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a b s t r a c t 

Quality assurance (QA) is crucial in longitudinal and/or multi-site studies, which involve the collection of data 

from a group of subjects over time and/or at different locations. It is important to regularly monitor the perfor- 

mance of the scanners over time and at different locations to detect and control for intrinsic differences (e.g., due 

to manufacturers) and changes in scanner performance (e.g., due to gradual component aging, software and/or 

hardware upgrades, etc.). As part of the Ontario Neurodegenerative Disease Research Initiative (ONDRI) and the 

Canadian Biomarker Integration Network in Depression (CAN-BIND), QA phantom scans were conducted approx- 

imately monthly for three to four years at 13 sites across Canada with 3T research MRI scanners. QA parameters 

were calculated for each scan using the functional Biomarker Imaging Research Network’s (fBIRN) QA phantom 

and pipeline to capture between- and within-scanner variability. We also describe a QA protocol to measure the 

full-width-at-half-maximum (FWHM) of slice-wise point spread functions (PSF), used in conjunction with the 

fBIRN QA parameters. Variations in image resolution measured by the FWHM are a primary source of variance 

over time for many sites, as well as between sites and between manufacturers. We also identify an unexpected 

range of instabilities affecting individual slices in a number of scanners, which may amount to a substantial con- 

tribution of unexplained signal variance to their data. Finally, we identify a preliminary preprocessing approach 

to reduce this variance and/or alleviate the slice anomalies, and in a small human data set show that this change 

in preprocessing can have a significant impact on seed-based connectivity measurements for some individual sub- 

jects. We expect that other fMRI centres will find this approach to identifying and controlling scanner instabilities 

useful in similar studies. 
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Table 1 

Description of the thirteen sites with 3T research MRI scanners participating in this study. These sites included 5 GE Discovery, 3 Siemens Trio, 3 

Siemens Prisma, 1 Siemens Skyra, and 2 Philips Achieva scanners. 

Site Abbreviation Manufacturer Model Coil 

Installation / latest 

upgrade date 

The center for Addiction and Mental Health 

(CAMH), Toronto 

CAM GE Discovery 8-Ch Head 2011 

McMaster University MCM GE Discovery 32-Ch Head / Head Neck 

Spine (HNS) 

2012 

Sunnybrook Hospital, Toronto SBH GE Discovery 8-Ch Head 2009 

Toronto Western Hospital TWH GE Signa HDxt 8-Ch Head 2004 

University of Calgary UCA GE Discovery Head Neck Spine (HNS) 2011 

Baycrest center, Toronto BYC Siemens Trio 12-Ch Head 2006 

Western University WEU Siemens Prisma 20-Ch Head 2013 

Queen’s University QNS Siemens Trio 12-Ch Head 2005 

The Ottawa Hospital TOH Siemens Trio 12-Ch Head 2010 

University of Toronto UTO Siemens Prisma 32-Ch Head 2016 

St. Mike’s Hospital, Toronto SMH Siemens Skyra 20-Ch Head 2013 

Thunder Bay Regional Health Sciences center TBR Philips Achieva 8-Ch Head 2009 

University of British Columbia UBC Philips Achieva 8-Ch Head 2003 

1. Introduction 

Changes in the blood oxygenation-level dependent (BOLD) signal 

due to neuronal activity constitute only a fraction of the changes in 

the raw fMRI signal intensity. Other major sources of variance in the 

fMRI signal are thermal noise, head motion, physiological noise, and 

temporal instabilities in the MRI scanner hardware (also known as sys- 

tem noise). Consequently, to accurately measure such small changes 

due to neuronal activity, it is crucial to measure, understand, and 

where possible, control other sources of variance. Thermal noise is 

dominated by the SNR-resolution-acquisition-time trade off, and sev- 

eral studies have attempted to improve this trade-off since the early 

days of MRI ( Griswold et al., 2002 ; Haase et al., 1986 ; Larkman and 

Nunes, 2007 ; Lustig et al., 2007 ; Mansfield, 1977 ; Margosian et al., 

1986 ; Pruessmann et al., 1999 ; Samsonov et al., 2004 ; Sodickson and 

Manning, 1997 ). There exists a rich literature on controlling head mo- 

tion and physiological noise ( Caballero-Gaudes and Reynolds, 2017 ; 

Power et al., 2015 ; Strother, 2006 ). Equally important is monitoring the 

temporal stability of MRI scanner hardware and, where possible, making 

corrections to the detected instabilities. A number of quality assurance 

(QA) protocols have been developed to monitor the performance of the 

scanner ( Friedman and Glover, 2006 ; Glover et al., 2012 ; Jovicich et al., 

2016 ; Price et al., 1990 ; Yan et al., 2013 ). 

Quality assurance becomes particularly important in longitudinal 

and/or multi-site studies, which involve collecting data from a group 

of subjects over time and/or at different locations. It is crucial to regu- 

larly monitor the performance of the scanners over time and at different 

locations to detect and, where possible, control for intrinsic differences 

(e.g., due to manufacturers) and changes in the scanner performance 

(e.g., due to gradual component aging, software and/or hardware up- 

grades, etc.). If such differences and changes are not accounted for, they 

can add unexplained variance to the data ( Friedman and Glover, 2006 ). 

As part of the Ontario Neurodegenerative Disease Research Initia- 

tive (ONDRI) ( Farhan et al., 2017 ) and the Canadian Biomarker Integra- 

tion Network in Depression (CAN-BIND) ( Lam et al., 2016 ) QA phantom 

scans were conducted approximately monthly for three to four years at 

13 sites across Canada with 3T research MRI scanners (See Table 1 ). We 

found considerable variance in the QA parameters over time for many 

sites as well as substantial variance across sites. We also identified an 

unexpected range of instabilities affecting individual slices in a number 

of scanners. These slice anomalies may amount to a substantial contri- 

bution to the signal variance and to the best of our knowledge have 

2 https://ondri.ca/publications/ 
3 https://www.canbind.ca/about-can-bind/our-team/executive-committee/ 

not been reported before. The main objectives of this paper are as fol- 

lows: (1) to assess the range of within- and between-scanner variability 

revealed by the fBIRN QA pipeline and parameters, (2) to identify pri- 

mary factors contributing to the scanner-dependent signal variance in 

fMRI studies, and (3) to identify preprocessing approaches to reduce this 

variance. 

2. Material and methods 

2.1. Sites 

Thirteen sites participated in this study across Canada, including 

MR scanners from different vendors: 5 GE Discovery, 3 Siemens Trio, 

2 Siemens Prisma, 1 Siemens Skyra, and 2 Philips Achieva ( Table 1 ). 

2.2. Phantom scan protocol 

The present study uses QA data acquired as part of the ONDRI 

and CAN-BIND research initiatives, where phantom QA scans were per- 

formed contemporaneously with human scan protocols of ONDRI and 

CAN-BIND for quality control. The functional Biomarker Imaging Re- 

search Network (fBIRN) phantom was scanned approximately monthly 

at each site, amounting to a total of 629 scans across all sites. The fBIRN 

phantom is a spherical plastic vessel 17 cm in diameter filled with a 

doped agar gel chosen to reflect T1, T2, magnetization transfer, and 

RF conductivity characteristics of human brain tissue ( Friedman and 

Glover, 2006 ). Each site had their own copy of the fBIRN phantom to 

enable regular QA scans. While there may be minor manufacturing dif- 

ferences between different copies, the effect of these differences are as- 

sumed to be negligible for the present study. 

The data from these 629 scans have been made open source and 

are available online at https://www.braincode.ca/content/open-data- 

releases . 

The aim of the QA protocol is to measure scanner stability 

under conditions that match those of human resting state experi- 

ments ( Friedman and Glover, 2006 ; Glover et al., 2012 ). Thus we 

employed the Canadian Dementia Imaging rs-fMRI protocol (CDIP) 

( https://www.cdip-pcid.ca ) for the phantom QA scans ( Duchesne et al., 

2019 ) (Appendix Table A1 ). In a few study sites, the initial scan param- 

eters did not match those of CDIP and were adjusted, during the study, 

to more closely match CDIP parameters ( Table A2 ). 

2.3. fBIRN QA parameters 

The fBIRN QA pipeline ( https://www.nitrc.org/projects/bxh_xcede_ 

tools/ ) was employed to calculate QA parameters for each imaging ses- 

2 
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Table 2 

Summary of fBIRN QA parameters. 

• Region of interest (ROI) is by default a 15 ×15 square centered on the middle slice through the phantom. 

• Signal image is the mean intensity across time by voxel. 

• Static spatial noise image is the sum of all even-numbered images subtracted from the sum of all the odd images. 

• Temporal fluctuation noise image : first, voxel time-series is detrended with a 2nd order polynomial. The fluctuation noise image is the standard deviation (SD) of the 

residual by voxel. 

• CV (coefficient of variation) is the SD of a time-series divided by the mean of the time-series. 

mean Average value in the ROI of signal image 

SNR signal-to-noise ratio 

Noise: variance of the static spatial noise image over the ROI 

Signal: average of the signal image over the ROI 

SNR = (signal)/ 
√

((Noise)/ (length of time series)) 

SFNR signal-fluctuation-to-noise ratio 

Signal image divided by temporal fluctuation noise image by voxel. Summary SFNR value is the average of this within ROI. 

For the next 5 variables: a time-series composed of the mean intensity of each volume within the ROI (i.e., 15 × 15 square centered on the middle slice from each volume) is 

calculated ( “raw signal ”), and a 2nd order polynomial trend is fit to this data ( “fit ”). 

msi is mean signal intensity of the raw signal. 

std SD of residuals after detrending 

percentFluc 100 ∗ ( std )/( msi ) 

drift 100 ∗ (max raw signal - min raw signal)/ msi 

driftfit 100 ∗ (max fit - min fit)/ msi 

rdc radius of decorrelation. CV(N) = CV of the raw signal for a square NxN voxel ROI. rdc = CV(1)/CV(Nmax), where Nmax = 15. 

FWHM- Full width at half maximum 

The fBIRN QA pipeline uses an old version of AFNI 3dFWHMx (AFNI_2011_12_21_1014) for FWHM calculation, where FWHM is calculated using the “classic ” estimate as a 

function of the ratio of variance of first differences to data variance ( Forman et al., 1995 ). 

minFWHM min value of all volumes in each direction 

maxFWHM max value of all volumes in each direction 

MeanFWHM mean value of all volumes in each direction 

AFNI_2011_12_21_1014 was used for the calculation of the next two variables: 

3dvolreg: motion correction 

3dDetrend: voxel-wise detrending using Legendre polynomials of order up to and including 2 

3dTstat: calculate mean of voxels 

3dAutomask: create mask of brain-only (high signal) voxels, dilated 4 times 

The mask is shifted by N/2 voxels in the phase-encode direction (Nyquist ghosting) to create “ghost mask ”. 

