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Abstract
We build on the work of El Mouden and Gardner (2008) and consider the evolution of 
natal dispersal conditioned upon an individual’s ‘migration status’. In particular, we look 
to compare the evolution of this kind of conditional dispersal with the evolution of its un
conditional counterpart. Our goal is to determine the extent to which dispersal conditional 
upon migration status changes predictions about population-wide levels of dispersal. Sim
ply we ask: what weight should the possibility of this kind of conditional dispersal be 
given by an evolutionary biologist? We find the stable dispersal rates of natives and non
natives, respectively, are predicted to vary with changing parameter values, and the stable 
dispersal rates of natives and non-natives are predicted to differ from one another in a way 
consistent with inclusive-fitness theory. We also find differencs between Taylor’s (1988) 
unconditional dispersal rate, and the population-average dispersal rate predicted by our 
model.

Keywords. Conditional dispersal, Dispersal conditioned on migration status, Stable dis
persal, Conditional and unconditional dispersal.
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Chapter 1 

Introduction

1.1 Dispersal and its importance

Dispersal of an individual is the movement from its point of origin to the place where it 

reproduces or would have reproduced if it had survived and found a mate (Greenwood, 

1980). Dispersal can also be defined as any movement of individuals or propagules with 

potential consequences for gene flow across space (Ronce, 2007). Dispersal involves three 

successive behavioral stages- called (a) departure (or emigration), (b) a vagrant stage (tran

sience), and (c) settling (or immigration). The entire process should be referred to as 

dispersal. Dispersal is, generally, of two kinds: natal dispersal and breeding dispersal.

Natal dispersal is defined as active or passive movement by which an individual leaves 

its birth place to engage in mating or reproduction somewhere else (Greenwood, 1980; 

Ronce, 2007; Clobert el al., 2009), and breeding dispersal is the movement of an individual 

between successive breeding sites (Greenwood, 1980). Natal dispersal, both in plants and 

animals, is a widespread phenomenon (Taylor, 1988).

Usually, the terms migration and dispersal are used interchangeably but there are au

thors (e.g. Clobert el al., 2009) that make a distinction between them. Dispersal implies 

relocation of the natal breeding site, and can occur at any life stage, at any spatial scale
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above the individual range, and within more or less heterogeneous landscapes (Clobert el 

al., 2009).

There are different forms of dispersal such as (a) habitat selection, (b) condition de

pendence, (c) phenotype dependence, and (d) informed dispersal. Habitat selection is a 

type of dispersal behavioral process that results in a biased utilization of habitats, and in

fluences the survival and reproduction of individuals. This form of dispersal is becoming 

increasingly apparent as more populations face the major threats posed by global climate 

change and the fragmentation of their habitat. For example, habitat quality and popula

tion density determine settlement differentially in small and large adult Great Tits (Parus 

major, Garant et al., 2005). The form of dispersal of individuals that depends on external 

factors (e.g. inbreeding risk, kin competition, intraspecific competition, and outbreed

ing risk) is termed condition-dependent dispersal. For example, kin competition among 

Fig Wasps (Agaonidae), influences the body size of male dispersers depending on levels 

of mate and resource competition (Moore et al., 2006). Phenotype-dependent dispersal 

depends on internal states of individuals. Phenotypic differences have been found for a

variety of physiological, morphological, behavioral and life-history traits. Any disper-
\

sal decision based on social or non-social cues is termed informed dispersal because the 

individuals can gather and exchange information at the different stages of dispersal.

Dispersal may allow the exploitation of ephemeral resources, and is essential for most 

species to persist in their ever changing natural environment (Ronce, 2007). The impor

tance of dispersal behavior for the ecology, and genetics of wild populations is becoming 

increasingly apparent as populations face global climate change and the destruction of 

their habitat (Thomas et al., 1998; Hill et al., 1999). Dispersal could also be influenced by 

habitat, intraspecific and interspecific interactions, and resource quality.

Dispersal is considered to be costly as the dispersing individual might not find a better 

or an emptier patch for mating or reproduction, and if they find one, the competition may
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be no less than what they would face in their natal patch (Taylor, 1988). Mortality may 

be increased during the transient stage of dispersal by the use of non-optimal habitat, and 

increased predation risk (Ims and Andreassen, 2000). For plants, a large fraction of wind- 

dispersed pollen never ends up on the stigma of a receptive flower of same species. One 

might reasonably ask: why do individuals of most species, then, tend to disperse? Among 

many reasons, individuals of most species tend to disperse for (a) inbreeding depression 

avoidance, (b) kin competition avoidance, and (c) colonization of new habitat.

The possibility of future encounters with each other decreases by the dispersal of in

dividuals, and reduces kin competition. Competitive interactions, thus, among relatives 

can favor non-zero dispersal rates between patches, even in a temporally, and spatially 

constant environment (Hamilton and May, 1977; Motro 1982, 1983; Frank, 1986; Taylor, 

1988). Therefore, natal dispersal serves to reduce kin competition, and to avoid inbreed

ing. Dispersal, thus, presents an evolutionary problem, since it imposes a personal cost 

on the disperser, and the benefits are shared by all siblings, and relatives that are not 

dispersing. As the cost of dispersal increased, compared with possible damage resulting 

from kin competition (Hamilton and May, 1977; Motro, 1983; Frank, 1986; Taylor 1988) 

or from inbreeding (Bengtsson 1978; Greenwood 1980), the evolutionary stable dispersal 

rate decreases. Population genetic models of selection, in multipatch environment indicate 

that if allelic fitnesses are temporally constant but different alleles are favoured in differ

ent patches, alleles for reduced dispersal can always invade (Balkau and Feldman, 1973). 

Ecological models also suggest that individuals should not disperse in spatially varying but 

temporally constant environment ( Hastings, 1983; Holt, 1985), but these studies neglect 

kin effects.

The evolutionary stable dispersal strategy is, generally, a decreasing function of cost of 

dispersal (the cost associated with any dispersal event), and an increasing function of relat

edness. Motro (1991), presented a simple population-genetic model that considered both
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the effects of sibling competition, and inbreeding avoidance to find the evolutionary stable 

strategies of dispersal. The evolutionary, stable strategy of dispersal is also affected by 

environment, and the life history traits of the species (Gandon and Michalakis, 1999). In 

extant metapopulation models individuals with both a very large number of sites and very 

large number of individuals per site, escape from overcrowding is the cause of dispersal 

evolution (Gyllenberg et al., 2002).

Inbreeding depression is defined as the probability of two alleles, on complementary 

chromosomes, being identical by descent. If an individual has two identical copies of a 

deleterious recessive allele (recessive allele - an allele that produces its characteristic phe

notype only when its paired allele is identical), the individual will express, then, a trait 

of lower fitness, or in the worst case, will cause death. Most empirical evidence to date 

suggests that the majority of inbreeding depression is caused by deleterious recessive or 

partially recessive alleles that are manifest in the homozygous state in inbreed individu

als (Charlesworth and Charlesworth, 1987; Cmokrak and Roff, 1999; Charlesworth and 

Willis, 2009). Only a small proportion of these recessive alleles appear to be lethal in 

the homozygous state but a significant proportion appear to be nonlethal deleterious alle-
N

les, and partially recessive (Cheptou and Donohue, 2010). However, deleterious mutations 

could play a major role in causing inbreeding depression (Charlesworth and Charlesworth, 

1999).

Individuals, thus, reduce the risk of inbreeding depression by dispersing from their 

natal site (Greenwood, 1980). Great Tits, for example, which mate with close relatives 

have a lower than expected nesting success (Greenwood et al., 1978). The viability of 

offspring sired by a male olive baboon (Papio anubis) which mated with probable female 

relatives was substantially less than that of outbred young (Packer, 1979). Elisabeth et 

al. (2010) considered full-sib mating to investigate the effects of inbreeding on viability, 

attractiveness, morphology and potentially secondary sexual traits in male and female
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zebra finches, Taeniopygia guttata. Though inbreeding depression has a great importance, 

we are neglecting the effect of inbreeding depression in Chapter 2.

Dominance relations among individuals can promote dispersal in temporally constant 

but spatially varying environment (Pulliam, 1988). The low frequency of dispersal of 

the butterfly (Euphydrias editha), from its colonies could be explained this way (Ehrlich, 

1961). Dispersal is not, always, a willful event. Individuals, sometimes, are forced to dis

perse from their natal patch (Archer, 1970). Individuals forced to disperse are, frequently, 

the socially subordinate, younger and weaker member of the population. Increasing pop

ulation density may be associated with high level of dispersal.

Animals and plants exhibit a broad spectrum of dispersal strategies (e.g. unconditional 

dispersal, and conditional dispersal). The simplest dispersal strategy, for individuals, is 

the unconditional strategy which is to disperse at constant per capita rates regardless of 

the environment. On the other hand, an individual could have a highly flexible dispersal 

strategy sensitive to habitat type, local population size, migration status on a patch, body- 

condition, and other predictors of local fitness. This type of dispersal strategy is termed 

conditional dispersal. McPeek and Holt (1992) considered both unconditional and condi

tional dispersal strategies of individuals in spatially, and temporally varying environments, 

and found, if individuals express conditional dispersal strategies, dispersal can be favored 

in a spatially varying but temporally constant environment.

In the next sections, we will discuss inclusive fitness theory, and branching processes 

to analyze a population model presented in section 1.4.

1.2 Inclusive fitness theory

Inclusive fitness theory, in evolutionary biology, provides an adaptive explanation for the 

existence of social behaviours. Inclusive fitness includes the reproductive success (how 

many of its own offspring it produces, and supports) and survival of an individual as well as
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the reproductive success and survival of that individual’s relatives. Reproductive success 

of an individual, from a gene’s point of view, depends on leaving behind the maximum 

number of copies of itself in the population. Until 1964, it was believed that reproductive 

success of an individual can only be achieved by leaving its maximum number of viable 

offspring. However, Hamilton (1964) argued that, because close relatives of an individual 

share some identical genes, fitness can also be increased by promoting the reproduction, 

and survival of these related individuals. Inclusive fitness theory, thus, offers a mechanism 

for the evolution of altruism (Hamilton, 1964).

Natural selection, in Hamilton’s (1964) model, favours the gene(s) for altruism when

ever rb > c where c is the reproductive cost to altruist, b is the reproductive benefit to the 

recipient of the altruistic behaviour, and r is the probability, above the population average, 

of the individuals sharing an altruistic gene (relatedness between altruist and recipient). 

Hamilton’s (1964) rule can be explained as follows: if a gene for altruism is to evolve, 

then the cost of altruism must, somehow, be balanced by compensating benefits to the 

altruist. The cost of altruism c is balanced by benefits b accrued by close relatives of 

the altruist, because the gene for altruism may be carried by close relatives. However, 

the close relatives have only the probability, r, of carrying the gene for altruism, and the 

benefits, thus, received must be weighted by the probability.

1.3 Branching processes

Branching processes were introduced by Galton and Watson in studying the survival of 

family names in the 1870s. Suppose N  adult males in a population each have different 

surnames. Suppose in each generation, ao percent of the adult males have no male children 

who survive to adulthood; ai percent have one such child; 02 percent have two, and so on 

upto as, who have five. Galton and Watson, then, were supposed to find the proportion 

of the surnames which become extinct after r  generations. This process is known as a
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Galton-Watson branching process. Mathematically, a branching process is described as 

follows.

Let X Q denote the total size of population at the zeroth generation, and X n the size of 

population at the nth generation. The process, then, { X n }^L0 has state space {0,1,2, • • • }. 

Assume that in the nth generation, each individual gives birth to Y  G N offspring in the 

next generation with offspring distribution {pk}™=0,

Prob {Y  = k } = p k, * =  0 ,1 ,2 ,-- .

The process {X n } ^ 0 is refered to as a branching process.

1.4 The population model

In this section, we will propose a simple population model where the dispersal of indi

viduals is not conditioned on their migration status. In this model, first, we will find the 

evolutionary stable dispersal rate of individuals using (a) inclusive fitness theory (Taylor, 

1988), and (b) a branching process (Wild, 2011). In chapter two, we will extend this model 

to find the evolutionary stable dispersal rate if the dispersal of individuals is conditioned 

on migration status i.e. we will find the evolutionary stable dispersal rate when native 

and non-native individuals have different dispersal strategies to disperse offspring onto 

the other patch.

We consider a haploid asexual population undergoing discrete, non-overlapping gener

ations. The population consists of a very large number of habitat patches (M ) of identical 

quality, and each patch supports exactly N  individuals (i.e. N  breeding sites per patch). 

The model of the life cycle of an individual consists of a series of discrete stages- (a) 

birth of offspring, (b) dispersal of offspring, (c) death of parents, and (d) competition for 

breeding sites. In stage (a), each breeding adult produces a large number of offspring (K ). 

In stage (b), a fraction of offspring disperses from its natal patch incurring a cost of dis
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persal c. In stage (c), all parents are assumed to die immediately after the dispersal stage 

of offspring, leaving N  breeding sites vacant per patch for the next generation. In stage 

(d), a successful disperser will compete on a patch chosen uniformly at random from the 

population as a whole.

1.5 ESS dispersal using inclusive fitness theory

In this section, we will briefly review the inclusive fitness approach to unconditional dis

persal presented by Taylor (1988). We want to find the evolutionary stable dispersal rate 

of individuals for the population model presented in section 1.4.

Taylor’s (1988) approach works for diploid sexual and haploid asexual populations 

alike. We consider an adult mutant breeding on a focal patch, and the dispersal of offspring 

under parental control. The mutant female disperses its offspring with probability d* +  e, 

and each non-mutant female disperses its offspring with probability d*. After the dispersal 

phase, the offspring (natives and immigrants) on each patch compete for the N  mating 

spots, and every breeding site in the population is assumed to be occupied during every 

generation. N

Denoting by p, the probability that each of these (natives or immigrants) offspring will 

be a winner on the patch, by c the cost of dispersal and by k the probability that each 

offspring is native to the patch, then according to Taylor (1988),

(1 — d*) + (1 — c)d*
i  - d r
1 — cd* ’ ( U )

The mutant breeder has the fitness through her dispersing offspring (1 -  c)p instead of 

fitness p if the offspring would not disperse. Thus, the change in fitness due to her mutant 

behavior is -tap. Since the mutant breeder sends out an extra e proportion of her offspring
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elsewhere, thus an extra tp proportion of offspring would be able to breed on the focal 

patch. Thus, the fitness increment of the mutant adult through relatives is epRk where R  

is the relatedness between the focal adult and average offspring bom on the patch.

