Study of an HIV-1 Model with Time Delays

Yu Bai

Follow this and additional works at: https://ir.lib.uwo.ca/digitizedtheses

Recommended Citation

Bai, Yu, "Study of an HIV-1 Model with Time Delays" (2011). Digitized Theses. 3517.
https://ir.lib.uwo.ca/digitizedtheses/3517

This Thesis is brought to you for free and open access by the Digitized Special Collections at Scholarship@Western. It has been accepted for inclusion in Digitized Theses by an authorized administrator of Scholarship@Western. For more information, please contact wlswadmin@uwo.ca.

Study of an HIV-1 Model with Time Delays

(Spine title: Hopf and Double Hopf Bifurcations on HIV Model)
(Thesis Format: Monograph)
by
Yu Bai

Graduate Program in Applied Mathematics

Submitted in partial fulfillment of the requirements for the degree of Master of Science

School of Graduate and Postdoctoral Studies
The University of Western Ontario
London, Ontario
March, 2011
(c) Yu Bai 2011

CERTIFICATE OF EXAMINATION

$\frac{\text { Supervisor }}{\text { Dr. Pei Yu }}$	Examiners
Dr. Adam Metzler	
	$\frac{\text { Dr. Kaizhong Zhang }}{\text { Dr. Xingfu Zou }}$

The thesis by

Yu Bai

entitled:

Hopf and Double Hopf Bifurcations on HIV Model

is accepted in partial fulfillment of the requirements for the degree of Master of Science

Date \qquad

Abstract

We propose a mathematical model for HIV-1 infection with two time delays, one for the average latent period of cell infection and the other for the average time needed for the virus production after a virion enters a cell. The model examines a viral-therapy for controlling infections through recombining HIV-1 virus with a genetically modified virus. When only the intracellular delay is enrolled into model (1.13), the basic reproduction numbers R_{0} and R_{d} are identified and their threshold properties are discussed. When $R_{0}<1$, the infection-free equilibrium E_{0} is globally asymptotically stable. When $R_{0}>1, E_{0}$ becomes unstable and there occurs the single-infection equilibrium E_{s}. If $R_{0}>1$ and $R_{d}<1, E_{s}$ is asymptotically stable, while for $R_{d}>1, E_{s}$ loses its stability to the double-infection equilibrium. For the double-infection equilibrium E_{d}, we show how to determine its stability and existence of Hopf bifurcation. Some simulations are presented to demonstrate the theoretical results.

Further investigation is carried over by introducing the second time lag into model (2.1). We have identified the new basic reproduction numbers \tilde{R}_{0} and \tilde{R}_{d}, and proved that for $\tilde{R}_{0}<1$ the infection-free equilibrium \tilde{E}_{0} is globally asymptotically stable. If $\tilde{R}_{0}>1$ and $\tilde{R}_{d}<1$, the single-infection equilibrium \tilde{E}_{s} is asymptotically stable. For the double-infection equilibrium \tilde{E}_{d}, it has been found that there exist both Hopf and double Hopf bifurcations. These theoretical predictions are verified by using some numerical examples. Evidences indicate that the viral-therapy of recombining HIV-1 virus with a genetically modified virus may be effective in reducing the HIV-1 load, and larger delays may be able to help eradicate the virus.

Keywords

HIV-1 Model, Time Delay, Recombinant Virus; Stability of Equilibria, Lyapunov Function, LaSalle Invariance Principle, Hopf Bifurcation, Double Hopf Bifurcation, Limit Cycle.

Acknowledgment

I would like to express special gratitude to my supervisor, Dr. Pei Yu. His constant support, patient guidance, insightful suggestion and sincere encouragement are essential to the completion of the thesis. I am fortunate to have him guiding my graduate study in Canada.

Many thanks to Dr. Xingfu Zou for providing me with strong field support. My course professors Dr. Gerry McKeon, Dr. Greg Reid, Dr. Matt Davison, Dr. Colin Denniston, Dr. Vladimir A. Miranskyy and Dr. Rob Corless lead me into the world of Applied Mathematics. I am grateful for their energy in teaching me. Thanks also go to Dr. David Jeffrey, who gave me a chance to do summer research with him during my undergraduate studies.

I would also like to thank the administration of the department of Applied Mathematics and the undergraduate program for their continuous encouragement, invaluable academic discussion, and all the problem solutions. My gratitude extends to all the professors and the marvelous staffs in the department of Applied Mathematics who have made the best working and learning environment for students.

Last but not the least, I dedicate my thesis to my parents, family and friends. Their unconditional love and support are the source of my strength to hold on and overcome various difficulties.

Table of Contents

Certificate of Examination ii
Abstract iii
Keywords iv
Acknowledgment v
Table of Contents vi
List of Figures viii
1 Introduction 1
1.1 Overview 1
1.2 Stability of equilibria and Lyapunov functions 4
1.3 Hopf bifurcation theorem 6
1.4 About the Thesis 7
1.4.1 Higher dimensional HIV-1 therapy model with time delays 7
1.4.2 HIV-1 therapy model (ODE) of fighting a virus with another virus 8
1.4.3 Outline of the thesis 10
2 HIV MODEL WITH INTRACELLULAR DELAY 11
2.1 Introduction 11
2.2 Positivity, boundedness of solutions, equilibria and basic reproduction number 12
2.3 Stability of the disease-free equilibrium E_{0} 14
2.4 Stability of the single-infection equilibrium E_{s} 16
2.5 Stability of the double-infection equilibrium E_{d} : Existence of Hopf bifurcation 19
2.6 Númerical Simulation 22
2.7 Conclusion and discussion 30
3 DELAYS IN CELL INFECTION AND VIRUS PRODUCTION ON HIV-1 DYNAMICS 32
3.1 Introduction 32
3.2 Well-posedness and basic reproduction number 33
3.3 Stability of the infection-free equilibrium \tilde{E}_{0} 35
3.4 Stability of the single-infection equilibrium \tilde{E}_{s} 39
3.5 Stability of the double-infection equilibrium \tilde{E}_{d} : Existence of Hopf and double Hopf bifurcations 41
3.6 Numerical Simulation 45
3.6.1 Periodic Solutions 46
3.6.2 Quasi-periodic Solutions 53
3.7 Conclusion and discussion 55
References 57
A 62
Vita 75

List of Figures

1.1 Model for a double viral infection.

2.1 Simulated time history of system (2.1) for $\lambda=0.24, \alpha=\beta=d=0.004$, $k=50, a=0.33, c=2000, b=p=q=2, \tau=9$ with the initial condition: $x(0)=5.0, y(0)=1.0, z(0)=2.0, v(0)=0.5, w(0)=4.0$, converging to the stable equilibrium solution $E_{0}=(60,0,0,0,0)$.24
2.2 Simulated time history of system (2.1) for $\lambda=0.24, \alpha=\beta=d=$ $0.004, k=50, a=0.33, c=2000, b=p=q=2, \tau=4$ with the initial condition: $x(0)=5.0, y(0)=1.0, z(0)=2.0, v(0)=$ $0.5, w(0)=4.0$, converging to the stable equilibrium solution $E_{s}=$ (12.3533, 0.1543, 0, 3.857, 0).
2.3 Simulated time history of system (2.1) for $\lambda=0.24, \alpha=\beta=d=$ $0.004, k=50, a=0.33, c=2000, b=p=q=2, \tau=0.89$ with the initial condition: $x(0)=5.0, y(0)=1.0, z(0)=2.0, v(0)=$ $0.5, w(0)=4.0$, converging to the stable equilibrium solution $E_{d}=$ (4.4444, 0.5, 0.0003, 12.5, 0.3333).
2.4 Simulated time history of system (2.1) for $\lambda=0.24, \alpha=\beta=d=0.004$, $k=50, a=0.33, c=2000, b=p=q=2, \tau=0.4$ with the initial condition: $x(0)=5.0, y(0)=1.0, z(0)=2.0, v(0)=0.5, w(0)=4.0$, converging to a periodic solution. The bottom right graph is the phase portrait projected on $x-y$ plane indicating a limit cycle.
2.5 Simulated time history of system (2.1) for $\lambda=0.24, \alpha=\beta=0.004$, $k=50, a=0.33, c=2000, b=p=q=2, \tau=0.5, d=0.002$ with the initial condition: $x(0)=5.0, y(0)=1.0, z(0)=2.0, v(0)=0.5$, $w(0)=4.0$, converging to a periodic solution. The bottom right graph is the phase portrait projected on $x-y$ plane indicating a limit cycle.
3.1 Simulated time history of system (3.1) for $\lambda=0.24, \alpha=\beta=d=$ $0.004, k=50, a=\bar{a}=0.33, c=2000, b=p=q=2, \tau_{2}=0.5$, $\tau_{1}=9$ with the initial condition: $x(0)=5.0, y(0)=1.0, z(0)=2.0$, $v(0)=0.5, w(0)=4.0$, converging to the stable equilibrium solution $\tilde{E}_{0}=(60,0,0,0,0)$.
3.2 Simulated time history of system (3.1) for $\lambda=0.24, \alpha=\beta=d=0.004$, $k=50, a=\bar{a}=0.33, c=2000, b=p=q=2, \tau_{1}=4$ and $\tau_{2}=0.5$ with the initial condition: $x(0)=5.0, y(0)=1.0, z(0)=2.0$, $v(0)=0.5, w(0)=4.0$, converging to the stable equilibrium solution $\tilde{E}_{s}=(14.5694,0.1604,0,3.1182,0)$.
3.3 Simulated time history of system (3.1) for $\lambda=0.24, \alpha=\beta=d=0.004$, $k=50, a=\bar{a}=0.33, c=2000, b=p=q=2, \tau_{1}=0.85$ and $\tau_{2}=0.5$ with the initial condition: $\dot{x}(0)=5.0, y(0)=1.0, z(0)=2.0$, $v(0)=0.5, w(0)=4.0$, converging to the stable equilibrium solution $\tilde{E}_{d}=(5.173,0.5,0.0003,10.5987,0.3333)$.
3.4 Simulated time history of system (3.1) for $\lambda=0.24, \alpha=\beta=d=0.004$, $k=50, a=\bar{a}=0.33, c=2000, b=p=q=2, \tau_{1}=0.4$ and $\tau_{2}=0.5$ with the initial condition: $x(0)=5.0, y(0)=1.0, z(0)=2.0$, $v(0)=0.5, w(0)=4.0$, converging to a periodic solution. The bottom right graph is the phase portrait projected on $x-y$ plane indicating a limit cycle.
3.5 Simulated time history of system (3.1) for $\lambda=0.24, \alpha=\beta=d=0.004$, $k=50, a=\bar{a}=0.33, c=2000, b=p=q=2, \tau_{1}=0.4, \tau_{2}=2$ with the initial condition: $x(0)=5.0, y(0)=1.0, z(0)=2.0, v(0)=0.5$, $w(0)=4.0$, converging to a periodic solution. The bottom right graph is the phase portrait projected on $x-y$ plane indicating a limit cycle.
3.6 Simulated time history of system (3.1) for $\lambda=0.83, \alpha=\beta=0.004$, $d=0.002, k=50, a=0.03, \bar{a}=0.33, c=2000, b=p=q=2$, $\tau_{1}=16.03, \tau_{2}=3$ with the initial condition: $x(0)=5.0, y(0)=1.0$, $z(0)=2.0, v(0)=0.5, w(0)=4.0 \ldots \ldots . .$.
3.7 Simulated time history of system (3.1) for $\lambda=7.4807, \alpha=\beta=0.004$, $d=0.002, k=50, a=0.0865744881680455, \bar{a}=0.33, c=2000$, $b=p=q=2, \tau_{1}=43.8987, \tau_{2}=3$ with the initial condition: $x(0)=5.0, y(0)=1.0, z(0)=2.0, v(0)=0.5, w(0)=4.0 \ldots 56$

Chapter 1

Introduction

1.1 Overview

Recently, time-delay differential equation (DDE) has become an important tool in modeling real-life systems, especially in population dynamics. A simple but wellknown delay differential equation in population dynamics is the evolution equation, given by

$$
\begin{equation*}
\frac{d}{d t} z(t)=R\left[z(t)-z(t-\tau)^{2}\right] \tag{1.1}
\end{equation*}
$$

representing a system named after Belgian mathematician P.F. Verhulst [15] in the 19th century. Hutchinson's equation is another well-known delay logistic equation with a discrete delay, described by the following equation:

$$
\begin{equation*}
\frac{d x(t)}{d t}=\gamma x(t)[1-x(t-\tau) / K] \tag{1.2}
\end{equation*}
$$

which is also referred as Wright's equation. One can show [49] that if $\gamma \tau<37 / 24$ and $x(0)>0, x(t) \rightarrow K$ as $t \rightarrow \infty$. Then system (1.2) has a nonconstant periodic solution oscillating around $x=K$.

