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s:

Abstract
We propose a mathematical model for HIV-1 infection with two time delays, one 
for the average latent period o f cell infection and the other for the average time 
needed for the virus production after a virion enters a cell. The model examines 
a viral-therapy for controlling infections through recombining HIV-1 virus with a 
genetically modified virus. When only the intracellular delay is enrolled into model 
(1.13), the basic reproduction numbers Rq and Rd are identified and their threshold 
properties are discussed. When Rq < 1, the infection-free equilibrium Eq is globally 
asymptotically stable. When Rq >  1, Eq becomes unstable and there occurs the 
single-infection equilibrium Es. If Rq >  1 and Rd <  1, Es is asymptotically stable, 
while for Rd >  1, Es loses its stability to the double-infection equilibrium. For the 
double-infection equilibrium Ed, we show how to determine its stability and existence 
of Hopf bifurcation. Some simulations are presented to demonstrate the theoretical 
results.

Further investigation is carried over by introducing the second time lag into model 
(2.1). We have identified the new basic reproduction numbers Rq and Rd, and proved 
that for Rq < 1  the infection-free equilibrium Eq is globally asymptotically stable. If 
Rq > 1 and Rd <  1, the single-infection equilibrium Es is asymptotically stable. For 
the double-infection equilibrium Ed, it has been found that there exist both Hopf and

N

double Hopf bifurcations. These theoretical predictions are verified by using some 
numerical examples. Evidences indicate that the viral-therapy, of recombining HIV-1 
virus with a genetically modified virus may be effective in reducing the HIV-1 load, 
and larger delays may be able to help eradicate the virus.
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HIV-1 Model, Time Delay, Recombinant Virus; Stability of Equilib
ria, Lyapunov Function, LaSalle Invariance Principle, Hopf Bifurcation, 
Double Hopf Bifurcation, Limit Cycle.
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Chapter 1 

Introduction

1.1 Overview

Recently, time-delay differential equation (DDE) has become an important tool in 
modeling real-life' systems, especially in population dynamics. A simple but well- 
known delay differential equation in population dynamics is the evolution equation, 
given by

i* (t )  =  R[*(t) -  z{t -  r )2;

representing a system named after Belgian mathematician P.F. Verhulst [15] in the 
19th century. Hutchinson’s equation is another well-known delay logistic equation 
with a discrete delay, described by the following equation:

S f l  =  7x ( i ) [ l - * ( ( - T ) / J f ] , ( 1.2)

which is also referred as Wright’s equation. One can show [49] that if 7r  <  37/24 
and x(0) >  0, x(t) —>■ K  as t —¥ 00. Then system (1.2) has a nonconstant periodic 
solution oscillating around x =  K.

For immune response model (predator-prey model), the well-known time-delay differ
ential equation is the Lotka—Volterra model. A modified form of the Lotka—Volterra
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model [2] is given by:

dx(t) 
. dt

dy(t) 
dt

rx(t) -  j^x(t)x(t -  r ) -  ax(t)y(t) -  Hx, 

-cy (t) + /3x(t)y(t) -  Hy,
(1.3)

where x(t) and y(t) represent the rates of change for prey population and predator 
population, respectively, r is the intrinsic growth rate of the prey and c is the death 
rate for the predator without prey, a measures the rate of consumption of prey 
by the predator and ¡3 measures the conversion of prey consumed into the predator 
reproduction rate. K  is the carrying capacity. The constants Hx and Hy denote the 
rates of harvesting for the populations a: and y, respectively. All the parameters are 
assumed to take positive values. Model (1.3) has been analyzed by Martin and Ruan 
[2], who showed .that the time delay could induce instability, oscillations via Hopf 
bifurcation, and switching stability.

A more complicated model of immune response is HIV-1 infection model [21], de
scribed by

=  s — dx(t) — kv(t)x(t),

=  ke~Srv(t — r)x(t — r) — 5y(t) — py(t)z(t),

=  NSy(t) -  fiv(t),

~  cy(t)z(t) — bz(t),

dx(t)
dt

dy(t)
dt

dv(t)
dt

( 1-4)

dz(t)
dt

\
where x(t), y(t), v(t) and z(t) denote the concentrations of uninfected cells, infected 
cells, virus and concentration of cytotoxic T  lymphocytes, respectively. The param
eter s is the rate at which new target cells are generated, d is the death rate of the 
susceptible cells and k is the infection rate. The death rate of infected cells is 5, and 
the production rate of new virus particles is N  as the lysis of infected cells occurs. 
Thus, on average, virus is instantaneously produced at rate NSy(t). Also, virus par
ticles are cleared from the system at rate fj, per virion, p represents the strength of 
the lytic component and b is the death rate for cytotoxic T  lymphocytes. Lastly, r  
denotes the lag between the time when the virus contacts a target cell and the time 
when the cell becomes actively infected. For the above model, the stability conditions 
for uninfected steady state and infected steady state have been found. In addition, 
increasing either of the two delays will help to control HIV-1 infection. Details are 
shown in [21].
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In recent decades, many researchers made contributions to the theory and applications 
of delay differential equations. The book of Bellman and Cooke [34] describes the 
basic theory for the DDEs, while Hale’s work [23] focuses on the theory of DDEs with 
bounded delay. The book of Stepan [19] discusses the stability of the retarded DDEs. 
The theory and applications of DDEs in population models can be found in the book 
of Yang [49]. This dissertation also studies Hopf Bifurcation in DDEs. The theory 
of Hopf bifurcation in DDEs can be found in the book of Hassard et al [4]. There 
are many other researchers who developed theories and methodologies for studying 
DDEs.

To solve DDEs, computation is vital. There are several software packages for numer
ically solving delay differential equations and analyzing bifurcations of DDEs. dde23 
developed by Shampine and Thompson in Matlab is a powerful tool for simulating 
retarded differential equations with fixed discrete delays. This method is an exten
sion of the Matlab ODE solver ode23, so called the method of steps. The idea can be 
described by using the following simple example:

y'(t) =  y(l -  1) for t > 0 ,  (1.5)

with history S(t) =  1 for t <  0. For 0 <  t <  1, the above equation can be reduced to 
an initial value problem for an ODE with y(t—1) =  S(t—1) and y{0) =  1. For the next 
interval 1 <  t <  2, analytical solution is treated in the same.way, but the numerical 
solution is more complicated. For numerically solving ODEs, ode23 combines Runge- 
Kutta methods with cubic Hermite' interpolation. Runge-KuttaSnethods are more 
attractive since they are easy to start. With the given initial value, y0 =  y(a) at 
xq =  a, a distance hn — xn+i — xn is taken so that yn «  y(xn) and yn+1 «  y(xn+1). 
To obtain a more accurate approximation, the step size hn needs be chosen as small 
as necessary. Different from Runge-Kutta methods which only work at mesh points, 
cubic Hermite interpolation provides an accurate numerical solution between mesh 
points. Thus, with such a method, we can obtain y(t) everywhere in the interval. 
In this dissertation, new DDE models are developed for the HIV-1 infection. The 
models are used to study stability of equilibria and Hopf bifurcation.
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1.2 Stability of equilibria and Lyapunov functions

The study of equilibria of nonlinear systems plays an important role in HIV-1 model. 
In order to be meaningful physically, an equilibrium point must satisfy a certain 
stability criterion. We begin the discussion on delay differential equations with con
tinuous initial data. For a given constant r >  0, let C =  C ([—r, 0], i?n) and, if 
x : [—r,a )' - t  Rn, a >  0, let xt e C, t e [0, a ), be defined by xt(9) =  x(t +  9), 
9 6 [—r, 0]. For a given function /  : C -+ Rn, a DDE can be defined as

x =  f (x t) = (1.6)

If p  € C is given, then a solution x(t, p) of (1.6) with initial value p at t\= 0 
is a continuous function defined on an interval [—r, a), a >  0, such that xq(9) =  
x(9,p) =  p(9) for 9 € [—r, 0], x (t,p ) has a continuous derivative on (0, a ), a right 
hand derivative at t =  0 and satisfies (1.6) for t £ [0, a).

D efin ition  1.1 Suppose that 0 is an equilibrium point of (1.6); that is, a zero of / .  
The point 0 is said to be stable if, for any e >  0, there exists a 8 > 0 such that for any 
p E C with |v?| <  S, we have |x(t, p)\ < e for i >  —r. The point 0 is asymptotically 
stable if it is stable and there is b >  0 such that |tp| <  b implies that \x(t, <£>)| —y 0 as 
t —> oo. The point 0 is said to be a local attractor if there is a neighborhood U of 0 
such that

lim^oo dist(x(t, U), 0) =  0 

that is, 0 attracts elements in U uniformly.

1
For linear retarded equation (1.6), /  : C —f Rn being a continuous linear functional, 
there is a solution of the form ceXt for some nonzero n-vector c if and only if A satisfies 
the following characteristic equation

iV ; detD(A) =  X I - f { e ~ XI) =  0, (1.7)

The A is called the eigenvalue of the linearized equation. Equation (1.7) may have 
infinitely many solutions, but there can be only a finite number in any vertical strip 
in the complex plane. This is a consequence of the analyticity of (1.7) in A and the 
fact that ReA —> oo if |A| -> oo.
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The eigenvalues play an important role in studying stability of equilibria. If there 
is an eigenvalue with positive real part, then the origin is unstable. For asymptotic 
stability, it is necessary and sufficient to have ReA <  0 for all eigenvalues.

The notion of global stability is usually attributed to Lyapunov. Lyapunov stability 
is concerned with the trajectories of a system when the initial state is near an equi
librium point. Two methods related to stability were developed in the early 1950’s 
by Razumikhin (1956) and Krasovskii (1956).

T h eorem  1.1 (Razumikhin, 1956) Suppose that u,v,w  : [0, oo) —> [0, oo) are con
tinuous nondecreasing functions, u(s), v(s) are positive for s >  0, u(0) =  v(0) =  0 
and v strictly increasing. If there is a continuous function V  : Rn —> R such that 
u(\x\) <  V(x) <  u(|x|), x G Rn, and I/(y2(0)) <  n;(|</?(0)|), if V(<p(9)) < V(ip(0)), 
9 G [—r, 0], then the point 0 is stable. In addition, if there is a continuous nonde
creasing function p(s) > s for s >  0 such that

V(<p(0)) <  w(|p(0)|) if V(tp{6)) < p (y (^ (0 ) ) ) ,  0 e [ - r ,O ] ,

then 0 is asymptotically stable.

T h eorem  1.2 (Krasovskii, 1956) Suppose that u,v,w : [0, oo) —> [0, oo) are continu
ous nonnegative nondecreasing functions, u(s), v(s) positive for s >  0, u(0) =  w(0) =  
0. If there is a continuous function V  : C R such that '

w(b(0)|) <  V(ip) < v ( M ) ,  (p e C y s-

V(<p) =  l i m s u p ^  ±[V{xt{., (p)) -  V(<p)] <  -m p (0 )| )

then 0 is stable. If, in addition, w(s) >  0 for s >  0, then 0 is asymptotically stable.

T h eorem  1.3 (Hale, 1963) Let V be a continuous scalar function on C with V((p) <  
0 for all (p G C. If Ua =  <p G C : K(<p) <  a, Wa =  ip G Ua : V"^) =  0 and M  is the 
maximal invariant set in Wa, then, for any ip G Ua for which 7 +(</?) is bounded, we 
have w((p) C M. (This theorem is a natural generalization of the classical LaSalle 
invariance principle for ODE.) (see [33])
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1.3 Hopf bifurcation theorem

Hopf bifurcation theorem was developed in 1942 by E. Hopf ([33]) and actingly re
searched in the following several decades. The implication of the theorem is extraor
dinary, since it provides a powerful analytical tool for exploring properties of periodic 
solutions. Also, it has been found that Hopf bifrucation theorem can be formulated 
for both ODEs and DDEs, where the latter is mainly studied in this destruction.

Consider the following delay differential equation

x  =  F(a, xt) (1.8)
j

with F : R x  C —> Rn, F  of class C2, F (a , 0) =  0 Va € R and C =  C([—r, 0], Rn) 
the space of continuous functions from [—r, 0] into Rn. xt is the function defined from 
[—r, 0] into Rn by xt(9) =  x(t +  6), r >  0.

D efin ition  1.2 (a0, 0) £ R x  C is called Hopf bifurcation point of equation (1.8) if 
every neighborhood of this point in R x  C includes a point (a, ip), with (p ^  0 such 
that ,ip is the initial value of a periodic solution, with period near a fixed positive 
number, of equation (1.8) for the value of a.

We assume that
‘x

(Ho) F  is of class Ck, for k >  2, F(a, 0) =  0 for each a, and the map (a,ip) —> 
Dk,pF(a, ip) sends bounded sets into bounded sets. Sy-

(Hi) The characteristic equation

det A (a , A) :=  Xld — DipF(a, 0)ex^ Id (1.9)

of the linearized equation of (1.8) around the equilibrium v =  0:

^  =  TLF(a, 0)vt ' ; (1.10)

in a =. «o >  0 has a simple pair of imaginary roots Ao 
roots A satisfy A ^  mAo for m =  0 ,2 ,3 ,4 , —

(Hi) implies that the root Ao lies on a branch of roots A 
of class Ck~x.

=  A(ao) =  i i ,  all the other 

=  A(o;) of the equation (1.9),
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(H2) For A (a) being the branch of roots passing through Ao, we have

¿ K e A (a )|a=Qo^ 0  (1.11)

H o p f B ifu rcation  T h eorem . Under the assumptions (Ho), (Hi) and (H2), there 
exist a constants R, S >  0, p >  0, functions a(c), u;(c) and a periodic function.with 
period u(c), u*(c) such that (i) all of these functions are of class C1 with respect to c, 
for c G [0, R], o ( 0) =  a0, w(0) =  u0, tt*(0) =  0; (ii) u*(c) is a periodic solution of (1.8) 
for the parameter values a(c) and period u?(c); (iii) For |a — «o| <  6 and \u> — 2t:\ < rj, 
any u —periodic solution p, with ||p|| <  R, of (1.8) for the parameter value a, there 
exists c G [0, R] such a =  a(c), u =  oj(c) and p is, up to a phase shift, equal to u*(c).

1.4 About the Thesis

This thesis is focused on the study of a HIV-1 model. Particular attention is given 
to stability of equilibrium solutions and bifurcations. Recently reported results show 
that new drugs and new therapies can help to eradicate the HIV-1 virus. An intention 
to generalize the results motivated this research. It is expected that the models 
developed and the results obtained in this dissertation could enhance the research iii 
modelling HIV-1 infection in host.

. A  .. • -
1.4.1 Higher dimensional HIV-1 therapy model with time 

delays

In recent years, mathematical modelling plays an important role in understanding 
HIV-1 in host. During the long history of research in HIV-1 problem, people usually 
focused oh lower dimensional systems, which have less critical points, less coefficients 
and are easier for analysis. However, in order to understand well the HIV-1 infection, 
studying higher dimensional systems is necessary.

Moreover, most existing mathematical models for HIV-1 infection are described by 
ordinary differential equations (ODEs). However, in reality, we need consider the time 
effects during the infection. Therefore, analyzing delayed HIV-1 models can provide 
more valuable insight into HIV-1 pathogenesis. Simpler delayed HIV-1 systems are
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usually 2 or 3 dimension. In this dissertation, we will study a 5-dimensional HIV-1 
model with time delays.

1.4.2 HIV-1 therapy model (ODE) of fighting a virus with 
another virus

By years of study, researchers have obtained much knowledge about the mechanism 
of the interactions of the components within a host and have thereby enhanced the 
progress in developing new drugs and designing optimal combination of existing ther
apies. Current therapies for AIDS employ inhibitors of the enzymes required for 
replication of HIV-1 to reduce the load. However, an alternative approaches, offered 
by genetic engineering, is to use recombinant virus capable of controlling infections of 
HIV [12, 16]. This method has been used to modify rhabdoviruses, which makes them 
capable of killing cells previously infected by HIV-1. The engineered virus codifies 
the coreceptor pair CD4 and CXCR4 of the host cell membrane and bind specifi
cally to the protein complex gpl20/41 of HIV-1 expressed on the surface of infected 
cells, where it causes a rapid cytopathic infection. This destruction of infected cells 
decreased by about 1000-fold HIV-1 load [32]. In the present study, evidences show 
that this treatment could be effective in reducing individual HIV-1 load.

To understand this approach of fighting a virus with a genetically modified virus, 
Revialla and Garcia-Ramos [42] proposed a mathematical model, which has been 
subjected to intensive studies in [46]. A standard and classic \lifferential equation 
model for HIV infection can be described by the following system:

x =  A — dx — /3xv, 

V =  Pxv -  ay, 

v =  ky — pv,

(1.12)

where the dot indicates differentiation with respect to time t, x(t), y(t) and v(t) are 
the densities of virus-free host cells, infected cells and a pathogen virus, respectively, 
at time t. The production rate and death rate for the healthy cells are A and d. ft is 
the constant rate at which a T-cell is contacted by the virus. It is also assumed that 
once cells axe infected, they may die at rate a due to the action of either the virus
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Figure 1.1: Model for a double viral infection.

or the immune system, and each produces the pathogens at a rate k during their life 
which on average has length 1 /a.

In [46, 42], a second virus is added into the model (1.12), which then becomes

x =

V =  

i  =

V =

A — dx — ßxv, 

ßxv  — ay — awy, 

awy — bz, 

ky -  pv,

\
(1.13)

w =  cz — qw,

where w(t) and z(t) are the recombinant (genetically modified) virus and double- 
infected cells. After second virus enrolled, once the recombinant infects cells previ
ously infected by the pathogens, they can be turned into double-infected cells at a 
rate awy, where recombinants are removed at a rate qw. The double infected cells 
die at a rate bz, and release recombinants at rate cz (see Figure 1.1).

The viral-therapy may have several benefits over present conventional treatment. It 
is expected to have no toxicity, no negative side effects, and no evolution of resistance. 
Another advantage is the simplicity of treatment. These advantages could make this
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viral-therapy an alternative to extend the survival o f AIDS patients ([42]).

1.4.3 Outline of the thesis

In Chapter 2, we propose a mathematical model for HIV-1 infection with the intra
cellular delay. The method of Lyapunov function, LaSalle’s invariant principle and 
Routh-Hurwitz Criterion are applied to analyze the stability of equilibrium solutions. 
Hopf bifurcation theorem is used to explore properties of periodic solutions. The 
effect of time delay is also investigated. .

