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Original Article

Striatal Acetylcholine Helps to Preserve
Functional Outcomes in a Mouse
Model of Stroke

Daniela F. Goncalves1,2,*, Monica S. Guzman1,3,*, Robert Gros1,3,
Andr�e R. Massensini2, Robert Bartha1,4, Vania F. Prado1,3,5 , and
Marco A. M. Prado1,3,5

Abstract

Acetylcholine (ACh) has been suggested to facilitate plasticity and improve functional recovery after different types of brain

lesions. Interestingly, numerous studies have shown that striatal cholinergic interneurons are relatively resistant to acute ischemic

insults, but whether ACh released by these neurons enhances functional recovery after stroke is unknown. We investigated the

role of endogenous striatal ACh in stroke lesion volume and functional outcomes following middle cerebral artery occlusion to

induce focal ischemia in striatum-selective vesicular acetylcholine transporter-deficient mice (stVAChT-KO). As transporter

expression is almost completely eliminated in the striatum of stVAChT-KO mice, ACh release is nearly abolished in this area.

Conversely, in other brain areas, VAChT expression and ACh release are preserved. Our results demonstrate a larger infarct

size after ischemic insult in stVAChT-KO mice, with more pronounced functional impairments and increased mortality than in

littermate controls. These changes are associated with increased activation of GSK-3, decreased levels of b-catenin, and a higher

permeability of the blood–brain barrier in mice with loss of VAChT in striatum neurons. These results support a framework in

which endogenous ACh secretion originating from cholinergic interneurons in the striatum helps to protect brain tissue against

ischemia-induced damage and facilitates brain recovery by supporting blood–brain barrier function.
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Striatal cholinergic interneurons (CINs) represent the

major source of cholinergic innervation in the striatum.

They are tonically active and have dense and extensive

axonal arborization that covers most of the striatum

(Kawaguchi et al., 1995). CINs represent only a small

fraction of the total neuronal population in the striatum

(1%–3% in rodent and up to 20% in primates), but pro-

vide multiple levels of modulation for striatal function

(Kljakic et al., 2017; Prado et al., 2017).
Numerous studies have shown that striatal CINs are

relatively resistant to acute ischemic insults. For instance,

20 to 30min of middle cerebral artery occlusion (MCAO)

leads to substantial loss of projection medium spiny neu-

rons, while CINs are relatively preserved, possibly due to

their intrinsic membrane properties (Andsberg et al.,
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2001; Katchanov et al., 2003; Deng et al., 2008).
Recordings from CINs after ischemia indicate that
24 hr after ischemia, their firing properties return to
normal levels, suggesting that they are able to sustain
the release of acetylcholine (ACh; Deng et al., 2008).

Noteworthy, ACh has been shown to facilitate cortical
plasticity and improve functional recovery after physical
lesions in the motor cortex (Conner et al., 2003, 2005).
Therefore, the activity of CINs could contribute to func-
tional recovery in the striatum after ischemia/reperfusion.
Pharmacological studies suggest that stimulation of a7 nic-
otinic acetylcholine receptors (a7nAChR) attenuates cell
death and inflammation in the hippocampus after experi-
mental hemorrhagic ischemia (B. Sun et al., 2011; Krafft
et al., 2012, 2013) and also reduces brain edema and pre-
serves blood–brain barrier (BBB) integrity after intracere-
bral blood infusion (Krafft et al., 2012, 2013). Similar
beneficial effects are observed with cholinesterase inhibitors
in animal models (Lorrio et al., 2007). Furthermore, results
from a Phase II clinical trial showed that acute ischemic
stroke patients treated with cholinesterase inhibitors have
improved functional recovery (Barrett et al., 2011).

To investigate the role of endogenous striatal ACh secret-
ed fromCINs on stroke outcome, we usedMCAO to induce
focal ischemia in mice with striatum-selective genetic defi-
ciency in the vesicular acetylcholine transporter
(VAChTD2Cre-flox/flox: herein referred as stVAChT-KO;
Guzman et al., 2011). VAChT is responsible for loading
ACh into synaptic vesicles (Prado et al., 2013) and is essen-
tial for ACh storage and release (Prado et al., 2006; de
Castro, De Jaeger, et al., 2009; Lima et al., 2010). Changes
in VAChT expression/function directly regulate the amount
of ACh released from nerve terminals (Van der, 2003; Prado
et al., 2006; de Castro, De Jaeger, et al., 2009; Lima et al.,
2010; Guzman et al., 2011; Martyn et al., 2012; Kolisnyk
et al., 2013a; Sakae et al., 2015; Sugita et al., 2016; Kolisnyk
et al., 2017; Janickova et al., 2017a). As VAChT expression
is almost completely eliminated in the striatum of stVAChT-
KO mice, ACh release is nearly abolished in this area; con-
versely in other brain areas VAChT expression and ACh
release are preserved (Guzman et al., 2011).