Therefore, the focal individual’s inclusive fitness increment is A W  =  ep (-c  +  Rk). 

Natural selection should favour a change in dispersal behaviour from d* to d* +  e only if 

the inclusive fitness increment A W  is positive. The condition, thus, for selection to favour 

an increased d* is Rk > c obtained by Taylor (1988). Since the population is haploid 

asexual, the relatedness R  between the focal adult and average offspring bom on the patch 

is found as the solution to the following recursive equation.

R = b + l l - i ^  ° ' 2)

Solving for R,  the relatedness R  =  a, and ESS dispersal rate is obtained by

solving Rk = c for d*, which is then

1 +  2N c -  V I +  4N 2c2 -  4Nc2 
2Nc(l  +  c)

(1.3)

\
For N  =  1, the ESS dispersal rate d* = - ^  was found by Hamilton and May (1977) and 

Motro (1982, 1983) which is a special case of Taylor’s result.

1.6 ESS dispersal using branching process

Wild (2011) considered a model similar to the model described in section 1.4 to study 

the evolution of altruism in a large population using multitype branching process. In this 

section, we will follow the procedure described by Wild (2011) to find the ESS dispersal 

rate of individuals of the model in section 1.4. So, our analysis very much resembles that 

of Wild (2011).
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1.6.1 Patch updating procedure

Let us consider that the individuals are carrying two forms of gene either the mutant type 

(A), or wild-type (o). Let i =  0 ,1 ,2 , • ■ ■ , N  denote the number of mutants on a patch, 

and (N  — i) gives the number of wild-type individuals on the patch. On state-i patch, we 

mean there are ¿-mutants and (N  — i) wild-type individuals. We observe the population at

discrete points in time n = 0 ,1 ,2 , ........... Let Xi(n)  denote the number of state-i patches

observed at time n, and X(n) = [Xo(n), X i (n ) ,X 2(n),- • ■ , X^in)) .

Now, we fix our attention on a state-i patch. Denote the dispersal rate of mutant, and 

wild-type offspring by dA and da respectively. Recall that we assumed, in our model, 

each individual (mutant or wild-type) is producing a large number (K ) of offspring. Thus, 

there is no benefit over reproductive success for mutant allele-A The exact proportion of 

competitive ability of mutant offspring, (1 -  dA) is assigned for local competition. On 

the other hand, wild-type offspring assigns (1 — da) proportion for local competition. The 

remaining fraction dA and da, respectively, of mutant and wild-type offspring is devoted 

to non-local competition.

The total local competitive effort on state-i patch is give by

and since an individual can compete non-locally on its native patch, the total non-local 

competitive effort is given by

(1.4)

M (1.5)
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In order to update, the occupancy of a site on state-? patch, we let

______________________ (1 — dA)i +  (1 -  da)(N -  i)____________________

Pi’L ~  (1 -  dA)i +  (1 -  df>)(N -  ?) +  i r  E i U  { M n ) ( N  -  k)d* +  X k{n)kdA)
( 1.6)

be the probability of putting a locally produced offspring on a site on a state-? patch, and 

let Pi,NL =  1 -  Pi,i be the probability of putting a non-locally produced offspring on a site 

on a state-? patch.

Let us now focus on a mutant allele-A, let

(1 -  dA)i
qi'A\L ~  ( l  _  dA)i +  (1 -  da){N -  i) (1.7)

be the probability that a site on a state-? patch will be occupied by an individual bearing 

a mutant allele-^4, given that it is colonized by local offspring and a non-locally produced 

offspring, bearing mutant allele-^4, will occupy the site on state-? patch with probability,

___________ ' L U x M i #  ,,

S

To update the entire state-? patch, we will simply repeat the above process for each of N  

sites on the patch, and express the probability that a state-? patch at time n  becomes a 

state-j patch at time n + 1 as,

P i j  =  J  (Pi,L9i,AIL +  ( l - P i , L ) Q i , A I N L ) j ( l - P i , L Q i , A I L - ( l - P i , L ) g i , A I N L ) N j ■ 0-9)

The process, {X : n > 0} can be thought of as a Markov chain with one-step transition 

probabilities determined by Ptj.
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1.6.2 Branching process approximation

We will use an approximation to study {X : n  >  0} as a branching process. Since the 

mutant is globally very rare, and Xi(n)  <S X Q(n) for i > 1, so Xo «  M. Consider a 

patch that was most recently occupied by individuals bearing mutant allele-A, and to find 

the probability that any given site on this patch becomes occupied by mutant allele-A in 

next time step, we find the total external competitive effort on this patch

1 — c 
M

N

J 2  {Xk{n){N ~ k)da + X k{n)kdA)
k=Q

1 —  C

M

N - 1 N

J 2  X k{n){N -  k)da + J 2 x k{n)kd'
k=0 k ~ l

/N - 1 
A T ( l -c )  £

'  0

NXk{n) (N -  k) , ^ X k( n ) k jA
M N da +  E

k = 1
M N d‘

= N(  1 -  c)(dapa(n) +  d V ^ n ) ) ,

where p“(n) and pA(n) denote, respectively, the global frequencies of the wild-type allele- 

a and mutant allele-/! at time n. On a state-i patch the total internal competitive effort 

is

( l - d “)(iV - i )  + ( l - d A)i.

We use P A to denote the probability that any given site on a state-i patch will be occupied 

by a mutant in next time step, then

A (1 -  dA)i + dA( 1 — c)NpA(n)
1 (1 — da)(N — i) +  (1 — dA)i +  N(  1 — c) (dap°(n) +  dApA(n))

Applying the large-X0 approximation, we find that

(1 -  dA)i
(1 -  da)(N -  i) + (1 -  dA)i + N(  1 -  c)da'P ì ,l Qì ,a \l  +  (1  -  P ì ,l )Qì ,a \n l  ~
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Use Pi to denote this approximation i.e.

p  _______________(1 ~  dA)i______________
1 ( l - d a) { N - i )  + ( l - d A)i + N { l - c ) d a'

The previous transition probability (1.9), thus, can be written as

( 1.10)

Pij = ( Nj y p i ) j ( i - P i ) N- j . (i . i i )

At time n, the state-* patch can be denoted by a set of new random variables, {A^ , A ^ L 

where the random variable A denotes the number of state-j patches produced by a state-* 

patch through local competitive effort, and the random variable A ^ L denotes the number 

of state-j patches produced by a state-* patch through non-local competitive effort of its 

inhabitants.

The probability generating function (pgf) for the joint distribution of {A ^}f=1 is

AT v N

1_E  ̂ J+ E ^ W  <U2>
j —o '  j= 0

\
On the other hand, the state-* patch sends out i ( l —c)dA units of competitive effort, and this 

competitive effort is divided evenly over the M  patches to compete against (1 -  da)N + 

N(1 — c)da units of competitive effort. The competitive effort given by state-* patch, 

therefore, will succeed with probability • Since the probability of suc

cess is very small compared to number of trials N M , the distribution of random variable 

{APA}f= j, can be approximated by Poisson distribution with mean N M , 

i.e. A ^ L follows the distribution A ^ L ~  Poisson (*^-m) approximately, where m  =  

is the wild-type backward migration rate. Thus, the probability generating fune-
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tion (pgf) of distribution {A ^L}f=1 is

/ r L(«i) =  exp | * ^ m (z1 - i ) } -  U -13)

The probability generating function for the joint distribution of descendent 

patches is / ¿ ( z i , zN) = f ( !L(z{)f i (zi , . . . , zN) because the probability generation func

tions of {Afy jL j and {A^L}jLv  respectively, are independent of each other. The ex

tinction probability of mutant can be found by finding the fixed point of the probability 

generating function

F(zi , . . . ,zn ) =  [fi(zi,. . . ,zN), . . . , fN(zu ...,zN)}. (1.14)

We will use the equation (1.14) to find extinction probability of mutants (see MATLAB 

codes in appendix G) for different combination of dispersal strategy of wild-types (da) 

and mutants (dA), respectively. We recorded the combination of da and dA for which 

the extinction probability of mutants is always less than one (Figure 1.1). The regions

where the mutant invasion is successful have been marked with small squares (Figure 1.1,
\

marked regions). The ESS dispersal strategy has been reported as the dispersal strategy of 

wild-types that can not be invaded by any other mutant strategy.

1.7 Conclusion and preview of later chapters

In this chapter, we presented two important tools- inclusive fitness theory, and branching 

processes to find the evolutionary stable dispersal rate of individuals. In chapter two, we 

will extend the model presented in this chapter where we will consider that the individual’s 

dispersal rate is conditioned on its migration status. To find the population-average dis

persal rate of individuals in that situation, we will use a version of inclusive fitness theory
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Figure 1.1: The pairwise invasibility plot shows that mutant invasion is successful on the 
marked regions.

given by Taylor and Frank (1996). Our goal, in chapter two, will be to determine the extent
s

to which dispersal conditioned on individual’s migration status, changes our predictions 

about population-levels of dispersal. In chapter three, we indicate a few possibilities for 

improving our work in chapter two.
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Chapter 2

The evolution of dispersal conditioned 

on migration status

2.1 Introduction

Adaptive social behaviour balances the selfish interest of an actor against those of geneti

cally related neighbours (Hamilton, 1964; Frank, 1998). Information about the degree of 

relatedness between an actor and its neighbours can tip this balance, ahd sets the stage for 

the evolution of social behavoiur with conditional expression.

Conditional expression of social behaviour is ubiquitous in nature. Greenbeards, for 

example, are altruistic or cooperative behaviours that avoid exploitation by cheaters by 

interacting only with those individuals that exhibit a conspicuous phenotype (a ‘green 

beard’) that is linked to the gene(s) responsible for the tendency toward altruism or coop

eration (West and Gardner, 2010). Though originally proposed as a hypothetical example 

by Dawkins (1976), the concept remained a theoretical possibility until 1998, when a 

green-beard gene was first found in the red imported fire ant, Solenopsis invicta (Grafen, 

1998; Keller and Ross, 1998). Greenbeard behaviours have also been identified in a num

ber of taxa, ranging from the slime mold, Dictyostelium discoideum (Queller et al., 2003)
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to side-blotched lizards, Uta stansburiana (Sinervo et al., 2006).

Conditional expression of social behaviour can have tremendous practical implica

tions. For example, the ‘imprinting’ of genes expressed in the placenta and brains of 

mammals is considered to be a kind of allelic social behaviour that is conditioned on its 

parent-of-origin (Haig, 2000). Conditional expression, here, is maintained because par

ents are related by differing amounts to the social partners of their offspring. Imprinting, 

or rather the break-down of imprinting, has been implicated in certain genetic disorders 

of humans (Angelman’s syndrome, Prader-Willi syndrome; Ubeda, 2008) and may con

tribute to abnormal psychosocial development (Badcock and Crespi, 2008).

Theoretical work on conditional expression of social behaviour is varied, and the basic 

conclusions drawn are, in a sense, mixed. In some cases, theoretical investigations carried 

out under the assumption of conditional expression of behaviour have led to predictions 

that differ markedly from those obtained by investigations carried out under the assump

tion of unconditional expression. El Mouden and Gardner (2008) have shown that costly 

expression of helpful behaviours can be advantageous when expression is conditional on 

‘migration status’ (i.e. on whether one has dispersed or not from on^’s natal site), a re

sult that is not only quite different from that obtained in the absence of such conditioning 

(Taylor, 1992; Wilson et al., 1992), but also a result that matches more closely with the 

observation that altruism and cooperation are widespread in nature (Nowak, 2006).

In contrast to the theoretical work on helping, Wild and West (2009) have shown that 

imprinting of genes responsible for sex allocation behaviour changes corresponding un

conditional predictions about the sex ratio only very slightly (for certain mating systems). 

In cases like these, giving consideration to conditional expression of social behaviour does 

not appear to sharpen our understanding of nature at all. It seems reasonable, then, to 

question the general significance of conditional expression: should we readily expect that 

conditional expression of social behaviour results in an improved match between theory
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and observations? We will address this question, in part, here by comparing the prediction 

of theories based on certain conditional and unconditional expression of natal dispersal 

behaviour.

Natal dispersal is defined as active or passive movement by which an individual leaves 

its birth place to engage in mating or reproduction somewhere else (Ronce, 2007; Clobert 

el al., 2009). Unconditional expression of natal dispersal has been studied extensively 

(Hamilton and May, 1977; Comins et al., 1980; Motro, 1982, 1983; Frank, 1986; Taylor, 

1988; Gandon and Michalakis, 1999; Gandon and Rousset, 1999; Rousset and Billiard, 

2000; Rousset and Gandon, 2002). One common theoretical observation is that highly 

fecund parents can disperse many of their offspring to reduce kin competition.

Although some theoretical work has focused on conditional dispersal (e.g. Crespi 

and Taylor, 1990; Ronce et al., 1998, 2000; Travis et al., 1999; Kisdi, 2004; Bonte and 

Pena, 2009), dispersal conditioned upon migration status has been neglected. It, therefore, 

remains unclear if this kind of conditional dispersal would alter predictions significantly 

(e.g. as with helping, El Mouden and Gardner, 2008) or relatively insignificantly (e.g. as 

with sex ratio, Wild and West, 2007). s

In this chapter we build on the work of El Mouden and Gardner (2008) and consider 

the evolution of natal dispersal, expressed conditioned upon an individual’s ‘migration 

status’. In particular, we look to compare the evolution of this kind of conditional disper

sal with the evolution of its unconditional counterpart. Overall, our goal is to determine 

the extent to which dispersal conditional upon migration status changes predictions about 

population-wide levels of dispersal. Simply put, we ask: what weight should the possibil

ity of this kind of conditional dispersal be given by an evolutionary biologist? We calculate 

the population-average dispersal rate conditioned on its migration status. We find that the 

stable dispersal rates of natives and non-natives, respectively, are predicted to vary with 

changing parameter values in a way that is consistent with inclusive-fitness theory. Fur
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thermore, the stable dispersal rates of natives and non-natives are predicted to differ from 

one another in a way that is consistent with inclusive-fitness theory. We also find a dif

ference between Taylor’s (1988) unconditional dispersal rate, and the population-average 

dispersal rate predicted by our model.

