
Western University Western University 

Scholarship@Western Scholarship@Western 

Brain and Mind Institute Researchers' 
Publications Brain and Mind Institute 

2-7-2018 

The role of human primary motor cortex in the production of The role of human primary motor cortex in the production of 

skilled finger sequences skilled finger sequences 

Atsushi Yokoi 
The University of Western Ontario 

Spencer A. Arbuckle 
The University of Western Ontario 

Jörn Diedrichsen 
The University of Western Ontario 

Follow this and additional works at: https://ir.lib.uwo.ca/brainpub 

Citation of this paper: Citation of this paper: 
Yokoi, Atsushi; Arbuckle, Spencer A.; and Diedrichsen, Jörn, "The role of human primary motor cortex in 
the production of skilled finger sequences" (2018). Brain and Mind Institute Researchers' Publications. 
899. 
https://ir.lib.uwo.ca/brainpub/899 

https://ir.lib.uwo.ca/
https://ir.lib.uwo.ca/brainpub
https://ir.lib.uwo.ca/brainpub
https://ir.lib.uwo.ca/brain
https://ir.lib.uwo.ca/brainpub?utm_source=ir.lib.uwo.ca%2Fbrainpub%2F899&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ir.lib.uwo.ca/brainpub/899?utm_source=ir.lib.uwo.ca%2Fbrainpub%2F899&utm_medium=PDF&utm_campaign=PDFCoverPages


Systems/Circuits

The Role of Human Primary Motor Cortex in the Production
of Skilled Finger Sequences

X Atsushi Yokoi,1,2 X Spencer A. Arbuckle,1,3 and X Jörn Diedrichsen1,4,5

1The Brain and Mind Institute, University of Western Ontario, Ontario N6A 5B7, Canada, 2Graduate School of Frontier Biosciences, Osaka University,
Osaka, Japan 565-0871, 3Department of Neuroscience, University of Western Ontario, London, Ontario, Canada, 4Department of Statistical and Actuarial
Sciences, University of Western Ontario, London, Ontario, Canada, and 5Department of Computer Science, University of Western Ontario, London,
Ontario, Canada

Human primary motor cortex (M1) is essential for producing dexterous hand movements. Although distinct subpopulations of neurons
are activated during single-finger movements, it remains unknown whether M1 also represents sequences of multiple finger movements.
Using novel multivariate functional magnetic resonance imaging (fMRI) analysis techniques and combining evidence from both 3T and
7T fMRI data, we found that after 5 d of intense practice, premotor and parietal areas encoded the different movement sequences. There
was little or no evidence for a sequence representation in M1. Instead, activity patterns in M1 could be fully explained by a linear
combination of patterns for the constituent individual finger movements, with the strongest weight on the first finger of the sequence.
Using passive replay of sequences, we show that this first-finger effect is due to neuronal processes involved in the active execution, rather
than to a hemodynamic nonlinearity. These results suggest that M1 receives increased input from areas with sequence representations at
the initiation of a sequence, but that M1 activity itself relates to the execution of component finger presses only. These results improve our
understanding of the representation of finger sequences in the human neocortex after short-term training and provide important
methodological advances for the study of long-term skill development.

Key words: fMRI; motor sequence; MVPA; primary motor cortex; representational fMRI analysis; pattern component modeling

Introduction
Primary motor cortex (M1), with its direct projection to spinal
motoneurons, plays a critical role in fine hand control (Lawrence
and Kuypers, 1968; Muir and Lemon, 1983). Populations of neu-
rons in M1 involved in individuated finger movements show

considerable overlap (Schieber and Hibbard, 1993). Yet, they
form large enough clusters to be detected with functional mag-
netic resonance imaging (fMRI), as unique activation patterns
are associated with each individual finger (Indovina and Sanes,
2001; Ejaz et al., 2015). Each of these populations can be concep-
tualized as a dynamical system (Churchland et al., 2012; Fig. 1A,
arrows inside the two circles), that produces the continuous se-
quence of muscle activities necessary for the movement of a single
finger. Whether such subpopulations in M1 can also learn to
represent longer sequences that span movements of multiple dif-
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Significance Statement

There is clear evidence that human primary motor cortex (M1) is essential for producing individuated finger movements, such as
pressing a button. Over and above its involvement in movement execution, it is less clear whether M1 also plays a role in learning
and controlling sequences of multiple finger movements, such as when playing the piano. Using cutting-edge multivariate fMRI
analysis and carefully controlled experiments, we demonstrate here that, while premotor areas clearly show a sequence represen-
tation, activity patterns in M1 can be fully explained from the patterns for individual finger movements. The results provide
important new insights into the interplay of M1 and premotor cortex for learning of sequential movements.
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ferent fingers is, however, still debated (Picard et al., 2013; Kawai
et al., 2015).

One idea is that M1 develops dedicated populations of neu-
rons that encode the sequences of two or more finger movements
(Fig. 1B). Such representations could function in a similar way as
artificial recurrent neural networks, capable of learning and stor-
ing multiple dynamic patterns (Laje and Buonomano, 2013). In
this scenario, the neural activity for pressing the second digit
would be different depending on whether it was executed in the
sequence 1-2 or 3-2. This representation would allow M1 to au-
tonomously generate the spatiotemporal activity pattern neces-
sary for sequence production. Indeed, it has been suggested that
M1 acquires such representations of finger sequences after a few
days of training (Karni et al., 1995).

Alternatively, M1 could lack a true sequence representation,
and the neural activity here may solely reflect the ongoing ele-
mentary movements independent of the sequential context
(Mushiake et al., 1991; Ashe et al., 1993). In this scenario, the
learned sequence would be represented in secondary motor areas,
such as dorsal premotor cortex (PMd) or supplementary motor
area (SMA; Mushiake et al., 1991; Shima and Tanji, 1998; Hiko-
saka et al., 2002; Diedrichsen and Kornysheva, 2015), which then
activate the corresponding execution-related populations in M1
(Fig. 1C).

Here we sought to distinguish between these two possibilities
by analyzing fine-grained activity patterns in M1 using fMRI dur-
ing the performance of well learned finger sequences. Because of
the low temporal resolution of fMRI, we cannot resolve the ac-
tivity related to each individual press, but can only measure the
activity averaged over the whole sequence. This makes the detec-
tion of true sequence representations challenging. Nonetheless, if
activity in M1 represents movement sequences (Fig. 1B), then
even sequences that consist of the same elementary movements in
a different order should elicit distinguishable patterns of activity.

However, the finding of differentiable activity patterns for
different sequences in M1 (as we have indeed found in previous
studies: Wiestler and Diedrichsen, 2013; Kornysheva and
Diedrichsen, 2014; Wiestler et al., 2014) does not provide conclu-
sive evidence for a true sequence representation. Differences be-
tween activity patterns could also arise if different individual
movements were unequally weighted depending on their sequen-
tial position, i.e., when in a sequence they occurred. By compar-
ing activity patterns elicited by single-finger presses with those

elicited by sequences, we show here that
pattern differences in M1 can be fully ex-
plained by the fact that the first finger has
a stronger influence on the overall pattern
than subsequent fingers. In contrast, acti-
vation patterns in premotor and parietal
cortices could not be explained by a com-
bination of the activity patterns for the el-
ementary movements, thereby providing
evidence for a true representation of the
sequential context. Through control exper-
iments with passive finger movements, we
further establish that the first-finger effect is
linked to the active execution of the se-
quence, and is not an artifact of nonlineari-
ties in the fMRI signal. This suggests that
premotor areas comprise representations of
movement sequences, which then activate
the representations of the individual com-
ponent movements in M1 (Fig. 1C).

