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Abstract

When performing a long chain of actions in rapid sequence, future movements need to be planned concur-
rently with ongoing action. However, how far ahead we plan, and whether this ability improves with practice,
is currently unknown. Here, we designed an experiment in which healthy volunteers produced sequences of
14 finger presses quickly and accurately on a keyboard in response to numerical stimuli. On every trial, partici-
pants were only shown a fixed number of stimuli ahead of the current keypress. The size of this viewing win-
dow varied between 1 (next digit revealed with the pressing of the current key) and 14 (full view of the
sequence). Participants practiced the task for 5 days, and their performance was continuously assessed on
random sequences. Our results indicate that participants used the available visual information to plan multiple
actions into the future, but that the planning horizon was limited: receiving information about more than three
movements ahead did not result in faster sequence production. Over the course of practice, we found larger
performance improvements for larger viewing windows and an expansion of the planning horizon. These find-
ings suggest that the ability to plan future responses during ongoing movement constitutes an important as-
pect of skillful movement. Based on the results, we propose a framework to investigate the neuronal
processes underlying simultaneous planning and execution.

Key words: memory capacity; motor planning; practice effects; sequence production; skillful movement

Significance Statement

Although skill learning has typically focused on the training of specific movement sequences, practice im-
proves performance even for random sequences. Here, we hypothesize that a fundamental aspect of skilled
sequential behavior is the ability to plan multiple actions into the future, both before and during execution.
By controlling the amount of visual information available for motor planning, we show that people plan at
least three movements beyond current action and that this planning horizon expands with practice. Our
findings suggest that coordinating ongoing movement and planning of future actions is an essential compo-
nent of skilled sequential behavior and offer testable predictions for the neural implementation of online
motor planning.

Introduction
Humans exhibit a wide range of behaviors, from whole-

body activities like running or riding a bike, to fine dexter-
ous skills like writing or typing on a keyboard. Many of
such skills share one common feature: they are

comprised of a series of separate motor elements that are
strung together in quick succession to form longer and
more complex sequences of movements (Lashley, 1951).
When learning a new sequential skill, people usually need
many hours of practice to achieve fluidity in performance
(Ericsson et al., 1993). With practice, sequence
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production becomes quicker, more accurate, and less ef-
fortful (Verwey, 1994; Rhodes et al., 2004; Diedrichsen
and Kornysheva, 2015; Krakauer et al., 2019), leading in
the long run to the skillful behaviors typically observed in
elite athletes (Yarrow et al., 2009).
Previous studies of motor sequence learning have

largely focused on the training of specific movement se-
quences (Cohen et al., 1990; Willingham, 1999; Verwey,
2001; Verwey and Abrahamse, 2012; Kornysheva et al.,
2013, 2019; Verwey et al., 2015; Wong et al., 2015b;
Mantziara et al., 2020). However, many sequences we
execute in everyday life are not fully predictable and
practice improves performance even for random or un-
trained sequential movements (Waters-Metenier et al.,
2014; Wiestler et al., 2014; Ariani et al., 2020). Some of
these sequence-general improvements arise because
participants learn to translate individual visual stimuli
into motor responses and to execute these responses
more quickly (Ariani and Diedrichsen, 2019; Hardwick
et al., 2019). Such improvements in single responses
benefit the production of all sequences, including ran-
dom ones.
In the present study, we focus on a second core ability

that benefits the production of unpredictable sequen-
ces: the ability to plan future movements ahead of time.
Planning of movements before their initiation, here re-
ferred to as preplanning, has been studied extensively
(Rosenbaum, 1980; Rosenbaum et al., 1987, 2007;
Churchland et al., 2010; Cisek and Kalaska, 2010;
Kaufman et al., 2014; Wong et al., 2015a; Haith et al.,
2016). However, long or complex movement sequences
are unlikely to be fully preplanned, so planning of the re-
maining elements must continue throughout sequence
production, a process that we have recently named on-
line planning (Ariani and Diedrichsen, 2019). Take the
example of a basketball player dribbling up the court.
The player needs to control a continuous flow of move-
ments (e.g., to keep the dribble alive) while scouting the
court and planning future movements depending on the
actions of both teammates and opposing defenders.
Some evidence for online planning has been observed
for a range of behaviors, such as reading (Rayner, 1998,
2014; Rayner and Reingold, 2015), walking (Matthis and
Fajen, 2014), sequential reaching (Säfström et al., 2013,
2014), and path tracking (Bashford et al., 2018). However,
to what extent the motor system plans upcoming

movements during sequence production (i.e., the horizon
of online planning) remains poorly understood.
Here, we asked (1) how far the benefit of planning

ahead extends beyond current execution, and (2) whether
this planning horizon can be improved with practice. To
answer these questions, we used a discrete sequence
production (DSP) task, in which participants performed
random sequences of 14 keypresses with their right hand
in response to numerical cues. We manipulated how
many digits participants could see ahead of the current
keypress. Viewing window size ranged from 1 (only the
next movement is cued, as in the serial reaction time task,
SRTT) to 14 (the entire sequence shown at once, as in the
DSP task). Participants practiced producing varying se-
quences over 5 d. This design allowed us to examine the
horizon of both preplanning and online planning in se-
quence production, as well as the influence of practice on
the planning horizon.