2.2 Inclusive fitness effect of unconditional dispersal

In this section, we will briefly review the inclusive fitness approach to unconditional dis

persal in a population undergoing discrete, non-overlapping generations presented by Tay

lor (1988). Although Taylor (1988) considers sexual diploid and haplodiploid systems, we 

restrict ourselves to a haploid asexual one. The population, itself, is assumed to consist of 

a very large number of habitat patches of identical quality, and each patch supports exactly 

N  breeding adults (i.e. N  breeding sites per patch).

We now consider an adult breeding on a focal patch. The focal adult achieves fitness 

gains through two sources: (i) offspring that compete for breeding opportunities on the 

focal patch, and (ii) offspring that compete for breeding opportunities on a patch chosen 

uniformly at random from the population as a whole. We consider the dispersal of off

spring under parental control, and a wild-type (i.e. non-mutant) breeding adult disperses 

d* fraction of its offspring to compete elsewhere. Suppose the focal adult is a mutant that 

deviates from wild-type behaviour (d*) by a small amount, call it e. In other words, the 

focal mutant adult disperses d = d* + e fraction of its offspring to compete elsewhere.

Thus, if the behavioural deviation e >  0, the change represents a decrease in compe

tition because the focal adult has dispersed more offspring than that of wild-type adult. 

If e <  0, the change represents an increase in competition because the focal adult has 

dispersed fewer offspring than that of wild-type adult. Since every breeding site in the 

population is assumed to be occupied during every generation, the change in the amount 

of local competition means that the fitness of offspring competition on the focal patch is
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improved (if e >  0) or reduced (if e < 0). Thus, the focal adult’s inclusive fitness changes 

as result of its own deviant behaviour by an amount

ekR (2.1)

where k is the probability that the change in competition affects an offspring bom on the 

focal patch, and R  is the relatedness between the focal adult and the average offspring 

bom on its patch.

Deviant behaviour also affects fitness gains through competition on a patch other than 

the focal patch. If the dispersal of offspring is costly relative to their non-dispersal, then 

the deviant behaviour of the focal adult means that its offspring pay the cost of dispersal 

more (if t > 0) or less (if e <  0) frequently than that of wild-type adult. If c denotes the 

cost of dispersal, and r denotes the relatedness between the focal adult and its offspring, 

then

—ter (2 .2 )
s

expresses a further change in the inclusive fitness of the focal adult. Summing (2.1) and 

(2 .2 ) we can express the overall change in the inclusive fitness of focal adult as

e(kR -  or)

As noted by Taylor (1988), k = to zeroth order in e. In a haploid asexual 

population r  =  1, and a recursive argument gives R  =  to zeroth order in e.

Selection is indifferent to changes in the wild-type level of dispersal when the net inclusive 

fitness gains of deviant behaviour is zero i.e. when Rk  =  or. Solving the equation, we see
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that at evolutionary equilibrium,

1 +  2iVc -  V I  +  4N 2c2 -  4Nc2 
2Nc(l +  c)

(2.3)

The equation (2.3) provides us with a benchmark against which we can compare the effect 

of conditional dispersal.

2.3 A Model for the evolution of dispersal conditioned on 

migration status

In this section we set out most of the basic assumptions used in the mathematical model. 

For the reader’s convenience a brief description of all notation introduced in the main text 

is given in table 2 .1  and table 2 .2 .

2.3.1 Preliminary details

Like Taylor (1988) we consider a population with discrete, non-overlapping generations 

that consists of a very large number of habitat patches (M ) of identical quality where each 

patch supports exactly N  individuals (i.e. N  breeding sites per patch). Unlike Taylor 

(1988), we pay attention to the migration status of each breeder (i.e. whether the breeder 

is native or non-native on the patch).

A patch is classified according to the number of natives (individuals bom on that patch) 

it supports, and we use j  =  0,1, • • • , N  to indicate the number of natives breeding on that 

patch. Thus, on a type-y patch, there are j  natives, and (N -  j)  non-natives. The fre

quency of a type-j patch, denoted by nj, is expected to fluctuate over time. To indicate 

that these frequencies have reached a demographic equilibrium (but not necessarily evolu

tionary equilibrium), we furnish 7 with a hat and write the distribution of patch types as



26

_______________Table 2,1: Summary of notation used in the main text.___________
Symbol Explanation____________________________________________________

Qy The expected native component of the ¿-fitness of a native 
mutant breeding on a type-j patch

ftij The expected native component of the ¿-fitness of a non-native 
mutant breeding on a type-j patch

7 ij The expected non-native component of the ¿-fitness of a native
mutant breeding on a type-j patch

5ij The expected non-native component of the ¿-fitness of a non-native 
mutant breeding on a type-j patch 

c The cost of dispersal
e The little phenotypic difference between mutant and wild-type individual 
K  Brood size of an individual breeding on a patch 
N  The number of breeding individuals per patch (size of patch) 
d*N Dispersal probability of native population at equilibrium 

d*NN Dispersal probability of non-native population at equilibrium 
da Dispersal probability of native mutant (dN =  d*N +  e)

d^N Dispersal probability of non-native mutant (d^N = d*NN +  e)
dN Dispersal probability of average natives

3,nn  Dispersal probability of average non-natives 
Pj The probability that a site is won by local natives given that 

the patch supported j -  natives during parental generation 
Pij Transition probability from type-j patch to type^ i.e. a patch supports 

i- natives given that it supported j -  natives during parental generation 
n j The density of mutant individuals breeding on a type-j 

patch during parental generation 
n ' The density of mutant individuals breeding on a type^ \ 

patch during offspring generation 
7tj The frequency of patches at demographic equilibrium, 

supporting j -  natives

[7fo; ) i TT}' i ' " " i tTjv] •

2.3.2 Phenotypes

Here, the phenotypes of interest relate to the fraction of offspring dispersed, i.e. the prob

ability with which an individual’s offspring disperses from its natal site. We consider two 

different phenotypes, both under parental control: (a) a phenotype that is expressed only 

by an individual breeding on its natal patch (native dispersal rate), and (b) a phenotype
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_________ Table 2.2: Summary of notation used in the main text (Continued).
Symbol Explanation________________________________________

Rj The relatedness between focal individual and average 
natives breeding on type-j patch 

Rj The relatedness between focal individual and average 
non-natives breeding on type-j patch

W ij A matrix-valued function that stores a y , /3y, 7 y and 6ij, respectively
W  =  [W  ij{d*N,d*N,d*NN,d*NN)]ij

A W  A generalized version of Hamilton’s (1964) inclusive fitness effect
u j A vector whose elements give the frequency of a mutant

breeding on a type-j patch as native and non-native, respectively 
u  =  [u j]j> the right eigenvector of W
\ i  A  vector whose elements give the reproductive value of a mutant 

breeding on a type-i patch as native and non-native, respectively 
v  =  [vj]i, the left eigenvector of W

that is expressed by an individual breeding away from its natal patch (non-native dispersal 

rate). Every individual possesses genes for both dispersal phenotypes, although only one 

phenotype is ever expressed (genes for the other phenotype are silent). Our immediate 

goal is to evaluate the success of a rare mutant form of one or the other conditional phe

notypes in a wild-type (i.e. non-mutant) population at demographic equilibrium. Since

mutations are assumed to be rare, we neglect the possibility of double mutants.
s

2.3.3 The Model life cycle

As a first step toward achieving our immediate goal, we must make certain assumptions 

about population dynamics. We will assume, then, that population dynamics are deter

mined by a series of discrete life-cycle events that occur in the same order in every gener

ation.

Birth

During the first event of the life-cycle, adults produce offspring. We use K  to denote the 

very large number of offspring produced by each adult (natives and non-natives alike).
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Dispersal

In the second phase, each adult disperses a certain fraction of its brood. We use d*N and 

d*NN to denote the fraction of offspring dispersed by wild-type native, and non-native 

parents, respectively. Thus, on a type-j patch that supports only wild-type individuals we 

expect to find

K ( j ( l - d * N) + ( N - j ) ( l - d ’NN)) (2.4)

native offspring once dispersal is complete. We use <Jjv and dNN to denote, respectively, 

the average native phenotype found on a patch that supports at least one native mutant, and 

the average non-native phenotype found on a patch that supports at least one non-native 

mutant. Recall that we neglect the possibility of double mutants on a patch. Thus, on a 

type-j patch that supports at least one native mutant we expect to find

K{j (  1 -  dN) + ( N -  j)(  1 -  d'NN)) (2.5)

native offspring once dispersal is complete. Similarly, once dispersal is complete we ex
's

pect to find

K( j (  1 -  d*N) + ( N -  j)(  1 -  dNN)) (2.6)

native offspring on a type-j patch that supports at least one non-native mutant.

Dispersal is often costly, and so we assume that a fraction (c) of dispersed offspring 

never find a new patch and perish as a result. The remaining fraction (1 — c), however, do 

find a new patch. If each patch receives an equal share of successful dispersers, then the 

number of non-native offspring found on any patch once dispersal is complete is given by 

K{n*J where
N

« . >  =  ( i  -  " l E w + ( "  -  j h -at)-
¿=0

(2.7)
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Competition

We assume that, by the end of the previous life-cycle phase, all adults have perished, 

leaving N  breeding sites per patch vacant. Competition for vacant breeding sites on a 

given patch then occurs among the native and non-native offspring found there. If we 

define

Pj(x,y) =
j ( l - x )  + ( N -  j ) ( l - y )

(2.8)
j {  1 ~  z ) - +  {N  -  j ) {  1 -  y) +  {n*m) 

then Pj(d*N, d*NN) gives the probability that a breeding site on a patch that had supported 

only wild-type individuals will be won by an offspring that is native to that patch. Thus, 

Pj(djv, d*NN) and Pj{d*N, dNN) give, respectively, the probability that a breeding site on a 

patch that supported at least one native mutant will be won by an offspring that is native 

to that patch, and the probability that a breeding site on a patch that supported at least one 

non-native mutant will be won by an offspring that is native to that patch.

If we now define

y) = y i JPj(x, yY(i -  Pj{x,y))N 1 (2.9)
s

then the transition probability from a type-j patch that supports only wild-type individuals 

to a type-z patch that supports only wild-type individuals will be denoted by

Pii = P M , ^ N)
N \  (  j ( l  -  d*N) + (N  -  j ) ( l  -  d'NN) V  
* /  W  -  d*N) + ( N -  j)(  1 -  d*NN) +  (n*m)J  ■

( ,  j ( l - d * N) + ( N - j ) ( l - d * NN) \
V j ( l  -  d*N) + { N - j ) ( l  -  d*NN) +  {n*m)J

Similarly, we use Pij(d,N,d*NN) and Pij{d*N, dNN) to denote, respectively, the transition 

probability from type-.) patch that supports at least one native mutant to type-z patch, and 

the transition probability from type-j patch that supports at least one non-native mutant to 

type-z patch.
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The transition probabilities indicate the probability that exactly ¿-natives secure breed

ing sites in the offspring generation when j-natives were breeding during the parent gen

eration. Therefore, at demographic equilibrium the patch distribution satisfies

N

*< =  5 1 i = 0 - ■■ N  (2.10)
j =0

N

£ >  =  1 (2 .1 1 )
t=0

while the mutant is absent. We can approximate the patch distribution with ii* when the 

mutant is rare.

2.3.4 Fitness

We define the ¿-fitness of a native or non-native individual breeding on a type-j patch 

as the number of offspring breeding on a type-i patch one generation in the future. An

individual’s ¿-fitness has both native and non-native components. The native component
\

counts the number of offspring breeding as native on a type-i patch, and the non-native 

component counts the number of offspring breeding as non-native on a type-i patch. To 

state the expressions for various components of mutant fitness; first consider a native mu

tant using cLn to disperse its offspring. We will use

• aij(d,N,djv) to denote the expected native component of the ¿-fitness of a native 

mutant breeding on type-j patch;

7 ¿j(cijv) to denote the expected non-native component of the ¿-fitness of a native 

mutant breeding on type-j patch,
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and we note that,

Oiij(d^yd^) — , djsfpf) .
¿(1 — dw)

ì i l - d r ì  + i N - m - d k x )
N

j i j (dN) = dN(l ~ c ) J 2  P *k
i h {N  ~  i) 

(nm)k=0
dN( l - c ) ( N - i ) N

(1  -  c) E iL o  *jUd*N + ( N -  j)d*NN) ^
_______ dN( N  -  ¿)7T,_______

E f . o ^ O *  +  ( W - j ) d W ) '

1 2  n * *

(2.12)

(2.13)

Second, consider a non-native mutant using djvN to disperse its offspring. We use

* Pij(dNNi ¿aw) to denote the expected native component of the i-fitness of a non

native mutant breeding on type-j patch;

• Sij(dNN) to denote the expected non-native component of the ¿-fitness of a non

native mutant breeding on type-j patch,

where

PijidwN, dfifN) =  Pij(d*N, <fjv/v)-
¿(1 -  djvN)

j ( l - d * N) +  ( N - j ) ( l - d NN)
(2.14)

N

iij(divjv) = djvjv(l -  c) ^ 2  P ik
7Tfc(-/V -  i)

(nm)k—0

d/vjv( 1 — c)(iV — ¿)
N

£ p<
(! -  c) E f=o -  i H w )  ^
______ ¿n n ÌN  -  i ) ^

Ef.o * i «  + (iv-j)<W)'

fcTTfc

(2.15)

In order to make sense of expressions (2.12)-(2.15), we note that on a type-j patch 

that supports at least one native mutant, the local competitive effort K(  1 -  d^)  units 

of a native mutant will compete against the native offsprings given by (2.5) to occupy a 

breeding site from ¿-breeding sites with probability of local success ^  \ -
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Since Pij{d,N, d*NN) is the transition probability from type-j patch supported at least one 

native mutant to type-i patch, the equation in (2 .1 2 ) correctly predicts the expected native 

component of a native mutant. Similarly, the equation in (2.14) correctly predicts the 

expected native component of a non-native mutant.

In addition, the native mutant will send out K d ^{l  -  c) units of non-local competitive 

effort to occupy a breeding site from (N  -  i) breeding sites. Since each patch receives 

K (n^j) units of non-local pressure, the probability of non-local success of a native mutant 

is _jv . t ,. r . Thus, the equation in (2.13) correctly predicts the expected non-
2 -^ = 0  ^ j w dpt+KW

native component of native mutant. Similarly, the equation in (2.15) correctly predicts the 

expected non-native component of non-native mutant.

