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"Abstract

We propose a mathematical model for HIV-1 infection with two time delays, one
for the average latent period of cell infection and the other for the average time
needed for the virus production after a virion enters a cell. The model examines
a 'Virai—therapy for controlling infections through recombining HIV-1 virus with a
genetically modified virus. When only the intracellular delay is enrolled into model
'(1.13), the basic reproduction numbers Ry and Rd are identified and their threshold
properties are discussed. When Ry < 1, the infection-free equilibrium Ej is globally
asymptotically stable. When Rq > 1, Ep becomes unstable and there occurs the
Sihgl'é—‘infection equilibrium E,. If By > 1 and Ry < 1, E; is asymptotically stable,
while for Ry > 1, E; loses its stability to the double-infection equilibrium. For the
double-infection equilibrium E,;, we show how to determine its stability and existence
of Hopf bifurcation. Some simulations are presented to demonstrate the theoretical
results.

Further investigation is carried over by introducing the second time lag into model
(2.1). We have identified the new basic reproduction numbers Ry and Ry, and proved
that for Ry < 1 the infection-free equilibrium E, is globally asymptotically stable. If
Ry > 1 and Ry < 1, the single-infection equilibrium £, is asymptotically stable. For
the double-infection equilibrium Ej, it has been found that there exist both Hopf and
double Hopf bifurcations. These theoretical predictions\are verified by using some
numerical examples. Evidences indicate that the viral-therapx of recombining HIV-1
virus with a genetically modified virus may be effective in reducing the HIV-1 load, |
and larger delays may be able to help eradicate the virus.
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Chapter 1
Introduction

11 Overview

Recently, time-delay differential equation (DDE) has become an important tool in
modeling real-life’ systems, especial]y in population dynamics. A simple but well-
known delay dlﬁerentlal equatlon in popula.tlon dynamlcs is the evolutlon equation,
given by ‘ ' '

L0 =REO-:-7% )

representing a system named after Belgian mathematician P.F. Verhulst [15] in the
19th century. Hutchinson’s equation is another well-known délay loglstlc equatlon

w1th a discrete delay, described by the following equation: v

which is also referred as Wright’s equation. One can show [49] that if y7 < 37/24
and z(0) > 0, () = K as ¢t — co. Then system (1.2) has a nonconstant perlodlc
SO].U.tIOIl osc1llat1ng around z=K. ” - ;

For 1mmune response model (predator—prey model), the Well known txme—delay differ-
entlal equatlon is the Lotka—Volterra model. A mod1ﬁed form of the Lotka—Volterra



model [2] is given by:

. (%Q = rz(t) — zx(t)z(t — 1) — az(t)y(t) — H. ~ (13)
D= —cy(t) + Ba(t)y(t) - H |
where z(t) and y(t) represent the rates of change for prey population and predator
population, respectively. 7 is the intrinsic growth rate of the prey and c is the death
rate for the predator without prey. « measures the rate of consumption of prey
by the predator and 8 measures the conversion of prey consumed into the predator
reproduction rate. K is the carrying capacity. The constants f, and f, denote the
rates of harvestmg for the populat1ons z and y, respectively. All the parameters are
assumed to take positive values. Model (1.3) has been analyzed by Martin and Ruan

[2], who showed that the time delay could induce instability, ‘oscillations via Hopf
bifurcation, and sw1tch1ng stability.

A more comphcated model of immune response is HIV—l infection model [21], de-
scribed by

£ = s —dz(t) — ku(t)z(t),

. ke~To(t — m)a(t - 7) ~ dy(t) — py(®)=(),

W) = Noy(t) - po(t),
O = oylt)at) ~bet), .

| ‘(1.4)‘

l

where x(t), y(t), v(t) and z(t) denote the concentrations of uninfected cells, infected
cells, virus and concentration of cytotoxic T lymphocytes, respectively. The param-
eter s is the rate at which new target cells are generated. d is the death rate of the
susceptible cells and k is the infection rate. The death rate of infected cells is d, and
the”'production rate of new virus particles is N as the lysis of infected cells occurs.
- Thus, on’ average, virus is instantaneously produced at rate N 5y(t) ‘Also, virus par-
_t1cles are cleared from the system at rate u per virion. p represents the strength of
the lyt1c component and b is the death rate for cytotoxm T lymphocytes Lastly, 7
denotes the lag between the time when the virus contacts a target cell and the time
when the cell becomes actively infected. For the above model, the stability condltlons
for uninfected steady state and infected steady state have been found. In addition,
increasing either of the two delays will help to control HIV-1 infection. Details are
shown in [21].



- Inrecent décades,:fnany researchers made contributions to the theory and applications
of delay differential equations. The book of Bellman and Cooke [34] describes the
basic theory for the DDEs, while Hale’s work [23] focuses on the theory of DDEs with
bounded delay. The book of Stépdn [19] discusses the stability of the retarded DDEs.
The theory and applicatibns of DDEs in population models can be found in the book
of Yang [49]. This dissertation also studies Hopf Bifurcation in DDEs. The theory
of Hopf bifurcation in DDEs can be found in the book of Hassard et al [4]. There
are many other researchers who developed theories and methodologies for studying
DDEs.

To solve DDEs, computation is vital. There are several software packages for numer-
ically solving delay differential equations and analyzing bifurcations of DDEs. dde23
developed by Shampine and Thompson in Matlab is a powerful tool for simulatihg
retarded differential equations with fixed discrete delays. This method is an exten-
sion of the Matlab ODE solver ode23, so called the method of steps. The idea can be
described by using the folloWing simple example:

with history St)=1fort< 0. For 0 < t < 1, the above equation can be reduced to
~ an initial value problem for an ODE with y(t—1) = S(t—1) and y(0) = 1. For the next -
interval 1 < ¢ < 2, analytical solution is treated in the same way, but the numerical
~ solution is more complicated. For numerically solving ODEs, ode23 combines Runge-
Kutta methods with cubic Hermite interpolation. Runge—Kutta,\methods are more
attraétive since they are easy to start. With the given initial value, Yo = y(a) at
To = a, a distance h,, = Zn41 — &, is taken so that y, = y(z,) and yYn+1 = Y(Tnt1)-
To obtain a more accurate approximation, the step size hn‘ﬁeeds be chosen as small
as necessary. Diffgrent from Runge-Kutta methods which only work at mesh points,
cubic Hermite interpolation provides an accurate numerical solution between mesh
points. Thus, with such a method, we can obtain y(t) everywhere in the interval.
In this dissertation, new DDE models are developed for the HIV-1 infection. The
models are used to study stability of equilibria and Hopf bifurcation.



1.2 Stability of equilibria and Lyapunov functions

The study of equilibria of nonlinear systems plays an important role in HIV-1 model.
In order to be meamngful physically, an equilibrium pomt must satisfy a certain
stablhty cr1ter10n We begin the discussion on delay dlfferentlal equat1ons with con-
tinuous 1n1t1a1 data. For a given constant r > 0, let C C([-r,0], R") and, if

[—7‘ oz) = R" a>0letz, € C,te€0a),be deﬁned by z:(0) = z(t + 9),
0 € [-7,0]. For a given function f: C - R", a DDE can be defined as

b= f(z) e

If o € C is given, then a solution z(t,) of (1.6) with initial value ¢ at ¢*.= 0
is a continuous function defined on an interval [—r,a), o > 0, such thet zo(6) =
z(6, ) = p(8) for 6 € [—r,0], z(¢,) has a continuous derivative on (0, ), a right
hand derivative at ¢ = 0 and satisfies (1.6) for ¢t € [0, @).

Definition 1.1 Suppose that 0 is an equilibriuni point of (1.6); that is, a zero of f.
The point 0 is said to be stable if, for any € > 0, there exists a § > 0 such that for any
¢ € C with Igol < 8, we have |z(t, )| < € for t > —r. The point 0 is asymptotically
stable if it is stable and there is b > 0 such that |p| < b implies that |z(t,p)| — 0 as
t.— oo. The point 0 is said to be a local attractor if there is a neighborhood U of 0
such that . | | - ~
im0 dist(z(2,U),0) =0

that is, 0 attracts elements in U uniformly.

For hnear retarded equation (1.6), f C — R" being a continuous linear functional,
 there is a solution of the form ce* for some nonzero n-vector c if and only if \ satisfies
the following characteristic equation ‘

S detD(N) =AM —f(eM)=0, . (1.7)
The A s C’aﬂe;d_the eigenvelue of the linearized equatioxn'.. Eqﬁation (‘1.7) may have
infinitely many solutions, but there can be only a finite number in any vertical strip

in the complex plane. This is a consequence of the analyticity of (1.7) in A and the
fact that ReA — oo if |A| = oo.



‘The eigenvalues play an important role in studying stability of equilibria. If there
is an eigenvalue with positive real part, then the origin is unstable. For asymptotic
stability, it-is necessary and sufficient to have ReX < 0 for all eigenvalues.

The notion of global stability is usually attributed to Lyapunov. Lyapunov stability
is concerned with the trajectories of a system when the initial state is near an equi-
_ livbrium'kpoint. Two methods related to stability were developed in the early 1950’s
by Razumikhin (1956) and Krasovskii (1956). ‘

Theorem 1.1 (Razumikhin, 1956) Suppose that u,v,w : [0,00) — [0, 00) are con-
tinuous nondecreasing functions, u(s), v(s) are positive for s > 0, u(0) = v(0) =0
and v strictly increasing. If there is a continuous function V' : R® — R such that
u(lz]) < V(z) < v(|z]), z € R, and V(9(0)) < w(p(0)]), if V(¢(8)) < V(¢(0)),
- 6 € [-r,0], then the point 0 is stable. In addition, if there is a continuous nonde-
creasing function p(s) > s for s > 0 such that

V() Sw(pO)) i V) V), 0 e[-r0]

then 0 is asymptotically stable.
Theorem 1.2 (Kra;sovskii; 1956) Sufjpose that u, v, w : [0,00) — [0, 00) are continu-
ous nonnegative nondecreasing functions, u(s), v(s) positive for s > 0, u(0) = v(0) =

0. If there is a. continuous function V :C — R such that -~

u(le O < V(p) < ool weC, v
V() = limsup, oo 2V (@10 0)) — V()] < —w(l(0))

then 0 is stable. If, in addition, w(s) > 0 for s > 0, then 0 is asymptotically stable.

Theorem 1.3 (Hale, 1963) Let V be a continuous scalar function on C with V(i) <
Oforall p € C. ¥ U, =peC:V(p)<a, Wy=p€eU,:V(p)=0and M is the
maximal invariant set in W,, then, for any ¢ € U, for which v*(y) is bounded, we
have w(y) € M. (This theorem is a natural generalization of the classical LaSalle
invariance prin‘ciple for ODE.) (see [33]) |



1.3 Hopf bifurcation theorem

Hopf bifurcation theorem was developed in 1942 by E. Hopf ([33]) and actingly re-
searched in the following several decades. The implication of the theorem is extraor-
dinary, since it provides a powerful analytical tool for exploring properties of periodic
solutions. Also, it has been found that Hopf bifrucation theorem can be formulated
for both ODEs and DDEs, where the latter is mainly studied in this destruction.

vansider the follbWiIig delay differential equation

= Fla,z;) ' : (1.8)
with F: R x C — R", F of class C?, F(a,0) =0 Va € R and C = C([-r,0], R")
the space of continuous functions from [—r, 0] into R". z; is the function defined from
[—r,0] into R™ by z:(8) = z(t +6), r > 0.

Definition 1.2 (c,0) € R x C is called Hopf bifurcation point of equation (1.8) if
every neighborhood of this point in R x C includes a point (o, ¢), with ¢ # 0 such
that p is the 1n1t1a1 value of a perlodlc solutlon Wlth period near a fixed positive
number, of equatlon (1.8) for the value of a.

‘We assume that

(Ho) F is of class C¥, for k > 2, F(a,0) = 0 for each a, and the map (o, ) —
D’“soF(oz, ¢) sends bounded sets into bounded sets. \

\. L

(H 1) The char@cteristic equation
det Ao, ) 1= Ald — D¢E(q,0)¢é§->fd . (9
éf the linearized ’eqblylatio.n of (1.8) around the éQuilibrium v =0 -
%Q=D¢F(a,0)vt o (L10)

ino=o0 20 has a s1mple pair of imaginary roots Ao = )\(ao) &4, all the other
roots A sat1sfy A 74 m)\o for m= 0,2,3,4,. )

“(H,) implies that the root )\0 lies on a branch of roots )\ (@) of the equatlon (1.9),
of class C*-1. | - '



(H,) For A(a) being the branch of roots passing through Ao, we have - -

2ReA(@)|aman 7 0 (1.11)

Hopf Bifurcation Theorem. Under the assumptions (Ho), (H:) and (H,), there
exist a constants R, § > 0, n > 0, functions a(c), w(c) and a periodic function with
period w(c), u*(c) such that (i) all of these functions are of class C* with respect to c,
for ¢ € [0, R] a(0) = ag, w(0) = wo, u*(0) = 0; (ii) u*(c) is a per1odlc solution of (1.8)
for the parameter values a(c) and period w(e); (iii) For |a— apl <6 and |w— 27r| <,
any w—periodic solution p, with ||p|| < R, of (1.8) for the parameter value . a, there
exists c € [0, R] such & = a(c), w = w(c) and p is, up to a phase shlft, equal to u*(c ).

1.4 :5 About the Thesis

This thesis is focused on the study of a HIV-1 model. - Particular attentlon is glven
to stablhty of equilibrium solutlons and blfurcatlons Recently reported results show
that new drugs and new theraples can help to eradlcate the HIV-1 virus. An 1ntent10n
to generallze the results motlvated thls research. It 1s expected that the models
developed and the results obtained in this dissertation could enhance the research in

™~

modelling HIV-1 infection in host.

1.4.1 Higher dlmensmnal HIV-l therapy model W1th tlme
~delays

In recent years, mathematical modelling plays an important role in understanding
HIV-1 in host. During the long history of research in HIV-1 problem, people usually
focused on lower dimensional systems, which have less critical points, less coefficients
and are easier for analysis. However, in order to understand well the HIV-1 infection,
studying higher dimensional systems is necessary.