MeanGhost Percentage of the mean intensity of the ghost voxels to non-ghost voxels 

MeanBrightGhost Mean intensity of the top 10 percent of ghost-only voxels 

sion ( Friedman and Glover, 2006 ). The QA parameters used in the sub- 

sequent analyses are described in Table 2 . 

2.4. Autocorrelation function (ACF) analysis 

Subsequent analyses of the fBIRN QA parameters revealed that 

FWHM is a prominent factor driving the variance between imaging ses- 

sions and between different sites (as outlined in the Results section and 

previously shown by ( Friedman et al., 2006 )). Consequently, we devel- 

oped an independent approach to measuring FWHM to verify and inves- 

tigate the previous findings as follows: 

The (spatial) autocorrelation function (ACF) of a destructured image 

can be used to estimate the FWHM measure of resolution. We calculate 

the ACF for each slice by first detrending the time-series with a 2nd order 

Legendre polynomial to subtract out the spatial structure. Detrending 

is performed using AFNI’s 3dDetrend (AFNI_17.3.05). The ACF is then 

calculated for each slice using the Wiener-Khinchin theorem: 

𝐴𝐶𝐹 ( 𝑥, 𝑦 ) = 𝐹 −1 
𝑢,𝑣 

{ 𝑃 𝑆𝐷 ( 𝑢, 𝑣 ) } 

where F − 1 u,v denotes the inverse Fourier transformation and PSD(u,v) 

is the power spectral density of the image, which is estimated as the 

squared magnitude of the image FFT. 

The FWHM in each direction (i.e., x and y) is subsequently estimated 

by fitting a Gaussian plus exponential mixture model to the ACF profile 

in that direction: 

𝐴𝐶𝐹 ( 𝑟 ) = 𝑎𝑒𝑥𝑝 
(
− 𝑟 2 ∕ 

(
2 𝑏 2 

))
+ ( 1 − 𝑎 ) 𝑒𝑥𝑝 ( − 𝑟 ∕ 𝑐 ) 

The fit is identical to that used by the current version of AFNI 

3dFWHM (AFNI_17.3.05) and is used for consistency with AFNI’s cur- 

rent approach. Unlike the reported fBIRN FWHM measures, the slice 

ACF approach calculates FWHM values for each slice, which allows the 

identification of possible slice effects. FWHM values calculated using 

this approach will be referred to as “ACF FWHM ” in the current paper, 

to distinguish from fBIRN QA FWHM values. Any slice with FWHMx > 

𝜃×minFWHMx or FWHMy > 𝜃×minFWHMy is marked as an anomaly, 

where minFWHMx and minFWHMy are the minimum FWHM values in 

the x and y directions in that scan session and 𝜃 is an anomaly threshold. 

2.5. fMRI Preprocessing 

2.5.1. Spatial smoothing 

Following the approach of ( Friedman et al., 2006 ) to reduce the 

FWHM variance due to imaging sessions using different scanners, all 

imaging data were spatially smoothed to the largest average FWHM 

of all the sites set at 7 mm using AFNI’s 3dBlurToFWHM (Version 

AFNI_17.3.05). 

2.5.2. Correction of slice anomalies - Censoring 

Subsequent investigation revealed a number of anomalous slices 

in some imaging sessions despite additional spatial smoothing. Where 

anomalies occur at discontiguous time frames in the time series, the 

anomalies might be mitigatable by censoring the anomalous slices, 

i.e., by removing the anomalous slices and replacing them with tem- 

porally interpolated values. Moreover, since the anomalies occur at 

individual slices, a slice-wise correction approach may best suit this 

problem. SpikeCor ( Campbell et al., 2013 ) is a PCA-based spike cor- 

rection technique that can identify volume and / or slice anomalies. 

While the original version of SpikeCor detected volume anomalies only 

( Campbell et al., 2013 ), a slice version has been made available by the 

author where in addition to volume defects, individual slice defects can 

also be detected ( https://www.nitrc.org/projects/spikecor_fmri/ ). We 

employed this version of SpikeCor to investigate the possibility of miti- 

gating these slice anomalies by preprocessing. SpikeCor uses a statistical 

p-value threshold for outlier detection, which we set at the default value 

of 0.05. 

3 
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2.6. Principal component analysis 

Principal component analysis (PCA) was used to gain an overview 

of the within- and between-scanner normalised variance and correla- 

tion structure of the 14 fBIRN QA variables for the 13 MRI scanners 

over time. PCA was performed by singular value decomposition of the 

data matrix, where each row corresponds to one scan session and the 

columns correspond to the QA variables. The variables were shifted to 

be zero centered and scaled to have unit variance prior to the analysis. 

Nonetheless, no statistical inference was drawn based on PCA. 

2.7. Statistical analysis 

One-way multivariate analysis of variance (MANOVA) was used to 

test for significant differences in QA parameters between sites and, sepa- 

rately, between scanner manufacturers and the effect size was quantified 

using partial associations ( 𝜂2 ). Linear mixed effects models were fit to 

QA parameters, allowing the intercept of the model to vary randomly 

between scanners (i.e., sites) or scanner manufacturers. Significance of 

the estimates and the random effects was quantified using likelihood ra- 

tio tests. The effect size was quantified based on the correlation between 

the fitted and the observed values. Intra-class correlation (ICC) was cal- 

culated by dividing the random effect variance by the total variance, 

i.e., the sum of the random effect variance and the residual variance. 

2.8. Preliminary human experiments 

We used a small human data set to demonstrate the impact of slice 

vs volume censoring on human data as follows: resting state fMRI (rs- 

fMRI) and MRI data were acquired from 64 baseline participants, 34 

normal controls and 30 participants with major depressive disorder from 

UCA. The participant and acquisition details are described in ( Lam et al., 

2016 ; Wijk et al., 2021 ). 

The resting state fMRI data were preprocessed with the OPPNI 

pipeline (( Churchill et al., 2017 , 2015 ); software available at ( https: 

//github.com/strotherlab/oppni ) using the following steps: (1) the vol- 

ume with the least amount of head displacement was determined using 

a principal component analysis (PCA) and all volumes were registered 

to this volume with rigid-body motion correction via AFNI’s 3dvolreg; 

(2) significant outlier volumes or slices were identified, removed and 

replaced by interpolated values using neighbouring volumes or slices, 

respectively, through censoring as implemented in (( Campbell et al., 

2013 ); software available at: nitrc.org/projects/spikecor_fmri); (3) slice- 

timing correction was performed with Fourier interpolation via AFNI’s 

3dTshift; (4) spatial smoothing across MRI scanners at different sites 

was matched using the 3dBlurToFWHM module in AFNI to smooth the 

fMRI images to the smoothness level of FWHM = 6 mm in three direc- 

tions (x,y,z); (5) AFNI’s 3dAutomask algorithm was used to obtain a bi- 

nary mask excluding non-brain voxels using default parameter settings, 

the resultant mask was applied to all EPI volumes prior to subsequent 

pipeline steps; (6) neuronal tissue masking was performed by estimating 

a probabilistic mask to reduce the variance contribution of non-neuronal 

tissues in the brain (macro-vasculature, ventricles) using the first part of 

the PHYCAA + algorithm to estimate task-run and subject-specific neu- 

ral tissue masks (( Churchill and Strother, 2013 ); software available at 

nitrc.org/projects/phycaa_plus); (7) Global signal regressors were esti- 

mated using PCA performed on each session’s fMRI data as the PC1 

time-series tends to be highly correlated with global signal effects but is 

orthogonal to the PC2 + signal subspace ( Carbonell et al., 2011 ); (8) sev- 

eral nuisance regressors (low frequency temporal trends, head motion 

effects and global PC1) were calculated and then regressed-out from 

the data concurrently via multiple linear regression ( Churchill et al., 

2012a , 2012b ); (9) physiological noise components were estimated 

and removed through data-driven physiological correction using the 

second part of the data-driven PHYCAA + algorithm ( Churchill and 

Strother, 2013 ); software at nitrc.org/projects/phycaa_plus); (10) low- 

pass filtering was carried out using a linear filter to remove BOLD fre- 

quencies above 0.10 Hz; 11) spatial normalization to a structural tem- 

plate (sNORM) was carried out with all scans aligned to the MNI152 

template (MNI-normalized, 4 mm resolution) using two transformations 

(fMRISubj - > MRISubj, and MRISubj →MNITemp, combined into one ag- 

gregated transform) via FSL’s FMRIB’s Linear Image Registration Tool 

(FLIRT) module. 

For each rs-fMRI scanning session we generated two preprocessed 

data sets: one with outlier volumes censored (VC) and one with outlier 

slices censored (VS). As a preliminary test of the impact of these different 

censoring choices we examined changes between the two preprocessed 

data sets per session for the Posterior Cingulate Cortex connectivity seed 

PCC, MNI:[0, − 60, 28]) used by ( Wijk et al., 2021 ). The mean time series 

within each ROI was extracted using AFNI’s 3dROIstats for all of the 

64 MNI-normalized preprocessed scans. AFNI’s 3dTcorr1D was used to 

generate voxel-wise Pearson correlation between the mean time series 

within each ROI and every other voxel of each scan. Finally, correlation 

values were converted to z-scores using the variance stabilizing Fisher’s 

transformation for correlations using AFNI’s 3dCalc. 

2.8.1. Split-half reproducible PCA 

For a set of brain maps, PCA produces eigenimages that corre- 

spond to multivariate patterns explaining the greatest variance within 

the dataset. The reproducibility of these eigenimages can be quanti- 

fied using a split-half resampling procedure, previously published in 

( Churchill et al., 2015 ). In this approach, a matrix of brain images 𝑋, 

of dimensions ( V voxels x S samples) is randomly split in half, produc- 

ing matrices 𝑿 1 and 𝑿 2 , of dimensions ( V x S /2). Applying PCA obtains 

from 𝑿 1 a set of eigenimages 𝒖 1( 𝑘 ) , and from 𝑿 2 a set of eigenimages 

𝒖 2( 𝑘 ) , where k = 1…S /2 indexes over eigenimages, ordered by decreasing 

amount of variance explained. We then obtain a z-scored map of voxel- 

wise reproducibility for each component pair k , using the procedure de- 

scribed in ( Strother et al., 2002 ). This involves z-transforming 𝒖 1( 𝑘 ) and 

𝒖 2( 𝑘 ) , before calculating signal-axis projection 𝒙 𝑠𝑖𝑔( 𝑘 ) = ( 𝒖 1( 𝑘 ) + 𝒖 2( 𝑘 ) )∕ 
√
2 

and noise-axis projection 𝒙 𝑛𝑜𝑖 ( 𝑘 ) = ( 𝒖 1( 𝑘 ) − 𝒖 2( 𝑘 ) )∕ 
√
2 , then obtaining 

𝒓 𝑺 𝑷 𝑴 𝒁 ( 𝑘 ) = 𝒙 𝑠𝑖𝑔( 𝑘 ) ∕ 𝑆𝐷( 𝒙 𝑠𝑖𝑔( 𝑘 ) ) . This process is repeated for 100 ran- 

dom split-half partitions, and the mean 𝒓 𝑺 𝑷 𝑴 𝒁 ( 𝑘 ) maps are retained. 