Materials and Methods
Participants
After providing written informed consent, nine healthy, right-handed
volunteers (3 females, 6 males, age: 23 � 4) participated in Experiment 1,
and 14 healthy, right-handed volunteers (8 females, 6 males, age: 23 � 3)
participated in Experiment 2. There was no overlap in the participants in
the two experiments. The experimental procedures were approved by
local ethics committees at the University of Western Ontario (London,
Canada) and University College London (London, UK). None of the
participants had any known neurological history. We excluded partici-
pants that were professional musicians. On average, participants re-
ported 5.3 � 5.3 years (Experiment 1) and 4.8 � 4.1 years (Experiment 2)
of practice with instruments that demand rapid and complex finger se-
quences (e.g., piano, violin, guitar).

Apparatus
We used a custom-built five-finger keyboard (Fig. 2A) with a force trans-
ducer (Honeywell FS series) mounted underneath each key. The key-
board was built for the right hand. The keys were immobile and
measured isometric finger force production. The dynamic range of the
force transducers was 0 –16 N and the resolution �0.02 (N). A finger
press/release was detected when the force crossed a threshold of �3 N.
The threshold was slightly adjusted for each finger to ensure that each
key could be pressed easily. The forces measured from the keyboard
were low-pass filtered, amplified, and sent to PC for online task con-
trol and data recording. The forces were recorded at 200 Hz. Passive
stimulation of the fingers was achieved using a pneumatic air piston
mounted underneath each key (Fig. 2B). The pistons were driven by
compressed air (100 psi) from outside the MRI scanning room
through polyvinyl tubes. The force exerted by each piston was con-
trolled by pressure-regulating valves. During the passive stimula-
tions, finger movement was prevented by a frame mounted above the
fingers. Therefore, the main function of the pistons was to apply
pressure to the fingertips, comparable to the active condition.

Sequence training for Experiment 1
During the training sessions, participants were seated in front of an LCD
monitor and placed their fingers on the keyboard. They learned to pro-
duce five single-finger sequences and six multi-finger sequences. For the
single-finger sequences, one of five fingers had to be pressed six times
(e.g., 3 3 3 3 3 3); for the multi-finger sequences, one of the six possible
permutations of fingers 1, 3, and 5 was pressed twice (e.g., 5 3 1 5 3 1; Fig.
2C). All fingers remained on the keyboard at all times, such that the overt
movement of the fingers was minimized.

Muscles

Selection

Intermediate layer
(premotor areas)

Muscles

Selection

Muscles

Selection

Execution 
Layer (M1)

Control of individual finger movement Control of sequential finger movements

BA C

Figure 1. Two ways of representing sequential movements. A, Before training sequences are produced through a sequential
selection of single-finger movements. The execution layer (M1 and spinal cord) contains populations of neurons that, once
activated, generate the muscle activity patterns necessary for a single-finger movement through their intrinsic population dynam-
ics. The selection layer acts directly on these representations. B, After learning, the repeated sequential activation of two execution
primitives leads to the formation of a new population of neurons that produces the two presses as a single unit. C, Alternatively, a newly
formed neural population in an intermediate layer could activate the execution primitives for the two fingers in the correct order.
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At the start of each trial, a visual cue was pre-
sented (for 1.5 s) to indicate which of the se-
quences was to be performed (Fig. 2D). Each of
the 11 sequences was associated with a different
Roman numeral (I, II, . . . , XI). At the beginning
of training, we provided both the sequence cue
(Roman numeral) and the six to-be-pressed dig-
its on the screen. Over the course of the training,
we replaced the digits with asterisks (*), to en-
courage the participants to memorize the se-
quences (Fig. 2D). The participants practiced the
sequences for 3 d so they were able to produce the
sequences in the scanner within 2.5 s from mem-
ory given only the visual cue.

Training consisted of a total of 1716 se-
quence executions (156 executions per se-
quence type). The order of the 11 sequences
was pseudorandomized within each session.
During a trial, the color of each asterisk turned
to green immediately after a press of the correct
finger was registered, and it turned to red if the
press was incorrect. To ensure equal execution
speed across single- and multi-finger se-
quences, we provided a visual pacing signal
that blinked at a reference frequency. This ref-
erence frequency gradually increased during
the training sessions with a constant rate until
it reached to 4 Hz. On the last day of training,
participants practiced the imaging protocol
(involving also passive stimulation trials, see
below), while lying on a mock MRI scanner
bed.

Sequence training for Experiment 2
The sequence task was similar to the first experiment. In Experiment 2,
participants (N � 14) learned to produce eight different sequences with
11 presses from the memory. The first half of the participants were
trained for 5 d; for the second half, we added a sixth day to ensure that all
participants could correctly produce the sequences within 4 s. On aver-
age, the training took a total of 10 –12 h. As in Experiment 1, the se-
quences were cued with Roman numerals I–VIII. All the sequences were
matched with the number of finger presses used; two presses with the
thumb, middle, ring, and little fingers, and three presses with the index
finger, respectively. Four of the sequences started with the thumb, two
sequences started with the middle finger, and the rest of two sequences
started with the little finger. There was no passive condition in Experi-
ment 2. The detailed training protocol and the behavioral results of train-
ing and transfer test (conducted after the imaging) will be reported in a
separate paper.

Imaging procedures for Experiment 1
During the imaging session, the participants lay supine on the scanner
bed with knees slightly bent and supported by a wedge-shaped cushion.
The pneumatic keyboard was comfortably placed on their lap, and visual
stimuli were presented on a back-projection screen which was viewed
through a mirror attached to the head coil.

In Experiment 1, participants conducted both active and passive con-
ditions. Each trial started with the presentation of the sequence cue for
1.5 s (Roman numeral I–XI). Participants were then instructed to execute
the cued sequence twice, with a time limit of 2.5 s for each execution (Fig.
2D). Each execution was triggered by a fixation cross turning green. To
ensure similar pressing speeds for the single-finger and multi-finger se-
quences, we provided a visual pacing signal that blinked at 4 Hz. The
order of the 11 sequences was pseudorandomized and included one rest
trial of 8 s, during which the participants only passively viewed the fixa-
tion cross. Each sequence was repeated three times within each imaging
run, resulting in a total of 66 sequence executions per run. Participants
completed seven runs in the active condition. For these runs, there was
no significant difference in the pressing frequency (Hz) between single

and multi-finger sequences (4.58 � 0.36, 4.59 � 0.39, t8 � �0.176, p �
0.865). The percentage of correct sequence executions was slightly higher
for single-finger than for multi-finger sequences (99.5 � 0.17 vs 95.7 �
0.66; t(8) � 6.182, p � 0.00026).

