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ABSTRACT

The symmetric two-dimensional flow of a thin viscoelastic fluid jet emerging from a 

vertical channel is examined theoretically in this study. The fluid is assumed to be a 

polymeric solution, modeled following the Oldroyd-B constitutive equation. The 

influence o f inertia, elasticity and gravity in the presence of surface tension is 

investigated for steady flow only. Special emphasis is placed on the initial stages o f jet 

development. The viscoelastic boundary-layer equations are solved by expanding the 

flow field in terms of orthonormal shape functions. In contrast to the commonly used 

depth-averaging technique, the proposed method predicts the shape of the free surface, as 

well as the velocity and stress components within the fluid. It was found that the jet 

reaches the same uniform thickness regardless of Reynolds number in the absence of 

gravity. However, the distance to reach the uniform thickness depends on inertia. 

Presence o f gravity enhances the jet contraction and leads to possible jet break up. 

Presence o f surface tension tends to prohibit the contraction and flatten the jet surface. In 

contrast to the Newtonian flow, viscoelastic flow displays uniform flow much farther 

from the channel exit. Swelling is observed as Deborah number increases. The velocity 

and stress components profiles suggest that elasticity tends to play different role to 

inertia. Surface tension tends to flatten the jet surface similar to the Newtonian jet, but the 

stress components are not affected much in the case of a viscoelastic jet. The numerical 

solution is validated with experiment and good qualitative agreement is achieved.

Keywords: Viscoelastic fluid, polymer, planar, Oldroyd-B, thin jet, inertia, elasticity, 

surface tension, spectral method, Tanner’s theory, boundary layer, extrudate swell.
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CHAPTER 1 

INTRODUCTION

1.1 General introduction

Thin-fllm flow is encountered as a fundamental fluid dynamics problem in various 

realistic settings such as extrusion, coating, lubrication, flow of lava etc. The thin film 

flows with free surface display a variety of interesting dynamics, since the boundary is 

deformable. In this case, free surface flow problems are challenging because the flow 

domain is unknown, and the unknown free surface must be determined as part o f the 

problem. This is in sharp contrast to most fluid mechanics problems where the flow 

domain and boundaries are known. Thus, for a free surface flow problem, both the flow 

field and the free surface shape must be determined in space and time. The reason for 

studying these flows is to gain understanding of a great range o f phenomena, which in 

turn allows making predictions in areas of practical importance.

The study o f vertical liquid jets is o f interest in connection with spinning, coating, film 

casting and rheological measurements o f extension characteristics (Tanner 2000, 

Middleman 1977, Osswald & Hemandez-Ortiz 2006, Agassant et al. 1986). Due to the 

presence o f solid boundaries, stresses are built up inside the channel. But as the fluid 

emerges from the channel into the air, the viscous shear stress is eliminated at the newly 

formed surface. Experimental observations suggest that the flow just outside o f the 

channel can experience an expansion or contraction depending on the Reynolds number 

(Goren and Wronski 1966).

Polymeric fluids exhibit different behavior from the Newtonian fluid. The governing 

equations for any fluid consist o f field equations resulting from the conservation laws and 

constitutive equations. But the constitutive equations, which relate the stress to the 

motion of the continuum, vary from one fluid to another. Newton’s viscosity law cannot
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be applied to describe polymeric fluids. Since there is no universal constitutive law for 

viscoelastic fluids, different constitutive models often lead to different flow patterns.

In general, the solution o f film flow for a Newtonian fluid requires solving the Navier- 

Stokes equations. For a viscoelastic fluid, the conservation equations are solved together 

with the stress equations. The constitutive law for stress in this case depends on the type 

o f flow problem. More precisely, the choice of a suitable constitutive equation depends 

on whether the flow is shear or elongation dominated. Elongational flow differs from 

shear flow in that the velocity gradient lies along the flow direction. In uni or biaxial 

extension, unlike shear, the principle strain direction is parallel to the direction o f the 

extension, so that no rotation o f the fluid is induced. Elongational flow is thus irrotational 

(Robert & Gregory 1994).

The presence o f non-Newtonian effects in a fluid is expected to alter the flow 

characteristics. In elongational flow such as fiber spinning and film casting, experimental 

observations indicate that there are qualitative differences in the velocity, fiber 

diameter/film thickness and marginal stability conditions (Chang & Denn 1979).

The present theoretical study is focused on the planar flow of an incompressible 

polymeric jet emerging from a vertical channel. The jet is assumed to be thin. The 

emphasis will be on pressure-driven flow. Special emphasis is placed on the jet 

development as it emerges from the channel. Only steady state flow is considered in this 

thesis. The influence o f elasticity, inertia and gravity on the shape o f the free surface, the 

profiles o f velocity and stress is explored. In contrast to existing theoretical studies, 

surface tension effect has not been neglected.

1.2 Relevance to reality

The present work is o f fundamental importance given the significant qualitative role that 

elasticity plays in this case. In general, inertia has been neglected in most of the studies 

on viscoelastic jets. This can be quite reasonably justified, since in most practical 

applications of polymeric liquids, inertia is effectively small. However, there are still
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applications such as fiber spinning, film casting and high-speed extrusion in which inertia 

plays a significant role. Inertia becomes particularly important in modem high-speed film 

casting. Experiments on film casting and fiber spinning (Doufas & McHugh 2001; 

Seyfzadeh, Harrison & Carlson 2005) also suggest that inertia has a significant effect on 

the stability region of these processes.

The viscosity of polymeric fluids can vary from 102 to 106 Pa s (Bird et al. 1987). Thus, 

in commercial fiber spinning and film casting processes (depending on the type of the 

polymer), the Reynolds number may have a wide range of values. For example, the 

Reynolds number o f a Newtonian fiber spinning process in the experiment performed by 

Donnelly and Weinberger (1975) was reported to be less than 0.68 x 10‘ . However, more 

recently, Doufas et al. (2000) carried out their simulation by using the data from the 

spinning of Nylon 66. They estimated the Reynolds number in this case to be in the range 

4.09 to 9.81. Some examples o f the product of extrusion, fiber spinning and film casting 

processes are pipe/tubing, weather stripping, fence, deck railing, window frames, 

adhesive tape, film sheets, threads and wire insulation. Thus, the present work will help 

optimize the polymer process and product design by elucidating the range of optimal 

fluid parameters and flow conditions.

Fiber spinning is the process in which a cylindrical liquid thread of molten polymer is 

continuously extruded vertically through a spinneret, a die with multiple orifices. After 

initially swelling (a phenomenon called die swell), the thread is drawn down to a smaller 

diameter by an axial force. The process is schematically depicted in figure 1.1.



Figure 1.1 Schematic o f the fiber spinning process. The molten polymers are 

extrudate through an orifice or die. After die swell, the thread is drawn 

down to a smaller diameter by an axial force (part of figure taken from 

www.polymerprocessing.com).

Figure 1.2 Schematic of a typical film casting process. Thin film is extruded through 

a slit die onto a chilled roll where it is quenched. After passing through a 

system of rollers, the film is wound onto a roll (figure taken from Osswald 

& Hernandez-Ortiz 2006)

http://www.polymerprocessing.com
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Screw Die

\_________ \  Nucleation Expans,° n

Contraction

Figure 1.3 Schematic o f extrusion process. A polymer material is melted, pumped 

through a shaping die and formed into a profile. This profile can be any 

shape for its cross section (Source: en.wikipedia.org)
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In a film casting process, a thin film is extrudate through a slit onto a chilled, highly 

polished, turning roll where it is quenched from one side. The speed of the roller controls 

the draw ratio and final film thickness. The film is then sent to a second roller for cooling 

o f the other side. Finally, the film passes through a system of rollers and is wound onto a 

roll (Osswald & Hemandez-Ortiz 2006). A typical film casting process is depicted in 

figure 1.2. “Extrusion is a high volume manufacturing process in which a polymer 

material is melted, pumped through a shaping die and formed into a profile. This profile 

can be a plate, a film, a tube or have any shape for its cross section.” (en.wikipedia.org) 

Figure 1.3 depicts an extrusion process.