Materials and Methods
Participants
Seventeen right-handed neurologically healthy volun-

teers (eight women, nine men; age 18–36 years, mean
25.81 years, SD 5.09 years) were recruited for this
study. Handedness was assessed with the Edinburgh
Handedness Inventory (mean 82.81, SD 18.07).
Individuals participated in five sessions of practice (2 h
each, on five separate days). All participants provided
written informed consent and were naive to the pur-
poses of the study. Two participants abandoned the
study after the first session of practice. One participant
had an unusually high error rate (.30%, while every
other participant managed to keep the error rate,20%,
as per instructions). These three participants were ex-
cluded from successive analyses (final N = 14). For one
of the remaining 14 participants, age and handedness
data were missing, and for another participant eye
tracking data were missing. All experimental methods
were approved by the Research Ethics Board at
Western University.

Apparatus
Participants placed their right hand on a custom-made

keyboard (Fig. 1A), with a force transducer (Honeywell FS
series) mounted underneath each key. The keys were im-
mobile and measured isometric finger force production.
The dynamic range of the force transducers was 0–16 N
and the resolution 0.02 N. A finger press/release was de-
tected when the force crossed a threshold of 1 N. The
forces measured from the keyboard were low pass fil-
tered, amplified, and sent to PC for online task control
and data recording. Additionally, we recorded monocular
left eye movements using an SR Research EyeLink 1000
desk-mounted eye tracker. Eye movements were re-
corded at a rate of 500Hz. Participants sat ;40 cm away
from a 20” (50.8 cm) screen. Numerical stimuli were
shown in white against a black background, horizontally
aligned in a single line, and spanned 13.5 cm for an entire
sequence (;19° of visual angle). Individual digits were
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;1 cm tall, 0.5 cm wide, and spaced 1 cm apart (from
center to center,;1.43° of visual angle).

Procedure
In each of the five practice sessions, participants sat in

front of a computer screen with their right hand on the
keyboard, and their chin placed on the eye tracker chinr-
est. The task required participants to produce sequences
of keypresses in response to numerical cues appearing
on the screen (numbers 1–5, corresponding to fingers of
their right hand, thumb to little finger, respectively) as
quickly and accurately as possible (Fig. 1A). On every
trial, only a fixed number of digits (viewing window size,
w) were revealed to the participants, while the rest were
masked with asterisks (Fig. 1B). The masked digits
were revealed to the participant as they proceeded,
from left to right, with the presses in each sequence.
The window size varied within the domain of w = {1, 2,
3, 4, 5, 6, 7, 8, 14}, and was randomized across trials
within every block. As an attentional precue, at the be-
ginning and at the end of every trial, during the intertrial
interval (ITI; 1.5 s), participants were presented with a
fixation cross on the location of the first digit in the se-
quence. This fixation was used to account for possible
drifts in trial-by-trial calibration of eye-to-digit location
mapping. Within every block of trials, participants were
instructed to keep their chin on the eye tracker chinrest
at all times and to minimize head movements. With
every press, subjects received feedback about the cor-
rectness of their action: the white numbers turned either
green or red and were accompanied by either a high-
pitch or a low-pitch sound for correct and incorrect
presses, respectively.
To motivate participants to improve in the task, they

were rewarded with points based on their performance
after each trial. Points were awarded on the basis of

sequence movement time (MT) and execution accuracy.
MT corresponded to the time interval between making the
first press in the sequence to releasing the last press in
the sequence. Accuracy was calculated as 1 – error rate
(proportion of error trials in a block) in percentage.
Specifically, a trial was considered an error if it contained
one or more incorrect presses, for which participants re-
ceived 0 points. Correct sequences were rewarded with
at least one point. Finally, participants were awarded
three points if (1) a sequence was correct and (2) MT 5%
or more faster than a specific time threshold. This time
threshold was designed to get increasingly difficult ad-
justing to every subject’s speed throughout training. It
would decrease by 5% from one block to the next if two
performance criteria were met: median MT in the cur-
rent block faster than best median MT recorded hith-
erto, and mean error rate in the last block�15%. If
either one of these criteria was not met, the thresh-
olds remained unchanged. At the end of each block,
participants received feedback on their error rate, me-
dian sequence MT, total points obtained during the
block, and total points obtained during the session.
Subjects were asked to try to maintain an error rate
below 15%.
In the original design, we intended to compare also how

the ability to plan ahead might affect partially familiar
(structured) sequences. Therefore, each one of the five
practice sessions consisted of eight blocks (27 trials
each) of 14-item sequences and three blocks (60 trials
each) of specific short three-/four-item segments that
composed the structured sequences. One-third of the tri-
als in the sequence blocks were randomly generated by
random shuffles of the digits 1–5. The remaining two-
thirds of the trials were structured sequences. As the re-
sults from the structured sequences turned out to be hard
to interpret, the present paper focuses only on the com-
pletely unfamiliar, random sequences.

A

1 2 3 4 5

Right hand only

+ 1 23 45 31 * * * * * * *

Execution phase
(until completed)

+3 pts

Inter-trial interval
(1.5 s)

B Viewing window size (w)
number of visible items ahead of current press

1 23 45 31 * * * * * * *
1 23 45 314 * * * * * *

13 45 3 * * * * * * * *2
w = 2

w = 3

w = 1

213 45 314 2 514 3 2 w = 14

Correct Error Current press

.

..
.
..

.

..
.
..