For immune response model (predator-prey model), the well-known time-delay differential equation is the Lotka-Volterra model. A modified form of the Lotka-Volterra
model [2] is given by:

$$
\begin{align*}
& \frac{d x(t)}{d t}=r x(t)-\frac{r}{K} x(t) x(t-\tau)-\alpha x(t) y(t)-H_{x} \tag{1.3}\\
& \frac{d y(t)}{d t}=-c y(t)+\beta x(t) y(t)-H_{y}
\end{align*}
$$

where $x(t)$ and $y(t)$ represent the rates of change for prey population and predator population, respectively. r is the intrinsic growth rate of the prey and c is the death rate for the predator without prey. α measures the rate of consumption of prey by the predator and β measures the conversion of prey consumed into the predator reproduction rate. K is the carrying capacity. The constants H_{x} and H_{y} denote the rates of harvesting for the populations x and y, respectively. All the parameters are assumed to take positive values. Model (1.3) has been analyzed by Martin and Ruan [2], who showed that the time delay could induce instability, oscillations via Hopf bifurcation, and switching stability.
A more complicated model of immune response is HIV-1 infection model [21], described by

$$
\begin{align*}
\frac{d x(t)}{d t} & =s-d x(t)-k v(t) x(t) \\
\frac{d y(t)}{d t} & =k e^{-\delta \tau} v(t-\tau) x(t-\tau)-\delta y(t)-p y(t) z(t) \\
\frac{d v(t)}{d t} & =N \delta y(t)-\mu v(t) \tag{1.4}\\
\frac{d z(t)}{d t} & =c y(t) z(t)-b z(t)
\end{align*}
$$

where $x(t), y(t), v(t)$ and $z(t)$ denote the concentrations of uninfected cells, infected cells, virus and concentration of cytotoxic T lymphocytes, respectively. The parameter s is the rate at which new target cells are generated. d is the death rate of the susceptible cells and k is the infection rate. The death rate of infected cells is δ, and the production rate of new virus particles is N as the lysis of infected cells occurs. Thus, on average, virus is instantaneously produced at rate $N \delta y(t)$. Also, virus particles are cleared from the system at rate μ per virion. p represents the strength of the lytic component and b is the death rate for cytotoxic T lymphocytes. Lastly, τ denotes the lag between the time when the virus contacts a target cell and the time when the cell becomes actively infected. For the above model, the stability conditions for uninfected steady state and infected steady state have been found. In addition, increasing either of the two delays will help to control HIV-1 infection. Details are shown in [21].

In recent decades, many researchers made contributions to the theory and applications of delay differential equations. The book of Bellman and Cooke [34] describes the basic theory for the DDEs, while Hale's work [23] focuses on the theory of DDEs with bounded delay. The book of Stépán [19] discusses the stability of the retarded DDEs. The theory and applications of DDEs in population models can be found in the book of Yang [49]. This dissertation also studies Hopf Bifurcation in DDEs. The theory of Hopf bifurcation in DDEs can be found in the book of Hassard et al [4]. There are many other researchers who developed theories and methodologies for studying DDEs.

To solve DDEs, computation is vital. There are several software packages for numerically solving delay differential equations and analyzing bifurcations of DDEs. dde23 developed by Shampine and Thompson in Matlab is a powerful tool for simulating retarded differential equations with fixed discrete delays. This method is an extension of the Matlab ODE solver ode23, so called the method of steps. The idea can be described by using the following simple example:

$$
\begin{equation*}
y^{\prime}(t)=y(t-1) \quad \text { for } \quad t \geq 0 \tag{1.5}
\end{equation*}
$$

with history $S(t)=1$ for $t \leq 0$. For $0 \leq t \leq 1$, the above equation can be reduced to an initial value problem for an ODE with $y(t-1)=S(t-1)$ and $y(0)=1$. For the next interval $1 \leq t \leq 2$, analytical solution is treated in the same way, but the numerical solution is more complicated. For numerically solving ODEs, ode23 combines RungeKutta methods with cubic Hermite interpolation. Runge-Kutta methods are more attractive since they are easy to start. With the given initial value, $y_{0}=y(a)$ at $x_{0}=a$, a distance $h_{n}=x_{n+1}-x_{n}$ is taken so that $y_{n} \approx y\left(x_{n}\right)$ and $y_{n+1} \approx y\left(x_{n+1}\right)$. To obtain a more accurate approximation, the step size h_{n} needs be chosen as small as necessary. Different from Runge-Kutta methods which only work at mesh points, cubic Hermite interpolation provides an accurate numerical solution between mesh points. Thus, with such a method, we can obtain $y(t)$ everywhere in the interval. In this dissertation, new DDE models are developed for the HIV-I infection. The models are used to study stability of equilibria and Hopf bifurcation.

1.2 Stability of equilibria and Lyapunov functions

The study of equilibria of nonlinear systems plays an important role in HIV-1 model. In order to be meaningful physically, an equilibrium point must satisfy a certain stability criterion. We begin the discussion on delay differential equations with continuous initial data. For a given constant $r \geq 0$, let $C=C\left([-r, 0], R^{n}\right)$ and, if $x:[-r, \alpha) \rightarrow R^{n}, \alpha>0$, let $x_{t} \in C, t \in[0, \alpha)$, be defined by $x_{t}(\theta)=x(t+\theta)$, $\theta \in[-r, 0]$. For a given function $f: C \rightarrow R^{n}$, a DDE can be defined as

$$
\begin{equation*}
\dot{x}=f\left(x_{t}\right) \tag{1.6}
\end{equation*}
$$

If $\varphi \in C$ is given, then a solution $x(t, \varphi)$ of (1.6) with initial value φ at $t=0$ is a continuous function defined on an interval $[-r, \alpha), \alpha>0$, such that $x_{0}(\theta)=$ $x(\theta, \varphi)=\varphi(\theta)$ for $\theta \in[-r, 0], x(t, \varphi)$ has a continuous derivative on $(0, \alpha)$, a right hand derivative at $t=0$ and satisfies (1.6) for $t \in[0, \alpha)$.

Definition 1.1 Suppose that 0 is an equilibrium point of (1.6); that is, a zero of f. The point 0 is said to be stable if, for any $\varepsilon>0$, there exists a $\delta>0$ such that for any $\varphi \in C$ with $|\varphi|<\delta$, we have $|x(t, \varphi)|<\varepsilon$ for $t \geq-r$. The point 0 is asymptotically stable if it is stable and there is $b>0$ such that $|\varphi|<b$ implies that $|x(t, \varphi)| \rightarrow 0$ as $t \rightarrow \infty$. The point 0 is said to be a local attractor if there is a neighborhood U of 0 such that

$$
\lim _{t \rightarrow \infty} \operatorname{dist}(x(t, U), 0)=0
$$

that is, 0 attracts elements in U uniformly.

For linear retarded equation (1.6), $f: C \rightarrow R^{n}$ being a continuous linear functional, there is a solution of the form $c e^{\lambda t}$ for some nonzero n-vector c if and only if λ satisfies the following characteristic equation

$$
\begin{equation*}
\operatorname{det} D(\lambda)=\lambda I-f\left(e^{-\lambda I}\right)=0 \tag{1.7}
\end{equation*}
$$

The λ is called the eigenvalue of the linearized equation. Equation (1.7) may have infinitely many solutions, but there can be only a finite number in any vertical strip in the complex plane. This is a consequence of the analyticity of (1.7) in λ and the fact that $\operatorname{Re} \lambda \rightarrow \infty$ if $|\lambda| \rightarrow \infty$.

The eigenvalues play an important role in studying stability of equilibria. If there is an eigenvalue with positive real part, then the origin is unstable. For asymptotic stability, it is necessary and sufficient to have $\operatorname{Re} \lambda<0$ for all eigenvalues.

The notion of global stability is usually attributed to Lyapunov. Lyapunov stability is concerned with the trajectories of a system when the initial state is near an equilibrium point. Two methods related to stability were developed in the early 1950's by Razumikhin (1956) and Krasovskii (1956).

Theorem 1.1 (Razumikhin, 1956) Suppose that $u, v, w:[0, \infty) \rightarrow[0, \infty)$ are continuous nondecreasing functions, $u(s), v(s)$ are positive for $s>0, u(0)=v(0)=0$ and v strictly increasing. If there is a continuous function $V: R^{n} \rightarrow R$ such that $u(|x|) \leq V(x) \leq v(|x|), x \in R^{n}$, and $\dot{V}(\varphi(0)) \leq w(|\varphi(0)|)$, if $V(\varphi(\theta)) \leq V(\varphi(0))$, $\theta \in[-r, 0]$, then the point 0 is stable. In addition, if there is a continuous nondecreasing function $p(s)>s$ for $s>0$ such that

$$
\dot{V}(\varphi(0)) \leq w(|\varphi(0)|) \quad \text { if } \quad V(\varphi(\theta)) \leq p(V(\varphi(0))), \quad \theta \in[-r, 0]
$$

then 0 is asymptotically stable.
Theorem 1.2 (Krasovskii, 1956) Suppose that $u, v, w:[0, \infty) \rightarrow[0, \infty)$ are continuous nonnegative nondecreasing functions, $u(s), v(s)$ positive for $s>0, u(0)=v(0)=$ 0 . If there is a continuous function $V: C \rightarrow R$ such that

$$
\begin{aligned}
& u(|\varphi(0)|) \leq V(\varphi) \leq v(|\varphi|), \quad \varphi \in C \\
& \dot{V}(\varphi)=\lim \sup _{t \rightarrow \infty} \frac{1}{t}\left[V\left(x_{t}(., \varphi)\right)-V(\varphi)\right] \leq-w(|\varphi(0)|)
\end{aligned}
$$

then 0 is stable. If, in addition, $w(s)>0$ for $s>0$, then 0 is asymptotically stable.
Theorem 1.3 (Hale, 1963) Let V be a continuous scalar function on C with $\dot{V}(\varphi) \leq$ 0 for all $\varphi \in C$. If $U_{a}=\varphi \in C: V(\varphi) \leq a, W_{a}=\varphi \in U_{a}: \dot{V}(\varphi)=0$ and M is the maximal invariant set in W_{a}, then, for any $\varphi \in U_{a}$ for which $\gamma^{+}(\varphi)$ is bounded, we have $w(\varphi) \subset M$. (This theorem is a natural generalization of the classical LaSalle invariance principle for ODE.) (see [33])

1.3 Hopf bifurcation theorem

Hopf bifurcation theorem was developed in 1942 by E. Hopf ([33]) and actingly researched in the following several decades. The implication of the theorem is extraordinary, since it provides a powerful analytical tool for exploring properties of periodic solutions. Also, it has been found that Hopf bifrucation theorem can be formulated for both ODEs and DDEs, where the latter is mainly studied in this destruction.

Consider the following delay differential equation

$$
\begin{equation*}
\dot{x}=F\left(\alpha, x_{t}\right) \tag{1.8}
\end{equation*}
$$

with $F: R \times C \rightarrow R^{n}, F$ of class $C^{2}, F(\alpha, 0)=0 \quad \forall \alpha \in R$ and $C=C\left([-r, 0], R^{n}\right)$ the space of continuous functions from $[-r, 0]$ into R^{n}. x_{t} is the function defined from $[-r, 0]$ into R^{n} by $x_{t}(\theta)=x(t+\theta), r \geq 0$.

Definition $1.2\left(\alpha_{0}, 0\right) \in R \times C$ is called Hopf bifurcation point of equation (1.8) if every neighborhood of this point in $R \times C$ includes a point (α, φ), with $\varphi \neq 0$ such that φ is the initial value of a periodic solution, with period near a fixed positive number, of equation (1.8) for the value of α.

