta-
mate neurotransmission that affects the excitation-inhibition balance in key nodes of the salience network.
Physiologically, this manifests as aberrant effective connectivity in intrinsic connections involving inhibitory
interneurons. In computational terms, this produces a pathology of evidence accumulation and ensuing
inference in the brain. Finally, the pathophysiology and aberrant inference would partially account for the
psychopathology of schizophrenia as measured in terms of symptoms and signs. We refer to this formulation
as the 3-level hypothesis.
METHODS: We tested the hypothesis in core nodes of the salience network (the dorsal anterior cingulate cortex
[dACC] and the anterior insula) of 20 patients with first-episode psychosis and 20 healthy control subjects. We
established 3-way correlations between the magnetic resonance spectroscopy measures of glutamate, effective
connectivity of resting-state functional magnetic resonance imaging, and correlations between measures of this
connectivity and estimates of precision (inherent in evidence accumulation in the Stroop task) and
psychopathology.
RESULTS: Glutamate concentration in the dACC was associated with higher and lower inhibitory connectivity in
the dACC and in the anterior insula, respectively. Crucially, glutamate concentration correlated negatively with
the inhibitory influence on the excitatory neuronal population in the dACC of subjects with first-episode
psychosis. Furthermore, aberrant computational parameters of the Stroop task performance were associated
with aberrant inhibitory connections. Finally, the strength of connections from the dACC to the anterior insula
correlated negatively with severity of social withdrawal.
CONCLUSIONS: These findings support a link between glutamate-mediated cortical disinhibition, effective-
connectivity deficits, and computational performance in psychosis.

Keywords: Dynamic causal models, Dysconnection hypothesis, Effective connectivity, Glutamate hypothesis, Pre-
dictive coding, Schizophrenia

https://doi.org/10.1016/j.biopsych.2020.01.021

The glutamate hypothesis (1–4) has been a central focus
of interest in the study of the psychopathology of
schizophrenia for more than 20 years. It states that
dysfunction of glutamatergic neurotransmission is associ-
ated with signature symptoms of schizophrenia. This
dysfunction is likely caused by NMDA receptor hypo-
function (i.e., glutamate hypofunction) in inhibitory gamma-
aminobutyric acidergic (GABAergic) interneurons, which
would lead to an increase in the synaptic gain of excitatory
neurons [the disinhibition hypothesis (5,6)]. Abnormal in-
crease of synaptic gain is also conceptualized as a
disruption of the excitation-inhibition balance, which, as
described below, rests at the core of the dysconnection

hypothesis (7) within the theoretical framework of “the
Bayesian brain”1 (8).

The dysconnection hypothesis suggests that the
psychopathology of schizophrenia should be studied at 3
levels of analysis: neurochemical, effective-connectivity

1This Bayesian account tends to suggest the existence of an inner
controller (e.g., a central executive), which inevitably would call
upon the homunculus fallacy. However, the dysconnection
hypothesis is nested within the active inference theory under
the free energy formulation. From this perspective, the
homunculus fallacy dissolves in terms of autopoietic self-
organization.

ª 2020 Society of Biological Psychiatry. This is an open access article under the
CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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(network-connectivity), and computational levels. At the
neurochemical level, NMDA receptor hypofunction would
increase the synaptic gain in deep and superficial pyramidal
cells, reflecting a decrease in the strength of intrinsic
inhibitory connections (7,9). At the effective-connectivity
level, a predictive coding algorithm (10), namely, hierarchi-
cal message passing between lower and higher cortical
levels, would be altered in terms of aberrant backward and
forward interregional connectivity strength (11). At the
computational level, a suboptimal Bayesian brain (12) would
overly afford confidence or precision (i.e., inverse variance)
to its predictions about the external stimuli and would
overestimate the reliability of the prediction errors (PEs),
leading to false inferences and failures in cognitive control
(13–15).