3. Results 

3.1. fBIRN QA measurements 

To give a sense of the range of the values produced by the fBIRN 

QA pipeline for each site, the fourteen QA parameters are plotted for 

all sites in Fig. 1 . The sites are labeled using a three-letter code defined 

in Table 1 . Multiple potential site differences are seen in Fig. 1 and 

manufacturer differences in mean, SNR, and max and minFWHM values 

are clearly visible between the first five GE sites (CAM, MCM, SBH, TWH 

& UCA), the next six Siemens sites (BYC, WEU, QNS, TOH, UTO, SMH) 

and the remaining two Phillips sites (TBR, UBC). The differences are 

significant between sites (One-way MANOVA, p < 0.001, 𝜂2 = 0.43) and 

between manufacturers (One-way MANOVA, p < 0.001, 𝜂2 = 0.90). 

Principal component analysis (PCA) provides a visualization of the 

normalised variance and correlation of the QA variables within imag- 

ing sites as well as between different sites and manufacturers ( Fig. 2 ). 

66% of the total variance is captured by the first two components and a 

substantial part of that is between-manufacturer variance in agreement 

with the relatively large partial association effect size ( 𝜂2 = 0.90) for 

the between manufacturer MANOVA . For instance, in Fig. 2 , Siemens 

scanners are mostly in the first quadrant (top right quadrant), while 

GE scanners are mostly located in the third (bottom left) and Philips 

scanners in the second (top left) quadrants on the PCA plane. Further- 

more, the within-manufacturer variance varies substantially between 

different manufacturers and sites. For example, for PC1 Siemens has 

4 

https://github.com/strotherlab/oppni


A. Kayvanrad, S.R. Arnott, N. Churchill et al. NeuroImage 237 (2021) 118197 

Fig. 1. fBIRN QA values for the 13 participating sites. Each vertical bar corresponds to an imaging session. Sessions are ordered chronologically for each site. The 

sites are labeled with a three-letter code as defined in Table 1 . Note that FWHM values are plotted in mm on log scales and are based on the fBIRN use of AFNI’s 

“classic ” FWHM estimate as a function of the ratio of variance of first differences to data variance. 

the smallest within-manufacturer variance and GE has the largest (Ap- 

pendix Table A4 ). Moreover, we observe prominent anomalous scans in 

a number of sites (most strikingly in UCA, TWH, SMH, UBC, and TBR), 

as shown in Fig. 2 , where the imaging sessions within each site are con- 

nected in temporal order of acquisition. 

Finally, the 14 QA variables shown as red arrows with lengths pro- 

portional to their variable loadings in Fig. 2 suggest two primary clusters 

of variable effects over time, and site and manufacturer. The first cluster 

of variables is roughly arrayed around the 45° diagonal (i.e., correlated; 

see Fig. A1 in Appendix) within the bottom left quadrant and includes 

minFWHMy, minFWHMx, mean, SNR and SFNR with negative variable 

loadings on PC1 and PC2. Therefore the individual scan sessions from 

GE and Phillips scanners with their negative factor/observation loadings 

x the negative variable loadings for these five variables all have incre- 
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Fig. 2. Principal component analysis (PCA) of 

the fBIRN QA variables. Shown is the scatter 

plot of the first two principal components (PC1 

and PC2) for all the imaging sessions (including 

outliers). Each imaging session is color-coded 

by scan site and shape-coded by scanner 

manufacturer. The imaging sessions within 

each site are connected in temporal order of 

acquisition. The ellipses show 95% confidence 

bounds assuming a multivariate t distribution. 

A few examples of prominent anomalous 

sessions are highlighted with labels for UCA. 

The fBIRN QA variables are also plotted using 

red arrows on the PCA plane with lengths 

proportional to the variable loadings. An 

interactive version of this plot can be viewed 

at https://kayvanrad.github.io/phantomQA/ 

#fbirn_qa_pca . 

Table 3 

Linear mixed effects fit of the QA parameters to the scanners (i.e., sites) as a random effect. 

QA parameter Intercept estimate (95%-CI) Scanner (Site) SD (ICC) Residual SD Effect size (R 2 ) 

mean 3171 ∗ ( − 330.8, 6659) 2546 ∗ (0.97) 443 0.97 

std 2.96 ∗ (1.42, 4.50) 2.65 ∗ (0.27) 4.34 0.27 

SNR 259 ∗ (207, 311) 92.7 ∗ (0.88) 34.0 0.86 

SFNR 250 ∗ (204, 296) 81.21 ∗ (0.89) 28.6 0.88 

percentFluc 0.0896 ∗ (0.0622, 0.117) 0.0479 ∗ (0.40) 0.0584 0.34 

rdc 6.55 ∗ (4.80, 8.30) 3.10 ∗ (0.87) 1.22 0.83 

drift 1.03 ∗ (0.752, 1.31) 0.490 ∗ (0.63) 0.379 0.58 

driftfit 0.671 ∗ (0.435, 0.906) 0.415 ∗ (0.66) 0.300 0.63 

meanGhost 1.57 ∗ (0.973, 2.16) 1.05 ∗ (0.85) 0.440 0.83 

meanBrightGhost 4.44 ∗ (3.08, 5.79) 2.38 ∗ (0.54) 2.19 0.51 

minFWHMX 3.46 ∗ (2.96, 3.96) 0.883 ∗ (0.92) 0.261 0.91 

maxFWHMX 4.19 ∗ (3.35, 5.02) 1.45 ∗ (0.31) 2.16 0.31 

minFWHMY 3.44 ∗ (3.04, 3.83) 0.700 ∗ (0.90) 0.243 0.88 

maxFWHMY 4.10 ∗ (3.41, 4.79) 1.19 ∗ (0.30) 1.80 0.30 

∗ p < 0.05. 

mentally positively larger values than for the Siemens’s scanner sessions 

in the upper right quadrant (i.e., positive factor/observation loadings x 

negative variable loadings). This shows that the manufacturer depen- 

dent blocks seen in Fig. 1 , with GE and Phillips FWHM greater than 

Siemens, are quantitatively dominant effects in the overall data set. We 

also note that in terms of these main effects, multiple QA variables ap- 

pear to be somewhat redundant with meanGhost, rdc and the weaker 

meanBrightGhost (shorter red vector) inversely correlated with the pos- 

itively correlated minFWHMy, minFWHMx, mean, SNR and SFNR. The 

second cluster of variables occurs around the 45° diagonal (i.e., corre- 

lated) within the upper left quadrant and includes percentFluc, std, drift, 

maxFWHMx, maxFWHMy and the weaker driftfit, and all record tem- 

poral variation within- and between- scan sessions within a site, likely 

driven by the multiple outlying scan sessions noted in GE and Phillips 

scanners above. 

3.1.1. Main drivers of variance and anomalous scan sessions 

To further quantitatively understand the structure of these effects we 

used linear mixed effects models fitting the QA parameters to scanners 

(i.e., sites) and, separately, to scanner manufacturers as random effects. 

These results are summarized in Tables 3 and 4 , respectively. Substan- 

tial variance in mean, SNR, SFNR, meanGhost, minFWHMX, and min- 

FWHMY is explained by scanner (ICC ≥ 0.85, p < 0.05 for SFNR and p 

< 0.001 for others) and substantial variance in mean, minFWHMX and 

minFWHMY is explained by scanner manufacturer random effects (ICC 

≥ 0.85, p < 0.001). This is consistent with the PCA factor loadings in 

Fig. 2 , where minFWHMX, minFWHMY, and mean drive the between- 

manufacturer difference between the GE/Philips versus Siemens clus- 

ters. Notably, however, limited variance is explained in measures of 

max FWHM, i.e., maxFWHMX and maxFWHMY, by scanner and man- 

ufacturer (ICC < 0.40, p < 0.001). In consistency with these low ICC 

values, measures of maxFWHM, which show weaker correlations with 

minFWHM ( Fig. A1 ) and are almost orthogonal to minFWHM on the PCA 

plane ( Fig. 2 ), do not appear to drive substantial between-manufacturer 

variance. Nevertheless, a large number of the anomalous scan sessions 

appear to be associated with maxFWHM ( Fig. 2 ). This furthermore in- 

dicates that min and max FWHM are potentially driven by different fac- 

tors. 

3.2. Spatial smoothing reduces variance in minFWHM 

We tested the extent to which scanner differences in imaging reso- 

lution can be alleviated by smoothing the images to the greatest mean 

FWHM of all sites, as advocated by ( Friedman et al., 2006 ). Our data 

show that after spatial smoothing to 7 mm by AFNI’s 3dBlurToFWHM, 

scanner effects contribute to a lesser extent to the variance in minFWHM 

in the x (LMM, ICC = 0.81, p < 0.001) and y (LMM, ICC = 0.72, p 

< 0.001) directions, amounting to 12% and 20% reduction in ICC for 
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Table 4 

Linear mixed effects fit of the QA parameters to the scanner manufacturer as a random effect. 

QA parameter Intercept estimate (95%-CI) Manufacturer SD (ICC) Residual SD Effect size (R 2 ) 

mean 3206 ( p = 0.17) ( − 235, 6648) 2614 ∗ (0.89) 910 0.86 

std 3.32 ( p = 0.12) (0.437, 6.22) 2.16 ∗ (0.18) 4.61 0.16 

SNR 261 ∗ (162, 361) 75.3 ∗ (0.61) 59.9 0.58 

SFNR 248 ∗ (160, 337) 67.3 ∗ (0.63) 51.3 0.59 

percentFluc 0.112 ( p = 0.096) (0.0274, 0.197) 0.0644 ∗ (0.52) 0.0619 0.25 

rdc 5.45 ( p = 0.095) (1.32, 9.56) 3.13 ∗ (0.71) 1.99 0.55 

drift 1.16 ∗ (0.617, 1.70) 0.409 ∗ (0.40) 0.505 0.25 

driftfit 0.712 ∗ (0.374, 1.05) 0.255 ∗ (0.26) 0.430 0.22 

meanGhost 1.34 ( p = 0.094) (0.324, 2.36) 0.770 ∗ (0.49) 0.791 0.44 

meanBrightGhost 4.085 ∗ (2.852, 5.32) 0.903 ∗ (0.080) 3.00 0.072 

minFWHMX 3.76 ∗ (2.35, 5.16) 1.069 ∗ (0.92) 0.308 0.88 

maxFWHMX 4.58 ∗ (2.52, 6.64) 1.56 ∗ (0.33) 2.23 0.25 

minFWHMY 3.71 ∗ (2.52, 4.90) 0.905 ∗ (0.90) 0.295 0.82 

maxFWHMY 4.47 ∗ (2.69, 6.27) 1.35 ∗ (0.34) 1.87 0.23 

∗ p < 0.05. 