When a free surface viscous jet emerges from a tube or a channel, an abrupt change in 

stress occurs at the exit. Simultaneously, a swell may occur depending on the level o f 

inertia and elasticity. A realistic viscoelastic theory must be based on a realistic 

constitutive equation for stress. Unlike Newtonian fluids, where the stress is explicitly 

related to the velocity gradient through Newton’s law of viscosity, such a universal 

explicit or implicit relation does not exist for polymeric liquids. As mentioned earlier, the 

choice o f the constitutive relation depends on the relative dominance of shear or 

elongation in the flow. Consider the blow up in figure 1.1. There are two distinct regions

in the fiber spinning flow. One region is far from the die exit, where elongation is
\dominant over shearing due to the drawing action o f the roll. In this region, the velocity is 

essentially uniform across the fiber, but changes in the streamwise direction. In this case,

—  »  — . The second region is close to the die exit, where shearing tends to dominate 
3x dz

over elongation, and is reflected by the Poiseuille character of the flow as the fluid 

emerges from the die. However, at the exit itself, elongation is still significant due to the 

jump in the streamwise velocity from a zero value at the wall (stick) to a non-zero value 

at the free surface (slip). The present work focuses on the region close to the exit, where 

shearing is assumed to be dominant.

Experiment suggests that swelling is enhanced for polymeric fluids emerging from a tube 

or channel due to contraction before the exit and unrelaxed stresses after exit (figure 1.3). 

This is illustrated here in figure 1.4 by the experiment o f Prof. McKinley at MIT.
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Figure 1.4 Experiment on die swell (source: http://web.mit.edu/nnf/.).

http://web.mit.edu/nnf/
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1.3 Literature review

The study of liquid laminar jets has been extensively examined previously in the 

literature. However, the focus has mainly been on Newtonian jet flow. In addition, in 

most studies o f Newtonian jets, due to the convective non-linearities, limited studies can 

be found, which take inertial effect into account. Most studies also focused on steady 

flow since it is the long-term behavior o f the flow, after transient effects have subsided, 

that is generally important. There are many studies devoted to the modeling and 

simulation of jet flows. Appreciatively, jet flow has been predominantly examined for 

Newtonian fluids (Chang 1994), and to a much lesser extent for non-Newtonian film flow 

(see, for instance Berdaudo et al. 1998, and the references therein).

Generally, for small inertia flow of a Newtonian film, Benney’s (1966) long wave (LW) 

approximation is often used. At first glance, the LW approximation appears to be a 

suitable choice for the modeling of viscoelastic jet flow. However, the LW approximation 

becomes seriously limited in the presence of moderate or high inertia (Chang 1994). One 

may then safely speculate that a similar limitation will be encountered for moderate or 

highly elastic film flow. For a Newtonian film, the LW approximation at Re »  1 is 

typically not valid, and it is generally found that in this case, inertial effects are better 

represented using the boundary-layer (BL) formulation. Typically, an ad-hoc 

simplification o f the BL solution is achieved using a self-similar parabolic flow profile 

(Shkadov 1967, 1968). This amounts to depth-averaging the BL equations, which in the 

limit of creeping flow, leads to an exact formulation. Although this process circumvents 

the difficulty inherent to the LW approximation (Demekhin & Shkadov 1985, Trifonov & 

Tsvelodub 1991, Chang et al 1993), the self-similar behavior is not expected to hold in 

the presence o f high inertia or normal stress effects. The solution of the BL equations 

remains essentially as difficult as that of the Navier-Stokes equations (Takeshi 1999). 

The depth-averaging method leads to a second-order accurate solution in time, yielding 

plausible results, but raises a certain level o f doubt in the presence o f strong convective 

(and upper-convective) non-linearities due to the semi-parabolic assumption (Frenkel 

1992; Takeshi 1999). The parabolic approximation is widely used in the literature and its
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validity was established experimentally by Alekseenko, Narkoryakov, & Pokusaev 

(1985). However, it is generally argued that this validity holds only at low Reynolds 

number and provided that the surface waves are far from the entry (Wilkes 1962; Bertshy 

& Chin 1993). High inertia flow, turbulence, the presence of end effects, non-linear 

effects stemming from shear-thinning or viscoelastic effects are all factors that challenge 

the validity of the semi-parabolic profile.

A number o f studies have been done to investigate the internal and free surface flows of 

viscoelastic fluids. However, most of the studies were focused on the flow inside the 

channel with low or negligible inertia. Gaidos and Darby (1988) reported the developing 

velocity and stress profiles in the entrance o f a planar slit. Flow problems through a 

planar contraction were examined for the stress distribution (Kiriakidis et al. 1993), 

comer and lip vortex formation and flow behavior (Phillips and Williams 1999, Ganvir et 

al. 2007), and the role and importance o f relaxation (Keshtiban et al. 2004) using 

different numerical schemes for both compressible and incompressible viscoelastic fluids. 

Among most recent studies, Rodd et al. (2010) showed the consequences of increasing 

the constriction length in microfluidic viscoelastic entry flows.

The ffee-surface flow o f non-Newtonian fluids remains generally challenging. This is 

also true for thin film flow. Kang & Chen (1995) studied gravity-driven non-Newtonian 

films as well as creeping flow in the presence o f surface tension effect. Berdaudo et al 

(1998) examined the free-surface flow of a viscoelastic fluid emerging from various 

geometries. Khayat and coworkers have been examining extensively the highly non

linear flow, in the presence of inertia and/or elasticity, of thin films over rigid substrates 

o f arbitrary shape. The planar flow o f a Newtonian film was first considered over a 

stationary substrate (Khayat & Welke 2001; Khayat & Kim 2002) and a moving substrate 

(Tauqueer & Khayat 2004). The coating of shear-thinning (Kim and Khayat 2002) and 

viscoelastic (Khayat 2001) fluids were also considered on a planar substrate, and on 

axisymmetric substrates (Khayat & Kim 2006).

Generally, non-Newtonian jets are more likely to remain laminar compared to Newtonian 

jets (Rotem 1964; Cao et al. 2005; German & Khayat 2008). This makes the assumption
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of laminar flow within a distance downstream more plausible. The axisymmetric free 

laminar jet o f an incompressible pseudoplastic fluid was investigated by Rotem (1964). A 

BL approximation was used to find the velocity profiles for different exponents in an 

inelastic fluid. Submerged planar and axisymmetric jet flows of non-Newtonian power- 

law fluids at high Reynolds number have been investigated by Stehr & Schneider (2000). 

They used the method of matched asymptotic expansions and accounted for interaction 

between the jet flow and the induced flow.

Regarding the jet flow of viscoelastic fluids, the focus has mainly been in the literature on 

die swell and steady flow (see, for instance, Trang-Cong & Phan-Thien 1988, and, more 

recently, Liang et al. 1999). However, studies were done considering small or negligible 

inertia. Yuan et al. (1994) modeled the extrusion flow of viscoelastic fluid. Tome, Duffy 

& McKee (1996) examined the transient die swell and buckling of planar jets for 

Newtonian and generalized non-Newtonian fluids. Liang et al. (1999) carried out flow 

visualization and measurement of free surface to describe the behavior of a steady 

viscoelastic jet issuing from a capillary or an orifice under gravity. Their experiments 

revealed that depending upon the elasticity level of the fluid, the jet width may increase, 

decrease or remain unchanged downstream from the exit at least within a certain distance 

from the exit. In this case, the interplay between gravity and elasticity dictates the jet 

behavior. Mitsoulis (1999) studied the flow of an upper convected Maxwell model fluid 

through an abrupt expansion and more recently, the rheological behavior o f dilute 

polymer solutions to understand the swell, excess pressure loss as well as the shape and 

the extent o f the free surface under gravity (2010). His results showed the dependency of 

extrudate swell on elasticity levels, although the maximum swell was over predicted. 

Surface tension jet breakup of non-Newtonian fluids has also been examined both 

theoretically (Bousfield et al. 1986) and experimentally (Christanti & Walker 2001). The 

transient response resulting from the spreading o f surfactant on a thin weakly viscoelastic 

film has also been examined theoretically by Zhang, Matar & Craster (2002). Poole et al. 

(2007) reported velocity profiles using a systematic numerical investigation o f model 

viscoelastic fluids through a planar sudden expansion. They observed a velocity 

overshoot upstream of the expansion with increasing Deborah number. Karapetsas and
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Tsamopoulos (2008) studied the steady extrusion of viscoelastic materials from annular 

die following the PTT constitutive law. The mixed finite element method has been used 

to capture large deformations of the free surface as the liquid exits the die. Their study 

revealed the important role that the solvent viscosity can play in addition to the fluid 

elasticity and extensional viscosity. Tome et al. (2008) have developed a numerical 

method to analyze three dimensional unsteady viscoelastic free surface flows governed 

by Oldroyd-B constitutive equation and more recently, for the flows governed by Phan- 

Thien-Tanner constitutive equation (2010) using a finite difference technique. Their 

analysis provided the swell ratios for different Weissenberg number.