Alternating with the active runs, participants also completed seven
imaging runs in the passive condition, to examine to what degree the
observed movement representations could be explained by passive sen-
sory inflow. During the active run, we recorded force data, and replayed
these forces through the pistons in the subsequent passive run. The par-
ticipants were told not to produce any active finger movement, but to
relax the hand and passively receive stimulations to their fingers. The
sequence cue, pacing signal, and trial timing were exactly the same as in
the active runs, ensuring that participants were well aware of which se-
quence they were going to receive. Due to the nonlinear response prop-
erty of pneumatic pistons, the resultant passive forces were slightly lower
than the forces in the active condition. We confirmed, however, that
passive stimulation elicited robust single-finger representations that
were comparable to the active condition (see Results).

Imaging procedures for Experiment 2
The imaging procedures for Experiment 2 were similar; however, we only
measured eight active multi-finger sequences (see above) and did not
include passive or single-finger conditions. In the beginning of each trial,
the sequence cue (I–VIII) was presented for 2.5 s. This was followed by
two execution phases of 4 s each, with 0.5 s ITI. During the execution
phase, only the fixation cross and asterisks were presented. The order of
sequences was pseudorandomized, and each of the eight sequences was
repeated three times during each run. The performance was not paced; how-
ever, the average pressing frequency for Experiment 2 (4.47 � 1.05 Hz) was
not significantly different from that in Experiment 1 (t(19) � 0.298, p �
0.769). Four resting trials of 10.5 s were randomly interspersed. We
conducted nine runs, each of which lasted �7 min. On average across par-
ticipants, 81.0 � 9.4% of the sequence executions were correct.

Sequences

I:   1 1 1 1 1 1
II:  2 2 2 2 2 2
III:  3 3 3 3 3 3
IV:  4 4 4 4 4 4
V:  5 5 5 5 5 5
VI:  1 3 5 1 3 5
VII:  1 5 3 1 5 3
VIII:  3 1 5 3 1 5
IX:  3 5 1 3 5 1
X:  5 1 3 5 1 3
XI:  5 3 1 5 3 1
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Figure 2. Methods for Experiment 1. A, Participants generated isometric finger presses on a custom-built keyboard with force
transducers and pneumatic pistons embedded within each key. B, Schematic diagram of the passive pneumatic device used in
Experiment 1. C, Participants were trained on five single-finger and six multi-finger sequences. D, Schematic illustration for a trial
during scanning. A Roman numeral indicated the sequence to be executed. Participants then executed the sequence twice,
receiving online visual feedback for each correct press. fMRI activity measurements were averaged across the two executions of the
sequence, thereby removing temporal information from the activity profiles.
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Imaging data acquisition
Experiment 1 was conducted in a Siemens Magnetom Syngo 7T MRI
scanner system with a 32-channel head coil at the Centre for Functional
and Metabolic Mapping, Robarts Research Institute (London, Ontario,
Canada). Inhomogeneity of the magnetic field was adjusted by B0 and B1
shimming at the beginning of the whole session. Functional images were
acquired for 14 imaging runs (7 active and 7 passive runs) of 300 volumes
per each using multiband 2-D echoplanar imaging sequence (TR �
1.00 s, multiband acceleration factor � 2, in-plane acceleration factor �
3, resolution � 2.0 mm isotropic with 0.2 mm gap between slices, and 44
slices interleaved). The first four volumes of each run were discarded to
ensure stable magnetization. The slices were acquired close to axial to
cover the dorsal aspects of the brain, including most of the frontal, pari-
etal, occipital lobes, and basal ganglia. The ventral aspects of the frontal
and temporal lobes, brainstem, and the cerebellum were not covered.
Each functional imaging run of Experiment 1 lasted for 5 min. A T1-
weighted anatomical image was obtained in a separate session using a
MP2RAGE sequence (TR � 6.0 s, resolution: 0.75 mm isotropic).

Experiment 2 was conducted on a Siemens Trio 3T scanner system
with a 32-channel head coil at the Welcome Trust Centre for Neuroim-
aging (London, United Kingdom). B0 field maps were acquired at the
beginning of the session to correct for inhomogeneities of the magnetic
field (Hutton et al., 2002). Functional images were acquired for nine runs
of 135 volumes each, using a 2-D echoplanar imaging sequence (TR �
2.72 s, in-plane acceleration factor � 2, resolution � 2.3 mm isotropic
with 0.3 mm gap between each slice, and 32 slices interleaved). The first
five volumes of each run were discarded to ensure stable magnetization.
The coverage was similar to Experiment 1. A T1-weighted anatomical
image was obtained using MPRAGE sequence (1 mm isotropic resolu-
tion).

Behavioral data analysis
Recorded force data were analyzed offline. The data for both the training
and scanning sessions was first smoothed with a second-order Butter-
worth filter with a cutoff frequency of 10 Hz to remove remaining RF
noise. Press and release timings were defined as the time point where the
pressing force first crossed the threshold (3 N) and the time when the

pressing force fell below the threshold. Move-
ment time (MT) was measured as the elapsed
time from the start of the first press to the re-
lease of the last press. Sequence executions
containing one or more incorrect presses were
marked as error trials.

Imaging data analysis
Preprocessing and first-level model
Experiment 1. Functional imaging data were
preprocessed using SPM12 (http://www.fil.
ion.ucl.ac.uk/spm/). Functional images were
first motion corrected, and then coregistered to
the individual anatomical image. As we had a
relatively fast TR (1.0 s), we did not apply slice
timing correction. The data were then submit-
ted to a first-level GLM to estimate the size of
the evoked activity for each sequence type in
each run. We modeled the temporal autocor-
relation using the “FAST” option in SPM12,
which provides a flexible basis function to
model dependencies on longer time scales.
High-pass filtering was achieved by temporally
pre-whitening the matrix using this temporal
autocorrelation estimate.

Experiment 2. Preprocessing and GLM were
conducted as in Experiment 1, with the excep-
tion that we applied slice timing correction
(given the slower TR). We also corrected for B0
inhomogeneity by using field-map images.
Given the slower TR, we used the standard
high-pass filtering with a cutoff frequency of

128 s before GLM estimation. For the GLM, we applied robust-weighted
least square estimation (Diedrichsen and Shadmehr, 2005). The data
from two participants in Experiment 2 were excluded from further anal-
yses due to poor behavioral performance during scanning (58% correct
vs 81% correct for all other subjects). These individuals also failed to
achieve any correct execution of one or more sequence types in some of
the imaging runs. Hence, only the data from the remaining 12 partici-
pants were submitted to subsequent analyses.

Searchlight and ROI definition
Individual cortical surfaces (i.e., the pial and white/gray matter surfaces)
were reconstructed from the anatomical image using the FreeSurfer soft-
ware (Fischl et al., 1999). We defined a continuous surface-based search-
light (Oosterhof et al., 2011) as small circular cortical patches (�11 mm
radius) centered on each node defined on the reconstructed cortical
surface, each of which contained 160 voxels. Anatomical regions of in-
terest (ROIs) were defined on this reconstructed surface (Fig. 3C) exactly
as reported in previous studies (Wiestler and Diedrichsen, 2013; Korny-
sheva and Diedrichsen, 2014; Wiestler et al., 2014).

Multivariate fMRI analysis
Within each of these groups of voxels (surface-based searchlight or
anatomically-defined ROIs), we extracted the �-weights for each se-
quence type and imaging run. To optimally integrate evidence across
voxels, we spatially pre-whitened the activity estimates in each area using
multivariate noise-normalization, using a regularized estimate of the
overall noise-covariance matrix (Walther et al., 2016). This procedure
renders the remaining noise in each voxel approximately uncorrelated
with noise in other voxels (Diedrichsen et al., 2016; Diedrichsen and
Kriegeskorte, 2017).