Table 5 

Percentage of scan sessions with anomalies for each site for different anomaly thresholds 𝜃. A slice is identified as anomalous if FWHMx > 𝜃 ×
minFWHMx or FWHMy > 𝜃 × minFWHMy, minFWHMx and minFWHMy are the minimum FWHM values in the x and y directions in that scan 

session and 𝜃 is an anomaly threshold. U: percentage of anomalous scan sessions for the unprocessed raw data, S: percentage of anomalous scan 

sessions for data processed using slice SpikeCor, V: percentage of anomalous scan session for volume SpikeCor processed data. 

𝜃 = 2 𝜃 = 3 𝜃 = 5 𝜃 = 7 𝜃 = 10 

Site # sessions U(%) S(%) V(%) U(%) S(%) V(%) U(%) S(%) V(%) U(%) S(%) V(%) U(%) S(%) V(%) 

BYC 141 99 76 99 41 4 40 6 0 4 3 0 1 2 0 0.7 

CAM 48 100 100 100 46 38 40 8 8 8 8 8 8 8 4 6.2 

MCM 47 100 96 96 55 19 23 4 4 4 4 2 4 2 2 2.1 

QNS 46 87 57 87 61 2 61 48 2 48 15 2 11 2 0 2.2 

SBH 34 103 103 103 103 88 88 74 44 44 35 32 32 29 29 29.4 

TBR 30 100 100 100 100 100 100 100 97 100 90 50 90 80 10 73.3 

SMH 48 10 6 10 8 6 8 6 4 6 4 4 4 4 2 2.1 

TOH 33 97 45 97 61 9 48 9 0 6 6 0 3 3 0 0 

TWH 40 100 100 100 100 100 100 92 88 92 50 32 48 18 12 17.5 

UBC 38 100 100 100 100 100 100 100 100 100 100 95 100 89 74 92.1 

UCA 47 100 100 100 98 68 77 36 26 30 17 15 15 15 15 14.9 

UTO 36 8 11 8 0 0 0 0 0 0 0 0 0 0 0 0 

WEU 41 10 10 12 0 0 0 0 0 0 0 0 0 0 0 0 

minFWHMX and minFWHMY, respectively. Smoothing brings the mini- 

mum FWHM up to an approximately common value for all the scanners 

(Appendix Table A6 ) and reduces the variance of minFWHMX and min- 

FWHMY by 81% and 71%, respectively. Nevertheless, the scanner effect 

is far from eliminated. Moreover, smoothing does not appear to remove 

and/or alleviate the anomalous sessions, indicating that these anomalies 

are potentially driven by factors other than differences in reconstruction 

resolution (Appendix Fig. A4 ). 

3.3. ACF Analysis 

As noted, imaging resolution (measured in terms of FWHM) is one of 

the main factors driving the within- and between-site variance and tem- 

poral anomalies. To further investigate imaging resolution, we looked 

at an independent slice-wise measure of resolution using ACF. This was 

motivated by two factors: (1) to provide an independent measure of 

FWHM compared to the fBIRN QA pipeline FWHM measures, and (2) 

to calculate slice-wise measures of FWHM, as our preliminary investi- 

gation of the anomalous images showed possible slice effects (See, for 

example, Fig. 6 ) and the fBIRN QA pipeline does not provide slice mea- 

surements of FWHM - as noted the fBIRN QA pipeline uses the “classic ”

estimate of FWHM, defined as a function of the ratio of variance of first 

differences to data variance ( Forman et al., 1995 ). 

Fig. 3 (a) shows the min and max slice ACF FWHM values for the 

13 participating sites. ACF FWHM values reveal relatively stable but 

distinct manufacturer differences in minimum imaging resolution in x 

(LMM, ICC = 0.90, p < 0.001) and y (LMM, ICC = 0.92, p < 0.001) direc- 

tions, where minFWHM ranges around 2 mm for Siemens and around 

3 mm for GE and Philips scanners (Appendix Table A6 ). Scanner manu- 

facturer to a lesser extent explains the variance in maximum slice ACF 

FWHM in x (LMM, ICC = 0.60, p < 0.001) and y (LMM, ICC = 0.72, p < 

0.001) directions. Nonetheless, these measures reveal multiple anoma- 

lous scan sessions with suspiciously high maxFWHM values. While some 

of these anomalies are observed in the fBIRN QA measures (e.g., those 

of UCA), these anomalies are more prominently revealed by the slice- 

based ACF measures - for example, for BYC0098, compare the max ACF 

FWHM values in Fig. 3 (a), with max fBIRN QA (volume-based) FWHM 

values in Fig. 1 . 

3.4. Scan sessions with anomalies 

Table 5 summarizes the number of anomalous scan sessions detected 

using the slice ACF FWHM values in each site for different thresholds 

𝜃. The number of anomalous sessions incrementally decreases with in- 

creasing the threshold. While the number does not decrease at a uniform 

rate, with sharper decrease between some threshold values compared 

to the others, our data do not show any consistent pattern for different 

sites. For example, for WEU the number of anomalies drops from 4 to 0 

between 𝜃 = 2 and 𝜃 = 3, but for BYC, the number drops from 58 to 8 

between 𝜃 = 3 and 𝜃 = 5. Appendix Table A3 (a) summarizes the anoma- 

lous scan sessions detected using a conservative threshold of 𝜃 = 10. 

Presuming the min FWHM value reflects the manufacturer’s intended 

resolution, any slice with a FWHM value one order of magnitude larger 

than the intended resolution is considered anomalous as such a huge 

discrepancy is undesired and can have detrimental effects on the data. 
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Fig. 3. Slice ACF FWHM values for the 13 participating sites for (a) Unprocessed data, and (b) data processed with SpikeCor. Each bar corresponds to an imaging 

session. Sessions are ordered chronologically for each site. The sites are labeled with a three-letter code as defined in Table 1 . A few anomalous sessions are labeled 

on the plot. Note that FWHM values are plotted in mm on log scales. While SpikeCor effectively removed anomalies in some sessions (e.g., BYC0014, BYC0046, 

BYC0098, and QNS9025), it was not able to ameliorate the anomalies is some other sessions (e.g., SBH0010, SMH0020, UCA009, and UCA0037). 

Principal component analysis of the fBIRN QA parameters of the data 

excluding the 𝜃 = 10 anomalous sessions verify the impact of anomaly 

detection based on slice ACF FWHM on the fBIRN QA variance ( Fig. 4 ). 

With the anomalies removed, maxFWHM and minFWHM, which were 

previously almost orthogonal to each other ( Figs. 2 and A1 (a)), become 

strongly correlated ( Figs. 4 , and A1 (b)), together driving the between- 

manufacturer variance, which is now more clearly reflected by PC1 than 

in Fig. 2 . Consistently, with anomalies excluded, substantial variance 

is now explained by the scanner manufacturer effect in maxFWHMX 

(LMM, ICC = 0.98, p < 0.001) and maxFWHMY (LMM, ICC = 0.98, p < 

0.001), in addition to minFWHMX (LMM, ICC = 0.98, p < 0.001) and 

minFWHMY (LMM, ICC = 0.96, p < 0.001) (Compare with Table 4 ). 

Fig. 5 summarizes slice ACF FWHM values for four representa- 

tive anomalous sessions, namely, BYC0014, QNS9025, SMH0020, and 

UCA0009, identified in Fig. 3 . Slice ACF FWHM values are shown for a 

normal session (SMH0019) in Fig. A2 . The following examples demon- 

strate various cases that we observed in our data: 

BYC0014 shows one prominent spike in maxFWHM in only one time 

frame (frame #6) ( Fig. 5 (a)). A visual investigation of this acquisition 

reveals only one anomalous slice in that volume ( Fig. 6 (a)), which is 

manifest in the maxFWHM values. 

QNS9025 shows multiple spikes in maxFWHM over several time- 

frames ( Fig. 5 (b)). Nevertheless, these spikes do not manifest in the 

mean, median, or the quartiles, indicating that these effects are due to 

Fig. 4. Principal component analysis (PCA) of 

the fBIRN QA variables after the removal of the 

anomalous scan sessions within each site using 

slice ACF FWHM measurements with 𝜃 = 10. 

Shown is the scatter plot of the first two prin- 

cipal components (PC1 and PC2) of the fBIRN 

QA variables for all the imaging sessions. Each 

imaging session is color-coded by scan site 

and shape-coded by scanner manufacturer. 

The imaging sessions within each site are con- 

nected in temporal order of acquisition. The 

ellipses show 95% normal probabilities. The 

original fBIRN QA variables are also plotted 

using red arrows on the PCA plane with lengths 

proportional to the variable loadings. An in- 

teractive version of this plot can be viewed 

at https://kayvanrad.github.io/phantomQA/ 

#anomalies_removed_pca . 
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Fig. 5. Summary of slice ACF measures of FWHM for four anomalous sessions: (a) BYC0014, (b) QNS9015, (c) SMH0020, and (d) UCA0009. Plotted are max, min, 

median, first quartile (Q1), third quartile (Q3), mean, and standard deviation (STD) values of slice ACF FWHM for each volume in the time series in the x and y 

directions from the 41 slices in each 2400 ms scan frame. 
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Fig. 6. BYC0014 Frame #6- Volume with a single anomalous slices. (a) Detrended data. A single anomalous slice stands out. (b) Data preprocessed by SpikeCor 

censoring followed by detrending. The anomalous slice is censored out (i.e., replaced with interpolated data) by SpikeCor. 

Fig. 7. QNS9025 Frame #147- Volume with a few anomalous slices. (a) Detrended data. A few anomalous slices are apparent. (b) Data preprocessed by SpikeCor 

censoring followed by detrending. The anomalous slices are censored out by SpikeCor. 

one or a few individual slices but not the majority of slices in the corre- 

sponding volumes. Fig. 7 (a) shows an example of one such volume with 

a few anomalous slices. 