The present experiments indicate impaired recovery
after ischemia in VAChT-deficient mice, with increased
neuronal damage, and worse functional outcomes.
VAChT-deficient mice have increased permeability of
the BBB, suggesting that ACh release from striatal cho-
linergic neurons plays an important role to preserve brain
function after ischemia.

Materials and Methods

Animals

All animal procedures were conducted in accordance
with the ARRIVE guidelines and conformed to the

Canadian Council of Animal Care guidelines for the
care and use of animals with an approved animal proto-
col from the Institutional Animal Care and Use
Committees at The University of Western Ontario (pro-
tocol number 2016-104). Animals were housed in groups
of three or four per cage in a temperature-controlled
room with 14:10 light–dark cycles. Food and water
were provided for ad libitum consumption. Mice were
randomly assigned to experimental groups and the exper-
imenter was kept blind regarding genotypes.

Adult male VAChTD2-Cre-flox/flox mice and control
VAChTflox/flox littermates (3–6months) were used for
this study. VAChTD2-Cre-flox/flox mice were generated by
crossing VAChTflox/flox with the D2-Cre mouse line as
previously described (Guzman et al., 2011).

Magnetic resonance imaging (MRI) measurements
were performed 24 hr after surgery and behavioral testing
was performed before and 7 days after stroke. Sham-
operated mice were scanned and subjected to behavioral
tests with the same time intervals as post-ischemic mice.
For surgery and MRI recordings, mice were anesthetized
with 4% isoflurane (in a NO2/O2 70/30% mixture), and
maintenance was achieved by inhalation of 1.5% isoflur-
ane. Body temperature was maintained at 37.0� 0.5�C as
previously described (Beraldo et al., 2013; McVicar et al.,
2014).

Stroke Model

Experimental stroke was induced by up to 60min occlu-
sion of the left middle cerebral artery (MCA) as previ-
ously described (Longa et al., 1989; Belayev et al., 1999;
Pham et al., 2011; Beraldo et al., 2013). Under an oper-
ating microscope, a silicon rubber-coated monofilament
(702256PK; Doccol Company, Redlands, CA, USA) was
inserted through the left common carotid artery into the
internal carotid artery to occlude the MCA. Sham-
operated animals underwent the same procedure with
the exception of the advancement of the filament to
occlude the cerebral artery. After filament insertion,
mice were removed from anesthesia and allowed to
move freely under a heat lamp. After ischemia, mice
were anesthetized again and the filament was quickly
removed. To maintain hydration, saline was injected
intraperitonially (IP) 1 hr after surgery. Saline injection
was repeated daily for 3 days after surgery. To determine
the efficacy of the ischemic procedure, animals were eval-
uated neurologically at 1 hr, 24 hr, and 48 hr after surgery
according to the following scores modified from the
5-point Bederson scale (Bederson et al., 1986): 0¼ no def-
icit; 1¼mild forelimb weakness; 2¼ severe forelimb weak-
ness, consistent turns to the deficit side when lifted by the
tail; 3¼ compulsory circling; 4¼ unconsious; and 5¼ dead.
Only mice with a score of 2 or 3 were used in the
experiments.
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Heart rate data were obtained at baseline, during

ischemia and 24 hr after surgery in conscious mice

using the CODA computerized noninvasive system

(Kent Scientific, Torrington, CT, USA). Rectal tempera-

ture was monitored by a Homeothermic blanket control

unit (Harvard Apparatus, Holliston, MA, USA). Arterial

blood samples (via cardiac puncture under isoflurane

anesthesia) were taken 24 hr after surgery and analyzed

for pH and glucose using a blood analyzer (ABL-725,

Radiometer, Copenhagen, Denmark). Measurement of

perfusion using laser Doppler (Beraldo et al., 2013;

McVicar et al., 2014) demonstrated that MCAO

decreased perfusion by 86� 3% on average compared

to the perfusion before surgery (N¼ 4).

Behavioral Testing

Behavioral tests were performed in post-ischemic and

sham-operated mice before and 7 days after stroke. The

adhesive removal test was used to determine functional

recovery. This test is sensitive to unilateral somatosenso-

ry dysfunction (Bouet et al., 2009). A small adhesive-

backed paper was used as tactile stimuli on the

distal-radial region of the wrist of each forelimb. The

time each animal took to perceive and remove the tape

was recorded for a maximum of 3 min. Three trials were

conducted in a single day and averaged as previously

described (Beraldo et al., 2013).
Locomotor activity was measured using an automated

activity monitor as previously described (Prado et al.,

2006; de Castro, Pereira, et al., 2009; Martyn et al.,

2012). Experiments were performed between 10:00 and

16:00 hr in the light cycle. Gait was measured using the

Catwalk XT system by Noldus (Leesburg, VA, USA), as

previously described (Vandeputte et al., 2010; Janickova

et al., 2017b). The following parameters were recorded

and used for analysis: print area (surface area of the com-

plete print), intensity of the paws (signal depends on the

degree of contact between a paw and the glass plate and

increases with increasing pressure), swing speed (speed of
the paw during swing), and stride length (the distance

between successive placements of the same paw). This

test was performed prior to the induction of stroke and

7 days after. Catwalk analysis was performed on a min-

imum of four normal step sequence patterns in each of

three uninterrupted runs per animal. The values were

expressed relative to the control mean (stroke/sham-

operated mean).