We assume that
$\left(H_{0}\right) F$ is of class C^{k}, for $k \geq 2, F(\alpha, 0)=0$ for each α, and the map $(\alpha, \varphi) \rightarrow$ $D^{k}{ }_{\varphi} F(\alpha, \varphi)$ sends bounded sets into bounded sets.
$\left(H_{1}\right)$ The characteristic equation

$$
\begin{equation*}
\operatorname{det} \Delta(\alpha, \lambda):=\lambda I d-D_{\varphi} F(\alpha, 0) e^{\lambda(.) I d} \tag{1.9}
\end{equation*}
$$

of the linearized equation of (1.8) around the equilibrium $v=0$:

$$
\begin{equation*}
\frac{d v(t)}{d t}=D_{\varphi} F(\alpha, 0) v_{t} \tag{1.10}
\end{equation*}
$$

in $\alpha=\alpha_{0} \geq 0$ has a simple pair of imaginary roots $\lambda_{0}=\lambda\left(\alpha_{0}\right)= \pm i$, all the other roots λ satisfy $\lambda \neq m \lambda_{0}$ for $m=0,2,3,4, \ldots$.
$\left(H_{1}\right)$ implies that the root λ_{0} lies on a branch of roots $\lambda=\lambda(\alpha)$ of the equation (1.9), of class C^{k-1}.
$\left(H_{2}\right)$ For $\lambda(\alpha)$ being the branch of roots passing through λ_{0}, we have

$$
\begin{equation*}
\left.\frac{\partial}{\partial \alpha} \Re \mathrm{e} \lambda(\alpha)\right|_{\alpha=\alpha_{0}} \neq 0 \tag{1.11}
\end{equation*}
$$

Hopf Bifurcation Theorem. Under the assumptions $\left(H_{0}\right),\left(H_{1}\right)$ and $\left(H_{2}\right)$, there exist a constants $R, \delta>0, \eta>0$, functions $\alpha(c), \omega(c)$ and a periodic function with period $\omega(c), u^{*}(c)$ such that (i) all of these functions are of class C^{1} with respect to c, for $c \in[0, R], \alpha(0)=\alpha_{0}, \omega(0)=\omega_{0}, u^{*}(0)=0$; (ii) $u^{*}(c)$ is a periodic solution of (1.8) for the parameter values $\alpha(c)$ and period $\omega(c)$; (iii) For $\left|\alpha-\alpha_{0}\right|<\delta$ and $|\omega-2 \pi|<\eta$, any ω-periodic solution p, with $\|p\|<R$, of (1.8) for the parameter value α, there exists $c \in[0, R]$ such $\alpha=\alpha(c), \omega=\omega(c)$ and p is, up to a phase shift, equal to $u^{*}(c)$.

1.4 About the Thesis

This thesis is focused on the study of a HIV-1 model. Particular attention is given to stability of equilibrium solutions and bifurcations. Recently reported results show that new drugs and new therapies can help to eradicate the HIV-1 virus. An intention to generalize the results motivated this research. It is expected that the models developed and the results obtained in this dissertation could enhance the research in modelling HIV-1 infection in host.

1.4.1 Higher dimensional HIV-1 therapy model with time delays

In recent years, mathematical modelling plays an important role in understanding HIV-1 in host. During the long history of research in HIV-1 problem, people usually focused on lower dimensional systems, which have less critical points, less coefficients and are easier for analysis. However, in order to understand well the HIV-1 infection, studying higher dimensional systems is necessary.

Moreover, most existing mathematical models for HIV-1 infection are described by ordinary differential equations (ODEs). However, in reality, we need consider the time effects during the infection. Therefore, analyzing delayed HIV-1 models can provide more valuable insight into HIV-1 pathogenesis. Simpler delayed HIV-1 systems are
usually 2 or 3 dimension. In this dissertation, we will study a 5 -dimensional HIV-1 model with time delays.

1.4.2 HIV-1 therapy model (ODE) of fighting a virus with another virus

By years of study, researchers have obtained much knowledge about the mechanism of the interactions of the components within a host and have thereby enhanced the progress in developing new drugs and designing optimal combination of existing therapies. Current therapies for AIDS employ inhibitors of the enzymes required for replication of HIV-1 to reduce the load. However, an alternative approaches, offered by genetic engineering, is to use recombinant virus capable of controlling infections of HIV [12, 16]. This method has been used to modify rhabdoviruses, which makes them capable of killing cells previously infected by HIV-1. The engineered virus codifies the coreceptor pair CD4 and CXCR4 of the host cell membrane and bind specifically to the protein complex gp120/41 of HIV-1 expressed on the surface of infected cells, where it causes a rapid cytopathic infection. This destruction of infected cells decreased by about 1000 -fold HIV-1 load [32]. In the present study, evidences show that this treatment could be effective in reducing individual HIV-1 load.

To understand this approach of fighting a virus with a genetically modified virus, Revialla and Garcia-Ramos [42] proposed a mathematical model, which has been subjected to intensive studies in [46]. A standard and classic differential equation model for HIV infection can be described by the following system:

$$
\begin{align*}
\dot{x} & =\lambda-d x-\beta x v \\
\dot{y} & =\beta x v-a y \tag{1.12}\\
\dot{v} & =k y-p v
\end{align*}
$$

where the dot indicates differentiation with respect to time $t, x(t), y(t)$ and $v(t)$ are the densities of virus-free host cells, infected cells and a pathogen virus, respectively, at time t. The production rate and death rate for the healthy cells are λ and $d . \beta$ is the constant rate at which a T-cell is contacted by the virus. It is also assumed that once cells are infected, they may die at rate a due to the action of either the virus

Figure 1.1: Model for a double viral infection.
or the immune system, and each produces the pathogens at a rate k during their life which on average has length $1 / a$.

In $[46,42]$, a second virus is added into the model (1.12), which then becomes

$$
\begin{align*}
\dot{x} & =\lambda-d x-\beta x v \\
\dot{y} & =\beta x v-a y-\alpha w y \\
\dot{z} & =\alpha w y-b z \tag{1.13}\\
\dot{v} & =k y-p v \\
\dot{w} & =c z-q w
\end{align*}
$$

where $w(t)$ and $z(t)$ are the recombinant (genetically modified) virus and doubleinfected cells. After second virus enrolled, once the recombinant infects cells previously infected by the pathogens, they can be turned into double-infected cells at a rate $\alpha w y$, where recombinants are removed at a rate $q w$. The double infected cells die at a rate $b z$, and release recombinants at rate $c z$ (see Figure 1.1).

The viral-therapy may have several benefits over present conventional treatment. It is expected to have no toxicity, no negative side effects, and no evolution of resistance. Another advantage is the simplicity of treatment. These advantages could make this
viral-therapy an alternative to extend the survival of AIDS patients ([42]).

1.4.3 Outline of the thesis

In Chapter 2, we propose a mathematical model for HIV-1 infection with the intracellular delay. The method of Lyapunov function, LaSalle's invariant principle and Routh-Hurwitz Criterion are applied to analyze the stability of equilibrium solutions. Hopf bifurcation theorem is used to explore properties of periodic solutions. The effect of time delay is also investigated.

In Chapter 3, a modified mathematical model for HIV-1 infection is given, which has delays in cell infection and virus production. Besides the analysis for stability of equilibria and Hopf bifurcation, we will also develop an analytical approach to consider double-Hopf bifurcation in the model with multiple delays. Determining the critical parameter values for double Hopf bifurcation is illustrated using numerical examples. Conclusion and discussions are presented at the end of each chapter. The study in this thesis is intended to provide some useful information for medical treatment.

Chapter 2

HIV MODEL WITH INTRACELLULAR DELAY

2.1 Introduction

In this chapter, we introduce a time lag into model (1.13), since in the real situation, it takes time for the virus to contact a target cell and the contacted cells to be actively affected. This can be described by the eclipse phase of the virus life cycle. Further, we assume that the probability density that a cell still remains infected for τ time units after being contacted by the virus obeys an exponentially decay function. Therefore, following the line of $[21,22]$, model (1.13) can be modified to

$$
\begin{align*}
x^{\prime}(t) & =\lambda-d x(t)-\beta x(t) v(t) \\
y^{\prime}(t) & =\beta e^{-a \tau} x(t-\tau) v(t-\tau)-a y(t)-\alpha w(t) y(t) \\
z^{\prime}(t) & =\alpha w(t) y(t)-b z(t) \tag{2.1}\\
v^{\prime}(t) & =k y(t)-p v(t) \\
w^{\prime}(t) & =c z(t)-q w(t)
\end{align*}
$$

where τ denotes the average time for a viral particle to go through the eclipse phase. Because the dimension of the system is higher than 2, system (2.1) may exhibit some interesting dynamic behaviors (Hopf bifurcation, limit cycles and even chaos), which
would make the analysis of the system more complicated. Thus, the goal of this chapter focuses on equilibrium solutions and their bifurcations. In next section, we will justify the positivity and boundedness of solutions of (2.1). Also, in order to obtain biologically meaningful equilibria, the basic reproduction number R_{0} will be fined. In Sections $2.3,2.4$ and 2.5 , we analyze the stability of the three equilibria: disease-free equilibrium E_{0}, single-infection equilibrium E_{s} and double-infection equilibrium E_{d}. In Section 2.6, two numerical examples are provided to demonstrate the theoretical predictions. The last section summarizes the results obtained in this chapter with some discussions.

2.2 Positivity, boundedness of solutions, equilibria and basic reproduction number

Because of biological reasons, all variables in system (2.1) must be non-negative. Therefore, given a non-negative initial value, the corresponding solution must remain non-negative. This can be verified as follows.
Let $X=C\left([-\tau, 0] ; R^{5}\right)$ be the Banach space of continuous mapping from $[-\tau, 0]$ to R^{5} equipped with the sup-norm. By the fundamental theory of FDEs (see, e.g. [23]), we know that there is a unique solution $(x(t), y(t), z(t), v(t), w(t))$ to system (2.1). It is biologically reasonable to consider the following initial conditions for (2.1):

$$
\begin{gather*}
(x(\theta), y(\theta), z(\theta), v(\theta), w(\theta)) \in X \tag{2.2}\\
x(\theta) \geq 0, y(\theta) \geq 0, z(\theta) \geq 0, v(\theta) \geq 0, w(\theta) \geq 0, \quad \theta \in[-\tau, 0] \tag{2.3}
\end{gather*}
$$

From (2.1), we obtain

$$
\begin{align*}
x(t) & =x(0) e^{-\int_{0}^{t}(d+\beta v(\xi)) d \xi}+\lambda \int_{0}^{t} e^{-\int_{\eta}^{t}(d+\beta v(\xi)) d \xi} d \eta \\
y(t) & =y(0) e^{-\int_{0}^{t}(a+\alpha w(\xi)) d \xi}+\beta \int_{0}^{t} x(\eta-\tau) v(\eta-\tau) e^{-a \tau} e^{-\int_{\eta}^{t}(a+\alpha w(\xi)) d \xi} d \eta \\
z(t) & =z(0) e^{-b t}+\int_{0}^{t} \alpha w(\eta) y(\eta) e^{-b(t-\eta)} d \eta \tag{2.4}\\
v(t) & =v(0) e^{-p t}+\int_{0}^{t} k y(\eta) e^{-p(t-\eta)} d \eta \\
w(t) & =w(0) e^{-q t}+\int_{0}^{t} c z(\eta) e^{-q(t-\eta)} d \eta
\end{align*}
$$

Positivity immediately follows from the non-negative initial conditions. To show the boundedness of the solutions of system (2.1), we define

$$
\begin{equation*}
B(t)=c k e^{-a \tau} x(t)+c k y(t+\tau)+c k z(t+\tau)+\frac{a c}{2} v(t+\tau)+\frac{b k}{2} w(t+\tau), \tag{2.5}
\end{equation*}
$$

where all the solutions are non-negative. Choosing $m=\min \left\{\frac{a}{2}, \frac{b}{2}, d, p, q\right\}$, it follows that the derivative of $B(t)$ with respective to time t along the solution of (2.1) is given by

$$
\begin{align*}
\left.\frac{d B(t)}{d t}\right|_{(2.1)}= & c k e^{-a \tau}[\lambda-d x(t)-\beta v(t) x(t)] \\
& +c k \beta e^{-a \tau} v(t) x(t)-c k a y(t+\tau)-c k \alpha w(t+\tau) y(t+\tau) \\
& +c k \alpha w(t+\tau) y(t+\tau)-c k b z(t+\tau) \\
& +\frac{a c}{2} k y(t+\tau)-\frac{a c}{2} p v(t+\tau) \\
& +\frac{b k}{2} c z(t+\tau)-\frac{b k}{2} q w(t+\tau) \tag{2.6}\\
= & c k e^{-a \tau} \lambda-c k e^{-a \tau} d x(t)-\frac{a}{2} c k y(t+\tau)-\frac{b}{2} c k z(t+\tau) \\
& -\frac{a c}{2} p v(t+\tau)-\frac{b k}{2} q w(t+\tau) \\
\leq & c k e^{-a \tau} \lambda-m B(t)
\end{align*}
$$