The upper convected Maxwell model or Oldroyd-B model has been used to study the 

behavior of viscoelastic fluids for many years. However, the results were only matching 

the experimental findings in the limit o f low shear rates (Crochet and Keunings 1982, 

Chai and Yeow 1988, Bush 1990), whereas all important and exciting elastic flow 

phenomena were occurring at higher rates. Moreover, the behavior of the Oldroyd-B 

model in two important flows in the die swell problem, namely steady shear flow and 

steady elongational flow, were also found unrealistic (Tanner et al. 1985). Despite the 

limitations, this has been an attractive model to researchers as an initiative because o f the 

relative simplicity. This model has a constant viscosity and single relaxation time that 

help to achieve convergence in the simulations.

Although studies were done for small or negligible inertia, there are applications, such as 

high speed film casting, where inertia plays significant role. Therefore, the objective of 

the present study is to examine the interplay among inertia, elasticity and gravity in the 

presence o f surface tension for a polymer jet. The formulation and simulation are carried 

out for a two-dimensional jet flow in order to better understand the intricate flow 

structures for a viscoelastic jet. The problems associated with frequent mesh resizing 

needed for the rapid spatio-temporal variations in the flow field make conventional 

solutions schemes such as finite-element/difference methods unsuitable. For the 

pressure/gravity driven flow in this study, a weighted residual approach is adopted for a 

viscoelastic fluid with a generalized BL formulation proposed. The system is first
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mapped onto a rectangular domain, followed by the expansion of the velocity field in 

terms of orthonormal basis functions. The Galerkin projection is used to derive the 

equations that govern the coefficients of expansion, which are then integrated 

numerically. This formulation is similar to the one adopted by Khayat & Kim (2006) for 

coating flow, and by German & Khayat (2005) for thin-jet flow of a Newtonian fluid. 

Unlike the depth-averaging method, the weighted residual methodology proposed 

becomes particularly suited for the early onset of wave propagation near the channel exit 

in the presence o f strong normal-stress effect. The numerical results are compared and 

validated with the experimental results from Liang et al. (1999). The experiment was 

done using Boger fluid, which is a polymeric solution consisting of 94.86% polybutene 

(PB, Amoco H-300); 4.83% tetradecane solvent (C14); 0.31% polyisobutylene (PIB, 

Scientific Polymers, MW= 6 X 106). This polymeric fluid is a liquid at room temperature 

and exhibits thermal, mechanical and chemical stability. Since it is transparent it is 

suitable for optical measurements of free surface profile (shape and positions) of the jet 

(Liang et al. 1999).
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CHAPTER 2

PROBLEM FORMULATION AND SOLUTION PROCEDURE

In this chapter, the governing equations are introduced, including the scaled conservation 

and constitutive equations, as well as the boundary and initial conditions for a 

viscoelastic thin fluid jet. Also included in this chapter is the solution procedure.

2.1 Problem formulation

The fluid examined in this study is assumed to be an incompressible polymeric solution 

represented by a single relaxation time and constant viscosity. The fluid properties 

include the density p, viscosity p, and relaxation time X. The solution viscosity p = ps+ pp 

comprises the Newtonian solvent viscosity ps and polymeric solute viscosity pp. 

Regardless o f the nature of the fluid, the continuity and momentum conservation 

equations must hold. For an incompressible fluid, the conservation equations are:

where U is the velocity vector, g is the gravitational acceleration, T is time, V is the 

gradient operator, and £  is the stress tensor. There are two components making up the 

deviatoric part of the stress tensor, a Newtonian constituent (solvent), and a polymeric 

constituent (solute) T. The stress tensor is then expressed as

superscript T. The polymeric constitutive equation for T is taken to correspond to an 

Oldroyd-B fluid and is written in the form (Bird, Armstrong & Hassager 1987):

V • U — 0, p(U"p + U • VU) — V • £  + pg (2.1)

(2.2)

where the hydrostatic pressure is represented by P, and matrix transposition is denoted by

(2.3)
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Figure 2.1

X ▼

Schematic illustration o f two-dimensional jet flow emerging from a 

vertical channel.
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The equation for a Maxwell fluid is recovered in the limit ps—>0 in equations (2.1)-(2.3), 

and the limit jxp—>0 leads to the Navier-Stokes equations. The problem is now examined 

using a Cartesian coordinate system using standard notations for velocity and stress 

components.

2.1.1 General equations and boundary conditions fo r  2D viscoelastic flu id

Consider again the general flow in figure 2.1. In this case, the equations (2.1) to (2.3) 

become

dU <3W „
—  + -------=  0
SX 3Z

p  — + u —  + w  —  
U t  s x  8z

From the constitutive equation for Oldroyd-B fluid,

xx-stress:

zz-stress:

xz-stress:
id U 3W) ----+ -----
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The force at the free surface is balanced by surface tension effect. So, in the presence of 

surface tension,

tx - ° x x n x + CTxznz CTnx

=> f _P  + 2ps + TXX

ax
\ f a u  a w "

nx +
)

Ps [ a z  ' a x J + TXZ nz = a n x f o X
ax

~ ° z x nx fo x
ax

( a u  aw") _  1 (

Ps + 1+1 \T 7
[d Z  d X J  _

nx +
V

n ^ dW ^  )  8nx
- p  + 2Ms —  + TZZ h z  = CTn2 —az ax

These are the dynamic boundary conditions in x and z direction. The components o f the 

normal vector are given by

n x
Hx

Vh x 2 +1

nz 1

and

-1

VHX2+1 
fo 2L = _ J h o c

3/2

The kinematic boundary condition describes the flow velocity in transverse direction, 

which is equal to the change of surface height with time.

dH aH TTaH w = — =— +u— dT aT ax

As to the boundary conditions at the channel exit, the flow is assumed to be of the 

Poiseuille type, which is now derived.

Consider a two dimensional incompressible plane viscous flow between parallel plates a 

distance D apart. The plates are assumed very wide and very long, so that the flow is 

essentially axial, U * 0 but W = 0 . Considering only pressure varies along X direction,



17

/  /  /  /  / / / /  s '
i U=0, W=0 

D
I X

[  u=o, w=o J
z z . ____\ \ \ \ \ \ \ \ \ \

Figure 2.2: Definition diagram for Poiseuille flow.

conservation o f mass equation is satisfied readily and leads to the conclusion that 

U = U (Z ). Considering steady state and neglecting gravity, the X and Z- momentum 

equations give

dP__
d X ~ ^ s

d2U 

dZ2 +
dTxz

dZ

dP _ dTzz  
dZ dZ

Solving for the stresses,

Txx - 2XPXZ
5U
dZ

Tzz

T  -  5 UXZ Pp d z

So, upon substituting the shear stress in the x-momentum equation, one obtains the same 

equation as for a Newtonian fluid

d2U _ 1 dP 
dZ2 P dX
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The solution is accomplished by double integration,

U = — — Z2 + C 1Z + C2 
2|u dX

The constants are found from the no-slip condition at each wall.

for U (Z = 0) = 0, C2 =0

for U (Z = D) = 0, C , = - — ■—

Thus, the flow in a channel due to pressure gradient is

U = — — ( z 2 - D z )  and —  = — — (2 Z -D )
2pdXV > dZ 2 p d X v '

The mean velocity inside the channel will be used as velocity scale. It is given by

1 D
u „ = - J u d z = -

D2 dP 
12p dX

In this case, the stress components become

TXZ = — ( 2Z -  D )^  p dZ 2p d X v 1

dU
Tx x  -  2ATXZ —  -  2A.pp

f d lA 2
v dZ )  2p £ ( 2 z - ° ) '

The primary and secondary normal stresses become

— ^ x x  % zz ~  ^XX an(  ̂ ^ 2  — 2̂ 22 S yy — 0  .
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2.1.2 Boundary-layer equations fo r  a viscoelastic fluid

The flow of a viscoelastic jet emerging from a vertical channel is schematically depicted 

in figure 2.1 in the (X, Z) plane. The X-axis is chosen to correspond to the vertical 

(streamwise) direction and the Z-axis is chosen in the horizontal (transverse) direction. 