In Chapter 3, a modified mathematical model for HIV-1 infection is given, which 
has delays in cell infection and virus production. Besides the analysis for stability of 
equilibria and Hopf bifurcation, we will also develop an analytical approach to consider 
double-Hopf bifurcation in the model with multiple delays. Determining the critical 
parameter values for double Hopf bifurcation is illustrated using numerical examples. 
Conclusion and discussions are presented at the end of each chapter. The study in 
this thesis is intended to provide some useful information for medical treatment.

\
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Chapter 2

HIV MODEL W ITH  
INTRACELLULAR DELAY

2.1 Introduction

In this chapter, we introduce a time lag into model (1.13), since in the real situation, 
it takes time for the virus to contact a target cell and the contacted cells to be actively 
affected. This can be described by the eclipse phase of the virus life cycle. Further, we 
assume that the probability density that a cell still remains; infected for r  time units 
after being contacted by the virus obeys an exponentially decay function. Therefore, 
following the line of [21, 22], model (1.13) can be modified to ^

x'(t) =  A — dx(t) — (3x(t)v(t),

y'(t) =  f3e~aTx(t — r)v(t — r) — ay(t) — aw(t)y(t),

z'(t) =  aw (t)y (t)-bz(t), (2.1)

v'(t) =  ky(t) -p v (t),

w'(t) =  cz(t) — qw(t),

where r  denotes the average time for a viral particle to go through the eclipse phase. 
Because the dimension of the system is higher than 2, system (2.1) may exhibit some 
interesting dynamic behaviors (Hopf bifurcation, limit cycles and even chaos), which
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would make the analysis of the system more complicated. Thus, the goal of this chap
ter focuses on equilibrium solutions and their bifurcations. In next section, we will 
justify the positivity and boundedness of solutions of (2.1). Also, in order to obtain 
biologically meaningful equilibria, the basic reproduction number Rq will be fined. In 
Sections 2.3, 2.4 and 2.5, we analyze the stability of the three equilibria: disease-free 
equilibrium E0 , single-infection equilibrium Es and double-infection equilibrium Ed. 
In Section 2.6, two numerical examples are provided to demonstrate the theoretical 
predictions. The last section summarizes the results obtained in this chapter with 
some discussions.

2.2 Positivity, boundedness of solutions, equilibria 
and basic reproduction number

Because of biological reasons, all variables in system (2.1) must be non-negative. 
Therefore, given a non-negative initial value, the corresponding solution must remain 
non-negative. This can be verified as follows.

Let X  =  C ([—r, 0]; R5) be the Banach space of continuous mapping from [—r, 0] to 
R5 equipped with the sup-norm. By the fundamental theory of FDEs (see, e.g. [23]), 
we know that there is a unique solution (x(t),y(t),z(t),v(t),w (t)) to system (2.1). ItX
is biologically reasonable to consider the following initial conditions for (2.1):

; . : V  ■
(x(9),y(9),z(9),v(9),w{9)) e  X, X  (2.2)

x(9) >  0, y{9) >  0, z{0) >  0, v{9) >  0, w{9) > 0 ,  9 e  [ - r ,  0]. (2.3)

From (2.1), we obtain

x(0)e- / o i ^ K ) H  +  A ¡¿e-fci+M QW dri,

y(0)e~f° ia+awU))d̂  -f- ¡3 f*x(r) — t)v(t] — r)e~aTe~^ â+aŵ d̂ dri, 

z(0)e~bt +  f*aw(r})y(rj)e~b̂ ~ d̂T], (2.4)

v(0)e~pt +  Jq k y ^ e ^ ^ d y ,  

w(0)e~gt +  f c1 cz(7i)e~ĝt~v̂ dr]. ,

x(t) =  

y (t) =  

z(t) =  

v(t) =  

w(t) =
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Positivity immediately follows from the non-negative initial conditions. To show the 
boundedness o f the solutions of system (2.1), we define

B(t) =  eke arx(t) +  cky(t +  r ) +  ckz(t +  t) +  y u (i  +  r ) +  f ^ ( i  +  r ), (2.5)

where all the solutions are non-negative. Choosing m =  m in{|, d,p, g}, it follows2 ’  2

that the derivative of B(t) with respective to time t along the solution of (2.1) is 
gi ven by

^|p|(2.i) .=  cke~aT[\ -  dx(t) - /3v(t)x(t)]

+ck/3e~aTv(t)x(t) — ckay(t +  r) — ckaw(t +  r)y(t +  r ) ■ 

+ckaw(t +  r)y(t -f- r ) — ckbz(t +  r ) .

+ fk y ( t  +  r) -  yp u (i +  t )

+ y C 2( i -f r )  -  yçiü (î +  r)

=  cke~aTA — cke~aTdx(t) — %cky(t +  r) — \ckz(t -f r ) 

—yp u (£ -f r ) — y g iü (i '+ r )

<  cke~aTX — mB(t).

(2.6)

This implies that B (t) is bounded, so are x (i), y(i), z(i), v(t) and w(t). System 
(2.1) has three possible biologically meaningful equilibria: disease-free equilibrium 
E0, single-infection equilibrium Es and double-infection equilibrium Ed, given below:

Eq

Es

Ed

( i  0, 0, 0, 0),

= ( ap \e~'
fikeraT 5 

A acp

-  Èl H A ke ‘ - 1 . 0),

/ Aacp bq q(a/3Xcke 
\doLCp-\-fibkq') a c 1 ctc(fibkq+acdp)

ap /3
’-pabkq—aacdp) bk

(2.7)

’ acp
afiXcke aT—j3abkq—aacdp\ 

a(pbkq+acdp)

From biological meaning of the basic reproduction number (see [42]), we define

f t o  =  a T ‘ (2.8)

If Rq <  1, E0 is the only biologically meaningful equilibrium. If Rq >  1, there is
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another biologically meaningful equilibrium Es (single-infection equilibrium). The 
double-infection equilibrium Ed exists (biologically meaningful) if and only if Rd >  1, 
where

^  -  0 )  = S©(*0 -  !)• (2.9)

Hence

Rd>  1 +  (2.10)

2.3 Stability of the disease-free equilibrium Eq

The linearized system of (2.1) at the disease-free equilibrium Eq is

x'{t) — —dx(t) —

y'it) =  pe~aT̂ v (t-T ) -a y {t) ,

z'(t) =  —bz(t), (2.11)

1 v'(t) =  ky(t) -p v (t) ,

w'(t) =  cz(t) — qw(t),

for which the characteristic equation is given by \

0(i, r) =  (? +  m  +  &)(? +  ?)[(« +  «)(? +P) -  kPe-^e-(T] =  0.' (2.12)

Obviously, it suffices to only consider the quadratic factor,

(€ +  a)(t +  p )-k / 3 e-aT%e-ZT =  £2 +  (a +  p)£ +  ap-k/3e-aT±e-tT. (2#13)

Note that £ =  0 is not a root of equation (2.13) if Rq <  1, since

ap — kf3e~aT̂  — ap{ 1 —-Ro) >  0. (2.14)
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When r  =  0, equation (2.13) becomes

i 2 +  (a +  p ) i  +  ap -  kSi =  0- (2.15)

In order for the two roots of Equation (2.15) to have negative real part, it requires

ap — k/3̂  >  0, (2.16)

which is equivalent to
■ Rq{t =  0) <  1. (2.17)

Thus, when Rq <  1, all roots of Equation (2.15) have negative real part. From [36], 
we know that all roots of Equation (2.13) depend continuously on t . In [10], the 
assumption (ii),

limsup{|<2m(£ ,r ) /P n(£,r)| : |£| oo,3i(£) >  0} <  1 for any r  (2.18)

holds here, where
Pnit, r) +  Qm(C)r )e" iT =  D{£, t).

This condition ensures that there are no roots exist in the infinity (see [10]), and 
hence Pe(£) <  + oo  for any root of (2.13). As a result, the only possibility for the 
roots of Equation (2.13) to enter into the right half of complex plane is to cross the 
imaginary axis when r  increases. Thus, we define £ =  iuj (a; >  0) to be a purely 
imaginary root o f (2.13). Then we get

—co2 +  iu(a +  p) +  ap — k/3e aT4e lWT =  0. (2.19)

Taking moduli o f Equation (2.19) gives

H{oo2) :=  cu4 +  (o2 + p 2)uo2 +  a2p2 -  (A;/3e~ar^)2 =  0. (2.20)

Clearly, H(co2) has no positive real roots if Rq <  1- Therefore, all roots of (2.13) have 
negative (positive) real parts if Rq <  1 (Po > T ).

Summarizing the above results, we have the following theorem.

T h eorem  2.1 When Rq <  1, the disease-free equilibrium E0 is locally asymptotically
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stable; at Rq =  1, Eq becomes unstable and the single-infection equilibrium Es occurs. 

Furthermore, for global stability, we have the following result.

T h eorem  2.2 If Rq <  1, the disease-free equilibrium Eq is globally asymptotically 
stable, implying that none of the two virus can invade regardless of the initial load.

P ro o f: We choose the following Lyapunov function:

y  = ^ {x(t) -  + Ht) + £At)
( 2.21)

+^w{t) + dPe~aT f*_T x(v)v{v)dV-

Using non-negativity of the solution and Ro <  1, the derivative of V  with respective 
to time t along the solution of system (2.1) can be manipulated as

^ 1(2.1) =  e~aT( x ( t ) -  %)[\ -  dx(t) - /3v(t)(x(t) -  %)}

- e - aT(x (t)-^ )p v (t)^  +  ^ e - aTx ( t -T )v ( t -T )

- f y ( t )  ~  +  §<xv>{t)y(t) -$ b z {t)

+ f y ( t) -  +  t 2®  -  ^ w(t)

+^Pe~aT[x{t) -  *]v(i) +  ^ e ~ aT̂ v(t) -  ¡̂3e~aTx(t -  r)v(t -  r )

=  —e~aT(x(t) -  $)2{d +  Pv{t)) -  [%p -  %pe~aT̂ v{t) -  %qw(t)

= -e~aT{x(t)-^)2{d +  Pv(t))-.^[i.-RQ]v{t)-^qw{t)

<  -d e -aT(x(t) -  |)2.

(2.22)

Thus, by LaSalle’s invariance principle [24], we conclude that E0 is globally asymp
totically stable. □

2.4 Stability of the single-infection equilibrium Es

From the analysis in the previous section, we know that the single-infection equilib
rium Es occurs when Rq >  1. Thus, in order to study the stability of Es, we assume
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Rq >  1 in this section. The linearized system of (2.1) at Es is

A t )  =  x(t) -  f  e!"v(t).

A t )  =  P<r"{%<‘- " - $ W t - T )  +  f v ( t - T )

-ay(t) -  a m (t )( ie -iT -  %),
(2.23)

z\t) =  aw{t)(^e~aT- ^ ) - b z { t ) ,

v'(t) =  ky(t) — pv(t),

w'{t) =  cz(t) — qw(t),

with the corresponding characteristic equation:

{(f + ^ e - ^ m  + <0(f +J>) -  H f e - (r)) + /3e—  (0e—  -  ¿)<r«')*(f e““r)}

x[(i+i»)(e +  9) - c a ( i e — - g ) ] = 0 .  .
(2.24)

The above characteristic equation consists of two factors:

■ «  +  &)(« + « )  -  c a ^ e ~ "  -  0 ) =  ?2 +  (6 +  s ) i  +  bq -  ca(¿e —  -  0 ) (2.25).

and .

(* + ^ e "ar)[(̂  + a)(* +p) -  * (f  e^)] + ̂ (ge—  -  ^ )W )/c (^ ),

=  £3 +  (a +  p +  ^ e _ar)£2 +  [ ^ e ~ aT(a + p )  +  ap]£ +  k/3\e~aT -  ap(£ +  d)e-?T.

(2.26)
For the quadratic factor (2.25), it is easy to verify that its two roots have negative 
real part if and only if Rd <  1. For the cubic factor (2.26), we rewrite it as

£3 +  a2(r )£2 +  a i(r)£  +  a0(r) -  (cx£ +  c2)e“ ir =  0, (2.27)
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where
o2(r) =  a + p + ^ e ~ aT,

' ° i ( r ) =  ~aT(a + p )+ a p ,

oo(t) =  kf3\e~aT,

ci =  ap,

C2 =  apd.

It is easy to see that £ =  0 is not a root of (2.27) if Rq >  1, since 

a0(r) — C2 =  k/3\e~aT — apd =  apd(Ro — 1) >  0

(2.28)

(2.29)

When t =  0, (2.27) becomes

.£3 +  a2(0)£2 +  (a1(0) - c 1)£ +  ao(0) - C 2 =  0. (2.30)

Applying the Routh-Hurwitz crition (see [13]), we know that all roots of (2.30) have 
negative real part, because

02(0) =  a + p  +  ^  > 0,

a i(0) - c i  =  ap+  ^ ( a  +  p) - a p =  ^ ( a  +  p) > 0,
\

a0(0) — C2 =  k/3A — apd =  apd(Ro(r =  0) — 1) >  0,

and

O2(0)[a i(0) — ci] — [a0(0) — c2] =  (a +  p +  ^jjp)[^p(a+  £>)] — (kfi\ — apd)

= i ^ ) 2(a +  P) +  ^ f ( a2+  aP +  P2) +  aPd > 0.

Therefore, for r  =  0, all roots of (2.27) have negative real part. From [36], we know 
that all roots of Equation (2.27) depend continuously on r. Also, (2.18) holds for this 
case, and hence i?e(£) <  +00 for any root of (2.27). As a result, the roots of Equation 
(2.27) can only enter into the right half in complex plane by crossing the imaginary 
axis when r  increases. Thus, we define £ =  iui (cj >  0) to be a purely imaginary root
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of (2.27), and then obtain

—iw3 — a2(r)u;2 +  ai(T)iuj +  ao(t) — (ciiu +  c2)e lUT =  0, (2.31)

Taking moduli of the above equation results in

H{uP) :=  uj6 +  [a2(r )2 — 2ai(r)]w4 +  [a i(r)2 -  2a0(r)a2(r) — c2]w2 +  a0(r)2 -  c\ =  0.

(2.32)
Since

M T ?  — 2o i(r )  =  a2 +  p2 +  ( i f  e“ - ) 2 >  0,

aj(T)2 -2 o o (T )o 2( T ) - c ;  =  ( ^ e - “r)2(o2 +  p2) > 0 ,  (2.33)

a0(r )2 — c2 =  (kp\e~aT +  apd)apd(Ro — 1) >  0,

the function H(u2) is monotonically increasing for 0 <  a;2 <  oo with H(0) >  0. This 
implies that Equation (2.32) does not have positive roots if Rq >  1. As a result, all 
roots of (2.27) have negative real part for r  >  0 if Rq >  1.

Summarizing the above results, we have the following theorem.

T h eorem  2.3 If 1 <  i?o <  1 +  , the single-infection equilibrium Es is asymptot
ically stable, implying that the recombinant virus cannot survive but the pathogen 
virus can; when Rq =  1 + ^ f  (i.e., Rd =  1), Es becomes unstable and the recombinant 
virus may persist. y

2.5 Stability of the double-infection equilibrium 
E& Existence of Hopf bifurcation

When Rq >  1 +  (i.e., Rd >  1), the single-infection equilibrium Es becomes
unstable and the double-infection equilibrium Ed comes into existence. To discuss 
the stability of Ed, we assume Rd >  1 in this section. The, linearized system of (2.1) 
at Ed =  (xd> yd, zd, vd, wd) is , : • • :
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- (d  +  f3vd)x(t) -  f3xdv(t),

Pe~aTvdx(t -  t) -  (a +  awd)y(t) +  /3e~arxdv(t -  r ) -  aydw(t), 

cxwdy (t ) -b z ( t )  +  aydw(t), (2.34)

ky{t) — pv(t), s 1

cz(t) — qw(t).

Letting md =  d +  /3vd, ma =  a +  p and mb — b +  q. Using the facts that cayd =  bq 
and k(3e~arxd =  p(awd +  a), we obtain the characteristic equation of (2.34), given by

D(0 ■= £5 + A4(t)£4 + A3(t)£3 + A2(t)£2 + Ai(r)£ + A0
(2.35)

~(B 3(r ) e  +  B2( r ) e  +  B r i r ) ^  =  0, '

x'(t) =

y’ (t) =

z>(t) =

v\t) =  

w\t) =

where •

A i(r )  =  ma +  mb +  md +  awd,

A3(t) — ap +  mamd +  (ma +  md)mb +  (p +  mb +  md)awd,

A2(t) =  apmd +  mb(ap +  mamd) +  (bq +  mbmd +  pmb +  pmd)awd,

A i (t) =  apmbmd +  (bqmd +  pbq +  pmbmd)awd, . . V
(2.36)

A0 =  abpqwdrnd,

B3(t) =  p(awd +  a),

B2(t) =  (d +  m.b)(awd +  a)p,

Bi(r) =  dmb(awd +  o)p,

When r  =  0, it has been shown in [46] that there exists an R2 > R\ such that when 
Ro e  (f?i, R2), Ed is asymptotically stable, implying that all roots of (2.35) have 
negative real part. Unlike for Eq and Es where the characteristic equations can be 
factorized into lower degree polynomials, we are unable to factorize the characteristic 
equation (2.35). Hence, it is very challenging to determine the stability of Ed by the
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procedure as shown in Sections 2.3 and 2.4. In what follows, we let R(uj) and S(co) 
respectively be the real and imaginary parts of D(iu), given by :

R(u) a*cp(dacè+pbkq) { ^ 4M 2fe2g2fc2 +  a?c/3pbq(p +  b +  q +  2d)k 

+ a 3c2p2d(b +  q +  p +  d)\— u)2[apf32b2q2(b +  q) k2 

+ a 2bcp/3q(2bdp + 2 dqp — bqa)k + a?dc2p2(dbp + dqp — bqa)] 
—a2bp3qd2a2c2 — 2a2b2p2q2dacf3k — a2b3pq3fi2k2

+ 1u4a3c2p/3Xk — oo2[a2f32bq\c(p +  b +  q)k2 

+ a 3c2pfiX(qd +  pb +  bd +  bq +  pq +  dp)k] +  ab2pq2(32aXck2 

+abp2qda2c2/3Xk — cos(no)u!2a3j3Xc2kp2(d +  b +  q)

— sm(Tu)p2a3/3Xc2k[oj3 — u)d{b +  q)] e~arj ,

(2.37)

S(u ) =  [u4(acp0bqk +  a2c2p2d) -  u2[P2b2q2(p +  b +  q)k2

-\-acpbPq(pb +  pq +  2dp +  2bd +  2qd)k 

+ a 2c2p2d(bp +  pq +  bd +  qd +  dp)]

—b3q3/32ak2 — b2q2acp(3ak(2d +  p)

—bqda2c2ap2(d +  p) +  i — u2[a2c2pPX(p +  b +  q +^d)k +  /32bqaXck2]
\

+bq/32aXc(bq +  bp +  pq)k2 +  pa2c2pX(bpq +  bdp +  dpq +  bdq)k

+  cos(ru})p2a2̂ Xc2k(db +  dq — u2)

+  sin (ruj)uja2f3Xc2kp2(b +  d + q)\e-aT ] } .