We store a^, and as matrix-valued function,

If rij is the column vector whose entries give the expected number of natives and non

natives respectively, breeding on type-j patch, then we have

that describes the dynamics of the overall subpopulation of mutants while they are rare.

2.3.5 The effect of kin selection

The mutant will increase when the dominant eigenvalue of the matrix-valued function 

W¿j(cijv, i/v, d^N, dNN) is greater than 1. Under the assumption of weak selection Taylor 

and Frank (1996) have shown that the size of the dominant eigenvalue of the matrix 

[Wij(djv, ¿jv, dyvw, d/v;v)kj can be assessed in an indirect manner using the dominant left

Qjj(djV, d¡y) pij(d[s¡N,dNN) 

T'ijidjv) <5tj(^Viv)
(2.16)

s

N
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and right eigenvector of the nearby matrix [W ij{d*N, d*N, d*NN, d*NN)]itj (call these v  =  

[vj]i and u  =  [u,]j, respectively) and marginal fitness expressed using partial derivatives 

of the elements of the matrix [Wij(dN,drf,dMN,dNN)]i,j- We will use their approach 

below.

The elements of v* are interpreted as the reproductive value of mutant breeding as a 

native and non-native, respectively, on a type-i patch. The reproductive value is a measure 

of the evolutionary significance that can be attributed to a particular kind of reproductive 

success (Taylor, 1996; Frank, 1998). The elements of u ; are interpreted as the frequency 

of a mutant breeding as a native and non-native, respectively, on type-j patch. It is easy 

to show that u , =  \jitj, (N  -  j)nj]T■ The vectors v  and u  weight various components 

of marginal fitness. As long as the phenotypic difference between mutant and wild-type 

individuals is small, the expressions

correctly predict the fate of mutant allele natives and non-natives, respectively (Taylor 

and Frank, 1996) where ( , | J  indicates that the derivatives are calculated at demographic 

equilibrium. The symbol Rj  in (2.17) denotes the relatedness between focal individual and 

average natives (chosen with replacement) breeding on a type-j patch, and Rj = <

TV — 1 ) in (2.18) denotes the relatedness between focal individual and average non-natives 

(chosen with replacement) breeding on a type-j patch.

When A W N (resp. A W NN) is greater than zero a native (resp. non-native) mutant 

that disperses slightly more offspring than the native (resp. non-native) wild-type will 

invade, in other words selection favours an increase in d*N (resp. d*NN). When A W N (resp. 

A W NN) is less than zero a native (resp. non-native) mutant that disperses slightly fewer

(2.17)

(2.18)

s
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offspring than native (resp. non-native) wild-type will invade, in other words selection 

favours a decrease in d*N (resp. d*NN). Conditional dispersal rates are at evolutionary 

equilibrium if A W N and A W NN are simultaneously zero. An evolutionary equilibrium 

will be considered stable when it is the long-term result of a selective process, and with 

this loose definition non-equilibrium wild-type dispersal rates (i.e. boundary rates, of zero 

or one) might also be stable.

2.3.6 Relatedness

It remains to calculate Ri from (2.17), the relatedness between the focal individual and 

average natives for the population that is at demographic equilibrium. We follow Taylor 

and Frank (1996) and calculate Ri under the assumption of weak selection.The calculation 

for Ri for i >  1 is as follow:

2.4 Numerical procedure to find d*N  and d*N N

Because our model is not analytically tractable we used it to simulate the evolution of d*N 

and d*NN numerically. The result of this numerical simulation is what we call a stable 

phenotype pair. Our numerical simulation started with an initial guess of stable values 

of d*N and d*NN. We then found the frequency of the patch distribution at equilibrium by 

solving (2 . 10 ), and (2 . 1 1 ) bearing in mind that 7Tj is initially unknown for j  =  0 • ■ • N.

The distribution of patch types allowed us to determine the elements of the matrix 

[Wij{d*N, d*N, d*NN, d*NN)]itj for i = 0 • • • N  and j  =  0 • • • JV; the vectors v* and u* could 

then be calculated. The distribution of patch types also allowed us to determine the re-

(2.19)

s
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latedness between two natives breeding on type-z patch from equation (2.19). With these 

various quantities in hand, the inclusive fitness increment of natives and non-natives were 

calculated from equation (2.17), and (2.18), respectively.

The initial guess was, then, improved depending on the sign of inclusive fitness incre

ment of natives and non-natives, and the process repeated until a boundary was reached or 

until the size of the inclusive fitness effect fell below a predefined threshold. Since nega

tive dispersal probability is biologically meaningless, we fixed the stable level of dispersal 

rate of non-natives at zero when it went below zero, and repeated the numerical procedure 

to find the stable level of dispersal rate of natives that satisfied the predefined accuracy. 

Once we found the stable level of dispersal rates of natives and non-natives, for a set of 

parameter values N  and c, we used (d*) =  jj {jd*N +  (N — j)d *NN) to calculate

the population-average dispersal rate conditioned on its migration status. The MATLAB 

script of numerical procedure is presented in Appendix D.

2.5 Simulation experiment

To examine how robust our assumptions were, a finite population wa£ simulated according 

to the events described in ‘Model life cycle’. We fixed the number of patches in the envi

ronment, in our simulation at 200. Because simulations were computationally expensive, 

only a limited number of parameter combinations were investigated: we investigated for 

N  = 2 ,4  and 6 , and c =  0.1,0.2, • ■ • , 0.9.

In our simulation we considered two random matrices of size iV(patch size) by M(number 

of patches); one for native and the other for non-native dispersal phenotypes. Rather than 

simple mutants vs. wild-type dispersal, we considered the dispersal of individuals with 

greater flexibility. We also considered a binary matrix of size N  by M  where‘one’ in

dicated that the site is occupied by a native with dispersal phenotype corresponding to 

the native dispersal phenotype matrix, and ‘zero’ indicated that the site is occupied by
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non-native with dispersal phenotype corresponding to the non-native dispersal phenotype 

matrix. The binary matrix was updated, in each generation, according to the model life- 

cycle. The native and non-native dispersal phenotypes were, then, mutated by a small 

amount. The procedure of updating the binary matrix and mutating dispersal phenotypes 

continued generation after generation.

For each parameter combination we ran the simulation 50 times for 5000 generations 

(5000 generations appeared enough for stable dispersal behaviours to become established). 

After 50 runs, we calculated the average dispersal rate of natives and non-natives in each 

generation, and plotted average dispersal rate against time in generations.

We also calculated the 95% confidence interval from the simulated data. Stable levels

of dispersal rates of natives and non-natives were, then, calculated over the last 2000 gen-
/

erations again because preliminary results suggested that evolutionary equilibrium were 

established well before this time. Each generation, the population-average dispersal rate 

was calculated by counting the expressed and unexpressed genetic contribution of natives 

and non-natives, and was averaged over the last 2000 generations.

The MATLAB script to simulate native and non-native stable dispersal rate simulta-
s

neously, is presented in Appendix E, and native dispersal rate when the dispersal rate of 

non-natives is at a stable level, is presented in Appendix F.

2.6 Results

2.6.1 Numerical results consistent with inclusive fitness theory

The analysis described above yields stable dispersal rates, conditioned on an individual’s 

migration status. As expected we have observed consistent relationships between these 

stable dispersal rates (d*N and d*NN) and the parameters c and N, respectively. Specifically, 

we find that, all else being equal, the stable levels of conditional dispersal decrease with
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increasing c, and with increasing N  (Figure 2.1).

Figure 2.1: The left figure shows the stable dispersal rate of natives for N  = 2,4,6 and 
8 , respectively and for c =  0, • • • , 0.975. The right figure shows the stable dispersal rate 
of non-natives for iV =  2 ,4 ,6  and 8 , respectively and for c =  0, • ■ • , 0.975. The figures 
exhibit that the stable dispersal rate of natives and non-natives decreases with increasing 
c, and with increasing N.

To understand the relationship between dispersal rates and c, recall that the stable level 

of dispersal represents a balance between the inclusive-fitness costs of the behavior and 

its inclusive-fitness benefits. The inclusive-fitness costs in this model are due in part to the 

uncertainty that surrounds a given dispersal event.

As c is increased so too is the risk associated with dispersal. Naturally, increased risk 

acts as a disincentive for dispersal. The reduced stable level of dispersal we observed, 

then, is simply a response to an increased inclusive-fitness disincentive.

As we have mentioned in our discussion of Taylor’s (1988) work, the inclusive-fitness 

benefits of dispersal are associated with the decreased level of kin competition that it pro

duces. By definition, increased N  implies that the social group is larger, and so increased 

N  effectively dilutes the benefit of dispersal. In other words, the stable level of dispersal 

decreases with increasing N  simply as a response to a smaller inclusive-fitness dispersal 

incentive.

In addition to the consistent relationships between dispersal rates and model param

eters, we have observed a consistent relationship between the dispersal rates themselves.



38

Figure 2.2: The left and right figure show the stable dispersal rate of natives and non
natives for N  =  2 and N  = 4, respectively. The figures exhibit that the stable dispersal 
rate of natives is always greater than that of non-natives.

Specifically, we found that the stable rate of dispersal by natives (d*N) is always greater 

than that by non-natives (d*NN) (Figure 2.2). Certainly natives have more relatives than 

non-natives in a given patch. The inclusive-fitness benefits of dispersal, therefore accrue 

at a higher rate for natives. A higher level of relatedness to patchmates acts as an incentive 

for dispersal to natives, and the stable level of dispersal we have found, is a response to 

this incentive.

\

2.6.2 The match between numerical and simulation results

The stable level of dispersal of natives and non-natives was also investigated with simu

lation. We have found a qualitative agreement between numerical and simulation results 

(Figure 2.3 and 2.4), but the level of quantitative agreement was mixed and depended on 

parameter combinations considered.

With smaller c and N  respectively, the simulation tended to agree with the numerical 

results, in the sense that the 95% confidence interval over the last 2000 generations cap

tures the numerical result (Figure 2.3 and 2.4). However, as either c or N  increased, we 

observed a quantitative disagreement between numerical and simulation results in order 

of 10~2 ( Figure 2.5). Specifically, for a set of parameter values, the simulation is either
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Figure 2.3: The top left, bottom left, and bottom right panel is the simulation of Natives 
and Non-natives for N  = 2, c =  0.2; N  =  4, c =  0.2, and N  = 6 , c =  0.1, respectively; 
Top right panel is simulation of Natives for N  = 2, c =  0.7. The dotted lines are the 
numerical estimation of stable dispersal rate of natives and nonTnatives.

an over or under estimate of numerical results, but we cannot infer the parameter values 

for which the quantitative agreement begins to break down.

2.6.3 The effect of conditioning on population-average dispersal rate

Recall that we intended to find the population average dispersal rate (d*) to compare with 

the unconditional result given by Taylor (1988). Because there is a disagreement between 

numerical and simulation results in general, we have calculated (d*) in two ways. First, 

the population average dispersal rate (dI*) was computed using numerical analysis of the 

model. Second, (d*) was computed from simulation data.

At the lowest cost of dispersal, Taylor’s (1988) unconditional dispersal rate is higher
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than our model’s population-average dispersal rate {d!*) computed numerically. At high

est cost of dispersal, the (d*) of our model is greater than Taylor’s (1988) unconditional 

dispersal rate (Figure 2.6, 2.7 and 2.8; middle panel).

To understand this coarse-grained pattern, consider the fact that at lowest cost of dis

persal, the frequency of non-natives is higher than that of natives (Figures 2.6, 2.7 and 2.8; 

bottom panel). The lower population-average dispersal we observed, then, is due to the 

fact that non-natives (who disperse less frequently) contribute more to (<£*).

At the highest cost of dispersal, the frequency of natives is more than that of non

natives (Figures 2.6, 2.7 and 2.8; bottom panel). The higher population-average dispersal, 

in that case, is due to the fact that natives (who disperse more frequently) contribute more 

to (d*).

On a finer-grained scale, then, as we move from low to high cost of dispersal, the 

frequency of non-natives decreases (Figures 2.6, 2.7 and 2.8; bottom panels). The con

comitant increased frequency of natives means that the higher conditional rate of dispersal 

(d*N) contributes more to (cP); eventually, this pulls up the population-average dispersal 

rate to a level above Taylor’s (1988) unconditional rate. The transition between the cases 

where the Taylor’s (1988) unconditional rate is higher than our result, and the cases where 

this rate falls below our model’s (d*), naturally occurs at intermediate c.

As N  is increased, the cost of dispersal where the aforementioned transition takes 

place, decreases (Figures 2.6, 2.7 and 2.8; middle panel), and for sufficiently large N, 

those cases where Taylor’s (1988) result falls below our result would likely comprise the 

entire range of c.

The population average-dispersal rate (d*) computed from simulation data, qualita

tively supports (Figures 2.6, 2.7 and 2.8) the (d*) computed numerically except for N  = 6 

where it reverses the numerical result. For N  = 6 , we observed, at high cost of dispersal 

the simulation is an under estimate of numerical results. The contribution of natives, as
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a result, to (d!*) is less than what it should be; therefore, the population average dispersal 

falls below Taylor’s (1988) unconditional rate (Figure 2.8; right figure, middle panel).

Overall, we observed that the absolute difference between our model’s (d*) (computed 

either numerically or from simulation data) and Taylor’s result is never greater than 0.1. 

In fact, using either numerical or simulation approach, the absolute difference between 

our result and Taylor’s (1988) unconditional rate is often on the order of 10-2  (Figures 

2.6, 2.7 and 2.8; middle panel). The effect of conditional dispersal (should it exist), then, 

is unlikely to be detected in an experiment; at least it is unlikely that such conditional 

behavior will confound the match between theory and data.

2.7 Discussion

Our analysis predicts that stable dispersal rates of natives and non-natives will vary with 

changing parameter values c and N  in a way that is consistent with inclusive-fitness theory. 

Furthermore, the stable dispersal rates of natives and non-natives will be different from one 

another in a way that is consistent with inclusive-fitness theory.

We observed a qualitative agreement between numerical and simulation results, but the 

extent of quantitative agreement was dependent on parameter combinations considered. 

For smaller c, and N  respectively, the simulation tended to capture the numerical result at 

the level of 95% confidence interval.