The domain o f the fluid is represented by i2(X, Z, T), with the (half) jet thickness denoted 

by Z = H(X, T). The channel exit coincides with X = 0, and the (symmetric) flow is 

examined in the (X, Z) plane, with Z = 0 corresponding to the line o f symmetry. The flow 

is induced by either a pressure gradient inside the channel and/or gravity, but for this 

study the emphasis will be on pressure-driven flow. The streamwise and transverse scale 

lengths are chosen to be a suitably defined length L, and the channel half width Ho, 

respectively. Since the film half thickness is o f the same order as the boundary layer

thickness, then L PUqHq2 . For both Newtonian and non-Newtonian fluids, there are

four main dimensionless parameters. These are namely the Reynolds number, Re, the 

aspect ratio, s, the Froude number, Fr and the Capillary number, Ca. Explicitly written, 

these take the following form:

s R e = P M o
pL

= 0 ( 1), E
U

(2.4)

where the reference velocity, Uo, is the mean velocity in the channel in the absence of 

gravity. Note, in this case, that eRe ~ 0(1) and s ~ O^Re-1 j , where ReH is the Reynolds

based on Ho. Additional to these parameters are the similarity parameters for a 

viscoelastic flow, which include: the Deborah number, De, the solvent-to-solute viscosity 

ratio, Rv, and the solute-to-solution viscosity ratio, a:

Rp = 1
p Rv + 1

(2.5)
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In this study, the fluid film is assumed thin with e «  1. Thus, s is taken as the 

perturbation parameter in order to reduce the formulation to that of the boundary-layer 

type. The scaling o f the velocity, shear and normal stresses, and position coordinates take 

the following non-dimensional form:

X
X = L ’

N II
oK

|N t _ U 0T  
L  ’

u
u = — , 

U 0

W
w = —  , 

eUo
h — i L ,

Ho

P L e 2
P =  I T  ’ p U 0

(2.6a)

The non-linearities in the upper-convective terms create difficulty when scaling the stress 

equations. In general, one may set:

L s  Tq = ------T
pU0 X X ’ s = ■LsP

pU0
T r =1 X Z ’  1

Lsy
pU0

zz (2.6b)

Note that the stress tensor is symmetric. The constants, a, (k y are determined by ensuring 

that the terms in the conservation and constitutive equations balance. The reduced 

equations are derived in appendix A from the dimensionless form of equations (2.1) to 

(2.3), excluding terms of 0 (e  ) and higher.

In order for all the stress terms in the x-momentum equation to survive, the exponent a 

should be set equal to 2. Correspondingly, setting P = 1 ensures the survival o f all the 

terms in the normal stress equation for q. It can be seen that this results in the streamwise 

normal stress q not depending strongly on the streamwise elongation termux , which

should be the case for shear dominated (boundary-layer) flow. However, this stress does 

not disappear entirely due to the non-linear coupling with shear effects. With a and (S set, 

the survival o f the terms in the shear stress equation for s and normal stress equation for r 

can be achieved by setting y = 0. The z-momentum equation now shows that the pressure 

gradient in the transverse direction is negligible, i.e. pz~ 0(s ). This demonstrates that the 

pressure dependence in the transverse direction is negligible, which is in agreement with 

the limit o f a Newtonian jet flow. Hence, assuming no body forces exist in the transverse
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direction, the pressure is a function of the streamwise direction and time only. The 

conservation and constitutive equations are appended to take the following form:

ux + wz = 0 (2.7a)

sR e (u t + u u x + wuz) = - p x +aRvuzz + q x + sz + G L (2.7b)

pz = 0  (2.7c)

DeL (qt + uqx + wqz -  2suz -  2qux ) + q = 0 (2.7d)

DeL (rt + urx + wrz - 2swx - 2rwz) + r = 2awz (2.7e)

DeL (st + usx + wsz - qwx -  ruz ) ■+ s = auz (2.7f)

Here G l = — r- is the gravity number. The equations above must be solved subject to the
H

dynamic and kinematic conditions at the free surface, the symmetry conditions at z = 0, 

and the channel exit conditions at x = 0. The preceding scaling method was applied to the 

dynamic condition in the normal and tangential directions, resulting in

aRvuz (x,z = h,t) + s(x,z = h ,t) = q(x,z = h ,t)hx (x,t) (2.8a)

p(x,z = h, t) = - ^ - h xx (2.8b)
Ca

In dimensionless form, the kinematic condition becomes

w (x,z = h ,t) = h t (x ,t) + u(x,z = h ,t)hx(x,t) (2.9)

The flow conditions at the channel exit correspond to the flow inside an infinite channel. 

Thus
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u(x = 0,z,t) =-^(3 + GL) | l  - z 2 j 

w (x  = 0,z ,t) = 0

q(x  = 0,z ,t) = 2aDeL (3 + GL)2 z2 >

r(x  = 0,z ,t) = 0

s(x  = 0,z ,t) = -a (3  + GL)z

(2.10a)

The jet thickness at the channel exit is assumed fixed, so that

h(x = 0,z,t) = l (2.10b)

Finally, the symmetry conditions are

w (x,z = 0,t) = uz(x,z = 0,t) = s(x,z = 0,t) -  0 (2.11)

In this formulation it is assumed that no external force or pressure acts on the fluid 

surface. For a surface-pressure-driven flow the reader is referred to Kriegsmann, Miksis 

& Vanden-Broeck (1998). Also, since the pressure p does not depend on z, the pressure 

must vanish everywhere in order to satisfy the zero-pressure condition (2.8b). For this 

reason, the axial pressure gradient term of (2.7b) will no longer be included.

2.1.3 Rescaled problem

Now that the boundary-layer equations are derived, a more convenient scaling is 
introduced in terms o f one velocity and one length scale. Thus, let

x

u -

2<_

H0
U

z =

U
w =-

0

H0
W
u 0’

t '  = 

h =

UqT
H0 ’
H

H0 ’
PHp
pU0

_ H
*1 ”  T T  A X X ’pU0

' -  n °- T s'X v v  «. J
_ Hp T 

P-U0 XZ’
Hp

pU0 L zz

(2.12a)

r (2.12b)



23

The non-dimensional parameters for the problem are now all given in terms of channel 
half width to read:

Re = pUpHp Fr = Ur

V i« o ’
Ca=

p u 0
De =

XUc
Hn

Rv = —
Pp

(2.13)

The rescaled conservation and constitutive equations (2.7) take the following form (after 
dropping the prime):

ux + w z = 0

R e(ut + uux +w uz) = aRvuzz + q x + sz + Ca~1hxxx +G 

De (qt + uqx + wqz -  2suz -  2qux ) + q = 0 

De(rt + urx + wrz - 2swx - 2rwz) + r = 2awz 

D e(st +usx +w sz - q w x - r u z ) + s = auz

Note that the pressure gradient is now eliminated after using condition (2.8b).

(2.14a)

(2.14b)

(2.14c)

(2.14d)

(2.14e)

2.2 Solution procedure

Traditionally, for Newtonian thin-film flow, the equations are solved by imposing a semi

parabolic profile for the velocity and depth-averaging the equations across the thickness. 

The strong non-linear effects originating from inertia and normal stress for a viscoelastic 

fluid make this approach unfeasible. The solution process is obviously difficult due to the 

explicit z dependence o f the velocity and stress components. Formal handling o f the 

transverse flow expansion was suggested by (Zienkievicz & Heinrich 1979, Ruyer-Quil 

& Manneville 1998, Takeshi 1999). The present study follows closely and generalizes the 

work of Zienkievicz & Heinrich (1979), with the exception that the transverse velocity 

component will not be neglected and the change in surface height over time is also 

included.
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2.2.1 Mapped equations

For the solution procedure, the equations are first mapped onto a rectangular domain in 

order to apply the weighted residual method. All flow variables are then expanded in 

terms of polynomial shape functions in the transverse direction. The Galerkin projection 

is then applied in order to generate the equations that determine the expansion 

coefficients. A Lagrangian time-stepping implicit finite-difference method is coupled 

with a fourth-order Runge-Kutta integration solution approach in the flow direction in 

order to determine the expansion coefficients. This is a similar approach as to the ones 

developed previously for two-dimensional coating flow of Newtonian (Khayat & Welke 

2001), and generalized Newtonian fluids (Khayat and Kim 2002). The present 

formulation is quite involved and will only be summarized in this work. System (2.7) is 

reduced to a transient one-dimensional problem formulation by an expansion of the 

velocity and stress components in terms of orthonormal modes in the transverse direction. 

The following mapping is used:

with £ e  [0, 1].

Let v be a general function variable. Thus, one introduces the convective derivative as

X(x,z,t) = x, ^(x,z,t) = - Z— , < x ,z ,t)  = t
h(x,t)

(2.15)

(2.16)

The mapped equations are as follows

(2.17a)

R e—  = --------
dx h  ̂ h
du 1 (  aRv (2.17b)
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De dq 2— — su? -2 q  
dx h ^

uv -  — hvuxu£ + q = 0

De £  + ̂ shxw^ - rw0 “ 2swx
2a

+ r = — wp u s

De ^  + i ( ^ q hXw^ - ru^ ) - q wx h
+ s = —au?