Moreover, most existing mathematical models for HIV-1 infection are described by
ordinary differentiatl equations (ODEs). However, in reality, we need consider the time
effects during the infection. Therefore, analyzing delayed HIV-1 models can provide
more valuable insight into HIV-1 pathogenesis. Simpler delayed HIV-1 systems are



usually 2 or 3'dimension. In this dissertation, we will study a 5-dimensional HIV-1
model with time delays. | ‘ -

1.4.2 HIV—1 therapy model (ODE) of ﬁghtlng a virus with

another virus

By years éf study, researchers have obtained much knowledge about the mechanism
of the interactions of the components within a host and have thereby enhanced the
progress in developing new drugs and designing optimal combination of existing ther-
apies. Current therapies for AIDS employ inhibitors of the enzymes required for
replication of HIV-1 to reduce the load. However, an alternative approaches, offered
by genetic engineering, is to use recombinant virus capable of controlling infections of
HIV [12, 16]. This method has been used to modify rhabdoviruses, which makes them
capable of killing cells previously infected by HIV-1. The engineered virus codifies
the coreceptor pair CD4 and CXCR4 of the host cell membrane and bind specifi-
cally to the protein complex gp120/41 of HIV-1 expressed on the surface of infected
cells, where it causes a rapid cytopathic infection. This destruction of infected cells
decreased by about 1000-fold HIV-1 load [32] In the present study, evidences show
that this treatment could be effective in reducing individual HIV-1 load.

To understand this approach of fighting a virus with a genetically modified virus,
Revialla and Garcia-Ramos [42] proposed a mathematical model, which has been
subjected to intensive studies in [46]. A standard and classic Hlﬁerentlal equation
model for HIV infection can be described by the following system:

T = )\—dII?_BxU’
y = Prv—ay, . (112)

v = ky—pv,

where the dot indicates differentiation with respect to time ¢, z(t), y(t) and v(t) are
the densities of .virus-free host cells, infected cells and a pathogen virus, respectively,
at time ¢. The production rate and death rate for the healthy cells are A and d. 8 is
the constant rate at which a T-cell is contacted by the virus. It i is also assumed that
once cells are 1nfected they may die at rate a due to the action of either the virus



X:normalcell  v:pathogenvirus
- Y: single-infected cell. . racombinant virus

Z: double-infected cell
- Figure 1.1: Model for a double viral infection.

or the immune system, and each produces the pathogens at a rate k during their life
which on average has length 1/a. ’

n [46, 42], a second virus is added into the model (1.12), which then becomes

T = A—dx— Bxv,

§ = Bzv—ay—owy,

2 = awy-—bz, . \ | (1.13)
v = ky-—pv,
W = cz—quw,

where w(t) and z(t) are the recombinant (genetically modified) virus and double-
infected cells. After second virus enrolled, once the recombinant infects cells previ-
ously infected by the pathogens, they can be turned into double-infected cells at a
rate awy, where recombinants are removed at a rate gw. The double infected cells
die at a rate bz, and release recombinants at rate cz (see Figure 1.1).

The viral-therapy may have several benefits over present conventional treatment. It
- is expected to have no toxicity, no negative side effects, and no evolution of resistance.
Another advantage is the simplicity of treatment. These advantages could make this
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viral-therapy an alternative to extend the survival of AIDS patients ([42]).

1.4.3 Outline of the thesis

In Chapter 2, we propose a mathematical model for HIV-1 infection with the intra-
cellular delay. “The method of Lyapunov function, LaSalle’s invariant principle and
Routh-Hurwitz Criterion are applied to analyze the stability of equilibrium solutions.
Hopf bifurcation theorem is used to explore properties of periodic solutions. The
effect of time delay is also 1nvest1gated |

In Chapter 3, a modified mathematical model for HIV-1 infection is given, which
has delays in cell infection and virus production. Besides the analysis for stability of
equilibria and Hopf bifurcation, we will also develop an analytical approach to consider
double-Hopf bifurcation in the model with multiple delays. Determining the critical
parameter values for double Hopf bifurcation is illustrated using numerical examples.
Conclusmn and discussions are presented at the end of each chapter The study in
this thesis is intended to provide some useful 1nformat10n for medical treatment.
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Chéipter 2}

HIV MODEL WITH
INTRACELLULAR DELAY

2.1 ‘Intrgd‘uction)

1n_ this chépter,. we introduce a time lag into model (1.13), since in the real situation,
it takes time for the virus to contact a target cell and the contacted cells to be actively
affected. This can be described by the eclipse phase of the virus lifé'Cycle. Further, we
assume that the probability density that a cell still remains infected for T time units
after being contacted by the virus obeys an exponentially ‘deca'y-" function.- Therefore,
following the line of [21, 22], model (1.13) can be modified to \

P = A-ds(t) ~ Brlpu(t), .

y() = Bea(— ot —7) - ay(t) ~ cwlEy(t)

) = owy®) b, e
W) = ky(t) - polt),

W) = o) - qui)

where 7 denotes the average time for a viral particle to go through the eclipse phase.
Because the dimension of the system is higher than 2, system (2.1) may exhibit some
interesting dynamic behaviors (Hopf bifurcation, limit cycles and even chaos), which
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would make the analysis of the system more complicated. "Thus, the goal of this chap-
ter focuses. on equilibrium solutions and their bifurcations. In next section, we will
justify the positivity and boundedness of solutions of (2.1). Also, in order to obtain
biologically meaningful equilibria, the basic reproduction number Ry will be fined. In
Sectlons 23,24 and 2. 5, we analyze the stability of the three equilibria: disease-free
equ1l1br1um E,, smgle—mfectlon equilibrium E; and double—mfectlon equlhbnum Eq.
In Section 2.6, two numencal,examples are prov1ded to demonstrate the theoretical
predictions. The last section summarizes the results obtained in this chapter with

some discussions.

2.2 Positivity, boundedneSs of solutions, equilibria

and basic reproduction number

Because of biological reasons, all*variables in system (2.1) must be non-negative.
Therefore, given a non—negatlve initial value, the correspondmg solutlon must remain
non-negative. This can be verified as follows

Let X = C([-,0]; R5) be the Banach space of continuous mapping from [—7,0] to
R® equipped with the sup-norm. By the fundamental theory of FDEs (see, e.g. [23]),
we know that there is a unique solution (z(t), y(t), 2(t), v(t), w(t)) to system (2.1). It

is biologically reasonable to consider the following initial conditions for (2.1):
| \

@690, 0@ w@) X, (22
~ z(8) > 0,y(0) > 0,2(8) > 0,9(8) > 0,w(8) >0, 0¢&l-1,0] (2.3)

From (2.1), we thain |
(0 -k (d+ﬂv(6))d§+ Afle ~Jn (d+ﬁv(€))d§dn

= 2(0)e + f* aw(n)y(m)e~t—dn, | | (2.4)

) .
= y(O)e f (a+aw(§))df+ﬁf :17(7] T)U(TI—"T’)e a‘re f (a+aw )dgdn
)
= 'U(O) —pt+f k’y(n)e‘"l’(t n)dn

w(t) = w(0)e ?+ fo cz(n)e~?t="dn.



13

Positivity immediately follows from the non-negative initial conditions. To show the
boundedness of the solutions of system (2.1), we define ’ '

B(t) = cke %" (t) +cky(t+7) + ckz(t + 1) + Lot + 1) + Bw(t+71), (2.5

where all the solutions are non-negative. Choosing m = min {2, 5> d, D, g}, it follows
that the derivative of B(t) with respectlve to time ¢ along the solution of (2.1) is
given by :

PDor) = cke™ [\~ da(t) ~ fu(t)a(?)]
: | +ckBeTu(t)z(t) — ckay(t + 1) = ckaw(i + y(t+7)
+ekaw(t + T)y(t + T) — ckbz(i +7)
+Lky(t+7) — Fpu(t +7)
B en(t 4 1) — Bquit 4 7) (26)
= cke‘a'r,/\ ~ cke~"dz(t) — Qéky(t +7) = Lekz(t+7)
~Sppu(t+7) — Squ(t+7)
< cke¥TA— mB(t)

This implies that B(t) is bounded, so are x(t), y(t), z(t), v(t) and w(t). System
(2.1) has three possible biologically meaningful equilibria: disease-free equilibrium
E,, single-infection equilibrium E; and double-infection equilibrium E;,, given below:

Ey = A,O7 0,0, 0)7
B = (0 AeTT _dp o Ake=T _ d
E, = (ﬂke—aﬂ a Bk? 0, ap B 0), (2.7)
E, = ( dacp  bg g(aBAcke”°T ~pBabkg—cacdp) bkq aﬂ/\cke""" —Babkq-—aacdp )
d — dacp+ﬁbkq’ ac’ ac(Bbkg+acdp) ) acp’ a(Bbkg+acdp) -

From biolégicdi meaning of the basic reproduction numb‘ér»'(s.ée. [42]), we define

A —ar o
Ry = e (2.8)

If Ry < 1, Ej is the only biologically meaningful equilibrium. If Ry > 1, there is
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~ another biologically meaningful equilibrium E, (single-infection equilibrium). The
double-infection equilibrium Ejy exists (biologically meaningful) if and only if Ry > 1,

where . ~ ) ) ;
de—aT
| R; = %@q.(___ea _ E% = E—M}LZ(RO —1). (2.9)
Héhée
| bk |
Ri>1 & R0>1+ag§. : (2‘10)

- 2.3 Stability of the disease-free equilibrium £y

 The 1‘inear’ized‘system of (2.1') at the disease-free equilibrium Eois

CZ(t) = —dz(t) — %’\v(t),
y(t) = Perdult—7)— ay(t),
2 = =ba(d), |  (211)

VO = BO-p0),

ct) — quit),

g\
=
I

" for which the characteristic equation is giVen' By - LR \

D(§ )= (€ +d)(E+D)(E+ € +a)E+p) - kﬂe“”%é‘&] —o0. (2.12)
Obviously, it suffices to only consider the quadratic factor,

(€+a)E+p) - kfe=je ¥ = €+ (a+p)E+ap— kB Tge . (2.13)
}\Iote ,t_hat,_..’.? = 0 is not a root of equation (2. 13) if RO_< 1, since

- ap— kBe™*74 = ap(1 —-Ro) > 0. _ (2.14)
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- When 7 = 0, equation (2.13) becomes
@+ (a+pEtap-kBy=0. (2.15)
In order._foi_', tiie two Toots of Equation (2.15) to have negative real part, 1trequ1res
ap — kB3 > 0, (2.16)

which is equivalent to v ‘
Ro(r =0) < (2.17)

Thus, when Ry < 1, all roots of Equation (2.15) have negative real part. From [36]
~ we know that all roots of Equation (2 13) depend continuously on 7. In [10), the
assumption (ii), ‘ 3

limsup{|Qm (&, 7)/Pa(§,7)| ¢ €] = 00, R(§) 20} <1 for any 7 (2.18)
holds here,~ where L o
Po(€,7) + Qu(&,7)e ™ = D(&, 7).
This condition ensures that there are no roots exist in the infinity (see [10]), and
hence Re(§) < +oo for any root of (2.13)." As a result, the only possibility for the '
roots of Equatlon (2. 13) to enter into the rlght half of complex plane is to cross the

. imaginary axis when 7 increases. Thus we deﬁne 5 W (w >\ 0) to be a purely
1mag1nary root of (2.13). Then we get

—w? +iw(a+p)+ap~ kfeie T =0. (2.19)
~ Taking moduli of Equation (2.19) gives
© H(w?) = wt + (a® + pA)w? + a?p? — (kBeT3)2 = 0, (2.20)

Clearly, H(w?) has no positive real roots if Ry < 1. Therefore, all roots of (2.13) have
negative (positive) real parts if Roy<1 (Ro >-1).

Summarizing the above results, we have the followmg theorem.

Theorem 2. 1 When Ro <1, the dlsease—free equ1hbr1um Ey is locally asymptotically
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e

stable; at Ry = 1, Ey becomes unstable and the single-infection equilibrium FE; occurs.

Furthermore, for global stability; we have the following result. |

Theorem 2.2 If Ry < 1, the disease-free equilibrium Ejy is globally asymptotically
stable, implying that none of the two virus can invade regardless of the initial load.

Proof: We choose the following Lyapunov function:

V.= e}”(ﬂ?(t)—— +3u(t) + Z()+22 ()

() + *ﬂe‘“‘" S z(m)v(n)dn. (221)

Using non-negativity of the solution and Ry < 1, the derivative of V with respective
to time ¢t along the solution of system (2.1) can be manipulated as

Wlon = e (2(t) - 3\ - da(t) — Bo(t)(z(t) — 3)]
—e=on(a(t) - Po(®)} + §Bea(t — Tyult —7)
=2y - Py + -aw(t)y(t) 3p2(t)
F2y(0) — Dpult) + b*z(t) Do)
+48e[a(t) — AJo(8) + 4Be30(t) — 3Be"a(t — r)u(t — 7)
— e (alt) — 3+ Polt) — [0 — 3em3u(t) — Baw(®)
= —emom(n(t) - 3)2(d+ Bu(t)) — B2[1 — Rolu(t) — Bw(t)

< —de™*(x(t ) )%
(2.22)
Thus, by LaSalle s invariance pr1nc1ple [24] we conclude that Ep is globally asymp-
totically stable. . . . o , o

2.4 Stability of the single-infection equilibrium E;

From the analysis in the previous section, we know that the single-infection equilib-
rium E, occurs when Ry > 1. Thus, in order to study the stability of E;, we assume
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Ry > 1 in this section. The linearized system of (2.1) at Ej is

() = —%e‘dfx(t)_.ekeegrv(t)’
) = Per(Beme — s —+ 24t — 1)
—ay(t) ~ aw(t) (e — ),
() = aw(t)(Ge - 15) —ba(t), (2.23)
V() = ky(t) —pu(t),

w'(t) = cz(t)—qw(t);‘

with the corresponding characteristic equation:

{E+ e )€+ a)(E+p) — k(P )] + BemoT(Eremar — §)e k(P ")}
X[(€+b)(€ +q) — ca(be™ — E)] =0.
S T L (229
Thégbbvé hchéract‘efistiq equation consists of two factors:
(E+D)(E+ ) —calfe™ — %f%) =&+ (b+ )€ +bg — ca(2e T — f2) (2.25)

~ .

and

' , \
(€ + 267 m)[(€ +a)(€ +p) — k(Pe )]+ BemT (57T — e k(%7),

. ap Le—ar
=&+ (a+p+ eom)2 + [Bemo7(q 4 p) + ap]é + kBN — ap(€ + ).
(2.26)

For the quadratic factor (2.25), it is easy to verify that its two roots have negative
real part if and only if By < 1. For the cubic factor (2.26), we rewrite it as

. £+ ax(7)€% + ar(T)E + ao(r) — (i€ + e)e™ =0, (2.27)
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where
as(1) = a+p+iTe,

a(r) = E2e(a+p)+ap,

a(r) = kBre™", (2.28)
¢ = ap,
co = apd.