(2.38)
To obtain the critical point at which a Hopf bifurcation takes place, we need solve 
the following equtions for r  and ui

R(w) =  0 and S(u) =  0, (2.39)

where r  is our bifurcation parameter. Solving (2.39) yields two solutions for r: r  =  rsi
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and r  =  rs2, which are given in Appendix. Then, substituting these two solutions into 
any one of the above equations, we get the solutions for u. We choose a positive value 
for r  =  rsi or r  =  rs2 and the corresponding value of u  as the critical value, from 
which the corresponding value of Rd can be determined. Hence, all the critical values 
of parameters r ,u  and Rd are expressed in terms of a., ¡3, A, a, b,c,d, k,p,q, denoted 
by rh, uh and R.h.

Following lecture notes in [48], there are three additional conditions which need be 
satisfied

and

R(u) =  0 =4> S(u) <  0 for t <  Th (2.40)

ggfelf 1, . =¿0aç M^hiiT-ThTv (2.41)

Ee%■ \i=UJhi,T=Th< 0. "  (2.42)

If the conditions (2.40), (2.41) and (2.42) hold, then we conclude that (2.35) has a 
pair of purely imaginary roots when t — Th or (R =  Rh), implying existence of a Hopf 
bifurcation. Therefore, when 1 <  Rd < Rh, the equilibrium solution Ed is stable. At 
the critical point t =  Th (Rd =  Rh), E<i loses its stability and bifurcates into a family 
of limit cycles.

■ \

2.6 Numerical Simulation

In this section, we present two numerical examples to illustrate the theoretical results 
obtained in previous sections.

Example 1. For this example, we choose r  as the bifurcation parameter and set 
A =  0.24, d =  0.004, /3 =  0.004, a =  0.33, a =  0.004, b =  2, k =  50, p =  2, c =  2000, 
q =  2. Note that these parameter values have been used in computer simulation in
[46] for the model without delay. Then,

Ro =  18.1818e-a33r,

Rd =  0.08(18.1818e-°-33r -  1).
(2.43)
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The disease-free equilibrium E0 now is given by

E0 =  (60,0 ,0 ,0 ,0), (2.44)

which is stable for r  >  8.7892, as shown in Figure 2.1. When r  <  8.7892, Rq > 1, 
implying that Eq is unstable and the single-infection equilibrium Es occurs, given by

Es =  (3.3ea33T, 0.7273e-a33r — 0.04,0 ,18.1818e-a33r -  1,0), (2.45)

which is stable for 0.9022 <  r  <  8.7892. See Figure 2.2 for the simulated results when 
r  =  4. Further decreasing r  to pass the critical value r  =  0.9022 will cause Es to lose 
its stability, giving rise to the double-infection equilibrium,

Ed =  (4.4444,0.5,0.1111e-°'33r -  0.0825,12.5, l l l . l l e - a33r -  82.5) (2.46)

The corresponding characteristic equation (2.35) at Ed for this example becomes

£>(£) =  £5 +  (6.054 +  0.4444e-a33T)£4 +  (8,324 +  2.6907e-°-33T)^3 

+ (-0 .8 8 8  +  5.4773e-°-33r)£2 +  (-0.07656 +  0.2951 e-°-33T)£ 

+0.129e-a33r — 0.14256 — [(0.8889e-a33r)£3 

+(3.5591e"°-33r)^2 +  (0.0142e-a33r)£]e-iT =  0.
\

Let R(u) and S(uj) be the real and imaginary parts of D{ioS), i.e.,

R(cj) =  (6.054 +  0.4444e_a33r)a;4 -  (-0 .888 +  5.4773e~a33r)^ 2 

+0.192e-a33T -  0.14256 +  (0.8889e-°-33r)w3 sin(a;r) 

+(3.5591e~a33T)a;2 cos(wr) — (0.0142e-a33T)a;sin(a;r),

(2.48)



24

Figure 2.1: Simulated time history of system (2.1) for A =  0.24, =  0.004,
k =  50, a =  0.33, c =  2000, b = p =  q = 2, r  =  9 with the initial condition: 
x(0) =  5.0, y(0) =  1.0, 2 (0 ) =  2.0, v(0) =  0.5, u;(0) =  4.0, converging to the stable 
equilibrium solution E0 =  (60,0,0 ,0 ,0). \

cu5 -  (8.324 +  2.691e-a33TV 3 +  (-0.07656 +  0.2951e-a33r)a;

+(0.8889e a33r)u;3 cos(cur) — (3.5591e °-33t)cj2 sin(u;r) 

— (0.0142e_a33T)t<; cos(a;r).

(2.49)

Then, in order to determine the stability of F'd, we first solve the two equations,

R(uj) =  0 and S(u>) =  0. (2.50)

A numerical scheme is applied to find the real solution of (2.50), given by

I
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Figure 2.2: Simulated time history of system (2.1) for A =  0.24, a = ¡3 = d =  0.004, 
k =  50, a =  0.33, c =  2000, b =  p = q =  2,r  =  4 with the initial condition: 
x(0) =  5.0, y{0) =  1.0, 2 (0 ) =  2.0, v(0) =  0.5, tc(0) =  4.0, converging to the stable 
equilibrium solution Es =  (12.3533,0.1543,0,3.857,0). \

(r, u>) =  (0.8712406304,0.1451313875). (2.51)

Hence, rh =  0.8712406304 is the critical value, giving a corresponding value Rh :=  
Rd(r =  Th) =  1.011097469. It is easy to verify that for r  < r ,̂

R(u) =  0 =► S(u) 0. (2.52)

It can also be shown that other two conditions are satisfied:

Iç=o. 145i3i3875i,r=o.8712406304=  -0.3642551096 +  1.623717248* +  0 (2 .5 3 )
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Figure 2.3: Simulated time history of system (2.1) for A =  0.24, 0.004,
k =  50, a =  0.33, c =  2000, b = p = q = 2,r  =  0.89 with the initial condition: 
x(0) =  5.0, y(0) =  1.0, z(0) =  2.0, u(0) =  0.5, 0) =  4.0, converging to the stable
equilibrium solution E d  =  (4.4444,0.5,0.0003,12.5,0.3333).

and
k - 0.1451313875i,r=0.8712406304— —0.4331822741 < 0. (2.54)

Thus, the roots of (2.47) have positive real part when r  < Rh), and (2.47)
has a pair of purely imaginary roots when r  =  Th{R =  Rh), implying existence of a 
Hopf bifurcation. Therefore, we conclude that when 0.8712406304 < r  < 0.9022, the 
equilibrium solution Ed is stable. At the critical point, t =  Th (R = Rh), Ed loses its 
stability through a Hopf bifurcation (see Figure 2.3 and 2.4).

E xam ple 2. Now we select d as our bifurcation parameter and set r  =  0.5. Then,

Ro

Rd

0.06166 
d ’

0.06166
d 1),

(2.55)
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Figure 2.4: Simulated time history of system (2.1) for A =  0.24, =  0.004,
k =  50, a =  0.33, c =  2000, b =  p = q =  2, =  0.4 with the initial condition:
x(0) =  5.0, y(0) =  1.0, 2 (0 ) =  2.0, w(0) =  0.5, 0) =  4.0, converging to a periodic
solution. The bottom right graph is the phase portrait projected on plane
indicating a limit cycle.

and the disease-free equilibrium E0 becomes

B„ =  (2 f ,0 ,0 ,0 ,0 ) ,  (2.56)

which is stable for d > 0.06166. When d < 0.06166, 1, causing to lose its
stability and bifurcate into the single-infection equilibrium:

Es =  (3.8929,0.61665 -  lOd, 0,15.41625 -  250d, 0). (2.57)

It follows from Theorem (2.3) that Es is stable when 0.011665 < 0.06166. Further
decreasing d to pass the critical value d =  0.011665 will cause to become unstable
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and there occurs the double-infection equilibrium:

in / 3 84 r> c 0.25(0.6159—5.28d) o c 250(0.6159-5.28d) \
Ed =  (oi^ 65> °'5> 0.8+16d--------- S 12-5’ 08+165-*)• (2.58)

The corresponding characteristic equation (2.35) for this example can be written as

£>(0 =  f  +  (6.38 + d +  0'601589+~i6fd)^4 +  (10-2965 +  6.33d +  )£3

+(9.98d +  3.139 +  +  (2,64d +  0.132

(16d+0.6)(0.6159-5.28d) 8(0.61595.28d)(d+0.5)
1 0.8+16d )£  0.8+16d

- K gi2f E F ^ + °-66)^3 + 2(rf+ 4 )(° x ~ i y + °-33)^2

+ 8 d (060iy+-156f d +  0.33)£]e~a5? =  0.
(2.59)

Let R(u)and S(u)be the real and imaginary parts of D(icu), i.e.,

R(u) =  (6.38 + d +  ° 6o.8+i6d8d)a;4 ~  (9-98d +  3-139 +  (12'3+6o ^ i661f 5'28d))ij2 

8(061 J +05) +  ( 2(°o185+ f l f ^  +  0-66 V 3 sm(0.5u;)

+2(d +  4 )(0601589- 56 .28d +  0.33V 2 cos(0.5a;)0.8+16d 

0.6159-5.28d
~8^( os+Tef +

(2.60)

S(u>) u5 -  (10.2965 +  6.33d +  (6-05+̂ j 5 9 - 5-28̂ ) +  (2.64d +  0.132

+  (16d+̂ r 28dV  -  +  0.33V  cosV r)

+ (2(°'o w m ^  +  0.66 V 3 cos(u;r) (2.61)

- 2  (d +  4 ) (0^ - i 56r  +  0.33 V 2 sin(wr).

Similarly, solving the two equations

R( uj) =  0 and S(u) =  0, (2.62)
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x

Figure 2.5: Simulated time history of system (2.1) for A =  0.24, fd =0 .004 , 
k =  50, a =  0.33, c =  2000, b = p = q = 2, t — 0.5, d =  0.002 with the initial 
condition: x(0) =  5.0, y(0) =  1.0, 2(0) =  2.0, u(0) =  0.5, 0) =  4.0, converging to
a periodic solution. The bottom right graph is the phase portrait projected on x — y 
plane indicating a limit cycle.

we get the critical value <4 =  0.01106282794, and the corresponding value Rh =  
Rd(d =  dh) =  1.012043375. It is easy to prove that for d < dh,

R(u>) =  0 => u) < 0. (2.63)

We can also verify that

lc=o.i50325i5i7i,d=o.ono6282794=  —0.4371876370 +  1.701468428* 7̂  0 (2.64)

and
=0.1503251517i,d=0.01106282794 —27.01142970 < 0 (2.65)
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Therefore, all roots of (2.59) have positive real part when d < dh (R >  Rh), and (2.59) 
has a pair of purely imaginary root at d =  dh (Rd =  Rh)> implying existence of a Hopf 
bifurcation. Therefore, we conclude that when 0.01106282794 < d < 0.011665, the 
equilibrium solution Ed is stable. At the critical point, d =  dh (Rd =  Rh), Rd loses 
its stability through Hopf bifurcation, leading to a family of limit cycles, as shown in 
Figure 2.5.

2.7 Conclusion and discussion

In this chapter, we have studied a HIV-1 infection model with intracellular delay, de
scribed by (2.1). We have fully analyzed the stability of the infection-free equilibrium 
Eq , and derived the condition for the local stability of the single-infection equilibrium 
Es. For the double-infection equilibrium Ed, we demonstrated how to determine the 
stability o f Ed and existence o f Hopf bifurcation.

However, Due to difficulty in constructing a suitable Lyapunov function for the single
infection equilibrium Es, we didn’t obtain its global stability. In addition, the charac
teristic equations for double-infection equilibrium Ed cannot be factorized into lower 
degree polynomials, so it is very challenging to obtain the symbolic solution for u.

In our simulations, we use the same data used as in [46], so we are able to catch sight 
of the effect of delay by comparing with the results in [46]. In [46], the simulation 
results show that \

Eq is stable when d <  0.192,

Eq is unstable and Es is stable when 0.052 <  d <  0.192,

Es is unstable and Ed is stable when 0.024 < d <  0.052,

At dh =  0.024 (Rh =  7.891), Ed loses its stability through Hopf bifurcation.

It is obvious that the critical values obtained in Example 2 are all larger than the 
above ones. An implication of this observation is that the intracellular delay r  plays 
a positive role in preventing the virus. When all other parameters are fixed, a larger 
value of r  can bring Ro to a level lower than 1, making the infection free equilibrium 
globally asymptotically stable. Therefore, viral-therapy of recombining HIV-1 virus 
with a generally modified virus can effectively reduce the HIV-1 load in patients, and 
larger intracellular delay is able to help eradicate the virus.
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In reality, there also exists a time period between the time when the virus has pene
trated into a cell and the time when the new virions are created within the cell and 
are released from the cell. Thus, another time lag may should be considered in model 
(2.1), which will be studied in next chapter.

V
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Chapter 3

DELAYS IN CELL INFECTION  
AND VIRUS PRODUCTION ON 
HIV-1 DYNAM ICS

3.1 Introduction

In this chapter, we shall introduce a second time lag to model (2.1). There is a 
virus production period for new virions to be produced within and released from the 
infected cells. This is because the virus production process within a cell consists of 
several stages: (i) uncoating of viral RNA, (ii) reverse transcription of viral RNA into 
DNA, (iii) transport of the newly made DNA into the nucleus, (iv) integration of the 
viral DNA into the chromosome, (v) production of viral RNA and protein, and (vi) 
creation of new virus from these newly synthesized RNA molecules and proteins (see 
[25]).

When both delays are present, model (1.13) can be written as
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x'(t) =  À — dx(t) — /3x(t)v(t),

y'(t) =  Pe~aT1x(t -  Ti)v(t -  ri) -  ay(t) -  aw{t)y(t),

z'(t) =  aw(t)y(t) — bz(t),

v'(t) =  ke~aT2y(t — T2) — pv(t),

w'(t) =  cz(t) — qw(t),

(3.1)

where ri and r2 represent the latent period and virus production period, respectively. 
When the second delay is introduced, the dynamic analysis of model (3.1) becomes 
much more involved. In Section 3.2, we will prove the positivity and boundedness 
of solutions of system (3.1). Also, the basic reproduction number Rq will be fined. 
In Sections 3.3, 3.4 and 3.5, we analyze the stability of three equilibria: disease-free 
equilibrium E0, single-infection equilibrium Es and double-infection equilibrium Ed- 
In Section 3.6, simulation results are given to illustrate the theoretical predictions. 
The last section concludes this chapter with some discussions.

3.2 Well-posedness and basic reproduction num
ber

To show the well-posedness, we define X  :=  C([— max(T1,r 2),''0]; R5), which is the 
Banach space of continuous mapping from [— max(Ti,r2),0] to R5 equipped with the 
sup-norm. It is biologically reasonable to consider the following initial conditions for 
system (3.1):

(x (0),y(0),z(0),v(û ),w (0))eX , (3.2)

x{9) >  0,y(0) > 0,z(û) > 0,v(û) >  0,w(0) > 0 ,  0 e [— m ax(ri,r2),0]. (3.3)

It can be shown using the fundamental theory of FDEs (see, e.g. [23]) that there is 
a unique solution (x(t),y(t),z(t),v(t),w (t)) to system (3.1). The following theorem 
establishes the non-negativity and boundedness o f solutions to (3.1-3.3).

T heorem  3.1 Let (x(t), y(t), z(t), v(t), w(t)) be a solution of system (3.1) satisfying 
the conditions (3.2) and (3.3). Then x(t), y(t), z(t), v(t) and w(t) are all non-negative 
and bounded for all t >  0 at which the solution exists.
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P ro o f: From (3.1), we obtain

x (t) =  a;(0)e_ ô (d+/MO)«*f +  \ (d+^ ) ) d̂ )

y(t) =  y (0)e_ Jo (°+Q1i,(i))dC +  y3 J* x(t] — Ti)v(r] — ri)e~aT1e~^ (a+awO)d£dr), 

z(t) =  z(0)e~bt +  J ^ a w ^ y ^ e ^ ^ d r ) ,  -

v(t) =  v(0)e~pt +  f*ky(r] — T2)e~p(t~vle~aT2dri, 

w(t) =  w(0)e~qt +  J ^ c z ^ e ^ ^ d y .

(3.4)
which clearly show that x(t), y(t), z(t), v(t) and w(t) are all non-negative for all 
t >  0, as long as (3.3) is satisfied

For boundedness of the solution, we let

B(t) =  eke anx(t) +  cky(t +  t\) -1- ckz(t +  T\) +  ^ eaT2v{t +  tx +  r2) +  ytu(i +  ri),

(3-5)
where all the solutions are non-negative. Thus, differentiating B(t) with respect to 
time along the solution of (3.1) yields

^ | ( 3.i) =  cke~an[\ -  dx(t) -  pv(t)x(t)\

+ck/3e~anv (t )x (t )—ckay(t +  Ti) — ckaw(t'+Ti)y(t +  Ti)

+ckaw(t +  ri)y (t +  Ti) — ckbz(t +  r i) ^

+ fk y (l  +  ri) -  fp v (t  +  ri +  r2)eSr2

+ f c z ( t  +  T1) - f q w ( t  +  r1)

=  cke~aT\ — cke~andx(t) — | cky(t +  tl) — | ckz(t +  T\) 

-~ p v (t  -f T\ + r 2)ear2 -  YQw(t +  r i)

<  cke~aTlX — ihB(t),

(3.6)

where m =  m in{|, |, d,p, q} □
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Similarly, system (3.1) has three possible biologically meaningful equilibria:

Eo — (^, 0 ,0 ,0 ,0 ),

apEs =  {

Ed =  ( rl/-v/"wi—l— fi}\L'nc> OT9 ? f\/*̂

Ae~QTi _ dp Afce-QTi - QT2 _  d n\
{3ke~aTi - àT2 ’ a £fce_OT2 ’ ap /3, u / 5, 0,

_ g(a/3Acfce QTi aT2 —fiabkqe aT2 —aacdp) bkqe~ aT2 
dacp+/3b/cge” aT2 5 ac’ ac( b̂/cge” aT2-fctcdp) ’ acp

Xacp (3.7)

/3Acfce"QTi QT2 —fiabkqe QT2 — aacdp \ 
a(/36/cge"or2+acdp)

where the basic reproduction number is defined as

£0 _ k@X r -qn  —àv2
adp (3.8)

and for convenience, we let

cq/Ae QTi 
6g v a

dp ràr2\ 
kp̂  )

cdpa an
bkqPc ( « 0 - 1 ) (3.9)

E0 is the only biologically meaningful equilibrium when R0 <  1. For i?o >  1, there 
is another biologically meaningful equilibrium Es (single-infection equilibrium). The 
double-infection equilibrium Ed exists if and only if Rd>  1.