As either cot N  increased, the quantitative disagreement between numerical and simu

lation results (when it existed) was most often observed on the order of 10-2 . We certainly 

observed a qualitative difference between Taylor’s (1988) unconditional dispersal rate, 

and the population-average dispersal rate predicted by our model. The absolute difference 

between our result and Taylor’s (1988) unconditional rate lies in the interval [0.01,0.06].

However, it is not uncommon to find a little difference between conditional and uncon

ditional dispersal rates. Kisdi (2004), for example, considered density-dependent dispersal
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of individuals. If the fecundity is sufficiently small, Kisdi (2004) found a qualitative differ

ence between conditional and unconditional dispersal rates with increasing c. In addition, 

if the dispersal rate is sex specific, Greenwood (1980) found the absolute difference be

tween the dispersal rates of males and females of Scandinavian Flycatcher differs on the 

order of 1 0 -2 .

One might reasonably ask, is the effect of conditional dispersal likely to confound an 

experiment? Suppose we are able to overcome the difficulties of determining the patch 

size N , and cost of dispersal c (e.g. Wolff, 1994), and have the data for c, and N, and 

Taylor’s (1988) unconditional dispersal rate (d*) at our disposal; the effect of conditional 

dispersal, then, a rough calculation suggested that a sample of size between [lO2, 104] 

would be needed, with 95% confidence, to detect a difference between our result and 

Taylor’s (1988) unconditional dispersal rate (sample size, Montgomery et al. 2011, pp 

212).

A sample size on order of 102 is very common in designing field experiments. Green

wood et al. (1978), for example, worked on inbreeding depression of Great Tits (Parus 

major) based on the data collected from a sample of 885 nest boxes.^Harvey et al. (1979) 

also worked on breeding dispersal of Great Tits (Parus major) taking data from 900 nest 

boxes. In addition, the natal dispersal, return rate, and age of first breeding of Pied Fly

catchers (Ficedula hypoleuca) was measured by Potti and Montalvo (1990) based on the 

data from a sample of 240 nest boxes.

However, it is very hard to detect an absolute difference between theory and exper

imental data if the difference is very small. Density-dependent dispersal of black fly 

neonates, for example, was studied in slow and fast current speed by Fonseca and Hart, 

(1996). The absolute difference between the average dispersal rate for the fast and slow 

current speed treatment was recorded on the order of 10~2. Since current speeds are ex

tremely heterogeneous, and the experiment was carried out in a carefully designed labo
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ratory condition, Fonseca and Hart (1996) mentioned it will be difficult to detect density- 

dependent dispersal from field studies unless streams and micro-currents are characterized 

on an appropriate scale.

So the effect of conditional dispersal could be detected in a carefully designed exper

iment but in field studies conducted in less than ideal conditions, microhabitat variation 

(like those observed by Fonesca and Hart, 1996) would overcome any difference between 

dispersal conditioned on migration status. Overall, it is unlikely that the effect of condi

tional dispersal (should it be detected) will confound the match between theory and data 

because the small difference could easily be regarded as experimental error.

The study of dispersal-dependent social behaviour in a viscous population by El Mouden 

and Gardner (2008), predicted that the level of harming by a non-native increases with the 

increase of population viscosity because they experience zero relatedness, and the level 

of helping by natives maximizes at intermediate population viscosity because of higher 

relatedness to social partners.

In contrast, we found that with high costs of dispersal the stable level of dispersal 

strategy (d*NN) of non-natives is to sustain all its offspring in the natal patch because of 

zero relatedness to patchmates, and the stable level of dispersal strategy (d*N) of natives 

is to mainly disperse offspring independent of the cost of dispersal because of the higher 

level of relatedness to patchmates. El Mouden and Gardner (2008) found substantial dif

ferences because inclusive fitness in helping is monotonic. Therefore, even a small change 

in inclusive fitness it can change the sign of the inclusive fitness increment (AWO and lead 

to a noticeable change in the outcome.

In addition, the evolution of sex differences in helping and harming behaviour by John

stone and Cant (2008) showed that selection favours helping among the philopartric sex 

because they are closely related to the offspring they are helping, and harming behaviour 

should be more frequent among dispersing sex because of zero relatedness. For inter-
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midate immigration rates the evolutionarily stable strategy sex ratio (Taylor and Crespi, 

1994) of natives response with an increased female bias sex ratio because of higher relat

edness to patchmates, and immigrants response with a male bias sex ratio.

Our analysis is conceptually related to the studies of dispersal-dependent social be

haviour in a sense that if the frequency of non-natives is more than that of natives, the 

population exhibit higher unconditional dispersal rate than our model’s population-average 

dispersal rate, conditioned upon migration status. On the other hand, if the frequency of 

natives is higher than that of non-natives, our model’s population-average dispersal rate is 

higher than that of Taylor’s (1988) unconditional dispersal rate.

2.7.1 Future work

Recall that in our model, we considered finite a number of patches, and each patch sup

ports exactly N  individuals. In our future work, we want to incorporate (a) spatially, and 

temporally heterogeneous environment, i.e. the carrying capacity of each patch varies with 

time, and (b) the conflict between parent and offspring for the control of dispersal deci

sion. For both cases, we will consider the evolution of natal dispersal conditioned on an 

individual’s migration status, and will pose the question, should the effect of conditional 

dispersal change predictions about population-wide levels of dispersal?

Our speculation, for the first case, is that the elastic patch size will reduce the level 

of kin competition, and act as a disincentive for natal dispersal, independent of c. Recall 

that in our present work, we considered a dispersal phenotype under parental control. In a 

patch, parents have more information (at least either native or non-native) than offspring, 

which helps to make the decision as to whether the parent will disperse or sustain its 

offspring. Therefore, for the second case if the dispersal is controlled by the offspring 

themselves we suspect the increasing cost of dispersal will act as a disincentive for natal 

dispersal.



45

For both cases, therefore, we will observe reduced levels of stable dispersal rates for 

both natives and non-natives. The frequency of natives, thus, will always be higher than 

that of non-natives. Consequently, the population average-dispersal (d!*) will be higher 

than Taylor’s (1988) unconditional rate because of the fact that natives (who disperse more 

frequently) contribute more to (d*).

\
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Figure 2.4: The top panel of left figure exhibits a qualitative agreement between numerical and simulation results for both natives 
and non-natives for the parameter N  = 2 and c = 0.2. The bottom panel of left figure shows that the distribution of non-natives is 
symmetrical (when there is an agreement between numerical and simulation result) about the numerically predicted stable dispersal rate 
of non-natives. The top panel of right figure exhibits a disagreement between numerical and simulation results for non-natives for the 
parameter N  = 2 and c =  0.6. The bottom panel of right figure shows that the distribution of non-natives is right skewed (when there 
is a disagreement between numerical and simulation result) about the numerically predicted stable dispersal rate of non-natives.
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Native Non-Native

Cost of dispersal, c

Figure 2.5: The level of agreement and disagreement between numerical and simulation 
results for natives (left column) and non-natives (right column). The incomplete figures for 
non-natives are due to fact that the stable dispersal rate either by numerical or simulation 
of non-natives is zero.



Figure 2.6: Population-average dispersal of individuals for N  = 2. The left figure is from numerical data, and the right figure is from 
simulation data. The top panel of both figures shows the stable dispersal rate of natives, Taylor’s (1988) unconditional dispersal rate, 
and stable dispersal rate of non-natives, respectively. The middle panel of both figures shows the difference between our result, and 
Taylor’s (1988) unconditional dispersal rate. The bottom panel of both figures shows the frequency of natives and non-natives for 
c =  0 .1 ,0 .3 ,0 .5 ,0 .7  and 0.9, respectively.
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Figure 2.7: Population-average dispersal of individuals for N  — 4. The left figure is from numerical data, and the right figure is from 
simulation data. The top panel of both figures shows the stable dispersal rate of natives, Taylor’s (1988) unconditional dispersal rate, 
and stable dispersal rate of non-natives, respectively. The middle panel of both figures shows the difference between our result, and 
Taylor’s (1988) unconditional dispersal rate. The bottom panel of both figures shows the frequency of natives and non-natives for 
c =  0 .1 ,0 .3 ,0 .5 ,0 .7  and 0.9, respectively.



Figure 2.8: Population-average dispersal of individuals for N  — 6 . The left figure is from numerical data, and the right figure is from 
simulation data. The top panel of both figures shows the stable dispersal rate of natives, Taylor’s (1988) unconditional dispersal rate, 
and stable dispersal rate of non-natives, respectively. The middle panel of both figures shows the difference between our result, and 
Taylor’s (1988) unconditional dispersal rate. The bottom panel of both figures shows the frequency of natives and non-natives for 
c =  0 .1 ,0.3,0.5,0.7 and 0.9, respectively.
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Chapter 3

Summary and Future Work

3.1 Summary of thesis

Natal dispersal (a kind of social behaviour) is defined as active or passive movement by 

which an individual leaves its birth place to engage in mating or reproduction somewhere 

else (Greenwood, 1980). Though natal dispersal is often costly as the dispersing individual 

might not find a better or an emptier patch for mating or reproduction, and if they find 

one, the competition may be no less than what they would face in their natal patch (Taylor, 

1988), natal dispersal is a common phenomenon in both plants and animals. Individuals 

of most species tend to disperse to colonize a new habitat, and to avoid inbreeding and kin 

competition.

Conditional expression of social behaviour is very common in nature. Greenbeards, 

for example, are linked to gene(s) responsible for the tendency toward altruism or co

operation (West and Gardner, 2010), ‘imprinting’ of gene(s) expressed in the placenta and 

brains of mammals is considered to be a kind of allelic social behaviour (Haig, 2000). The 

aim of this thesis was to develop a model to investigate the conditional expression of a 

particular kind of social behaviour namely dispersal. In particular, we aimed to find the 

population-average dispersal rate of individuals conditioned on migration status.
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Our findings include results that show the stable dispersal rates of natives and non

natives will vary with changing parameter values in a way that is consistent with inclusive

fitness theory. Furthermore, the stable dispersal rates of natives and non-natives will 

be different from one another in a way that is consistent with inclusive-fitness theory. 

We calculate the population-average dispersal rate conditioned on migration status, and 

find a qualitative difference between Taylor’s (1988) unconditional dispersal rate, and the 

population-average dispersal rate predicted by our model.

To obtain these results, we present two important tools- inclusive fitness theory, and 

branching processes in chapter one, and show how to use these tools in population models. 

We extend the population model introduced in chapter one to incorporate the conditional 

behaviour of the individual. We suppose the populations are at demographic equilibrium, 

and there are two kinds of individuals: natives and non-natives; dispersing their offspring 

at the demographic equilibrium rate. In that situation if mutation (though very rare) hap

pens, we would observe a behavioural deviation to disperse offspring elsewhere. We want 

to evaluate the success of a rare mutant form over the wild-type dispersal phenotype. 

Therefore, in chapter two we build a simple probabilistic model tq count the expected 

number of native and non-native mutants in an offspring generation. Since in the parental 

generation, individuals are of two kinds: natives and non-natives, we have four probabilis

tic equations to analyze the model. The analysis was carried out based on the methodology 

(inclusive fitness theory) introduced by Taylor and Frank (1996).

Since we observed an absolute difference between the population-average dispersal 

rate conditioned on migration status and Taylor’s (1988) unconditional dispersal rate, we 

provided a rough calculation of the sample size to detect the effect of conditional dispersal 

in an experiment. We concluded that the effect of conditional dispersal could be detected 

in a carefully designed experiment but that in fields studies conducted in less than ideal 

conditions, microhabitat variation would overcome any difference between dispersal con
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ditioned on migration status. Overall, it is unlikely that the effect of conditional dispersal 

(should it be detected) will confound the match between theory and data because the small 

difference could easily be regarded as experimental error.

3.2 Future work

3.2.1 Parasite virulence conditioned on migration status

Parasites include viruses, bacteria, protozoans, helminth and arthropod parasites. Parasite 

virulence is defined as the increased mortality or reduction in fertility of host due to in

fection. Several mathematical models have been developed to explore theoretical aspects 

of the evolution of virulence (May and Anderson, 1979; Levin and Pimentel, 1981; Frank 

1992). Essentially, parasites compete and evolve in two different levels: within a host and 

between hosts. Coinfection and superinfection are, respectively, examples of within host 

and between host competition. Levin and Pimentel (1981) analyzed two-strain models 

with superinfection where the more virulent strain can take over a host infected by a less 

virulent strain, and found the condition for coexistence between the tWo strains. Stewart 

and Levin (1984) and Nowak (1991) worked with vertical transmission of parasites, and 

showed vertically transmitted parasites should be less virulent. Nowak and May (1994) 

generalized the two-strain model of Levin and Pimentel (1981) to an n-strain model with 

superinfection. May and Nowak (1995) considered the coinfection of different parasites 

in the same host. We want to build a model to investigate the virulence of parasites con

ditioned on migration status that has not been studied yet i.e. the virulence of a parasite 

depends on whether it is a native or non-native id the host. Our prediction is that, in a 

host, the infectivity (transmission rate) of native parasites will be less than that of non

natives. Overall, we want to find the population-average level of virulence for the parasite 

population.
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3.2.2 Informed dispersal together with conditional migration

We could improve our present model by incorporating the ability of individuals to acquire 

and process social information. Individuals may acquire information about their environ

ment through different cues (Danchin et al., 2004; Doligez et al., 2004). Nocturnal snakes, 

for example, choose thermally suitable habitats through the physical structure and temper

ature of rocks (Webb et al., 2004). In addition, social information is often considered to be 

cost free, and can provide effective means of deciding when to disperse (Dali et al., 2005). 