SMH0020 shows blocks of defective volumes with unusually high 

measures of FWHM ( Fig. 5 (c)). The anomalies are manifest not only 

in maxFWHM values, but also in other measures of center and spread 

(mean, median, quartiles). These anomalies are due to multiple and 

sometimes many anomalous slices in the corresponding volumes. 

Fig. 8 (a) displays these anomalies in one such volume. For compari- 

son, a normal volume in the same scan session is shown in Fig. 8 (c). 

Fig. A2 displays slice FWHM summary values for SMH0019 (the monthly 

scan session immediately prior to SMH00200), which has normal FWHM 

values. 

Most of the frames (i.e., volumes) in UCA0009 are defective with 

slice instabilities ( Fig. 5 (d)). Moreover, these anomalies are manifest 

in the median and the quartiles in addition to the max FWHM values, 

indicating that a large portion of the slices are defective in each volume. 

3.4.1. Prevalence of slice anomalies per scan session 

Fig. A3 (a) summarizes the total number of slice anomalies and the 

median of the number of slice anomalies per volume for all the scan 

sessions. As noted, the distribution of slice anomalies varies greatly be- 

tween different scan sessions. For example, while there are a number of 

anomalous slices in QNS9025 and SMH0020, the median of the number 

of anomalies per volume is zero for those scan session, indicating that 

less than half of the frames (i.e., volumes) in the acquisition were af- 

fected by these instabilities. On the other hand, UCA0009 has a large to- 

tal number of anomalies, and a large median of the number of anomalies 

per volume, indicating that a substantial number of slices in a substantial 

number of volumes (more than half) were affected by these anomalies. 

These observations are consistent with those of Fig. 5 . 

3.5. Correction of anomalous slices 

Our data show that slice-based SpikeCor can effectively identify 

anomalous slices under certain circumstances, namely, when only a frac- 

tion of the slices are defective, but fails when they constitute a large frac- 

tion of the slices. For example, slice-based SpikeCor succeeds in remov- 

ing or alleviating the anomalies in BYC0014 ( Figs. 9 (a) and 6 (b)) and 

QNS9025 ( Figs. 9 (b) and 7 (b)). On the other hand, SpikeCor does not ap- 

pear to be effective in removing the anomalies for SMH0020 ( Figs. 9 (c) 

and 8 (b)) and for UCA0009 ( Fig. 9 (d)). Furthermore, SpikeCor does not 

affect normal acquisition, e.g. SMH 0019 ( Fig. A2 ). Our data also indi- 

cate that slice-based SpikeCor is more effective than the volume-based 

SpikeCor in removing the anomalies, regardless of the threshold used 

to detect anomalies ( Table 5 ). Appendix Table A3 (b) lists the anoma- 

lous scan sessions, identified using a conservative threshold of 𝜃 = 10, 

for the unprocessed data as well as for volume-based and slice-based 

SpikeCor preprocessing for each center. With the exception of volume- 

based SpikeCor for UBC, SpikeCor (both slice- and volume-based) pro- 

cessed anomalies are a subset of those of the raw data. That is, SpikeCor 

does not produce additional synthetic anomalies. 
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Fig. 8. SMH0020 Frame #154 (a,b)- Volume with several anomalous slices. (a) Detrended data. Several anomalous slices strike out. (b) Data preprocessed by SpikeCor 

censoring followed by detrending. SpikeCor fails to detect and remove anomalous slices. Frame #89 (c,d)- Normal volume. (c) Detrended data. No anomalous slices 

are observed. (d) Data preprocessed by SpikeCor censoring followed by detrending. SpikeCor does not appear to affect the volume. 

3.6. Preliminary human experiments 

For the PCC seed and the preprocessing pipelines using volume- (VC) 

or slice-based (SC) censoring, z-mapped session connectivity volumes 

(CONNz) were analysed using spit-half PCA to ensure a significant rein- 

forcing connectivity map that is stable and reproducible exists across the 

64 CONNz volumes. Individual session variance was calculated for the 

VC CONNz (VCz) and SC CONNz (SCz) volumes using all PC components 

from the split-half PCA. 

Split-half PCA shows one highly-significant (VC: p < 0.01; SC: p < 0.01) 

highly reproducible (VC: R = 0.95; SC: R = 0.95) connectivity pattern ac- 

counting for (VC:44%; SC:45%) of total variance ( Fig. 10 ). This reflects 

some of the classical default mode regions seen when using a PCC seed 

in resting state data with the large Z-values and associated high pattern 

reproducibilities indicating a strong stable connectivity pattern being 

reinforced across most sessions. 

Using either a paired t -test ( p = 0.56) or Wilcoxon non-parametric 

run test ( p = 0.64) there is no difference between VCz and SCz session 

variance distributions. 

To explore the possible changes in seed connectivity values per voxel 

we regressed the brain-masked SCz voxel values against the VCz voxel 

values separately for each session. Fig. 11 demonstrates these regression 

slope values plotted as a function of the 64 session numbers so that scan 

date progresses from left (Session 1) to right (Session 77) from October 

2013 through August 2016. Note that there are missing sessions with a 

total of only 64 rs-fMRI data sets because session numbers were taken 

from CAN-BIND study enrollment numbers, and for a variety of reasons 

not all participants had a MRI scan. There is no significant trend of slope 

with session number ( p = 0.41; F = 0.70). However, the 32 sessions up 

to and including session 42 (large red disk) have a lower slope variance 

than for sessions after 42. The first 32 slope values have a variance ratio 

of 0.425 (two-tailed F-test: F = 0.425, p < 0.05, 95%-CI = [0.21,0.87]) 

of the slope value variance for the 32 session # s > 42. This fits with 

our monthly fBIRN phantom measurements from Calgary showing that 

the scanner became more unstable in the later period of human data 

collection for CAN-BIND. 

In Fig. 11 we see both large increases and decreases in overall z- 

scores above 20%. Fig. 12 (a) shows session 64 with a large decrease 

(red disk in Fig. 11 ), and Fig. 12 (b) shows session 42 with a large in- 

crease (purple disk in Fig. 11 ). Overall 46 of the 64 (72%) sessions have 

slopes less than or equal to 1.0 showing that the primary impact of slice 

censoring versus volume censoring is to reduce z-scores. 

4. Discussion 

Scanner stability is an important concern for fMRI experiments 

( Friedman and Glover, 2006 ). Instabilities can add unexplained vari- 

ance to the data. This is particularly relevant to multi-site longitudinal 

studies. Not only is it important to ensure the scanner remains stable 

throughout a run (set of volumes acquired using a prescribed pulse se- 

quence), it is also very important to ensure stability within each site over 

time (i.e., between different imaging sessions in one site), and between 

sites. Our data highlight the importance and efficacy of phantom scans 

for monitoring the stability of MRI scanners and identify an additional 

important stability dimension across slices within a volume. Routine QA 

phantom scans at all sites effectively detected instabilities across all of 

these possible stability dimensions across multiple scanners. 

As noted above, we used the fBIRN QA pipeline to calculate 14 

QA parameters, the utility of which has been described in prior works 

( Friedman and Glover, 2006 ; Glover et al., 2012 ). It was unknown to 

what extent these 14 variables capture different variance / noise sources 

and one of the goals of the current study was to evaluate the utility of 
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Fig. 9. Summary of slice ACF measures of FWHM after SpikeCor censoring for the scan sessions of Fig. 5 (a) BYC0014, (b) QNS9015, (c) SMH0020, and (d) SMH0019. 

Plotted are max, min, median, first quartile (Q1), third quartile (Q3), mean, and standard deviation (STD) values of ACF FWHM for each volume in the time series 

in the x and y directions. 
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Fig. 10. Split-half PCC-seed, group zMAP from VCz (left) and SCz 

(right) sessions. PCC seed shown as black cross. Negative color scale 

from dark blue ( Z = − 5) to green-white ( Z = − 25), and positive color 

scale from red ( Z = 5) to yellow-white ( Z = 25). 

Fig. 11. Slope of SCz voxel values regressed against the VCz 

voxel values separately for each session plotted chronologi- 

cally as a function of session number. 

the published fBIRN parameters for monitoring scanner stability and 

precision, and identify the most important QA variables to monitor. 

4.1. Between-manufacturer variance 

Our data indicate that between manufacturer differences in imaging 

resolution are a major source of variance in multisite studies. In partic- 

ular, we identified two distinct mechanisms by which these differences 

can contribute to the variance: (1) differences in minFWHM values, at- 

tributed to the differences intrinsic resolution of the scanners, and (2) 

differences in maxFWHM values, attributed to slice anomalies. 

We identified two primary clusters of variable effects over time, and 

site and manufacturer ( Fig. 2 ). The first cluster of variables includes min- 

FWHMy, minFWHMx, mean, SNR, and SFNR. The positive correlation 

between these variables makes sense since the higher FWHM in GE and 

Phillips scanners leads to higher SNR/SFNR values. We also noted that 

meanGhost, meanBrightGhost, and rdc are inversely correlated with the 

positively correlated minFWHMy, minFWHMx, mean, SNR, and SFNR. 

While minFWHMX, minFWHMY, and mean may be considered manu- 

facturer traits, SNR, SFNR, rdc, and meanGhost are more site depen- 

dent and capture significant scanner differences within manufacturers. 

Furthermore, these variables might be expected to be relatively stable 

within sessions, whereas the second cluster of variables, including per- 

centFluc, std, drift, maxFWHMx, maxFWHMy, and riftfit, which are lo- 

cated at approximately 90° to the first cluster on the PCA plane, largely 

reflect within session temporal fluctuations. The correlation (positive or 

negative) between the QA variables within each cluster indicate that 

multiple QA variables appear to be somewhat redundant. 

We note that while there exists a nested dependence among the ob- 

servations due to site effects, the main objective of the PCA illustrations 

is descriptive rather than inferential, which is not affected by complica- 

tions due to non-independence of the observations. As noted above, the 

PCA illustrations provide insight into the structure of the data, including 

the between- and with-site effects. 

We observe significant contributions of scanner manufacturer effects 

to the variance in minFWHM (LMM, ICC ≥ 0.90, p < 0.001), which 

presumably reflects the manufacturer’s intended imaging resolution. 

Our data show clear differences in minFWHM between manufactur- 

ers ( Figs. 1 , 3 , and Appendix Table A6 ), which are attributed to the 

difference in the reconstruction techniques used by different vendors 

(e.g., differences in apodization, etc.) ( Friedman et al., 2006 ). More- 

over, we noted that preprocessing by blurring all images to a common 

spatial resolution (e.g., the coarsest spatial resolution of all scanners) 

can reduce scanner-related variance in imaging resolution, reflected in 

minFWHM values ( Table A6 ). However, mean differences of > 1 mm 

remain suggesting that a new algorithm other than the current AFNI 

3dBlurToFWHM (Version AFNI_17.3.05) is needed to further reduce this 

major inter-scanner difference and its impact on SNR. 