It is easy to see that £ = 0 is not a root. of (2.27) if Ry > 1, since

a(r)—c; = kBAe —apd = apd(Ro—1) >0 (229)

When 7 = (2 27) becomes

e+a2<0)e+<a1(0)—cl>s+ao(o>—c2—o 230

Applymg the Routh HurWJtz CI‘lthIl (see [13]) we know that all roots of (2.30) have
negative real part, because S _ ,

a2(0)=a+p+%>0,” o
01(0) — &y = ap+ 22(a + p) - ap—’ﬁ,*(aw“p) > 0,
ao(0) — c2 = kBA — apd = apd(Ro(T = 0) — 1) >'0,

and
a2(0)[a1(0) — c1] — [a0(0) — co] = (a+p+ L) (a + p)] — (kB — apd)

()t p)+ @+ ap+2%) +apd > 0.

Therefore, for T =0, all roots of (2.27) have negatlve real part From [36] we know
that all roots of Equatlon (2 27) depend continuously on 7. Also, (2. 18) holds for this
case, and hence Re(é) < 400 for any root of (2.27). As a result, the roots of Equation
(2.27) can only enter into the right half in complex plane by crossing the imaginary
axis when 7 increases. Thus, we define £ = iw (w > 0) to be a purely imaginary root
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of (2.27), and then obtain
—iw® — ap(T)w? + a1 (7)iw + ao(T) — (Criw + cp)e ™™™ =0, (2.31)

Tai{ing moduli of the above equation results in

H() = 0+ [aa(r)? = 202 (1) + [oa () — 20n(r)aa(r) — e + ao(r)? ~ =0

(2.32)

Since | | |
a(r)? = 201(7) = @2 + p* + (E2em)? > 0,

B = 2ao(r)anr) = & = (L P@+5) >0, (o

ao(7)? — ¢ = (kBAe™" + apd)apd(Ry — 1) > 0,

the function H(w?) is monotonically increasing for 0 < w?® < oo with H(0) > 0. This
implies that Equation (2.32) does not have positive roots if Ry > 1. As a result, all
roots of (2. 27) have negative real part for 7 > 0 if Ry > 1.

Summarizing the above results, we have the following theorem.

Theorem 2. 3 Fl<Ry<1l+ %‘JE, the smgle—mfectlon equilibrium E; is asymptot-
. 1ca11y stable, implying that the recombinant virus cannot survive but the pathogen
virus can; when Ry = 1+~ag§ (i.e., Rg=1), E; becomes unstable and the recombinant

virus may persist. , , . \

2.5 Stability of the double—infection equilibrium
Eq4: Existence of Hopf bifurcation

When“Ro’ > 1 '-'l—’z—s—gg (i.e., Ry > 1), the single-infection equilibrium Ej becomes
unstable and the double-infection equilibrium E; comes into existence. To discuss
the stability of E4, we assume Ry > 1 in this section. The linearized system of (2.1)

at, Ed = (.'L'd, yda Zdy Ud, wd) iS,




z'(t) -

Y (¢)
() =
v(t) =
w'(t) =

—(d+ Bv;)x(t) ‘—‘lﬁcév(t),

BeTvgz(t — 7) — (a+ awa)y(t) + fe*"zqv(t — 7) — ayaw(?),

away(t) — bz(t) + agaw(?),
m@4m®L

cz(t) — qu(t).

20

(2.34)

Letting my = d-l- Bva, mg = a+p and mp = b+ q. Using the facts fohqt cayy = bg

and kfBe x4y =

WheIfE"B. j
Ay(7)
As(7)
Ax(7)
Ay(7)
Ao
By(r)
Bsy(T)
By(7)

D(E) = € + Ad(r)E* + As(r)E + Ax(r)E? + Ar(r)E + Ao

_(By(r)é® + Ba(r)E? + By(r)€)e=¢" =0,

= Mg+ mp+ mg + dwd,.- i

= ap+mgmg+ (Mg + ma)my + (p + myp + mg)awg,

= apmq+my(ap + mema) + (bg + mymg + pry + pma)awa,
= apmpymg + (bgmg + pbq + pmymg)awg, .\

= abpqwgma,

= plaws +a),

= (d+msp)(awq +a)p,

= dmb(awd + a)p7

p(awg + a), we obtain the characteristic equation of (2.34), given by

(2.35) -

1(2.36) -

When 7 = 0, it has been shown in [46] that there exists an Rp > R; such that when
Ry € (Ry, Ry), Ey is asymptotically stable, implying that all roots of (2.35) have
negative real part. Unlike for Ey and E, where the characteristic equations can be

factorized into lower degree polynomlals we are unable to factorize the characteristic

equation (2 35) Hence, it is very challenging to determine the stability of E4 by the
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procedure as shown in Sections 2.3 and 2.4. In what follows we let R(w) and S(w)
respectively be the real and i 1mag1nary parts of D(zw) glven by ”

" RWw) = ach(dacp+ﬁbkq) {w [aB%b%q 2k2 +a cﬂpbq(p +b+q+2d)k

 PRpd(b+ g+ p+ d)] - wPopBBgA(b + )R
‘+a2bcpﬂq(2bdp +2dgp — bga)k + ast?pz(dbp + dgp — bga)]
—abp3qd?a®c? — 2a2b2p2q2ddcﬁk - d2b3pq3ﬂ2k2
+ [w4a3c2pﬁ)\k w? [azﬂzquc(p +b+ q)k2 (2.37)

+a3c?pBA(gd + pb + bd + bg + pq + dp)k] + ab2pq2ﬁ2a)\ck2

+abp®qda’c®fAk — cos(Tw)w?e’BAckp?*(d + b+ q)

- sin(Tw)pza?’ﬂ)\czk[Q?’ — wd(b+ Q)]] e_ar},

5W) = s (@[ Btk + o) — ABE P+ b+ R
|  tacpbBa(pb+ pg - 2dp + d+2gd)k

“+o2c*phd(bp + pq + bd + gd + dé)] |
;b3é3,32ak2 - bzqzacpﬂak(éd +lp) “
—bgda’c?ap?(d + p) + [ w?[a?PpBA(p+b+q +d)k + ,szqoz)\ck'?]
+bgB2ac(bg + bp + pq)k? + paPc?BA(bpg + bdp + dpg + bdq)k
+ cos(fw)anz,BAQQk(db +dg - w?)
+ sin(rw)wa?BAckp?(b + d + q)] e"‘T] }

| ‘ o (2.38)

To obtain the critical point at which a Hopf b1furcat10n takes place, we need SOlVe
the followmg equtlons for 7 and w e ‘ .

R(w) = 0 | and S(w) =0, | (2.39)

where 7 is our bifurcation parameter. Solving (2.39) yields two solutions for 7: 7 =7'31
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and 7 = 7,2, which are given in Appendix. Then, substituting these two solutions into
any one of the above equations, we get the solutions for w. We choose a positive value
for r=1Tg 0r7 = T4 and the corresponding value of w as the critical value, from
‘which the corresponding value of Ry can be determined. Hence, all the critical values
of parameters T,w and Ry are expressed in terms of o, ,8, /\ a, b ¢,d, k,p, g, denoted
by 75, wy, and Ry,. o SR ‘

Following lecture notes in [48] there are three additional condltlons which need be
satisfied

Rw)=0 = S@)<0 for 7<m (2;40)

2™ leoniir=n A 0. (2.41)
and , S . .
' Re% ]Eﬁeuhi,-r=7-h‘< 0. RERERL SR (242)

If the conditions (2.40), (2.41) and (2.42) hold, then we conclude that (2.35) has a
pair of purely i imaginary roots when T=T,0r (R= Rh) 1mp1y1ng existence of a Hopf
bifurcation. Therefore, when 1 < Ry < Rh, the equlhbrlum solution Ej is stable. At
the critical point 7 = 73, (Rg = Rp), E, loses its stablhty and bifurcates into a family

~

of limit cycles.

2.6 Numerical Simulation

In this secvt'i‘on, we present two numerical examples to illustrate the theoretical results
obtained in previous sections. ' - ' RIS

Example 1. For this example, we choose 7 as the bifurcation p'arameher and set
A=0.24, d =0.004, 8 = 0.004, a = 0.33, a = 0.004, b = 2, k = 50, p = 2, c = 2000,
q = 2. Note that these parameter values have been used in computer simulation in
[46] for the model without delay. Then, '

Ry = 18.1818¢703%"

2.43
Ry = 0.08(18.1818¢~0%%" — 1), (2.43)
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The disease-free equilibrium Eo now is given by

Eo = (60,0,0,0,0), (2.44)

which is stable for 7 > 8.7892, as shown in Figure 2.1. When 7 < 8.7892, Ro > 1,
implying that Eq is uns?:_able‘and the §i'ngle-infec§ion equilibrium E; occurs, given by

E, = (3.3¢"%7,0.7273¢70%" — 0.04,0,18.1818¢7 0%~ 1,0),  (945)

which is stable for 0.9022 < 7 < 8.7892;E See Figﬁre 2.2 for the simulated results when
T = 4. Further decreasing 7 to pass the critical value 7 = 0.9022 will cause E; to lose

its stability, giving rise to the double-infection eduilibrium',
By = (4.4444,0.5, 0.1111¢70:3%7 —;0.0825, 12.5,111.11e79337 — 82.5). (2.46)

The Qoyréspondingvl‘ch‘a:;'actgr@s'gjic eq@laétion (2.35) at E4 for this example becomes

z

D(E) = € + (6.054+ 0.4444e~0%7)et 4 (8,324 + 2.6907e~0337)¢?

- +(—0.888 + 5.4773¢70337)¢2 4 (—0.07656 + 0.2951~0337)¢

(2.47)
+0.129e703%" — 0.14256 — [(0.8889¢™0%7)e3 o
| (3.5591e7037)¢2 4 (0.0142e~037)ge¢m =0, -
\
Let R(w) and S(w) be the real and imaginary parts of D(iw), i.e.,
Rw) = (6.054+ 0.4444¢0% )" — (—0.888 + 5.4773¢057)w?
+0.192¢7%%7 - 0.14256 + (0.8889¢~**")w? sin(wr) . (2.48)

+(3.5591e~0337)w? cos(wr) — (0.0142e%%)w sin(wr), »
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Figure 2.1: Simulated time history of system (2.1) for A= 0.24, = 0.004,

k = 50, a = 0.33, ¢ = 2000, b=p=q9g=2r = 9 wit
x(0) = 5.0, W0 = 1.0, 2(0) = 2.0, v(0) = 0.5, u;(0) = 4.0, converging to the stal
equilibrium solution EO= (60,0,0,0,0). \

ab- (8.324 + 2.691e-a33TV 3+ (-0.07656 + 0.2951e-a33r)a;
+(0.8889e a33r)u;3cos(cur) —(3.5591e °-33c)cj2sin(u;r) (2.49)

—(0.0142e_a33T)ts cos(a;r).

Then, in order to determine the stability of Fd, we first solve the two equations,

R(W=0 and )= 0. (2.50)

A numerical scheme is applied to find the real solution of (2.50), given by



25

Figure 2.2: Simulated time history of system (2.1) for A= 0.24, a = 3= d = 0.004,

k = 50, a= 033, ¢ = 2000, b=p=q= 2 = 4 with
x(0) = 5.0, 0 = 1.0, 2(0) = 2.0, v(0) = 0.5, tc(0) = 4.0, converging to the sta
equilibrium solution Es = (12.3533,0.1543,0,3.857,0). \

(r, ») = (0.8712406304,0.1451313875). (2.51)

Hence, rh = 0.8712406304 is the critical value, giving a corresponding value Rh :=
Rd(r = Th) = 1.011097469. It is easy to verify that for r < r?,

R(uy=0 = S(u) o (2.52)

It can also be shown that other two conditions are satisfied:

Ic=0. 1451313875i,r=0.8712406304= -0.3642551096 + 1.623717248* + 0O (2.53)
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Figure 2.3: Simulated time history of system (2.1) for A= 0.24, 0.004,

k = 50, a = 0.33, ¢ = 2000, b=p=q9g= 2r = 0.89 with
x(0) = 5.0, y(0) = 1.0, z(0) = 2.0, u(0) = 0.5, 0) = 4.0, converging to the stable
equilibrium solution E d= (4.4444,0.5,0.0003,12.5,0.3333).

and
K - 0.1451313875i,r=0.8712406304— —0.4331822741 < 0. (2.54)

Thus, the roots of (2.47) have positive real part when r < Rh), and (2.47)
has a pair of purely imaginary roots when r = Th{R = Rh), implying existence of a
Hopf bifurcation. Therefore, we conclude that when 0.8712406304 < r < 0.9022, the
equilibrium solution Ed is stable. At the critical point, t = Th (R = Rh), Ed loses its
stability through a Hopf bifurcation (see Figure 2.3 and 2.4).

Example 2. Now we select d as our bifurcation parameter and set r = 0.5. Then,

o 0%

0.06166 (2.55)

Rd d 1),
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Figure 2.4: Simulated time history of system (2.1) for A = 0.24, = 0.004,
k = 50, a = 0.33, ¢ = 2000, b=p= ¢ 2 = 04 with t
x(0) = 5.0, 0 = 10, 2(0) = 2.0, w(0) = 0.5, 0) = 4.0, converging to a periodi
solution. The bottom right graph is the phase portrait projected on plane

indicating a limit cycle.

and the disease-free equilibrium EO becomes

B, = (2f,0,0,0,0), (2.56)

which is stable for d > 0.06166. When d < 0.06166, 1, causing to lose its

stability and bifurcate into the single-infection equilibrium:

Es = (3.8929,0.61665 - 10d, 0,15.41625 - 250d, 0). (2.57)

It follows from Theorem (2.3) that Es is stable when 0.011665 < 0.06166. Further
decreasing d to pass the critical value d = 0.011665 will cause to become unstable
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and there occurs the double-infection equilibrium:

in / 38 rc 02506159-528d) o0 ¢ 250(0.6159-5.28d) \
Ed= ("65>°'5> 0.8+16d--------- S 12-5'08+165-*)= (2.58)

The corresponding characteristic equation (2.35) for this example can be written as

£>(0 = f + (6.38+ d+ 0O6EP~i6fd)~4+ (10-2965 + 6.33d + )E3
+(9.98d + 3.139 + + (2,64d + 0.132
(16d+0.6)(0.6159-5.28d) 8(0.61595.28d)(d+0.5)
1 0.8+16d )E 0.8+16d

-Kgi2fFE F N + °-66)"3+ 2(rf+ 4)(° X ~ iy + °-33)"2

+8d (060y+H® d+ 0.33)E]e~ab? = 0.