Common lizards, for example, are able to distinguish between natives and non-natives and 

can acquire information about the density of surrounding populations through some un

known traits of immigrant lizards (Cote et al., 2008). This social information derived from 

the presence of immigrants helps common lizards in their decision to disperse (Cote and 

Clobert, 2007). Therefore, if we take into account the concept of informed dispersal with 

dispersal condition on migration status, it may give us a better understanding of dispersal 

patterns of different species.

v
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Appendix A

Calculation of elements of the matrices

in (2.17) and (2.18)

In this section, we will present the calculation of the elements of matrices and

in (2.17), and and in (2.18). The matrices are as follows:

dW jj ■
ddN '*

(A.l)

d W j j . 
dd,N '*

(A.2)

a w *  |
dd^N *

30iLI

d6;iz-l
(A.3)

0
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9W ij | 
dd^N *

Using (A .l) and (A.2), the inclusive fitness increment (AW N) of native mutant in (2.17) 

can be written as

0

dßij
ddsN
dSjj

ddNN
(A.4)

A W N
N  N

E E v- * +

* +

d a  j j  

ddtf
djij
ddw

o

o
u, (A.5)

and the inclusive fitness increment (A W NN) of non-native mutant in (2.18) can be written 

as

N  N

a w ™  =

d ß i j  I I d ß i j  I n  
ddNN\* "l" arfivjv1*

¿=0 j=0

We will use the following derivative formula

JÉÏLI ddNN I*
I dSjj

ddjvN Rj
u (A.6)

^  p(x)k(l -p{x) ) n — k

= ( ^ j { p ’(x)kp(x)k k - p \ x ) { n - k ) p ( x ) k( l - p ( x ) )

=  ( ¡ ) p ( x ) ‘ ( l  - P(x))”- V ( x ) ( ^  -

n-fc-1

(A.7)
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to calculate and dp,
dd,N N **

dPi_| -  dff) +  ( N -  j ) (  1 -  (fay) +  ( rQ )  |
ddN * ( j( i  -  dj,) +  ( N -  j ) {  1 -  d ^ )  +  (n*m))2 

j { j ( l - d * N) +  ( N - j ) ( l - d * NN))

(j( l  -  d*N) +  ( N -  j ) ( l  ~ d*NN) + (n *J)2

= _________________ ________________________

(j'( 1 ~  ¿At) +  (JV -  j ) ( l  -  +  (nm))2

~ OX1 -  d N) + (  ̂-  j)(! -  dMv) + <»0) ̂  ^

=  3(1 ~  d*N) + (N  -  j ) ( l  -  d'NNf i {1 “
(A.8)

dPj
ddN N

~ ( N  ~ j ) ( j (  1 ~  +  ( i V  ~  m  -  d*NN) +  (n*J)

( j ( l  -  d*N) +  (N -  j ) ( l  -  d'NN) +  (n -J )2 
( N - j ) { j ( l ~ d * N) +  ( N - j ) ( l - d * NN))

(;(1 -  d*N) + (N  — j){ 1 -  d ^ )  +  ( n j J ) 2

{ j { l - d ' N) + { N - m - d ' NN) + {n*m))
- ( N - j )

(j( 1 -  d*N) + { N -  j)(  1 -  d ^v ) +  ("m>)

-------------- ~ (N  -------------- p*(i _p*)

(1 — Pi)

(A.9)

At equilibrium, using the equations (A.7), (A.8) and (A.9), the derivative of transition 

probabilities: Pij(dN, d*NN) with respect to dN and Pij(d*N, dNN) with respect to dNN is 

obatined as follows:

dPi  | 
ddN * 

dPjj | 
ddNN

P* —
VJ( 1 l*N) + (N  -  j ) ( l  -  d*NN)

P*.y j ( l  ~  dpt) + (N — j ) ( l  -  d*NN)

■Pjtt-Pj)
( N ~ i ) \  
1 - P j  J  

(N - i ) \  

i - p ; y
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Using the above equations whenever necessary, we get the elements of the matrix in (A.5) 

as follows:

doijj |
ddN ' *  

9oijj | 
ddN ' *

din  I 
ddjy * 
din  |

*

P* u ( l  -  <&)

Ci(l -  rfV) +  (AT -  i ) ( l  -
¡(1 -  tfK)

j ( l - d * N) +  ( N - j ) ( l - d *  P *’ -•NN
N - i

j ( l  -  d*N) +  (N -  j ) { l  -  d*NNPj^  1 - P j )

p * . ____________________________dW ______________________________________________ ( i  _  p*( i  _  p *\( i . N - i

( 1 - c )
7Tj{N -  j)

("m>

and the elements of the matrix in (A.6) as follows:

dfijj | 
dduN 
dfrj | 

dd^N

dSij
ddpjN
d6,j

ddsN

- R l]j ( l - d * N) + ( N - j ) ( l - d * NN) 
j*______ — j)(  1 — d*NN)__________

“ (j ( i  -  * h ) + ( n -  m  -  ¿n n ))
¿ ( 1  —  d*N N ) P*.

j ( l - d * N) + ( N - j ) ( l - d ' NN *
- ( N - j )  . _  ,

i ( l  ~  d*N) +  (N — j ) ( l  — d j v j v  pi>
i ( N — j ) ( l  —  d*N N )

N - i
T ^ p*

tJ{ j ( l - d * N) +  ( N - j ) ( l - d * NN) 
n i ( N - i )

A T  -  i

i - p 5

(1 - c )
(” m)

0
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Thus, the inclusive fitness increment of native mutant in (2.17), and non-native mutant in 

(2.18) is obtained as follows:

A W N =
N  N

EE
¿=0 j - 1 

N  N

+EE
i=0 j —1 L

-  v?PT
1 * j ( l - d * N) + ( N - j ) ( l - d * NN)\ 

ijO- ~ d*N)

3*j

[iCl -  rfj,) +  (JV -  j ) ( l  -
i N  — i

2-

p 1 - p Rj

N  N  r

+ EE
t= 0  1

^ ( i _ c)^ - )
(n m )

(A. 10)

A W N N
AT JV-1 r

E E
i=0 j= 0

iV  N - l  r

+ E E

y j ( i - ^ )  +  ( ^ v - j ) ( i - d w )

i(N  — j)(  1 — d*NN)

(A  -  j)*j

N  N - l

+EE
i=0 j=0 L

1 [ i ( l  — d*N) +  (N  — j ) ( l  -  d*NN)]2'

(N-j)TTj

7u ( N - i )v f N(l -  c)
(n*m)

(N - j )7Tj (A. 11)
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î
Appendix B

Taylor’s result as a special case of the 

model

In this section, we will show that if the dispersal phenotype of individuals, does not condi

tioned on its migration status, our model gives Taylor’s (1988) unconditional result. Since 

the individual do not conditioned on its migration status, the dispersal rate of natives and 

non-native at equilibrium is same i.e. d*N = d*NN =  d* =  d. Then, at the end of dispersal 

stage each patch will receive the migration pressure

N

« , )  =  ( i  -  c) 5 3  + (w “  j ) d)
j=0

N

= ( l - c j N d ^ K j
j=0

=  (1 - c ) N d
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and the probability to win a breeding site in type-j patch is

=  (1 -  d)N
Pj N(1 -  d) +  (1 -  c)Nd 

l - d  
1 — cd

which is, actually, the probability that a breeding female is native on the patch (Taylor, 

1988). The transition probability, thus, from type-j patch to type-i patch is a binomial 

distribution with mean Nk

P* =r ij
N

k \  1 -  k) N - i (B.l)

Using (2.11) and (B.l), it is easy to show that

TTi

(B.2)

and using (B.2), and the mean of binomial distribution, we have

N  N

I> <  = 1 2 i p !i =  N k
i=0 i=0

(B.3)

With proper scaling, the individual’s reproductive success can be taken as v  =  [1,1] for 

all i. Thus, the inclusive fitness increment of native mutant and non-native mutant from
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(A. 10) and (A.l 1), respectively, can be written as

A W N

A W NN

E E  [(/% (ib i ) + ^ m h r ) ( N k  ~ t + 1 ) hi 3
TTi(N -  i)

Nd

E E P* 1 +  P£-f f  ( M  -  i +  1))
i j '
rri(iV -  i) 

Nd

,Ji V ( l - d )  tJ jV2(l -  d) 

(N  -  j)nj

Splitting the summation and using k =  and (B.3) we get

E E — l - 1

% J N(1 — d) N ( l - d ) £ -

Nk  ^
N(  1 -  d)

= r z ^ E «

l  JE E ^-^w 5(rrd)(iVfc' i+1)fli

= E ^ i  -  E ^ fli j v 5 ( r z d )  E j2^

= Y , i H ’ R r M r Z i Y m  + E  j2*ifiji 7̂r— - k  + 1)N 2{ 1 -  d) 

1

7V2(1 -  d)

=  T Z r f E j * i O ' ^ ) *
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Using the above equations whenever necessary, the inclusive fitness increment (AW N) of 

native mutant

A W N jrh E rn + E n  ( Wi E w  ~ f>) + rhd E n, A \ i / J

h E ”‘) ' E m + yZcdl / j j

E «+ rhdEm(jjf)k

-1  N  

1 - c d  +  N d  N d

-1  1 N k

l - c d  +  d  N d

=  r ^ E ^ + r r ^ E ^ f ) *

iV
— — — J V  ( TTj^-z (  -  C +  k ^ ~
1 — c d  V 3 N v iV

R-,

With similar calculations, the inclusive fitness increment (A W NN) of non-native mutant

Let R  denote the relatedness between mother, and average offspring bom on the same 

patch. Then, the mathematical expression of R  is as follow \

« - E ^ i E ' t  < 4 ^  •
N  N

(B.4)

Now, adding the inclusive fitness of native and non-native mutant, we have

■cN N k

and using (B.4), the inclusive fitness increment

A W  = —— , ( - c  + kR) 
1 — ca (B.5)
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The ESS condition is obtained by solving A W  =  0 which is exactly same as Taylor’s 

(1988) result.
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Appendix C

Stable dispersal rates

Here we will present the data of stable dispersal rates of natives and non-natives calculated 

by the procedure described in section 2.4. We also present Taylor’s (1988) unconditional 

dispersal rate calculated by using the formula described in section 2.2, equation (2.3). 

Finally, the population-average dispersal rate of individuals (when dispersal is conditioned 

on its migration status), calculated by the formula described in section 2.4, is presented in 

the following tables.

\
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_______________________________ Table C .l: Stable dispersal rates
Patch Size Dispersal Cost of dispersal

Rates

c=0.1 c=0.2 c=0.3 c=0.4 c=0.5 c=0.6 c=0.7 c=0.8 c=0.9
d*N 0.8273 0.7009 0.6087 0.5414 0.4923 0.4563 0.4200 0.3804 0.3435

N=2 dpfN 0.8178 0.6624 0.5212 0.3833 0.2386 0.0750 0 0 0
Taylor 0.8199 0.6782 0.5696 0.4866 0.4226 0.3725 0.3323 0.2997 0.2727
Model 0.8197 0.6768 0.5668 0.4842 0.4235 0.3799 0.3587 0.3439 0.3275
d*N 0.7555 0.6006 0.5029 0.4391 0.3847 0.3327 0.2885 0.2518 0.2216

N=3 d>NN 0.7280 0.4980 0.2882 0.0817 0 0 0 0 0
Taylor 0.7370 0.5556 0.4369 0.3571 0.3009 0.2596 0.2280 0.2032 0.1831
Model 0.7358 0.5498 0.4286 0.3507 0.3127 0.2864 0.2608 0.2370 0.2156
d*N 0.6929 0.5250 0.4303 0.3588 0.2973 0.2490 0.2117 0.1828 0.1601

N=4 dNN 0.6409 0.3454 0.0807 0 0 0 0 0 0
Taylor 0.6630 0.4642 0.3505 0.2799 0.2324 0.1985 0.1731 0.1535 0.1378
Model 0.6598 0.4532 0.3377 0.2882 0.2539 0.2233 0.1972 0.1753 0.1571
d*N 0.6386 0.4671 0.3714 0.2942 0.2372 0.1958 0.1654 0.1424 0.1247

N=5 d*NN 0.5572 0.2062 0 0 0 0 0 0 0
Taylor 0.5985 0.3961 0.2914 0.2295 0.1890 0.1605 0.1395 0.1233 0.1104
Model 0.5924 0.3808 0.2888 0.2459 0.2094 0.1800 0.1566 0.1380 0.1230

~4u>



Patch Size Dispersal Cost of dispersal
Rates

__________________ Table C.2: Stable dispersal rates (Continued)

c=0.1 c=0.2 c=0.3 c=0.4 c=0.5 c=0.6 c=0.7 c=0.8 c=0.9
d*N 0.5918 0.4218 0.3199 0.2459 0.1954 0.1603 0.1351 0.1164 0.1020

N=6 dfitN 0.4774 0.0786 0 0 0 0 0 0 0
Taylor 0.5430 0.3443 0.2489 0.1943 0.1591 0.1347 0.1167 0.1030 0.0921
Model 0.5337 0.3257 0.2573 0.2117 0.1765 0.1497 0.1293 0.1135 0.1009
dlf 0.5512 0.3837 0.2781 0.2096 0.1652 0.1352 0.1140 0.0983 0.0863

N=7 d*NN 0.4015 0 0 0 0 0 0 0 0
Taylor 0.4954 0.3040 0.2170 0.1683 0.1374 0.1160 0.1004 0.0884 0.0790
Model 0.4828 0.2891 0.2299 0.1846 0.1517 0.1277 0.1099 0.0962 0.0855
d*N 0.5160 0.3475 0.2443 0.1819 0.1428 0.1168 0.0985 0.0850 0.0747

N=8 d*NN 0.3296 0 0 0 0 0 0 0 0
Taylor 0.4545 0.2719 0.1923 0.1485 0.1208 0.1019 0.0880 0.0775 0.0692
Model 0.4389 0.2684 0.2066 0.1628 0.1326 0.1112 0.0955 0.0835 0.0741
d*N 0.4853 0.3158 0.2169 0.1601 0.1255 0.1027 0.0867 0.0749 0.0659

N=9 dxN 0.2613 0 0 0 0 0 0 0 0
Taylor 0.4193 0.2457 0.1726 0.1328 0.1079 0.0908 0.0784 0.0689 0.0615
Model 0.4010 0.2493 0.1868 0.1453 0.1176 0.0984 0.0843 0.0737 0.0654
d*N 0.4584 0.2880 0.1943 0.1428 0.1118 0.0915 0.0774 0.0669 0.0589

N=10 d*NN 0.1967 0 0 0 0 0 0 0 0
Taylor 0.3887 0.2241 0.1565 0.1201 0.0974 0.0819 0.0706 0.0621 0.0554
Model 0.3682 0.2319 0.1700 0.1310 0.1056 0.0881 0.0755 0.0660 0.0585
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Appendix D

Numerical procedure to find stable 

dispersal rates of Natives and 

Non-natives 1 11

1 N = 2 ;

2 c = 0 . 5 ;  S

3 d i g i t s ( 1 0 ) ;