3.3 Stability of the infect ion-free equilibrium Eq

Let r =  Then, system (3.1) can be reduced to the following system with dimen
sionless time -R, which, for simplicity, is again denoted by t:

¡̂p- =. T i ( \ -dx( t ) -0x ( t ) v ( t ) ) ,
= Ti((3e~aT1x(t -  l)u(£ -  1) -  ay(t) -  aw(t)y(t)),

^ p  =  n(aw(t)y(t) -  bz(t)), (3.10)

^  =  rx(ke~s'T2y(t — r) — pv(t)),

djf -  =  n ( c z ( t ) - qw(t)).

Linearizing (3.10) at E0 yields
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x'(t) =  Ti(—dx{t) -  ^v(t)),

y'(t) =  Ti((3e-aT1±v(t -l) -ay(t)) ,

z'{t) =  -bz(t)ru (3.11)

v'(t) =  Ti{ke~aT2y(t — r) — pv(t)),

wf(t) =  n(cz(t) -  qw(t)),

whose characteristic equation is

(? +  d * ) ( i  +  +  ? ? ) [ ( ?  +  o ? ) ( i  +  J>?) -  =  0.

(3.12)
Let

d =  d 6 =  5^, q =  q c =  c^ , a =  a ^ , p =  p^, 

a =  a p  =  j3 -̂, A =  A ^, f  =  l  +  r^ and r  =  r +  l. - v '

Then (3.12) can be rewritten as ;

(£ +  o0(£ +  &)(£ +  <7)[(£ +  b)(Z +  P) ~ k h ~ af2e~^T] =  0. (3.14)

Hence, only the quadratic factor, V

£2 + (d + p)£ + dp-kj3e-“f %e-iiT = 0, (3.15)

need be considered. Since

dp -  kfie~Uf̂  = dp{l -  Ro) > 0, (3.16)

£ =  0 is not a root of Equation (3.15), implying that the roots of (3.15) can only cross 
the imaginary axis with non-zero real part. Note that when r  =  0, equation (3.15) 
becomes

£2 + (a + p)€ + dp -  kPe~af± = 0, (3.17)

whose roots have negative real part if ap—fc/3e-ar  ̂ >  0, which is equivalent to Rq <  1.
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Since the roots of Equation (3.15) depend continuously on r, they can only possibly 
enter into the right half of complex plane through crossing the imaginary axis (see, 
e.g. [10]). Thus, let £ =  iCb be a purely imaginary root of (3.15) with u >  0. Then, 
(3.15) becomes

—Ù2 +  iw(a +  p) +  ap — k/3e aT̂ e tiJT =  0. (3.18)

Taking moduli of (3.18) yields

ti4 +  (a2 +  p2)ù2 +  a2p2 — (kfle “T^)2 =  0, (3.19)

which has no positive root for u2 ii Rq <  1, implying that all roots of (3.15) remain 
in the left half o f complex plane for all r  >  0 as long as 72o <  1. On the other hand, 
it is easy to see that (3.15) has a positive root when Ro >  1.

Summarizing the above results, we obtain the following theorem.

T h eorem  3.2 When .Ro <  1, the disease-free equilibrium E0 is locally asymptotically 
stable; at .Ro =  1, Eq becomes unstable and the single-infection equilibrium Es occurs.

Moreover, by applying the fluctuation lemma (see, e.g. [22]), we can prove that the 
infection-free equilibrium E0 is also globally attractive for Rq < 1. For this purpose, 
we first introduce some basic notations. For a continuous and bounded function 
/  : [0, oo) —>• R, let

V
Too -  fini in foco f(t), f°° =  lim su p ^ ^  f{t) (3.20)

Now, let be any solution of system (3.1) - (3.3). By Theo
rem 3.1, we know

0 ^  Zoo <  x°° <  oo,

0 ^  Voo <  V°° <  oo,
. i ,

0 < ¿00 O 00 < OO, * (3 21)

0 ^  Voo <  v°° <  oo,

0 <  Woo ^  w°° <  oo.

Applying the fluctuation lemma (see [45]), there exists a sequence tn with tn -> oo as
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n —» oo such that

x(tn) —>■ %°° and x'(tn) —>■ 0 as n —Y oo.

Prom the first equation of system (3.1), we get

x(tn) +  dx(tn) +  Px(tn)v(tn) =  A.

Letting n —> oo in the above equation leads to the following estimate

dx°° <  (d +  fiv ^ x 00 <  A.

Using a similar argument to the rest o f the equations in (3.1) gives

ay°° <  (a +  a w ^ y 00 <  /?e-0n :r00i;00,

(3.22)

(3.23)

(3.24)

(3.25)

&z°° <  aw^y00, (3.26)

<  he aT2y°°, (3.27)

gu;00 <  cz°°, (3.28)

We claim that y°° =  0. Otherwise, ' v°° >  0 by (3.25). It then follows from (3.24), 
(3.25) and (3.27) that

pv°° <  ke~hT2y°° <  Me-ari-aT2xoovoo <  M^^an-a^oo^ (3.29)

yielding
P <  ^ e- ari" aT2 => Ro > l, (3.30)

which contradicts the assumption Rq <  1. So, y°° =  0, which in turn implies z°° — 0, 
u°° =  0 and w°° =  0 by Equations (3.26)-(3.28). Therefore, we conclude that y(t) —> 0 
as t —> oo by using the relation 0 <  yoo <  y°°■ Similarly, z(t), v(t) and w(t) all 
approach 0 as i —> oo. Finally, applying the theory of asymptotical autonomous 
system (see, e.g. [5]) to the first equation of (3.1) with v(t) —> 0, we obtain that 
lim^oo x(t) =  A. Summarizing the above, result yields the following theorem.
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T h eorem  3.3 The disease-free equilibrium E0 is globally asymptotically stable when 
R o<  1. ■

3.4 Stability of the single-infection equilibrium Es

In this section, we assume Rq >  1. At Rq=  1, Eq loses its stability and the single
infection equilibrium Es comes into existence. To study the stability of Es, we lin
earize system of (3.1) at Es to obtain

x'(t)

m

z'(t)

m

w'(t)

=  n ( - ^ e - aT1- aT2x(t) -  f  ean+‘aT2v(t)),

=  n t f e -™  (g e ~ aT1_5T2 -  |)x{t -  1) +  f  eâ v(t -  1) 

-ay(t) -  aw(t)(±e~aT1 -  ||e572)},

=  n i a w m S e - ^ - ^ e P ^ - b z i t ) ) ,

=  Ti(ke~aT2y(t — r) — pv(t)),

=  Ti{cz(t) -  qw(t)).

(3.31)

The characteristic equation of (3.31) is
\

{ ( ?  +  S e - » ) [ ( i  +  m  +  f,) -  ape~tT] +  ;3fr « ( g e- -  -  i ^ k ( f  e“ " ) }

x[(i + 5)(? + ?) -  ca(|e-”'> -  f  cs™)l = 0,
(3.32)

which has two factors:

( f  +  b)(€ +  q ) -  cd (| e -ari -  0 e “T2) =  £2 +  (6 +  q)£ +  b q -  cd (| e"aT1 -  0 e a72)

(3.33)
and ;

(? + S e - M)[K + m  + P) -  m ~ ST] + P e-"(§e~ " -  e~")

' = e  + (o + p +  *§.e-K)?  + [¡§e-"(a, + p) +.8p]f + m e ~ "  -  op(f + d)e~ .̂

(3.34)
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It is clear that the quadratic factor has two roots with negative real part since R<i <  1. 
For the cubic factor (3.34), we may rewrite it as

£ 3 +  a 2 ( r ) £ 2 +  a i ( f ) £  +  a 0 ( f ) - ( c 1£ +  c2 )e -£ r =  0 , ( 3 .3 5 )

where '
a2(f )  =  d +  p + ^ e ~ ° f ,

h { f )  =  ^ ¡re -5 f( « + p )  +  a£>

So(^) =  kf3Xe~aT,

Ci = ap,
c2 = apd.

Because . 'do{f) — c2 =  k/3\e~ar — apd =  apd(Ro — 1) >  0,

(3.36)

(3.37)

when Ro >  1, so £ =  0 is not a root of Equation (3.35). Next, we show that when 
r — 0, all roots of (3.35) have negative real part. Indeed, if r  =  0, (3.35) becomes

^3 +  a2(r)^2 +  (a i ( f ) -C i)C  +  a o ( r ) - c 2 =  0. (3.38j'

Note that when Rq > 1,
* \ 

a2( f )  =  a +  p + ^ e - - > 0 ,

ox(r) -  ci =  ^ e ~ af(d + p ) +  d p -d p =  ^ e - af(d + p  >  0, 

do(f) — c2 =  k/3\e~aT — apd =  apd(Ro — 1) >  0, 

d2{f)[di(f) -  ci] -  [a0(f )  -  c2]

=  (s  + P  +  +  p)] -  ftsA e -W -  apd)

=  ( + P) +  W 1-“ 2 +  w + P2) +  >  0.

By Routh-Hurwitz criterion (see [13]), we know that all roots of (3.38) have negative 
real part. Note that all roots of (3.35) depend continuously on r  (see [36]). Also, (2.18)



41

holds, so i?e(£) <  + oo  for any root of (3.35). As a result, the roots of Equation (3.35) 
are only able to enter into the right half of complex plane by crossing the imaginary 
axis when r  increases. Similarly, let £ =  iCj (u >  0) be a purely imaginary root of
(3.35). Then

■ill)3 — a2(r)iD2 +  di(r)iu  +  a0(r) -  (ciiti +  c2)e lWT =  0, (3.40)

Taking moduli of the above equation gives

H(u2) :=  ¿D6 +  (a2( f ) 2 -  2ai(f))£h4 +  (a i( f )2 -  2o0(f )a 2( f )  -  c2)u)2 +  a0( f ) 2 -c\  =  0,

where
a2( f ) 2 -  2S1( f )  =  a? + f  +  >  0,

(3.41)

a i ( f )2 -  2a0(f )a 2(f )  -  cf =  ( ^ e - Sf)2(a2 + p 2) >  0, (3.42)

ao('r)2 — cl =  (kj3\e~aT +  apd)apd(Ro — 1) >  0.

It is obvious that the function H(u2) is monotonically increasing for 0 <  u2 <  oo with 
^ (0 ) >  0, implying that Equation (3.35) has no positive roots for Rq >  1. Therefore, 
all roots of (3.35) have negative real part for all r >  0 if i?o >  1.

Summarizing the above results, we have the following theorem.

T h eorem  3.4 When 1 <  Rq <  1 +  ^ ^ e -aT2, the single-infection equilibrium Es is 
asymptotically stable; at Ro =  1 +  ^ ~ e~aT2 Rd =  1), Es becomes unstable and 
bifurcates into E .̂

3.5 Stability of the double-infection equilibrium 
Ed* Existence of Hopf and double Hopf bifur
cations

To discuss the stability of double-infection equilibrium Ed, we assume Rd>  1, since 
it is the necessary condition for the existence of Ed. The linearized system of (3.1) at 
Ed =  (xd, Vd, zd, vd, Wd) is
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x'(t) =  —(d + /3vd)x(t) -  Pxdv(t),

y'(t) = f3e~aTlvdx(t — ri) -  (a + awd)y(t) + /3e~aT1xdv(t -  Tx) -  aydw(t),

z’(t) = awdy{t) -bz(t) + aydw{t),

v'(t) -  ke~aT2y(t -  r2) -  pv(t),

w'(t) =  cz(t) — qw(t).

(3.4c
Let md = d + ¡3vd, ma =  a + p  and rhb = b + q. Using the facts that cayd — bq an 
fc/5e-aTl_ain2i(i =  p(awd +  a), the characteristic equation of (3.43) can be written as

£>(£) :=  £5 +  i 4(r)C4 +  A 3(t )£3 +  A 2(r)£2 +  +  A 0
' (3.44)

- ( Bs(r ) e  +  B2( r ) e  +

where

Ax(r) =  apmbmd +  (bqrhd +  pbq +  pmbmd)awd, 

A0 =  abpqwdfhd,

B3 (t) =  p(awd + a)

B2(t) =  (d + rhb)(ctwd + a)p,

Bx{r) =  dmb(awd +  a)p.

' \

(3.45)

Similarly, letting R(u) and S(u) be the real and imaginary parts of D(iu>) yields
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=  - aH cApa+m ^j^i  ~ ^ c Y d ^ i p  +  d +  b +  q)

+ u i2a 3c 2dp2(bdp  +  qdp — ba q ) +  a2bp3q c2d2a 2

+e~5r2[ — uAa2cpPbkq(p +  b +  q +  2d) +  oj2a2bcp/3kq(2bdp +  2 qdp — bqa) 

+2a2b2p2q2cda/3k] +  e~2dT2[ — wAa(32b2k2q2 +  u2ap/32b2k2q2(b +  q) 

+a2b3pq3 f32k2] +  e~an~aT2 [ — ouAa3c2pf3Xk 

+ u 2a3c2p/3Xk(bq +  db +  dq +  pb +  pq +  dp) — abp2qc2da2/3Xk 

+  cos((ri +  T2)u])u2a3f3Xc2kp2(b +  d +  q)

+  sin((ri -f T2)u)p2a3(dXc2k{oj3 — uidb — oudq)]

-f e-aTl_2“T2 [<'jj2a2/32bk2qXc(b +  q +  p) — ab2pq2(32k2aXc]},

(3-46)
and

=  acp(cdpa+flbkge~^T2) -  U 2C2dp2(X2{dp  +  dq + , db +  bp +  p q )

—bqc2dp2a 2a (p  +  d ) +  e ~ aT2[u AC icpPbkq  

—u>2cp a l3 b k q (2 p d  +  2 dq +  2 bd +  pq +  bp)

—b2q2cpa/3ak(2d +  p)] +  e~aT1~aT2[—u2a2c2pf3Xk(p'+b +  q +  d)
\

+pa2c2/3Xk(bpq +  bdp +dpq +  bdq)

+  cos( ( t i  +  T2)u } )p 2a 2f3Xc2k ( —u 2 +  db +  d q )

+  sin((ri +  T2)u i )o ja 2l3Xc2k p 2(b  +  d +  q ) ]

—e ~ 2aT2 [u2/32b2k2q2(b +  p +  q) +  b3q3fd2k2a]

+e~an~2aT2 /32bk2qaXc[—u2 +  bq +  pq +  bp]}}.

(3-47)
Then, in order to determine the stability of E d , we solve the following two equations 
for ti and u:

R(u) =  0 and S(u) =  0, (3.48)



where rx is our bifurcation parameter. The two equations in (3.48) have two solutions 
for T\. Ti =  Tii and T\ =  r12, listed in Appendix. The solutions for uj can be obtained 
by substituting the two solutions of Ti into any one of the above equations. Also, we 
need choose the positive value for T\ =  T\\ or iq =  t12 and the corresponding value 
for u  to determine the value of Rd- Hence, all the critical parameter values Ti,u and 
Rd are expressed in terms of a , /5, A, o, b, c, d, k,p, q, called fh, ojh and Rh-

Same as the discussion in the previous chapter, if other three conditions need be 
satisfied (see [48]),
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R(oj) =  0 => S(u) < 0 for tx < fh, (3.49)

L . - ^  0 /o rrnNd£ l€=vht,n=Thru (3.50)

and • . :
■̂ edr l?=‘‘>hi>Tl=hi<' P>. (3.51)

then (3.44) has a pair of purely imaginary roots when T\ =  f h(Rd =  Rh), implying 
existence of Hopf bifurcation. Therefore, when \ < Rd < Rh, the equilibrium solution 
Ed is stable. At the critical point, T\ =  f h (Rd — Rh), Ed loses its stability through 
Hopf bifurcation, leading to bifurcation o f a family of limit cycles.

Finally, we show that there exists double Hopf bifurcation in system (3.1). In order to 
have double Hopf bifurcation, the corresponding characteristic equation (3.44) need 
have two pairs of purely imaginary eigenvalues. We choose ti, a, A as our bifurcation
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parameters. A is solved from the first equation of (3.48) to yield

A = . —{ —wAa3c2p2d(b +  d +  p +  q) +  u2a3dc2p2(bdp +  dpq — baq) +  a2bp3qd2a2c9 

—e~aT2 [oj4a2cp/3bkq(p +  b +  q +  2d) +  ui2a2bcp/3kq(—2bdp +  baq — 2 dpq) 

—2a2b2p2q2dacf3k]-\-e~25jT2[—u4a(32b2k2q2+ u 2ap/32b2k2q2(b +  q)

' -\-a2b3pq3p2k2]}/{cka/3{e~an~aT2[—ca2puA +  u2ca2p

x (bq +  bp + pq +  dp + db + dq) + ca2 cos((ri + T2)w)a;2p2(& + q + d)

+ca2 sin((ri +  r2)o;)p2(a;3 — dbco — udq) — cabp2qda]

+ e _aTl_2oT2 [u2kaPbq(b +  +p +  q) — kab2pq2/3]}}.

' (3.52)
Then, substituting the above A into the second equation of (3.48) and assuming ± 0̂  
and ± cj2 being the two pairs of purely imaginary eigenvalues yields two equations: 
Sdi{ui) =  0 and £¿2(^2) =  0, given in Appendix. Also, note that the critical point 
giving rise to double Hopf bifurcation requires a+ =  a_ =  ac. By solving ac and 
setting ui2 ■ wi =  ur. The new equations are obtained for r1; uji and u)r as

Sddi fart ®c) =  F(Tl, '¿l)>
~ ~ . (3.53)
Sdd2(Ŝ ri &c) =  \

■ ■■ • -'V': ' : r  ■': ’

where F (ti,ui) is shown in Appendix. If (3.53) has real positive solution for uii and 
n ,  called Uic and Tic, all the critical values of the bifurcation parameters can be 
determined as: (ri, a, A) =  (ric, ac, Ac). Moreover, the two pairs of purely imaginary 
eigenvalues for the characteristic equation (3.44) are (±u;lc, ±(cnr x ojlc)), implying 
existence of double Hopf bifurcation.