Magnetic Resonance Imaging

An Agilent (Agilent, Palo Alto, CA, USA) 9.4 T small

animal horizontal bore MRI system was used to acquire

images of the mouse brain 24 hr after MCAO. Anesthesia

was induced using 4% isoflurane in oxygen and

maintained with 1.5% to 2.5% isoflurane in oxygen.

The mouse was held in place on a custom-built MRI-

compatible stage, and the head was positioned using a

bite bar and surgical tape to limit motion due to respira-

tion. A rectal probe was used to monitor the tempera-

ture, and respiration was monitored with a sensor pad

connected to a pressure transducer placed on the thoracic

region. Body temperature was maintained at 36.9 to

37.1�C throughout imaging by blowing warm air over

the animal using a model 1025 small-animal monitoring

and gating system (SA Instruments Inc., Stony Brook,

NY, USA). Two imaging sequences were used to visual-

ize tissue damage due to ischemia: (a) a T2-weighted two-

dimensional fast spin echo sequence (TE ¼45ms,

TR¼ 3,000ms, FOV¼ 19.2� 19.2 mm2, 31 slices, slice

thickness¼ 500 lm, acquisition matrix 128� 128) and

(b) a T1 three-dimensional balanced steady state free pre-

cession sequence (TE¼ 3.7ms, TR¼ 7.4ms, FOV¼ 19�
16� 13 mm3, acquisition matrix¼ 154� 132� 102).

Infarct volume was measured by manual tracing of the

hyperintense tissue in each slice of the T2 images using

ImageJ software. Analysis was performed by D. F. G.

blinded to the genotypes as we previously described

(Beraldo et al., 2013).

Western Blot

Immunoblotting was performed as described elsewhere

(Kolisnyk et al., 2013b). Primary antibodies used for

immunoblotting: anti-phospho-Akt Ser473 (Cell

Signaling, Cat#9271), anti-total-Akt (Cell Signaling,

Cat#9272), phospho-GSK3b Ser9 (Cell Signaling,

Cat#9336), GSK3b (Cell Signaling, Cat#9315),

phospho-GSK3b Tyr216 (Abcam, Cat# ab75745), and

anti-beta-catenin (Abcam, Cat# ab6302). Loading con-

trol used was anti-b-actin (1:25000, Sigma, Cat#A3854)

and secondary antibodies were sheep anti-mouse HRP

(1:5000, Cat#SAB3701095, Sigma) and goat anti-rabbit

HRP (1:10000, Cat#170-6515, BioRad). Proteins were

visualized using chemiluminescence on FluoroChemQ

chemiluminescent exposure system (Alpha Innotech;

GE Healthcare, London, ON, Canada) or ChemiDoc

MP Imaging System (BioRad) and analyzed using their

respective software (Alpha Innotech and Image Lab).

Histology

Brains were removed and sectioned coronally into 2-mm-

thick slices 24 hr after stroke. The slices were stained with

2% triphenyltetrazolium chloride (TTC) solution at 37�C
for 15min, followed by fixation with 10% formalin neu-

tral buffer solution (pH 7.4) (Benedek et al., 2006). The

infarct areas were traced and quantified as percentage of

contralateral hemisphere using an Image-J system.

Goncalves et al. 3



Unstained areas (pale color) were defined as ischemic
lesions.

To evaluate BBB integrity, diffusion of IgG into the
brain parenchyma was determined. Brain sections were
incubated with 0.3% H2O2 for 30min to abolish endog-
enous peroxidase activity. After several rinses with
tris-buffered saline, the sections were blocked with tris-
buffered saline-bovine serum albumin for 1 hr, and then
incubated with goat anti-mouse IgG conjugated with
horseradish peroxidase for 1 hr. To reveal IgG, the
VECTOR NovaRED peroxidase substrate kit was used
(VECTOR Laboratories, Inc., Burlingame, CA, USA).
The intensity was measured in both hemispheres and
quantified as a ratio (ipsilateral/contralateral) using
ImageJ software.