(2.59)
Let Rend Be the real and imaginary parts of D(icu), i.e.,
R(u) = (6.38+ d+ °@®.8+i6d8d)a4 ~ (9-98d + 3-139 + (123+60/ i 528d))ij2
8(061J +05) + (2CoB+ fIf~ + 0-66V 3sm(0.5u;)
+2(d + 4)(06E:,B.28d + 0.33V2c0s(0.5a;)
0.6159-5.28d
~8"N( os+Tef +
(2.60)
W) us- (10.2965 + 6.33d + (605+" j5 9 -528Y + (2.64d + 0.132
+ (16d+™ r 2BV - + 0.33V cosVr)
. (2.61)
+(owm™ +0.66V 3cos(u;r)

-2 (d+ 4)(0™ -ibr + 0.33V 2sin(wr).

Similarly, solving the two equations

R(W)=0 and S(u) =0, (2.62)
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X
Figure 2.5: Simulated time history of system (2.1) for A = 0.24, fd =0.004,
k = 50, a = 0.33, ¢ = 2000, b=p=q9g=2 t 05 d= |
condition: x(0) = 5.0, 0 = 1.0, 2(0) = 2.0, u(0) = 0.5, 0) = 4.

a periodic solution. The bottom right graph is the phase portrait projected on X —y
plane indicating a limit cycle.

we get the critical value <4 = 0.01106282794, and the corresponding value Rh =
Rd(d = dn) = 1.012043375. It is easy to prove that for d < dh,

Ru)=0 = u) <o. (2.63)

We can also verify that

Ic=0.i50325i1517i,d=0.0n06282794= —0.4371876370 + 1.701468428* 70 (2.64)

and
=0.1503251517i,0=0.01106282794 —27.01142970 < 0 (2.65)
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Therefore, all roots of (2.59) have positive real part when d < dj, (R > Ry), and (2.59)
has a pair of purely imaginary root at d = dj, (Rq = Rp), implying existence of a Hopf
bifurcation. .Therefore, we conclude that when 0.01106282794 < d < 0.011665, the
equilibrium: solution Ej is stable. At the critical point, d = d, (Rq = R},), Eq loses
its stability through Hopf bifurcation, leading to a family of limit cycles, as shown in
Figure} 2.5.

2.7 Conclusion and discussion

In this chapter, we have studied a HIV-1 infection model with intracellular delay, de-
scribed by (2.1). We have fully analyzed the stability of the infection-free equilibrium
Ey, and derived the condition for the local stability of the single-infection equilibrium
E,. For the double-infection equilibrium Ey4, we demonstrated how to determine the
stability of F4 and existence of Hopf bifurcation.

However, Due to difficulty in constructing a suitable Lyapunov function for the single-
infection equilibrium E, we didn’t obtain its global stability. In addition, the charac-
teristic equations for double-infection equilibrium £j; cannot be factorized into lower
degree polynomials, so it is very challenging to obtain the symbolic solution for w.

In our simulations, we use the same data uséd as in [46], so we are able to catch sight |
of the effect of delay by comparing with the results in [46]. In [46], the simulation
- results show that \

E, is stable when d < 0.192,

Ey is unstable and E; is stable when 0.052 < d < 0.192,
E, is unstable and Ej; is stable when 0.024 < d < 0.052,
At dj, = 0.024 (R, = 7.891), E; loses its stability through Hopf bifurcation.

It is obvious that the critical values obtained in Example 2 are all larger than the
above ones. An implication of this observation is that the intracellular delay 7 plays
. a positive role in preventing the virus. When all other parameters are fixed, a larger
value of 7 can bring Ry to a level lower than 1, making the infection free equilibrium
globally asymptotically stable. Therefore, viral-therapy of recombining HIV-1 virus
with a generally modified virus can effectively reduce the HIV-1 load in patients, and
larger intracellular delay is able to help eradicate the virus. '
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In reality, there also exists a time period between the time when the virus has pene- .
trated into a cell and the time when the new virions are created within the cell and
are released from the cell. Thus, another time lag may should be considered in model
(2.1), which will be studied in next chapter.
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Chapter 3

DELAYS IN CELL INFECTION
AND VIRUS PRODUCTION ON
HIV-1 DYNAMICS

3.1 Introduction

In this chapter, we shall introduce a second time lag to model (2.1). There is a
virus production period for new virions to be produced within and released from the
infected cells. This is because the virus production process within a cell consists of
several stages: (i) uncoating of viral RNA, (ii) reverse transcription of v1ra1 RNA into
DNA, (iii) transport of the newly made DNA into the nucleus, (1V) 1ntegratlon of the
viral DNA into the chromosome, (v ) production of viral RNA and protein, and (vi)
creation of new virus from these newly synthesized RNA molecules and proteins (see

[25])-

When both delays are present, model (1.13) can be written as' @ '
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2(t) = A~ du(t) - Fo(e)o(?)

V) = Bemalt— no(t —n) - ay(t) ~ aw(E)y(0)
2 = awlyt)-be(t); @)
V1) = kel —m) - pult)

w(t) = cz(t) — qu(t),

where 71 and 75 represent the latent period and virus production period, respectively.
When the second delay is introduced, the dynamic analysis of model (3.1) becomes
much more involved. In Section 3.2, we will prove the positivity and boundedness
of solutions of system (3.1). Also, the basic reproduction number Ry will be fined.
In Sections 3.3, 3.4 and 3.5, we analyze the stability of three equilibria: disease-free
equilibrium E,, single-infection equilibrium E, and double-infection equilibrium E;.
In Section 3.6, simulation results are given to illustrate the theoretical predictions.
The last section concludes this chapter with some discussions.

3.2 Well-posedness' and basic reproduction num-

ber

™~

o

To show the well-posedness, we define X := C(]— max('rl,Tg),\O]; R®), which is the
Banach space of continuous mapping from [— max(7;, 72),0] to R® equif)ped with the
sup-norm. It is biologically reasonable to consider the following initial conditions for
system (3.1): | . o
- (=(0),y(0),2(0),v(6),w()) € X, (3.2)
2(6) 2 0,(6) > 0,2(6) = 0,u(8) > 0,w(8) 0, 6 € [-max(n,n),0l. (3.3)
It can be shown using‘the fundamental theory of FDEs (see, e.g. [23]) that there is
a unique solution (z(t), y(t), z(t), v(t), w(t)) to system (3.1). The following theorem
establishes the non-negativity and boundedness of solutions to (3.1-3.3).
Theorem 3.1 Let (z(2), y,(t), 2(t), v(t), w(t)) be a solution of system (3.1) satisfying

the conditions (3.2) and (3.3). Then z(t), y(¢), 2(t), v(t) and w(t) are all non-negative
and bounded for all ¢ > 0 at which the solution exists.
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 Proof: From (3.1), we obtain

o(t) = z(0)eJo (@HBUONE 4 ) [t o= fy (@A

y(t) = y(0)e~ fo (atow(©))d 4 g fo = )y — 7)eon o= Jy (atow(€)d dn,
2(t) = 2(0)e™+ [ aw(n)y(n)e“’“"’)dn,. | .

o) = v(0)e P + [ hy(n — mo)e K Meimdn,

w(t) = w(0)e %+ f(f _cz(n)e“J(t"")dn.

(3.4)

- which clearly show that z(t), y(t), 2(t), v(t) and w(t) are all non-negative for all
t > 0, as long as (3.3) is satisfied '

For boundedness of the solution, we let

B(t) = cke " z(t) + cky(t + 1) + ckz(t+ 1) + %eéﬁv(t Y +7)+ %w(t + 1),

(3.5)

where all the solutions are non-negative. Thus, differentiating B(t) with respect to

time along the solution of (3.1) yields

Bleay =

cheon [\ — da(t) — Bo(t)z(t)]

‘ +ck;ﬂe ‘“'lv(t):z:(t) — ckay(t + 7‘1) - ckaw(t + Tl)y(t + 71)

+ckaw(t + 7'1) (t +711) — ckbz(t + 'rl)

é

N

o 3.6
—|—”3’“cz(t +71) — f’zﬁqw(t +71) (3.6)

cke™9" X = cke™ 1 dz(t) — Lcky(t + 1) — 2ckz(t +T1)
—Lpu(t + 71 + m)e™ — Fqu(t+71)
“cke=% )\ — B (t),

whereﬁz=mi,n{%,%,d,p,q}.ﬁ o | ]



Similarly, system (3.1) has three possible biologically meaningful equilibria:

Ey = (3,0,0,0,0),

T _ ap e~ o971 _ dp ' Ake—a""l-a"Q d_

Es - (5ke—a-rl—&1-2 b a ﬂke"‘.""Z 9 O, ap - ﬂ’ 0),

E, = ( Aacp bg g(eBAcke”°T1~872—Babkqe~572—qacdp) bkge 872
4 = \dacp+Bbkee™272" ac’ - ac(Bbkge=%T2+acdp) ' acp ?

afcke=2T1~872 —Babkge~ 472 —aacdp )
a(Bbkge™ 92 +acdp) ?

where the basic reproduction number is defined as

R, = #g-an-in :
. adp Yo
and for convenience, we let
B, co(Ae”TL _ dp am) _ cdpadm (D _
Ry = bq(——— Leim) = Zge” (R 1).‘ |

a kB
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(3.7)

(39

(3.9)

E, is the only biologically meaningful equilibrium when Ry < 1. For Ry > 1, there

is another biologically meaningful equilibrium E, (single-infection equilibrium). The

double-infection equilibrium E; exists if and only if Ry> 1.

3.3 Stability of the infection-free equilibrium E,

Let r = 2. Then, system (31) can be reduced to the following system ‘with dimen-

sionless time %, which, for simplicity, is again denoted by t:

dt

YO = 7(Bemma(t — ot — 1) — ay(t) ~ ow(t)y(®)),

o E = n(aw(t)y(t) — (1)),

WO~ 1 (keimy(t — 1) — pu(t)),

HO = (- da) - Ba(Ou(t),

SO = n(e(t) - qui).

dt

* Linearizing (3.10) at E, yields

(3.10)



J) = n(—dalt)— Bo(t)),

YY) = nBemiuit-1) —ay(®),
() = b, _
V() = mlkeT™y(t—7) - po(t),

wf(t) Tl(cz(t)_qw(t))j L

Il

whose characteristic equation is

(€ +d2)(E +D2)(E+ g€ +aZ)(€ +p2) — KB(R) e RUHD Remslra)] =

Let
d=dZ, b=>bZ, §=g¢2, t=c®, a= azg ‘.ﬁ#p%,
a =%, B=ﬁ1}, 5\=)\11?, F=1+47r% and Tm=r+L

Then (3. 12) can be rewritten as -

(E+a)E+d) (s FDlE+D)E+P) — hBehet] =0,

| Hence, only the quadratic factor, , \

4 (@+p)¢+ap— kBe” “"’\e‘ET—O |

need be considered. Since

ap — kﬁe-ﬁ*§ = ap(1 — Ry) > 0,

36

(3.11)

0.
3. 12)

(3.13)

(3.14)

(3.15)

(3.16)

¢ = 0 is not a root of Equation (3.15), implying that the roots of (3.15) can only cross
the imaginary axis with non-zero real part. Note that when 7 = 0, equation (3.15)

becomes L
&+ @+ +ap—kBe™ =0,

(3.17)

Whose roots have negative real part if ap— kB e_“_ﬁ% > 0, which is equivalent to Ry < 1.
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Since the roots of Equation (3.15) depend continuously on 7, they can only possibly
enter into the right half of complex plane through crossing the imaginary axis (see,
e.g. [10]). Thus, let & = i@ be a purely imaginary root of (3.15) with @ > 0. Then,
(3.15) becomes
SRR —&? +iw(a+p) +ap — kﬂ—e‘af%e""z’r = 0. (3.18)

Taking moduli of (3.18) yields

O+ @+ PP+ - (kB3 =0, . (3.19)

which has no positive root for &? if Ry < 1, implying that all roots of (3.15) remain
in the left half of complex plane for all 7 > 0 as long as Ry < 1. On the other hand,
it is easy to see that (3.15) has a positive root when Ry > 1.

Summarizing the above results, we obtain the following theorem.

Theorem 3.2 When Ry < 1, the disease-free equilibrium Ej is locally asymptotically
stable; at Ry = 1, E, becomes unstable and the single-infection equilibrium E, occurs.

Moreovér, by applying the fluctuation lemma (see, e.g. [22]), we can prove that the
infection-free equilibrium Ej is also globally attractive for Ro < 1. For this purpose,
we first introduce some basic notations. For a continuous and bounded function
f:]0,00) = R, let

foo Eliminfy oo f(t), f*Slmsup oo f(E). (3.20)

Now, let (z(t), y(t), 2(£), v(t), w(t)) be aﬁy solution of sysfem- (31)- (3.3). By Theo-
rem 3.1, we know
_ _ 0

N
N

o
Too € % < 00,

0 y°°<oo,4

N
N

Yoo

o
N
N

8

<z°<co, (3.21)

vm < m, W,

o
N
N

Voo

N

0 Woo SW® <00,

Applying the fluctuation lemma (see [45]), there exists a sequence t, with ¢, — 0o as
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n — o0 such that
| z(t,) = 2z and 2'(¢t,) =0 as n —) 0. | (3.22)
From the first equation of system (3.1), we get
(tn) + dz(tn) + Br(ta)v(tn) =X | o (3.23)
Lettmg n — o0 in the abbve equatién leads to the follov&;ingl eStimate

- dz® < (d + Pue)z™ < A (3.24)

- Using a similar argument to the rest of the equations in (3.1) gives

ay™ < (a + aweo)y™ < fe 10V, | (3.25)
pv>® < ke~ g, | | (3.27)
qu*™ < cz*. . (3.28)

" We claim that y® = 0. Otherwise, v > 0 by (3.25). It then follows from (3.24),
(3.25) and (3.27) that ‘
e < ke-—&rgyoo < }_caée—an—iirzxoovoo < k_ﬁi)\_e——an—&nvw" (3.29)

yieiding - ~
| p<Beening o>, (330)

which contradicts the assumption Ry < 1. So, y*® = 0, which in turn implies 2 = 0,
v = 0 and w™® = 0 by Equations (3.26)-(3.28). Therefore, we conclude that y(t) — 0
as t — oo by using the relation 0 < yoo < y™. Similarly, 2(t), v(t) and w(t) all
approach 0 as ¢ — oo. Finally; applying the theory of asyniptotical autonomous
system (see, e.g.’ [5]) to the first equation' of (3.1) with v(t) — 0, we obtain that

limy 00 z(t) = %. Summarizing the above, result yields the following theorem.
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Theorem 3. 3 The disease-free equlhbrlum Ey is globally asymptotically stable when
Ry < 1. :