The anomalous scan sessions, on the other hand, are reflected in 

maxFWHM, which is almost orthogonal to the minFWHM ( Fig. 2 ). This 

indicates that maxFWHM, which is more than one order of magnitude 

larger than the minFWHM for some scan sessions, is driven by factors 

other than the vendor-specific reconstruction resolution. Nevertheless, 

min and max FWHM become more strongly correlated if the anoma- 

lous sessions are excluded ( Fig. 4 ) and scanner manufacturer becomes 

a substantial driver of variance in maxFWHM in addition to minFWHM 

(LMM, ICC ≥ 0.90, p < 0.001). Furthermore, with these sessions ex- 
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Fig. 12. (a) Session 64 CONN zMAP for VCz (left) and SCz 

(right). Negative color scale from dark blue ( Z = − 0.5) to green-white 

( Z = − 1.5), and positive color scale from red ( Z = 0.5) to yellow-white 

( Z = 1.5). Regression Eqn: SCz_64 = 0.70 ∗ VCz_64 + 0.032, R 2 = 0.94. 

(b) Session 42 CONN zMAP for VCz (left) and SCz (right). Negative 

color scale from dark blue ( Z = − 0.5) to green-white ( Z = − 1.5), and 

positive color scale from red ( Z = 0.5) to yellow-white ( Z = 1.5). Re- 

gression Eqn: SCz_42 = 1.29 ∗ VCz_42 - 0.012, R 2 = 0.85). 

cluded, measures of min and max FWHM show stronger correlation 

with center and spread measures of FWHM, i.e., median and quartiles 

( Fig. A1 ). In addition, with the anomalies excluded, slice ACF mea- 

sures of FWHM also show stronger correlation with fBIRN QA measures 

of (volume) FWHM ( Fig. A1 ). These observations confirm that these 

anomalies are caused by instabilities affecting individual slices rather 

than by global instabilities affecting entire volumes and/or the entire 

acquisition. 

4.2. Slice anomalies 

Our data provide evidence of a potentially significant new source 

of variance due to anomalous individual slices without subject motion 

or any sources of physiological noise. These anomalies manifest in ab- 

normally high values of slice ACF FWHM. They can go unnoticed with 

the fBIRN QA measurements but can be more effectively revealed using 

slice ACF FWHM measures of imaging resolution. Since these anomalies 

are caused by instabilities affecting individual slices rather than an en- 

tire volume, they are best captured by slice measures of FWHM, rather 

than volume FWHM where a single FWHM value (in each direction) is 

calculated for each volume using a volume ACF or by averaging over 

slices. 

We presented a simple anomaly detection criterion based on the slice 

ACF FWHM, where the minFWHM is used as a reference and anomalies 

are detected using a multiplicative threshold. We also noted that the 

number of scan sessions with slice anomalies incrementally decreases 

with increasing the threshold. The value of the threshold can be cho- 

sen empirically depending on how strictly the user wishes to identify 

anomalies based on the application. 

Slice anomalies are observed more frequently in older scanners. We 

almost never observed slice anomalies in WEU and UTO scans, which 

have relatively new Prisma scanners. We speculate these anomalies are 

related to aging hardware, resulting in spontaneous instabilities in the 

scanners’ acquisition performance. 

4.3. Correcting anomalous slices 

We noted a preprocessing approach by which these slice anomalies 

can be corrected under certain circumstances. Since these scanner in- 

stabilities affect individual slices (rather than entire volumes) a slice- 

based censoring scheme is more effective in removing these anomalies 

than a volume-based censoring scheme. Among the available censoring 

techniques, SpikeCor provides the option for slice-based censoring. Our 

results confirm that slice-based SpikeCor more effectively removes the 

anomalies than the volume-based SpikeCor ( Table 5 ). 

For correction to be effective in removing slice anomalies (1) the 

anomalies should occur in discontiguous time frames or discontiguous 

blocks of at most a few frames length (hence enabling interpolation), 

and (2) the censoring method should succeed in correctly identifying 

the anomalous slices. SpikeCor fails to correctly identify the anomalous 

slices when they constitute a large fraction of the total number of slices 

in the volume. This is most prominently evident in several scan sessions 
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at SBH, UBC, and UCA, where SpikeCor has limited efficacy in detecting 

anomalous slices within the scans. 

It should be noted that different independent metrics are involved 

in SpikeCor and in ACF anomaly detection. The ACF anomaly detec- 

tion is based on the physical measurements of ACF FWHM, where 

anomalies are detected using a threshold with respect to the minimum 

FWHM value. SpikeCor, on the other hand, uses a statistical thresh- 

old for anomaly detection. While one could also use the slice ACF 

threshold for anomaly detection for censoring, the goal of the cur- 

rent study is not to propose yet another censoring technique, nor is 

it to compare the efficacy of different censoring techniques. The cur- 

rent study demonstrates slice anomalies on phantom data and pro- 

vides a proof-of-concept approach to removing them under certain 

circumstances. 

For the next step of testing the impact of slice- versus volume-based 

censoring in resting state human data we note that it may be difficult 

to separate and detect slice anomalies of the sort demonstrated here 

from motion and physiological effects. As a result it is unclear exactly 

what metric should be used to show improved performance with slice- 

based censoring in resting state human scans. This is particularly the 

case since temporal variance itself is considered a cognitive signal in 

some studies ( Garrett et al., 2013 ) and while presumably it should de- 

crease in cases of extreme anomalies it is unclear if it should generally 

go up or down after slice-based censoring. We have presented some pre- 

liminary human data to illustrate these issues and discuss this further 

below. 

4.4. Hardware and/or software changes 

Hardware and/or software changes are reflected in and can be iden- 

tified by the QA parameters. Our data show an abrupt step change in 

several QA parameters between SBH0010 and SBH0011, including in 

FWHM (both fBIRN QA measures and slice ACF measures), percent- 

Fluc, and std ( Figs. 1 and 3 ). A follow up with the imaging site re- 

vealed that the RF coil was replaced in between those scans. QNS up- 

dated their scan parameters by using a lower pixel bandwidth ( Table A2 ) 

and switching from MSENSE to GRAPPA to resolve ghosting issues that 

were occurring in their images. These changes are reflected as promi- 

nent step changes in measures of meanGhost and meanBrightGhost in 

Fig. 1 . This change is also reflected in slice ACF measures of maxFWHM, 

as a step increase after the change in parameters ( Fig. 3 ). We also ob- 

served step changes in ghosting and FWHM parameters for UBC ( Fig. 1 ). 

An investigation of the scan parameters revealed that these parame- 

ters were updated to match those of the CDIP protocol ( Table A2 ), 

which in turn resulted in step changes in QA parameters of ghost- 

ing and FWHM (where these measures improved, i.e., their value de- 

creased, once the scan parameters were set to those of the CDIP proto- 

col). The crop of large anomalies in UCA prior to and including UCA0037 

was due to a failing head coil that was eventually replaced after the 

UCA0037 scan in December 2016. As a result, the UCA scans following 

UCA0037 have normal FWHM values. Note that the last human scan, 

session 77, was acquired in August 2016, four months before the fail- 

ing head coil was replaced. These results indicate that the fBIRN QA 

parameters and the FWHM measures in particular may provide a sen- 

sitive means of monitoring MRI scanners for early signs of head coil 

failure. 

4.5. Translation to human studies 

The ability to detect slice anomalies and the efficacy of the prepro- 

cessing strategies for controlling them needs to be more comprehen- 

sively verified on human data. Our preliminary data show that there is 

an impact of slice despiking versus volume despiking for PCC seed con- 

nectivity. While 46 of the 64 (72%) sessions have slopes less than or 

equal to 1.0 ( Fig. 11 ), these regression plots of individual session val- 

ues show both highly reduced and highly increased voxel connectivity 

values of more than 30%. Therefore, while on average the SC CONNz 

map connectivity values are reduced relative to VC CONNz there are 

individual sessions that have strongly increased SC CONNz map con- 

nectivity values. We speculate that the slice censoring may be overcor- 

recting in the majority of sessions with reduced connectivity values as 

they may not contain significant slice anomalies, but testing this hy- 

pothesis is beyond the scope of this paper. While the group connectivity 

maps are almost identical (i.e., Fig. 10 ) our results indicate that slice- 

versus volume-censoring may significantly change inter-individual dif- 

ferences in connectivity and is therefore an important issue to be further 

understood as the field focuses more and more on individual effects, 

and not only group results. The presence of physiological processes and 

head motion adds substantial variance in human data, which can con- 

sequently induce challenges for accurate detection and removal of the 

anomalous slices and the effects we observe may be the result of in- 

teractions between multiple preprocessing steps. Additionally, previous 

literature has investigated the effect of a number of environmental and 

physiological variables on within-subject variance in longitudinal stud- 

ies ( Karch et al., 2019 ). Notably, it has been shown that days since the 

first scan and time of day are predictors of within-subject variance in 

structural MRI ( Karch et al., 2019 ; Nakamura et al., 2015 ). The present 

human data provide a preliminary investigation of the impact of slice 

vs volume censoring on human resting state fMRI scans. Our phantom 

data identify unexpected slice anomalies and provide proof-of-concept 

preprocessing approaches for controlling these anomalies. We specu- 

late these scanner dependent differences and fluctuations are equally 

present in human scans. Nevertheless, their relative magnitude and im- 

pact compared to other variables affecting in vivo scans remains to be 

investigated. Subsequent studies need to focus on translating the find- 

ings to human scans, taking the effect of the present scanner-related 

differences and fluctuation into account in relation to subject-specific 

variables. 

4.6. Concluding remarks 

In conclusion, the present study provides evidence of slice instabil- 

ities in fMRI scans, which can result in unexplained variance in the 

data. These instabilities can be detected using slice ACF measurements 

of FWHM and can, under certain circumstances, be controlled by prepro- 

cessing. When preprocessing is not effective in controlling these instabil- 

ities, the affected scan sessions can be detected using slice ACF FWHM 

values and excluded in subsequent analyses. Between-manufacturer dif- 

ferences in spatial resolution is another main factor driving variance 

in multisite studies, which can also be at least partially controlled by 

preprocessing. The utilization of regular QA scan protocols can reveal 

problems with the performance of the scanners, some of which may be 

addressed by hardware and/or software modifications, as was the case 

for at least two of the participating sites where increasing slice instabil- 

ities detected with slice-based FWHM measurements eventually led to 

head coils being replaced. Furthermore, our phantom results have led 

to preliminary human studies that have indicated the existence of quite 

large interindividual connectivity differences as a result of applying the 

same slice censoring technique in humans that removes some of the slice 

instabilities detected in phantoms.. 
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Table A1 

Acquisition parameters for the Canadian Dementia Imaging rs-fMRI protocol 

(CDIP). 