To test this hypothesis, in this work we study the rela-
tionship between cognitive-control dysfunction in schizo-
phrenia, the effective connectivity between core nodes of
the salience network (the right dorsal anterior cingulate
cortex [dACC] and the right anterior insula [AI]), and the
concentration of 1H-magnetic resonance spectroscopy
(MRS) glutamate in the dorsal anterior cingulate cortex
([Glu]dACC). At the computational level, we compare the
performance of subjects with first-episode psychosis (FEP)
and healthy control (HC) subjects in the Stroop task (16),
which reliably engages the dACC–AI network (17,18). Sub-
optimal Stroop computations in FEP are reflected in long
reaction time and low response accuracy (19,20). We show
that a drift-diffusion model, as a specific case of a Bayesian
decision making (21), explains these suboptimal computa-
tions. At the effective-connectivity level, we show that the
computational parameter associated with aberrant pre-
dictions in FEP maps onto extrinsic connections. Ulti-
mately, we demonstrate at the neurochemical level that
[Glu]dACC drives the dysconnection within the dACC–AI
network, which, as we detail below, is an appropriate
anatomical and functional motif [cf. (22)] to evaluate our 3-
level hypothesis.

The dACC functionally specializes in conflict monitoring
during the Stroop task (23) and is anatomically connected to
the AI (24–26). Crucially, psychosis is associated with consis-
tent structural deficits (27) as well as resting-state functional
dysconnectivity in this network (28,29). Given that the AI is
particularly sensitive to descending afferents from the dACC
(30), we expected variations of excitation-inhibition balance
resulting from the glutamatergic abnormalities within the dACC
to induce dysconnectivity in the network, affecting both the
intrinsic inhibitory connections of the dACC and the extrinsic
connections with the AI.

Negative symptoms are regarded as the core drivers of
functional deficits in schizophrenia. Nevertheless, the evidence
relating glutamate to negative symptoms has been conflicting
to date (31). From previous experimental work linking reduced
precision of priors (relative to precision of PE) and negative
symptoms (32–34), we expected negative association between
effective connectivity within the two-node network and higher
negative symptoms.

In summary, we used a multilateral approach to test a
specific dysconnection hypothesis that has 3 related aspects.
First, functional dysconnection in schizophrenia is

underwritten by a pathophysiology of the glutamate neuro-
transmission that affects the excitation-inhibition balance in
key nodes of the salience network. Physiologically, this is
manifest as aberrant effective connectivity in intrinsic con-
nections involving inhibitory interneurons. Second, in compu-
tational terms, this produces a pathology of evidence
accumulation and ensuing inference in the brain—as manifest
in terms of psychophysics. Third, the pathophysiology and
aberrant inference partially account for the psychopathology of
schizophrenia as measured in terms of symptoms and signs.
We will refer to this formulation as the 3-level hypothesis and
establish its validity by looking for 3-way correlations between
the MRS measures of glutamate, dynamic causal modeling
(DCM) measures of directed connectivity, and correlations
between measures of this connectivity and estimates of pre-
cision (inherent in evidence accumulation) on the one hand and
psychopathology on the other.

METHODS AND MATERIALS

Subjects

Twenty subjects with FEP and 20 HC subjects participated
in the study (Tables S1 and S2). Glutamate MRS assess-
ment could not be performed in 1 subject with FEP. Data
from this subject were not analyzed. Subjects were recruited
from the Prevention and Early Intervention Program for
Psychosis in London, Ontario, Canada. Criteria for inclusion
in the FEP group included 1) first clinical presentation with
psychotic symptoms and DSM-5 (35) criteria A for schizo-
phrenia satisfied and 2) less than 2 weeks of lifetime anti-
psychotic exposure. All patients with FEP received a
consensus diagnosis from 3 psychiatrists (LP, KD, and the
primary treatment provider) after approximately 6 months on
the basis of the best estimate procedure, as described by
Leckman et al. (36), and the Structured Clinical Interview for
DSM-5. All patients satisfied criteria for schizophrenia
spectrum disorder, with 15 patients satisfying DSM-5 criteria
for schizophrenia and 3 for schizoaffective disorder. One
subject lacked follow-up clinical data at 6 months, with the
available baseline data suggesting a diagnosis of schizo-
phreniform disorder. We use the term “first-episode psy-
chosis” to describe the patient group to capture all the
schizophrenia spectrum disorders as described above. HC
participants did not report a personal history of mental
illness or family history of psychotic disorders. Informed
consent from participants was obtained according to the
approval by Western University’s Human Ethics Committee.
Symptoms assessment was performed using Positive and
Negative Syndrome Scale-8 items version (37) (Table S3). As
detailed below, participants underwent, in this order,
resting-state 1H-MRS, a color version of the Stroop task,
and resting-state functional magnetic resonance imaging
(fMRI) inside a MAGNETOM Plus 7T MRI scanner (Siemens
Corp., Erlangen, Germany) using an 8-channel transmit/32-
channel receive, head-only, radiofrequency coil.