Reward
(1.5 s)

Figure 1. Varying viewing window in a DSP task. A, Example trial in a DSP task with viewing two items ahead of the current key-
press, while the remaining items are masked by asterisks. B, Viewing window size (w) manipulation, from w=1 (equivalent to a sim-
ple reaction time (RT) task), to w=14 (display of the entire sequence at once). The arrow indicates the from-left-to-right direction of
response order. Participants could start each sequence whenever they felt ready and were rewarded on the basis of their movement
time (MT) (the time from the first keypress to the release of the last key in the sequence).

Research Article: New Research 3 of 14

March/April 2021, 8(2) ENEURO.0085-21.2021 eNeuro.org



Control experiment to measure the limits imposed by
visual acuity and crowding effects
To determine how far out from the fovea the digit stimuli

could be recognized, we ran a short control experiment.
In a modified version of the task, we asked an independ-
ent sample of participants (N=3) to fixate on the first digit
of a random series of 14 digits and report all digits with
finger presses, while maintaining fixation on the first digit.
The task was non-speeded, as we wanted to determine
how many digits could be recognized, given human limits
in visual acuity (Rayner, 1975) and the limits imposed by
attentional crowding effects (Levi, 2008). Participants
were instructed to press the fingers corresponding to the
digits they could see, and guess when they were not sure
anymore. Each participant repeated this task for six
blocks with 27 trials each. We calculated the probability
of making the correct keypress as a function of distance
from the fixated digit. Chance performance was p=0.2
(one out of five fingers).

Data analysis
Data were analyzed with custom code written in

MATLAB (The MathWorks). To evaluate the speed of se-
quence production, we inspected the time intervals be-
tween different keypresses. Reaction times (RTs) were
defined as the time from stimulus onset to first press (i.e.,
the first crossing of the 1 N force threshold). Note that par-
ticipants were not instructed to react particularly fast.
Instead, they could take as much time as they wanted
until they felt ready to start. MTs were defined as the time
between the first press and the release of the last press in
the sequence (i.e., the time between the first and the last
crossing of the force threshold). Finally, we calculated in-
terpress intervals (IPIs) between subsequent pairs of
presses in the sequence (i.e., the time interval between
every two consecutive crossings of the force threshold).
Unless otherwise noted, we used within-subject repeated
measures ANOVAs and two-sided paired samples t tests
for statistical inference in assessing the effects of viewing
window or practice on RT, MT, and IPI. Error trials were
excluded from data analysis. To provide meaningful error
bars for within-subject comparison, the standard error for
each condition was calculated on the residuals after sub-
tracting the mean across conditions for each participant.
This way, the error bars visualized the size of the relevant
error term in a repeated-measures ANOVA.
To describe the relationship between MT and the view-

ing window size, we used the following exponential
model:

MT9 ¼ a� e �b w�1ð Þð Þ 1 c;

whereMT’ is the predicted MT for a given viewing window
size w. Note that for w=1, the function reduces to the ini-
tial value of the exponential, MT’ = a1 c. The asymptote
is given by c and the slope by b. This model was then fit to
the MT data of each participant using MATLAB’s nlinfit()
function, which implements the Levenberg-Marquardt
nonlinear least-squares algorithm. We determined the ef-
fective planning horizon (wp), by finding the window size

for which the predicted MT of the participant had dropped
99% of the difference between w=1 and the asymptote,
i.e., by solving the equation for w:

wp ¼ �logð0:01Þ
b1 1

;

where the 0.01 arises from the criterion of the 99% drop
(i.e., 1% above the MT’ asymptote). The improvement in
effective planning horizon with practice was then as-
sessed by fitting the model to the data of each participant
on each day and comparing wp between day 1 and day 5
with a within-subject two-sided paired samples t test.
While the use of a 99% criterion is arbitrary, changes in
this criterion only scale the effect planning horizon by a
specific value but do not change the outcome of the sta-
tistical analysis.

Analysis of eye movements
To assess changes in fixation strategies, we estimated

the eye position with respect to each finger press in the
sequence as follows. For each trial in each block, we
mapped the calibrated eye position (in eye tracker units)
to the digits on the screen to calculate the digit (Dt) on
which the eye was currently fixated at the time of each
keypress:

Dt ¼ 11
ðxt � x0Þ

px
;

where xt is the eye’s current horizontal position at the
time of press (median position within a 25-ms time win-
dow around the keypress) in eye tracker units, x0 is the
median horizontal position of the eye at the beginning of
the trial (i.e., the position of the fixation cross/first digit),
and px is a normalizing unit constant throughout a block
of trials, used to convert eye tracker units to digit posi-
tions. Finally, we computed the estimated eye position at
the time of each keypress by subtracting the position cor-
responding to the keypress (1–14) from Dt and plotted
this estimate against each keypress position in the se-
quence. In other words, a value of 0 means that the eye
was exactly on the digit at was currently pressed, and a
value of 11 would indicate that the eyes were a full digit
ahead the currently pressed digit.