This implies that $B(t)$ is bounded, so are $x(t), y(t), z(t), v(t)$ and $w(t)$. System (2.1) has three possible biologically meaningful equilibria: disease-free equilibrium E_{0}, single-infection equilibrium E_{s} and double-infection equilibrium E_{d}, given below:

$$
\begin{align*}
& E_{0}=\left(\frac{\lambda}{d}, 0,0,0,0\right) \\
& E_{s}=\left(\frac{a p}{\beta k e^{-a \tau}}, \frac{\lambda e^{-a \tau}}{a}-\frac{d p}{\beta k}, 0, \frac{\lambda k e^{-a \tau}}{a p}-\frac{d}{\beta}, 0\right) \tag{2.7}\\
& E_{d}=\left(\frac{\lambda \alpha c p}{d \alpha c p+\beta b k q}, \frac{b q}{\alpha c}, \frac{q\left(\alpha \beta \lambda c k e^{-a \tau}-\beta a b k q-\alpha a c d p\right)}{\alpha c(\beta b k q+\alpha c d p)}, \frac{b k q}{\alpha c p}, \frac{\alpha \beta \lambda c k e^{-a \tau}-\beta a b k q-\alpha a c d p}{\alpha(\beta b k q+\alpha c d p)}\right) .
\end{align*}
$$

From biological meaning of the basic reproduction number (see [42]), we define

$$
\begin{equation*}
R_{0}=\frac{k \beta \lambda}{a d p} e^{-a \tau} \tag{2.8}
\end{equation*}
$$

If $R_{0}<1, E_{0}$ is the only biologically meaningful equilibrium. If $R_{0}>1$, there is
another biologically meaningful equilibrium E_{s} (single-infection equilibrium). The double-infection equilibrium E_{d} exists (biologically meaningful) if and only if $R_{d}>1$, where

$$
\begin{equation*}
R_{d}=\frac{c \alpha}{b q}\left(\frac{\lambda e^{-a \tau}}{a}-\frac{d p}{k \beta}\right)=\frac{c d p \alpha}{b k q \beta}\left(R_{0}-1\right) \tag{2.9}
\end{equation*}
$$

Hence

$$
\begin{equation*}
R_{d}>1 \Leftrightarrow R_{0}>1+\frac{b k q \beta}{c d p \alpha} \tag{2.10}
\end{equation*}
$$

2.3 Stability of the disease-free equilibrium E_{0}

The linearized system of (2.1) at the disease-free equilibrium E_{0} is

$$
\begin{align*}
x^{\prime}(t) & =-d x(t)-\frac{\beta \lambda}{d} v(t) \\
y^{\prime}(t) & =\beta e^{-a \tau} \frac{\lambda}{d} v(t-\tau)-a y(t) \\
z^{\prime}(t) & =-b z(t) \tag{2.11}\\
v^{\prime}(t) & =k y(t)-p v(t) \\
w^{\prime}(t) & =c z(t)-q w(t)
\end{align*}
$$

for which the characteristic equation is given by

$$
\begin{equation*}
D(\xi, \tau)=(\xi+d)(\xi+b)(\xi+q)\left[(\xi+a)(\xi+p)-k \beta e^{-a \tau} \frac{\lambda}{d} e^{-\xi \tau}\right]=0 \tag{2.12}
\end{equation*}
$$

Obviously, it suffices to only consider the quadratic factor,

$$
\begin{equation*}
(\xi+a)(\xi+p)-k \beta e^{-a \tau} \frac{\lambda}{d} e^{-\xi \tau}=\xi^{2}+(a+p) \xi+a p-k \beta e^{-a \tau} \frac{\lambda}{d} e^{-\xi \tau} \tag{2.13}
\end{equation*}
$$

Note that $\xi=0$ is not a root of equation (2.13) if $R_{0}<1$, since

$$
\begin{equation*}
a p-k \beta e^{-a r} \frac{\lambda}{d}=a p\left(1-R_{0}\right)>0 \tag{2.14}
\end{equation*}
$$

When $\tau=0$, equation (2.13) becomes

$$
\begin{equation*}
\xi^{2}+(a+p) \xi+a p-k \beta \frac{\lambda}{d}=0 \tag{2.15}
\end{equation*}
$$

In order for the two roots of Equation (2.15) to have negative real part, it requires

$$
\begin{equation*}
a p-k \beta \frac{\lambda}{d}>0 \tag{2.16}
\end{equation*}
$$

which is equivalent to

$$
\begin{equation*}
R_{0}(\tau=0)<1 \tag{2.17}
\end{equation*}
$$

Thus, when $R_{0}<1$, all roots of Equation (2.15) have negative real part. From [36], we know that all roots of Equation (2.13) depend continuously on τ. In [10], the assumption (ii),

$$
\begin{equation*}
\lim \sup \left\{\left|Q_{m}(\xi, \tau) / P_{n}(\xi, \tau)\right|:|\xi| \rightarrow \infty, \Re(\xi) \geq 0\right\}<1 \quad \text { for any } \tau \tag{2.18}
\end{equation*}
$$

holds here, where

$$
P_{n}(\xi, \tau)+Q_{m}(\xi, \tau) e^{-\xi \tau}=D(\xi, \tau)
$$

This condition ensures that there are no roots exist in the infinity (see [10]), and hence $\operatorname{Re}(\xi)<+\infty$ for any root of (2.13). As a result, the only possibility for the roots of Equation (2.13) to enter into the right half of complex plane is to cross the imaginary axis when τ increases. Thus, we define $\xi=i \omega \quad(\omega>0)$ to be a purely imaginary root of (2.13). Then we get

$$
\begin{equation*}
-\omega^{2}+i \omega(a+p)+a p-k \beta e^{-a \tau} \frac{\lambda}{d} e^{-i \omega \tau}=0 \tag{2.19}
\end{equation*}
$$

Taking moduli of Equation (2.19) gives

$$
\begin{equation*}
H\left(\omega^{2}\right):=\omega^{4}+\left(a^{2}+p^{2}\right) \omega^{2}+a^{2} p^{2}-\left(k \beta e^{-a \tau} \frac{\lambda}{d}\right)^{2}=0 \tag{2.20}
\end{equation*}
$$

Clearly, $H\left(\omega^{2}\right)$ has no positive real roots if $R_{0}<1$. Therefore, all roots of (2.13) have negative (positive) real parts if $R_{0}<1 \quad\left(R_{0}>1\right)$.

Summarizing the above results, we have the following theorem.
Theorem 2.1 When $R_{0}<1$, the disease-free equilibrium E_{0} is locally asymptotically
stable; at $R_{0}=1, E_{0}$ becomes unstable and the single-infection equilibrium E_{s} occurs. Furthermore, for global stability, we have the following result.

Theorem 2.2 If $R_{0}<1$, the disease-free equilibrium E_{0} is globally asymptotically stable, implying that none of the two virus can invade regardless of the initial load.

Proof: We choose the following Lyapunov function:

$$
\begin{align*}
V= & \frac{e^{-a \tau}}{2}\left(x(t)-\frac{\lambda}{d}\right)^{2}+\frac{\lambda}{d} y(t)+\frac{\lambda}{d} z(t)+\frac{a \lambda}{d k} v(t) \\
& +\frac{b \lambda}{c d} w(t)+\frac{\lambda}{d} \beta e^{-a \tau} \int_{t-\tau}^{t} x(\eta) v(\eta) d \eta . \tag{2.21}
\end{align*}
$$

Using non-negativity of the solution and $R_{0}<1$, the derivative of V with respective to time t along the solution of system (2.1) can be manipulated as

$$
\begin{align*}
\left.\frac{d V}{d t}\right|_{(2.1)}= & e^{-a \tau}\left(x(t)-\frac{\lambda}{d}\right)\left[\lambda-d x(t)-\beta v(t)\left(x(t)-\frac{\lambda}{d}\right)\right] \\
& -e^{-a \tau}\left(x(t)-\frac{\lambda}{d}\right) \beta v(t) \frac{\lambda}{d}+\frac{\lambda}{d} \beta e^{-a \tau} x(t-\tau) v(t-\tau) \\
& -\frac{a \lambda}{d} y(t)-\frac{\alpha \lambda}{d} w(t) y(t)+\frac{\lambda}{d} \alpha w(t) y(t)-\frac{\lambda}{d} b z(t) \\
& +\frac{a \lambda}{d} y(t)-\frac{a \lambda}{d k} p v(t)+\frac{b \lambda}{d} z(t)-\frac{b \lambda}{c d} q w(t) \\
& +\frac{\lambda}{d} \beta e^{-a \tau}\left[x(t)-\frac{\lambda}{d}\right] v(t)+\frac{\lambda}{d} \beta e^{-a \tau} \frac{\lambda}{d} v(t)-\frac{\lambda}{d} \beta e^{-a \tau} x(t-\tau) v(t-\tau) \\
= & -e^{-a \tau}\left(x(t)-\frac{\lambda}{d}\right)^{2}(d+\beta v(t))-\left[\frac{a \lambda}{d k} p-\frac{\lambda}{d} \beta e^{-a \tau} \frac{\lambda}{d}\right] v(t)-\frac{b \lambda}{c d} q w(t) \\
= & -e^{-a \tau}\left(x(t)-\frac{\lambda}{d}\right)^{2}(d+\beta v(t))-\frac{a p \lambda}{d k}\left[1-R_{0}\right] v(t)-\frac{b \lambda}{c d} q w(t) \\
\leq & -d e^{-a \tau}\left(x(t)-\frac{\lambda}{d}\right)^{2} . \tag{2.22}
\end{align*}
$$

Thus, by LaSalle's invariance principle [24], we conclude that E_{0} is globally asymptotically stable.