1H-MRS

We measured a 4-minute block of resting-state 1H-MRS in a
voxel (2.0 3 2.0 3 2.0 cm) that was placed on the dACC
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(Figure 1 and Figure S1) where activation was expected based
on our previous work using the Stroop task (20). To locate the
voxel, we used a 2-dimensional anatomical imaging sequence
in the sagittal direction (37 slices, repetition time = 8000 ms,
echo time = 70 ms, flip angle [a] = 120�, thickness = 3.5 mm,
field of view = 240 3 191 mm; voxel control is described in
the Supplemental Methods). A 32-channel combined water-
suppressed spectral average was acquired using the semi-
LASER (localization by adiabatic selective refocusing)
1H-MRS pulse sequence (repetition time = 7500 ms) with a
long echo time (100 ms)—this long echo time improves
glutamate measurement in the human brain (38). Water
suppression was achieved using the VAPOR (variable pulse
power and optimized relaxation delays) preparation sequence,
and a water-unsuppressed spectrum was also acquired for
spectral postprocessing (Supplemental Methods).

Resting-State fMRI

We acquired 360 resting-state whole-brain functional images.
A gradient echo-planar imaging sequence was used with
phase-encoding direction = A . . P, repetition time = 1000
ms, echo time = 20 ms, flip angle = 30�, field of view = 208 mm,
field of view phase = 100%, voxel dimension = 2 mm isotropic,
slice thickness = 2 mm, multiband acceleration factor = 3,

acquisition time = 6 minutes, 26 seconds, and number of sli-
ces = 63 (interleaved slice order).

Computational Model of the Stroop Performance

Based on our previous work (20), we were interested in the
incongruent condition of the Stroop task (Supplemental
Methods) in which we expected lower accuracy and longer
reaction time in subjects with FEP than in HC subjects. We fit a
hierarchical drift-diffusion model to the reaction time and ac-
curacy data (Supplemental Methods). In this model, partici-
pants accumulate information and trigger a response after
reaching an accumulation threshold. The model comprises 4
basic parameters representing the accumulation threshold, the
starting point of the accumulation process, the accumulation
(or drift) rate, and the nondecision processes.

Predictive coding maps elegantly onto the drift-diffusion
model (13,21,39). Evidence accumulation corresponds to the
accumulation of presynaptic afferent activity from neuronal
populations encoding PEs (i.e., superficial pyramidal cells), the
drift rate represents precision of ascending PE, and the starting
point represents prior beliefs. Formally, corrected prior beliefs
(i.e., a change in the starting point parameter) correlates with a
larger drift rate, indicating more precise PE. We expected
larger drift rate (i.e., aberrant precision of PE) and larger
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Figure 1. Voxel positioning for 1H-magnetic resonance spectroscopy (MRS) measurements, sphere positioning for functional magnetic resonance imaging
(fMRI) time series extraction, and 2-neuronal-population dynamic causal modeling. In the dorsal anterior cingulate cortex (dACC), the fMRI sphere falls within
the MRS voxel (black box). The gray box shows the 2-neuronal-population dynamic causal modeling of the dACC–anterior insula (AI) network. Each region
comprises one population of excitatory neurons (E) and one population of inhibitory neurons (I). Parameters of effective connectivity represent the influence of
inhibitory to excitatory connections (assumed to be gamma-aminobutyric acidergic neurons), the influence of excitatory to inhibitory connections, the influence
of self-inhibitory connections within each population, and the influence of excitatory population of one region on the excitatory population of the other region
(assumed to be glutamatergic connections). Whereas excitatory-to-inhibitory connections and excitatory-to-inhibitory connections within each population
parameters are fixed in the model, inhibitory-to-excitatory connections and excitatory population of one region on the excitatory population of the other region
are free parameters. The small white box shows a sample spectrum obtained using 1H-MRS semi-LASER (localization by adiabatic selective refocusing) with
an echo time of 100 ms. A frequentist 2-sample t test did not reveal a statistically significant difference between the mean glutamate in the dorsal anterior
cingulate cortex ([Glu]dACC) in the first-episode psychosis (FEP) group (mean = 6.90 mM, SD = 1.35) relative to the healthy control (HC) group (mean = 6.38 mM,
SD = 1.3); t36.72 = 1.21, p = .88. Error bars represent the standard deviations.