GE Philips Siemens 

B0 3T 3T 3T 

Model Discovery Achieva Skyra/Trio/Prisma 

Sequence name fMRI EPI fMRI EPI fMRI EPI 

Imaging options EDR GRE EPI, CLEAR SENSE NA 

TE (ms) 30 30 30 

TR (ms) 2400 2400 2400 

FA (°) 70 70 70 

FoV (mm) 224 × 224 224 × 224 224 × 224 

Matrix 64 × 64 64 × 64 64 × 64 

#slices 41 41 41 

Voxel (mm) 3.5 × 3.5 × 3.5 3.5 × 3.5 × 3.5 3.5 × 3.5 × 3.5 

Orientation Axial Axial Axial 

NEX 1 1 1 

Acceleration 2 2 2 

BW (Hz/Px) 7812 2441 2440 

#acquisitions 250 250 250 

Prescan time 00:30 00:30 00:30 

Scan time 10:00 10:00 10:00 

Total scan time 10:30 10:30 10:30 

Appendix 

Scan parameters 

Correlation analysis 

The correlation between fBIRN QA and ACF FWHM variables is dis- 

played in Fig. A1 (a). fBIRN QA measures of min FWHM are highly cor- 

related with each other (minFWHMX and minFWHMY) and fBIRN mea- 

sures of max FWHM also highly correlate with each other (maxFWHMX 

and maxFWHMY). However, fBIRN measures of min FWHM do not 

show strong correlation with those of max FWHM. Moreover, as ex- 

pected, SNR and SFNR are highly correlated and so are measures of 

drift and driftfit. Similar to fBIRN measures, although ACF measures of 

min FWHM are highly correlated with each other (minFWHMx and min- 

FWHMy) and ACF measures of max FWHM are also highly correlated 

with each other (maxFWHMx and maxFWHMy), we did not observe 

strong correlation between ACF measures of min and max FWHM. More- 

over, while “center and spread ” measures of ACF FWHM (i.e., mean, std, 

med, Q1, and Q3) are highly correlated, they do not show strong cor- 

relation with min and max ACF FWHM measures. This indicates that 

measures of max and min FWHM are potentially driven by different fac- 

tors. 

The correlation between fBIRN QA measures and slice ACF FWHM 

measures with the anomalous sessions removed is summarized in 

Fig. A1 (b). After the removal of the anomalous sessions, fBIRN mea- 

sures of min and max FWHM now show strong correlations with each 

other. Also, min and max slice ACF FWHM now strongly correlate with 

each other and with center and spread measures. Furthermore, slice ACF 

measures of FWHM now show stronger correlation with fBIRN QA mea- 

sures of FWHM. 

Scan sessions with slice anomalies 

Spatial smooting 

Variance within different sites and different manufacturers 

Table A5 . 
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Table A2 

Summary of the sites that updated their rs-fMRI scan parameters during the study to match 

those of the CDIP ( Table A1 ). The echo time (TE), repetition time (TR), flip angle (FA), 

voxel size, and pixel bandwidth (BW), are shown before (b) and after (a) the update. 

TE(ms) TR(ms) FA (°) Voxel (mm) BW (Hz/Px) 

b a b a b a b a b a 

CAM 30 30 2000 2400 75 70 4.0 × 4.0 3.5 × 3.5 7812 7812 

QNS 25 30 2000 2400 75 70 4.0 × 4.0 3.5 × 3.5 2232 2441 

TBR 30 30 2400 2400 70 70 3.5 × 3.5 3.5 × 3.5 3241 3125 

TWH 30 30 2000 2400 75 70 4.0 × 4.0 3.5 × 3.5 7812 7812 

UBC 30 30 2000 2400 90 70 4.0 × 4.0 3.5 × 3.5 4783 3127 

UCA 30 30 2000 2400 75 70 4.0 × 4.0 3.5 × 3.5 7812 7812 

Fig. A1. Correlation between fBIRN QA and ACF FWHM variables: (a) all sessions (left), (b) anomalous sessions excluded (right). 

Table A3 

Summary of anomalous sessions within each imaging site detected using a conservative anomaly threshold of 𝜃 = 10: (a) unprocessed data, (b) subsequent to 

processing with slice-based SpikeCor, and (c) subsequent to processing with volume-based SpikeCor. 

(a) Unprocessed (b) Slice SpikeCor (c) Volume SpikeCor 

Site Sessions Anomalies Anomalous sessions Anomalies Anomalous sessions Anomalies Anomalous sessions 

BYC 141 3 BYC01_PHA_FBN1394_0014 

BYC01_PHA_FBN1394_0046 

BYC01_PHA_FBN1394_0098 

0 1 BYC01_PHA_FBN1394_0046 

CAM 48 4 CAM01_PHA_FBN1299_0001 

CAM01_PHA_FBN1299_0002 

CAM01_PHA_FBN1392_0000 

CAM01_PHA_FBN1392_0013 

2 CAM01_PHA_FBN1299_0002 

CAM01_PHA_FBN1392_0013 

3 CAM01_PHA_FBN1299_0001 

CAM01_PHA_FBN1299_0002 

CAM01_PHA_FBN1392_0013 

MCM 47 1 MCM01_PHA_FBN1307_0032 1 MCM01_PHA_FBN1307_0032 1 MCM01_PHA_FBN1307_0032 

QNS 46 1 QNS01_PHA_FBN1305_9025 0 1 QNS01_PHA_FBN1305_9025 

SBH 34 10 SBH01_PHA_FBN1381_0001 

SBH01_PHA_FBN1381_0002 

SBH01_PHA_FBN1381_0003 

SBH01_PHA_FBN1381_0004 

SBH01_PHA_FBN1381_0005 

SBH01_PHA_FBN1381_0006 

SBH01_PHA_FBN1381_0007 

SBH01_PHA_FBN1381_0008 

SBH01_PHA_FBN1381_0009 

SBH01_PHA_FBN1381_0010 

10 SBH01_PHA_FBN1381_0001 

SBH01_PHA_FBN1381_0002 

SBH01_PHA_FBN1381_0003 

SBH01_PHA_FBN1381_0004 

SBH01_PHA_FBN1381_0005 

SBH01_PHA_FBN1381_0006 

SBH01_PHA_FBN1381_0007 

SBH01_PHA_FBN1381_0008 

SBH01_PHA_FBN1381_0009 

SBH01_PHA_FBN1381_0010 

10 SBH01_PHA_FBN1381_0001 

SBH01_PHA_FBN1381_0002 

SBH01_PHA_FBN1381_0003 

SBH01_PHA_FBN1381_0004 

SBH01_PHA_FBN1381_0005 

SBH01_PHA_FBN1381_0006 

SBH01_PHA_FBN1381_0007 

SBH01_PHA_FBN1381_0008 

SBH01_PHA_FBN1381_0009 

SBH01_PHA_FBN1381_0010 

TBR 30 24 TBR01_PHA_FBN1319_0001 

TBR01_PHA_FBN1319_0002 

TBR01_PHA_FBN1319_0005 

TBR01_PHA_FBN1319_0006 

TBR01_PHA_FBN1319_0007 

TBR01_PHA_FBN1319_0008 

TBR01_PHA_FBN1319_0009 

3 TBR01_PHA_FBN1319_0020 

TBR01_PHA_FBN1319_0024 

TBR01_PHA_FBN1319_0029 

22 TBR01_PHA_FBN1319_0001 

TBR01_PHA_FBN1319_0005 

TBR01_PHA_FBN1319_0006 

TBR01_PHA_FBN1319_0007 

TBR01_PHA_FBN1319_0008 

TBR01_PHA_FBN1319_0009 

( continued on next page ) 
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Table A3 ( continued ) 

(a) Unprocessed (b) Slice SpikeCor (c) Volume SpikeCor 

Site Sessions Anomalies Anomalous sessions Anomalies Anomalous sessions Anomalies Anomalous sessions 