3.6 Numerical Simulation

In this section, numerical simulations are performed to verify the theoretical results 
obtained in the previous sections.
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3.6.1 Periodic Solutions

Firstly, two examples are given to show that there exist periodic solutions in system

(3-1).  ;
E xam ple 1. Again, setting A =  0.24, d =  0.004, /3 =  0.004, a =  a =  0.33, a =  0.004, 
b =  2, k =  50, p =  2, c =  2000, q =  2, r2 =  0.5; and choosing T\ as the bifurcation 
parameter, we have

Rq =  18.1818e-a33(T1+0-5),

Rd =  0.09435144952(18.1818e_0'33̂ ri+a5  ̂— 1)

Then, the disease-free equilibrium Eq is

(3.54)

Eq =  (60,0,0,0,0), (3.55)

which is stable for n  >  8.289157860. Numerical simulated solution result for n  =  9, 
shown in Figure 3.1, converges to Eq. If T\ < 8.289157860 (Rq > 1), Eq is unstable 
and the single-infection equilibrium is emerged, given by,

Es =  (3.3ea33(T1+a5),0.7273e-a33ri -  0.03391574816,0,T8.1818e-a33(Tl+a5) -  1, 0),

' • ;-.q. m. : ; " - ; - '  .. . (3-56)
which is stable for 0.8622168041 <  ri <  8.289157860, as shown in Figure 3.2. When 
r i <  0.8622168041, the double-infection equilibrium Ed comes into exist, given by

Éd =  (5.173006325,0.5,0.1293251581e-°-33(T1+a5) -  0.0825, 

10.59867130,129.32515e-a33(T1+a5) -  82.5),
(3.57)
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Figure 3.1: Simulated time history of system (3.1) for A =  0.24, a = (3 = d =  0.004, 
k =  50, a = a =  0.33, c =  2000, b =  p =  q = 2T2 =  0.5, =  9 with the initial 
condition: x(0) =  5.0, y(0) =  1.0, z(0) =  2.0, u(0) =  0.5, u/(0) =  4.0, converging to 
the stable equilibrium solution E0 =  (60,0,0 ,0 ,0). \

for which the characteristic equation (3.44) becomes

£>(£) =  £5 +  (6.046394685 +  0.5173006324e- a33(Tl+a5^ 4 

+(8.278368114 +  3.12780379e-°-33(Tl+a5))£3 

+(-0.948842518 +  6.351607588e-°-33(Tl+a5))£2 

+(-2.701240984 +  4.426405059e-a33(Tl+a5))£
(3.58)

+ 1 5.83999999e~a33(Tl +05)

-10.10476243 -  [(1.034601265e-a33(Tl+a5))£3

+(4.142543464e~a33(Tl+a5))£2

+(0.1655362024e -  i e-o.33(n+o.5)^]e-i(n+o.5) = 0.
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Letting R(u>) and S(u) be the real and imaginary parts of D(iu>), we have

R(u) =  (6.046394685 +  .5173006324e-a33(Tl+a5))w4

-(-.948842518 +  6.351607588e"a33(Tl+a5))a;2 

+15.83999999e-a33(ri+a5) -  10.10476243 

— (1.034601265e-a33(T1+a5) sin (a; +  0.5))

-(4.14254346e-a33(ri+0-5))u;2cos(a;(r1 +  0.5)) 

+(0.1655362024e-a33(T1+a5))a;sm(a;(ri +  0.5)),

(3.59)

S(u) = u5-  (8.278368114 +  3.127803794e-a33(Tl+a5))a;3

+(-2.701240984 +  4.426405059e"a33(Tl+a5>)w 

—(1.034601265e-a33(Tl +a5) )u>3cos(a; (rx +  0.5)) 

+(4.14254346e-a33(Tl+a5V 2sin(u;(T1 +  0.5)) 

+(0.1655362024e -  e -a33(T1+a5))a;cos(a;(T1 +  0.5)),

(3.60)

Similarly, numerically solving the two equations,

R(oj) =  0 and =  0, (3.61)

we obtain
(n ,w )  =  (0.823938730,0.1509390973). (3.62)

Therefore, we have the critical value fh =  0.823938730 giving a corresponding value 
Rh =  Rdiji =  fh) =  1.013911267. Also, it can be shown that when T\ < fh, the other 
three conditions are satisfied:

R(uj) =  0 S(u) <  0, (3.63)

li=o.i509390973i,ri =0.823938730— —0.3375687425 +  1.648144850* 7̂  0 (3.64)

and
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Figure 3.2: Simulated time history of system (3.1) for A =  0.24, a = ¡3 = d =  0.004, 
k =  50, a =  a =  0.33, c =  2000, b = p = q =  2,ri =  4 and r2 =  0.5 with the initial 
condition: x(0) =  5.0, y(0) =  1.0, 2 (0 ) =  2.0, u(0) =  0.5, =  4.0, converging to
the stable equilibrium solution Es =  (14.5694,0.1604,0,3.1182,0).

|£=0.1509390973i,ri =0.823938730=  —0.317987439570544 < 0 (3.65)

Therefore, the roots of (3.58) have non-negative real part when r\ < ( > ),
and (3.58) has a pair of purely imaginary roots when Ti =  fh (Rd, =  Rh), implying 
existence of a Hopf bifurcation. Therefore, we conclude that when 0.823938730 < 
ti < 0.8622168041, the equilibrium solution Ed is stable (see Figure 3.3). At the 
critical point, T\ =  fh (Rd = Rh),Ed loses its stability through Hopf bifurcation, 
leading to bifurcation of a family of limit cycles, as shown in Figure 3.4.

Exam ple 2. We choose r2 as our bifurcation parameter and set T\ =  0.4. Thus,



50

Figure 3.3: Simulated time history of system (3.1) for A =  0.24, =  /3 =  0.004,
k =  50, a = a =  0.33, c =  2000, b = p =  q = 2, T\= 0.85 and r2 =  0.5 with the initial 
condition: x(0) =  5.0, y(0) =  1.0, z(0) =  2.0, v(0) =  0.5, 0) =  4.0, converging to
the stable equilibrium solution Ed =  (5.173,0.5,0.0003,10.5987,0.3333).

R0 =  18.1818e-°-33(T2+0A),

Rd =  0.08e-a33T2(18.1818e-a33(T2+a4) -  1).
(3.66)

The disease-free equilibrium Eq becomes

E0 =  (60,0,0,0,0), (3.67)

which is stable for r2 > 8.389157861. When r2 < 8.389157861, Rq > 1, for which Eq



51

0 200 400 600 800 4.5 5 5.5x

Figure 3.4: Simulated time history of system (3.1) for A =  0.24, =  ¡3 =  =  0.004,
k =  50, a = a =  0.33, c =  2000, b = p = q =  2, t\ =  0.4 and r2 =  0.5 with the initial 
condition: x(0) =  5.0, j/(0) =  1.0, ¿(0) =  2.0, n(0) =  0.5, tc(0) =  4.0, converging to 
a periodic solution. The bottom right graph is the phase portrait projected on 
plane indicating a limit cycle.

is unstable and the single-infection equilibrium bifurcates, given by

E, =  (3.3ea33(T2+a4), 0.6373389056 -  0.04ea33T2, 0,18.1818e-°-33(T2+a4) -  1,0),

(3.68)
which is stable for 3.738097521 < r2 <  8.389157861. Further decreasing r2 to pass 
the critical value r2 =  3.738097521 causes Es to be unstable and appearing of the 
double-infection equilibrium:

p_  / 3.84 a c 0.25(0.384e-°-33(T2+a4>—0.264e-°-33T2 —0.2112)
~  V0.064+0.8e-°-33T2 ’ U -0  ) 0.064+0.8e-°-33T2

1 9  c —0.33t2 250(0.384e~O 33̂T2+o-4)—0.264e~o'33T2—0,2112) \ 
i z -oe  » 0.064+0.8e_0 33T2 '

(3.69)
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The corresponding characteristic equation (3.44) for the above becomes

D (() = f  +  (6.334 +  0 .5 e - » ^  +

+(10.00532 +  .3165e-°-33r2

. (6.004+0.5e_o-33T2)(0.384e_o-33(T2+o-4)-0.264e-°-33T2-0.2112)\<r3 
+ --------------------  0.064+0.8e-()-33-2 K

+(2.67992 +  0.499e-°-3372
. (12.024+0.3e_0'33T2)(0.384e_o'33̂ T2+o'4)—0.264e_0'33T2 —0.2112) \ ¿2  
■ 0.064+0.8e_o-33T2

+(0.1056 +  0.132e-O33T2

. (8.048+0.6e_0'33T2)(0.384e“ °-33(T2+0-4)—0.264e_o-33r2 —0.2112) \
' 0.064+0.8e-°-sjT2

. 660(0.4+0.5e_o 33T2 )(0.384e_0-33̂T2+0-4)—o.264e_0-33T2 —0.2112)
“l 0.064+0.8e-°-33T2

r/2(0.33+(0.384e-°-33(T2+o-4)-0.264e-°-33T2-0.2112) \ ¿-3 
It 0.064+0.8e_o-33T2 K

. / 8.008(0.33+(0.384e-o-33(T2+o-4)-0.264e-°-33T2-0.2112) \ ¿-2
' V 0.064+0.8e_0-33T2

, /-0.032(0.33+(0.384e_0’33(T2+0-4)—0.264e-a33T2—0.2112) \<r] —0.338+9+0.4) _  n 
“*”1 0.064+0.8e-°iST2 )̂ >\e U-

(3.70)
Let R(oj) and S(u) be the real and imaginary parts of D(iu>). Then solving the two 
equations,

we obtain f 2h : 
Rd(r2 =

R(uj) =  0 and S(u) =  0, (3-71)
V

= 2.622465483 as our critical value, giving a corresponding value Rh :=  
= 1.084598722. It is easy to show that when r2 < fy,

R(u) =  0 =+ 5 (a?) < 0. (3 72)

Further, we can verify that

9DqI ’T  ̂ 1^=0.29150195171,7^=2.622465483= —0.6623825246 +  1.865961951i 7̂  0 (3.73)

and
-Re^ |̂ =0.29i50i95i7t,T2=2.622465483= —0.0517127986976842 <  0. (3-74)

Thus, all roots of (3.70) have non-negative real part for r2 < f2h ( > Rh), and (3.70)
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Figure 3.5: Simulated time history of system (3.1) for A =  0.24, 0.004,
k =  50, a =  a =  0.33, c =  2000, b = p = q =  2 0.4, r2 =  2 with the initial 
condition: x(0) =  5.0, y(0) =  1.0, z(0) =  2.0, u(0) =  0.5, ie(0) =  4.0, converging to 
a periodic solution. The bottom right graph is the phase portrait projected on 
plane indicating a limit cycle.

has a pair of purely imaginary roots when r2 =  f2h ( =  implying existence of
Hopf bifurcation. Therefore, when 2.622465483 < r2 < 3.738097521, the equilibrium 
solution Ea is stable. At the critical point, r2 =  f 2ft., Ed, loses its stability through a 
Hopf bifurcation, leading to bifurcation of a family of limit cycles, as shown in Figure 
3.5.

3.6.2 Q uasi-periodic Solutions
For quasi-periodic solutions, we present two cases: a resonant case and a non-resonant 
case. For convenience, we fix d =0.002, ¡3 =  0.004, â =  0.33, a =  0.004, =  2, 50,
p =  2, c =  2000, q =  2, r2 =  3 and choose ri, a, A as the bifurcation parameters.



54

Figure 3.6: Simulated time history of system (3.1) for A =  0.83, =  /? =  0.004,
d =  0.002, k =  50, a =  0.03, a =  0.33, c =  2000, =  =  q,= 2, t\ =  16.03, r2 =  3
with the initial condition: z(0) =  5.0, y(0) =  1.0, 2(0) =  2.0, u(0) =  0.5, u;(0) =  4.0.

\

R esonant case. We choose ui\ : u>2 =  ur=

Sddl (kVj O'c)

Sdd2 (^r) ® c )

1 : 2, so system (3.53) is reduced to

A ,
(3.75)

where F\, F2 are given in Appendix. The numerical solution for the above two equa
tions is (ti, wi) =  (16.0283293568469,0.548085462867220). Therefore, at the critical 
point, a double Hopf bifurcation occurs and all the critical values of the bifurcation pa
rameters can be determined as: (t 1; a, A) =  (16.028,0.0347,0.8326). The two pairs of 
purely imaginary eigenvalues for the characteristic equation are (±0.5481, ±1.0962), 
implying existence of double Hopf bifurcation. The simulated solutions for this case 
are shown in Figure 3.6.
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N on -reson an ce case. We choose Ui: u;2 =  =  1 • \/2- Similarly, by using the two 
equations in (3.53), we obtain the numerical solution for (ti, o>i ), given by

(n , wi) =  (43.8987067132056, -0.398679840517696). (3.76)

Therefore, at the above critical point a double Hopf bifurcation occurs. All the critical 
values of the bifurcation parameters can be determined as:

(n , a, A) =  (43.8987067132056,0.0865744881680455,7.48065701077655). (3.77)

The two pairs of purely imaginary eigenvalues for the characteristic equation are

(±0.398679840517696, ±0.563818437504870) (3.78)

The simulation results are shown in Figure 3.7.

3.7 Conclusion and discussion

In this chapter, we have analysed an HIV-1 infection model with two concentrated 
delays. We have identified the basic reproduction number and proved that if .Ro < 
1, the infection-free equilibrium E0 is globally asymptotically stable; if <  lRo < 1 +  
^ | e _OT2, the single-infection equilibrium Es is asymptotically stable. For the double
infection equilibrium Ed, we have showed how to determine the stability, existence of 
Hopf and double Hopf bifurcations.

Due to difficulty in constructing a suitable Lyapunov function for the single-infection 
equilibrium Es, we didn’t obtain its global stability. Moreover, the characteristic 
equation for the double-infection equilibrium Ed can not be factorized into lower 
degree polynomials, so it is not possible to provide explicit stability conditions.

Comparing with the results for single delay in Chapter 2, the results obtained in this 
chapter are more significant. With large r2 and all other fixed parameters, the the 
critical values of T\ are smaller than the ones obtained in Chapter 2. This implies 
that increasing r2 also decreases Ro, which determines whether or not the HIV-1 virus 
in host will be persistent or will go to extinction. In other words, both prolonging 
the latent period and slowing down the virus production process can help control the 
HIV-1 infection.
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Figure 3.7: Simulated time history of system (3.1) for A =  7.4807, =0 .004,
d =  0.002, k =  50, a =0.0865744881680455, a =  0.33, c =  2000, =  2,
Ti =  43.8987, t2 =  3 with the initial condition: a:(0) =  5.0, 0) =  1.0, z(0) =  2.0,
v(0) =  0.5, w{0) =  4.0.
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Appendix A

Since Equations (2.37) and (2.38) can be directly obtained by setting r2 =  0 in 
Equations (3.46) and (3.47), we have rsi  =  t u  U=o and rs2 =  r12\T2= q. Thus, we only 
need list Tu and ri2 as following:

Tl2 =  > { “ ? } .
(A.1)

where

T\a =  (dacp +  j3bkqe~aT2)^e~aT2 2̂bkq/3pca3u)8d +  2bkqfipca3d(p2 +  b2 +  2bq 

+q2)u6 — 2bckpqa2 /3(—p2daq2 — 2p2qabd — p2qaab +  p2qa2b — p2b2dot 

—pbq2aa +  pq2a2b — pb2qaa — 2pqabad +  pqb2a2 +  2pqba2d — 2 abadq2 

—2 b2adaq)u!A — 2a2b2ckpq2a2/3(—2bdp2 — bqap +  abpq — qabd 

—2dqp2)u2 + 2b3kq3f3cap3a4d'j + e~2aT21b2k2q2/32u8a2

+b2k2q2/32a2(2bq +  q2 + p 2 +  b2)u>6 ---- b2k2q2a(32(—2aqbap

—2 aq2ba — ab2p2 +  2 a2bpq — 2 aqb2a — aq2p2 — 2 aqbp2)u)4 

+a2b3k2q3a/32(bqa +  2qp2 +  2bp2)u2 +  b4k2q4P2a4p2̂

+p2c2a4cu10 +  p2c2a4(2bq +  d2 + p 2 +  q2 +  b2)uis +  p2c2a4(2bqp2
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+p2d2 +  q2p2 +  b2p2 +  2 d?bq +  d?q2 +  d2b2 +  2 bq2a +  2b2qa)co6 

—p2c2a3(—2abqp2d? — aq2p2d2 — ab2p2d2 +  2pb2qa?d 

—2apb2qad — 2ab2qad2 +  2pbq2a2d — 2apbq2ad — 2abq2ad? 

+2pbqa?d2 — 2 ap2bqad +  2p2bqa2d — 2apbqad2 — ab2q2a2 

—2 ab2qap2 — 2abq2ap2)u>i — a2bqp2c2a3(—aqbp2 — 2 bp2d2 

—2bqpad +  2 bpqad — bqad2 — 2qp2d2)ui2 +  b2q2c2a2pAaAd21,

run = (¡3ac\ke-“T2)[Tnl + y/-a2u2Tn2\, .
Ti2n = (Pac\ke-&T2)[rnl- y / - 0'2u2Tn2\,

with

^”n l
e -ar2 2a2/3(p2u — ap2 +  aqp — apq +  pab — apa

+2 apd — 2 apd +  a2p — bap +  2 aqd +  2 abd — 2aad)u4 — ab2ckpq2a2beta

x (—bp2a — 2bp2d +  bp2a — 2apbq +  2bapq — 2apbd+, 2bapd — 2abqd 

—p2aq — 2 qp2d +  p2qa +  2p2ad — 2apqd +  2pqad)u2

+2f3ackb3q3p3a3dj +  e 2aT2  ̂— b3k2q3a/32(—ab 

—ab3k2q3a/32(—abq — pab — bp2 +  bap — aqp —

-  aq +  aa — pa +  ap)u4 
\

qp2 +  apq +  ap2)uj2

-\-02k2bAqAp2a3,j — a4:c2bqp2(—b — q +  a)u6 +  bc2p2qa3(p2aq +  bp2 a 

+ap2d — aap2 — p2ad +  apqd — pqad — apad +  apd? +  apbd — bapd 

+a2pd — apd? +  aqd2 +  qaba +  abd2 — aad2)uA — ac2bp2qa3(—abqp2 

—bap2d +  bp2ad — bp2d? — 2pabqd +  2 bpqad — pabd2 +  bapd2 — abqd? 