Results
Preplanning of future movements speeds up
sequence production
First, we assessed the benefit of being able to plan fu-

ture finger movements on sequence production. To deter-
mine this, we varied the amount of available information
and tested how this window size affected the speed of
performance. On average, across all days of practice,
larger window sizes produced shorter MTs (Fig. 2A), as
confirmed by the highly significant main effect of window
size on MT in a repeated measures ANOVA (F(8,104) =
176.980, p,10e-10). This finding suggests that the avail-
ability of visual information allows for preplanning of se-
quential actions into the future, which in turn reduces MT.
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Interestingly, this benefit appeared to plateau around a
window size of 3 or 4. Indeed, when we compared the MT
of each viewing window to the average MT for larger win-
dow sizes, we found a significant difference for w=3 ver-
sus w. 3 (t(13) = 4.644, p=4.591e-04), but not for w=4
versus w. 4 (t(13) = 2.083, p=0.058). To obtain an individ-
ual measure of the planning horizon, we fit an exponential
model to the MT curve of each participant (Fig. 2B; see
Materials and Methods).
Next, we set an arbitrary criterion on the exponential (99%

of the MT drop to the asymptote) to establish the individual
effective horizon of each participant. This analysis revealed a
mean effective planning horizon of 3.5860.28 items ahead
of the current item, indicating that, on average, participants
were able to plan at least three keypresses into the future.
Was this limitation in planning horizon simply because

of a perceptual limitation? Obviously, the drop-off of

visual acuity from the fovea to the periphery (Rayner,
1975) could limit the ability of the participants to identify
more visually presented letters simultaneously. Moreover,
even if acuity is sufficient, the presentation of multiple dig-
its can lead to “crowding,” an ubiquitous attentional effect
that impairs the ability to recognize visual objects in clut-
ter (Levi, 2008). To test both of these possible limitations
for our display, we conducted a control experiment (see
Materials and Methods) and found that participants were
able to accurately identify up to six items to the right of fix-
ation (;6 cm) with .95% accuracy (mean accuracy for
seventh item=97.67 6 0.78 95% confidence interval).
Thus, given that eye position was on average only slightly
to the right of the currently pressed digit (see analysis of
eye movement strategies below), it seems very unlikely
that peripheral visual acuity and crowding can explain the
limitation in planning horizon.

Practice expands the planning horizon
We then asked whether practicing sequences would af-

fect the ability to plan future movements by comparing
performance at the beginning (day 1) and at the end (day
5) of practice (Fig. 3A). We observed that MT improved
across all window sizes (main effect of day: F(1,13) =
18.004, p=0.001). Significant improvements were found
even for a window size of 1 (MT difference day 1 vs day 5:
5866 262ms; t(13) = 2.234, p=0.022). This condition was,
in essence, a SRTT, where each cue was only presented
after the preceding key was pressed, meaning that partic-
ipants were forced to serially cycle through the planning
and execution of every press, with no possibility for plan-
ning ahead. Therefore, MT improvements for a window
size of 1 must be a consequence of (1) better stimulus
identification, (2) better stimulus-response (S-R) mapping,
or (3) better execution (i.e., motor implementation) of sin-
gle responses.
If learning was restricted to improvement in any of these

three processes, we would predict equal MT improve-
ment across all window sizes, given that stimulus identifi-
cation, S-R mapping, and execution are necessary steps
across all viewing windows. Contrary to prediction, we
found a significant interaction between window size and
stage of practice (day 1 vs day 5; F(8,104) = 3.220,
p=0.003). Furthermore, when we directly inspected the
MT improvement (percentage change relative to average
MT for each w; Fig. 3B), we found significantly larger
gains for larger viewing windows (w=2 vs w=1: t(13) =
3.338, p=0.005; w=3 vs w=2: t(13) = 2.722, p=0.017),
until again the gains plateau for w=4 or larger (w= 4 vs
w=3: t(13) = 0.113, p=0.912). Thus, although responses
to single items improved with practice, this improvement
cannot explain why performance benefits were more pro-
nounced for larger window sizes. Instead, the additional
performance benefit must arise because participants be-
came more efficient at using the advance information pro-
vided by larger viewing windows.
Part of this increased efficiency may be because of ex-

pansion of the planning horizon (i.e., how far ahead partic-
ipants were able to plan). Indeed, we also found evidence
that with practice, participants planned further into the

A
Average across days

3

4

5

6

7

8

1 2 3 4 5 6 7 8 14

M
ov

em
en

t t
im

e 
(s

)

Participant data
Exponential fit

B

M
ov

em
en

t t
im

e 
(s

)

3

4

5

6

7

8

1 2 3 4 5 6 7 8 14
Viewing window (w)

99%
 of asym

ptote

Effective planning horizon

Figure 2. The benefit of planning ahead on sequential perform-
ance. A, Average MT as a function of viewing window, across
the 5d of practice. B, Method used to estimate the effective
planning horizon. Example data from one participant (gray) is fit
to an exponential model (magenta). The intersection between
performance at 99% of asymptote and the Exponential fit was
chosen as criterion to determine the effective planning horizon.
Box plots show the median and whole range of individual data
points (one per participant). Shaded areas reflect SEM.
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future. When we determined the effective planning hori-
zon for each participant and day (Fig. 2B) using an expo-
nential fit (see Materials and Methods), we found that the
planning horizon expanded from 3.20 to 3.88 digits ahead
of current action between day 1 and day 5 (paired-sam-
ples t test, t(13) = 2.840, p=0.014; Fig. 3C). Despite the
high intersubject variability, out of 14 participants, only
two show a negative slope when regressing the effective
planning horizon onto the day of practice. Furthermore,
there was no relationship between the average planning
horizon and the slope (i.e., the rate of change) across
days (r=0.28, p=0.3376), suggesting that participants
with small and large horizons improved similarly.
While significant, the increase of planning horizon by

less than a digit appears to be quite small. How important
is a larger planning horizon for faster performance with
practice? To obtain insight into this question, we looked
at the intersubject variability within each training day: we
correlated our measure of planning horizon for each par-
ticipant with their mean MT for larger viewing windows