Statistical Analysis

All data are expressed as mean�SEM. Sigmastat 3.5
software was used for statistical analysis. Comparison
between two experimental groups was done by
Student’s t test or Mann–Whitney Rank Sum test when
the data failed the Normality test. Comparisons for mul-
tiple groups were performed using analysis of
variance (ANOVA) or repeated measures ANOVA fol-
lowed by a Tukey post hoc test. Catwalk outcomes of
VAChTD2-Cre-flox/flox and control mice were compared
for each paw using a one-tailed nonparametric Mann–
Whitney test. Survival curves were analyzed using a log-
rank test. Differences were considered to be statistically
significant when p< .05.

Results

Infarct Area and Mortality Rate Are Increased in
stVAChT-KO Mice After Ischemia-Reperfusion

We used the MCAO model (Longa et al., 1989) to induce
mild brain ischemia in mice. Our initial experiment was
designed to determine the experimental conditions that
would confine brain damage mainly to the striatum that
could be confidently assessed by MRI. We tested wild-
type mice at three different occlusion times: 30, 45, and
60min and after 24 hr of reperfusion, we determined
lesion location and volume using T2-weighted MRI
(Figure 1A, top) and TTC staining (Figure 1A,
bottom). For comparison, we also tested 24-hr occlusion
with no reperfusion (Figure 1A). As expected, 24-hr
occlusion led to extensive cortical and striatal injury
that could be easily detected by both TTC and MRI.
TTC staining analysis showed that after 24-hr reperfu-
sion, lesions produced by 30-, 40-, and 60-min occlusion
showed a respective increase in size expressed in percent-
age of contralateral hemisphere volume (Figure 1B, 30
min: 10.3� 1.5%, 45min: 14.3� 0.7%, 60min: 22.9�

2.8%) but, even with the longest duration of MCAO,
the cortex was mostly spared and tissue damage was
mainly restricted to the striatum (Figure 1A).
Importantly, estimation of lesion size (relative to contra-
lateral hemisphere) using T2-weighted MRI images
(Figure 1B, 30 min: 12.1� 1.7%, 45min:12.6� 0.6%,
60min: 20.3� 1.7%) were very similar to those obtained
using TTC staining (two-way ANOVA effect of time F
(1.040, 7.281)¼ 19.18, p¼ .0028), indicating that 24 hr
after reperfusion T2-weigthed MRI could be used to
accurately measure the extent and location of stroke
lesions in mice. Thus, for the following experiments
designed to examine functional recovery, injury size
was measured using T2-weighted MRI images collected
24 hr after 60min of MCAO.

The role of striatal ACh on stroke outcome was inves-
tigated using stVAChT-KO mice (Guzman et al., 2011).
stVAChT-KO and littermate controls (VAChflox/flox)
were submitted to 60min MCAO and 24 hr after reper-
fusion, brain lesions and physiological parameters were
measured. We observed that absolute infarct size in
stVAChT-KO mice was 30% larger than in littermate
controls (Figure 1C and D, controls: 9.6� 0.9 mm3

N¼ 9; stVAChT-KO: 13.9� 1.0 mm3 N¼ 7; unpaired
Student’s t test with Welch’s correction; t(12.6)¼ 3.15,
p¼ .008), and sham-operated VAChT-mutant and con-
trol mice showed no signs of stroke. Furthermore, while
78% of control mice survived past the first week of
stroke, surprisingly the survival rate of stVAChT-KO
mice was 44%, almost two-fold lower than that of litter-
mate controls, while the survival rate of sham-operated
VAChT-mutant and control mice was 100% (Figure 1E;
log-rank Mantel-Cox test; MCAO-controls N¼ 27;
MCAO-stVAChT-KO N¼ 18, sham-controls N¼ 3,
sham-stVAChT-KO N¼ 7, p< .05). To note, physiolog-
ical parameters such as heart rate, arterial blood pH,
oxygen saturation, temperature, glucose, pO2, and
pCO2, measured 24 hr following ischemic insult were
not significantly different between stVAChT-KO mice
and littermate controls (Table 1), suggesting that changes
in these parameters did not contribute to increased mor-
tality. Taken together, these results indicate that stroke
injury in VAChT-mutant mice was significantly worse
when compared to littermate controls, which seem to
contribute to increased mortality.

Gait and Sensorimotor Deficits Are More Pronounced
in stVAChT-KO Mice After Ischemia-Reperfusion

Seven days after MCAO, sham-operated and ischemic
stVAChT-KO and littermate controls were subjected to
functional tests, to evaluate functional outcomes after
striatal ischemia. Locomotor activity measured for 2 hr
on an automated locomotor box showed that both
stVAChT-KO and control ischemic mice exhibited
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Figure 1. Infarct Area and Mortality Rate Are Increased in stVAChT-KO Mice After Ischemia-Reperfusion. (a) Representative T2-weighted
magnetic resonance images and TCC stained coronal sections from wild-type mice that had MCAO for 30, 45 and 60min as well as 24 hr.
Images were obtained 24 hr after MCAO. (b) Quantitative analysis of experiments performed in A. (c) Representative T2-weighted
magnetic resonance images of coronal sections from stVAChT-KO mice and littermate controls obtained 24 hr after mice were submitted
to 60min MCAO. (d) Quantitative analysis of experiments performed in C. (e) Survival curves estimated using Kaplan–Meier test.
TTC¼ triphenyltetrazolium chloride; MRI¼magnetic resonance imaging; stVAChT-KO¼ selective vesicular acetylcholine transporter-
deficient mice; CTR¼ control.