3.4 Stability of the single-infection equilibrium E,

In this section, we assume Ry > 1. At Ry = 1, Ej loses its stability and the single-
infection equilibrium F, comes into existence. To study the stability of E, we hn-

earize system of (3.1) at E, to obtain

PO = m(-eenminggy) - i)
v = 71{56‘“’1(—’%6‘“7145’2 — D)t~ 1) + Leimo(t — 1)

—ay(t) — aw(e)(2e=en — i)},
2'(t) = ri(aw(t)(2e7m — L) — (1)), (3.31)

V@) = nkeTy(t—r) —pu(t)),

w'(t) = 7i(cz(t) — qw(t))-

* The characteristic equation of (3.31) is

x[(§+b)(E+a) — aa(ée-aﬁ' - gﬁgean)] =0,
o (3.32)
which has two factors: ‘
(6 +5)(E+3) — ca(3eam — Zeim) = € 4 (b+ )6 + 57 — ca(3en — Leim)

| EERS TR (3.33)

and ’.
€+ Lo 3 e~ ")[(€ +a)(€ + p) — ape™*"] + Pe~ ';;e“” -~ g)e‘gfﬁ(fe“a*)

S (a + P+ —;@e-af)e + (=3 (a +p) + ap]§ + kBI\ ~ar _ —ap(€ +d)etr.
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It is clear that the quadratic factor has two roots with negative real part since Ry < 1.
For the cubic factor (3. 34), we may rewrite it as - ’ :

& +a2<f>s2+a1(r)£+ao(r> (@i + ) =0, (3.35)
where e
| Wy(7) = a+p+ e,
ir(7) = e ¥(a+p)+ap,
Q(F) = kBXe™, . (336)
& = ap, | o
62 = Ezﬁd_
Because C . | TR
&0(7") — Cy = 7 ﬂ)\ T — &ﬁd = (_J',ﬁd(Ro - 1) > 0, (3.37)

when Ro > 1, so £ = 0 is not a root of Equation (3 35). Next, we show that when
’7' = 0 all roots of (3 35) have negatlve real par’c Indeed 1f T = 0 (3 35) becomes

e GO -t aE-a=0 @
Note that weén Ry > 1, \
Go(7) = G+ P+ e >
al(T)—él “a+p)+ap—ap="Le¥(a+5>0,
&0(7_') — Gy = kﬁ)\e"‘" — apd = apd(Ry — 1) > 0, ,
6aPfor) — 5] () — (5.3

= (a +p+ —*B—)‘e_”)[—f@e—‘"(a + p)] — (kBXe™™ — apd)

( )2( +P)+ (a +ap-l-p)+dﬁd>0.

ByRouth—Hurwitz criterion (see [13]), we know that all roots of (3.38) have negative
real part. Note that all roots of (3.35) depend continuously on 7 (see [36]). Also, (2.18)
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holds, so Re(£) < +oo for any root of (3.35). As a result, the roots of Equation (3.35)
are only able to enter“ into the right half of complex plane by crossing the imaginary
axis when T increases. Similarly, let £ = i@ (@ > 0) be a purely imaginary root of
(3.35). Then RN

~i® — @5(F)0% + &1 (F)ild + o (F) — (811 + Gp)e™" = 0, (3.40)

Taking moduli of the above equation gives

H(@?) := b + (a2(7)? - 2 (nr))w4v+ (@1(7)? — 2a0(7)a2(7) — )@* + ao('r) -&=0,

(3.41)
where | | . S .
8(7)? — 201(7) = @& + p* + (B2 ™)? > 0,
a1 (7)* - 2ao(T)az( )-d = (@6“"*)2(6‘!2 +7%) >0, (3.42)

Go(7)? — & = (k,B)\e“‘” ¥ c‘zﬁd)c’zﬁd(Ro - 1) > 0.

It is obvious that the function H (@ 2) is monotonically increasing for 0 < &% < oo with
H(0) > 0, implying that Equation (3.35) has no positive roots for Ry > 1. Therefore,
all roots of (3.35) have negative real part for all 7> 0 if Ry > 1. :

Summarizing the above results, we have the following theorem.

Theorem 3.4 When 1 < Ry < 1+ ——‘lﬁe"”2 .the single—infection equilibrium E; is
asymptotically stable at Ry =1+ %L‘Be"‘”2 (1 e., Ry = 1), E; becomes unstable and
bifurcates into Ey.- ‘

3.5 Stability of the double-infection equilibrium

- By Existence of Hopf and double Hopf bifur-
cations

To discuss the stability ‘of double-infection equilibrium Ej, we assume Rg > 1, since

it is the necessary condition for the existence of E;. The linearized system of (3.1) at

Ed - ($d7 Yd, Zd, 'Ud, ’I.Ud) 18
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c2'(t) = —(d+ Boa)a(t) — BEav(t),

W) = Bemiaa(t— ) — (o + ada)y(t) + fe N Eaw(t — 1) — ofaw(t),
()
v(t) = keT*Py(t — ) —po(t),

awgy(t) — bz(t) + agaw(t),

w'(t) = cz(t) — qu(t).

R Ry (3.43)
Let g = d + B4, e = a + p and My = b+ g. Using the facts that cafjy = bg and
kBe~em—4m23, = p(aly + a), the characteristic equation of (3.43) can be written as

D(E) i= € + Au(r)et + As(r)E + Aa(r)E® + Aa(r)E + Ag

B R T o (3.44)
—(B3(7)€3 + By(7)€2 + By(1)€)e~¢(m+m2) = q,
where
Ay(r) = g+ i + g+ o,

Ay(T) = ap+ eing + (Mg + Ma)ip + (D + T + Ma)ada,

Ay(r) = aping+ fiw(ap + Marha) + (bg + Mg + piity + piva)oia,

A, (1) = apmymg+ (bgig + pbg + pﬁzbﬁzd)aibd, ' \ o . \

| \ (3.45)

1‘10 = Oszqﬁ)d’ﬁ’id,'
‘13’3(7') = p(oddg+a),
By(t) = (d+ 7w)(cidq + a)p,

By(1) = diy(odig + a)p.

Similarly, letting R(w) and S(w) be the real and imaginary parts of D(iw) yields ‘-



'R(wj =

43

~ e |~ ¢ Pzdw (p + d +b+ q)

+w?a3c?dp®(bdp + gdp — bag) + apr qc:zd2 2

| :l+e"‘."2[ w4oz2(:p,Bbkq(p + b + q + 2d) + w2a2bcp,8 kq(2bdp + 2qdp — bqa)

+2a?0°p*Pedafk] + €720 — wa b’k q® + w ozpﬂ2b2k2 2(b + q)
+a2bPpgd B2K?] + e~ AT [ — AaBcPpBAk
+w?a3c?pBAk(bg + db+ dg +. pb + pq + dp) — abp?qc?da Bk
+cos((11 + T2 )w)w?a3 BAc?kp?(b + d + q)
+sin((m1 + 7o)w)p* e’ fACk(w? — wdb — wdg))
+e~am—2im2[,20282bk2g (b + g + p) — ab?pg* Bk aid]},

(3.46)

(cdpa+ﬁbkqe"“"2) {w{w4a2c2p2d wzczdp2a2 (dp + dq + db + bp + pQ)

—ch2dp a(p + d) + e8! acp,Bbkq

—w cpaﬂbkq(.?pd + 2dg + 2bd +pg+ bp)

—quQCpaﬁak@d +p)] + 6"‘"1""1’[ w2a202p,3)\k(p + b+ q + d)
 +pa2c?BNk(bpq + bdp + dpg + bdq)
+cos((1, + To)w)p?a?BActk(—w? + db + dg)
+sin((m1 + m)w)woBACkp*(b+ d + )]
—e~ (W2 B20%k20% (b + p + q) + b¢° 5%k
.-i-e“‘”l“%”2 B2bk2garc|—w? + bg + pg + bp|}}.
| (3.47)

Then, in order to determine the stability of £y, we solve the following two equations

for 1 and w:

Bw)=0 and Sw)=0,  (3.48)
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where 7y is our bifurcation parameter. The two equations in (3.48) have two solutions
for 71: 71 = 111 and 7, = Ty9, listed in Appendix The solutions for w can be obtained
by substltutlng the two solutions of 1nto any one of the above equations. Also, we
need choose the p031t1ve value for 1 = ’7’11 or 71 = 712 and the corresponding value
for w to determine the value of Rd. Hence, all the crltlcal parameter values 71,w and
R, are expressed in terms of o, 8, ), a,b,c, d, k,p,q; called 7, wy, and Ry.

Same as the discussion in the previous chapter, if other three conditions need be
satisfied (see [48]),

Rwy=0 = 8§w)<0 for .7 <, (3.49)
aD(€,m1) h : e
o le=nim=n0 (350
and SR . R PI e e o
| : Re'&% |£=whiﬂ'1=‘7'h< 0, . ‘ a (3 51)

then (3 44) has a palr of purely 1mag1nary roots When = Th(Rd = Rh) 1mp1ymg
existence of Hopf bifurcation. Therefore, when 1 < Rd < Ry, the equilibrium solution
E; is stable. At the critical point, 71 = 7 (Rd = Ry), Ey4 loses its stability through.
Hopf b1furcat10n, leading to blfurcatlon of a famlly of limit cycles

Finally, we show that there exists double Hopf b1furcat10n in system (3.1). In order to
have double Hopf bifurcation, the correspondmg characterlstlc equatlon (3.44) need
have two palrs of purely imaginary elgenvalues We choose 7'1, a, )\ as our blfurcatlon
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parameters. ) is solved from the first equation of (3.48) to yield
A = —{-w'Pp?d(b+d+ p+q) + w?aidc®p? (bdp + dpg — bag) + a*bp*qdac?
o —emom [w%%pﬁbkq(p +b+q+ 2d) +w azbcp,qu( —2bdp + baq 2dpq)
—2v‘d2b2:p2é2dacﬂk] + 6_2‘{7'2[ ~w aﬁ2b2k2q2 +w apﬂ2b2k2 q%(b + q)
@ +a2b3pg® B2k?)} [{ckaB{e "~ [—co’pwt + wPea’p
X (bg + bp + pq + dp + db + dg) + ca? cos((11 + T2)w)w?p*(b+ ¢ + d)
+ca? sin(( .+ 'rg)w)p2 (w? — dbw — wdq) — cabp?qdal
+eom -2y 2kozﬁbq(b + +p + q) kaprqzﬂ]}}

(3.52)
Then, substituting the above A into the second equation of (3.48) and assuming =+w,
and 4w,y being the two pairs of pﬁrely imagihary' eigenvalues yields two equations:
Sa1 (wl) =0 and Sao (CUQ) = 0, glven in Appendlx Also note that the crltlcal point
giving rlse to double Hopf blfurcatlon requlres ay. = a_ = ch By solvmg G and
settmg w2 wl = wr The new equatlons are obtalned for %1, w; and w, as

- gddl(wr,ac) = F(Tlawl)’ : R ~ o _
o , St R T 353
Sado (wr, ac) = F (7' 1 wrwl)) ' ,( , )

where F(ri,w;) is shown in Appendix. If (3.53) has real positive solution for w; and
71, called wy. and Ty, all the critical values of the bifurcation parameters can be
determined as: (7, a,“)'\) = (T1ey Gey Ac)- Mdreovef, the two pairs of purely imaginary
eigenvalues for the characteristic equation (3.44) are (wie; (wr X wic)), implying
‘existence of double Hopf bifurcation.

3.6 Numerical Simulation

In this sectlon, numencal s1mulat10ns are performed to verlfy the theoretical results
obtained in the previous sections.
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3.6.1 Periodic Solutions

F1rst1y, two examples are gwen to show that there exist penodlc solutions in system
(3.1). |

Example 1. Again, setting A = 0.24, d = 0. 004 ;8 0. 004 a=a=0. 33, a = 0.004,
b=2,k=250,p=2,c=2000,qg=2m71=0. 5 and choosing 7; as the bifurcation
parameter, we have

Ry = 181818 0%(n+0 5>

s 3.54
Ry = 0.09435144952(18. 1818e—° 3(ri405) _ 1). (3:54)

Then, the disease-free equilibrium E is
By = (60,0,0,0,0), © (3.55)

. which is st"able for 11 > 8.289157860. Numerical simulated solution result for 7, = 9,
'shown in Figure 3.1, converges to Ey. If 71 < 8.289157860 (Ro > 1), E, is unstable
and the single-infection equilibrium is emerged given by, '

By = (3.360‘3_3("1+0'5);0.72736“0'3371 0. 03391574816 0,18. 1818e-° 309 — 1, 0)

RN

s G 56)
Wthh is stable for 0 8622168041 <n <8 289157860 as shown in Figure 3.2. When
T < 0 8622168041 the double—mfectlon equ1hbr1um E, comes into exist, given by

Ed = (5. 173006325, 0.5, 0. 12932515816—0 38 +05) — 0 0825,

3.57
10. 59867130 129. 32515e-° s 5> — 82 5) (3:57)

f«.



100

Figure 3.1: Simulated time history of system (3.1) for A= 0.24, a = 3= d = 0.004,

k= 50, a= a = 0.33, c = 2000, b=p=9g=2 = 05,
condition: x(0) = 5.0, y(0) = 1.0, 0 = 2.0, u(0) = 0.5, u/(
the stable equilibrium solution EO= (60,0,0,0,0). \

for which the characteristic equation (3.44) becomes

£>(£) = £5+ (6.046394685 + 0.5173006324e- a33(Tl+a5" 4
+(8.278368114 + 3.12780379e-°-33(TI+a5))£3
+(-0.948842518 + 6.351607588e-°-33(Tl+a5))£2
+(-2.701240984 + 4.426405059¢-a33(Tl+a5))E
(3.58)
+15.83999999e~a33(T1 +05)
-10.10476243 - [(1.034601265e-a33(Tl+a5))£3

+(4.142543464e~a33(Tl+a5))£2

+(0.1655362024e - ie-0.33Nn+0.5)"e-i(n+0.5) = 0.
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Letting R(U>) and S(u) be the real and imaginary parts of D(iu>), we have

R(U) = (6.046394685 + .5173006324e-a33(Tl+a5))w4
-(-.948842518 + 6.351607588e"a33(Tl+a5))a;2

+15.83999999e-a33(ri+a5) - 10.10476243

3.59
—(1.034601265e-a33(T1+a5) sin(a; + 0.5)) ( )
-(4.14254346e-a33(ri+0H)u;2cos(a;(rl+ 0.5))
+(0.1655362024¢e-a33(T1+ab))a;sm(a;(ri + 0.5)),

S(u) = ub (8.278368114 + 3.127803794e-a33(Tl+ab))a;3
+(-2.701240984 + 4.426405059¢e"a33(Tl+a5>)w
—(1.034601265e-a33(T+ab) J8os(a; (rx+ 0.5)) (3.60)
+(4.14254346¢e-a33(TlI+abV 2sin(u;(T1+ 0.5))
+(0.1655362024e - e-a33(Tl+ab))a;cos(a;(T1+ 0.5)),

Similarly, numerically solving the two equations,
R(g) =0 and =0, (3.61)
we obtain
(n,w) = (0.823938730,0.1509390973). (3.62)
Therefore, we have the critical value fh= 0.823938730

Rh = Rdiji = fh) = 1.013911267. Also, it can be shown that when T\ < fh, the other
three conditions are satisfied:

R(w) =0 S(u) < 0, (3.63)

1i=0.1509390973i,ri =0.823038730— —0.3375687425 + 1.648144850* 70 (3.64)

and
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Figure 3.2: Simulated time history of system (3.1) for A= 0.24, a = {3= d = 0.004,

k =50, a= a=0.33, ¢ = 2000, b=p=q9g= 2ri = 4and 1
condition: x(0) = 5.0, W = 1.0, 2(0) = 2.0, u(0) = 0.5, = 4.0, c
the stable equilibrium solution Es = (14.5694,0.1604,0,3.1182,0).