Three-Level Hypothesis of Dysconnection

Biological Psychiatry August 1, 2020; 88:273–281 www.sobp.org/journal 275

Biological
Psychiatry

http://www.sobp.org/journal


starting point (aberrant prior beliefs) in the FEP group than in
the HC group. Although we did not have a priori expectations
about differences in the decision threshold and in nondecision
processes, we report the differences in these parameters for
completeness and post hoc interpretation. We report between-
groups difference in the posterior probability (PP) of parameter
estimates.

Effective Connectivity: DCM

We estimated the resting-state effective connectivity within
the dACC–AI network by fitting a 2-state spectral dynamic
causal model (40) to the fMRI data (41) (Supplemental
Methods). We identified regions with blood oxygen–level
fluctuations within frequencies ranging from 0.0078 to 0.1
Hz (42) via an F-contrast. We extracted the time series that
summarized the activity within spheres (8-mm radius) in the
dACC and in the AI (Figure 1 and Figure S1). Montreal
Neurological Institute coordinates of these spheres were

defined based on our previous works (20,43). Two-state DCM
assumes excitatory and inhibitory populations of neurons
within a region. Each population comprises self-inhibition
connections (which are fixed parameters). Crucially, 2
free parameters are fit to the fMRI data: interregional
excitatory-to-excitatory connections and within-region
inhibitory-to-excitatory connections (Figure 1). Since we
aimed at demonstrating the relationship between the effect of
[Glu]dACC on inhibitory-to-excitatory connections and the
ensuing consequences in the entire network, this 2-state
model was sufficient to test our hypothesis despite not
capturing all the circuitry constraints of cortical columns.

For each participant, a fully connected model with no
exogenous inputs (c.f., task fMRI) was specified and inverted
using spectral DCM. At a group level, we estimated parameters
of 6 parametric empirical Bayes models (44,45) aiming to test
our 3-level hypothesis against 5 alternative hypotheses. The 3-
level model comprised 1) group, 2) [Glu]dACC, 3) precision of

Table 1. Summary Statistics of Accuracy and RT in the Stroop Task

Group Condition

Accuracy (Proportion) RT (s)

Mean SD Mean SD

FEP Color-only 0.99 0.07 1.06 0.27

Congruent 0.98 0.14 0.98 0.27

Incongruent 0.92 0.27 1.19 0.31

Word-only 0.97 0.17 0.95 0.26

HC Color-only 0.99 0.05 0.89 0.20

Congruent 0.99 0.05 0.82 0.21

Incongruent 0.98 0.14 1.04 0.25

Word-only 1.00 0.00 0.79 0.18

FEP, first-episode psychosis; HC, healthy control; RT, reaction time.

Figure 2. Bayesian model comparison results and
mean parameter estimates in the dorsal anterior
cingulate cortex (dACC)–anterior insula (AI) network
across groups. *Posterior probability (PP) z 0. PEB,
parametric empirical Bayes.

Three-Level Hypothesis of Dysconnection
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PE, 4) prior beliefs, 5) [Glu]dACC 3 group, 6) [Glu]dACC 3 prior
beliefs, and 7) [Glu]dACC 3 precision of PEs as covariates. All
but the behavioral model (see below) were reduced versions of
the 3-level model.

A no-glutamate model represented the hypothesis that
[Glu]dACC did not affect the network’s effective connec-
tivity. Neither the main effect of [Glu]dACC nor the
[Glu]dACC 3 group interaction was included in the model.
A no-computational model did not include the effects of
prior beliefs, precision of PE, prior beliefs 3 group, and
precision of PEs 3 group. It represented the hypothesis
that prior beliefs and precision of PEs do not affect
connectivity. A behavioral model substituted (in the 3-
level model) the behavioral responses and their in-
teractions with group for the hierarchical drift-diffusion
model parameters. This model represented the hypoth-
esis that the observed responses better account for
network connectivity than the computational parameters.
For completeness, we fit a group model (with only the
main effect of group representing the hypothesis that
only differences between groups would cause changes in
the network connectivity) and a null model (representing
the hypothesis of no effect of covariates on the network).
To adjudicate between models, we performed a Bayesian
model comparison (44). To evaluate our 3-level hypoth-
esis, we report the effect sizes (i.e., parameters of the
between-subject parametric empirical Bayesian model
associated with each covariate along with the posterior
probabilities). A data analysis pipeline is detailed in
Figure S2.