Using the representational model framework (Diedrichsen and
Kriegeskorte, 2017), we then asked how different sequences were repre-
sented in these local multivariate activity patterns. The central statistical
quantity in this framework is the second moment matrix of the activity
patterns. If U represents the true activity patterns for the K experimental
conditions (sequences) of P voxels, then the K-by-K second moment
matrix between the activity patterns is defined as follows:
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Figure 3. Searchlight map for movement representation. A, Averaged distance for single-finger sequences. B, Averaged dis-
tance for multi-finger sequences. Results are shown on an inflated view of the left and right cortical hemisphere, with the inset
showing distance on the medial wall. C, Seven ROIs were defined on each hemisphere of the reconstructed cortical surface.
D, E, Mean distances calculated for single-finger sequences (D), and multi-finger sequences (E). Asterisks indicate a significant
difference from zero based on the group t test. *p � 0.05, **p � 0.01, ***p � 0.001. M1: primary motor cortex, S1: primary
sensory cortex, PMd: dorsal premotor cortex, PMv: ventral premotor cortex, SMA: supplementary motor cortex, SPLa: anterior
superior parietal lobule, and SPLp: posterior superior parietal lobule (posterior parietal cortex).
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G � UUT/P.

Large numbers in the matrix indicate pairs of
activity patterns have good correspondence
across voxels, and zeros indicate that they are
uncorrelated. Conceptually, the second mo-
ment matrix can be interpreted similarly to a
covariance matrix, only in that the mean across
voxels is not removed (Diedrichsen and
Kriegeskorte, 2017).

We then analyzed the representational
structure defined by the second moment ma-
trix using two complementary approaches:
representational similarity analysis (RSA) to
establish basic features of the representation
and for visualization purposes, and pattern
component modeling (PCM) to compare
more complex representational models.

Representational similarity analysis
In RSA, we quantify the representational struc-
ture by measuring how distinct pairs of activity
patterns are from each other. The squared Eu-
clidean distance (scaled by the number of vox-
els) between the activity pattern u1 and u2 is as
follows:

d1,2 � �u1 � u2)(u1 � u2)
T/P � G1,1 � 2G1,2

� G2,2,

and can therefore be directly calculated from
the second moment matrix G. Calculated on
spatially pre-whitened data, this distance is
equal to the squared Mahalanobis distance.
One problem is that estimates of this distance
based on noisy data are positively biased; i.e., the average distance esti-
mate will be larger than zero, even if the true distance is zero. This is
because pattern estimates will always differ slightly based on random
noise. To remedy the situation, we used the “crossnobis estimator”
(Diedrichsen et al., 2016; Walther et al., 2016; Diedrichsen and Krieges-
korte, 2017), a distance calculated from a cross-validated estimate of the
second moment matrix G:

Ĝ �
1

M�
m�1

M

ÛmÛm̃
T /P,

where M is the total number of partitions (e.g., imaging runs), Ûm is
estimated pre-whitened activity patterns for partition m, and Ûm̃ is the
estimate of the patterns based on all other partitions. The crossnobis
estimator is unbiased, meaning its average will be zero if the two patterns
only differ by noise. The estimator can therefore be directly used to test if
two patterns are statistically different: finding a consistently positive dis-
tance estimate implies that the two condition activity patterns differ from
each other more than expected by chance.

To visualize the representational structure, we used classical multidi-
mensional scaling. We projected the activity patterns into a lower dimen-
sional subspace by finding the Eigenvectors of the group-averaged Ĝ
matrix, weighted by the square root of the corresponding Eigenvalues.
The projection displayed in Figure 4B was then rotated to maximize the
differences between the single-finger movements.

Pattern component modeling
To compare different representational models, we used PCM (Diedrich-
sen et al., 2011, 2017; Diedrichsen and Kriegeskorte, 2017). Like RSA or
encoding models, PCM can test how well the data can be described by a
specific representational structure or a specific set of features. Going
beyond the other two approaches, however, it provides a principled and
analytical way for testing arbitrary combinations of feature sets or repre-

sentational structures. PCM directly evaluates the likelihood of the data
under the linear model

Y � ZU � XB � E.

Here, Y is an N-by-P matrix representing noise-normalized activity pat-
tern after the first-level GLM (Walther et al., 2016), where N is the num-
ber of estimates (number of conditions � number of runs) and P is the
number of voxels. Z (N-by-K matrix) is the design matrix that associates
the true activity profiles U and Y. B represents the patterns of no interest,
in our case the mean activity pattern in each run. Finally, E represents
trial-by-trial measurement errors.

Importantly, PCM considers the true activity profile of each voxel up

(columns of matrix U ) to be a random variable from a multivariate
normal distribution, up � N(0, G). G is the second moment matrix of
activity profiles, which determines the similarity structure across move-
ment conditions. In evaluating models, PCM integrates over the actual
activity profiles, i.e., it evaluates the marginal likelihood of the data (sim-
ply termed likelihood in this paper);

p�Y��) � 	p�Y�U,�)p�U��)dU

where � represents model parameters that determine the shape of G (for
example as the mixture proportions of different representations), the
signal strength, and noise variances (Diedrichsen et al., 2017). In other
words, the explicit estimation of the patterns U is not necessary, because
the second moment (G) is a sufficient statistic to obtain the marginal
likelihood of the data. Using this approach, we fitted a number of models
to explain the representational structure of the patterns associated with
the multi-finger sequences.

Null model. As a baseline, we used a model in which all the sequences elicit
the same common pattern; i.e., there were no differences between the activity
patterns and hence no representation of the sequence.

First-finger model. In this model, we assumed that the activity patterns
for the multi-finger sequences were a weighted linear combination of the
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patterns for the constituent single-finger presses. If all fingers were
weighted equivalently, the overall patterns would be identical, as each
sequence contains exactly the same fingers. Instead, the first-finger
model assumes that the first finger press is more strongly weighted than
subsequent presses. This predicts that pairs of sequences that start with
the same finger share high covariance, and sequences that start with
different fingers have low covariance (Fig. 5A).

More formally, the activity patterns for multi-finger sequences are
modeled as a weighted sum of the activity patterns for the single-finger
sequences,

Usq � M1fUsf,

where Usq is the patterns for multi-finger sequences (6 � P matrix), Usf is the
activation patterns for the single-finger presses of the thumb, middle,
and little fingers (3 � P matrix), and M1f is the weighting matrix. Because
each finger is present in each sequence equally often, we can simply
model the difference in weight between the first and the subsequent
fingers, such that M1f is set to 1 for the first finger, and 0 otherwise (6 �
3 matrix). Therefore, the predicted similarity structure across multi-
finger sequences (i.e., the second moment of the pattern G1f) is fully
determined from the similarity across the single-finger presses (i.e., Gsf):

G1f �
1

P
UsqUsq

T �
1

P
M1fUsfUsf

TM1f
T � �1fM1fGsfM1f

T .

To make the predictions for the first finger model (Fig. 5A), we used Ĝsf

estimated from the patterns of single-finger sequences. Note that second
moment matrix for single fingers simply scales by a constant factor when
the presses are repeated (Diedrichsen et al., 2017).