[=0.1509390973i,ri =0.823938730= —0.317987439570544 < 0 (3.65)

Therefore, the roots of (3.58) have non-negative real part when r\ < ( > ),

and (3.58) has a pair of purely imaginary roots when Ti = fh (Rd, = Rh), implying
existence of a Hopf bifurcation. Therefore, we conclude that when 0.823938730 <

ti < 0.8622168041, the equilibrium solution Ed is stable (see Figure 3.3). At the
critical point, N\ = fh (Rd = Rl loses its stability through
leading to bifurcation of a family of limit cycles, as shown in Figure 3.4.

Example 2. We choose r2 as our bifurcation parameter and set \= 0.4. Thus,
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Figure 3.3: Simulated time history of system (3.1) for A= 0.24, = 3= 0.004,

k= 50, a= a=0.33, c = 2000, b=p=qg= 2 T\=0.85 anc
condition: x(0) = 5.0, y(0) = 1.0, z(0) = 2.0, v(0) = 0.5, 0) = 4.0, converging to
the stable equilibrium solution Ed = (5.173,0.5,0.0003,10.5987,0.3333).

RO = 18.1818e-°-33(T2+0A),
(3.66)
Rd = 0.08e-a33T2(18.1818e-a33(T2+ad) - 1).
The disease-free equilibrium Eqgbecomes
E0=(60,0,0,0,0), (3.67)

which is stable for r2 > 8.389157861. When r2 < 8.389157861, Rqg > 1, for which Eq
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0 200 400 600 800 4.5 5 55
X
Figure 3.4: Simulated time history of system (3.1) for A= 0.24, = {3= = 0.004,
k= 50, a= a=0.33, ¢ = 2000, b=p=9g=2 t\= 04 and r

condition: x(0) = 5.0, j/(0) = 1.0, ¢(0) = 2.0, n(0) = 0.5, tc(0) = 4.0, converging to
a periodic solution. The bottom right graph is the phase portrait projected on
plane indicating a limit cycle.

is unstable and the single-infection equilibrium bifurcates, given by

E, = (3.3ea33(T2+a4),0.6373389056 - 0.04ea33T2,0,18.1818e-°-33(T2+ad) - 1,0),

(3.68)
which is stable for 3.738097521 < r2 < 8.389157861. Further decreasing r2 to pass
the critical value r2 = 3.738097521 causes ES to be unstable and appearing of the
double-infection equilibrium:

p / 384 a ¢ 0.25(0.384e-°-33T2+ad>—0.264e-°-3312—0.2112)
~ V0.064+0.8e-°-332" U-0) 0.064+0.8e-°-3312

19 ¢ —0.332 250(0.384e~03372+0-4) —0.264e~0'3312—0,2112) \ (3.69)

iz -oe » 0.064+0.8e_0 3312
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The corresponding characteristic equation (3.44) for the above becomes

D) = f +(6.334+ 0.5e-»" +

+(10.00532 + .3165e-°-332

. (6.004+0.5¢_0-3312)(0.384e_0-33T2+04)-0.264e-°-3312-0.2112)\43
+ 0.064+0.8e-(-33-2 K

+(2.67992 + 0.499e-°-3R

. (12.024+0.3e_0'3312)(0.384e_0'33T2+0'4)—0.264e_0'32—0.2112) \;2
n 0.064+0.8e_0-3312

+(0.1056 + 0.132e-CB312

. (8.048+0.6¢_0'3812)(0.384e" *-3qT2+04) —0.264¢_0-332-0.2112) \
0.064+0.8e-°-sjT2

. 660(0.4+0.5e_o0 3312)(0.384e_0-33T2+04) —0.264e_0-3312—0.2112)
“I 0.064+0.8e-°-3312

r/2(0.33+(0.384e-°-3T2+04)-0.26 4e-°-3312-0.2112) \ 3
It 0.064+0.8e_0-3312

/ 8.008(0.33+(0.384e-0-33T2+04)-0.264e-°-3312-0.2112) \;-2
0.064+0.8e_0-3312

, /-0.032(0.33+0.384e_0"33T2+04)—0.264e-a33T2—0.2112) —0.338+9+0.4) _ N
*1 0.064+0.8e-°iST2 U
(3.70)
Let R(qgj) and S(u) be the real and imaginary parts of D(iu>). Then solving the two
equations,
R(w) =0 and S(u) =0, (3-71)
\%
we obtain f2h = 2.622465483 as our critical value, giving a corresponding value Rh :=
Rd(r2 ==1.084598722. It is easy to show that when r2 < fy,
R(uy =0 =+ 5@)<0. (372

Further, we can verify that

9Dql 'TA 17=0.29150195171,7/=2.622465483= —0.6623825246 + 1.865961951i /0 (3.73)

and
-ReN |7 =0.20i50i95i7t, T2=2.622465483= —0.0517127986976842 < 0. (3-74)

Thus, all roots of (3.70) have non-negative real part forr2< fZh( > Rh), and (3.70)
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Figure 3.5: Simulated time history of system (3.1) for A= 0.24, 0.004,
k= 50, a= a = 0.33, c = 2000, b=p=q9g=104, r2-=
condition: x(0) = 5.0, W = 1.0, z(0) = 2.0, u(0) = 0.5, ie(0) = 4.0, ¢

a periodic solution. The bottom right graph is the phase portrait projected on
plane indicating a limit cycle.

has a pair of purely imaginary roots when r2= fh (= implying existence of
Hopf bifurcation. Therefore, when 2.622465483 < r2 < 3.738097521, the equilibrium
solution Ea is stable. At the critical point, r2 = f2ft, EJ loses its stability through a
Hopf bifurcation, leading to bifurcation of a family of limit cycles, as shown in Figure
3.5.

3.6.2  Quasi-periodic Solutions

For quasi-periodic solutions, we present two cases: a resonant case and a non-resonant
case. For convenience, we fix d 6.002, i3= 0.004, & = 0.33, a = 0.004,
p =2, ¢c= 2000, g =2, r2= 3 and choose ri, a, A as the bifurcation paramet
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Figure 3.6: Simulated time history of system (3.1) for A = 0.83, = [? = 0.004,
d = 0.002, k =50, a= 0.03, a= 0.33, c = 2000, = = Q,= 2, t\=
with the initial condition: z(0) = 5.0, y(0) = 1.0, 2(0) = 2.0, u(0) = 0.5, u;(0) = 4.0.

\

Resonant case. We choose 1: 2, so systemu\3.5&) Isueduced to

Sadl (kvj O0)

(3.75)
Siiz(/\r)®c) A,

where F\, F2 are given in Appendix. The numerical solution for the above two equa-
tions is (ti,wi) = (16.0283293568469,0.548085462867220). Therefore, at the critical
point, adouble Hopf bifurcation occurs and all the critical values of the bifurcation pa-
rameters can be determined as: (t1; a, A) = (16.028,0.0347,0.8326). The two pairs of
purely imaginary eigenvalues for the characteristic equation are (£0.5481, +1.0962),

implying existence of double Hopf bifurcation. The simulated solutions for this case
are shown in Figure 3.6.
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Non-resonance case. We choose L2 = = 1 *\/2- Sim|

equations in (3.53), we obtain the numerical solution for (ti,od), given by
(n, wi) = (43.8987067132056, -0.398679840517696). (3.76)

Therefore, at the above critical point a double Hopf bifurcation occurs. All the critical

values of the bifurcation parameters can be determined as:
(n, a, A) = (43.8987067132056,0.0865744881680455,7.48065701077655). (3.77)
The two pairs of purely imaginary eigenvalues for the characteristic equation are
(x0.398679840517696, +0.563818437504870) (3.78)

The simulation results are shown in Figure 3.7.

3.7 Conclusion and discussion

In this chapter, we have analysed an HIV-1 infection model with two concentrated
delays. We have identified the basic reproduction number and proved that if .Ro <
1, the infection-free equilibrium EO is globally asymptotically stable; if < IRo < 1+
~ | e _OT2 the single-infection equilibrium Es is asymptotically stable. For the double-
infection equilibrium Ed, we have showed how to determine the stability, existence of

Hopf and double Hopf bifurcations.

Due to difficulty in constructing a suitable Lyapunov function for the single-infection
equilibrium Eswe didn’'t obtain its global stability. Moreover, the characterist
equation for the double-infection equilibrium Ed can not be factorized into lower

degree polynomials, so it is not possible to provide explicit stability conditions.

Comparing with the results for single delay in Chapter 2, the results obtained in this
chapter are more significant. With large r2 and all other fixed parameters, the the
critical values of T\ are smaller than the ones obtained in Chapter 2. This implies
that increasing r2 also decreases Ro, which determines whether or not the HIV-1 virus
in host will be persistent or will go to extinction. In other words, both prolonging
the latent period and slowing down the virus production process can help control the
HIV-1 infection.



56

Figure 3.7: Simulated time history of system (3.1) for A = 7.4807, =0.004,
d = 0.002, k =50, a 6.0865744881680455, a = 0.33, ¢ = 2000,

Ti = 43.8987, 2 = 3 with the initial condition: a:(0) = 5.0, 0) = 1.0, z(0) = 2.0,
v(0) = 0.5, 0 = 4.0.
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Appendix', A

Since Equations (2.37) and (2.38) can be directly obtained by setting 7 = 0 in
Equations (3.46) and (3.47), we have Tep = Tlllm_o and Tez = 7'12|T2_o Thus, we only

need list 71; and 715 as following:

ST ln{—,}ff}
L . Al
Tig = %ln{%}’ ( )

where | |
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+8a2¢?bap* + 20°¢%b a®p? — 18ap®bia’dg* + 18a2q?b3p4d — 12abp®d2ag®
+30a2b2g3ap3d — 6abgipiad + 6a2bgPaptd — 6abga’p'd -'-:12ozb2q‘;1lqp3d
—12abpid?aq® — 540¢3b2a?p3d + 8a2b3¢Pap® — 6abgla?p®d — 48ab?pPd2ag®
+4202b%Bap®d? — 24apb’Pa*d? + 240p* B3 Pad — 360p*b3¢Pa’d ,
+2402pbPgPad? + 12a%pb2qtad? — 120pb2qia®d? + 12ap®bgtad® ~ 12ag?b*pad
~240%b%p*ad — 240¢b°ptad — 18ag?p?bPadd + 2002bg3pid? — 24ap®b3dag®
- +602¢*?p3d + 8a2b?gBap? + 3602b°pPd2g® + 18a%b2g pld — 6ab?q*pa®
—8aq3b?pta? + 6a2bgiptd — 2ab%q*pra + 20%bgtap? + 602b*p?d2g?
—4ap*bag® + 30a?ptd?b?q? + 120263¢%p3d + 12a%p?b3qPd? — 1203 ¢3pPa?
+4a?¢*bPa’p® — 6ag?b°p®a® + 1202V?¢*plad + 12agp®biad® — 120q%pba2d?
—18ag3p?b%a’d + 1202¢?p*ad + 12a%¢*p?b%ad — 48aq?p*d*ba
—6agblap®d — 12aqp3d2bta + 1002gbap?d? — 10agb®a®p3d? + 30a2q2b3ap’d
+4202¢*b3ap?d? + 10a%qb3ap3d? + 200%¢2b*p3ad? — 320q2b?pPa2d?
—240¢*b*p*ad® + 10ag?bp*a®d? + 10agb*pta2d® — 18aq?b?a’pd
+12a2¢%pblad? — 12a¢°pb®add — 12aq2p®btad? — 12a¢%p?bPa2d?