RESULTS

Participants performed the task as instructed. As ex-
pected, in the incongruent condition, subjects with FEP
were less accurate and took longer than HC subjects
(Table 1 and Table S4). The hierarchical drift-diffusion
model showed that the drift-rate parameter in the HC
group (mean = 2.83, SD = 0.18) was larger than in the FEP
group (mean = 1.83, SD = 0.2). The difference in PP was =
0.99. The starting point in the FEP group was larger (i.e.,
closer to the decision boundary, mean = 0.44, SD = 0.03)
than in the HC group (mean = 0.32, SD = 0.03; difference
in PP = 0.99). The decision threshold was lower in the FEP
group (mean = 2.06, SD = 0.32) than in the HC group
(mean = 2.52, SD = 0.09; difference in PP = 0.96). Finally,
the nondecision processes took longer in the FEP group
(mean = 0.64, SD = 0.11) than in the HC group (mean =
0.46, SD = 0.09; difference in PP = 0.99; Figure S3 and
Tables S5 and S6).

[Glu]dACC Affects Intrinsic Inhibitory Connections in
Core Nodes of the Salience Network

The 3-level model outperformed all the alternative models
(Figure 2 and Table S7). The mean estimates across groups
revealed inhibition in both regions (dACC, mean = 2.35, PP =
1.0; AI, mean = 2.51, PP = 1.0) and an attenuation in the
strength of excitatory connections (dACC/AI, mean =20.51,
PP = 0.99; AI / dACC, mean = 20.45, PP = 0.99). Figure 3
shows no main effect of group on parameters. However, main
effect of [Glu]dACC on self-connections in both regions was

A C

B D

Figure 3. Main effects of the winning 3-level parametric empirical Bayes model. In (A), bars represent differences between groups as defined by the effect
coding (first-episode psychosis = 1, healthy control = 21). In (B), (C), and (D), glutamate in the dorsal anterior cingulate cortex ([Glu]dACC), precision of
prediction errors (PEs), and prior beliefs (respectively) were mean centered. AI, anterior insula; PP, posterior probability.
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detected. Intrinsic inhibition increased in the dACC (b = 0.11,
PP = 0.99) and decreased in the AI (b =20.07, PP = 0.96). Prior
beliefs did not affect extrinsic connections. However, precision
of PEs strengthened inhibitory connections (dACC, b = 0.92,
PP = 1; AI, b = 1.1, PP = 1).

[Glu]dACC Correlates Negatively With Intrinsic
Inhibitory Influence in the dACC of Subjects With
FEP, Accounting for Aberrant Prior Beliefs and
Aberrant Precision of PE

Figure 4 shows that in the dACC, [Glu]dACC was associated
with weaker inhibitory connections in the FEP group than in the
HC group (b = 20.09, PP = 0.98), and that the effect of prior
beliefs on inhibitory connections was stronger in the FEP
group than in the HC group (dACC, b = 40.01, PP = 1; AI,
b = 42.48, PP = 1). Surprisingly, the effect of prior beliefs on
excitatory connections was weaker in the FEP group than in
the HC group (dACC / AI, b = 28.72, PP = 0.99; AI / dACC,
b = 27.76, PP = 0.99). Finally, we found that the effect of
precision of PEs on inhibitory connections was weaker in
subjects with FEP than in HC participants (dACC, b = 21.28,
PP = 1; AI, b = 21.48, PP = 1). In summary, [Glu]dACC differ-
entially affected the network’s effective connectivity, which
was differentially associated with the parameter estimates of
the hierarchical drift-diffusion model in the presence of FEP.

Connectivity Strength Correlates Negatively With
Severity of Social Withdrawal

We searched for negative association between the severity of
blunted affect, social withdrawal, and lack of spontaneity and
the strength of connections in the FEP group. We made 3
comparisons per connection (Bonferroni correction, p = .017).
Only the effect of backward connections on social withdrawal
survived correction. Severity of social withdrawal increased as
the connectivity strength of dACC / AI connections
decreased (Figure 5). For completeness, we also explored the
association between hallucinations and delusions and con-
nectivity strength (2 comparisons per connection with Bon-
ferroni correction, p = .025). None of the comparisons reached
statistical significance at this level of correction.