In the Newtonian limit, equations (2.17) reduce to

uv hvu? + we — = 0 
X h x *  ̂h

„  du 1 „ _i, „Re- ;— — —— + Ca hvvv + Cj
dx h ‘XXX

(2.17c)

(2.17d)

(2.17e)

(2.18a)

(2.18b)

2.2.2 Spectral expansion

The orthonormal shape functions Ai(^), Bj(£,), C,(^) and D,(^) for the streamwise velocity, 

u, normal stress component q, and shear component stress s as well a? the normal stress 

component r are shown as follows:

M
u(x* ^ t) = ^ U ì(x, t)a ì(4), 

i=I 
M

r(x ,^T ) = X Ri(X ^)C i(U
i=l

M
q(X^.x) = ZQi(3t.'c)Bi(4)> 

i=l 
M

s (X ^ ‘0  = E s i(x,T)Difê),
i=l

(2.19)

where M represents the number of modes and the unknown coefficients are Ui(x,x), Qi(x>

M
x), R,(x, t) and Si(x, x). Also, generally, let v(x?£)5T) = ^ V i(x5x)v|/i(^). Equation

i=l

(2.17a) becomes
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U f c A i - i ^ U i A i '+ w ^ O  (2-20)

The transverse velocity component, w, is determined by integrating the continuity 

equation (2.20) to give

w (x ,^ 't)  = hx (^Ai - fc J U i -h<t>iUix (2.21)

where i  ($) -  J* A;d^ .

In this case, the convective terms are o f the following form

^  = v it V j - ^ V jVi [ 5 ( h ,+ h xUkAk ) - h x (^Ak -<|>k )U k

+UjAjVkxv)/ic — Vjvj/j Ukx<()k
(2.22)

Equations (2.17b) to (2.17e) becomes

du 1
Re—  = -  

dx h
aRv UjAj - ^ h xQjBj + SjDj + Qkx®k+Ca hxxx+G

De ^  +1UjAj’ (^hxQkBk -  SkDk) -  2QjBjUkxAk + QjBj - 0

(2.23a)

(2.23b)

De dr M
—  + 2 Y S jD : 
dx ^  J J

j= l
h* \ h "*"^k

-  {(^Ak -  4* ) (hxUk )x -<|>k (hUkx )x }] -  2RjCj (^Ak + Ak -  h  ) Uk

- Ukx<|>k |J + RjCj = — |̂ hx (^Aj + Aj " ) Uj “ ^ jx ^ j

(2.23c)
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De
£ + q a

h
x h U k(^A k + A k “ ‘t'k j - ^ U k ^ k  | “ [(^A k-<l)k ) ( hxU k),

^k ( ^ k x ) - r u jAj'Rkc k + S :D : = — U ¡A:J J h J J

(2.23d)

where a prime denotes a total differentiation. In addition to the condition of 

orthonormality, the shape functions must also satisfy various boundary conditions. Some 

of these conditions are not obvious. One condition is the limit of Newtonian film flow 

being recovered for this viscoelastic formulation as Rv —» oo. One major difficulty for 

viscoelastic flow, as opposed to a Newtonian flow, is that the shear stress does not simply 

and necessarily vanish at the free surface. This becomes apparent when examining 

condition (2.8a), and also noting that there does not exist separate boundary conditions on 

shear and normal stresses. This, however, can be remedied by satisfying condition (2.8a) 

as well as recovering the Newtonian limit by simply setting the shear and normal stresses 

equal to zero at the free surface. Hence, assuming orthonormality, the following 

conditions apply for

(A iA j) = Sij, A,i (4 = 0) = A,i (^ = l) = 0 (2.24a)

which satisfy conditions (2.11). Here, 8y is the Kronecker delta, and ( } denotes the

integration over the interval £, e [0, 1]. Note that a prime denotes total differentiation. For 

B„ it is not difficult to deduce from equation (2.7d) that, given the symmetry conditions 

(2.11), q is also symmetric with respect to the centreline. Thus

(B iB j) = 8jj, Bj ’(£, = 0) = 0 (2.24b)

Note that q(x, z = 0) does not necessarily vanish, unless q(x = 0, z = 0) = 0. The boundary

conditions for C, are not as obvious. Nothing for certain can be said about r at either the 

free surface or line of symmetry. In this case, the corresponding shape function is 

assumed to satisfy only the condition of orthonormality, namely
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( C i C j H l (2.24c)

Upon use of equations (2.18a) and (2.21), the kinematic condition (2.9) becomes

h = — []■ ( A - ^ - b  
x u  z U

(2.25)

where, U = U j(A j)

While carrying out the Galerkin Projection, the general form of the convective terms 

become, from expression (2.22)

t ( ^ j V i )  + hxUk

+ U  j'Vkx (  A  j W i ) -  v j u kx (<t>kV j'V i)

Equations (2.23a) to (2.23d) become

AiH ( l T u J ( AJ'A]) +s( (Dj'Ai) '  h*Q-i
+Qjx (A;Bj) + Ca_1hXXX (A!> + G{Ai >

De ^ B i)  + k u j (hxQ k(5A j'BkBi ) - s k (A j'D kBi

-2Q jU kx(BjAkBi) + Q j= 0

De Ci + 2Sj hx |~'Uk (^Ak + Ak - WjDjCi) - Ukx (^k DjC;' 

- |(hxUk ((̂ Ak ~ <l>k) Dj î) - (hUkx {<|>kDjQ t 

-2Rj|“~^^Ak + Ak -<j)k )CjCi)uk-Ukx(̂ kCjCi/

+Ri = f [ hx ((?Aj' + Aj -  j Ci )Uj -  hujz (*;Ci

(2.26)

(2.27a)

(2.27b)

(2.27c)
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De hx | - jf  U k ( ^ A k + A k -  h ' jB jD ; ) -  u kl (^ k 'B jD i ] 

- | ( hx Uk L ( ( 5Ak - * k ) B j D i) - ( h U k l ) (HBjD;; (2.27d)

- - U jR ^ A jC k D i + Sj = - U j  AjD; 1 u J \  J 1

The insertion o f expression (2.21) into the governing equations allows the elimination of 

w. Using expression (2.21), condition (2.9) becomes

hT + hUjx (A j)  + hxUj (A j ) = hT + E8j (hUix + hxUj) = 0

In compact form, expression (2.26) becomes

(2.28)

 ̂̂   ̂~ Vit ^ [h xal,j + hxUk(x2yk J + UjVkxcx.3ijk VjUkXcx.2ijjc

where aly = j V i}, <*2ijk = ^ k\|/j V i} and ct3ijk = (A ).

Now, equations (2.27a) to (2.27d) become

R e /— A j) = —
\dx 7  h

-1

(  aRv
UjE4y+SjE5ij hxQjE6y + Qj)CE7ij

+Ca hxxxE8j + GE8j

(2.29)

(2.30a)

De U j(h xQkF4yk SkF5ijk) 2QjUkxF6yk
idx

+ Qi =0 (2.30b)

De h X T - UkG4ijk -  UkxG5uk -  (hxUk L  G6ijk -  (hUkx ) G7Uk

~2Rj j h UkG8>jk _ UkxG9ijk + Ri =Y [ hxUjG1°ij_hUjxGllij]

(2.30c)
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De / ^ D i j  + Qj hx - i U kH4ijk- U kxH5ljk

h Uj RkH8ijk + s i = r u jH9ü

(2.30d)

The corresponding boundary conditions are derived from (2.10a) become

U j ( X  =  0 ,T )  =  ^ ^ ( ( l  -  ç 2 )  A i ( « )  =  E 0 ;

Q i ( X  =  0 , t ) =  2a D e (3 + G ) 2 ( ç 2B i © )  =  2a D e (3  +  G )2 f-0 , 

Ri(x = o ^ ) = o,
Si(x = 0, t )  = - a  (3 + GXÇDjO;)) = -a (3  + G)H0j 

h(x = 0,x) = l

(2.31)

The expressions for different E, F, G and H are given in appendix B.

In the Newtonian limit, equations (2.30) reduce to

R e ^ A j^ - p ^ U jE ^ j  +Ca_1hm E8i +GE8j (2.32)

This is analogous to Newtonian and generalized Newtonian flows (Khayat & Welke 

2001; Kim & Khayat 2002). The expansion coefficients are obtained upon substitution of 

expansions (2.19) along with (2.21) into equations (2.14). These equations are then 

multiplied by the appropriate shape function and integrated over the interval £ e [0, 1]. 