—ap2dq +  p2qad — qp2d? +  p2ad? — pad?q +  pqad?)uj2 +  a2c2b2q2pAa3d?,



e aT214p3c3a5bktietaqdu)1A +  2bc3kp3qaAß([4ab2d — apbq +  bapq 
-\-4bdqa +  3 ap2d +  4otq2d +  2ad3]ojn — 2 bc3kp3qaAß[aqpb3 
—2apbqad — 4aqb3d — 4aqbd3 — 2aq4d — ap4d — aq2p2b -f  aq2pb2 
+cxqp3b — 4 aq3bd — 6ap2b2d — qpb3a +  qp2b2a +  q2p2ba — qp3ba 
+q2pba2 — q2pb2a +  qp2ba2 — qp3ba — q3pba +  qpb2a2 — 3 ap2d3 
—3bpqcPa +  2 qp2bad — 4 aq2bad — 4aqb2ad — aqpb2a — 6aqp2bd 
—aqp2ba — aq2pba +  3apbqd2 — 2aqpb2d — 2aq2pbd — 4 aq2d3 
—4 ab2d3 — 2ab4d +  2qpb2ad +  2 q2pbad +  2 bpqa2d — aqp2b2 +  aq3pb 
—6aq2p2d — 6aq2b2d]uì10 — 2 bc3kp3qa4ß[aqpb3 — 2apbqad — 4aqb3d 
—4 aqbd3 — 2 aq4d — ap4d — aq2p2b +  aq2pb2 +  aqp3b — 4 aq3bd 
—6ap2b2d — qpb3a +  qp2b2a +  q2p2ba +  q2pba2 — q2pb2a +  qp2ba2 
—q3pba +  qpb2a2 — 3 ap2d3 — 2>bpqd?a +  2qp2bad — 4 aq2bad — 4 aqb2ad 
—aqpb2a — 6aqp2bd — aqp2ba — aq2pba +  3 apbqd2 — 2aqpb2d 
—2aq2pbd — 4 aq2d3 — 4ab2d3 — 2 ab4d +  2qpb2ad +  2 q2pbad +  2bpqa2d 
—aqp2b2 +  aq3pb — 6aq2p2d — 6aq2b2d]u>8 — 2 bc3kp3qa3ß 
X [—2 a2q2p4d — 2 a2p4b2d — 3 a2p2b4d — 3 a2q2pbad2 — 4a2q2p2bad 
—3aq3pd2ba +  2 aq2p3bad +  2 aqp3b2ad +  4 aq2pbd3a — 2 a2q3pbad 
—3a2qpb2ad? — 2 a2q2pdb2a — 3a2qp2bad2 +  2 aq3pba2d — 2 a2q3p2b2 
+ a 2q3p3b +  3 a2qp3bd2 +  aq3p2ba2 +  aqp2b3a2 +  3 a2qpb3d2 
—aq3p3ba — a2q3pb2a +  2 aq3p2b2a — 4a2q3pb2d +  aq3pb2a2 
+2 aq2p2b3a — 4a2q2pb3d +  aq2pb3a2 — a2qApba — aq2p3b2a — 2a2qpAbd 
—3a2qp2b2d2 — 4a2qpb2d3 — 4a2q2pbd3 — a2q3p2ba —̂a2qp2b3a 
—8a2qp2bd3 — 4 a2qb2ad3 — 4 a2q2bad3 — 4a2qAbad — 8 a2q3b2ad 
—8a2q2b3ad — 4 a2qbAad +  aq2pAba — aqp3b3a — 3a2q2p2bd2 
+3a2q2pb2d2 — a2qpbAa +  aqAp2ba +  aqp2bAa +  2 aqpb3a2d 
—4 a2qpbad3 — 3 aqpd?b3a — 4 a2qp2b2ad +  4 aq2pb3ad — 2a2qpb3ad 
+2aqApbad +  2aqpAbad +  4 aq3pb2ad +  3 aq2p2d2ba +  3 aqp2d2b2a 
+4aq2p2b2ad +  3aq2pba2d2 +  4aqpb2d3a — 2aq2p2ba2d — a2pAd3 
—2 a2bAd3 — 2 a2qAd3 +  4 aqp2bd3a — a2qp2bA — a2q2pAb — 4a2qb3d3 
—a2qAp2b +  3 aqp2ba2d2 +  2aq2pb2a2d — 3 aqp3bd2a — 6 a2q2b2d3 
—6a2p2b2d3 +  2aq3p2bad +  2 aqp2b3ad — 3aq2pd2b2a +  4 aqpba2d3 
+2 aqpbAad +  3aqpb2a2d2 — 2a2qp3b2d +  3 a2q3pbd2 — 2a2qApbd 
—q2p2b2a2d — 2 a2qpbAd +  aqApba2 — a2q2p2b2a — a2q2pb3a +  aqpbAa2 
+aq2p2b2a2 — 2 a2q2p3bd — 6a2qp2b3d — 9 a2q2p2b2d — 6a2q3p2bd 
+aqpAb2a — 6 a2q2p2d3 — 4 a2q3bd3 —2 aqp2b2a2d +  a2qp3b3 — a2qpAb2 
—3 a2qAp2d — 2 a2q2p2b3 +  a2q2p3b2]u6 — 2bc3kp3qa3ß[4aq3pb3a2d
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—2a2q4pb2ad +  2 aq4p3bad 4- 3 abp4d2aq2 +  4a2b2q2ap3d — 2a2bq2ap4d 
+2abp4aq3d +  2ab2p4aq2d — 6aq3p2b2a2d — 6a2q3p2b2ad — 2a2q2pb4ad '
—2 a2qp3bad3 — 4 aPtfpbad3 — 6aq2p2b3a2d +  2 aq2pb4a2d — 4a2qpb3ad3 
—4 aq2p2ba2d3 +  4 aqp2b3d3a +  2 aq4pb2a2d — Aa2q4p2bad 4- 3 aqp2b4d?a 
+2 aqp3b4ad — 2a2qp4b2ad — 4 a2q4pbd3 — 2 a2b2p3dq3 +  2 ab3p4aq2 
—2a2b4p3dq +  a2b2q2ap4 — ab2q2p4a2 +  abq4p4a — 2 ct2b3q2p3d 
—4a2bq2p3d3 — 4a2b2p3d3q — 3a2 bp4 d2q2— 2a2b2p4q2d — 2a2bp4q3d 
+2ab2q3p4a — 2 a2bq4p3d — a2q2pb4a2 — a2q2p2b4a — 8 a2q3pb2d3 
—3a2q3p2b2d2 — a2q3p2b2a2 — 10a2q2p2b2d3 -f aq3p2b2a3 — 3a2q4p2bd2 
+6ct2q2p3b2d? +  aq4p2b2a2 +  2 a2b3q2p3a — 2 aq2p3b3a2 — 8 a2qp2b3d3 
—8a2q3p2bd3 — 4a2qp4bd3 — 8 a2q2pb3d3 — 3a2q2p2b3d2 +  2aq3pb3a3 
—aq2p3b2a3 +  aqp4b4a +  3 a.2q3p3bd2 +  3a2qp3b3d2 — 2 aq3p3b2a2 
—3 a2qp4b2d2 +  a2q2p3b2a2 — 2 a2q3p2b3a — a2q4p2b2a +  aq2pb4a3 
—2a2qp4b3d +  2 aq3p2b3a2 +  aq2p2b4a2 — 2 a2b3p4q2 — a2bq4p4 
—2 a2q3b2p4 — a2p4b4d — 3 a2p2b4d3 — 2 a2b2p4d3 — a2q4p4d — 2 a2q2p4d3 
—3 a2q4p2d3 — a2qp4b4 — 2a2q2pb3a?d +  4 aqpb4d3a +  a2q2p2b2a2d 
—3 a2q2pb3ad2 — 6aq2p3b2a2d — 3a2q3pb2ad? +  3 aqp4b2cPa +  4 aqp3b2d3a 
+4 aq2p3bd3a — 2a2qp2b2ad3 +  3aq4p2bd2a +  4 aq3p2bd3a +  2 aq2pb3a3d 
—2 a2q2p2bad3 +  4 aq3pba2d3 +  2 aqp3ba2d3 +  4aqpb3a2d3 — 3a2q4pbad2 
—3 a2q3p2bad2 — 2a2qp4bad2 — 3a2qp2b3ad2 +  4 aqp4bd3a — 3aq2p2b2a2d2 
+2 aqp3b2a2d2 +  3 aqpb4a2d2 — 2aqp2b4a2d — 2a2qp3b2ad? — 3a2qpb4ad2 
—2 a2q3pb2a2d — 4aqp2b2a2d3 — 4 a2q3pb3ad — 6a2q2p2b3ad +  3aq3pb2a2d2 
+2aq3pb2a3d +  3 aq4pba2d2 +  2 aq2p3ba2d2 +  3 aq2pb3a2d2 — 4a2q2pb2ad3 
+4aq2pb2a2d3 — 9aq2p3b2ad2 — 2aq4p2ba2d — 3aqp3b3d2a + :8ctq2pb3ad3 
+8aq3pb2ad3 +  4 aq2p2b2ad3 +  2aqp4b3ad — 3 aq3p3bd2a +  4aq4pbd3a 
—2 a2q3pb3a2 — a2q2p2b3a2 — 3 a2qp2b4d2 — 4 a2qpb4d3 +  aq4pb2a3 +  2 q3p3b2a2d 
—a2q4pb2a2 +  2a2q3p3b2a 4-  aq2p2b3a3 — 4a2qb4ad3 — 4a2bq4ad3 +  2aqp4ba2d2 
—2 a2q4b2a2d — 2 a2q2b4a2d — 8 a2b3q2ad3 — 8 a2q3b2ad3 — 4 a2q3b3a2d 
+3 q2p2b3a2d? +  2 q2p2b3a3d +  3 q3p2b2a2d2 +  2 q2p3b2a3d +  3 q2p3b2a2d2 
+3 q2p2b2a3cP +  2 q3p2b2a3d +  2 q2p3b3a2d — 4a2qp2b4ad +  3 aq3p2ba2d2 
+3aqp2b3a2d2 — 2a2bq2p3ad2]u4 — 2 a2b2c3dkp5q2a3ß[a2qb3d2 +  2 a2q2b2d2 
+b3qa2p2 +  bq3a2p2 +  2 q2p2b2a2 — 4 aq3bad2 — 2aq3p2d2 — 4 aqb3ad2 
—4aqpd2b3 — 4aq3pd2b 4- a2q3pdb — 3a.qp2db3 4- a2qpdb3 — 3aq3p2db 
+2a2q2pdb2 — 8aq2pd2b2 4- 3qpdb3a2 +  6q2pdb2a2 4- 3q3pdba2 +  3q3p2bad 
+3q2p2ba2d — 6aq2p2d2b — 6aq2p2db2 — 2 ap2b3cfi — 3 aqp2db2a — 4 aqpdb3a 
—8aq2pdb2a — 4aq3pdba — 4aq2pd2ba — 3aq2p2dba — 4aqpd?ab2 4- a2q3bd2 
—8 ab2d2q2a — 4 aq2p2b2a — 2aq3p2ba — 2aqp2b3a — Qaqp2d2b2 +  4 q3pbad2
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+3 qp2b3ad +  A qpb2a2d2 +  Aqp2b2ad2 +  8q2pb2ad2 +  6q2p2b2ad +  Aq2pba2d2 
+qp2ba2d2 + 3qp2b2a2d + Aq2p2bad? + 4 qpb3ad2]ui2 + 2a3c3b3q3p7 aAd3 ßk{b + g)2j 
_l_e- 2OT2 ĵ 2b2k2q2 ß2aAp2c2ui1A +  b2k2q2ß2aAp2c2(Aq2 +  3p2 +  6d2 +  Ab2 +  Abq)u>12

—b2c2k2p2q2a3ß2[6aqpbd — 2 aqpba — 12 aqbd? +  2 bpqa2 — apA — 2 aqA 
—12 ad2q2 — Aaqb3 — 12ad?b2 — 6aq2p2 — 6 aqbp2 — Aaq3b — Aaqb2a — Qbpqad 
—2 aqpb2 -f- 2qpb2a — 2aq2pb — Aaq2ba +  2 qp2ba +  2q2pba — 6ab2q2 — 2 abA 
—6 ab2p2 — llo;p2d2]a;10 — b2c2k2p2q2a2ß2[—2a2 q2pA — 3a2qAp2 — 2 a2b2pA 
—6o'2bAd? — 5 a2pAd2 — 3 a2bAp2 — 6a2qAd2 — 12 a2qb3d2 — 6 a2bq3p2 
+2ctqb2p3a — 12 a2qb2ad2 +  2aqpb3a2 — 2 a2qbpA — 18 Oi2q2b2d? +  6a2q3pdb 
—AoL2qb2ap2 — 12 a2q3bcß +  6a2qpdb3 — 9 a2b2q2p2 — 2 aqp2b2a2 — q2p2b2a2 
+2apbq3a2 — 2a2pbqA, — 12a2q2pbd2 — 8 a2q2b3a +  2 aq2pb2a2 — Qa2q2pbad ■■■ 
+Aapb2aq3 — 6a2q2p2bd — 2a2q2bp3 — 6aqbap3d +  2 apbaqA — 8a2b2q3a 
—Aa2bqAa — 22 a2p2d2b2 +  6a2qbp3d — 6 a2qb3p2 — Aa2q2bap2 +  2 aqbpAa 
+6 a2q2pdb2 — 22 a2p2d2q2 — 2a2qpb3a +  2 aq2bp3a — Aa2qbAa +  12aqp2bd2a 
— 12 a2qpbad2 +  Aaq2pb3a +  2 aqpbAa — V2a2q2bad2 — 2a2qpbA +  6 aqp2ba2d 
—Aa2pb2q3 — 2a2qb2p3 — 32 a2qbp2d2 — 2a2pbq3a +  6 aqpb2a2d — 2 aq2p2ba2 
+6aq2pba2d — 6a2qp2b2d +  12 aqpba2 d2 — 6a2qpb2ad +  6 aqp2db2a — 6aqpdb3a 
—6aq2pdb2a — 6 aq3pdba +  12 aq2pd2ba +  6aq2p2dba +  12 aqpd2ab2 — Aa2q2pb3 
—2 a2q2pb2a +  Aaq2p2b2a +  2 aq3p2ba +  2 aqp2b3a — V2a2qpb2d? — 6a2 qp2 bad] u8 
—b2c2k2p2q2a2ß2[—2a2q2pA — 3 a2qAp2 — 2 a2b2pA — 6 a2bAd? — Aa2q2bap2 
—ha2pAd2 — 3a2bAp2 — 6a2qAd? — 12a2qb3d2 — 6a2bq3p2'-r 2aqb2p3a 
—12 a2qb2ad2 +  2 aqpb3a2 — 2a2qbpA — 18 a2q2b2d2 — Aa2qb2ap2 — 12 a2q3bd2 
+6 a2qpdb3 — 9 a2b2q2p2 — 2 aqp2b2a2 — q2p2b2a2 +  2 apbq3a2 — 2 a2pbqA 
—12 a2q2pbd2 — 8 a2q2b3a +  2 aq2pb2a2 +  Aapb2aq3 — 6a2q2p2bd — Aa2bqAa 
—2 a2q2bp3 — 6aqbap3d +  2 apbaqA — 8a2b2q3a +  6a2qbp3d — 6a2qb3p2 
—22 a2p2d2b2 +  6a2q3pdb — 6a2q2pbad +  2 aqbpAa +  6a2q2pdb2 — Aa2qbAa 
—22 a2p2d2q2 — 2 a2qpb3a +  2 aq2bp3a +  12 aqp2bd2a — 12 oßqpbad2 
+Aaq2pb3a +  2 aqpbAa — 12a2 q2 bad2 — 2a2qpbA +  6aqp2ba2d — Aa2pb2q3 
—2 a2qb2p3 — 32 a2qbp2d2 — 2a2pbq3a +  6aqpb2a2d +  12 aqpba2 d2 — 2 aq2p2ba2 
+ 6  aq2pba2d — 6a2qp2b2d — 6 a2qpb2ad +  6aqp2db2a — 6 aqpdb3a 
—6aq2pdb2a — 6aq3pdba +  12 aq2pd2ba +  6 aq2p2dba +  12aqpd?ab2 — Aa2q2pb3 
—2 a2q2pb2a +  Aaq2p2b2a +  2aq3p2ba +  2 aqp2b3a — 12 a2qpb2d2 — 6 a2qp2bad]u6 
+b2c2k2p2q2a2 ß2[—5Aaq2b3a2p3d +  5 q2p2b2a2a2d2 — 12 aq2p2b2a3d?
+12 a2q3pb3a2d — 12 aq3pb2a3d2 — 6aqApb2a3d — 6aqb3a2pAd +  2 q2b3a3pA 
+2 q3pAb3a2 + p 2b2qAaA +  q2p2bAaA +  q2pAbAa2 +  Aq3p3b3a3 +  2 q2p3b3aA +  2 q3p3b2aA 
+2q3p2b3aA +  2 q2p3bAa3 +  a2qAb2pA +  a2q2bApA +  5a2qApAd2 +  2 a2b3q3pA
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+5a2b4p4d2 +  6ct2qb3ap4d +  6a2qb4ap3d — 12áp2b2q3a2d? — 6aq3b2p3a3 
+a?b2q2p4a2 +  V2a2q3b3a2d2 +  6a2q2b4a2d? +  6a2q4b2a2d2 — 2aq2p4b2a3 
+6a2q2p3b4d +  Aa2q2p3b4a +  36a2q2p3d2b3 — 2aq2p4b4a -f 20a2qb3p4d2 
+2 a2qb4ap4 +  12 a2qp3d2b4 +  6 a2qb4p4d — 6 aq2b4p3a2 — 8 aq2b3p4a2 
+ 8 a2q2b3ap4 +  2 a2q2b4a2p2 — 1 8ap2b2a2dq4 +  18 a2q2b3p4d — 12 abp3d2aq4 
+30 a2b2q3ap3d — 6abq4p4ad +  6 a2bq3ap4d — 6abq3a2p4d — 12 ab2q4ap3d 
—Y2abp4d2aq3 — 5Aaq3b2a2p3d +  &a2b3q3ap3 — Qabq4a2p3d — A8ab2p3d2aq3 
+42 a2b2q3ap2d2 — 2Aapb3q3a2d2 +  2Aa2p2b3q3ad — 3 6ap2b3q3a2d 
+2Aa2pb3q3ad2 +  12 a2pb2q4ad2 — 12 apb2q4a2d2 +  12 ap2bq4a2d? — 12 aq2b4p3ad 
—2Aaq3b2p4ad — 2Aaq2b3p4ad — 18 aq2p2b3a3d +  20a2bq3p4d2 — 2Aap2b3d2aq3 
+6a2q4b2p3d +  8a2b2q3ap4 +  3 6a2b2p3d2q3 +  18 a2b2q3p4d — 6ab2q4p3a2 
—8 aq3b2p4a2 +  6a2bq4p4d — 2ab2q4p4a +  2a2bq4ap4 +  6 a2b4p2d2q2 
—Aap4b3aq3 +  30 a2p4d2b2q2 +  12 a2b3q3p3d +  12 a2p2b3q3d2 — 12 ab3q3p3a2 
+Aa2q3b3a2p2 — 6aq2b3p3a3 +  12a2b2q2p4ad +  12 aqp2b4a2d2 — 12 aq2pb4a2d2 
—18 aq3p2b2a3d +  12 a2q2p2b4ad +  12 a2q4p2b2ad — A8aq2p3d2b3a 
—6aqb4a2p3d — 12 aqp3d2b4a +  10 a2qb4ap2d2 — 10 aqb3a2p3d2 +  30 a2q2b3ap3d 
+A2a2q2b3ap2d? +  10a2qb3ap3d2 +  20 a2q2b2p3ad2 — 82aq2b2p3a2d2 
—2Aaq2b2p4ad2 +  10 aq2bp4a2d2 +  10 aqb2p4a2d2 — 18 aq2b2a2p4d 
+12 a2q2pb4ad2 — 12 aq3pb3a3d — 12 aq2p2b4ad2 — 12 aq2p2b3a2d2 
—6 aqb4p4ad — 18 aq2p2b4a2d — 12 aqp4d2b3a — 12 aq2pb3a3d2 — 12 ap2b2q4ad2 
+12a2q3pb2a2( f — 6aq2pb4a3d +  12a2q2pb3a2d2 +  6a2q2pb4a2d̂
+6a¿2pb2q4a2d +  6 a2q4p2d2b2 +  6 q3p2b2a4d +  2Aq2p3b3a3d +  I2q2p3b3a2d? 
+12q3p3b2a2d? +  12q3p2b3a3d +  6q2p2b4d2a2 +  2Aq3p3b2a3d +  6q2p3b2a4d 
+6q2b3p4a2d +  Qq2b2a3p4d +  6q3b2p4a2d +  2p2b2a2a2q4 +  6p3b2q4a2d 
+6q2p3b4a2d +  6q2p2b4a3d +  6q2p4b2a2d? +  6q2p2b2a4d2 +  6q2p2b3a4d 
+Act2q2p3b3a2 +  Aa2b2p3q3a2 +  12 q2p2b3a3d2 +  12 q3p2b2a3d2 +  6p2b2q4d2a2 
+Aa2q4b2p3a +  12 a2bp3cPq4 — 12 aq2p3b2a3d +  12q3p3b3a2d 
—10 abq3a2p3d2 +  6a2bq4ap3d +  10 a2bq4ap2d2 +  12 q3p2b3d2a2 +  12 q2p3b2a3d2 
+10a2bq3ap3d2 — 2Aab3q3ap3d +  12q2p2b3a2a2d +  6p2b2q4a3d 
+6q2p3b2a2a2d +  12 q3p2b2a2a2d +  b2p4a2q4 +  2 p3b2q4a3 +  2 q3b2a3p4]ui4 
—b3a2c2k2p4q3a2ß2[a2qb3d2 +  2 c¿2q2b2d2 +  a2q3bd2 +  b3qa2p2 +  bq3a2p2 
+2q2p2b2a2 — 12 aq3bad2 — 10 aq3p2d2 — 12a qb3ad2 — 30 aqp2d2b2 
— 12 aqpd?b3 — 12 aq3p<Pb — 6aqp2db3 — 6aq3p2db — 2Aaq2pd2b2 +  6qpdb3a2 
+12q2pdb2a2 +  6q3pdba2 +  6q3p2bad +  12 q3pbad2 +  6q2p2ba2d — 30 aq2p2d2b 
—12aq2p2db2 — 10ap2b3cP — 6aqp2db2a — 6aqpdb3a — 12aq2pdb2a 
—6 aq3pdba — 12aq2pd2ba — 6aq2p2dba — 12 aqpd2ab2 — 2Aab2d2q2a 
—Aaq2p2b2a — 2aq3p2ba — 2 aqp2b3a +  6 qp2b3ad +  12qpb2a2d2 +  12qp2b2ad2 
-\-2Aq2pb2ad2 +  12 q2p2b2ad +  12 q2pba2d2 +  qp2ba2d2 +  6 qp2b2a2d +  12 q2p2bacP
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+12qpb3ad2]uj2 +  5a2c2b4q4p6a4d2ß2k2(b +  ç )2j +  e 3aT2 ĵ 4b3k3q3ß3a3pcdw12