Table 1. Physiological Parameters Measured 24 hr Following Ischemic Insult.

Physiological parameters Control stVAChT-KO

Unpaired t test

(p value)

Before MCAO

Heart rate, beats/min 732.4� 23.44 712.6� 46.00 .7114

During MCAO

Heart rate, beats/min 724.6� 38.98 658.4� 36.47 .2501

24 hr after MCAO

Heart rate, beats/min 682.2� 67.23 663.6� 35.33 .8127

Arterial blood pH 7.208� 0.0361 7.206� 0.0249 .9612

Oxygen saturation, % 96.32� 3.952 98.38� 3.682 .7129

Temperature, �C 35.56� 0.2502 35.44� 0.4167 .8112

Glucose 3.320� 0.5444 3.320� 0.3426 1

pO2 156.2� 43.18 184.1� 47.67 .6755

pCO2 38.06� 4.674 36.34� 1.580 .7364

Note. MCAO¼middle cerebral artery occlusion; stVAChT-KO¼ selective vesicular acetylcholine transporter-deficient mice.

Goncalves et al. 5



significantly reduced total locomotor activity (Figure 2A

and B) when compared with sham-operated mice (two-

way ANOVA; main effect of treatment F(1, 18)¼ 165.8,

p< .0001). However, there was no difference in locomo-

tor behavior between genotypes (two-way ANOVA; no

effect of genotype; F(1, 18)¼ 2.452, p¼ .1348).
To evaluate whether ischemic injury affected mobility,

we investigated gait parameters using an automated

CatWalk system. Sham-operated stVAChT-KO and lit-

termate controls were able to easily traverse the walkway

and no difference between the two groups was observed

on all the parameters measured, including print area,

swing speed and stride length (Figure 2C to E). Also,

parameters observed on sham-operated stVAChT-KO

and littermate controls are compatible with data in the

literature for nonoperated wild-type mice (Caballero-

Garrido et al., 2017; Janickova et al., 2017b). These

results indicate that gait parameters are similar in both

stVAChT-KO and littermate controls and that these

parameters were not affected by the surgery. On the

other hand, ischemic stVAChT-KO and littermate con-

trols displayed clear gait alterations (Figure 2F to H).

Both genotypes showed a similar decrease in print area

on the affected side—Figure 2F; two-way ANOVA; main

effect on paws; F(3, 24)¼ 28.52, p< .0001; no effect of

genotype; F(1, 24)¼ 0.97, p¼ .33. In addition, stVAChT-

KO exhibited a slower swing speed (Figure 2G) and

shorter stride lengths (Figure 2H), when compared to

ischemic control mice—two-way ANOVA; main effect

genotype; F(1, 24) ¼20.49, p¼ .0001. These results indi-

cate that the effect of ischemia on gait function is signif-

icantly more pronounced in mice with decreased striatum

ACh than in littermate controls.
We also evaluated fine sensorimotor function on ische-

mic stVAChT-KO and littermate controls using the

adhesive removal test. Both genotypes showed increased

latency to perceive the tape on the contralateral paw

(right paw, Figure 2I) compared to the ipsilateral

paw—two-way ANOVA; main effect of paw side; F(1,

24)¼ 42.92, p< .0001, but there was no difference

Figure 2. Gait and Sensorimotor Deficits Are More Pronounced in stVAChT-KO Mice After Ischemia-Reperfusion. (a) Horizontal
locomotor activity in an open-field for stVAChTD2-KO and littermate control mice measured in bouts of 5min. (b) Cumulative 2 hr
locomotion for stVAChTD2-KO and littermate controls. (c–h). Analysis of gait in the CatWalk test in sham (c–e) and MCAO (f–h)
stVAChT-KO and littermate controls. Print area (c and f); Swing speed (d and g); Stride length (e and h). (i) Latency to perceive adhesive
tape stuck into each forelimb. (j) Latency to remove adhesive tape stuck into each forelimb. Asterisks indicate significant effect of genotype
by two-way Anova. **p< .01. ***p< .001; p< .0001, n.s.¼ nonsignificant; stVAChT-KO¼ selective vesicular acetylcholine transporter-
deficient mice; CTR¼ control. Data are shown as mean (þ SEM). White columns: controls, Gray columns: stVAChT-KO.