(w. 5) for each day of practice. To avoid any statistical
dependency between these parameters induced by mea-
surement noise, the effective planning horizon was esti-
mated on data from odd blocks and the mean MT was
estimated on data from even blocks. This analysis (Fig.
3D) revealed a clear negative correlation between the two
measures for each day of practice (all r , �0.54, all
p, 0.05). Roughly speaking, from this analysis, we would
expect that the observed increase in effective planning
horizon by 0.68 items should lead, on average, to a de-
crease in MT of;435ms, which corresponds to ;82% of
the improvement from day 1 to day 5 for w=14 (;1110ms)
that was not explained by improvements in single responses
(i.e., ;580ms for w=1). Thus, participants became better at
planning future movements in advance, and this improve-
ment could potentially be explained by the increased ability
to planmore actions into the future.
Note that faster MTs for larger window sizes did not

occur at the expense of reduced accuracy in perform-
ance. On average, the percent accuracy of presses
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Figure 3. The effective planning horizon increases with practice. A, Average MT as a function of viewing window (w), separately for
early (day 1, red) and late (day 5, blue) stages of sequence practice. B, Difference in performance (sequence MT) between early and
late practice (data in A), normalized by average MT for each w, as a function of w. C, Mean effective planning horizon (estimated as
shown in Fig. 2B) for each day of practice. D, Correlation between mean MT for w. 5 (which enabled planning ahead) and mean ef-
fective planning horizon, separately for different days (days 1–5 in gradient red to blue). For this analysis, planning horizon was esti-
mated on odd blocks and MT on even blocks. Dots reflect individual data points (one per participant). Box plots show the median
and quartiles of group data. Shaded areas reflect SEM; pp, 0.05, two-tailed paired-samples t tests.
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remained roughly constant around 85–90% across all
viewing window conditions. We found no significant main
effect of window size (F(8,104) = 1.182, p=0.317), practice
stage (F(1,13) = 0.325, p=0.578), or interaction between
the two factors (F(8,104) = 0.548, p=0.818).
Taken together, these results show that participants be-

came faster in sequence production by getting better at
(1) making single responses (involving stimulus identifica-
tion, S-R mapping, or execution) and (2) exploiting avail-
able information to plan more upcoming movements in
advance.

RTs increase with the amount of preplanning
If participants invested time in preplanning the first few

elements of each sequence, then we would expect this to
be reflected in their RTs, namely, participants should start
a sequence earlier when presented with a smaller window
size, and later for larger window sizes, since they would
be preparing more of the upcoming keypresses. Although
fast RTs were not required by the task, participants likely
tried to balance the benefit of getting more points with the
benefit of finishing the experiment more quickly. On aver-
age, across all days (Fig. 4A), larger viewing windows re-
sulted in slower RTs (F(8,104) = 4.563, p=8.726e-05).
However, as observed for MTs, RTs appeared to pla-

teau for window sizes larger than 3. Thus, although partic-
ipants could see more than three elements on the screen
and had virtually unlimited time to preplan, they initiated
the sequence in;700–800ms from cue onset.
Did this relationship between RTs and the amount of

available information change with practice? When we
compared RTs across early and late stages of practice
(Fig. 4B) we found no indication that, late in practice, par-
ticipants waited longer to initiate a sequence (F(1,13) =
0.012, p=0.913), or that their strategy changed over time
(no interaction between practice stage and window size:
F(8,104) = 1.187, p=0.314).

Planning ahead continues during sequence
production
So far, our results have indicated that participants im-

prove their ability to perform random sequences of finger
movements by becoming more efficient in using the infor-
mation provided by larger window sizes. However, it re-
mains unclear whether participants got better at planning
movements before sequence production (preplanning),
during sequence production (online planning), or both. To
distinguish the contributions of preplanning and online
planning to performance improvements, we examined the
time intervals between individual presses in a sequence (i.e.,
the IPIs). The rationale behind this analysis is that short IPIs
reflect an increased readiness to press (i.e., better planning)
than long IPIs. If all keypresses were equally well prepared (e.
g., as in the case of w=1, which does not allow participants
to plan ahead), then all IPIs within a sequence should roughly
have the same duration depending on the serial RT (null hy-
pothesis; Fig. 5A). Alternatively, if only early presses in a se-
quence can be fully preplanned, then only these IPIs should
be significantly shorter, and later IPIs revert to serial RT speed