TBR01_PHA_FBN1319_0010 

TBR01_PHA_FBN1319_0011 

TBR01_PHA_FBN1319_0015 

TBR01_PHA_FBN1319_0016 

TBR01_PHA_FBN1319_0017 

TBR01_PHA_FBN1319_0018 

TBR01_PHA_FBN1319_0019 

TBR01_PHA_FBN1319_0020 

TBR01_PHA_FBN1319_0021 

TBR01_PHA_FBN1319_0023 

TBR01_PHA_FBN1319_0024 

TBR01_PHA_FBN1319_0025 

TBR01_PHA_FBN1319_0026 

TBR01_PHA_FBN1319_0027 

TBR01_PHA_FBN1319_0028 

TBR01_PHA_FBN1319_0029 

TBR01_PHA_FBN1319_0030 

TBR01_PHA_FBN1319_0010 

TBR01_PHA_FBN1319_0011 

TBR01_PHA_FBN1319_0015 

TBR01_PHA_FBN1319_0016 

TBR01_PHA_FBN1319_0017 

TBR01_PHA_FBN1319_0018 

TBR01_PHA_FBN1319_0019 

TBR01_PHA_FBN1319_0021 

TBR01_PHA_FBN1319_0023 

TBR01_PHA_FBN1319_0024 

TBR01_PHA_FBN1319_0025 

TBR01_PHA_FBN1319_0026 

TBR01_PHA_FBN1319_0027 

TBR01_PHA_FBN1319_0028 

TBR01_PHA_FBN1319_0029 

TBR01_PHA_FBN1319_0030 

SMH 48 2 SMH01_PHA_FBN1395_0020 

SMH01_PHA_FBN1395_0023 

1 SMH01_PHA_FBN1395_0020 1 SMH01_PHA_FBN1395_0020 

TOH 33 1 TOH01_PHA_FBN1384_0039 0 0 

TWH 40 7 TWH01_PHA_FBN1304_0001 

TWH01_PHA_FBN1304_0002 

TWH01_PHA_FBN1304_0003 

TWH01_PHA_FBN1304_0004 

TWH01_PHA_FBN1304_0010 

TWH01_PHA_FBN1304_0024 

TWH01_PHA_FBN1304_0031 

5 TWH01_PHA_FBN1304_0001 

TWH01_PHA_FBN1304_0002 

TWH01_PHA_FBN1304_0003 

TWH01_PHA_FBN1304_0004 

TWH01_PHA_FBN1304_0031 

7 TWH01_PHA_FBN1304_0001 

TWH01_PHA_FBN1304_0002 

TWH01_PHA_FBN1304_0003 

TWH01_PHA_FBN1304_0004 

TWH01_PHA_FBN1304_0014 

TWH01_PHA_FBN1304_0024 

TWH01_PHA_FBN1304_0031 

UBC 38 34 UBC01_PHA_FBN0001_0008 

UBC01_PHA_FBN0001_0009 

UBC01_PHA_FBN0001_0010 

UBC01_PHA_FBN0001_0012 

UBC01_PHA_FBN0001_0013 

UBC01_PHA_FBN0001_0014 

UBC01_PHA_FBN0001_0015 

UBC01_PHA_FBN0001_0016 

UBC01_PHA_FBN0001_0017 

UBC01_PHA_FBN0001_0018 

UBC01_PHA_FBN0001_0020 

UBC01_PHA_FBN0001_0021 

UBC01_PHA_FBN0001_0022 

UBC01_PHA_FBN0001_0023 

UBC01_PHA_FBN0001_0024 

UBC01_PHA_FBN0001_0025 

UBC01_PHA_FBN0001_0026 

UBC01_PHA_FBN0001_0027 

UBC01_PHA_FBN0001_0028 

28 UBC01_PHA_FBN0001_0008 

UBC01_PHA_FBN0001_0009 

UBC01_PHA_FBN0001_0010 

UBC01_PHA_FBN0001_0012 

UBC01_PHA_FBN0001_0013 

UBC01_PHA_FBN0001_0014 

UBC01_PHA_FBN0001_0015 

UBC01_PHA_FBN0001_0016 

UBC01_PHA_FBN0001_0017 

UBC01_PHA_FBN0001_0021 

UBC01_PHA_FBN0001_0022 

UBC01_PHA_FBN0001_0023 

UBC01_PHA_FBN0001_0025 

UBC01_PHA_FBN0001_0026 

UBC01_PHA_FBN0001_0027 

UBC01_PHA_FBN0001_0028 

UBC01_PHA_FBN0001_0029 

UBC01_PHA_FBN0001_0030 

UBC01_PHA_FBN0001_0031 

35 UBC01_PHA_FBN0001_0008 

UBC01_PHA_FBN0001_0009 

UBC01_PHA_FBN0001_0010 

UBC01_PHA_FBN0001_0012 

UBC01_PHA_FBN0001_0013 

UBC01_PHA_FBN0001_0014 

UBC01_PHA_FBN0001_0015 

UBC01_PHA_FBN0001_0016 

UBC01_PHA_FBN0001_0017 

UBC01_PHA_FBN0001_0018 

UBC01_PHA_FBN0001_0020 

UBC01_PHA_FBN0001_0021 

UBC01_PHA_FBN0001_0022 

UBC01_PHA_FBN0001_0023 

UBC01_PHA_FBN0001_0024 

UBC01_PHA_FBN0001_0025 

UBC01_PHA_FBN0001_0026 

UBC01_PHA_FBN0001_0027 

UBC01_PHA_FBN0001_0028 

UBC01_PHA_FBN0001_0029 

UBC01_PHA_FBN0001_0030 

UBC01_PHA_FBN0001_0031 

UBC01_PHA_FBN0001_0032 

UBC01_PHA_FBN0001_0033 

UBC01_PHA_FBN0001_0034 

UBC01_PHA_FBN0001_0036 

UBC01_PHA_FBN0001_0037 

UBC01_PHA_FBN0001_0038 

UBC01_PHA_FBN0001_0039 

UBC01_PHA_FBN0001_0041 

UBC01_PHA_FBN0001_0042 

UBC01_PHA_FBN0001_0043 

UBC01_PHA_FBN0001_0044 

UBC01_PHA_FBN0001_0045 

UBC01_PHA_FBN0001_0033 

UBC01_PHA_FBN0001_0037 

UBC01_PHA_FBN0001_0038 

UBC01_PHA_FBN0001_0039 

UBC01_PHA_FBN0001_0041 

UBC01_PHA_FBN0001_0042 

UBC01_PHA_FBN0001_0043 

UBC01_PHA_FBN0001_0044 

UBC01_PHA_FBN0001_0045 

UBC01_PHA_FBN0001_0029 

UBC01_PHA_FBN0001_0030 

UBC01_PHA_FBN0001_0031 

UBC01_PHA_FBN0001_0032 

UBC01_PHA_FBN0001_0033 

UBC01_PHA_FBN0001_0034 

UBC01_PHA_FBN0001_0035 

UBC01_PHA_FBN0001_0036 

UBC01_PHA_FBN0001_0037 

UBC01_PHA_FBN0001_0038 

UBC01_PHA_FBN0001_0039 

UBC01_PHA_FBN0001_0041 

UBC01_PHA_FBN0001_0042 

UBC01_PHA_FBN0001_0043 

UBC01_PHA_FBN0001_0044 

UBC01_PHA_FBN0001_0045 

UCA 47 7 UCA01_PHA_FBN1245_0009 

UCA01_PHA_FBN1245_0020 

UCA01_PHA_FBN1245_0030 

UCA01_PHA_FBN1245_0031 

UCA01_PHA_FBN1245_0035 

UCA01_PHA_FBN1245_0036 

UCA01_PHA_FBN1245_0037 

7 UCA01_PHA_FBN1245_0009 

UCA01_PHA_FBN1245_0020 

UCA01_PHA_FBN1245_0030 

UCA01_PHA_FBN1245_0031 

UCA01_PHA_FBN1245_0035 

UCA01_PHA_FBN1245_0036 

UCA01_PHA_FBN1245_0037 

7 UCA01_PHA_FBN1245_0009 

UCA01_PHA_FBN1245_0020 

UCA01_PHA_FBN1245_0030 

UCA01_PHA_FBN1245_0031 

UCA01_PHA_FBN1245_0035 

UCA01_PHA_FBN1245_0036 

UCA01_PHA_FBN1245_0037 

UTO 36 0 0 0 

WEU 41 0 0 0 
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Fig. A2. Summary of slice ACF measures of FWHM for SMH0019 (normal session). Plotted are max, min, median, first quartile (Q1), third quartile (Q3), mean, and 

standard deviation (STD) values of ACF FWHM for each volume in the time series in the x and y directions. 

Table A4 

Variance in the first principal component (PC1) within different sites and different man- 

ufacturers. PCA was performed on fBIRN QA data of all scan sessions (including anoma- 

lous sessions). 

Manufacturer PC1 Variance Site PC1 Variance 

GE 4.8 CAM 0.76 

MCM 0.69 

SBH 0.98 

TWH 1.8 

UCA 14 

Siemens 0.27 BYC 0.066 

WEU 0.068 

QNS 0.59 

TOH 0.057 

UTO 0.14 

SMH 0.34 

Philips 0.56 TBR 0.18 

UBC 0.34 
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Fig. A3. Prevalence of slice anomalies per session with the anomaly threshold conservatively set to 𝜃 = 10 for (a) unprocessed data, and (b) SpikeCor processed 

data. For each scan session, total number of anomalies and the median of the number of anomalies per volume is shown. The first column shows anomalous FWHM 

values in the x direction and the second one shows those values in the y direction. 

Fig. A4. Principal component analysis (PCA) 

of the fBIRN QA variables after spatial smooth- 

ing. Shown is the scatter plot of the first 

two principal components (PC1 and PC2) 

for all the imaging sessions. Each imaging 

session is color-coded by scan site and shape- 

coded by scanner manufacturer. The imaging 

sessions within each site are connected in 

temporal order of acquisition. The ellipses 

show 95% normal probabilities. The original 

fBIRN QA variables are also plotted using 

red arrows on the PCA plane with lengths 

proportional to the variable loadings. An 

interactive version of this plot can be viewed 

at https://kayvanrad.github.io/phantomQA/ 

#spatially_smoothed_pca . 
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Table A5 

Variance in the first principal component (PC1) within different sites and different man- 

ufacturers. PCA was performed on fBIRN QA data with anomalous sessions excluded 

using a conservative anomaly threshold of 𝜃 = 10. 

Manufacturer PC1 Variance Site PC1 Variance 

GE 1.0 CAM 0.12 

MCM 0.53 

SBH 0.34 

TWH 0.22 

UCA 0.76 

Siemens 0.33 BYC 0.078 

WEU 0.058 

QNS 0.91 

TOH 0.097 

UTO 0.15 

SMH 0.10 

Philips 1.3 TBR 0.68 

UBC 0.73 

Table A6 

Mean and 95%-confidence intervals for the slice ACF minFWHM values for all the imaging sessions at each site 

(including anomalous sessions). 

(a) unprocessed data (b) spatially smoothed data 

Manufacturer Site minFWHMx (95%-CI) minFWHMy (95%-CI) minFWHMx (95%-CI) minFWHMy (95%-CI) 

GE CAM 2.74 (2.65,2.83) 2.99 (2.91,3.08) 7.74 (7.29,8.19) 7.76 (7.44,8.08) 

MCM 2.65 (2.59,2.71) 3.08 (3.00,3.16) 7.98 (7.77,8.19) 7.99 (7.86,8.13) 

SBH 2.82 (2.77,2.88) 3.35 (3.29,3.41) 8.14 (7.99,8.3) 8.06 (7.88,8.23) 

TWH 2.81 (2.69,2.92) 3.36 (3.27,3.45) 6.35 (5.90,6.80) 7.17 (6.97,7.38) 

UCA 2.81 (2.76,2.85) 2.99 (2.91,3.06) 7.84 (7.59,8.09) 7.84 (7.60,8.07) 

Siemens BYC 1.95 (1.94,1.95) 1.88 (1.87,1.88) 8.25 (8.22,8.28) 8.28 (8.17,8.39) 

WEU 2.00 (1.98,2.01) 1.90 (1.88,1.91) 8.17 (8.11,8.22) 8.22 (8.15,8.28) 

QNS 1.97 (1.95,2.00) 1.91 (1.88,1.93) 7.79 (7.49,8.08) 8.11 (7.91,8.31) 

TOH 2.00 (1.99,2.02) 1.91 (1.90,1.92) 8.54 (8.51,8.58) 8.58 (8.53,8.63) 

UTO 1.99 (1.98,2.01) 1.89 (1.87,1.90) 8.01 (7.95,8.07) 8.01 (7.89,8.12) 

SMH 1.97 (1.94,2.00) 1.91 (1.09,1.92) 8.46 (8.38,8.54) 8.62 (8.57,8.67) 

Philips TBR 3.02 (2.96,3.09) 3.12 (3.01,3.23) 7.44 (7.29,7.60) 7.66 (7.55,7.77) 

UBC 3.14 (3.01,3.27) 3.25 (3.11,3.39) 7.21 (7.08,7.34) 7.18 (7.02,7.34) 
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