N-finger transition model. This model family predicts the similarity
structure based on neural circuits that encode the transitions between
finger presses. Unique transitions can be defined based on two or more
subsequent presses. For instance, each sequence has five specific two-
finger transitions, four three-finger transitions, etc. The activity patterns
of the multi-finger sequences are can be modeled as follows:

Usq � MtransUtrans.

In this case, the weighting matrix Mtrans indicates, for each sequence, how
many of the possible two-digit transitions (9 total), three-digit transi-
tions (27 total), etc. the sequences contained, and Utrans represents spe-
cific activation patterns for each possible transition. Under these
assumptions, the predicted second moment matrix is as follows:

Gtrans �
1

P
MtransUtransUtrans

T Mtrans
T .

Because we did not measure patterns for individual transitions, we as-
sumed that (1) the patterns are independent with each other, and (2) the
strength with which each pattern is represented is proportional to the
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frequency of occurrence of that particular transition during the training
period. The second assumption is consistent with the observation that
performance improvement (e.g., RT reduction) for a particular transi-
tion is proportional to its probability (Stadler, 1992).

In Experiment 1, any of the six possible transitions between the three
fingers occurs equally often. Therefore, UtransUtrans

T � �transI, where � is a
constant that indicates the overall strength of the transition encoding and
I is an identity matrix. Note that this approach is equivalent to fitting an
encoding model with a separate regressor for each transition and using
ridge regression to estimate the parameter weights (Diedrichsen and
Kriegeskorte, 2017).

Combining these assumptions, the predicted second moment matrix
is as follows:

Gtrans �
�trans

P
MtransMtrans

T .

The resultant predicted second moment matrix for each N-finger tran-
sition model can be seen in (Fig. 5A). Note that the six-finger transition
model predicts that all sequences are equally distinct from each other, as
each sequence has only one unique six-finger transition (the entire se-
quence). In Experiment 2, the occurrence frequency of the transitions
was slightly different. Therefore, we modeled the second moment matrix
as follows:

UtransUtrans
T � �trans diag[�1, �2, �3, . . ., �N]

where �1, �2, . . . �N are constants proportional to the frequency of oc-
currence for N transitions of interest.

Model comparison. We first fitted the six individual models (see the
previous section) separately. To account for individual differences in the
signal-to-noise ratio, we maximized the likelihood in respect to a noise
and signal strength parameter (Diedrichsen et al., 2017); thus each model
had the same two free parameters, allowing us to compare their likeli-
hoods directly. We also fitted combinations of pairs of models, where the
overall representation was a mixture of the hypothesized representations
(i.e., the second moment matrix was the weighted sum of those models).
In this case, each component weight added an additional free parameter
(�). Therefore, each single model had two free parameters (i.e., signal and
noise parameters), and each mixture of two models had three free pa-
rameters (i.e., signal, noise, and the mixing ratio of one model over the
other).

To compare models with different number of parameters, we used
group cross-validation: we fitted the parameters using the data from n �
1 subjects, and then used the estimated G to fit the data from the left-out
subject (Diedrichsen et al., 2017). Note that the signal and noise param-
eters were always fitted individually to each subject. Through this pro-
cess, we obtained a cross-validated likelihood for each candidate model
for each subject, which served as an estimate of the model evidence.

We then compared models by calculating the log-Bayes factor, which
tells us to what degree one model provides a better description of the
observed data than another model (Kass and Raftery, 1995):

log BF(model A vs model B) � log L(model A) � log L(model B).

logBF values were computed separately for each subject. We then used
standard criteria for the average logBF proposed by Kass and Raftery
(1995) to judge if a model is meaningfully “better” than the other. Instead
of using the group log-Bayes factor (Stephan et al., 2009), i.e., the sum of
the individual log-Bayes factors, we report here the average logBF, which
is invariant to the number of participants. This provides a much more
stringent criterion for model selection.

Noise ceiling. We also estimated the data-likelihood under a model that
captures all systematic variation in the data, here called a noise ceiling.
The noise ceiling is an important measure to assess whether the selected
model is a sufficient model, or whether the model misses a substantial
aspect of the representational structure that is consistently observed
across individuals. For this, we used a free (fully flexible) model, which
had as many parameters as the number of the elements in the second-
moment matrix. For an estimate of the free model, we simply used the

mean of the cross-validated second moment matrix Ĝ across subjects,
which yields nearly identical results as using the maximum-likelihood
estimate (Diedrichsen et al., 2017).

We first estimated the free parameters of the model, using the data
from all subjects combined. This resulted in the best achievable likeli-
hood for a group model and therefore constitutes an upper bound for the
likelihood. Because this estimate is over-fit, we also determined the cross-
validated likelihood of the free model, which constitutes a lower bound
estimate of the noise ceiling. If a model performs better than the lower
noise ceiling, it remains possible that a better model exists. However,
based on the absolute performance, we can conclude that the model
already captures all consistent effects in the data.

Experimental design and statistical analysis
All experiments and analyses were conducted using a within-subject de-
sign. We used one-sided, one-sample t test for the evaluation of positive
mean distance across subjects. To assess the first-finger effect, we per-
formed two separate paired t tests: (1) if distances between two multi-
finger sequences sharing the same first finger were smaller than distances
between any other pair of multi-finger sequences not sharing the same
first finger, and (2) if distances between a single-finger sequence and a
multi-finger sequence sharing the same first finger were smaller than
distances between that finger and any other multi-finger sequence. Sig-
nificant differences for the above comparisons (1 and 2) were deemed as
the evidence of the first-finger effect. The ratio between active and passive
distances (i.e., the reduction of passive distance) was estimated using
linear regression without an intercept. Estimated slopes between
single- and multi-finger sequences were then compared using a sim-
ple t contrast.

For the model comparison using PCM, we used the standard interpre-
tation of the size of the BF (Kass and Raftery, 1995). Additionally, we also
report a Wilcoxon’s rank sum test on the log-Bayes factors between the
winning and other models. The significance level was set to p � 0.05. All
the statistical analyses were performed in MATLAB (MathWorks). The
MATLAB code used for the multivariate fMRI analysis (Pattern Compo-
nent Modelling Toolbox; RRID:SCR_015891) are available online
(https://github.com/jdiedrichsen/pcm_toolbox).

Results
M1 “encodes” both single-finger movements and sequences
We tested whether sequences are represented in M1 by compar-
ing the fine-grained fMRI brain activation pattern associated
with fast finger sequences (6 finger presses within 2.5 s) with
those associated with single-finger movements. Participants
practiced six sequences that comprised all orders of pressing the
thumb, middle, and little finger with their right hand (Fig. 2A–C).
For the single-finger movements, they produced six repetitions
with the same finger. Participants were trained for 3 d, �6 h in
total, until they could perform all sequences from memory with-
out error and at the same speed. We localized areas that showed
reliable differences between either single-finger or multi-finger
sequences by using a surface-based search-light approach (Oost-
erhof et al., 2011). Based on previous results (Wiestler and
Diedrichsen, 2013), we expected that different single-finger
movements and different movement sequences would elicit dif-
ferentiable activity patterns in M1.