This results in a system of 4M + 1 partial differential equations in the (%, x) domain. 

These equations are then solved using a Lagrangian implicit finite-difference 

discretization scheme accompanied by a 4th order Runge-Kutta integration method in the 

x- or x-direction.
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CHAPTER 3

RESULTS AND DISCUSSION

The formulation and numerical implementation above are now used to study the flow of a 

thin jet emerging from the channel as illustrated schematically in figure 2.1. The physical 

domain of the fluid is assumed to extend from x = 0 to x -»  oo, but the computational 

domain will be restricted to x 6 [0, 10]. The influence of fluid inertia, gravity and surface 

tension is investigated at moderately high Reynolds number in order not to make inertia 

dominant.

3.1 Newtonian jet flow

The investigation of the steady Newtonian jet begins with analysis of the rate of 

convergence of modes. The number of modes required for reasonable convergence is 

typically small because of the predominantly slow variation of the flow field in the 

transverse direction. Figure 3.1 illustrates the rate of convergence in the absence of 

gravity and surface tension for a flow at Re = 20. The figure shows the surface height, 

h(x), plotted against position, x, for different number of modes. Convergence is 

essentially achieved by including only a few modes (M < 6), especially far downstream 

from the channel exit. A similar rate o f convergence is observed for other flow variables 

and will not be reported here.

Influence of inertia on Newtonian jet flow is first examined by varying the Reynolds 

number. Figure 3.2 illustrates the influence of inertia for Re e [20, 100]. The flow is 

illustrated in the figure, where the height of the free surface h(x), streamwise velocity 

u(x, z = h) and transverse velocity at the free surface w(x, z = h) are plotted against x for 

a given Reynolds number. Since mass is conserved, the (average) steady streamwise 

velocity behaves like the inverse of the film height (see figure 3.2b).

The film profiles in figure 3.2a show a monotonic response of the jet thickness with 

respect to position, with a strong contraction in film height close to the channel exit. This
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contraction is weakened by inertia. The curves in the figure suggest, as expected, that in 

the limit of infinite Reynolds number, the jet thickness remains constant with x. In fact, 

the contraction ratio for a Newtonian jet is always same. However, the distance required 

for the jet to reach uniform condition does depend and indeed increases with inertia. The 

distance becomes infinite in infinite Reynolds number. The contraction in height is 

accompanied by a sharp drop in transverse velocity (see figure 3.2c), which reaches a 

minimum at a location close to the channel exit that is essentially independent of inertia. 

Note that plug flow conditions are reached far downstream from the channel exit at any 

Reynolds number, which is also reflected by the constancy of streamwise velocity 

component in figure 3.2b.

Figure 3.1 Convergence rate and influence of the number of modes in the absence of 

gravity and surface tension (G = We = 0) and Re = 20.
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Figure 3.2 Influence of inertia on (a) jet thickness, (b) streamwise velocity and (c) 

surface transverse velocity in the absence of gravity and surface tension (G 

= We = 0), for Re e  [20, 100].
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Further insight on the role of inertia is inferred from figure 3.3. The jet thickness, 

streamwise velocity and transverse velocity are plotted as a function of Re, respectively, 

at the location, xm, of minimum w. The flow response is obviously monotonic with 

respect to Re. Figures 3.3a, 3.3b and 3.3c show that the flow is strongly dependent on 

inertia for small Reynolds number. In fact, as Re —» 0, the jet tends to infinitely contract 

near x = 0 and reach the uniform thickness immediately. In this limit, w -> - oo (not 

shown). This behavior is exactly opposite to that encountered in the flow exiting a 

channel and flowing over a rigid plate (as in coating flow). In this case, the film thickness 

tends to grow infinitely in the limit Re -» 0, indicating that the film tends to accumulate 

near the channel exit, resisting flow (see Khayat and Welke 2001). This contrast in flow 

behavior has a dramatic fundamental and practical consequence if one views the flow of 

the jet film as equivalent to the flow of a thin film over a fully lubricated (rigid) plate. 

This becomes particularly relevant in the case of polymeric film flow over a flat plate 

where slippage can occur. The difference between the two situations originates from the 

difference in boundary conditions, namely stick as opposed to slip at z = 0.
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Re

Figure 3.3 Influence of inertia on the (a) Jet thickness, (b) streamwise velocity and (c) 

transverse velocity the location, x = xm, of minimum w.
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Figure 3.4 illustrates the influence of inertia for Re e [20, 100] in the presence of surface 

tension but in the absence of gravity. These figures show an opposite trend compared to 

the effect of inertia in the absence of surface tension and gravity (see figure 3.2). 

However, the flow does not always respond in this manner to the influence of surface 

tension. This is somewhat reflected in figure 3.4c, where the location of the minimum in 

w does not depend monotonically on We. Other trends are possible depending on the 

level of surface tension. Indeed, for small We value, the flow responds similarly to the 

absence o f surface tension.

The influence of gravity is illustrated in figure 3.5 in the absence of surface tension for 

the range G e [0, 2], Interestingly, although the gravity term appears as a constant in the 

conservation of momentum equation, the response of the flow to gravity effect is far from 

linear. A slight presence of gravity leads to a significant decrease in jet thickness. Indeed, 

the presence of gravity prohibits the jet from reaching uniform conditions (thickness and 

velocity) far downstream. In fact, the jet reaches zero thickness at some position 

downstream, which approximately signals jet breakup. The figure shows that the rate of 

jet thinning with distance is independent of gravity, although the position for zero (final) 

thickness is further downstream for lower gravity jets. It can be seen from the figure that 

beyond a certain value of G, the dependence of the jet thickness on position is 

uninfluenced by gravity.

Finally, consider the effect o f surface tension. Figure 3.6 illustrates the influence of 

surface tension for We e [1, 5], Re = 50 and G = 0.5. As seen from the figure, the 

presence of surface tension tends to prohibit contraction.
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Figure 3.4 Influence of inertia on (a) jet thickness and (b) streamwise velocity and (c) 

surface transverse velocity in the absence of gravity (G = 0) and in the 

presence of surface tension (We = 0.5), for Re e [20, 100].
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Figure 3.5 Influence o f gravity on jet thickness in the absence of surface tension (We 

= 0), for Re = 50, G e [0, 2].

Figure 3.6 Influence of surface tension on jet thickness in the presence of inertia and 

gravity (Re = 50, G = 0.5) for We e [1,5].
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3.2 Viscoelastic jet flow

After analyzing Newtonian flow, the viscoelastic jet is now taken into account. The effect 

of inertia, elasticity and surface tension is investigated. The effect of elasticity can be 

examined by varying either the viscosity ratio or the Deborah number. In the current 

work, only De is varied and Rv is set equal to 1 (one) unless otherwise specified.

The influence o f inertia in the presence of elasticity (De = 1) and surface tension (We = 

0.5) is illustrated in Figure 3.7 while the gravity is absent (G = 0). The surface profiles 

suggest an opposite trend for the flow near and far from the channel exit Inertia tends to 

enhance contraction near the channel exit, similarly to the Newtonian case (figure 3.4a). 