2.4 Stability of the single-infection equilibrium E_{s}

From the analysis in the previous section, we know that the single-infection equilibrium E_{s} occurs when $R_{0}>1$. Thus, in order to study the stability of E_{s}, we assume
$R_{0}>1$ in this section. The linearized system of (2.1) at E_{s} is

$$
\begin{align*}
x^{\prime}(t)= & -\frac{k \beta \lambda}{a p} e^{-a \tau} x(t)-\frac{a p}{k} e^{a \tau} v(t) \\
y^{\prime}(t)= & \beta e^{-a \tau}\left(\frac{k \lambda}{a p} e^{-a \tau}-\frac{d}{\beta}\right) x(t-\tau)+\frac{a p}{k} v(t-\tau) \\
& -a y(t)-\alpha w(t)\left(\frac{\lambda}{a} e^{-a \tau}-\frac{d p}{k \beta}\right) \\
z^{\prime}(t)= & \alpha w(t)\left(\frac{\lambda}{a} e^{-a \tau}-\frac{d p}{k \beta}\right)-b z(t) \tag{2.23}\\
v^{\prime}(t)= & k y(t)-p v(t) \\
w^{\prime}(t)= & c z(t)-q w(t)
\end{align*}
$$

with the corresponding characteristic equation:

$$
\begin{align*}
& \left.\left\{\left(\xi+\frac{k \beta \lambda}{a p} e^{-a \tau}\right)\left[(\xi+a)(\xi+p)-k\left(\frac{a p}{k} e^{-\xi \tau}\right)\right]+\beta e^{-a \tau}\left(\frac{k \lambda}{a p} e^{-a \tau}-\frac{d}{\beta}\right) e^{-\xi \tau}\right) k\left(\frac{a p}{k} e^{-a \tau}\right)\right\} \\
& \times\left[(\xi+b)(\xi+q)-c \alpha\left(\frac{\lambda}{a} e^{-a \tau}-\frac{d p}{k \beta}\right)\right]=0 . \tag{2.24}
\end{align*}
$$

The above characteristic equation consists of two factors:

$$
\begin{equation*}
(\xi+b)(\xi+q)-c \alpha\left(\frac{\lambda}{a} e^{-a \tau}-\frac{d p}{k \beta}\right)=\xi^{2}+(b+q) \xi+b q-c \alpha\left(\frac{\lambda}{a} e^{-a \tau}-\frac{d p}{k \beta}\right) \tag{2.25}
\end{equation*}
$$

and

$$
\begin{align*}
& \left.\left(\xi+\frac{k \beta \lambda}{a p} e^{-a \tau}\right)\left[(\xi+a)(\xi+p)-k\left(\frac{a p}{k} e^{-\xi \tau}\right)\right]+\beta e^{-a \tau}\left(\frac{k \lambda}{a p} e^{-a \tau}-\frac{d}{\beta}\right) e^{-\xi \tau}\right) k\left(\frac{a p}{k e^{-a \tau}}\right), \\
& =\xi^{3}+\left(a+p+\frac{k \beta \lambda}{a p} e^{-a \tau}\right) \xi^{2}+\left[\frac{k \beta \lambda}{a p} e^{-a \tau}(a+p)+a p\right] \xi+k \beta \lambda e^{-a \tau}-a p(\xi+d) e^{-\xi \tau} \tag{2.26}
\end{align*}
$$

For the quadratic factor (2.25), it is easy to verify that its two roots have negative real part if and only if $R_{d}<1$. For the cubic factor (2.26), we rewrite it as

$$
\begin{equation*}
\xi^{3}+a_{2}(\tau) \xi^{2}+a_{1}(\tau) \xi+a_{0}(\tau)-\left(c_{1} \xi+c_{2}\right) e^{-\xi \tau}=0 \tag{2.27}
\end{equation*}
$$

where

$$
\begin{align*}
a_{2}(\tau) & =a+p+\frac{k \beta \lambda}{a p} e^{-a \tau} \\
a_{1}(\tau) & =\frac{k \beta \lambda}{a p} e^{-a \tau}(a+p)+a p \\
a_{0}(\tau) & =k \beta \lambda e^{-a \tau} \tag{2.28}\\
c_{1} & =a p \\
c_{2} & =a p d
\end{align*}
$$

It is easy to see that $\xi=0$ is not a root of (2.27) if $R_{0}>1$, since

$$
\begin{equation*}
a_{0}(\tau)-c_{2}=k \beta \lambda e^{-a \tau}-a p d=\operatorname{apd}\left(R_{0}-1\right)>0 \tag{2.29}
\end{equation*}
$$

When $\tau=0,(2.27)$ becomes

$$
\begin{equation*}
\xi^{3}+a_{2}(0) \xi^{2}+\left(a_{1}(0)-c_{1}\right) \xi+a_{0}(0)-c_{2}=0 \tag{2.30}
\end{equation*}
$$

Applying the Routh-Hurwitz crition (see [13]), we know that all roots of (2.30) have negative real part, because

$$
\begin{aligned}
& a_{2}(0)=a+p+\frac{k \beta \lambda}{a p}>0 \\
& a_{1}(0)-c_{1}=a p+\frac{k \beta \lambda}{a p}(a+p)-a p=\frac{k \beta \lambda}{a p}(a+p)>0 \\
& a_{0}(0)-c_{2}=k \beta \lambda-a p d=a p d\left(R_{0}(\tau=0)-1\right)>0
\end{aligned}
$$

and

$$
\begin{aligned}
a_{2}(0)\left[a_{1}(0)-c_{1}\right]-\left[a_{0}(0)-c_{2}\right] & =\left(a+p+\frac{k \beta \lambda}{a p}\right)\left[\frac{k \beta \lambda}{a p}(a+p)\right]-(k \beta \lambda-a p d) \\
& =\left(\frac{k \beta \lambda}{a p}\right)^{2}(a+p)+\frac{k \beta \lambda}{a p}\left(a^{2}+a p+p^{2}\right)+a p d>0
\end{aligned}
$$

Therefore, for $\tau=0$, all roots of (2.27) have negative real part. From [36], we know that all roots of Equation (2.27) depend continuously on τ. Also, (2.18) holds for this case, and hence $\operatorname{Re}(\xi)<+\infty$ for any root of (2.27). As a result, the roots of Equation (2.27) can only enter into the right half in complex plane by crossing the imaginary axis when τ increases. Thus, we define $\xi=i \omega(\omega>0)$ to be a purely imaginary root
of (2.27), and then obtain

$$
\begin{equation*}
-i \dot{\omega}^{3}-a_{2}(\tau) \omega^{2}+a_{1}(\tau) i \omega+a_{0}(\tau)-\left(c_{1} i \omega+c_{2}\right) e^{-i \omega \tau}=0, \tag{2.31}
\end{equation*}
$$

Taking moduli of the above equation results in

$$
\begin{equation*}
H\left(\omega^{2}\right):=\omega^{6}+\left[a_{2}(\tau)^{2}-2 a_{1}(\tau)\right] \omega^{4}+\left[a_{1}(\tau)^{2}-2 a_{0}(\tau) a_{2}(\tau)-c_{1}^{2}\right] \omega^{2}+a_{0}(\tau)^{2}-c_{2}^{2}=0 . \tag{2.32}
\end{equation*}
$$

Since

$$
\begin{align*}
& a_{2}(\tau)^{2}-2 a_{1}(\tau)=a^{2}+p^{2}+\left(\frac{k \beta \lambda}{a p} e^{-a \tau}\right)^{2}>0, \\
& a_{1}(\tau)^{2}-2 a_{0}(\tau) a_{2}(\tau)-c_{1}^{2}=\left(\frac{k \beta \lambda}{a p} e^{-a \tau}\right)^{2}\left(a^{2}+p^{2}\right)>0, \tag{2.33}\\
& a_{0}(\tau)^{2}-c_{2}^{2}=\left(k \beta \lambda e^{-a \tau}+\operatorname{apd}\right) \operatorname{apd}\left(R_{0}-1\right)>0,
\end{align*}
$$

the function $H\left(\omega^{2}\right)$ is monotonically increasing for $0 \leq \omega^{2}<\infty$ with $H(0)>0$. This implies that Equation (2.32) does not have positive roots if $R_{0}>1$. As a result, all roots of (2.27) have negative real part for $\tau>0$ if $R_{0}>1$.

Summarizing the above results, we have the following theorem.
Theorem 2.3 If $1<R_{0}<1+\frac{b k q \beta}{c d p \alpha}$, the single-infection equilibrium E_{s} is asymptotically stable, implying that the recombinant virus cannot survive but the pathogen virus can; when $R_{0}=1+\frac{b \mathrm{~kg} \beta}{\mathrm{~cd} p \alpha}$ (i.e., $R_{d}=1$), E_{s} becomes unstable and the recombinant virus may persist.

2.5 Stability of the double-infection equilibrium $E_{d}:$ Existence of Hopf bifurcation

When $R_{0}>1+\frac{b k \beta \beta}{c d p \alpha}$ (i.e., $R_{d}>1$), the single-infection equilibrium E_{s} becomes unstable and the double-infection equilibrium E_{d} comes into existence. To discuss the stability of E_{d}, we assume $R_{d}>1$ in this section. The linearized system of (2.1) at $E_{d}=\left(x_{d}, y_{d}, z_{d}, v_{d}, w_{d}\right)$ is

$$
\begin{align*}
x^{\prime}(t) & =-\left(d+\beta v_{d}\right) x(t)-\beta x_{d} v(t) \\
y^{\prime}(t) & =\beta e^{-a \tau} v_{d} x(t-\tau)-\left(a+\alpha w_{d}\right) y(t)+\beta e^{-a \tau} x_{d} v(t-\tau)-\alpha y_{d} w(t) \\
z^{\prime}(t) & =\alpha w_{d} y(t)-b z(t)+\alpha y_{d} w(t) \tag{2.34}\\
v^{\prime}(t) & =k y(t)-p v(t) \\
w^{\prime}(t) & =c z(t)-q w(t)
\end{align*}
$$

Letting $m_{d}=d+\beta v_{d}, m_{a}=a+p$ and $m_{b}=b+q$. Using the facts that $c \alpha y_{d}=b q$ and $k \beta e^{-a r} x_{d}=p\left(\alpha w_{d}+a\right)$, we obtain the characteristic equation of (2.34), given by

$$
\begin{gather*}
D(\xi):=\xi^{5}+A_{4}(\tau) \xi^{4}+A_{3}(\tau) \xi^{3}+A_{2}(\tau) \xi^{2}+A_{1}(\tau) \xi+A_{0} \\
 \tag{2.35}\\
-\left(B_{3}(\tau) \xi^{3}+B_{2}(\tau) \xi^{2}+B_{1}(\tau) \xi\right) e^{-\xi \tau}=0
\end{gather*}
$$

where

$$
\begin{align*}
& A_{4}(\tau)=m_{a}+m_{b}+m_{d}+\alpha w_{d} \\
& A_{3}(\tau)=a p+m_{a} m_{d}+\left(m_{a}+m_{d}\right) m_{b}+\left(p+m_{b}+m_{d}\right) \alpha w_{d} \\
& A_{2}(\tau)=a p m_{d}+m_{b}\left(a p+m_{a} m_{d}\right)+\left(b q+m_{b} m_{d}+p m_{b}+p m_{d}\right) \alpha w_{d} \\
& A_{1}(\tau)=a p m_{b} m_{d}+\left(b q m_{d}+p b q+p m_{b} m_{d}\right) \alpha w_{d} \\
& A_{0}=\alpha b p q w_{d} m_{d} \tag{2.36}\\
& B_{3}(\tau)=p\left(\alpha w_{d}+a\right) \\
& B_{2}(\tau)=\left(d+m_{b}\right)\left(\alpha w_{d}+a\right) p \\
& B_{1}(\tau)=d m_{b}\left(\alpha w_{d}+a\right) p
\end{align*}
$$

When $\tau=0$, it has been shown in [46] that there exists an $R_{2}>R_{1}$ such that when $R_{0} \in\left(R_{1}, R_{2}\right), E_{d}$ is asymptotically stable, implying that all roots of (2.35) have negative real part. Unlike for E_{0} and E_{s} where the characteristic equations can be factorized into lower degree polynomials, we are unable to factorize the characteristic equation (2.35). Hence, it is very challenging to determine the stability of E_{d} by the
procedure as shown in Sections 2.3 and 2.4. In what follows, we let $R(\omega)$ and $S(\omega)$ respectively be the real and imaginary parts of $D(i \omega)$, given by

$$
\begin{align*}
R(\omega)= & \frac{1}{\alpha^{2} c p(d \alpha c p+\beta b k q)}\left\{\omega ^ { 4 } \left[\alpha \beta^{2} b^{2} q^{2} k^{2}+\alpha^{2} c \beta p b q(p+b+q+2 d) k\right.\right. \\
& \left.+\alpha^{3} c^{2} p^{2} d(b+q+p+d)\right]-\omega^{2}\left[\alpha p \beta^{2} b^{2} q^{2}(b+q) k^{2}\right. \\
& \left.+\alpha^{2} b c p \beta q(2 b d p+2 d q p-b q a) k+\alpha^{3} d c^{2} p^{2}(d b p+d q p-b q a)\right] \\
& -a^{2} b p^{3} q d^{2} \alpha^{2} c^{2}-2 a^{2} b^{2} p^{2} q^{2} d \alpha c \beta k-a^{2} b^{3} p q^{3} \beta^{2} k^{2} \\
& +\left[\omega^{4} \alpha^{3} c^{2} p \beta \lambda k-\omega^{2}\left[\alpha^{2} \beta^{2} b q \lambda c(p+b+q) k^{2}\right.\right. \tag{2.37}\\
& \left.+\alpha^{3} c^{2} p \beta \lambda(q d+p b+b d+b q+p q+d p) k\right]+a b^{2} p q^{2} \beta^{2} \alpha \lambda c k^{2} \\
& +a b p^{2} q d \alpha^{2} c^{2} \beta \lambda k-\cos (\tau \omega) \omega^{2} \alpha^{3} \beta \lambda c^{2} k p^{2}(d+b+q) \\
& \left.\left.-\sin (\tau \omega) p^{2} \alpha^{3} \beta \lambda c^{2} k\left[\omega^{3}-\omega d(b+q)\right]\right] e^{-a \tau}\right\} \\
S(\omega)= & \frac{1}{\alpha c p(d \alpha c p+\beta b k q)}\left\{\omega \left[\omega^{4}\left(\alpha c p \beta b q k+\alpha^{2} c^{2} p^{2} d\right)-\omega^{2}\left[\beta^{2} b^{2} q^{2}(p+b+q) k^{2}\right.\right.\right. \\
& +\alpha c p b \beta q(p b+p q+2 d p+2 b d+2 q d) k \\
& \left.+\alpha^{2} c^{2} p^{2} d(b p+p q+b d+q d+d p)\right] \\
& -b^{3} q^{3} \beta^{2} a k^{2}-b^{2} q^{2} \alpha c p \beta a k(2 d+p) \\
& -b q d \alpha^{2} c^{2} a p^{2}(d+p)+\left[-\omega^{2}\left[\alpha^{2} c^{2} p \beta \lambda(p+b+q+d) k+\beta^{2} b q \alpha \lambda c k^{2}\right]\right. \\
& +b q \beta^{2} \alpha \lambda c(b q+b p+p q) k^{2}+p \alpha^{2} c^{2} \beta \lambda(b p q+b d p+d p q+b d q) k \\
& +\cos (\tau \omega) p^{2} \alpha^{2} \beta \lambda c^{2} k\left(d b+d q-\omega^{2}\right) \\
+ & \left.\left.\left.\sin (\tau \omega) \omega \alpha^{2} \beta \lambda c^{2} k p^{2}(b+d+q)\right] e^{-a \tau}\right]\right\} \tag{2.38}
\end{align*}
$$