To characterize the representation, we calculated the cross-
validated Mahalanobis distance (Walther et al., 2016) between
the activity patterns for different conditions. If this measure is
systematically larger than zero, we can conclude that the true
underlying patterns are different (see Materials and Methods). As
expected, we found evidence for a representation of single fingers
in the hand area of M1 and somatosensory cortex (S1; Fig. 3A,D).
Consistent with previous studies (Wiestler et al., 2011; Diedrich-
sen et al., 2013; Ejaz et al., 2015), weaker differences between
patterns for single-finger movements were found in secondary
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motor areas such as PMd and ventral premotor cortex (PMv),
and the SMA in the anterior superior parietal lobule (SPLa; Fig.
3D) and the ipsilateral hemisphere (Diedrichsen et al., 2013).

Multi-finger sequences elicited differentiable activity patterns
in premotor and parietal areas (Wiestler and Diedrichsen, 2013;
Kornysheva and Diedrichsen, 2014; Wiestler et al., 2014; Fig. 3B).
Importantly, we also found significantly different activity pat-
terns for different sequences in M1 and S1, as indicated by the
systematically positive crossnobis estimates (Fig. 3E). The pattern
distances for multi-finger sequences were only 19 � 9% of those
for single-finger presses, but they were reliable enough to decode
which of the six sequences was performed with a cross-validated
accuracy of 25 � 5% (chance level, 16.67%).

One may argue that if M1 only represented the individual
finger presses, the activity patterns for the different multi-finger
sequences should have been indistinguishable. However, this ar-
gument relies on the assumption that all component actions elicit
the same amount of activation regardless of the order in which
they were made. Before concluding that M1 exhibits a genuine
sequence representation (i.e., is in a different neuronal state for
each sequence), we therefore need to consider the possibility that
the input from premotor areas (Fig. 1C) varied depending on
whether the finger press was at the beginning or middle of the se-
quence. As different multi-finger sequences start with different fin-
gers, this effect could lead to distinguishable BOLD activity patterns
even if M1 only represented individual finger movements.

Differences in sequences depend on the first finger
To test for this possibility, we compared the activation patterns
for the multi-finger sequences to those of the single-finger
presses. We calculated the cross-validated distances between all
pairs of conditions in an anatomically defined ROI (Fig. 3C) for
contralateral M1. The resultant matrix of pairwise distances (55
pairs in total), the representational dissimilarity matrix (RDM),
effectively summarizes the representational structure of the
whole ROI (Fig. 4A).

To obtain insight into the representational structure, we ap-
plied a dimensionality reduction to the RDM by projecting it into
a 2-D space (Fig. 4B; for details, see Materials and Methods). For
single-finger presses (111, 333, etc.) we replicated the character-
istic representational structure with the thumb showing the most
unique pattern and the other fingers arranged in a semicircle
(Ejaz et al., 2015).

The multi-finger sequences were arranged such that two se-
quences starting with the same finger were clustered together
(shown in the same color in Fig. 4B). Furthermore, among all
multi-finger sequence patterns, each pattern was also the most
similar to the pattern associated with the first finger in the se-
quence. It should be noted, however, that low-dimensional
projections (here designed to maximize the distances between
single-finger movements; see Materials and Methods) generally
only capture a very selective aspect of the representational struc-
ture. Therefore, to fairly quantify these two key observations, we
compared the cross-validated distances between activity patterns
of single- and multi-finger sequences in the (un-projected) high-
dimensional space.

If the activity pattern of each sequence is mostly influenced by
the starting finger, then the pattern for each individual finger
should be closer (i.e., smaller distance) to sequences starting with
that finger compared with other sequences. For instance, the pat-
tern for the thumb (Fig. 4B, 111) should be closer to sequence 135
and 153 than to other sequences (e.g., 351 or 315). This was

indeed the case in contralateral M1 (t(8) � 6.18, p � 1.3�10�4)
and S1 (t(8) � 4.09, p � 0.0018; Fig. 4C).

Furthermore, two sequences starting with the same finger
should be more similar to each other than other pairs (e.g., the
distance 135 vs 153 should be smaller than 135 vs 315). Again, this
effect was significant in M1 (Fig. 4D; t(8) � 2.87, p � 0.0104) and
S1 (t(8) � 3.08, p � 0.0075). In contrast, no other tested ROI
showed significance on both tests simultaneously (Fig. 4D).

One possible scenario which can explain both observations is
that the activity patterns for sequences in M1 are a weighted sum
of patterns elicited by the constituent single-finger presses, with
the first finger having the highest weight. This would imply that
there is no true sequence representation in M1. To evaluate
whether this simple idea could fully explain the pattern differ-
ences between the multi-finger sequences in M1, we tested differ-
ent candidate models for the activity patterns of multi-finger
sequences using the PCM framework (Diedrichsen et al., 2011,
2017; Diedrichsen and Kriegeskorte, 2017). PCM allows us to
compare different representational models by directly evaluating
the likelihood of the observed patterns under the models. The
method focuses on the second moment matrix; i.e., the covari-
ance matrix of the patterns without subtraction of the mean ac-
tivity across voxels. The second moment matrix has a close
relationship to the RDM (see Materials and Methods). Impor-
tantly, we can compare the model likelihood to a noise ceiling, to
assess whether the model can fully account for the data given the
level of measurement noise and intersubject variability (see Ma-
terials and Method).

As a starting point, we tested the “first-finger” model, in which
the patterns for multi-finger sequences are weighted sums of
single-finger presses, with the first finger having the highest
weight and all the subsequent fingers having a lower, but equal,
weight (see Materials and Method). This model predicts that se-
quences that start with the same finger share high covariance, and
sequences that start with different fingers have low covariance
(Fig. 5A). We found that this model could almost fully account
for the representational structure found in M1: the log-likelihood
relative to the null-model (log-Bayes factor; see Materials and
Methods) fell between the upper and lower bound of the noise
ceiling (Fig. 5B; 6.95 vs 6.45).

We then tested whether M1 might represent movement tran-
sitions between two or more fingers (Fig. 5A). These models as-
sume that each transition across n successive fingers is associated
with a specific and independent activation pattern (i.e., represen-
tations of partial sequences). The second moment matrix (and
the similarity structure) across the patterns of multi-finger se-
quences is fully determined by which transitions each sequence
contained (see Materials and Methods). Note that a representa-
tion of a six-finger transition would mean that each sequence
would have a unique activity pattern. The log-Bayes factor for
these models was clearly lower than that for the first-finger model
(Fig. 5B), indicating a poorer fit of these models.

We then explored linear combinations of models. Because the
relative weight of each component was an additional free param-
eter, we evaluated the model likelihood using cross-validation
across participants (see Materials and Methods). When we com-
bined the first-finger model with the sequence model, we
achieved a slightly lower likelihood than the first-finger model
alone for M1 (the average log-Bayes factor reduced by 0.05). For
S1, however, the addition of the sequence model achieved a
slightly higher likelihood (9.37 for first-finger model alone vs
9.87 for the combined model; Fig. 5B). However, on a common
scale of Bayes factors (Kass and Raftery, 1995), such a small dif-
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ference would be considered “not worth more than a bare
mention”.

In premotor areas, on the other hand, the representational
structure was not well explained by the first-finger model. For
example, in SMA and SPLa, the fit of the sequence model was
systematically better than the first-finger model (Fig. 5B), indi-
cating that the activity patterns in these regions represented se-
quential information. Whereas in premotor (PMd and PMv) and
posterior parietal cortex, the first-finger model provided the best
explanation among the fitted models, the likelihood of the first-
finger model was systematically below the lower bound of the
noise ceiling (Fig. 5C). The mean difference in log BF to the lower
noise ceiling was substantially 
1, indicating strong evidence
(Kass and Raftery, 1995) that a better model must exist for these
regions.