Far from the channel exit, the jet reaches a constant thickness, corresponding to the 

uniform flow as suggested by figure 3.7b, which increase with inertia. For lower Re, the 

flow travels over a longer distance before it reaches uniform conditions. For a jet with 

high inertia, the jet exhibits a strong contraction near the exit accompanied by a strong 

flow of transverse velocity (Figure 3.7c). The position of the minimum in w is, however, 

not strongly affected by the inertia. At low Re, an overshoot is observed for streamwise 

velocity but vanishes as Re starts to increase (figure 3.7b). This phenomenon was not 

observed for the case of a Newtonian fluid. The profiles for the streamwise and 

transverse normal stress and shear stress components are also displayed in figures 3.7d, 

3.7e and 3.7f. As expected, the stresses at the free surface tend to zero eventually far 

downstream. Interestingly, the relaxation length for the stresses (at least at the free 

surface) is essentially independent of inertia. The stress profiles indicate a relatively mild 

overshoot in normal stress and a dip in shear stress at low inertia, where elastic effect 

tends to be dominant.
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Figure 3.7 Influence of inertia on (a) jet thickness, (b) streamwise velocity, (c) 

surface transverse velocity, (d) streamwise normal stress, (e) transverse 

normal stress and (f) shear stress in the absence o f gravity (G = 0) and for 

De = 1 and We = 0.5, Re e [1,20].
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Figure 3.8 displays the influence of elasticity at moderately low Reynolds number (Re = 

10) in the absence of gravity and surface tension. The profiles corresponding to the stress 

components are also included (figure 3.8d -  3.8f). The range of Deborah numbers 

considered is De e [1, 5]. Although the De range is relatively small, the flow is strongly 

influenced by elasticity. For De < 1, the flow is qualitatively of Newtonian character, and 

will not be shown. Figure 3.8a shows that the level of film contraction near the channel 

exit is independent of elasticity, but elasticity tends to generally prohibit contraction 

farther downstream. In fact, jet swelling is found for De >2. For all the cases, the jet 

thickness reaches a constant level far downstream from the channel exit. In this case, plug 

flow conditions are reached regardless of the value of De. The jet thickness exhibits a 

minimum close to the channel exit and levels off further downstream. For the case of a 

Newtonian fluid, the je t contracts to a constant thickness only. Moreover, a major 

contrast between Newtonian and viscoelastic jet flow is also reflected. For the Newtonian 

jet, the flow becomes fully developed and reaches the plug flow condition close to the 

channel exit. In contrast, a viscoelastic jet displays uniform flow much farther from the 

channel exit. Figure 3.8c shows that the transverse velocity profiles reflect a strong 

downward flow just downstream of the thickness minimum location, exhibiting a 

minimum at a location that is not strongly affected by elasticity. The waviness, which is 

typically expected for the flow of viscoelastic films, is more evident hère from the w than 

the h profiles. The w profiles exhibit a maximum that accompanies the swell in the jet.

Figure 3.8d, 3.8e and 3.8f show the profiles for the stress components. A significant 

build-up in streamwise normal stress, q(x, z = h) at the jet surface, with transverse normal 

stress r (x, z = h) reaching a maximum near channel exit is observed. Stress component 

figures suggest that the flow tends to be dominated by the elongational (as opposed to 

shear) effect. The profiles for the polymeric shear stress, s (x, z=h) is displayed in figure 

3.8f. Regardless of De, there is an undershoot near the exit but the stress tends to 

diminish downstream. The transverse velocity profiles show the same trend, except that 

instead of a maximum value, this shows a minimum (figure 3.8c). Overall, the jet 

profiles, velocity and normal stress distributions suggest that elasticity tends to play a 

different role to inertia.
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Figure 3.8 Influence of elasticity on (a) jet thickness, (b) streamwise velocity, (c) 

surface transverse velocity, (d) streamwise normal stress, (e) transverse 

normal stress, (f) shear stress in the absence of gravity and surface tension 

(G = We = 0) for Re = 10 and De e [1, 5].
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Figure 3.9 Influence of elasticity on (a) jet thickness and (b) swelling in the absence 

of gravity and surface tension (G = We = 0) for Re = 10.
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Beyond a certain value of De (De > 6), the contraction near the channel exit becomes 

independent o f elasticity and the jet shows significant swelling. The profile of the jet 

shows high swelling as De increases and starts contracting over a shorter distance and 

eventually reaches a constant thickness (figure 3.9a and 3.9b). In figure 3.9b, the jet 

profile breaks down (numerically) for high De not very far from the exit. The reason 

behind this breakdown is the stiffness observed close to the channel exit.

Of close relevance to the present results are the measurements reported by Liang et al. 

(1999). Although their study focused on the interplay between gravity and normal stress 

effects, with negligible inertia and ax ¡symmetric flow, some qualitative comparison with 

the present results is possible. Recall that inertia is always present in the current study, 

and the Reynolds number, which is based on the driving pressure, is assumed to be of 

order one. Referring to figure 3.8a, one observes the jet profile reported for a range of De. 

For small De, the jet contracts right at the channel exit. This is the necking phenomenon, 

which is typical for a Newtonian jet flow at moderate Re. This behavior was also 

observed by Liang et al. (1999) in their gray scale images, reproduced here in figure 3.10 

for reference and convenience. As De increases, figure 3.8a shows that the jet height near 

the exit becomes of the same level as the channel height, and for larger De value, the jet

has larger diameter than that at the exit. This situation is similar to that reported by Liang
\

et al. (1999) (see figure 3.10b and c).

However, one cannot expect good quantitative agreement for several reasons.

(a) Planar jet flow is considered in the current work while axisymmetric jet flow was 

examined by Liang et al. (1999).

(b) The current theory is based on the assumption that the jet is thin. This precludes 

comparison close to the exit where surface curvature is significant. Even further 

downstream from the exit, experiment shows an increase of local curvature with 

De (see figure 3.1 lb). One thus expects the current formulation to break down at 

large Deborah number.
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Figure 3.10 Gray-scale images of the viscoelastic jets issuing from a long capillary of 

radius 4.47 mm. Images shown for different values of Deborah number: 

(a) 0.12, (b) 0.55, (c) 1.40, (d) 4.08, (f) 9.09, and (g) 15.58. Figure and 

figure caption reproduced from Liang et al. (1999).
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Figure 3.11 Liang et al.’s profiles of the jet plotted as a function of vertical position 

from the exit at different values of De. Figures reproduced from Liang et 

al. (1999).



49

(c) The main driving force in the experiment is gravity. Although gravity can be 

included in the present calculations, inertia will have to be present as well.

(d) The theory also assumes that the Reynolds number is at least of order one, 

whereas experimental results are reported for Re ranging 10"5 to 10'3. The 

inclusion of inertia leads to additional contraction that is not reported in the 

experiment.

Figure 3.11 is taken from Liang et al. (1999) and shows measurements of the jet profiles 

as function o f the Deborah number. Clearly, the profiles close to the exit in figure 3.1 la 

and far from the exit in figure 3.11b are comparable with those based on the current 

theory as reported in figure 3.8a and 3.9a, respectively. For instance, in the experimental 

study, the constant thickness of je t far downstream for De= 0.12 was found to be 0.243, 

and this study predicts the thickness for the same De to be 0.2562. The current jet 

profiles, however, show the existence of a contraction near the exit that is not present in 

Liang et al.’s measurements. This discrepancy is of course due to the presence of inertia 

in the current formulation.

Further comparison between theory and experiment is made by examining the variation 

of extrudate swell and the position where the maximum swell occurs as function of De. 

The values for the extrudate swell and its location are, respectively, reported in figures 

3.12 and 3.13, based on the current theory and experimental measurements. The 

theoretical results are reported for Re = 10'3. This Reynolds number is taken deliberately 

small in an attempt to compare with experiment, although the current theory should 

preclude, in principle, such small Re value. The theoretical results (figure 3.12a) show 

that the maximum height remains close to one for De < 2, and increases sharply with 

Deborah number as De exceeds the critical value of 2, and remains almost unchanged at 

large values of De. A similar trend is reported by Liang et al. (1999) as shown in figure 

3.12b, with De = 0.5 as the critical value for the onset of swell. Results based on Tanner’s 

theory (1970) for the swell ratio are also shown in figure 3.12a. Note that Tanner’s theory 

is based on inertialess flow. In particular, figure 3.12a reflects reasonably close
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agreement between the two theories in the smaller De range. Comparison between Liang 

et al.’s experiment and Tanner’s formula for axisymmetric flow also shows agreement in 

the small De range only. Both the current theory and experiment reflect the lack of 

validity of Tanner’s theory for large De. Some background on Tanner’s theory is given 

next.

Tanner’s formula, which predicts the extrudate swell ratio for planar flow, is given in 

terms of the primary normal stress difference and shear stress ratio at the wall as

‘max 1H----
12

Nl

V Sxz ) wall y
(3.1)

This expression can be cast in terms of dimensionless parameters for the present purpose. 

Indeed, recall the expressions for the stress components from section 2.1.1, which are re

written in terms of the mean velocity in the channel.

In this case, the stress components at the wall become

2:xz = _ iiD d £ . = 6 i i l i
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Upon noting from (3.2) that
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and inserting (3.3) into (3.1), one obtains

(3.2a)
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Figure 3.12 The maximum jet thickness as a function of De from (a) present study and

(b) experimental results from Liang et al. (1999). Tanner’s formulas are 

also added as solid lines for planar (a) and axisymmetric (b) flows.
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D e

Figure 3.13 The position of maximum swell as a function of De from (a) current study 

and (b) experimental results from Liang et al. (1999).
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Here, a is recalled to be the polymeric solute to solution viscosity ratio. Finally, the 

dependence of the location of the maximum swell on the Deborah number is reported in 

figure 3.13, showing similar trends between theory and experiment.