6 ASN Neuro



between genotypes—two-way ANOVA; no effect of
genotype; F(1, 24)¼ 2.492, p¼ .127. Likewise, both
stVAChT-KO and littermate controls took longer to
remove the tape from the contralateral side (right side)
than from the ipsilateral side—Figure 2J; two-way
ANOVA; main effect of paw side; F(1, 24)¼ 51.21,
p< .0001. However, stVAChT-KO took longer than lit-
termate controls to remove the tape from the contralat-
eral side—main effect of genotype; F(1, 24)¼ 8.12,
p¼ .0088; Turkey’s multiple comparisons test: Right
Paw:CTR vs. Right Paw:stVAChT-KO adj p¼ .0046.
No genotype difference was observed on the time to
remove the tape from the ipsilateral side (Turkey’s mul-
tiple comparisons test: Left Paw:CTR vs. Left Paw:
stVAChT-KO adj p¼ .995). Taken together, these results
indicate ischemia leads to a larger sensorimotor impair-
ment in stVAChT-KO mice than on littermate controls.

stVAChT-KO Mice Show a Higher Increase in Activated
GSK3-b After Ischemia-Reperfusion

Recent studies show that a7nAChR stimulation modu-
lates PI3K/Akt signalling which in turn reduces activated
GSK-3b, leading to improved functional and morpholog-
ical outcomes after cerebral injuries in rodents (Krafft
et al., 2012, 2013; Y. Sun et al., 2017). Conversely,
decreased cholinergic signaling in the hippocampus has
been demonstrated to influence the PI3K/Akt signaling
pathway leading to increased levels of activated GSK-3b
and associated increased neuronal death (Kolisnyk et al.,
2017). To determine whether reduced levels of striatal
ACh affect PI3K/Akt-GSK-3 signaling after stroke
injury, we performed immunoblot analyses on striatum
samples collected 24 hr after MCAO and quantified
changes in levels of pAkt (Ser473) as a ratio of total
Akt (Figure 3A). No differences in p-Akt levels were

Figure 3. stVAChT-KO Mice Show a Higher Increase in Activated GSK3-b After Ischemia-Reperfusion. (a) Representative immunoblot
(left) and quantitative analysis (right) of pSer473 AKT, total AKT and actin in the striatal tissue of stVAChTD2-KO and controls. (b)
Representative immunoblot (top) and quantitative analysis (bottom) of pSer 21/9 GSK3a and GSK3b; pTyr 279/216 GSK3a and GSK3b,
total GSK3a and GSK3b and actin in the striatal tissue of stVAChTD2-KO and controls. Protein levels were normalized using actin. n.s.¼
nonsignificant; stVAChT-KO¼ selective vesicular acetylcholine transporter-deficient mice; CTR¼ control. *p< .05. **p< .01.
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observed between ipsilateral and contralateral striatal
brain hemispheres or between genotypes—two-way
ANOVA; no effect of brain hemisphere; F(1, 12)¼
1.212, p¼ .293; no effect of genotype; F(1, 12)¼ 0.177,
p¼ .682; no interaction: F(1, 12)¼ 0.110, p¼ .746.

Several proapoptotic stimuli, including oxygen glucose
deprivation, have been reported to increase GSK-3b
activity, which is related to an increase in Tyr216 phos-
phorylation (Bhat et al., 2000). Conversely, inhibition of
GSK-3b, correlated to increased phosphorylation of
Ser9, is associated with activation of neuronal survival
pathways (Garcia-Segura et al., 2007). We measured Ser9
phosphorylation levels of GSK-3a and GSK-3b in the
striatum of stVAChT-KO and littermate controls but
did not find any difference (Figure 3B). Specifically, p-
GSK-3a/b(Ser21/Ser9) levels were not different between
brain hemispheres or genotypes—two-way ANOVA, p-
GSK-3a(Ser21): no effect of brain hemisphere; F(1, 24)¼
3.270, p¼ .083; no interaction of genotype; F(1, 24)¼
3.337, p¼ .080; no interaction: F(1, 24)¼ 0.375,
p¼ .546; p-GSK3b(Ser9): no effect of brain hemisphere;
F(1, 24)¼ 0.542, p¼ .468; no effect of genotype; F(1,
24)¼ 0.750, p¼ .395; no interaction: F(1, 24)¼ 0.023,
p¼ .881. On the other hand, GSK3 (Tyr279/Tyr216)
phosphorylation differed between hemispheres and
between genotypes (Figure 3B). That is, in both geno-
types p-GSK-3a(Tyr279) and p-GSK-3b(Tyr216) were
increased in the left hemisphere (ischemic) when com-
pared to the right (contralateral) side—two-way
ANOVA; p-GSK-3a(Tyr279): main effect of brain hemi-
sphere; F(1, 24)¼ 10.43, p¼ .004; p-GSK3b (Tyr216:
main effect of hemisphere F(1, 24)¼ 13.46, p¼ .0012—
and the effect was more prominent on stVAChT-KO

when compared to littermate controls—two-way
ANOVA; p-GSK3a(Tyr279): main effect genotype; F(1,
24)¼ 4.78, p¼ .039; p-GSK3b(Tyr216): main effect of
genotype, F(1, 24)¼ 8.698, p¼ .007. These results suggest
that GSK-3 activation is increased after ischemic stroke
and that this effect is more pronounced in stVAChT-KO
mice compared to controls.