(Fig. 5B). Finally, if online planning continues in parallel with
execution, we should expect an effect of window size also on
mid to late IPIs (Fig. 5C).
In light of these predictions, we first inspected the IPIs

averaging across practice stages (Fig. 5D). For a window
size of 1, all IPIs had approximately the same duration
(;500ms), reinforcing the idea that for w=1, each key-
press is selected, planned, and executed independently.
In contrast, for window sizes larger than 1, we found a
clear effect of IPI placement (i.e., finger transition number
within the sequence) on IPI duration (F(12,156) = 33.111,
p, 10e-10). Specifically, the first and last IPIs were con-
sistently performed much faster than the middle IPIs, re-
gardless of the size of the viewing window (W. 1). For
w=2, the first IPI (first two finger presses) was faster than
subsequent IPIs; for w=3, the first two IPIs (first three fin-
ger presses) were faster than subsequent IPIs. For w. 3,
this preplanning advantage appeared to be spread over
the first three finger transitions. This pattern of results in-
dicates that the initial speed up reflects the fact the visible
digits can be preplanned during the RT, and hence are ex-
ecuted faster.
Consistent with RT and MT data, preplanning does not

seem to improve further beyond a window size of 3. This ob-
servation reinforces the idea that participants preplanned at
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least the first three movements of each finger sequence.
Once all preplanned keypresses are executed, planning must
continue online, slowing down later IPIs. Thus, the slower IPIs
in the middle of the sequence mostly reflect limits in the
speed of online planning. When we restricted our analysis to
these middle IPIs (transitions 5–12), the differences between
w=1 and w=2 (t(13) = 19.557, p=5.037e-11), between w=2
and w=3 (t(13) = 5.013, p=2.374e-04), and between w=3
and w=4 remained significant (t(13) = 2.182, p=0.048). This
indicates that, just like preplanning, online planning benefits
from having visual information about up to three presses into
the future, thus highlighting clear parallels between the two
processes.
We also observed that, consistent across all window

sizes .1, the last IPI was executed much more quickly
than preceding IPIs. Currently, we do not have a definitive
answer about the reasons for this result. One idea is that par-
ticipants tend to select and plan the last two presses as a
unit. These presses can then be executed very quickly, as no
more movements need to be planned after those two (which
frees up planning capacity). Alternatively, participants could
optimize the last two presses from an execution biome-
chanics perspective. Given that no subsequent movements

are needed, participants do not have to maintain a specific
hand posture that would be required for fast execution of
successive movements. Instead, they are free to optimize
their hand posture for comfort and speed only in regard to
making the last two presses.

Both preplanning and online planning improve with
practice
Finally, we asked whether practice effects on MT are

more likely related to improvements in preplanning, online
planning, or both. From day 1 to day 5 (Fig. 6A), we ob-
served significant main effects of practice stage on IPI du-
ration on both early (IPI 1–3: F(1,13) = 17.623, p=0.001)
and middle IPIs (IPI 5–12: F(1,13) = 15.988, p=0.002). To
quantify the relative contributions of preplanning and on-
line planning, we carried a separate analysis (Fig. 6B)
averaging across IPIs that were more likely preplanned
(IPI 1 for w=2, IPI 1–2 for w=3, and IPI 1–3 for w� 4), or
not (the remaining IPIs for each viewing window condition,
which had to be planned online). For w=1, only the first
press, but not the first IPI, can be preplanned. Therefore,
we cannot attribute any of the observed improvements to
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either sequence preplanning or online planning. Instead,
eventual improvements need to arise from improved vis-
ual identification, S-R mapping, or execution. We com-
puted the IPI difference between day 1 and day 5 for
these three categories, normalized it by the average IPI
duration across days (separately for each category), and
plotted it against viewing window size (Fig. 6B). This anal-
ysis confirmed that IPIs became faster with practice even
for w=1 (one-sample t test vs zero difference: t(13) =
2.305, p=0.038). Additionally, we found clear further im-
provements in IPI duration for w.1: compared with
w=1, these effects were present both for the IPIs that
were likely preplanned (t(13) = 4.028, p=0.001), and for
those that relied on online planning (t(13) = 6.009,
p=4.379e-05). There was no significant difference be-
tween preplanning and online planning in terms of learn-
ing improvements (F(1,13) = 1.141, p=0.305), nor was
there an interaction between planning process and view-
ing window (F(2,26) = 1.000, p=0.382). Thus, preplanning
and online planning appear to have similar capacity limits
and to benefit similarly from practice in sequence produc-
tion. Moreover, given that on day 5 participants did not

spend more time preplanning than they did on day 1 (Fig.
4B), improvements in IPI with practice (Fig. 6A) reinforce
the idea that participants could make use of more visual
information in roughly the same amount of preparation
time (i.e., with comparable RTs).

Increases in planning horizon are not explained by
changes in eye movement strategies
To determine to what degree changes in fixation strat-

egies could cause improvements in the planning horizon,
we analyzed eye tracking data. To assess potential learn-
ing effects in fixation strategies, we estimated eye posi-
tion at the time of each keypress in the sequence (see
Materials and Methods). We then plotted this estimated
eye position at the time of each press relative to the digit
that was produced (Fig. 7). A value of 0 means that the
eye was exactly on the digit at was currently pressed, and
a value of 11 would indicate that the eyes were a full digit
ahead the currently pressed digit. For statistical compari-
son across days, we selected the keypresses in the mid-
dle of a sequence (presses 3–10) given that those are
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most likely to be influenced by fixation strategies. A 2-by-
4 repeated measures ANOVA revealed a significant main
effect of viewing window size (F(3,36) = 17.815, p,
0.0001), indicating that subjects tended to look further
ahead when more information was available. However, no
main effect of day (F(1,12) = 0.624, p=0.445) or interaction
between day and window size was found (F(3,36) = 2.739,
p=0.058), indicating that fixation strategies were not the
cause of improvements in the effective planning horizon.
The results were similar even when including all of the
keypresses (1–14): significant main effect of window size
(F(3,36) = 10.691, p,0.0001), but no main effect of day
(F(1,12) = 0.730, p=0.410), or interaction between the two
(F(3,36) = 1.779, p=0.169). Together with our data showing
that perceptual limitations cannot account for the limited
planning horizon (see above), these results argue that par-
ticipants increased their ability to preplan more actions by
overcoming a central (cognitive-motor) bottleneck, rather
than a purely perceptual bottleneck.