DISCUSSION

We have demonstrated that low computational performance
during cognitive-conflict resolution in FEP is explained by
aberrant resting-state effective connectivity (dysconnection) in
core nodes of the salience network (dACC and AI). This dys-
connection was associated with glutamate hypofunction in the
dACC, as proven by the fact that a model without the effect of
[Glu]dACC had low probability of explaining the fMRI data.
[Glu]dACC was associated with opposite intrinsic connectivity
strength in both the dACC and the AI, indicating that [Glu]dACC
affected the entire network and confirming the sensitivity of the

CA

B

Figure 4. Interactions between group and covariates in the winning 3-level parametric empirical Bayes model. Panel (A) shows the effect of group on
connections modulated by [Glu]dACC. Panels (B) and (C) show the effect of group modulated by the precision of prediction errors (PEs) and prior beliefs,
respectively. Positive values represent stronger effect in the first-episode psychosis group, and vice versa. AI, anterior insula; dACC, dorsal anterior cingulate
cortex; [Glu]dACC, glutamate in the dorsal anterior cingulate cortex; PP, posterior probability.
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AI to changes in the dACC excitation-inhibition balance.
Crucially, in the FEP group the inhibitory influence on the
excitatory population of the dACC decreased as a function of
[Glu]dACC. This finding is the first imaging evidence directly
linking the glutamate hypofunction to the cortical disinhibition
hypothesis in schizophrenia.

Decreased intrinsic inhibition and decreased extrinsic con-
nectivity have been previously reported in the default mode (46)
and dorsal attention networks (47) of subjects with schizo-
phrenia. The fact that 3 independent groups have shown the
same relationship between decreased intrinsic and extrinsic
connections in the default mode, attention, and salience net-
works provides strong support to the dysconnection hypothesis
of schizophrenia. Crucially, our results point to glutamate
hypofunction and aberrant computations of sensory and prior
precision as critical causes of dysconnection and are in line with
recently reported data showing that the effect of glutamate
hypofunction should be observed at the network level (48).

These results also demonstrate that establishing the
relationship between glutamate hypofunction, the disinhi-
bition hypothesis, and the pathophysiology of schizophrenia
requires the integration of the neurochemical, effective-
connectivity, and computational levels of analysis—since
Bayesian model comparison afforded low probability to
any model not comprising all 3 levels. Specifically, param-
eter estimates of resting-state aberrant connectivity (driven
by resting-state [Glu]dACC) in the dACC–AI network account
for computational parameters of cognitive dysfunction in
FEP. Furthermore, an increase in the effect of the inhibitory
population on the excitatory population in both regions
explains the precision subjects afforded to ascending in-
formation, in line with the known role of GABA interneurons
in pyramidal circuits (49).

The 3-level hypothesis also explains the computational
compensatory effect of aberrant prior beliefs to aberrant preci-
sion of ascending information in subjects with FEP. They needed
to accumulate less information than HC subjects (i.e., lower
decision threshold), relied more on their prior beliefs (i.e., at the
beginning of each trial they were closer to the decision bound-
ary) than on sensory information, and were less cautious when

resolving cognitive conflicts—they tended to jump to conclu-
sions (50). At a group level, we did not find evidence for a larger
precision of PEs in the FEP group than in the HC group. On the
contrary, the HC group showed a steeper drift rate. However,
within the FEP group aberrant precision PEs was associated
with a decrease in the strength of inhibitory connections in both
regions (Figure 4B). Crucially, an increase in the inhibitory activity
was associated with an increase in prior beliefs (Figure 4C),
suggesting (at the effective-connectivity level) that more precise
prior beliefs compensate for aberrant precision of PEs as pre-
dicted by the dysconnection hypothesis (7).

The current results are in concert with a previous study that
used 4-neuronal-population DCM to model GABA connections
to superficial pyramidal cells (9). In the referred work, model
parameters were associated with behavioral performance,
showing that establishing a relationship between synaptic
dysfunction and behavior requires modeling effective con-
nectivity. However, our 3-level model outperformed a model
including behavioral observations, suggesting that symptoms
of schizophrenia emerge from the interaction between neuro-
chemical, network-connectivity, and computational variables.