In summary, on the group level, our results provided very
limited evidence for a true, unique sequence representation, or
the representation of transitions between fingers in M1. Instead,
the representational structure for sequences in this area could
almost fully be explained by the first-finger model; i.e., assuming
that the patterns for multi-finger sequences are a linear combi-
nation of the patterns associated with the individual finger
presses, with the first finger weighted more strongly than the
others. The same observation held true for S1. In contrast, in
premotor regions, the first-finger model could not fully account
for the differences between sequences, suggesting genuine encod-
ing of sequential information in these regions.

First-finger effect in M1 is related to neural planning and
execution processes
We hypothesized that the prominent activity for the first finger
press in M1 is related to active planning and execution processes.
Given that the BOLD signal more closely reflects synaptic input
than spiking activity of output neurons (Logothetis et al., 2001),
one possible explanation is that M1 receives strong input from
premotor regions at the beginning of the sequence to push the
neural state from the resting to the active state at movement

initiation. Although M1 would still rely on premotor input to
produce the subsequent finger presses, the amount of this input
would be smaller as M1 is already in an active state.

Alternatively, the prominence of the first finger pattern could be
due to the passive properties of M1. Specifically, the effect could have
hemodynamic rather than neuronal causes. That is, the neural activ-
ity for each finger in the sequence could be exactly the same, but
because of the nonlinear integration of the BOLD signal for inter-
stimulus intervals of �6 s (Dale and Buckner, 1997), it may be that
the first finger press achieved the majority of the vasodilatory re-
sponse and hence dominates the overall activity pattern.

To rule out this possibility, we exploited the fact that the
single-finger patterns in M1 and S1 can also be elicited by passive
stimulation (Wiestler et al., 2011). In the scanner, we therefore
“replayed” the recorded force traces during the active trials
through pneumatic pistons mounted under each finger (Fig. 2B).
If we can elicit comparable single-finger activity patterns in M1
through both active and passive movements, and if the timing of
the presses is identical across conditions, then any hemodynamic,
or passive neural effect, should apply equally in both situations.
Thus, if the first-finger effect is due to the nonlinear translation
from neural to BOLD signals, we should find a similar represen-
tational structure for active and passive multi-finger movements.

As can be seen from Figure 6A, the spatial distribution of
single-finger representations was comparable to that obtained in
the active condition (Fig. 3A). For a direct comparison, we calcu-
lated the average distances in each of the cortical ROIs (Fig. 6C).
The distance in M1 was 82 � 11% of what was elicited in the
active condition, and 101 � 10% in S1. Additionally, the elicited
patterns matched the active patterns on a finger-by-finger basis.
The average correlation between active and passive patterns (after
subtracting out the mean activity pattern) of the same finger were
r � 0.76 � 0.37, p � 8.86�10�5 and r � 0.89 � 0.05, p �
6.8�10�11, respectively for M1 and S1. Therefore, we confirmed
that the passive single-finger stimulation and active single-finger
presses elicited approximately comparable activity patterns in
M1 and S1.
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In contrast to single-finger representations, encoding of
multi-finger sequences reduced dramatically over the whole cor-
tical surface in the passive stimulation condition (Fig. 6B). The
distances between multi-finger sequences reduced to 47 � 29%
in M1 and 42 � 42% in S1 compared with the active condition
(Fig. 6D). Critically, the reduction was larger than what would be
expected from the reduction in the single-finger representations
(Fig. 6B; M1: t(16) � 1.7601, p � 0.049, and S1: t(16) � 2.587, p �
0.001). If the first-finger effect had been solely due to a hemody-
namic nonlinearity, or to a passive adaptation of neural activity,
then these effects should have equally applied to both active and
passive conditions. Instead, the differences between active and
passive conditions indicate that the high weighting of the first-
finger press in M1 is caused by active preparation or initiation of
the sequence.

The results also show that the sequence representations found
in premotor regions are due to the active planning and execution
of a sequence, and not to the processing of the sensory inflow. The
distances for multi-finger sequences were substantially lower
(24% on average) in premotor regions (Fig. 6B) and not signifi-
cantly different from 0 in four of the five premotor ROIs. Fur-
thermore, the remaining representational structure was relatively
inconsistent between subjects, as can be seen in the low noise
ceiling of the model fits (Fig. 7). These findings clearly indicate
that the sequence representation we observed in premotor re-
gions for the active condition was driven by the planning/execu-
tion of a sequence.

A sequence representation with longer training?
So far, we have found clear evidence of a first-finger effect, but little
or no evidence for a real sequence representation in M1. We consid-
ered two reasons for this failure. First, it may be that the training
period was too short. Second, the simple structure of our sequences

(i.e., permutations of digit 1, 3, and 5) may have reduced the chances
of forming representations of finger transitions.

We therefore conducted a second experiment, this time with
5– 6 d of training of 2 h each. In the second experiment, partici-
pants learned eight arbitrary sequences, each 11 presses long and
consisting of all five fingers. The trained sequences were executed
at preferred speed (average 4.3 presses/s) in the scanner (see Ma-
terial and Methods).

First, due to the fact that Experiment 2 had more data, the
evidence for movement representation was substantially
stronger. The scale of log-Bayes factor was �3–�4 times
larger in Figure 8 compared with Figure 5. However, despite
the increased signal and ample opportunity to form represen-
tations of at least two or three finger transitions (given the
longer training time), the representational structure in M1
was again fully explained by the first-finger model. The log-
Bayes factor of the first-finger model was above the noise
ceiling. Addition of the sequence model or a two-finger tran-
sition model did not substantially improve the fit (Fig. 8A;
18.95 vs 19.16 for first-finger model and combined model,
respectively). Similar results were obtained for S1. However,
combining the first-finger and sequence models in S1 slightly
improved the likelihood of the model (Fig. 8A; 45.84 vs 47.84
for first-finger model and combined model, respectively). In
contrast, the representational structure in premotor and pari-
etal regions could not be explained by the first-finger model,
suggesting the presence of a more complex and higher-level
sequence representation (Fig. 8B). The content of these repre-
sentations, and their dependence on cognitive mechanisms of
movement chunking (Wymbs et al., 2012; Lungu et al., 2014),
will be reported in a subsequent paper. For M1, however, these
results confirm that even after week-long training, the fine-
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grained activity patterns reflect pro-
cesses related to the individual finger
presses, but not to their sequential
context.

Discussion
We demonstrated that even after 5– 6 d of
intensive practice, there was very little ev-
idence for a genuine sequence representa-
tion in M1. We also did not find evidence
for a representation of partial sequences,
such as the transition between two or
more finger presses. These results contrast
with previous claims of sequence repre-
sentation in M1 (Karni et al., 1995; 1998;
Matsuzaka et al., 2007). Instead, we found
that the activity patterns for sequences
could be explained by a linear combina-
tion of the activity patterns for single-
finger presses, in which the weight of the
first finger was higher than for the sub-
sequent presses. This resulted in an
above-chance classification accuracy for
sequences beginning with different fin-
gers. We also provided evidence that this
first-finger effect was much larger during
active compared with passive sequence production, arguing that
it is related to active movement preparation and initiation. These
results indicate that the first-finger effect had a neural origin,
rather than being based on a hemodynamic nonlinearity. In con-
trast to M1, we observed robust sequence “encoding” in second-
ary motor areas (PMd, SMA, and the SPLa), and they were not
explainable by the first-finger model. These areas have been
shown to represent sequences such that the neural activity pat-
tern reflects the sequential order of movement elements (Mush-
iake et al., 1991; Tanji and Shima, 1994; Wiestler and
Diedrichsen, 2013; Wiestler et al., 2014).