Discussion
The ability to move and simultaneously plan future

movements is a fundamental yet underappreciated fac-
ulty of the human brain. By manipulating the amount of
visual information available for motor planning in a DSP
task, we show that participants planned multiple actions
(at least three) into the future (Figs. 2-4). Practice led to
larger gains in speed for larger window sizes (MT dif-
ference; Fig. 3B), as well as increases in the horizon of
sequence planning (exponential fit; Fig. 3C). In-depth
analysis of the IPIs (Figs. 5, 6) revealed that enhanced
planning of future actions was present both before
(preplanning) and during (online planning) sequence
production.

Fast sequence production relies on the speed of
online planning
Before voluntary movements can be performed, they

need to be planned (Keele, 1968; Keele and Summers,
1976; Kerr, 1978; Rosenbaum, 1980; Bock and Arnold,
1992; Crammond and Kalaska, 1994, 2000; Cisek and
Kalaska, 2002, 2004), at least to some degree (Cisek and
Kalaska, 2010; Ames et al., 2014). However, many real-
life motor skills require quick sequences of movements
that are not always predictable. Proficiency in such skills
depends on our ability to select and plan future move-
ments both before and during sequence production. To
investigate this ability, we used a viewing window para-
digm that varied the amount of information available for
planning the next movements. We replicate previous find-
ings of anticipatory planning in the context of random se-
quences (Rosenbaum et al., 1987; Rhodes et al., 2004;
Herbort and Butz, 2009), and longer RTs when more infor-
mation for planning is available (Henry and Rogers, 1960).
Critically, once such preplanning reaches capacity, the
execution of later elements in the sequence slows down,
which we interpret as evidence that successive move-
ments need to be planned online. By varying the available
time for preplanning, in a previous paper (Ariani and
Diedrichsen, 2019), we showed that this was the case
even for relatively short (e.g., five-item) and well-known
(e.g., trained) sequences, only the first three elements
were fully planned before execution. Further evidence for
online planning comes from a wide range of activities in
which visual information is used for planning. For exam-
ple, when participants make anticipatory eye movements
to future targets in reading (Rayner, 1978), sequential
reaching (Säfström et al., 2014), and object manipulation
(Johansson et al., 2001). More directly, a recent unpub-
lished study tackled the horizon of online planning by
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restricting the viewing window in a continuous manual
tracking task (Bashford et al., 2018). Together, these stud-
ies support our view that the ability of the motor system to
deal with a stream of incoming stimuli while producing
motor responses (i.e., online planning) enables skillful per-
formance of movement sequences.

Motor planning has a limited capacity
We found that the span of the planning horizon (approx-

imately three to four movements) was smaller than the
typical amount of information that can be stored in short-

term memory (Miller, 1956; Cowan, 2010). However, more
recent theories of short-term memory posit that capacity
is not limited by a fixed number of items, but rather by fi-
nite attentional resources that can be flexibly allocated
across multiple items (Luck and Vogel, 1997; Bays and
Husain, 2008). Similarly, characterizing the planning hori-
zon as having a hard, discrete limit (i.e., a specific number
of movements) may not be the best description. A more
realistic model would assert that cognitive resources of a
central bottleneck (Pashler, 1994) are mainly allocated to
the next upcoming movement, with a decaying distribu-
tion for elements further into the future (Fig. 8A). Such soft
distribution of central resources to multiple tasks is con-
sistent with classical models of the psychological refrac-
tory period (Welford, 1952; Smith, 1967; McLeod, 1977).
In the context of sequence preplanning, this idea is also
consistent with the competitive queueing (CQ) hypothesis
(Averbeck et al., 2002, 2006; Rhodes et al., 2004;
Kornysheva et al., 2019; Mantziara et al., 2020): the first
element would be preplanned the most, with subsequent
elements being prepared to a decreasing degree.
Eventually, subjects run out of resources and start exe-
cuting responses. Completing preceding movements
frees up new resources that can be allocated to plan suc-
cessive movements online. The discrepancy between the
short-term memory span and the planning horizon may
reflect the fact that planning a movement takes up more
central resources than remembering a digit.
Importantly, the limits in planning horizon appear to be

of central (cognitive) origin, rather than strictly perceptual
or motor. As shown by the first (and last) IPI in a se-
quence, participants are in principle capable of executing
key presses faster than the asymptote reached even for
large window sizes. Additionally, perceptually, partici-
pants are able to identify 6 digits to the right of their eye
fixation, which is at least a full digit more than their aver-
age planning horizon.