—6agb*ptad — 18_aq2p2b4a2d — 12aqp*d®b3a — 120¢2pb3a3d? — 12ap%b*q*ad?
+120°¢°pb*a*d® — 6ag’pbla’d +1202¢*pb*ad® + 602¢’pbla®d.
+6a’pb?qia’d + 6a’g'p®d?b? + 6q3p?b?a4d + 24¢2p%b%a3d + ]\2q2p3b3a2d2
+12¢°p*b?a?d? + 12¢°p*bPaPd + 6¢*p*b*d*a® + 24¢°p*b%a’d + 6¢°p*ba’d
+6%6°pla’d + 6¢°b2a’p'd + 6¢3b?*p*a’d + 2p°b2a?a’qt + 6p°bigtald
+6¢°p*bta?d + 6¢2p?bta’d + 6¢2pHPa’d + 6¢°p?bPald? + 6¢2pPbPatd
+402¢’p3b3a? + 402b*p3¢Pa? + ‘12q'2p263a3d2 + 12¢3p2b2a3d? + 6p2b2qid2a?
+4a2¢*b?pla + 12a%bpid2q? — 12aq2p362q3d +12¢°p°0%a’d .
—10abg’a?pd® + 6a2bglapid + 10042_bq4aanl2 + 12¢°p2b%d2a? + 12¢%p®b2a3d?
+1002bgPap®d® — 24ab’Papd + 12¢°p?bPa%ad + ‘629;2b2q4a3d IR
+6¢2p3b2a%ad + 12¢3p%b%a2a’d + b2plalq® + 2p°b%¢*a® + 2¢°b%a’p*w?
—Ba?k2pA P02 B2 02 ghd + 202202 + o2gbd? + B ga2p? + bgPa?p?
+2¢2p%b%a? — 120¢%bad? — 100g®p?d? — 120qb®ad? — 30agp?d2b?
~120gpd?b® — 12a3pd?b — 6agp?db® — 6ag*p*db — 2404°pd?b? + 6qpdbia?
+12¢?pdb®a® + 6¢°pdba’ + 6¢°p2bad + 12¢°pbad?® + 6¢%p*ba’d — 300g*p?d?b |
—12a4%p*db? — 10ap?b®d® — 6agp2dba ~ 6agpdba — 120q%pdb®a
—6ag’pdba — 12ag*pd*ba — 6ag*p*dba — 12agpd®ab® — 24ab?d®¢?a
—4ag®p*b2a — 2043p%ba — 2aqp*b*a + 6gp*biad + 12gpb2a®d?® + 12gp2b2ad?
+24¢%pb%ad? + 12¢°p2b%ad + 12¢2pba?d? + qp2ba?d? + 6qp?b2a’d + 12¢°pbad?
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+12gpbPad?|w? + 5a’cbiq*pPatd?B2K2 (b + q)z]'-{- g=3am [4bsk3q3ﬂ3a3pcdw12
+2b3ck®pgia? B3 (4dab® — bpga + bpga + 4bdag + 4dap® + 4dag?)w'® -
—2b3ck®*pgda?B3[—2b1da — 2dag* — 2dap? — 4pgabad — 4abdg® — 6¢2dab?
—4qab®d + p3bga — pibga — p?bg*a — 8p2dag® + p?qPab — p?biga + p*gba
+p2gba? — 8p?dab? + pbg*a — pgiab + pb?¢*a — pb?q?a + pg?ba® + pbiqo
+pgb®a® — pgb®a — 4q2abad — 4gab®ad ~ 12p?bdag — p*gbac + 4p*gbad
—4pg*abd — pbglaa + 4pg*bad — dpgdab® — pb*gac + 4pgba’d + 4pgblad)w?®
—2b%ck3pqiaBi[—4p?btda® — 4p*bgPaa’d — pPqalbt + p?q2alh? + 4p?gPabad
—4p?qa?bad + 4pPbgaa?d + 4p*qab®ad — 4p3ga®bad + 4p*qPabad + 8pgPablad
+4pbgiaa’d — 4pg?abad + p*Paba® — 16p*g?b*do? — p*q*ab®a? — p*gbiac?
—12p%qa?b®d + p*qbia’a + p*bigaa + p?betac — 4pgtolbd — pgtolab + pgtaba?
—pgdab’a — 8pgPb’da? + pgdab®a® — pg?bPan? — 8pga?bid + pgPhiala
—4dpgb*da® + 4pb®qPaa’d — p'bPa’q + 8pgPabdad + p*bigaa + pgaba® + pigPalh
—p*ba?q® + pgab*a? + pP¢?b%a® — 4p*qab?ad + 4p3qPabad — 4pgalbiad |
+dpgadbiad + pPab3a? — pP¢Pbac — p3baaq® — 4p3qPabd — 3pPgPaba
+p3q?aba? — 4p3gbida? — p3b?0laq + pPqab?a? — pPgabia — 12p%¢a2bd
+4p*qabad — 4pb2qaa’d + 4pgiabad + 4p*qabad + 2p°?a?b? + p?¢Pha?
—p’®a?h? — p?g*a?b — 4p’q*a’d + p?¢*bia® — 4pgPa’bad — 4b*ada’q — pgatbia
+pibglaa — pigatab — 8piqalbd — p2g?b3a® — pPqPalab + Apbdgaa’d '
—4pq?a2d — 4a’badg* — 8a*b?adq® — 8abladq? — 4p*b?da®|w®
—2b3ck®pgPaBR[—4p2bida? — 4p*bglaa’d — p*qoPbt + p?g*a®h? + 4p*gPabad
—4p%q?abad + 4p*bgaa’d + 4piqab’ad — 4p3qolbad + 4p?qPab?ad

+8pg*ab®ad + 4pbgdaa’d — 4pgPa?b?ad + p*qaba® — 16p%g?b?da?
—p2gPab?a? — pPgbiac? — 12p%qe2bRd + pPgbiala + pPbigac + p?bgtaa
—4pg*a?bd — pgtaab + pgaba? — pgPa’b’a — 8pg®b?da® + pgab®a’
—pg?bPaa® — 8pgla2bid + pg?biaa — pgatbla — dpghtda? + dphlqPaald
~pit?a?q + 8pg?abiad + p*bPqac + plgaba? + pigdab — ptbole? e
+pgab*a® + pg*b?a’ — 4pQQa2‘b2ad + 4p*¢Pabad — 4pgoPbiad + 4pbPgaa’d |
+dpgadbiad + p3gbia? — p3¢Pbac — pPbaaq® — 4p3q2a2bd — 3p*qPab’a
+p8qaba? — 4p3gh?da? — pPblalaq + pPgabia? — pPeabia — 12p%¢Pabd

~ —p’g°a®ab + 4p*qabad — 4p*b*qaa’d + 4pgtabad + 4p*qabiad + 2p3¢ b
+p2¢*b%a* — p*g*a®h? — p’*a’b — 4p’gtald + p*gPbPa® — dpgtabad ”

- —4b*ada?q + p*bgPaa — p*galab — 8ptqalbd — p*¢*bPa? — 4p*¢Pa’d — 4abadg?
—8a2b%adq? -—‘80z2baddq2 — 4p*t*da®lw? ~ 2b%a’c(b + q) kPP gta P [—p*bPqa
+p*gb?a — 4p*dab® — pb*gac — 4pgdab® + 4pgb*ad + pgb?a? — 4gab’ad — p*bgta
+p2q%ab — 8p2bdaq — p*gbac + 4p’gbad + p2gba’ — pbgaa — 4pg*abd |
+4pq*bad + pg?ba® — dpgabad + dpgba’d — 4q*abad — 4p?dag®|w?
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4t b cdk* PP a3 (b + q)z] 4 e~tom [b4k4q4,84d2w12 + oMkt Bte?

(g2 + p? + b% + bq)w!® — vk B -20q% — 20gb® — ag® %;db“ ~apt
+2bpqa? +‘2pbq2a + 2pb2qa + 2p’gba — 2¢2aba - 6aqbp?® — 2pg*ab — 2qab’a
—4p2gPa — 4ab®p? — 2pgaba — 3aq?h? — 20iqb?plwd — ‘2b4k4q4d[34[—‘aq2b2pa
—agb3ap — gPabap® — agbap® — ag®bap — gab2ap? — ag*ba — 4c)zq?b2p‘2
—2aq?b®a — 2aqbp* ‘—‘oéqsz3 — agb®p® — 3agb®p? — gb®p%a® + bqp“a;‘—i— qb®pa?
—3ag’bp? ~ 20¢°b%a + 2q2b3pq'+ bapia? + ¢*v?p?a + ¢®bap?® — q?bpza?—k qb*pia
—2pgiab? — 2pgrab® + 2¢°b%pa — pigta — pgta + ¢Pbpa? — abip? + ¢2b?pa?
+q*bpa — p*b’a + ¢?bpPa + gbPap? — agibp + gb*pa — agb*p — agbialw®
+btktq! Bi[pP"b2a? + a2bipt + a?gip* + pgPbPat + pigbla? + 2p2gbia?
+¢%p?b%a®a? + 2a°ph3qia + 20p%bgta? — 20pb?qta? — 20p2b%¢%a? + 4ophieia
—4opbigda? + 4a2d2b2p3a + 2a2¢%pb3a? — 20¢°ph3ad — 2ag3pb2ad + 2a2¢*pbia
—2aq°pb*a? + 2aqp®bia? — 20¢°p?b3a? + 202¢3pba® + 8a’g*b3ap? — 6aq?b?pia®
—4ag?b?pla — 20qpPbla — 20qpthia + 202ghtap? + 8a2b2gPap? + 2a2bgap?
—2abp®aq® — 2¢b°p*a’a — 2¢*btaap?® — 2¢°bpPa*a — 2abptag® — 4¢°bPaap?
—2¢*b*apa® — 8¢V aap® — 2¢* VP aap? + 29°bap®a’ + 2qbPapia’ + 2¢2p%h3a?
+2¢2bapta® — 8¢%bPaap® + 2gb%apia® + pq?ba? + 2péq3012b}3 + 2¢3p?b%a®
+2¢2p?b3ad + 2¢3p%b2a? +2¢°p3b2ad + 40?bg’p* + 6020%p*q® + 202bp°q*
+602B2 2" + 602 ¢2p%b® + 4aqbSpt + 202qp%b* + 20263 Ka? + a2qibia?
+Oz2q2b4a2 + p2q2a2b4 +‘p2q4a2b-2]w4 - 2a2bsk4p2q5(b + q)ﬁ4[—aqb2p |
—ab?p? — qab’a + pb*qa — pg*ab + pbq2a — pgaba + bpga? + p*gba — g*aba

’—Zaqbp2 ~ p2gPalu? + a4'b6k4p4q654(b & q)z] + pictaful® +\p4c4a6

(2bq +2;1‘2 +p? +2d2% + ‘.‘2.b2)w”1:4 + pictaP(2ab?p? + 2p°¢Po +*2p2ad2\

—2pbdgo: + 2pbadg + ag* + ad* + 2¢%aba + 2gab?a + 4ad?bg + 4ad?®q? + 4ad®b?
+3ab?q? + 2ab3q + 2abg® + ab*)w'? — p4c4oz5 (2pb'2(qc'i2d + 2pbq2a2d

—2apbg*ad — 2apbgad? — 2ap®bgad — Zpbsadq + 2pbga’d® — 2pb®q*ad — 2pd3bag
—2opb*gad + 2p*bad®q — 2p°badg + 2p*b*aqd — 2pg3bad + 2p2lv>adq2 + 2p2bqa2d
-|-2;0-'abd2q2 + 2pab?d?q — 4qb2qad2 - 4akbq2a‘d2, - 2épbd2q2 — 2ap2bg?d
+20p%bdq + 20pg°bd + 20pbPdg + 20pb?q?d + 20pdbg ~ 20p%bg?a — 2apbdq
~2ap2b2qa - 2ap2qu2 — 20p?b%dq — 20b%d? — ap?bt — 20b%d* - 20q d? |
—2agd* — ap?q* — ap®d* + 2abgp* — 60q2d?b? — dabPq?a — 2abgla
—2ab'qa — 4abg’d® — 2abgd* — 4ab3qd2"¥f4ab2q3a — dop?q?d® — 4ap?b?d?)w'®
—p4c4oz4‘(—-_2ap3d3baq — 3a%q?d*b? + 2dpd4abq? + ¢’p?*b’cPa? o
+4ap?b2qiad + dap?bdglad — 20 pbgad? + ‘2‘dpdi4ab2q + 2ap’d*b?aq — 2apb®q?dia
—202¢?bad* — 2qp26d2d4 - p2b2a2d2q2/ -i—r.,‘2a2pq‘3d3b + 2a2pb3d3q + 20%p3dbg
—ZC\J"’pd“bq2 — 202p?d3b?q — 202p*d*bg? — 2apd*b?q + 20pbga’d* + 20p*bga’d’
+2aprQa2d3 - ,’Zofpbd?qk4 — 4a’pb®d’¢® — 402p?V2@*d — 2a%pbg’d

—402qbtad? — 802q?hPad? — 4a2q?pd?bd — 202qpd2bt — 2a2ph2qad?
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—202qp*btd — 402q*p?b3d — 2a%q*b3ap? — 202¢*bpid? + 202qbptd? + 20%¢%b°p3d
—202gb?p3d? — 202qb?ptd — 202q2bptd + 202gh%pPd — 202qb*p2d? ~ 2a2gbtap?
—8a?b*g’ad® — 4a’bgad? + 20%bg°p3d — 20°bg°p*d?® — 3ap*d?bPg®.
—2a2b?q2ap? + 2apbg?a’d® + 4apb?®d?aq® + 20q*pb3ad + 20p?bgPa?d
—20%bgtap? — 2a%bgPd* — 202b3qd* — 2a2p?b2d* — 2¢*p*a?d? + 20pd3bag?
+2ap?dibaq — 2qp*batad® — 2apqPdba — 20*pbglad® — 2¢%p*b*a’ad
—2apb*d®aq — 2a°¢*p?d? + 20%bg°p* + 30%6%¢°p* — 207b'p*d? + 2a%qbp*
—2a2¢%b%a? — a?¢*b?a? — a?¢?bia? + 2ap®bdaq® + 2apbgta’d — 202gb%ap?d?
—2a2p?bgiad + 2ap?bgiad — _2a2pb2q3qd + 2apbd?aq* + 2apb*qa’d
+2apbgia?d? — 2a’pbgtad — 2a2pbgiad? + 2ciqp?biad + 2agp®d3bia
+20qp®b3a®d — 20°gp*biad — 20%gpbiad + 4ag?pd?bia + 20qpbia’d + 2agpd?bia
+20gpb3ad? — 202¢*phPad — 202gpbPad? — 2a@phad? + 20q*pb2ad?