Another previous work has reported no relationship be-
tween [Glu]dACC and deficits in Stroop performance in sub-
jects with FEP (20). However, unlike our study, it included
neither the network nor the computational level of analysis.
These 2 levels allowed us to observe the indirect effect of
[Glu]dACC on Stroop computations through the aberrant
effective connectivity within the dACC–AI network. Simi-
larly, a recent Bayesian study has suggested that prior be-
liefs might not influence behavioral performance in the
absence of sensory stimulation (51). Our subjects with FEP
did not expect sensory stimulation. However, the weaker
the connectivity strength in descending connections (rep-
resenting prior beliefs) was in resting state, the more biased
were subjects’ responses toward the decision threshold in
the Stroop task. Therefore, it is possible that the effect that
prior beliefs might exert on behavioral performance depends
not only on the sensory stimulation but also on the resting-
state connectivity strength of descending connections.

As per the dysconnection hypothesis, the negative cor-
relation between the dACC / AI connectivity strength and
severity of social withdrawal appears counterintuitive: on
the one hand, overly afforded confidence in prior beliefs
would be expected to correlate positively with increased
strength in descending connections, whereas on the other
hand, increased connectivity strength should correlate
positively with negative symptom severity. It is important to
note that we observed a relationship between strong prior
beliefs and reduced dACC / AI connectivity that relates to
social withdrawal. In fact, stronger priors relate to both
reduced dACC / AI connectivity and increased intrinsic
inhibitory tone of dACC and AI. This relationship is consis-
tent with an effective connectivity study that relates intrinsic
inhibitory connections within primary visual cortex and
negative symptoms. Moreover, recent models of effortful
control (52) suggest that strong priors along with top-down
dysconnectivity may relate to a reduced effort signal from
the dACC to the AI and thus present as motivational deficits
indexed by social withdrawal. While our data do not support
the predictions of a direct relationship between strong prior
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beliefs and negative symptoms severity, it is worth noting
that our resting-state experimental setup did not allow for
the suboptimal Bayesian agent (the patient) to withdraw
from a social environment that is rich in sensory stimulation.
From the perspective of active inference under the free-
energy formulation, there is no social withdrawal in a dark
room (53).

Within the context of these previous works, a negative
correlation between connectivity strength and negative
symptoms appears to be explained not only by the general
active inference theory under the free-energy formulation but
also in terms of utility models [as special cases of active
inference (54)]. However, because the works showing an as-
sociation between high prior beliefs, weak connections, and
negative symptoms are scarce and equivocal [e.g., a recent
functional connectivity work found no association between
connections in the salience network and negative symptoms
(55)], this association should be taken as a working hypothesis.

Limitations and Future Directions

Our 3-level hypothesis was tested via hierarchical
Bayesian inference, which considers the data hierarchy
and uses informative prior distributions and shrinkage.
Therefore, within the assumptions of Bayesian statistics,
the posterior probabilities of our estimates showed large
and reliable effect sizes. Nevertheless, the current sample
size could be regarded as small for classical inferences
such as those pertaining to the between-group differential
effect of [Glu]dACC and the association between symptoms
and connectivity strength.

With resting-state fMRI, we controlled for task as a con-
founding factor of the effect of [Glu]dACC on inhibitory con-
nections. Since the current results show this effect, future
studies could address the task 3 glutamate interaction. By
combining task fMRI with 4 neuronal-population DCM, it would
be possible to set the effect of [Glu]dACC on inhibitory con-
nections as priors while modeling the effect of glutamate in
other regions. One region that could be added to the current
network is the ventrolateral prefrontal cortex, which, along with
the AI and the dACC, is engaged by interference and cognitive
control processes during the Stroop task. In the context of
hierarchical message passing, 4 neuronal-population DCM
would allow to investigate the hierarchical relationship be-
tween the dACC and ventrolateral prefrontal cortex,2 by testing
different hierarchical connections between superficial and
deep pyramidal cells across regions.

Conclusions

This work provides evidence to the hypothesis that the
glutamate hypofunction relies on the disinhibition hypothesis
and manifests itself in the effective connectivity of key nodes of
the salience network. The 3-level hypothesis provides
compelling explanation to deficits in cognitive control and
negative symptoms in schizophrenia. The findings support a
link between glutamate-mediated cortical disinhibition, deficits
in effective connectivity, and computational performance in
FEP.
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