To obtain the critical point at which a Hopf bifurcation takes place, we need solve the following equtions for τ and ω

$$
\begin{equation*}
R(\omega)=0 \quad \text { and } \quad S(\omega)=0 \tag{2.39}
\end{equation*}
$$

where τ is our bifurcation parameter. Solving (2.39) yields two solutions for $\tau: \tau=\tau_{s 1}$
and $\tau=\tau_{s 2}$, which are given in Appendix. Then, substituting these two solutions into any one of the above equations, we get the solutions for ω. We choose a positive value for $\tau=\tau_{s 1}$ or $\tau=\tau_{s 2}$ and the corresponding value of ω as the critical value, from which the corresponding value of R_{d} can be determined. Hence, all the critical values of parameters τ, ω and R_{d} are expressed in terms of $\alpha, \beta, \lambda, a, b, c, d, k, p, q$, denoted by τ_{h}, ω_{h} and R_{h}.

Following lecture notes in [48], there are three additional conditions which need be satisfied

$$
\begin{gather*}
R(\omega)=0 \Rightarrow S(\omega)<0 \text { for } \tau<\tau_{h} \tag{2.40}\\
\left.\frac{\partial D(\xi, \tau)}{\partial \xi}\right|_{\xi=\omega_{h} i, \tau=\tau_{h}} \neq 0 \tag{2.41}
\end{gather*}
$$

and

$$
\begin{equation*}
\left.R e \frac{d \xi}{d \tau}\right|_{\xi=\omega_{h}, \tau=\tau_{h}}<0 . \tag{2.42}
\end{equation*}
$$

If the conditions (2.40), (2.41) and (2.42) hold, then we conclude that (2.35) has a pair of purely imaginary roots when $\tau=\tau_{h}$ or $\left(R=R_{h}\right)$, implying existence of a Hopf bifurcation. Therefore, when $1<R_{d}<R_{h}$, the equilibrium solution E_{d} is stable. At the critical point $\tau=\tau_{h}\left(R_{d}=R_{h}\right), E_{d}$ loses its stability and bifurcates into a family of limit cycles.

2.6 Numerical Simulation

In this section, we present two numerical examples to illustrate the theoretical results obtained in previous sections.

Example 1. For this example, we choose τ as the bifurcation parameter and set $\lambda=0.24, d=0.004, \beta=0.004, a=0.33, \alpha=0.004, b=2, k=50, p=2, c=2000$, $q=2$. Note that these parameter values have been used in computer simulation in [46] for the model without delay. Then,

$$
\begin{align*}
& R_{0}=18.1818 e^{-0.33 \tau} \\
& R_{d}=0.08\left(18.1818 e^{-0.33 \tau}-1\right) \tag{2.43}
\end{align*}
$$

The disease-free equilibrium E_{0} now is given by

$$
\begin{equation*}
E_{0}=(60,0,0,0,0) \tag{2.44}
\end{equation*}
$$

which is stable for $\tau>8.7892$, as shown in Figure 2.1. When $\tau<8.7892, R_{0}>1$, implying that E_{0} is unstable and the single-infection equilibrium E_{s} occurs, given by

$$
\begin{equation*}
E_{s}=\left(3.3 e^{0.33 \tau}, 0.7273 e^{-0.33 \tau}-0.04,0,18.1818 e^{-0.33 \tau}-1,0\right), \tag{2.45}
\end{equation*}
$$

which is stable for $0.9022<\tau<8.7892$. See Figure 2.2 for the simulated results when $\tau=4$. Further decreasing τ to pass the critical value $\tau=0.9022$ will cause E_{s} to lose its stability, giving rise to the double-infection equilibrium,

$$
\begin{equation*}
E_{d}=\left(4.4444,0.5,0.1111 e^{-0.33 \tau}-0.0825,12.5,111.11 e^{-0.33 \tau}-82.5\right) \tag{2.46}
\end{equation*}
$$

The corresponding characteristic equation (2.35) at E_{d} for this example becomes

$$
\begin{align*}
D(\xi)= & \xi^{5}+\left(6.054+0.4444 e^{-0.33 \tau}\right) \xi^{4}+\left(8,324+2.6907 e^{-0.33 \tau}\right) \xi^{3} \\
& +\left(-0.888+5.4773 e^{-0.33 \tau}\right) \xi^{2}+\left(-0.07656+0.2951 e^{-0.33 \tau}\right) \xi \tag{2.47}\\
& +0.129 e^{-0.33 \tau}-0.14256-\left[\left(0.8889 e^{-0.33 \tau}\right) \xi^{3}\right. \\
& \left.+\left(3.5591 e^{-0.33 \tau}\right) \xi^{2}+\left(0.0142 e^{-0.33 \tau}\right) \xi\right] e^{-\xi \tau}=0
\end{align*}
$$

Let $R(\omega)$ and $S(\omega)$ be the real and imaginary parts of $D(i \omega)$, i.e.,

$$
\begin{align*}
R(\omega)= & \left(6.054+0.4444 e^{-0.33 \tau}\right) \omega^{4}-\left(-0.888+5.4773 e^{-0.33 \tau}\right) \omega^{2} \\
& +0.192 e^{-0.33 \tau}-0.14256+\left(0.8889 e^{-0.33 \tau}\right) \omega^{3} \sin (\omega \tau) \tag{2.48}\\
& +\left(3.5591 e^{-0.33 \tau}\right) \omega^{2} \cos (\omega \tau)-\left(0.0142 e^{-0.33 \tau}\right) \omega \sin (\omega \tau)
\end{align*}
$$

Figure 2.1: Simulated time history of system (2.1) for $\lambda=0.24, \alpha=\beta=d=0.004$, $k=50, a=0.33, c=2000, b=p=q=2, \tau=9$ with the initial condition: $x(0)=5.0, y(0)=1.0, z(0)=2.0, v(0)=0.5, w(0)=4.0$, converging to the stable equilibrium solution $E_{0}=(60,0,0,0,0)$.

$$
\begin{align*}
S(\omega)= & \omega^{5}-\left(8.324+2.691 e^{-0.33 \tau}\right) \omega^{3}+\left(-0.07656+0.2951 e^{-0.33 \tau}\right) \omega \\
& +\left(0.8889 e^{-0.33 \tau}\right) \omega^{3} \cos (\omega \tau)-\left(3.5591 e^{-0.33 \tau}\right) \omega^{2} \sin (\omega \tau) \tag{2.49}\\
& -\left(0.0142 e^{-0.33 \tau}\right) \omega \cos (\omega \tau)
\end{align*}
$$

Then, in order to determine the stability of E_{d}, we first solve the two equations,

$$
\begin{equation*}
R(\omega)=0 \quad \text { and } \quad S(\omega)=0 \tag{2.50}
\end{equation*}
$$

A numerical scheme is applied to find the real solution of (2.50), given by

Figure 2.2: Simulated time history of system (2.1) for $\lambda=0.24, \alpha=\beta=d=0.004$, $k=50, a=0.33, c=2000, b=p=q=2, \tau=4$ with the initial condition: $x(0)=5.0, y(0)=1.0, z(0)=2.0, v(0)=0.5, w(0)=4.0$, converging to the stable equilibrium solution $E_{s}=(12.3533,0.1543,0,3.857,0)$.

$$
\begin{equation*}
(\tau, \omega)=(0.8712406304,0.1451313875) \tag{2.51}
\end{equation*}
$$

Hence, $\tau_{h}=0.8712406304$ is the critical value, giving a corresponding value $R_{h}:=$ $R_{d}\left(\tau=\tau_{h}\right)=1.011097469$. It is easy to verify that for $\tau<\tau_{h}$,

$$
\begin{equation*}
R(\omega)=0 \Rightarrow S(\omega)<0 . \tag{2.52}
\end{equation*}
$$

It can also be shown that other two conditions are satisfied:

$$
\begin{equation*}
\left.\frac{\partial D(\xi, \tau)}{\partial \xi}\right|_{\xi=0.1451313875 i, \tau=0.8712406304}=-0.3642551096+1.623717248 i \neq 0 \tag{2.53}
\end{equation*}
$$

Figure 2.3: Simulated time history of system (2.1) for $\lambda=0.24, \alpha=\beta=d=0.004$, $k=50, a:=0.33, c=2000, b=p=q=2, \tau=0.89$ with the initial condition: $x(0)=5.0, y(0)=1.0, z(0)=2.0, v(0)=0.5, w(0)=4.0$, converging to the stable equilibrium solution $E_{d}=(4.4444,0.5,0.0003,12.5,0.3333)$.
and

$$
\begin{equation*}
\left.R e \frac{d \xi}{d \tau}\right|_{\xi=0.1451313875 i, \tau=0.8712406304}=-0.4331822741<0 . \tag{2.54}
\end{equation*}
$$

Thus, the roots of (2.47) have positive real part when $\tau<\tau_{h}\left(R>R_{h}\right)$, and (2.47) has a pair of purely imaginary roots when $\tau=\tau_{h}\left(R=R_{h}\right)$, implying existence of a Hopf bifurcation. Therefore, we conclude that when $0.8712406304<\tau<0.9022$, the equilibrium solution E_{d} is stable. At the critical point, $\tau=\tau_{h}\left(R=R_{h}\right), E_{d}$ loses its stability through a Hopf bifurcation (see Figure 2.3 and 2.4).