The influence of surface tension is now examined for De = 1, Re = 10 and We e [1, 5]. 

The investigation was done in the absence of gravity. Like other configurations, the 

presence of surface tension tends to flatten the jet surface and this can be easily seen from 

figure 3.14a. The undershoot in free surface transverse velocity, w(x, z = h) is also 

minimized due to the presence of surface tension. However, it is found that the stress 

behavior does not change much with the change of We (figure 3.14d -  3.14f). There is a 

minimum for the surface transverse velocity near the channel exit which is again not 

affected by surface tension. The jet profile reaches plug flow condition not very far from 

the channel exit for any We. It is also found that in the presence of high elasticity (De 

>5), the jet swells further and the stresses show higher stiffness close to the exit (figure 

3.15).
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Figure 3.14 Influence of surface tension on (a) jet thickness, (b) streamwise velocity, 

(c) surface transverse velocity, (d) streamwise normal stress, (e) transverse 

normal stress and (f) shear stress in the absence of gravity (G = 0) for Re = 

10 and De = 1, We e [1, 5].
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Figure 3.15 Influence of surface tension on (a) jet thickness, (b) streamwise velocity,

(c) surface transverse velocity, (d) streamwise normal stress, (e) transverse 

normal stress and (f) shear stress in the absence of gravity (G = 0) for Re = 

10 and De = 5, We e [1, 5].
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CHAPTER 4 

CONCLUSION

4.1 Concluding remarks and summary

The symmetric two-dimensional flow of a thin viscoelastic fluid jet emerging from a 

vertical channel is examined in this study. The fluid is assumed to be a polymeric 

solution comprising a Newtonian solvent and a polymeric solute, modeled following the 

Oldroyd-B constitutive equation. The problem is o f direct relevance to polymeric 

processes such as high speed extrusion, film casting and fiber spinning where inertia can 

play a significant role, but has been widely ignored in previous studies. The influence of 

inertia, elasticity and gravity on the profiles o f velocity and stress components in the 

presence of surface tension is investigated for steady flow only. The thin-film equations 

are derived following the scaling of boundary-layer theory, and are solved by expanding 

the flow field and stresses in terms of orthonormal modes in the transverse direction 

using the Galerkin projection. In contrast to the depth-averaging technique, the proposed 

method predicts the shape of the free surface, as well as the velocity and stress 

components within the fluid.

For a Newtonian jet, the jet thickness remains essentially constant with x for large 

Reynolds number. However, the flow is strongly dependent on inertia for small Reynolds 

number with the jet tending to contract and collapse onto a thin line as Re approaches 0. 

The thickness for a Newtonian jet was shown to vary only monotonically, whereas a 

viscoelastic jet tends to thicken downstream of the channel exit. Steady Newtonian jet 

flow becomes fully developed only far downstream from the channel exit. The profile for 

jet thickness shows an opposite trend in the presence of surface tension to that in the 

absence o f surface tension. In this case, inertia tends to strengthen the contraction. The 

response of the flow to gravity effect is far from linear. A slight presence of gravity leads 

to a significant decrease in jet thickness. Finally, due to presence of surface tension, the 

contraction is prohibited.
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It was found that inertia affects significantly the flow of a viscoelastic fluid. The jet tends 

to reach constant thickness at a relatively short distance with inertia. This contraction of 

jet surface height near the exit is followed by strong downward flow of surface transverse 

velocity. At low Re, an overshoot was observed for streamwise velocity profile which 

vanishes with the increase of Re. This phenomenon was not observed for the case of a 

Newtonian fluid. The stress components show a jump near the channel exit, but 

eventually tend to relax far downstream.

The elastic effect is found to be more influential near the channel exit. For a relatively 

small range of De, the flow shows significant changes. The jet profile tends to show 

swelling as De increases. In contrast to the Newtonian flow, viscoelastic flow reaches 

plug flow condition much farther from the channel exit. A sharp gain is predicted for the 

streamwise normal stress component, q and transverse normal stress component, r close 

to the channel exit. The shear stress component, s shows an overshoot but monotonically 

decreases to zero height. A saturation effect for large De was observed, suggesting a 

stress relaxation at a short distance. From the stress component figures, it can be 

suggested that the flow will be dominated by the elongational effect as opposed to shear. 

Overall, the profiles suggest that elasticity tends to play a different role to inertia. 

Investigation on the effect o f surface tension suggests that the viscoelastic jet surface 

tends to flatten in the presence of surface tension similar to the Newtonian jet. However, 

the stress components are not affected much by the change of surface tension. Finally, 

comparison with the experiment of Liang et al. (1999) for axisymmetric jet as well as 

with Tanner’s theory for planar jet leads to good qualitative agreement.
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4.2 Future work

The current work has done as an initial step towards the study of viscoelastic fluid flow 

with moderately high inertia. As an expansion to the current work, the following can be 

done.

(a) Jet flow of a viscoelastic fluid emerging from a two-dimensional vertical channel 

was investigated in this study with the aid of the weighted residual method. Other 

flow configurations such as coating flow (wall jet), axisymmetric jet and even 

entry flow of a viscoelastic fluid can be examined using the same method.

(b) In this work, viscoelastic constitutive equation adopted corresponded to an 

Oldroyd-B fluid which provides a quite simple viscoelastic model for dilute 

polymer solutions. However, more robust, accurate and realistic constitutive 

models such as Phan-Thien Tanner (Phan-Thien and Tanner 1977), White- 

Metzner (White, Metzner and Denn 1966) and other more complicated models 

can be employed in the future.

(c) Only steady flow of a jet is considered in this work, but it can be extended to 

analyze the transient flow. Also, the thermal behavior of the jet can be 

investigated.

(d) A stability analysis can be done to examine the stability of the steady states 

computed in this thesis.
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Appendix A 

Scaled equations

Upon introducing the dimensionless variables from (2.6) into equations (2.1)-(2.3), the 

relevant equations for the problem reduce to

ux + Wz = 0 , (Al)

sR e(ut +uux + wuz) = - p x ~baRvu^ +s2~aqx + £1-Psz + GL, (A2)

Pz = e 2_Yrz + e3_P sx , (A3)

D eL | y “ (q t + uqx + wqz -  2qux ) -  26_H3suz ] + e~aq = aux , (A4)

DeL y r (rt + wrz + urx -  2rwz) -  2s1_̂ swx j  + e“yr = 2 a wz , (A5)

DeL e-  ̂(st + uwx + wsz) -£ ~ 1-Yruz - £ 1_ctqwxJ + e_^s = ae-1uz . (A6)



Appendix B 

Integrals

E O ,  =
( M 2 ) A ' >

F 2 ijk =  <̂t>k A  j A  j ^

E 4 i j  = ( A j"A . )

E 6 j j  =

E 8 j  = < A i >

F O ,  =
( * 2 B i >  i

F 2 ijk = ( <l>k B 1B j  ^

F 4 ljk = ( § A j ' B i B k )

F 6 ijk =  ( A k B , B J >

G 1 ij = ( ^ ¡ C j ' )

G 3 ijk =  ( G , A JC k )

G S . j k = ( ^ k ' D j C I )

G  7 ijk =  ( * k D j C i )

G  9 ijk =  ( + k ' C j C i )

g h .j =  ( ^ ' c , )

H O i  = ( ^ D . )

H 2 ljk =  ^ k B ¡ D  j ^

H 4 ljk = ^ ( ^ A k ' +  A k j B j

H 6 ijk =  ( ( ^ A k -  <)>k ) B JD »>

H 8 ljk =  j ^  k ^  i }

E 1 ij = ^ A iA j /

E-^ijk = ( A iA j A k )

E5ij = ( a . D j )

E 7 ¿j = ( A . B j )

F1U = ( ^ ¡ B j ' )

= ( B iA JB k )

^^ijk ;= ( A J D k B 1)

G 2jjk — ^ k C ¡ C  j  ̂

G 4 l j k = ^ ( ^ A k ' + A k - ^ k ' ) c i D j 

G 6 ljk - ( ( ^ A k - ^ j D j C i )

G8j jk = ^ ( ^ A k' + A k -  <t>k ' ) c  j C ; ^  

Gl Oy ~ ( ( ^ A  j' + Aj -<t>J' ) c i ^

H l ^ ^ D / )

H3ijk * ( D i A j D k)

H5ijk * ( ^ k'BjDi)

H 7 ijk = (<l>kB j D i )

H 9 ij = ( A j'D i )
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