4 K=@ (D) ( 1 —D) /  ( l - c * D ) ;

5 R=0(D)  1 / ( N - ( N - l ) * ( K ( D ) ) * 2 ) ;

6 IF=@ (D) - c  + K ( D ) * R ( D ) ;

7 T a y l o r = f z e r o ( I F ,  0 . 5 ) ;

8 S i g m a = [ 0 . 0 1 ,  0 ;  0 ,  0 . 0 1 ] ;

9 d n = 0 . 4 ;

10 d n n = 0 . 3 ;

11 t o l = l ;

12 w h i l e  t o l  > 1 0*  ( - 7 )

13 [ D e l t a N ,  D e l t a N N ]  = N u m e r i c a l T e s t  (N, d n ,  d n n ,  c ) ;

■k Heed to exert control over the size of the IF effects14
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IS 0N=ceil(loglO(abs(DeltaN)));

16 0NN=ceil(loglO(abs(DeltaNN)));

17 if ON > 0 || ONN > 0

18 MaxO=max(ON,ONN);

19 DeltaN=DeltaN*10* (-(MaxO+1));

20 DeltaNN=DeltaNN*l(r (-(MaxO+1) ) ;

21 end

22 next=[dn; dnn]+Sigma* [DeltaN;DeltaNN]

23 tol=norm([dn-next (1), dnn-next(2)]);

24 dn=next (1);

25 dnn=next (2);

26 end

27 [Pi,P,NLC]=PI(N,dn,dnn,c)

28 indx=0:N;

29 s=dn*indx+(N-indx)*dnn;

30 % Outputs are dstar, dn, dnn and Taylor

31 dstar= (s*Pi)/N

32 dn

33 dnn

34 Taylor

1 f u n c t i o n  [ D e l t a N , D e l t a N N ] = N u m e r i c a l T e s t ( N , d n , d n n , c )

2 % Calling functions that we need

3 R = R e l a t e d n e s s ( N , d n , d n n , c ) ;

4 [ V n , V n n ] = R v S u c c e s s ( N , d n , d n n ,  c)  ;

3 [ P i , P , N L C ] = P I ( N , d n , d n n , c ) ;

6 a  1=0;  a 2 = 0 ;  b l = 0 ; b 2 = 0 ;  c l = 0 ;  c 2 = 0 ;  i n i t i a l i z a t i o n

7 f o r  i = 0 :N

8 f o r  j = 0 :N

9 % Fitness increment for native
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io t l = j *  ( 1 - d n )  + ( N - j ) * ( 1 - d n n )  ;

n t 2 = V n ( i + 1 ) * P ( i + 1 , j + 1 ) ;

12 t 3= j * P i  ( j  + 1 ) ;

13 a l - a l - t 2 * ( i / t l )  * t 3 ;

14 p j = t l /  ( t  1 + ( 1—c) *NLC) ;

is b l = b l +  ( t 2 * t 3 + i * j *  ( 1 - d n )  / t l " 2 ) *

i6 ( 1 - p j *  ( 1 - p j )  * ( i / p  j -  ( N - i )  /  ( 1 - p j )  ) ) *R(  j  + 1) ;

I? c l = c l + V n n ( i + 1 ) * P i  ( i + 1 ) * ( N - i )  * t 3 /NLC; 

is % Fitness increment: for non native

19 t 4= ( N - j ) * P i  ( j  + 1 ) ;

20 a 2 = a 2 - t 2 * ( i / t l )  * t 4 ;

21 b 2 = b 2 + ( t 2 * i * ( N - j ) * ( 1 - d n n ) / t l * 2 ) *

22 (1 - p j *  ( 1 - p j )  * ( i / p  j -  ( N - i )  /  ( 1 - p j )  ) ) * P i  ( j  + 1 ) ;

23 c 2= c 2 +Vnn ( i + 1 ) * P i  ( i + 1 ) * ( N - i )  * t 4 /NLC;

24 e n d

25 e n d

26 D e l t a N = a l + b l + c l ;

27 D e l t a N N = a 2 + b 2 + c 2 ;

28 % % % % % % % % % END OF A FUHCTIONI%%%%%%^

29 f u n c t i o n  [ P i ,  P,  NLC] =PI  (N, d n f d n n ,  c ) S

30 % This function will find patch frequency at equilibrium

31 i n d x = 0 :N;

32 n l c - i n d x * d n + ( N - i n d x ) * d n n ;  % Competitive effort from j patch

33 Q0 = o n e s  ( N + l ,  1 ) ;

34 QO^QO . / s u m  (Q0 ) ;

35 ct=0;

36 e r r = l ;

37 P P - z e r o s  (N+l)  ;

38 w h i l e  e r r > 1 0 ~ ( - 9 )

39 f o r  k = 0 :N

40 l c =  ( 1 - d n )  * i n d x +  (1 - d n n )  * ( N - i n d x )  ;

41 p j = l c . / ( l c + ( 1 - c ) * n l c * Q 0 ) ;



42 PP(k+1, : ) =nchoosek(N, k) . * ( ( p j ) . *k ) . * ( 1 - p j ) ( N - k )  ;

43 e n d

44 Q=PP*QO;

4 5  e r r = n o r m ( Q - Q O )  ;

46 QO=Q;

47 e n d

48 P i = Q ;  % Returning e u q i l i b r  ium patch freq;
49 P = P P ;  % Returning transition, p r o b  matrix; 

so N L C = n l c * Q ;

si %%%%%*%%% END OF A FUNCTI ON % ̂ % % % % %

5 2 f u n c t i o n  R = R e l a t e d n e s s  (N, d n ,  d n n ,  c)

53 i n d x = 0 : N ;

54 n a t = i n d x *  ( 1 - d n )  ;

55 n o n n a t =  ( N - i n d x )  * ( 1 - d n n )  ;

56 l c = n a t + n o n n a t ;

57 n a t s u c =  ( n a t . / l c ) . ~ 2 ;

58 n o n n a t s u c =  ( n o n n a t . / l c )  . *2 ;

59 % calling transition prob matrix P, patch frequency Pi

6 0  [ P i , P , N L C ] = P I  (N, d n ,  d n n ,  c ) ;

61 M l = z e r o s  (N) ;

62 M2=M1;

63 f o r  j  —1 :  N

64 Ml ( j ,  : )  —P ( j  + 1 r 2 : e n d )  . * ( P i  (2 : e n d )  / P i  ( j  + 1) ) 1 . * n a t s u c  (2 r e n d )

65 e n d

66 f o r  j = 0 : N - l

67 M2 ( j + 1 ,  : )  =P ( j + 2 , 1 :  e n d - 1 )  . * ( P i  ( 1 : e n d - 1 ) / P i  ( j + 2 )  ) '

68 . * n o n n a t s u c  ( 1 :  e n d - 1 ) ;

69 e n d

70 R j b a r = l . /  ( N - i n d x  ( 1 :  e n d - 1 )  ) ;

71 s2=M2*R j b a r ' ;  % i s  the product of B j  bar with non local part

7 2  R = 0 . 1  * o n e s  (1 / N) ;

73 i ^ l  :N ;  e r r = l ;
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79

o n e B y I = l . / i ;

75 S c =  ( i  — 1) . / i ;

76 w h i l e  e r r > 1 0 "  ( - 6 )

77 R j = S c  . * ( M l * R ' + s 2 )  ' + o n e B y I ;

78 e r r = n o r m  ( R- R j ) ;

7 9  R = R j ;  

so e n d

si R= [ 0 ,  R] ;

82 %%%%%%%%% END OF FUNCTI ON %%%%%%

83 f u n c t i o n  [ V n , V n n ] = R v S u c c e s s ( N , d n , d n n , c )

84 j = 0 : N ;

85 [ P i ,  P ,  NLC] = P I  (N, d n ,  d n n ,  c )  ;

86 A = z e r o s  ( N + l) ; B=A; C=A; D-A;  % N by N matrix to store alphai j, ...

betai j , garnaij, *ij

87 l c =  ( 1 - d n )  * j +  ( 1 - d n n )  * (N-  j )  ; % Local pressure on j patch

88 n a t _ n a t = ( 1 - d n ) . / l c ;

89 n o n n a t _ n a t =  ( 1 - d n n )  . / l c ;

90 n a t _ n o n n a t = d n / N L C ;

91 n o n n a t _ n o n n a t = d n n / N L C ;

92 f o r  k = 0 : N  ^

93 A ( : ,  k + 1 )  = n a t _ n a t  ( k + 1 ) * j  . *P ( : ,  k + 1 ) 1 ;

94 B ( : ,  k + 1 ) = n o n n a t _ n a t  ( k + 1 ) * j  . *P ( : ,  k + 1 ) ' ;

95 C ( : ,  k + 1 )  = n a t _ n o n n a t *  ( ( N - j )  . * P i  ' )  ;

96 D ( : ,  k + 1 )  = n o n n a t _ n o n n a t * ( ( N - j )  . * P i  f ) ;

97 e n d

98 W = z e r o s  (2*  ( N + l )  ) ;

9 9  W ( 1 : N + l , 1 :  N + l ) =A;

100 W ( 1 : N + l , N+2 : 2* ( N + l ) ) =B;

101 W (N+2 : 2*  ( N + l )  , 1 : N + 1 ) « C ;

102 W (N+2 : 2*  ( N + l )  , N + 2 : 2 *  ( N + l )  )=D;

103 [ v e c ,  v a l  ] = e i g  (W 1 ) ; 

v e c = v e c ( : , 3 ) / v e c ( N + 2 , 3 ) ;104
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Appendix E

Simulation of stable dispersal rates of 

Natives and Non-natives 1

1 % Simulation to find ESS level of native and non-native ...

dispersal rate %

2 %.-....—  Parameters--------------
s

3 N r u n s = 5 0 ;

4 1 = 5 0 0 1 ;  % T o t a l  n u m b e r  o f  g e n e r a t i o n s  t o  s i m u l a t e

s P = 2 0 0 ;  % Number  o f  P a t c h e s

6 m u t a t i o n S c a l e = 0 . 0 1 ;

? N=2 ; 

s c = 0 . 3 ;

9 n = l  ;

10 n n - 2 ;

% Number of individuals per patch 

% c o s t. o f d i s p e r s a .1 

% native code 

% non-native code
,, %-------Simulât ions

12 d a t a n = z e r o s  ( N r u n s ,  T) ; % Array of arrays to store evolutionary ...

histories of dn

13 d a t a n n = z e r o s ( N r u n s , T ) ; % Array of arrays to store evolutionary ...

h i s t o r i e s  o f  d n n



14 d s t a r - z e r o s  ( N r u n s ,  T ) ;

is f o r  R u n = l : N r u n s  % Initialize the run

16 d=rand()*rand(N,P,2); % Initial population dispersal rates

17 dnew=zeros(N,P,2); % Placeholder for next-gen dispersal ..

rates

is X ^ r a n d o r a  ( 1 binomial * ,  1 ,  0 . 5 ,  N ,  P ) ;  % Initial dispersal, status

19 X n e w = z e r o s  ( N ,  P )  ; % Next-gen dispersal status
20 f o r  t = l : T

21 d A v g - m e a n  ( d ) ;  % stores patch- average dispersal rates

22 d A v g A v g = m e a n ( d A v g ) ; % stores g l o b a l  a v e r a g e  d i s p e r s a l  r a t e

23 d a t a n  ( R u n ,  t ) = d A v g A v g  ( : ,  :, n )  ; % record native data

24 datann(Run,t)=dAvgAvg(:, :,nn); % record n o n - n a t i v e  data

25 d X = d ( : , : , n ) . * X  +  d  ( : ,  : ,  n n )  . *  ( 1 —X )  ;

26 d A v g X = m e a n ( d X ) ; % stores patch-average expressed . . .

dispersal rates

27 d A v g A v g X = m e a n ( d A v g X ) ; % stores dispersal rate
28 d s t a r ( R u n , t ) = d A v g A v g X ;  % population-average d i spersal
29

30 i f  i s n a n ( d A v g A v g X ) = = 1

31 b r e a k

32 e n d

33 k = ( 1 - d A v g X )  . / ( ( 1 - d A v g X )  +  ( 1 - c ) * d A v g A v g X ) ;

34 f o r  j = l : P

35 f o r  i - l : N

36 x = r a n d ( ) ;

37 i f  x < k ( j )

38 % Winner is local

39 X n e w ( i , j ) * 1 ;

40 p - ( 1 - d X ( : , j ) ) / s u m ( 1 - d X ( : , j ) ) ;  % a  c o l u m n  p r o b  vector
41 w i n n e r = M y M n r n d ( 1 ,  p ' ) ;

42 w i n n e r N = d ( w i n n e r , j , n ) ; % winner is native
43 w i n n e r N N = d ( w i n n e r , j , n n ) ; % winner is non..native
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44

45

46

47

48

50

51

52

53

54

55

56

57

58

59

60 

61 

62

63

64

65

66

67

68

69

70

71

72

73

e l s e

% Winner is not local 

Xnew ( i , j ) = 0 ;

p = d A v g X / s u m ( d A v g X , 2 ) ;  % a row prob vector

m o m P a t c h = M y M n r n d ( 1 , p ) ;

q~dX(:,momPatch)/sum(dX(:,momPatch)); % a column ...
prob vector 

w i n n e r = M y M n r n d ( 1 , q ' ) ;

w i n n e r N = d ( w i n n e r , m o m P a t c h ,  n )  ; % w i n n e r  i s  n a t i v e ;  

w i n n e r N N = d ( w i n n e r , m o m P a t c h ,  n n ) ; % w i n n e r  i s  n o n  n a t i v e

e n d

% ----- -------------- m u t  a t  e  o f f s p r i n g ---------------- ------------

w i n n e r N = w i n n e r N + m u t a t i o n S c a l e * r a n d n ( ) ;  

i f  w i n n e r N  > 1 

w i n n e r N = l ;  

e l s e i f  w i n n e r N  < 0 

w i n n e r N = 0 . 0 0 0 0 1 ;

e l s e

w i n n e r N ;

e n d

w i n n e r N N = w i n n e r N N + m u t a t i o n S c a l e * r a n d n () ; 

i f  w i n n e r N N  > 1 

w i n n e r N N - 1 ;  

e l s e i f  w i n n e r N N  < 0 

w i n n e r N N = 0 . 0 0 0 0 1 ;

e l s e

w i n n e r N N ;

e n d

d n e w  ( i , j , n ) ^ w i n n e r N ;  

d n e w ( i , j , n n ) = w i n n e r N N ;