Example 2. Now we select d as our bifurcation parameter and set $\tau=0.5$. Then,

$$
\begin{align*}
& R_{0}=\frac{0.06166}{d} \\
& R_{d}=20 d\left(\frac{0.06166}{d}-1\right) \tag{2.55}
\end{align*}
$$

Figure 2.4: Simulated time history of system (2.1) for $\lambda=0.24, \alpha=\beta=d=0.004$, $k=50, a=0.33, c=2000, b=p=q=2, \tau=0.4$ with the initial condition: $x(0)=5.0, y(0)=1.0, z(0)=2.0, v(0)=0.5, w(0)=4.0$, converging to a periodic solution. The bottom right graph is the phase portrait projected on $x-y$ plane indicating a limit cycle.
and the disease-free equilibrium E_{0} becomes

$$
\begin{equation*}
E_{0}=\left(\frac{0.24}{d}, 0,0,0,0\right), \tag{2.56}
\end{equation*}
$$

which is stable for $d>0.06166$. When $d<0.06166, R_{0}>1$, causing E_{0} to lose its stability and bifurcate into the single-infection equilibrium:

$$
\begin{equation*}
E_{s}=(3.8929,0.61665-10 d, 0,15.41625-250 d, 0) \tag{2.57}
\end{equation*}
$$

It follows from Theorem (2.3) that E_{s} is stable when $0.011665<d<0.06166$. Further decreasing d to pass the critical value $d=0.011665$ will cause E_{s} to become unstable
and there occurs the double-infection equilibrium:

$$
\begin{equation*}
E_{d}=\left(\frac{3.84}{0.8+16 d}, 0.5, \frac{0.25(0.6159-5.28 d)}{0.8+16 d}, 12.5, \frac{250(0.6159-5.28 d)}{0.8+16 d}\right) . \tag{2.58}
\end{equation*}
$$

The corresponding characteristic equation (2.35) for this example can be written as

$$
\begin{align*}
D(\xi)= & \xi^{5}+\left(6.38+d+\frac{0.6159-5.28 d}{0.8+16 d}\right) \xi^{4}+\left(10.2965+6.33 d+\frac{(6.05+d)(0.6159-5.28 d)}{0.8+16 d}\right) \xi^{3} \\
& +\left(9.98 d+3.139+\frac{(12.3+6 d)(0.61595 .28 d)}{0.8+16 d}\right) \xi^{2}+(2.64 d+0.132 \\
& \left.+\frac{(16 d+0.6)(0.6159-5.28 d)}{0.8+16 d}\right) \xi+\frac{8(0.61595 .28 d)(d+0.5)}{0.8+16 d} \\
& -\left[\left(\frac{2(0.6159-5.28 d)}{0.8+16 d}+0.66\right) \xi^{3}+2(d+4)\left(\frac{0.6159-5.28 d}{0.8+16 d}+0.33\right) \xi^{2}\right. \\
& \left.+8 d\left(\frac{0.6159-5.28 d}{0.8+16 d}+0.33\right) \xi\right] e^{-0.5 \xi}=0 . \tag{2.59}
\end{align*}
$$

Let $R(\omega)$ and $S(\omega)$ be the real and imaginary parts of $D(i \omega)$, i.e.,

$$
\begin{align*}
R(\omega)= & \left(6.38+d+\frac{0.6159-5.28 d}{0.8+16 d}\right) \omega^{4}-\left(9.98 d+3.139+\frac{(12.3+6 d)(0.61595 .28 d)}{0.8+16 d}\right) \omega^{2} \\
& \frac{8(0.61595 .28 d)(d+0.5)}{0.8+16 d}+\left(\frac{2(0.6159-5.28 d)}{0.8+16 d}+0.66\right) \omega^{3} \sin (0.5 \omega) \\
& +2(d+4)\left(\frac{0.6159-5.28 d}{0.8+16 d}+0.33\right) \omega^{2} \cos (0.5 \omega) \\
& -8 d\left(\frac{0.6159-5.28 d}{0.8+16 d}+0.33\right) \omega \sin (0.5 \omega), \tag{2.60}
\end{align*}
$$

$$
\begin{align*}
S(\omega)= & \omega^{5}-\left(10.2965+6.33 d+\frac{(6.05+d)(0.6159-5.28 d)}{0.8+16 d}\right) \omega^{3}+(2.64 d+0.132 \\
& \left.+\frac{(16 d+0.6)(0.6159-5.28 d)}{0.8+16 d}\right) \omega-8 d\left(\frac{0.6159-5.28 d}{0.8+16 d}+0.33\right) \omega \cos (\omega \tau) \\
& +\left(\frac{2(0.6159-5.28 d)}{0.8+16 d}+0.66\right) \omega^{3} \cos (\omega \tau) \tag{2.61}\\
& -2(d+4)\left(\frac{0.6159-5.28 d}{0.8+16 d}+0.33\right) \omega^{2} \sin (\omega \tau)
\end{align*}
$$

Similarly, solving the two equations

$$
\begin{equation*}
R(\omega)=0 \quad \text { and } \quad S(\omega)=0 \tag{2.62}
\end{equation*}
$$

Figure 2.5: Simulated time history of system (2.1) for $\lambda=0.24, \alpha=\beta=0.004$, $k=50, a=0.33, c=2000, b=p=q=2, \tau=0.5, d=0.002$ with the initial condition: $x(0)=5.0, y(0)=1.0, z(0)=2.0, v(0)=0.5, w(0)=4.0$, converging to a periodic solution. The bottom right graph is the phase portrait projected on $x-y$ plane indicating a limit cycle.
we get the critical value $d_{h}=0.01106282794$, and the corresponding value $R_{h}=$ $R_{d}\left(d=d_{h}\right)=1.012043375$. It is easy to prove that for $d<d_{h}$,

$$
\begin{equation*}
R(\omega)=0 \Rightarrow S(\omega)<0 \tag{2.63}
\end{equation*}
$$

We can also verify that

$$
\begin{equation*}
\left.\frac{\partial D(\xi, \tau)}{\partial \xi}\right|_{\xi=0.1503251517 i, d=0.01106282794}=-0.4371876370+1.701468428 i \neq 0 \tag{2.64}
\end{equation*}
$$

and

$$
\begin{equation*}
\left.\operatorname{Re} \frac{d \xi}{d \tau}\right|_{\xi=0.1503251517 i, d=0.01106282794}=-27.01142970<0 \tag{2.65}
\end{equation*}
$$

Therefore, all roots of (2.59) have positive real part when $d<d_{h}\left(R>R_{h}\right)$, and (2.59) has a pair of purely imaginary root at $d=d_{h}\left(R_{d}=R_{h}\right)$, implying existence of a Hopf bifurcation. Therefore, we conclude that when $0.01106282794<d<0.011665$, the equilibrium solution E_{d} is stable. At the critical point, $d=d_{h}\left(R_{d}=R_{h}\right), E_{d}$ loses its stability through Hopf bifurcation, leading to a family of limit cycles, as shown in Figure 2.5.

2.7 Conclusion and discussion

In this chapter, we have studied a HIV-1 infection model with intracellular delay, described by (2.1). We have fully analyzed the stability of the infection-free equilibrium E_{0}, and derived the condition for the local stability of the single-infection equilibrium E_{s}. For the double-infection equilibrium E_{d}, we demonstrated how to determine the stability of E_{d} and existence of Hopf bifurcation.

However, Due to difficulty in constructing a suitable Lyapunov function for the singleinfection equilibrium E_{s}, we didn't obtain its global stability. In addition, the characteristic equations for double-infection equilibrium E_{d} cannot be factorized into lower degree polynomials, so it is very challenging to obtain the symbolic solution for ω.

In our simulations, we use the same data used as in [46], so we are able to catch sight of the effect of delay by comparing with the results in [46]. In [46], the simulation results show that
E_{0} is stable when $d<0.192$,
E_{0} is unstable and E_{s} is stable when $0.052<d<0.192$,
E_{s} is unstable and E_{d} is stable when $0.024<d<0.052$,
At $d_{h}=0.024\left(R_{h}=7.891\right), E_{d}$ loses its stability through Hopf bifurcation.
It is obvious that the critical values obtained in Example 2 are all larger than the above ones. An implication of this observation is that the intracellular delay τ plays a positive role in preventing the virus. When all other parameters are fixed, a larger value of τ can bring R_{0} to a level lower than 1 , making the infection free equilibrium globally asymptotically stable. Therefore, viral-therapy of recombining HIV-1 virus with a generally modified virus can effectively reduce the HIV-1 load in patients, and larger intracellular delay is able to help eradicate the virus.

In reality, there also exists a time period between the time when the virus has penetrated into a cell and the time when the new virions are created within the cell and are released from the cell. Thus, another time lag may should be considered in model (2.1), which will be studied in next chapter.

Chapter 3

DELAYS IN CELL INFECTION AND VIRUS PRODUCTION ON HIV-1 DYNAMICS

3.1 Introduction

In this chapter, we shall introduce a second time lag to model (2.1). There is a virus production period for new virions to be produced within and released from the infected cells. This is because the virus production process within a cell consists of several stages: (i) uncoating of viral RNA, (ii) reverse transcription of viral RNA into DNA, (iii) transport of the newly made DNA into the nucleus, (iv) integration of the viral DNA into the chromosome, (v) production of viral RNA and protein, and (vi) creation of new virus from these newly synthesized RNA molecules and proteins (see [25]).

When both delays are present, model (1.13) can be written as

$$
\begin{align*}
x^{\prime}(t) & =\lambda-d x(t)-\beta x(t) v(t) \\
y^{\prime}(t) & =\beta e^{-a \tau_{1}} x\left(t-\tau_{1}\right) v\left(t-\tau_{1}\right)-a y(t)-\alpha w(t) y(t) \\
z^{\prime}(t) & =\alpha w(t) y(t)-b z(t) \tag{3.1}\\
v^{\prime}(t) & =k e^{-\tilde{a} \tau_{2}} y\left(t-\tau_{2}\right)-p v(t) \\
w^{\prime}(t) & =c z(t)-q w(t)
\end{align*}
$$

where τ_{1} and τ_{2} represent the latent period and virus production period, respectively. When the second delay is introduced, the dynamic analysis of model (3.1) becomes much more involved. In Section 3.2, we will prove the positivity and boundedness of solutions of system (3.1). Also, the basic reproduction number \tilde{R}_{0} will be fined. In Sections 3.3, 3.4 and 3.5, we analyze the stability of three equilibria: disease-free equilibrium \tilde{E}_{0}, single-infection equilibrium \tilde{E}_{s} and double-infection equilibrium \tilde{E}_{d}. In Section 3.6, simulation results are given to illustrate the theoretical predictions. The last section concludes this chapter with some discussions.

3.2 Well-posedness and basic reproduction number

To show the well-posedness, we define $\tilde{X}:=C\left(\left[-\max \left(\tau_{1}, \tau_{2}\right), 0\right] ; R^{5}\right)$, which is the Banach space of continuous mapping from $\left[-\max \left(\tau_{1}, \tau_{2}\right), 0\right]$ to R^{5} equipped with the sup-norm. It is biologically reasonable to consider the following initial conditions for system (3.1):

$$
\begin{gather*}
(x(\theta), y(\theta), z(\theta), v(\theta), w(\theta)) \in \tilde{X} \tag{3.2}\\
x(\theta) \geq 0, y(\theta) \geq 0, z(\theta) \geq 0, v(\theta) \geq 0, w(\theta) \geq 0, \quad \theta \in\left[-\max \left(\tau_{1}, \tau_{2}\right), 0\right] \tag{3.3}
\end{gather*}
$$

It can be shown using the fundamental theory of FDEs (see, e.g. [23]) that there is a unique solution $(x(t), y(t), z(t), v(t), w(t))$ to system (3.1). The following theorem establishes the non-negativity and boundedness of solutions to (3.1-3.3).

Theorem 3.1 Let $(x(t), y(t), z(t), v(t), w(t))$ be a solution of system (3.1) satisfying the conditions (3.2) and (3.3). Then $x(t), y(t), z(t), v(t)$ and $w(t)$ are all non-negative and bounded for all $t \geq 0$ at which the solution exists.