The horizon of motor planning expands with practice
If the capacity of motor planning depends on a soft,

flexible horizon, we can ask whether this limit can be im-
proved with practice. In agreement with a previous study
(Bashford et al., 2018), we found that practice had ex-
panded the span of the planning horizon. Our conclusion
was based on two key observations: (1) the benefit of see-
ing further ahead was greater later in practice (significant
interaction between w and day on MT); (2) the influence of
window size on MT can be described with an exponential
function whose decay rate decreased with practice
(change in the slope of the exponential). Speed improve-
ments that are independent of the amount of available in-
formation can be attributed to improved stimulus
identification, S-R mapping, or implementation of single
responses (Haith et al., 2016; Ariani and Diedrichsen,
2019; Hardwick et al., 2019). As participants become
more fluent at translating numbers on the screen into fin-
ger movements, each individual press is executed more
quickly, thus contributing to faster sequence production
across all window sizes. The greater performance benefits
for larger window sizes together with the expansion of the

Figure 8. Planning capacity and hypothetical neural implemen-
tation of sequential behavior. A, The “soft” horizon of sequence
planning depends on the amount of resource available. In this il-
lustrative example, most resources are invested in the planning
of the immediately upcoming press (11, 2, blue). The further in
time a press is from the current press (0, 4, red), the smaller the
corresponding planning investment. Once a press has been ini-
tiated, the resources are redistributed by shifting the planning
curve one step ahead, thus allowing for continuous online plan-
ning of future presses (e.g., 12, 3, yellow). B, Hypothetical neu-
ronal population activity in brain regions involved in planning
and execution processes. Each plane refers to an independent
subspace of the multidimensional population activity with possi-
ble neural trajectories for the current action (0), and future ac-
tions (11, 12), color-coded as in A. Shaded areas reflect single
trial variability. The current neural state is indicated by a black
dot. Planning of the next (11) and future actions (12) may
evolve in separate regions or in orthogonal subspaces within
the same region.
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effective planning horizon indicate that participants im-
proved their ability to make better use of advance infor-
mation. Given the nature of the exponential fit, it is hard to
separate the relative contributions of planning efficiency
(i.e., benefitting more from a specific window size) and
larger horizons to such improvements.
Unlike previous studies that examined sequence-spe-

cific effects in sequence production (Verwey, 2001;
Verwey and Wright, 2004; Wiestler and Diedrichsen,
2013; Ariani and Diedrichsen, 2019; Berlot et al., 2020),
here, we focused on random sequences. Note that, be-
cause of this, the observed practice effects cannot be ex-
plained by the formation of specific chunking structures
previously proposed as a way to deal with the complexity
of planning long movement sequences (Ramkumar et al.,
2016; Popp et al., 2020). Instead, we found that even
without prior experience with a specific sequence, people
can improve in the motor planning processes that underlie
sequence production. In other words, practice effects are
not only about learning what sequence to produce, but
also about learning how to coordinate execution and
planning efficiently.

Implications for the neural control of sequential
movements
The present study provides behavioral evidence that

online planning constitutes a central component of motor
skill. More speculatively, it raises the question of how
planning and execution processes can simultaneously
occur in the brain without interfering with each other. One
possibility is that planning and execution processes take
place in separate but communicating anatomic areas (Fig.
8B), such as the dorsal premotor cortex (PMd) for plan-
ning and the primary motor cortex (M1) for execution.
However, several studies have reported signals related to
movement planning also in brain structures responsible
for movement (Crammond and Kalaska, 2000; Ames et
al., 2014, 2019; Elsayed et al., 2016; Ariani et al., 2018),
with signals often mixed even within single neurons
(Evarts and Tanji, 1976; Riehle and Requin, 1989;
Alexander and Crutcher, 1990; Prut and Fetz, 1999).
Therefore, a more likely scenario is that planning and exe-
cution occur in overlapping neuronal populations, but oc-
cupy orthogonal subspaces of the multidimensional
neuronal code (Fig. 8B), such that planning activity does
not trigger motor output (Kaufman et al., 2014; Lara et al.,
2018; Zimnik and Churchland, 2020). Finally, an intriguing
possibility that should be investigated in future studies is
that multiple future movements could be planned as an in-
tegrated packet (i.e., as a movement chunk), such that
there is only one, shared, planning subspace, with speci-
alized code for specific transitions (i.e., 2–3) in movement
sequences. Namely, for random sequences, and provided
a large enough viewing window, one could imagine that
participants plan ahead until they can see and execute
that chunk before moving on to the planning of what has
since been revealed in a discontinuous fashion (which is
revealed by longer and non-homogeneous IPIs). Likewise,
in the context of known (i.e., learned) or predictable se-
quences, it is possible that participants could recall and

anticipate an upcoming chunk of information by only see-
ing part of it, thus planning and executing that chunk be-
fore moving on to the next. Some evidence compatible
with such an integrated code has been reported in studies
of the supplementary motor area (SMA) (Tanji and Shima,
1994; Hoshi and Tanji, 2004), which found neurons sensi-
tive to specific sequences of actions. However, most neu-
rophysiological studies have focused on planning-related
signals before movement onset (preplanning). Therefore,
it remains an open question how the neural substrates for
planning change when the same neuronal population has
to concurrently control an ongoing movement (i.e., online
planning). Our behavioral results highlight notable similar-
ities between preplanning and online planning: both proc-
esses led to faster performance when participants had a
chance to plan up to three upcoming sequence elements,
with diminishing gains for larger window sizes.
Additionally, practice-related improvements were compa-
rable between early IPIs (mostly preplanning) and late IPIs
(online planning). These similarities suggest that preplan-
ning and online planning may rely on the same neural pro-
cess (i.e., motor planning) happening in different contexts,
either in isolation before movement initiation or in parallel
with execution.
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