74 e n d

e n d
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75

76

77

78

79

80 

81 

82

83

84

85

d = d n e w ;  % update 

X=Xnew;

e n d

e n d

dS TAR=mean  ( d s t a r )  ; % mean dispersal over all runs
A v g D a t a n = m e a n ( d a t a n ) ;

T w o S E s n = 2 * s t d ( d a t a n ) / s q r t ( N r u n s ) ; % standard error of m  

N a b o v e C I  = A v g D a t a n  + T w o S E s n ;  % upper .L i mi t  of Cl

N b e 1 owCI= A v g D a t a n  -  T w o S E s n ;  % lower limit of Cl

data

86 A v g D a t a n n = m e a n ( d a t a n n ) ; % mean dispersal rate of non-natives

over all runs

87 T w o S E s n n = 2 * s t d ( d a t a n n ) / s q r t ( N r u n s ) ; % standard error of ...

non-nat i ve data

88 N N a b o v e C I - A v g D a t a n n  + T w o S E s n n ;

89 N N b e l o w C I = A v g D a t a n n  -  T w o S E s n n ;

90 f i g u r e

91 h o l d  o n ;

92 p l o t ( [ 0 , T - l ] , [ 0 . 6 0 8 7  , 0 . 6 0 8 7 ] ,

93 p l o t ( [ 0 , T - l ] , [ 0 . 5 2 1 2 ,  0 . 5 2 1 2 ] ,

94 p l o t  ( 0 :  ( T - l ) , A v g D a t a n ,  ' -r ' , '

95 p l o t  ( 0 :  ( T - l ) , N a b o v e C I ,  * - r ' ,  '

96 p l o t  ( 0 :  ( T - l ) , N b e l o w C I , 1 ■- r 1, '

97 p l o t  ( 0 :  ( T - l ) , A v g D a t a n n ,  1- k ' ,

98 p l o t  ( 0 :  ( T - l ) , N N a b o v e C I ,  ' - k ' ,

99 p l o t  ( 0 :  ( T - l ) , N N b e l o w C I ,  ' - k ' ,

100 a x i s ( [ 0 , T - l , 0 , 1 ] )

101 x l a b e l ( ' Time in generations', '

102 y l a b e l ( ' A v e r a ge dispersal rate,

' FontSi re 1, 16)  

io3 b o x  o n

% upper limit of Cl 

% lower limit of Cl

T.r1, 'Lin.eWi.tith1, 1)

'.k', 'LineWitith1, 1)

i i n e W i d t h 1, 2)  

jineWidth', 1) 

iineWidth1, 1)

1L i n e W i d t h 1, 2)

’LineWidth’, 1)

* LineWidth 1)

rontNarce1, 'Arial', 1 FontSize', 16) 
d', 'FontName', 'Arial', ...



85

io 4  h o l d  o f f

1 function Y = MyMnrnd( nTrials,p )

2 % A. simple version of the built In mnrnd command

3 % This function will generate a multinomial(nTr ials,^) random. ...
variable

4 N=numel(p);

5 CumP=NaN(l,N) ;

6 for i=l:N

7 CumP(i) - sum(p(1:i)} ;
8 end

9 CumP(N) = 1;

10 X=rand(1,nTrials) ;

It Y=NaN(1,nTrials) ;

12 for t=l:nTrials

13 for i*l:N
14 if X (1, t) < CumP(i)

15 Y (1,t)=i; 's
16 break

17 end

18 end

19 end

20 end
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Appendix F

Simulation of stable dispersal rate of 

Natives

t % Simulation to find ESS level of native dispersal rate % 

2 %------ Parameters---------

3 N r u n s = 5 0 ;

4 T - 5 0 0 1 ; % Total number of generations to

5 P=2 Q0; % Number of Patches

6 m u t â t i o n S c a l e = 0 - 0 1 ;

7 N=2 ; % Number of individuals per pate.
8 o ii o 00 %cost of d.i s per s a l

9 n = l ; % native code

10 n n = 2 ; % non.nat. ive code
n %- -.... -S imuiat ions-------

12 datan=zeros(Nruns,T); % Array of arrays to store evolutionary ...

histories of dn
13 d s t a r = z e r o s ( N r u n s , T ) ;

14 f o r  R u n = l : N r u n s  % Xn i  t  i a 1 i  z e t h e  r u n

IS d = r a n d ( ) * r a n d ( N , P , 2 ) ; & 1 n i t  b a l  p o p u l a t i o n d i s p e r s a l ,  r a t e
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16 d n e w = z e r o s  (N, P ,  2)  ; % Placeholder for next-gen . . .

dispersal rates
17 X = r a n d o m ( ' binomial ' ,  1 ,  0 . 5 ,  N, P ) ; % Initial d i s p e r s a l  s t a t u s

is X n e w = z e r o s ( N ,  P ) ; % N e x t - g e n  dispersal s t a t u s

19 d  n n )  = 0 . 0 0 0 0 1 ;

2 0  f o r  t = l : T

2 1 dAvg=mean(d); % stores p a t c h - a v e r a g e  dispersal rates

22 d A v g A v g = m e a n ( d A v g ) ; % s t o r e s  g l o b a l  a v e r a g e  d i s p e r s a l  r a t e

23 d a t a n  ( R u n ,  t ) =d A v gA v g  ( : ,  : ,  n)  ; % record native data

24 dX =d  ( : ,  : ,  n)  . *X + d  ( : ,  : ,  n n )  . * ( 1 - X ) ;

23 d A v g X - m e a n  ( d X ) ;

2 6  d A v gA vgX = me an  (dAvgX)  ; % stores dispersal rate

27 d s t a r ( R u n , t ) =dAvg Avg X;  % p o p u l a t i o n - a v e r a g e  d i s p e r s a l

28

2 9  i f  i s n a n  (dAvgAvgX)  ==1

30 break
31 e n d

32 k =  ( 1 - d A v g X )  . /  ( ( 1 - d A v g X )  + ( 1 - c )  *dAvgAvgX)  ;

33 f o r  j = l : P

34

35

36

37

38

39

40

41

42

43

f o r  i « l : N

x = r a n d ( ) ;  

i f  x < k ( j )

% W i n n e r  i s  l o c a l  

X n e w ( i , j ) = 1 ;

p = ( 1 - d X ( : , j ) ) / s u m ( 1 - d X ( : , j ) ) ;  % a co lu mn  p r o b  v e c t o r  

w i n n e r = M y M n r n d ( 1 , p 1) ;

w i n n e r N = d ( w i n n e r , j , n ) ; % w i n n e r  i s  n a t i v e

w i n n e r N N = d ( w i n n e r , j , n n ) ; % w i n n e r  i s  n o n - n a t i v e

e l s e

44 % W i n n e r  i s  n o t  l o c a l .

45 Xnew ( i ,  j ) - 0 ;

46 p = d A v g X / s u m  ( d A v g X ,  2)  ; % a row p r o b  v e c t o r
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47 m o m P a t c h = M y M n r n d ( l f p ) ;

48 q - d X ( : , m o m P a t c h ) / s u m ( d X (:, m o m P a t c h )) ; % a co

prob vector

49 w i n n e r = M y M n r n d ( 1 , q 1 ) ;

50 w i n n e r N = d ( w i n n e r , m o m P a t c h ,  n ) ; % winner is s

51 w i n n e r N N = d ( w i n n e r , m o m P a t c h ,  n n ) ; % winner

non-native

52 e n d

53 %.................. ........mutate offspring - ...... - -.....— ..............

54 w i n n e r N = w i n n e r N + m u t a t i o n S c a l e * r a n d n  () ;

55 i f  w i n n e r N  > 1

56 w i n n e r N = l ;

57 e l s e i f  w i n n e r N  < 0

58 w i n n e r N = 0 . 0 0 0 0 1 ;

59 e l s e

60 w i n n e r N ;

61 e n d

62 d n e w ( i , j , n ) = w i n n e r N ;

63 d n e w ( i , j , n n ) = w i n n e r N N ;

64 e n d \

65 e n d

66 d = d n e w ; % update

67 X=Xnew;

68 e n d

69 e n d

70 %----- ....... .............. -------  Summary Statistics-----------------------------

71 d S T A R = m e a n ( d s t a r ) ; % mean population-average dispera.

all runs

72 AvgDatan=mean(datan); % mean dispersal rate of natives over

runs

73 T w o S E s n = 2 * s t d ( d a t a n ) / s q r t ( N r u n s ) ; % standard error at  n a t i v e

74 N a b o v e C I = A v g D a t a n  + T w o S E s n ;  % upper limit of Cl

ve

ver ...

a.

data
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75 NbelowCI=AvgDatan - TwoSEsn; % lower limit of Cl

76 figure

77 hold on;

78 p l o t  ( [0 , T - 1 ] , [ 0 . 3 8 0 4  , 0 . 3 8 0 4 ] ,  ' -  - I  ' , ' L i n e W i d t h ' ,  1)

79 p l o t  ( 0 : ( T - l ) , A v g D a t a n ,  ’ - i : ' , ' L i n e W i d t . 1 - ,  2 )

80 p l o t  ( 0 : ( T - l ) , N a b o v e C I ,  ' ...r 1  11, ' L i n e W i d t a

81 p l o t  ( 0 : ( T - l ) , N b e l o w C I ,  ' - r * , ' L i n e W i d t I * ,  a

82 a x i s  ( [ 0 ,  T - l , 0 , 1 ] )

83 xlabel (* Time in generations', ' FontName ', 'Aria! 1, 1 Fonts ize 1, 16)

84 ylabel(1 Average dispersal rate, d', 'FontName', 1Arial', ...

1 Fontsi re 1, 1 6 )

85 b o x  on

86 h o l d  o f f

1 function Y = MyMnrnd( nTrials,p )

2 % A simple version of the builtin rnnrnd command

3 % This function will generate a multinomial(nTrials,p) random ...

va n a m e

4 N=numel(p);

s CumP=NaN(1,N) ;

6 for i-l:N
7 CumP(i) = sum(p(l:i));

8 end

9 CumP(N) = 1;

10 X=rand (1, nTrials) ;

11 Y=NaN (1, nTrials) ;

12 for t=l:nTrials

13 for i=l:N

14 if X(l,t) < CumP(i)

is Y (1, t) ==i;



16 b r e a k

17 e n d

e n d

i 9  e n d

20 e n d
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Appendix G

Numerical procedure to find ESS using 

branching process 1

1 n = 2 0 ;

2 A = l / n ;

3 N = 2 ; c - 0 . 1 ;

4  d a t a = [ ] ; p o l y = z e r o s ( n , n ) ;

5 f o r  i = 0 : n

6 d a = i * A ;

7 c r t = b p n e w ( N , d a ,  d a ,  c )  ;

s f o r  j = 0 : n

9

to

11

12

13

14

15

16

dA= j  * a ;

e x t = b p n e w ( N , d A , d a , c ) ; 

i f  e x t < c r t

d a t a = [ d a t a ; d a , d A ] ; 

p o l y ( j , i ) =dA;

e n d

e n d

end % execution completes here

\



17

IS

19

20 

21 

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

Grinding the v a l u e s  f o r  i n t e r p o l a t i o n  

i n t e r = z e r o s ( n , 2 ) ; c t = n ;  

f o r  i = l : n

x = p o l y ( : ,  i )  ;

m= mi n  (x ( x ^ O ) ) ; m m = m a x ( x ) ; 

i f  mm==m 

c t = i ;  

e n d

i n t e r  ( i , 1)-ì*a ; 
i f  i > c t

i n t e r ( i , 2 ) =m;

e l s e

i n t e r  ( i , 2 ) =mm;

e n d

e n d  % v a l u e s  f o r  i n t e r p o l a t i  i o n  f o u n d  o u t  

t  g e n e r a t i n g  x y f o r  s e c o n d  i s o c l i n e s  

p c o e f f - p o l y f i t ( i n t e r ( : , 1 ) , i n t e r  ( : , 2 ) , 1 0 ) ;  

x p = 0 : a : 1 ;

y p = p o l y v a l ( p c o e f f , x p ) ;

% £ i n d i n q  ESS d S

x 0 = 0 ; e r r = l ;  

w h i l e  e r r > 1 0 * ( - 3 )

x = p o l y v a l ( p c o e f f , xO) ; 

e r r = a b s ( x O - x ) ; 

x 0 = x ;

e n d

x % ESS d o n e  

% g e n e r . a t  i n g  f i g u r e  

f i g u r e ;  

h o l d  o n

plot(data(:,1),data(:,2), '.rs1, ’LineWidth’, 2, .. ,
* M a r k e r E d g e C o l o r  ' ,  * k. ’ , * M a r k e r  S i z e  ’ , 5) ;
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49 p l o t  ([0,1], [ 0 , 1 ] , ’- k 1 11' , ’L i n e W i d t h 1,2);

50 x l a b e l (1 D i s p e r s a l  of w i l d - t y p e s ' , • F o n t N a m e

* F c n t S i z e ', 14);

51 y l a b e l (1 D i s p e r s a l  of m u t a n t s ', 'F o n t N a m e ',

'F o n t S i  z e ', 14);

52 p l o t {x p , y p ) ;

53 a x i s {[0,1 ,0,1 ] ) ;

54 b o x  on

1 f u n c t i o n  e x t = b p n e w ( N , D , d ,  c)

2 ^preliminary work, for FI,

3 p=((1-D)*(1:N)./((1-d)*...
4 (N-(1:N)) + (1-D)*(1:N)+N*(1-c) *d) ) 1 ;
5 P = z e r o s ( N : N ) ;

6 f o r  j = l : N

? P ( : , j ) = n c h o o s e k ( N , j ) * ( ( p . * j ) . * ( ( 1 - p )  . * ( N - j ) ) ) ;

8 e n d

9 oneminusP=(1-sum(P'))';
10 P P - [ o n e m i n u s P , P ] ;

11 ^preliminary work for FNL

12  m= ( 1 - c )  * d /  ( l - c * d )  ;

13 %Iteratlng dynamical system to find fixed point

14 z O ^ z e r o s  (N, 1) ; 

is e r r = l ;

16 w h i l e  e r r > 1 0 ~  ( - 9 )

1? F L - P P * [ 1 ; z O ] ;

is F N L = e x p  ( (1 :N) . * (m*D/d)  * (zO (1 )  - 1 )  ) ;

19 z = F L .  * (FNL) ' ;

2 0  e r r = n o r m ( z - z O ) ;

21 zO^z;
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