- —20q%p?ba’d? + 20gb%ptad + 4aq’p*b?ad? — 20qp*biatd? + 20:¢°p?b%ad
—2aq*b?ap’d + 2aq®bpad + 20:¢%bp3d2a + 20qbprd?a + 20qb?pida
—202q%bap?d? — 2aqb3apdd — 2abglapdd — o?qid* — o?bid* + 202pb?q?d®
—202gb?ad?)w® — pictad(—dag?bPap®d + 2¢*p*b2ala?d? — 4P pbiald
+2aq®pb?add? + 2aq*pb?add — 202pgtdib — 20%p?¢*d3b + 4a?pPb?g?d®
—402pb3q2d* — 4a?pb2@Pdt + 202p3Pd®h — 402b3qad?t — 4aPb?qPad®
—2a0%p?b%q%d* — 20°pbidiq — 2a?p?bid3q + 202303 d3q — 20?3 d3
—2a2p*b3qd* — 2a%p?bld* — 20%p3d*b3q — 202p3dibg® — 2a%p*d3b3g
—2a%p*d®bg? — 22?023 d® — 202bgtad?* — 2a%bigad? + 2p?b?q3a’d®

2202203 dB + 2p2b%q2a2d® — 6ap?b2qPald? + a?b?g2pla? + 2p%b2q2a’d’
—402¢3b%a*d? — 202¢*b*a’d? — 20°¢*b?a’d® — 202’ pPd?H® — éoquzb‘lcﬁd2
+20%gb%p*d? — 202qp3d®b* — 202gbiptd — 402¢*b°pd + 202%bPap*
—a?q?b*a?p? + 2ap?b?a’dq* + 20bpidag® + 4a2bgPapid + 2abgipiad
+2abp*d?aq® — 4a¢3b?apd + 4apb3qia’d? — 4a2p?b3qad + 4ap?bPqad
—202pb?q*ad? + 2apb?qia’d? — 20p?bgia’d? + 4ag®b?prad — 40 pb3gPad? |
+40g?b3ptad + 2a¢*p?b2ad + 202bg®ptd? + 2a2b%gap? ~ 202bg pid
—2a2b?p*d%q3 — 4a2b%@3ptd + 402p*d?b%q? — 20%¢3b3a®p? + 202b%¢ptad
—o2p?qtd* + 2ag*pbra’d? + 2003 p*b2add — 202¢*p?brad — 202q*p?blad
+2aqpid?bia — 202gbtap?d? + 4a2q*bPap®d + 4a’q?b?*pPad? — 6aq*b?pla’d?
+2ag%0?ptad? - 20¢%b%a?pid — 20%¢?pbtad? + 4agPpbPald — 6aq*pb3ad>
+2aqb*prad + 209’°p?bra’d + 2agpid?bia + 20¢%pbiadd? — 202¢3pb?a’d?
+2aq?pb*add — 202¢*pb3ad? — 2ap3b3d3aq — 202pb3qad? — 2a®pbgPad?
—202p2b3gad® — 202p?bgdad® + 2apb®q2aldt + 2apqtdiab +-2ap?bidiag
+2apbgiad? + 2ap?b?q?ad? + 20p?b3qa’d® + 2ap®bgia’dd + 2apbiqa’d?
+2apb3g?a®d® + 2apb?gPa’d® + 20p*b3d*aq + 2apbidiag + 2apidibag
+2apdiab’q + 2ap3diabg® + 2ap*dibaq® + 4apbiqlad® + 4apbiqiad?
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—6ap3b?qlad® + 2ap®qPdiba + 2ap?qidiba — 2ap?bg*a?d* + 20pbgia’d®
—2ap?b?a’d3q? — 2a2pbiqad® + 20p*d3b?aq + 2apbiqa’d® — 20%pbqPad®
—202pbPad3q? — 202pb2ad3q® — 2ap3PdPba — 2apb2gad?t — 2a2pbgtad’
—202q?pb*a?d — 202pbiqtald + 20°pHa?d + 203p3Ha*d? — pPb?aa’q’
—202bgtap? P + 2P E + 223 d? + 2¢3paPd? — 202bpdd2qt
—2aq¢*p®b?add — 2¢*p*b2a?a’d + 2¢°p3b?ala’d — 2¢°p*b*ala’d
—a?p?bid*)wb + betdptqat (2ap?b3atd® — 8agpibiad® — Saqpibia?d
+2a2¢*pbad® — 8aq?*p*bad? — 20q3p*bad — 4aq®p3abd? + o’qp*bia’d
+40’qp*bPa’d® 4 20°qpd®b®a® 4 8¢°pPd?bal + 40P¢*p*d*ba® — 6ag’pPdba®
+2a°¢?pd®ba® + gp*dba* — 20qpd®h*a® — 209°pdPba® + 4aq*p3dba’
+¢*p2dbat + gp?db3at + 2qpPdbiad + gpid®ba? + 2¢°p3d2ba? + 2qp2bPadd?

- —2agp*d?ba? + 402¢3p2bad? — 8aq?pid3ba + 8a¢?p3bad + o2qPd®ba?
—2aqpibia? — 2aqpib?ad + a2qd®bia? + oqpibid + 20%qpibia
+602qp*b%d? + 2a%qp3b3d? + 202¢%p3bd? + 202 p?b%d® + 202qp*hra®
+602q?pid?b + 6a2qpib3d® + 602¢*p3d3b + 2022 d3b%a? + o?¢Ppthd
—2ap*d®b?a + 2¢°p*d®ba’ + 2¢°p*d?ba’ ’—,l- gp'db®a® + o?®p’dba® + 2qp3d2ba’
+202¢%pd?ba® + 2¢*p2db2at — 4ag’p*d*v*a — 20p*b*d’a + 202p%¢3d®
+2gp2d?b2at — 2aptd?b3a —}'—‘2“a2q3p4d2 + 2p262a2d3q2 + 202p%b3d3

- 420283p4d? — 2063ptba? + 202¢3ptba + 2¢%p3d3ba? — 2aq%ptba® + 2¢*p2d3ba’

—12aq¢*p3d?ba? + 4q2q2p3d2ba + 2¢°p*dba® + 2¢°p3dba* + 2¢3p3dba’
'+2a2qp2d?b2a — 2aqp®d?bad — 6aqp?d?b®a® + 402¢*pPdba — 2aqPp?d®ba
—8aq?pidba? — 6aig’p?d2ba® + ¢*p*dba® — 6agpbia’d — 2aqp\b3a2d3
—6aq®p?ba?d? — 2aq?p?ba’d® — 4aq®pb?a’d® — 2aqpb®ald? — dag?pb*ald?
+4a?qpibiad + 20%¢*p*b%a’d — 4aq®p*b’ad — 120:¢°pPb%ad — 2aq3pl;d2d3
—12a¢’p*b?ad? — 12aqp3b%a®d? — 2aqp*b*ad® + 202qpibida

+2qp3b2a2d3 + 2qp3b3a2d2 + 4q2p2b2a3d2 + 2qp2b2a3d3 +°8qp3b2a3d2
+202¢%*p*ba? + p?biqad® + p?bgPa?d® + 4¢°p3b2atd — 2aqp?biad — 6agpibiaid
+402¢*pa®b?d? + 202¢*p*bad® — 6aqp®b3a’d? — 2aq®pd?ba® — 4oqpdiba
+2qp3db2at + 4¢*b*p3ad? + 2¢%b%a?pid + 202qpa?b®d? + 4a?qpPblad?
+202gpblad® + 4a?g?*pb*ad® + 40Pqp3b2a’d + 8a2q?p*d?b?a — 20qp*dba®
—8agp®b?ad?® + 202¢*p*dba — 8ag?p3d?b?a + 2qp3d®bad® — 2aqp®diba?
+2gp*d®ba® — dagp®d®b’a — 2aqp?*d*b3a + 4o’ gp*d®bPa + 2¢°p*d*ba’
+2gpid?b?a® + 2qp*db®a® — 2aqp*d3ba® — 6aq’pdba® — 4aq2vb2a2p4 — 2ap’q®da
—2aptd®ag® + 202b%¢%*ptd + 4a2q2b2p3d2, + o?p?bPqd® + a?p?bg®d3
+4a*b?q*pta + 20p*¢’a’d® — 2ap*dPag®)w? — pPclatb®a’d?q? (2gp®a’d
—2aq?pd? — 2ap®bad — 20pbd?a — 2aqad? — 2aq?ap? + 2gp*d2a + d*q?a?
+p*d®a® + 2qpa’d® 4 2¢*pd*a + 2¢°pa’d + 2p*qad — dogpbd® + 2qp*ba®
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—2apb2d2 — 2ap?b%d — daqp?bd — 20b%ad? — 2aqp?ad — 2agpd?a — 2ab?ap?
+2p2b2ad + 2pb?d2a + 2p*bd2a + 2pba?d? + 2pba?d 4 2p?ba’d — 4aq’pad
+a?p?b? — dap?bag + 20%q*pd + 4gbp?ad + 4pbad?q + 20pbd + ¢*p*a?
+4a2gpbd + ¢*p*a? — 20q*p*d + 2gp*ba? — Sagpbad + 4quba 1 4apb2ad
+202qbd? — 4agbd?a -l—pr"’a2 + d*b’a 2) ' =

.{F(wal)#é‘im o - (A.2)

Sddid

Sina = [acp(d_acp + betdbkqe‘&”)] { ,Bbkql(’bapq — bw?a — wlag

—aw?p)e~m -T2 4 [cpa[(-—pba — paq — adb — abq
- —adq)w? + pabgd) + sin((1; + To)w)ca’wp?(—w? + db + dg)
— cos((my + 2 )w)ea?w?p*(d + b+ q)] e“"l‘a’z} “

Saain = w{ —em—an; [w8a4c3p3d'+ w"'doé4 3 3(p2 +d® + bq + b2 + ¢2) + widalcSp®

X [d2ozp + b%aqa + q*aba + pdabq dapbq + bp?qo + qu2a + dzaq

—l—oqo%2 + ap?q? + d?ab?) — 2doﬁ” 3 3[ bquzaa quzapa
\ bz 2

—pg*daba — bg*d*aa — b*p*qaa - bp’g°aa — bp®gaad + d2p2abq

- +p%a?bqd + d?’pb*aq + d*pq?ab — 2bd2ap q— b2p2qad

+b?pa’qd + p*b*daq + p*q*dab + q 2pa?bd + d2pa2bq - b2dapqa
—bp?qPad — bqd2ap — bgPdPop ~ B*dPap?® — p*q*dia) ‘
+a?bd3a3cpiq(b + q) + cos((m1 + Tg)w)[w6a4c3p5d + wtcddp*at(d?p
+2bpq + b%p + ¢*p + bga) — wicPdp*ad (—apb’qa — d*bgaa — apdabg
—apbg?a — 2bgd?ap — ad?pb® — aq?d*p + pda®bq) + a2bd3a3c3p5q(b +q)]
+sin((1 + mo)w)[—atcpidw” — atc3ptd(d? + 2bg + b2 + ¢*)w® — acPptd

. x(b%qa + 2d%bq + b*d? — pbga + d%q? + ¢*ba)w? + abcPd?piqa’(—dba

—apb + bap + dap — dgo. — paq + pqa)]] + gom—2am [w8a3c2p2betabkq
+wbbgadc?p?Bk(p? + 3d® + bq + b% + ¢*) + wibga’c®p?Bk[3d%ap?® + ab’qa
+aq?ba + 2pdabq — 2dapbg + bp*qa + 3d*bga + 3ag?d? + ap?b? + ap?q?
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+3ab2d2] — w2bga2c?p? Bk[—3ad?b?qa — 3bgd?apa — 3ad?bga — b*p*qaa

—bp?q?aa — 2bp*qaad + 3d2p2abq +2p azqu + 3d?pb%aq + 3d*pg*ab
+opdb2alq + 2p?b2dagq + 2p2q2dab + 2pdg2a?b + 3pd2abg — 2apdbqa
- —2apdbga — 6bd*ap’q — 2b*p2gad — 2bp*q g2ad — 3b%qd2ap — 3bg*d2ap
—3b2d2ap? — 3p*q*dia] + 3a2b?p*Bkq?d?a?c3(b + q) + sin((m + T)w) -

x [—a®c?p?Bbkqu™ — wibc?kp3adBe(q® + 2bg + b — pd + 2d°?)

—w3adc?p’ Bbkq(—pdh? + b2aq + 2b%d* — bpaq — 2bpqd + bag® + 4dbg
—bgda — pdq® + 2d*¢*) + wab? 2dkp3q2a2,8 (—2bda —~ bap + 2bpa + 2pda -
—2daq — pag + 2pag)] + cos((11 + 72)w)[wlbc?a p36kq(p + d) o
+walc?p? Bbkq(pb? + db? + 2bpg + baq + 2dbg + pg* + 2d*p + dq2)
—w?bc*kp®qa? f(—2¢*ad’p — g*abad — ¢*abpa — gadb®a
—2qabd?a — qapdab — 4d%bgap — qapb®a + 2qpba’d — 2d2pb*a)

2020 BhP PP (b + )] + o 31226 cpaldu®
+wib*q*f2k2cpal3q® ad + pbga + 3p°ad — bgap + 3bgad + 3b2ad]
—w2b?q?f2k2cpa[3bg*apd + 3b%gapd + 3qpba2d + 3p*bgad — bp*qaa
+b%pa?q + ¢*pa’b + p2b2qa + p2g%ba + p®a2bg — 3bzqadp — 3bg*adp
—3b%dap? — 6bdap?q — b*p?qa — bp*qPa — 3p*qPda — 3qadb’a — gapba
—q?abpa — 3qapdab — 3q2abad] + 3a263daép3q3ﬂ2k2 (b+q)
+sin((11 + m2)w)[—wb?ca’p® B2 k¢ (—p + d) + wb*ck?p*q o?B2(b%p
—b2d + 2bpg — 2bqd + bag + pg? — dq?) + wabPck2p?¢®a B (pba — bda + pga
+pad — gad)] + cos((11 + 7o )w) [wlb?ck?p??a®B? + wibtPcap?Bkig®
X (pd + g* + b + 2bg) — wb*ck’p’q°af*(~pg°ad — 2pbgad - qpba’
—pb?ad — q?aba — gabad — qab?a) + a?b3dacp3® B2k (b + Q)]]
+e—a7-1—4a7-2 [wGIBBb?kSqSO{ + w463b3k3q3a(bq + b2 _|_ q2 +p2) —.’w2b3k‘3q3ﬂ3
X (—gbaap — gb?ap — ¢*bap + gbp?a — 2gbp*a — gab?a — ¢*p*a
—q*aba — b?p*a + g*bap + gb%ap + qpba?) + a*b'p?*B2k3¢ (b + q)] }

(A.3)



gddl (wra afc) = Fl

de2(wr, ac) =

F
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1. 6w{ 330508 — w5(5.285 -+ 7.93 x 10~15)
—w4(157.6 — 365.2a) + w?(1890a? + 2370a — 1.070)
— c05(0.1(3 + 107;)) | 1.85010'° + w4(216.2 + 2.6420)

—w?(624.502 — 216.4a — 0.02) + 5a2]
+sin(0.1w(3 + 1071)) [6.610w7 +w’(105.2 4- 1.586 x 10~**a)
+w3(5.170a — 9.570) -+ w(0.4330a — 2502a2)] - 118.4a2}

/[42.32w2 ¢08(0.10(3 + 1071)) + wsin(0.1w(3 + 107))

X[10.57? — 0.08459] — 5.287w' + 64.94w? —500a].
(A4)

3, Qw{ 21.1508 + 21.15075in((0.2(3 + 107 ) w)

—w8[21.6 c0s((0.2(3 + 10m))w) + 1.269 x 10~ Ma + 84.56]

+ sin((0.2(3 +107))w)w’ [84.12 +1.269 x 10—14a]

—w{ cos((0.2(3 + 10r1)) )[86.5 -+ 10.57a] -+ 63.06 + 146.1a]
+ sm((O 2(3 + 1071))w)w? [10.34a - 1.914]

+w? cos((O 2(3 + 1071) )w)[62.45a2 — 21.64a — 0.002]
+189.002 + 237a + 1.07] .

+5in((0.2(3 + 10m))w)w [- 125.1a2 + 0.02\165a]

—0.1250 cos((0.2(3 + 1071))w)a? — 2.960a2}

/{ — 2.115w* + 2.114w% sin((0.2(3 + 107))w)

Fw? [4.232 c0s((0.2(3 + 10m))w) + 6.495

—0.0423w sin((0.2(3 + 1071 ) )w) — 12.50a{.

- (A5)
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