+2b3ck3pq3a2ß3(4dab2 — bpqa +  bpqa +  Abdaq +  Adap2 +  Adaq2)ujw 
—2b3ck3pq3a2ß3[—2b4da — 2 daq4 — 2dap4 — Apqabad — Aabdq3 — 6q2dab2 
—4 qab3d +  p3bqa — p3bqa — p2bq2a — 8p2daq2 +  p2q2ab — p2b2qa +  p2qb2a 
+p2qba2 — 8p2dab2 +  pbq3a — pq3ab +  pb2q2 a — pb2q2a +  pq2ba2 +  pb3qa 
+pqb2a2 — pqb3a — 4q2abad — Aqab2ad — 12p2bdaq — p2qbaa +  Ap2qbad 
—Apq2abd — pbq2aa +  Apq2bad — Apqdab2 — pb2qaa +  Apqba2d +  Apqb2ad]u8 
—2b3ck3pq3aß3[—Ap2b4da2 — Ap2bq2aa2d — p2qa2b4 +  p2q2a3b2 +  4p2q3abad 
—Ap2q2a2bad +  4p3bqaa2d +  Ap3qab2ad — 4p3qa2bad +  Ap2q2ab2ad +  8pq3ab2ad 
+Apbq3aa2d — Apq2a2b2ad +  p2q3aba2 — 16p2q2b2da2 — p2q2ab2a2 — p2qb3aa2 
—12p2qoi2b3d +  p2qb3a2a +  p2b4qaa +  p2bq4aa — Apq4a2bd — pq4a2ab +  pq4aba2 
—pq3a2b2a — 8pq3b2da2 +  pq3ab2a2 — pq2b3aa2 — 8pq2a2b3d +  pq2b3a2a 
—Apqb4da2 +  Apb2q2aa2d — p4b2a2q +  8pq2ab3ad +  p4b2qaa +  p4qaba2 +  p3q3a2b 
—p4ba2q2 +  pqab4a2 +  p3q2b2a2 — 4p2qa2b2ad +  4p3q2abad — 4pqa2b3ad 
+4pqab4ad +  p3qb3a2 — p3q3baa — p3ba2aq2 — 4p3q2a2bd — 3p3q2ab2a 
+p3q20iba2 — 4p3qb2da2 — p3b2a2aq +  p3qab2a2 — p3qab3a — \2p2q3a2bd 
+4p4qabad — 4p2b2qaa2d +  4pq4abad +  4p2qab3ad +  2p3q2a2b2 +  p2q3b2a2 
—p2q3a2b2 — p2q4a2b — 4p2q4 a2 d +  p2q2b3 a2 — 4pq3a2bad — 4 b4ada2q — pqa2b4a 
+p4bq2aa — p4qa2ab — 8 p4qa2bd — p2q2b3a2 — p2q3a2ab +  4pb3qaa2d 
—4p4q2a2d — 4a2badq4 — 8 a2b2adq3 — 8 a2b3adq2 — 4p4b2da2]ue 
—2b3ck3pq3aß3[—4p2b4da2 — 4p2bq2aa2d — p2qa2b4 +  p2q2a3b2 +  4p2q3abad 
—4p2q2a2bad +  4p3bqaa2d +  4p3qab2ad — 4p3qa2bad +  4p2q2àb2ad 
+8pq3ab2ad +  4pbq3aa2d — 4pq2a2b2ad +  p2q3aba2 — 16p2q2b2da2 '
—p2q2ab2a2 — p2qb3aa2 — 12p2qa2b3d +  p2qb3a2a +  p2b4qaa +  p2bq4aa 
—4pq4a2bd — pq4a2ab +  pq4aba2 — pq3a2b2a — 8pq3b2da2 +  pq3ab2a2 
—pq2b3aa2 — 8pq2a2b3d +  pq2b3a2a — pqa2b4a — 4pqb4da2 +  4pb2q2aa2d 
—p4b2a2q +  8pq2ab3ad +  p4b2qaa +  p4qaba2 +  p3q3a2b — p4ba2q2 
+pqab4a2 +  p3q2b2a2 — 4p2qa2b2ad +  4p3q2abad — 4pqa2b3ad +  4pb3qaa2d 
+4pqab4ad +  p3qb3a2 — p3q3baa — p3ba2aq2 — 4p3q2a2bd — 3p3q2ab2a 
+p3q2aba2 — 4p3qb2da2 — p3b2a2aq +  p3qab2a2 — p3qab3a — 12p2q3a2bd 
—p2q3a2ab +  4p4qabad — 4p2b2qaa2d +  4pq4abad +  4p2qab3ad +  2p3q2a2b2 
+p2q3b2a2 — p2q3a2b2 — p2q4a2b — 4p2q4a2d +  p2q2b3a2 — 4pq3a2bad 
—4b4ada2q +  p4bq2aa — p4qa2ab — 8p4qa2bd — p2q2b3a2 — 4p4q2a2d — 4 a2badq4 
—8a 2b2adq3 — 8 a2b3adq2 — 4p4b2da2]oj4 — 2 b4a2c{b +  q)k3p3q4aß3[—p2b2qa 
+p2qb2a — 4p2dab2 — pb2qaa — 4pqdab2 +  4pqb2ad pqb2a2 — 4qab2ad — p2bq2a 
+p2q2ab — 8p2bdaq — p2qbaa +  4p2qbad +  p2qba2 — pbq2aa — 4pq2abd 
+4pq2bad +  pq2ba2 — 4pqabad +  4pqba2d — 4q2abad — 4p2daq2]uj2
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+4 a4b5cdk3p5q5aß3(b +  q)2 +  e~4“T2 [b4k4q4ß4a2u12 +  2b4k4q4ß4a2

X (g2 +  p2 +  b2 +  6g)w10 — &4fc4g4a/34[—2ag36 — 2ag&3 — ctg4 — a&4 — ap4 
+2 bpqa2 +  2pbq2a +  2pb2qa +  2p2qba — 2 q2aba — 6aqbp2 — 2pq2ab — 2 qab2a 
—Ap2q2a — Aab2p2 — 2pqaba — 3ctq2b2 — 2 aqb2p]ojs — 2 b4k4q4aß4[—aq2b2pa 
—aqb3ap — q2abap2 — aqbap3 — aq3bap — qab2ap2 — aq4ba — Aaq2b2p2 
—2 aq2b3a — 2 aqbp4 — aq2bp3 — aqb2p3 — 3 aqb3p2 — qb2p2a2 +  bqp4a +  qb3pa2 
—3 aq3bp2 — 2 aq3b2a +  2q2b3pa +  bqp3a2 +  q2b2p2a +  q3bap2 — q2bp2a2 +  qb2p3a 
—2pq3ab2 — 2pq2ab3 -f 2q3b2pa — pAq2a — p2qAa +  q3bpa2 — ab4p2 +  q2b2pa2 
+qAbpa — p4b2a +  q2bp3a +  qb3ap2 — aq4bp +  qb4pa — aqb4p — aqb4a]ui6 
+b4k4q4ß4\p2q4b2a2 +  a2b4p4 +  a2q4p4 +  p2q2b2a4 + p 2q2b4a2 +  2p2q3b3a2 
+q2p2b2a2a2 +  2o¿2pb2q4a +  2 ap2bq4a2 — 2 apb2q4a2 — 2 ap2b2q3a2 +  Aa2pb3q3a 
—Aapb3q3a2 +  Aa2q2b2p3a +  2 a2q2pb3a2 — 2 aq2pb3a3 — 2 aq3pb2a3 +  2 a2q2pb4a 
—2 otq2pb4a2 +  2aqp2b4a2 — 2 aq2p2b3a2 +  2 a2q3pb2a2 +  8 a2q2b3ap2 — 6aq2b2p3a2 
—Aaq2b2p4a — 2aqp3b4a — 2 aqp4b3a +  2 a2qb4ap2 +  8 a2b2q3ap2 +  2 a2bq4ap2 
—2 oibp3aq4 — 2 qb3p3a2a — 2 q2b4aap2 — 2 q3bp3a2a — 2 abp4aq3 — Aq3b3aap2 
—2 q2b2ap2a3 — 8q3b2aap3 — 2 q4b2aap2 +  2 q3bap3a2 +  2 qb3ap3a2 +  2 q2p3b3a2 
+2q2bap4a2 — 8 q2b3aap3 +  2 qb2ap4a2 + p 4q2b2a2 +  2p2q3a2b3 +  2 q3p2b2a3 
+2q2p2b3a3 +  2q3p3b2a2 +  2 q2p3b2a3 +  Aa2bq3p4 +  6 a2b2p3q3 +  2 a2bp3q4 
+6ct2b2q2p4 +  6 a2q2p3b3 +  Aa2qb3p4 +  2 a2qp3b4 +  2a2q3b3a2 +  a2q4b2a2 
+ a 2q2b4a2 -\-p2q2a2b4 +  p2q4a2b2]u4 — 2a2b5k4p2q5(b +  q)ß4[—aqb2p 
—ab2p2 — qab2a +  pb2qa — pq2ab +  pbq2a — pqaba +  bpqa2 +  p2qba — q2aba
—2aqbp2 — p2q2a]u2 +  a4b6k4p4q6ß4(b +  g)2j +  p4c4a6u}16 +,j/c4a6

(2 bq +  2g2 +  p2 +  2d? +  2 b2)cj14 +  p4c4a5(2ab2p2 +  2p2q2a +  2p2 ad?
—2pbdqa +  2pbadq +  aq4 +  ad4 +  2 q2aba +  2 qab2a +  Aad?bq +  Aad?q2 +  Aad?b2 
+3 ab2q2 +  2 ab3q +  2 abq3 +  ab4)u12 — p4c4a5(2pb2qa2d +  2pbq2a?d
—2apbq2ad — 2apbqad? — 2ap2bqad — 2pb3adq +  2pbqa?d? — 2pb2q2ad — 2pd3baq 
—2apb2qad +  2p2bad?q — 2p3badq +  2p2b2aqd — 2pq3bad +  2p2badq2 +  2p2bqa?d 
+2pabd?q2 +  2pab2d?q — Aab2qad? — Aabq2ad? — 2 apbd?q2 — 2ap2bq2d 
+2ap3bdq +  2apq3bd -f  2apb3dq -f  2apb2q2d +  2apd?bq — 2ap2bq2a — 2apb2d?q 
—2 ap2b2qa — 2ap2bqd? — 2ap2b2dq — 2 ab4d2 — ap2b4 — 2 ab2d4 — 2 aq4d?
—2 aq2d4 — ap2q4 — ap2d4 +  2abqp4 — 6 aq2d2b2 — Aab3q2a — 2 abq4a 
—2 ab4qa — Aabq3d? — 2abqd4 — Aab3qd? — Aab2q3a — Aap2q2d? — Aap2b2d?)u10 
—p4c4a4(—2ap3d3baq — 3a2q2d4b2 +  2 apd4abq2 +  q2p2b2a2a?
+Aap2b2q3ad +  Aap2b3q2ad — 2a2pbqad4 +  2apd4ab2q +  2 ap2d?b2aq — 2apb2q2d?a 
—2 a2q2bad4 — 2qp2ba2d4 — p2b2a2d2q2 +  2 a2pq3d3b +  2 a2pb3d3q +  2 a2p3d3bq 
—2a2pd4bq2 — 2a2p2d3b2q — 2 a2p2d3bq2 — 2a2pd4b2q +  2apbqa?d4 +  2 ap2bqa?d3
+2apb2qa?d? — 2a2pbd?q4 — Aa2pb2d?q3 — Aa2p2b2q3d — 2 a2p2bq4d 
—Aa2qb4ad2 — 8 a2q2b3ad? — Aa2q2pd?b3 — 2 a2qpd?b4 — 2a2pb2qad3
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—2 a2qp2b4d — Aa2q2p2b3d — 2 a2q2b3ap2 — 2a2q2bp3d2 +  2 a2qbp4d2 +  2 a2q2b2p3d 
—2a2qb2p3d2 — 2 a2qb2p4d — 2 a2q2bp4d +  2 a2qb3p3d — 2a2qb3p2d2 — 2a2qb4ap2 
—8 a2b2q3ad2 — 4 a2bq4ad2 4- 2 a2bq3p3d — 2 a2bq3p2d2 — 3 a2p2d2b2q2 
—2 a2b2q3ap2 4- 2 apbq2a2d3 4- 4 apb2d2aq3 4- 2 otq2pb3a2d 4- 2 ap2bq3a2d 
—2a. 2bq4ap2 — 2 a2bq3d4 — 2 a2b3qd4 — 2 a2p2b2d4 — 2 q2p2a2d4 4- 2 ap2d3baq2 
+2ap2d4baq — 2 qp2ba2ad3 — 2apq3d3ba — 2a2pbq2ad3 — 2q2p2b2a2ad 
—2apb3d3aq — 2a2q4p2d2 +  2a2bq3p4 4- 3a2b2q2pi — 2a2bAp2d2 +  2a2qb3pA 
—2a 2q3b3a2 — a2q4b2a2 — a2q2bAa2 +  2ap2bd?aq3 +  2apbq4a2d — 2a2qb2ap2d2 
—2 a2p2bq3ad +  2ap2bqAad — 2a2pb2q3ad +  2apbd2aqA +  2apb2q3a2d 
+2 apbq3a2d? — 2a2pbqAad — 2a2pbq3ad2 +  2 aqp2bAad +  2 aqp2d2b3a 
+2aqp2b3a2d — 2a2qp2b3ad — 2a2qpb4ad +  4 aq2pd2b3a +  2 aqpbAa2d 4- 2 aqpd2bAa 
4-2 aqpb3a2d2 — 2a2q2pb3ad — 2 a2qpb3ad2 — 2a2q2pb2ad? +  2 aq2pb2a2d2 
—2aq2p2ba2d2 4- 2aqb2pAad 4- 4aq2p2b2ad2 — 2aqp2b2a2d? 4- 2aq2p2b2a2d 
—2aq2b2ap3d 4- 2aq2bp4ad +  2aq2bp3d2a 4- 2aqbp4d2a +  2aqb2p3dPa 
—2a2q2bap2d2 — 2aqb3ap3d — 2abq3ap3d — a2q4d4 — a2b4d4 4- 2a2pb2q2d3 
—2a2qb2ad4)u3 — p4c4a4{—Aaq2b3a2p3d 4- 2q2p2b2a2a2d? — 4a2q3pb3a2d 
4-2aq3pb2a3d2 4- 2aq4pb2a3d — 2a2pq4d4b — 2a2p2q4d3b 4- 4a2p3b2q2d3 
—Aa2pb3q2d4 — 4a2pb2q3d4 4- 2a2p3q3d3b — 4a2b3q2ad4 — 4a2b2q3ad4 
—2a2p2b2q2d4 — 2a2pb4d4q — 2a2p2b4d3q 4- 2a2p3b3d3q — 2a2p2b3q2d3 
—2 a2p2b3qd4 — 2a2p2bq3d4 — 2a2p3d4b2q — 2a2p3d4bq2 — 2a2p4d3b2q 
—2a2p4d3bq2 — 2 a2p2b2q3d3 — 2 a2bq4ad4 — 2 a2b4qad4 +  2p2b2q3a2d3 
4-2p2b2q2a3d3 4- 2p2b3q2a2d3 — Qap2b2q3a2d? 4- a2b2q2p4a2 4- 2p3b2q2a2d3 
—4 a2q3b3a2d2 — 2 a2q2b4a2cP — 2 a2q4b2a2d2 —2a2q2p3d?b3 — \aqp2b4a2d2 
-\-2a2qb3p4d2 — 2a2qp3d2b4 — 2a2qb4p4d — 4a2q2b3p4d 4- 2a2q2b3ap4 
—a2q2b4a2p2 +  2ap2b2a2dq4 4- 2abp3d?aq4 4- 4a2b2q3ap3d '+ 2abq4p4ad 
4-2 abp4d?aq3 —4 aq3b2a2p3d +  4 apb3q3a2d2 — 4 a2 p2 b3 q3 ad +  4ap2b3q3a2d 
—2a2pb2q4ad2 +  2apb2q4a2d2 — 2ap2bq4a2d2 4- 4aq3b2p4ad — 4a2pb3q3ad2 
4-4aq2b3p4ad +  2aq2p2b3a3d 4- 2a2bq3p4d2 4- 2a2b2q3ap4 — 2a2bq4p4d 
—2a2b2p3d2q3 — 4a2b2q3p4d +  4a2p4d2b2q2 — 2a2q3b3a2p2 4- 2a2b2q2p4ad 
—a2p2q4d4 +  2aq2pb4a2d? +  2 aq3p2b2a3d — 2a2q2p2b4ad — 2a2q4p2b2ad 
4-2aqp3d2b4a — 2a2qb4ap2d2 +  4a2q2b3ap3d 4- 4a2q2b2p3ad2 — 6aq2b2p3a2d2 
+2aq2b2p4ad2 — 2aq2b2a2p4d — 2a2 q2pb4ad2 +  4aq3pb3a3d — 6aq2p2b3a2d2 
+2aqb4p4ad +  2aq2p2b4a2d 4- 2aqp4d2b3a +  2aq2pb3a3d2 — 2a2q3pb2a2d2 
4-2 aq2pb4a3d — 2a2q2pb3a2d2 — 2 ap3b3d3aq — 2 à2pb3qad4 — 2a2pbq3ad4 
—2a2p2b3qad3 — 2a2p2bq3ad3 4- 2apb2q2a2d4 4- 2apq4d4ab 4- 2ap2b4d3aq 
4-2apbq3a2d4 4- 2ap2b2q2ad4 4- 2ap2b3qa2d3 4- 2ap2bq3a2d3 +  2apb3qa2d4 
+2apb3q2a2d3 4- 2apb2q3a2d3 4- 2ap2b3d4aq 4- 2apb4d4aq +  2ap4d4baq 
+2ap3d4ab2q 4- 2ap3d4abq2 4- 2ap4d3baq2 4- 4apb3q2ad4 +  4apb2q3ad4