GSK-3 is essential for the control of cellular levels of
b-catenin (C. Liu et al., 2002), a cell adhesion protein that
plays important roles in BBB formation, maturation, and
integrity (Liebner et al., 2008; Tran et al., 2016). Given
the increase in p-GSK-3 suggests increased activation, we
tested whether b-catenin levels and BBB permeability
could be affected in mice with decreased striatal
VAChT levels when compared to control mice. The
results showed reduced levels of b-catenin in stVAChT-
KO mice compared to control mice after MCAO
(Student’s t test; t(14)¼ 2.624, p¼ .02, Figure 4B). To
investigate BBB integrity, we used immunohistochemis-
try to examine extravascular IgG staining in the brain
parenchyma. Our results showed increased intensity of
IgG staining in stVAChT-KO mouse brains compared
to control mice (Student’s t test; t(22)¼ 3.509, p¼ .002;
Figure 4A). These results suggest that the BBB is more
permeable in stVAChT-KO mice compared to controls,
likely contributing to the worse outcomes observed in
these mutant mice.

Discussion

In this study, we investigated the role of endogenous
striatal cholinergic activity on injury and recovery after
an ischemic insult. Our results demonstrate that an

Figure 4. stVAChT-KO Mice Show Higher Increase in Blood–Brain Barrier Permeability After Ischemia-Reperfusion. (a) Representative
coronal sections stained with goat anti-mouse IgG conjugated with HRP and quantitative analysis. (b) Representative immunoblot and
quantitative analysis of b-catenin GSK3b and actin in the striatal tissue of stVAChTD2-KO and controls. stVAChT-KO¼ selective vesicular
acetylcholine transporter-deficient mice; CTR¼ control. *p< .05. **p< .01.
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ischemic insult in mice with decreased ACh release in the
striatum results in larger infarct size, more pronounced
functional impairments and increased mortality than in
littermate controls. In addition, our data suggest that
these detrimental effects might be related to increased
activation of GSK-3 and a higher permeability of the
BBB. It should be noted that because we used mice
that present deficits in cholinergic signaling from early
age, it is possible that some of the phenotypes described
may be influenced by loss of cholinergic signaling during
development.

Interestingly, recent imaging studies in humans sug-
gest a protective role of ACh against cerebral ischemia.
Patients with cholinergic lesions (assessed by MRI) were
shown to have poor functional outcome after stroke (Qu
et al., 2018). In addition, pharmacological upregulation
of cholinergic activity by administration of different cho-
linesterase inhibitors shortly after acute ischemic stroke
has been shown to result in reduced lesion volumes and
improved functional recovery (Z. F. Wang, Wang, et al.,
2008; Barrett et al., 2011; Zhao et al., 2011; Chang et al.,
2017). Similar neuroprotective effects have also been
observed upon administration of nicotinic agonists
(Chen et al., 2017) or positive allosteric alpha7 nicotinic
modulators (Gaidhani & Uteshev, 2018).

Gait dysfunction following stroke is highly prevalent
in humans (Handlery et al., 2020; Little et al., 2020) and
is also observed after different models of stroke in
rodents (Y. Wang, Bontempi, et al., 2008; Y. Liu et al.,
2013; Fluri et al., 2017). Thus, we used gait analysis as
one of the parameters to compare functional deficits in
stVAChT-KO mice and littermate controls 7 days after
stroke. Our results showed that, although both genotypes
decreased the use of the paws plantar surface on the
affected side, stVAChT-KO mice—but not littermate
controls—also exhibited shorter and slower steps on the
affected side. To note, shorter and slower steps are char-
acteristics observed in humans after stroke (Handlery
et al., 2020) as well as in Parkinson’s patients
(Knutsson, 1972) and rodent models of Parkinson’s dis-
ease (Vlamings et al., 2007). Strikingly, mice with meso-
pontine cholinergic deficiency, a dysfunction commonly
seen in Parkinson’s disease, also show decreased use of
paws plantar surface as well as short and slower steps
(Janickova et al., 2017b). Thus, it is possible that both
increased lesion size and decreased cholinergic signaling
contribute to the worse gait deficiencies observed in
stVAChT-KO mice. It should be noted that in our exper-
imental design, we did not test mice in other time points
for gait, which is a limitation of this study.