Advances from the earlier studies
Although there have been numerous imaging studies on se-
quence production and acquisition (Karni et al., 1995, 1998;
Honda et al., 1998; Doyon et al., 2002), our approach makes
several advances over these earlier studies. First, we designed our
experiment specifically for multivoxel pattern analysis, which al-
lowed us to test directly for sequence representations in M1. This
is not possible when looking only at the average BOLD activity
within a region. Indeed, the increases and decreases reported in
previous studies (Grafton et al., 1995; Karni et al., 1995, 1998;
Honda et al., 1998; Kawashima et al., 1998; Sakai et al., 1998) may
not necessarily reflect plastic changes in M1. Rather, they could
equally well reflect changes in the input to M1, caused by se-
quences being learned and represented in secondary motor re-
gions. Multivoxel pattern analysis is also sensitive to inputs from
other regions but reveals the local organization of how these in-
puts arrive in M1. Specifically, our results suggest that the activity
pattern for the first finger press is especially high, but that pattern
itself only reflects the individual finger movement.

Second, we not only measured the activation pattern for the
sequences but also compared them to the patterns of their con-
stituent single-finger movements. This allowed us to determine
whether the activity patterns for multi-finger sequences could be
explained by a combination of single-finger movements, or
whether there was evidence for a new representation that en-

coded the sequential context (Fig. 1B). Our results clearly argue
for the former, implying that the significant differences between
sequence patterns in M1 in our earlier work (Wiestler and
Diedrichsen, 2013; Kornysheva and Diedrichsen, 2014; Wiestler
et al., 2014) did not reflect an encoding of the order of finger
presses (i.e., a genuine sequence representation), but of the se-
quential position of finger presses. In these studies, each sequence
started with a different finger, such that we could not distin-
guish a real sequence representation from one caused by the
first-finger effect. Importantly, our current result confirmed
that the pattern differences reported in secondary motor areas
likely reflect genuine sequence encoding.

Finally, we demonstrated that passive sensory stimulation
could not elicit robust sequence representations in secondary
motor areas. This suggests that the sequence representations ob-
served in these areas actually reflects active movement planning/
execution process, rather than sensory re-afferent signals. Of
course, we cannot be certain that sensory feedback during the
passive stimulation condition was exactly the same as during ac-
tive sequence production. However, the nearly identical activity
patterns in the single-finger conditions elicited in M1 and S1 by
the passive stimuli demonstrated that the sensory feedback
closely mimicked that during active presses.

The origin of the first-finger effect
The results from the passive stimulation also argue that the first-
finger effect is related to the active preparation and initiation of
the sequence, rather than just to the sensory inflow. More gener-
ally, the results show that the effect has a neural origin, and is not
purely caused by a nonlinear integration of neural events in the
production of the hemodynamic response (Dale and Buckner,
1997). Recent electrophysiological findings seem to support this
conclusion (Hermes et al., 2012; Siero et al., 2013). These studies
recorded the electrophysiological potentials using intracranial
ECoG electrodes above M1 while human participants performed
rhythmic open and close movements of hand at �2 Hz. Power in
the high-gamma frequency band was more pronounced for the
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Figure 8. More intensive training with complex sequences (Experiment 2) revealed highly similar results. Participants in the
second experiment practiced eight different sequences of 11 presses for 5– 6 d (2 h per d) before the imaging session. A, log-Bayes-
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first movement of a sequence compared with subsequent move-
ments (Hermes et al., 2012). Siero et al. (2013) also showed that
the high gamma activity related nearly linearly to the observed
BOLD activity recorded when subjects performed the same task
in the scanner. Although the “sequence” in these experiments
consisted of the repetition of the same movement elements, our
results lead to the prediction that a similar effect should occur for
more complex, multi-finger sequences.

What is the neural origin of this first-finger effect? First, note
that both BOLD and high-frequency gamma power relate mainly
to synaptic input to a region. Thus, it is not unlikely that this
effect arises only on the input side and that the firing of output
neurons would be matched for the different finger presses (Picard
et al., 2013). The most likely explanation therefore is that the
neural circuits in M1 require a large input drive to initiate a series
of movements. Recent results have shown that the largest change
in neural activity occurs when transitioning between a “resting”
subspace to the active subspace (Elsayed et al., 2016). In our case,
the driving input for this movement would arrive in form of the
intention to move the first finger. Subsequent finger presses
would still require input from higher-order areas, as M1 would
not be able to generate the sequence autonomously, but the input
drive would be much smaller as the state of the neurons would
already be in the vicinity of the active subspace. This idea also
predicts that if the sequence is executed slowly enough, the state
in M1 should relax back to the resting subspace and the first-
finger effect should disappear.

Limitations
Our data provide very little or no evidence for a sequence repre-
sentation in M1 after 1 week of intensive training (1.5�2 h per
day). However, this does not exclude the possibility that longer
period of training might result in the unique neural circuits for
sequences acquired within M1. After 2 years of training, a single-
cell recording study in the monkeys revealed some evidence for
sequential representations in M1 (Matsuzaka et al., 2007). Note,
however, that in this study, sequence representations were as-
sessed as the difference between neuronal responses to trained
and untrained sequences, not, as in our study, between different
trained sequences. On a much shorter time scale, Karni et al.
(1995) reported an expansion of the activated area in M1 over 4
weeks of daily practice. The total amount of practice was similar
to the experiments reported here (�3.5�7 h vs 6�10 h in our
study). Again, the results only indicated that trained sequences
elicited more activity than untrained sequences (a result that we
have not replicated; Wiestler and Diedrichsen, 2013), but does
not show the presence of neural processes that would relate to the
sequential order of movement elements. Another important lim-
itation of our study is that we could not assess representations in
striatal and cerebellar circuits that closely communicate with M1
(Doyon et al., 2003; Lehericy et al., 2005; Wymbs et al., 2012). In
these regions, the measurements of multivoxel patterns were not
reliable enough to permit the comparison of different represen-
tational models.

Conclusion
Using representational fMRI analysis, we demonstrated that up
to �1 week of intensive practice, activity in M1 relates to individ-
ual finger presses, but not to transitions between multiple fingers
or even full sequences. At the same time, we found robust se-
quence representation in other higher motor areas, such as PMd,
SMA, or SPLa, which is consistent with previous studies (Mush-
iake et al., 1991; Shima and Tanji, 1998). We will discuss the exact

contents of these sequence representations in a separate paper.
There was some indication that there was a weak component of
the activity pattern in M1 which may reflect the sequence itself.
Whether this component constitutes the beginning of true sequence
representations that will increase in strength with extended training
remains to be tested. The results and methodological advances pre-
sented in this paper will be crucial for evaluating this hypothesis.
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