—6ap3b2q2ad3 +  2 ap2q3d4ba +  2 ap2q4d3ba — 2ap2bq2a2d4 +  2 apbq4a2d3 
—2ap2b2a2d3q2 — 2a2pb4qad3 +  2 ap4d3b2aq '+ 2apb4qa2d3 — 2a2pb2q2ad4 
—2a2pb3ad3q2 — 2 a2pb2ad3q3 — 2 ap3q3d3ba — 2ap2b2qa2d‘4 — 2 a2pbq4ad3 
—2a2q2pb4a2d — 2a2pb2q4a2d +  2 q2p3b3a2d? +  2q3p3b2a2d2 — p2b2a2a2q4 
—2 a2bq4ap2d2 +  2 q2p3b2a3d2 +  2 q2p2b3a3d2 +  2 q3p2b2a3d? — 2a2bp3d2q4 
—2 aq2p3b2a3d — 2q2p2b3a2a2d +  2 q2p3b2a2a2d — 2q3p2b2ct2a2d 
—a2p2b4d4) u6 +  bc4dp4qa4(2ap2b3a2d3 — 8aqp4b2ad2 — 8 aqp4b2a2d 
+2 a2q3pbad3 — 8 aq2p4bad2 — 2aq3p4bad — Aaq3p3dbd2 +  a2qp2b3a2d 
+Aa2qp2b2a2d2 +  2a2qpd3b2a2 +  8q2p3d2ba3 +  Aa2q2p2cPba2 — 6aq2p3dba3 
+2 a2q2pd3ba2 +  qp2d3ba4 — 2 aqpd3b2a3 — 2aq2pd3ba3 +  Aa2q2p3dba2 
+q3p2dba‘4 +  qp2db3a4 +  2qp3db3a3 +  qp4d3ba2 +  2 q3p3d2ba2 +  2 qp2b3a3d2 
—2aqp4d?ba2 +  Aa2q3p2bad2 — 8aq2p3d3ba +  8 a2q2p3b2ad +  a2q3d3ba2 
—2 aqp4b3a2 — 2aqp4b2a3 +  a2qd3b3a2 +  a2qp4b3d +  2 a2qp4b3a 
+6a2qp4b2à9 +  2 a2qp3b3d2 +  2a2q3p3bd2 +  2a2q2p2b2d3 +  2 a2qp4b2a2 
+6a?q2p4d2b +  6a2qp3b2d3 +  6a2q2p3d3b +  2 a2q2d3b2a2 +  a2q3p4bd 
—2 ap4d3b2a +  2 q2p2d2ba4 +  2 q3p2d2ba3 +  qp4db3a2 +  a2q3p2dba2 +  2 qp3d2ba4 
+2a2q3pd2ba2 +  2 q2p2db2a4 — Aaq2p2d3b2a — 2 ap3b3d3a +  2 a2p3q3d3 
+2qp2d2b2a4 — 2 ap4d2b3a +  2 a2q3p4d2 +  2p2b2a2d3q2 +  2 a2p3b3d3 
+2 a2b3p4d2 — 2 aq3p4ba2 +  2 a2q3p4ba +  2q2p3d3ba2 — 2 aq2p4ba3 +  2 q2p2d3ba3 
—12aq2p3d2ba2 +  Aa2q2p3d2ba +  2q2p4dba3 +  2q2p3dba4 +  2q3p3dba3 
+2 a2qp2d3b2a — 2 aqp3d2ba3 — 6aqp2d2b2a3 +  Aa2q3p3dba.— 2aq3p2d3ba 
—8aq2p4dba2 — 6aq2p2d2ba3 +  q3p4dba2 — 6 aqp3b3a2d — 2aqpb3a2d3 
—6 aq3p2ba2d2 — 2aq2p2ba2d3 — Aaq2pb2a2d3 — 2 aqpb3a3d2 — \aq2pb2a3d? 
+Aa2qp3b3ad +  2 a2q2p2b2a2d — Aocq2p4b2ad — 12 aq2p3b2a2d — 2 aq3pba2d3 
—12 aq2p2b2a2d2 — Y2aqp3b2a2d2 — 2cxqp2b2a2d3 +  2a2qp4b2da 
+2 qp3b2a2d3 +  2qp3b3a2d2 +  Aq2p2b2a3d? +  2qp2b2a3d3 +  8 qp3b2a3d2 
+2 a2q2p4ba2 +  p2b3qa2d3 + p 2bq3a2d3 +  Aq2p3b2a3d — 2 aqp4b3ad — 6 aqp3b2a3d 
-\-Aa2q2pa2b2d2 +  2a2q2p2bad3 — Qaqp2b3a2d? — 2 aq3pd2ba3 — Aaqp4d3ba 
+2 qp3db2a4 +  Aq2b2p3a2d2 +  2 q2b2a2p4d +  2a2qpa2b3d2 +  Aa2qp3b2ad2 
+2 a2qpb3ad3 +  Aa2q2pb2ad3 +  Aa2qp3b2a2d +  8 a2q2p2d2b2a — 2aqp4dba3 
—8aqp3b2ad3 +  2 a2q2p4dba — 8ocq2p3d2b2a +  2 qp3d3ba3 — 2aqp3d3ba2 
+2qp4d2ba3 — Aocqp3d2b3a — 2 aqp2d3b3a +  Aa2qp2d2b3a +  2 q2p4d2ba2 
+2qp4cPb2a2 +  2qp4db2a3 — 2aqp2d3ba3 — 6aq3p3dba2 — Aaq2b2a2p4 — 2 ap3q3d3 
—2ap4d2aq3 +  2a2b2q2p4d +  Aa2q2b2p3d? +  a2p2b3qd3 +  a2p2bq3d3 
+Aa2b2q2p4a +  2 ap2q3a2d3 — 2 ap4d3aq2)u4 — p3c4a4b2a2d2q2(2qp2a2d 
—2aq2pd2 — 2 ap2bad — 2apbd?a — 2aq2ad2 — 2 aq2ap2 +  2 qp2d2a +  d2q2ct2 
+p2d2a2 +  2 qpa2d2 +  2 q2pd2a +  2q2pa2d +  2p2q2ad — Aaqpbd2 +  2 qp2ba2
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—2 apb2d? — 2ap2b2d — 4aqp2bd — 2 ab2ad2 — 2aqp2ad — 2aqpd2a — 2 ab2ap2 
+2p2b2ad +  2pb2d2a +  2p2bd2a +  2pba2d2 +  2pb2a2d +  2p2ba2d — Aaq2pad 
+ a2p2b2 — Aap2baq +  2a2q2pd +  Aqbp2ad +  Apbad2q +  2a2pb2d A- q2p2a2 
+Aa2qpbd +  q2p2a2 — 2aq2p2d +  2 qp2ba2 — 8aqpbad +  Aqpdba2 — Aapb2ad 
+2a2qbd2 — Aaqbd2a +  p2b2a2 + d 2b2a2)u2.

F(n,wi) = Sddld (A.2)

where

and

S d d ln

Sddid =  ^acp{dacp +  betabkqe aT2)J ¡̂3bkq(bapq — bu2a — uj2aq 

—aui2p)e~aTl~2aT2 +  cpa[(—pba — paq — adb — abq 

—adq)ui2 +  pabqd] +  sin((ri +  T2 )ui)ca2cop2(—0J2 +  db +  dq) 

— cos((ri +  T2 )oS)ca2u2p2(d +  b +  q) ,—ari—ar2}

=  w{ ari —dr2 w8a4c3p3d +  w6da4c3p3(p2 +  d2 +  bq +  b2 +  q2) +  w4da3c3p3
•h  _  ; ■ x

x [d?ap2 +  b2aqa +  q2aba 4- pdabq — dapbq +  bp2qa +  bqd2a +  (Paq2 
-\-ap2b2 +  ap2q2 +  <Pab2] — w2da3c3p3[—b2qd2aa — bqcPapa 
—pq2daba — bq2d2aa — b2p2qaa — bp2q2aa — bp2qaad +  d2p2abq 
+p2a2bqd +  d2pb2aq +  d2pq2ab — 2bd2ap2q — b2p2qad 
+b2pa2qd +  p2b2daq +  p2q2dab +  q2pa2bd +  d2pa2bq — b2dapqa 
—bp2q2ad — b2qd2ap — bq2d2ap — b2d2ap2 — p2q2d2a]
+a2bd3a3c3p5q(b +  q) +  cos( ( t i  +  T2 )uS)\w&a4(?phd +  w4c3dp4a4{d2p 
+2bpq +  b2p +  q2p +  bqa) — w2c3dp4a3(—apb2qa — d2bqaa — apdabq 
—apbq2a — 2bqd2ap — acPpb2 — aq2d2p +  pda2bq) +  a2bd3a3c3p5q(b +  q)] 
+  sin((ri +  T2 )ui)[—a4c3p4dw7 — a4c3p4d(d2 +  2 bq +  b2 +  q2)ui5 — a4c3p4d 
x(b2qa +  2 d2bq +  b2d2 — pbqa +  d2q2 +  q2ba)w3 +  abc3d2p4qa3(—dba

+  e—ar\—2aT2 w8a3c2p2betabkq—apb +  bap +  dap — dqa — paq +  pqa)\
+w6bqa3c2p2 ¡3k(p2 +  3d2 +  bq +  b2 +  q2) +  wAbqa2c2p2 (3k[3d2ap2 +  ab2qa 
+aq2ba +  2pdabq — 2 dapbq +  bp2qa +  3d2 bqa +  3 aq2d? +  ap2b2 +  ap2q‘
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+3 ab2d2] — w2bqa2c2p2ßk[—3ad2b2qa — 3 bqcßapa — 3 ad?bq2a — b2p2qaa 
—bp2q2aa -  2bp2qaad +  3d?p2abq +  2p2a2bqd +  3d2pb2aq +  3d2pq2ab 
+2pdb2a2q +  2p2b2daq +  2p2q2dab +  2pdq2a2b +  3pd2a2bq -  2apdb2qa 
—2apdbq2a — 6bd2ap2q — 2b2p2qad — 2bp2q2ad — 3b2qd2ap — 3bq2d2ap 
—3 b2cßap2 — 3p2q2d2a] +  3a2b2p4ßkq2d2a2c2{b +  q) +  sin((ri +  t 2) oj)

X [—a3c2p3 ßbkqw7 — w5bc2kp3a3ßq(q2 +  2 bq+,b2 — pd +  2d?) 
—w3a3c2p3ßbkq(—pdb2 +  b2aq +  2 b2d2 — bpaq — 2bpqd +  baq2 +  Ad?bq 
—bqda — pdq2 +  2 d2q2) +  wab2c2dkp3q2a2ß (—2bda — bap +  2 bpa +  2pda 
—2daq — paq +  2paq)\+cos((Ti +  T2)uj)[w6bc2a3p3ßkq(p +  d) 
+w4a3c2p3ßbkq(pb2 + db2 + 2 bpq + baq + 2 dbq + pq2 + 2 d?p + dq2) 
—w2bc2kp3qa2ß (—2q2ad2p — q2abad — q2abpa — qadb2a 
—2qabd?a — qapdab — Adßbqap — qapb2a +  2qpba2d — 2 d2pb2a)

+2 a2b2pAßkq2d2a2c2(b +q)\ + e~ aTl~3aT2̂ 3b2q2ß2k2cpa2dw6 
+w4b2q2ß2k2cpa[3q2ad +  pbqa +  3p2ad — bqap +  3 bqad +  3b2 ad] 
—w2b2q2ß2k2cpa[3bq2apd +  3 b2qapd +  3 qpbcßd +  3p2bqad — bp2qaa 
+b2pa2q +  q2pa2b +  p2b2qa +  p2q2ba +  p2a2bq — 3b2qadp — 3bq2adp 
—3b2dap2 — 6 bdap2q — b2p2qa — bp2q2a — 3p2q2da — 3qadb2a — qapb2a 
—q2abpa — 3 qapdab — 3 q2abad] +  3a2b3dacp3q3ß2k2(b +  q)
+ sin((ri + T2)u))[—w5b2ca2p2ß2k2q2(—p +  d) + w3b2ck2p2q2a2ß2(b2p 
—b2d + 2 bpq — 2 bqd + baq + pq2 — dq2) + wab3ck2p2q3aß2(pba — bda + pqa 
+pad — qad)\ +  cos( ( t i +  T2)uj)[w%2ck2p2q2a2ß2 +  wib2ca2p2ß2k2q2 
X {pd + q2 + b2 + 2bq) — w2b2ck2p2q2aß2{—pq2ad — 2pbqadß- qpba2 
—pb2ad — q2aba — qabad — qab2a) + a2b3dacp3q3ß2k2{b + q)]
+ e -ori-4ar2 |tu6ß3b3k3q3a +  wAß3b3k3q3a{bq -f  b2 -f  q2 A- p2) — w2b3k3q3ß3 
X {—qbaap — qb2ap — q2bap +  qbp2a — 2qbp2a — qab2a — q2p2a 
—q2aba — b2p2a +  q2bap +  qb2ap +  qpba2) +  a2b4p2ß3k3q4{b +  q)j j.

(A.3)
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Sddiiur, ac) =  Fl =  1.6a;I -  3.305a;8 -  a;6(5.285 +  7.93 x 10 -15a)

—a;4(157.6 -  365.2a) +  a;2(1890a2 +  2370a -  1.070) 
-cos(0.1a;(3  +  10n)) l.SöOlO^6 +  a;4(216.2 +  2.642a)

-a ;2(624.5a2 -  216.4a -  0.02) +  5a2 

+  sin(0.1a;(3 +  10ti)) [6.610a;7 +  a;5(105.2 +  1.586 x 10"14a) 

+a;3(5.170a -  9.570) +  a;(0.4330a -  2502a2) -  118.4a2}

/  42.32a;2 cos(0.1a;(3 +  10ri)) +  a;sin(0.1a;(3 +  10ri)) 

x [10.57a;2 -  0.08459] -  5.287a;4 +  64.94a;2 -  500a].

(A.4)
Sdd2 {ur, ac) =  F2 =  3.2a;{ -  21.15a;8 +  21.15a;7sm((0.2(3 +  10tì))o;)

-a ;6 [2I .6 cos((0.2(3 +  10ri))a;) +  1.269 x 10-14a +  84.56]

+  sin((0.2(3 +  10ri))a;)a;5 [84.12 +  1.269 x 10"14a]

-a ;4 cos((0.2(3 +  10ri))a;)[86.5 +  10.57a] +  63.06 +  146.1a] 

+  sin((0.2(3 +  10ri))a;)a;3 [l0.34a — 1.914]

+a;2[cos((0.2(3 +  10n))a;)[62.45a2 -  21.64a -  0.002] 

+189.0a2 +  237a +  I.07]

+  sin((0.2(3 +  10ri))a;)a;[— 125.1a2 +  0.02165a]

—0.1250 cos((0.2(3 +  10ri))a;)a2 — 2.960a2}

/|  -  2.115a;4 +  2.114a;3 sin((0.2(3 +  10n))a;)

+a;2 [4.232 cos((0.2(3 +  10tì))w) +  6.49ö]

—0.0423a; sin( (0.2(3 +  10ri))a;) — 12.50a}.

(A.5)
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