Activation of alpha 7 nicotinic ACh receptors has
been shown to improve functional recovery for cerebral
injuries through activation of Akt and subsequent inac-
tivation of GSK3b (Duris et al., 2011; Krafft et al., 2012;
Y. Sun et al., 2017). Akt is a Ser/Thr kinase that is

directly activated by PI3K-mediated phosphorylation
(Manning & Toker, 2017). Activated Akt (p-Akt) is
able to inhibit GSK3b, by phosphorylation of Ser 9.
GSK3 has two isoforms, GSK3a and GSK3b, which
are functionally redundant in some contexts, but also
show some isoform-specific functions (Hoffmeister
et al., 2020). Our results showed that activated p-Akt
levels and correlated levels of p-GSK3b(Ser9)/p-GSK3a
(Ser21) were unchanged when the injured side was com-
pared to the uninjured side, both in stVAChT-KO mice
and littermate controls. Levels of activated p-GSK3a
(Tyr279) and p-GSK3b(Tyr216) were increased in the
ischemic hemisphere when compared to uninjured side
of both stVAChT-KO mice and littermate controls.
However, phosphorylation was more prominent on
stVAChT-KO when compared to littermate controls.
These results suggest that, similar to data reported for
the hippocampus (Kolisnyk et al., 2017), decreased cho-
linergic signaling in the striatum leads to increased levels
of activated GSK-3 and support a neuroprotective role
for striatum cholinergic signaling.

Increase of p-GSK3b(Tyr216) has been suggested to
represent an important mechanism by which cellular
insults induced by ischemia can lead to neuronal death
(Bhat et al., 2000; D’Angelo et al., 2016). Conversely,
GSK-3b inhibition has been shown to protect the BBB
and attenuate early ischemia-reperfusion stroke injury,
possibly by early activation of the Wnt/b-catenin signal-
ing pathway (W. Wang et al., 2017; Jean LeBlanc et al.,
2019). Brain edema, the accumulation of fluid within the
brain tissue, is a critical consequence of ischemia-
reperfusion (Y. Yang & Rosenberg, 2011; Thrane et al.,
2014). Early during ischemia-reperfusion (<24 hr), edema
results mainly from cytotoxic and ionic insults, while
blood vessel damage with breakdown of the BBB is rel-
evant for delayed (24–72 hr) cerebral edema (Y. Yang &
Rosenberg, 2011; Thrane et al., 2014). Recent pharmaco-
logical studies suggest that cholinergic receptor activa-
tion on epithelial/endothelial cells regulates the
expression of tight junction proteins, such as occludin,
claudins, and junctional adhesion molecule-1, which are
present at the membrane of two adjacent endothelial cells
and are essential constituents of the BBB (Krafft et al.,
2013; Dhawan et al., 2015; Tang et al., 2017; N. Y. Yang
et al., 2017; Zou et al., 2017; Kimura et al., 2019). Our
data suggest that cholinergic signaling can also influence
b-catenin levels. b-catenin, a component of adhesion
junctions, plays an essential role in the regulation and
coordination of cell–cell adhesion and can also shuttle
from the membrane to the nucleus where it functions as
a co-transcription factor in the canonical Wnt signaling
pathway (Brembeck et al., 2006; MacDonald et al.,
2009). Specifically, b-catenin connects VE-cadherin to
the actin cytoskeleton stabilizing adherens junctions
and controlling vascular permeability and integrity
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(Dejana et al., 2009). Under normal conditions, canoni-

cal Wnt signaling increases cytoplasmic accumulation of

b-catenin by blocking its phosphorylation by GSK3b
(MacDonald et al., 2009). Stabilized b-catenin translo-

cates to the nucleus, where it activates expression of sev-

eral genes involved in cell proliferation, survival,

differentiation, neurogenesis, inflammation, as well as

BBB formation and function (Libro et al., 2016; Ziegler

et al., 2016). Different stimuli including ischemia events

activate the ubiquitously expressed GSK3-b, which phos-

phorylates b-catenin on several serine/threonine residues

leading to ubiquitin-mediated proteosomal degradation

of b-catenin (Rubinfeld et al., 1996). Together, these

results suggest that decreased levels of b-catenin observed

in the ischemic side of stVAChT-KO mice brain might

contribute for both, the deficit in BBB integrity and the

larger infarct size. Additional studies are warranted to

investigate whether the expression level of tight junction

proteins, such as claudins and ocludins, are altered in

stVAChT-KO mice after ischemia.
In short, mice with decreased ACh signaling in the

striatum showed worse outcome after ischemia-

reperfusion, including larger infarct size, more pro-

nounced functional impairments and increased mortality.

These changes were paralleled by increased activation of

GSK-3, decreased levels of b-catenin and destabilization

of the BBB. These results support a protective role for

ACh against cerebral ischemia and suggest that pro-

cholinergic drugs have potential therapeutic benefits in

the amelioration of BBB permeability.
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