Proof: From (3.1), we obtain

$$
\begin{align*}
x(t) & =x(0) e^{-\int_{0}^{t}(d+\beta v(\xi)) d \xi}+\lambda \int_{0}^{t} e^{-\int_{\eta}^{t}(d+\beta v(\xi)) d \xi} d \eta \\
y(t) & =y(0) e^{-\int_{0}^{t}(a+\alpha w(\xi)) d \xi}+\beta \int_{0}^{t} x\left(\eta-\tau_{1}\right) v\left(\eta-\tau_{1}\right) e^{-a \tau_{1}} e^{-\int_{\eta}^{t}(a+\alpha w(\xi)) d \xi} d \eta \\
z(t) & =z(0) e^{-b t}+\int_{0}^{t} \alpha w(\eta) y(\eta) e^{-b(t-\eta)} d \eta \\
v(t) & =v(0) e^{-p t}+\int_{0}^{t} k y\left(\eta-\tau_{2}\right) e^{-p(t-\eta)} e^{-\tilde{a} \tau_{2}} d \eta \\
w(t) & =w(0) e^{-q t}+\int_{0}^{t} c z(\eta) e^{-q(t-\eta)} d \eta \tag{3.4}
\end{align*}
$$

which clearly show that $x(t), y(t), z(t), v(t)$ and $w(t)$ are all non-negative for all $t \geq 0$, as long as (3.3) is satisfied

For boundedness of the solution, we let

$$
\begin{equation*}
\tilde{B}(t)=c k e^{-a \tau_{1}} x(t)+c k y\left(t+\tau_{1}\right)+c k z\left(t+\tau_{1}\right)+\frac{a c}{2} e^{\tilde{a} \tau_{2}} v\left(t+\tau_{1}+\tau_{2}\right)+\frac{b k}{2} w\left(t+\tau_{1}\right) \tag{3.5}
\end{equation*}
$$

where all the solutions are non-negative. Thus, differentiating $\tilde{B}(t)$ with respect to time along the solution of (3.1) yields

$$
\begin{align*}
\left.\frac{d \tilde{B}}{d t}\right|_{(3.1)}= & c k e^{-a \tau_{1}}[\lambda-d x(t)-\beta v(t) x(t)] \\
& +c k \beta e^{-a \tau_{1}} v(t) x(t)-c k a y\left(t+\tau_{1}\right)-c k \alpha w\left(t+\tau_{1}\right) y\left(t+\tau_{1}\right) \\
& +c k \alpha w\left(t+\tau_{1}\right) y\left(t+\tau_{1}\right)-c k b z\left(t+\tau_{1}\right) \\
& +\frac{a c}{2} k y\left(t+\tau_{1}\right)-\frac{a c}{2} p v\left(t+\tau_{1}+\tau_{2}\right) e^{\tilde{a_{\tau}^{2}}} \\
& +\frac{b k}{2} c z\left(t+\tau_{1}\right)-\frac{b k}{2} q w\left(t+\tau_{1}\right) \tag{3.6}\\
= & c k e^{-a \tau} \lambda-c k e^{-a \tau_{1}} d x(t)-\frac{a}{2} c k y\left(t+\tau_{1}\right)-\frac{b}{2} c k z\left(t+\tau_{1}\right) \\
& -\frac{a c}{2} p v\left(t+\tau_{1}+\tau_{2}\right) e^{\tilde{\tau_{\tau}^{2}}}
\end{align*}-\frac{b k}{2} q w\left(t+\tau_{1}\right) \quad\left\{\begin{array}{ccc}
\\
-a \tau_{1} \lambda-\tilde{m} B(t)
\end{array}\right.
$$

where $\tilde{m}=\min \left\{\frac{a}{2}, \frac{b}{2}, d, p, q\right\}$.

Similarly, system (3.1) has three possible biologically meaningful equilibria:

$$
\begin{align*}
\tilde{E}_{0}= & \left(\frac{\lambda}{d}, 0,0,0,0\right) \\
\tilde{E}_{s}= & \left(\frac{a p}{\beta k e^{-a \tau_{1}}-\tilde{a} \tau_{2}}, \frac{\lambda e^{-a \tau_{1}}}{a}-\frac{d p}{\beta k e^{-\tilde{a} \tau_{2}}}, 0, \frac{\lambda k e^{-a \tau_{1}-\tilde{a} \tau_{2}}}{a p}-\frac{d}{\beta}, 0\right), \\
\tilde{E}_{d}= & \left(\frac{\lambda \alpha c p}{d \alpha c p+\beta b k q e^{-\tilde{a} \tau_{2}}}, \frac{b q}{\alpha c}, \frac{q\left(\alpha \beta \lambda c k e^{-a \tau_{1}} \tilde{\alpha} \tau_{2}-\beta a b k q e^{-\tilde{a} \tau_{2}}-\alpha a c d p\right)}{\alpha c\left(\beta b k q e^{\left.-\tilde{a} \tau_{2}+\alpha c d p\right)}\right.}, \frac{b k q e^{-\tilde{a} \tau_{2}}}{\alpha c p},\right. \tag{3.7}\\
& \left.\frac{\alpha \beta \lambda c k e^{-a \tau_{1}-\tilde{a} \tau_{2}-\beta a b k q e^{-\tilde{a} \tau_{2}-\alpha a c d p}}}{\alpha\left(\beta b k q e^{\left.-\tilde{a} \tau_{2}+\alpha c d p\right)}\right.}\right),
\end{align*}
$$

where the basic reproduction number is defined as

$$
\begin{equation*}
\tilde{R}_{0}=\frac{k \beta \lambda}{a d p} e^{-a \tau_{1}-\tilde{a} \tau_{2}}, \tag{3.8}
\end{equation*}
$$

and for convenience, we let

$$
\begin{equation*}
\left.\tilde{R}_{d}=\frac{c \alpha}{b q} \frac{\left(\lambda e^{-a \tau_{1}}\right.}{a}-\frac{d p}{k \beta} e^{\tilde{a} \tau_{2}}\right)=\frac{c d p \alpha}{b k q \beta} e^{\tilde{\tau_{r}^{2}}}\left(\tilde{R}_{0}-1\right) . \tag{3.9}
\end{equation*}
$$

\tilde{E}_{0} is the only biologically meaningful equilibrium when $\tilde{R}_{0}<1$. For $\tilde{R}_{0}>1$, there is another biologically meaningful equilibrium \tilde{E}_{s} (single-infection equilibrium). The double-infection equilibrium \tilde{E}_{d} exists if and only if $\tilde{R}_{d}>1$.

3.3 Stability of the infection-free equilibrium \tilde{E}_{0}

Let $r=\frac{\tau_{2}}{\tau_{1}}$. Then, system (3.1) can be reduced to the following system with dimensionless time $\frac{t}{\tau_{1}}$, which, for simplicity, is again denoted by t :

$$
\begin{align*}
\frac{d x(t)}{d t} & =\tau_{1}(\lambda-d x(t)-\beta x(t) v(t)) \\
\frac{d y(t)}{d t} & =\tau_{1}\left(\beta e^{-a \tau_{1}} x(t-1) v(t-1)-a y(t)-\alpha w(t) y(t)\right) \\
\frac{d z(t)}{d t} & =\tau_{1}(\alpha w(t) y(t)-b z(t)) \tag{3.10}\\
\frac{d v(t)}{d t} & =\tau_{1}\left(k e^{-\tilde{a} \tau_{2}} y(t-r)-p v(t)\right) \\
\frac{d w(t)}{d t} & =\tau_{1}(c z(t)-q w(t))
\end{align*}
$$

Linearizing (3.10) at \tilde{E}_{0} yields

$$
\begin{align*}
x^{\prime}(t) & =\tau_{1}\left(-d x(t)-\frac{\beta \lambda}{d} v(t)\right) \\
y^{\prime}(t) & =\tau_{1}\left(\beta e^{-a \tau_{1}} \frac{\lambda}{d} v(t-1)-a y(t)\right) \\
z^{\prime}(t) & =-b z(t) \tau_{1} \tag{3.11}\\
v^{\prime}(t) & =\tau_{1}\left(k e^{-\hat{a} \tau_{2}} y(t-r)-p v(t)\right) \\
w^{\prime}(t) & =\tau_{1}(c z(t)-q w(t))
\end{align*}
$$

whose characteristic equation is

$$
\begin{equation*}
\left(\xi+d \frac{\tau_{2}}{r}\right)\left(\xi+b \frac{\tau_{2}}{r}\right)\left(\xi+q \frac{\tau_{2}}{r}\right)\left[\left(\xi+a \frac{\tau_{2}}{r}\right)\left(\xi+p^{\frac{\tau_{2}}{r}}\right)-k \beta\left(\frac{\tau_{2}}{r}\right)^{2} e^{\left.-a \frac{\tau_{2}}{r}\left(1+r \frac{\tilde{a}}{a}\right) \frac{\lambda}{d} e^{-\xi(r+1)}\right]=0 . . .}\right. \tag{3.12}
\end{equation*}
$$

Let

$$
\begin{align*}
& \bar{d}=d \frac{\tau_{2}}{r}, \quad \bar{b}=b \frac{\tau_{2}}{r}, \quad \bar{q}=q \frac{\tau_{2}}{r}, \quad \bar{c}=c \frac{\tau_{2}}{r}, \quad \bar{a}=a \frac{\tau_{2}}{r}, \quad \bar{p}=p \frac{\tau_{2}}{r}, \\
& \bar{\alpha}=\alpha \frac{\tau_{2}}{r}, \quad \bar{\beta}=\beta \frac{\tau_{2}}{r}, \quad \bar{\lambda}=\lambda \frac{\tau_{2}}{r}, \quad \bar{\tau}=1+r \frac{\bar{a}}{a} \quad \text { and } \quad \tau_{i}=r+1 \tag{3.13}
\end{align*}
$$

Then (3.12) can be rewritten as

$$
\begin{equation*}
(\xi+\bar{d})(\xi+\bar{b})(\xi+\bar{q})\left[(\xi+\bar{a})(\xi+\bar{p})-k \bar{\beta} e^{-\bar{a} \bar{\tau} \bar{\lambda}} e^{-\xi \tau}\right]=0 \tag{3.14}
\end{equation*}
$$

Hence, only the quadratic factor,

$$
\begin{equation*}
\xi^{2}+(\bar{a}+\bar{p}) \xi+\bar{a} \bar{p}-k \bar{\beta} e^{-\bar{a} \bar{\tau}} \frac{\bar{\lambda}}{d} e^{-\xi \tau}=0 \tag{3.15}
\end{equation*}
$$

need be considered. Since

$$
\begin{equation*}
\bar{a} \bar{p}-k \bar{\beta} e^{-\bar{a} \bar{\tau}} \frac{\bar{\lambda}}{d}=\bar{a} \bar{p}\left(1-\tilde{R}_{0}\right)>0 \tag{3.16}
\end{equation*}
$$

$\xi=0$ is not a root of Equation (3.15), implying that the roots of (3.15) can only cross the imaginary axis with non-zero real part. Note that when $\tau=0$, equation (3.15) becomes

$$
\begin{equation*}
\xi^{2}+(\bar{a}+\bar{p}) \xi+\bar{a} \bar{p}-k \bar{\beta} e^{-\bar{a} \bar{\tau} \bar{\lambda}} \frac{\bar{d}}{}=0 \tag{3.17}
\end{equation*}
$$

whose roots have negative real part if $\bar{a} \bar{p}-k \bar{\beta} e^{-\bar{a} \bar{\tau} \bar{\lambda}} \bar{d}>0$, which is equivalent to $\tilde{R}_{0}<1$.

Since the roots of Equation (3.15) depend continuously on τ, they can only possibly enter into the right half of complex plane through crossing the imaginary axis (see, e.g. [10]). Thus, let $\xi=i \tilde{\omega}$ be a purely imaginary root of (3.15) with $\tilde{\omega}>0$. Then, (3.15) becomes

$$
\begin{equation*}
-\tilde{\omega}^{2}+i \tilde{\omega}(\bar{a}+\bar{p})+\bar{a} \bar{p}-k \bar{\beta} e^{-\bar{a} \bar{\tau}} \frac{\bar{\lambda}}{d} e^{-i \tilde{\omega} \tau}=0 \tag{3.18}
\end{equation*}
$$

Taking moduli of (3.18) yields

$$
\begin{equation*}
\tilde{\omega}^{4}+\left(\bar{a}^{2}+\bar{p}^{2}\right) \tilde{\omega}^{2}+\bar{a}^{2} \bar{p}^{2}-\left(k \bar{\beta} e^{-\bar{a} \bar{\tau} \bar{\lambda}} \frac{d}{d}\right)^{2}=0 \tag{3.19}
\end{equation*}
$$

which has no positive root for $\tilde{\omega}^{2}$ if $\tilde{R}_{0}<1$, implying that all roots of (3.15) remain in the left half of complex plane for all $\tau>0$ as long as $\tilde{R}_{0}<1$. On the other hand, it is easy to see that (3.15) has a positive root when $\tilde{R}_{0}>1$.

Summarizing the above results, we obtain the following theorem.
Theorem 3.2 When $\tilde{R}_{0}<1$, the disease-free equilibrium \tilde{E}_{0} is locally asymptotically stable; at $\tilde{R}_{0}=1, \tilde{E}_{0}$ becomes unstable and the single-infection equilibrium \tilde{E}_{s} occurs.

Moreover, by applying the fluctuation lemma (see, e.g. [22]), we can prove that the infection-free equilibrium \tilde{E}_{0} is also globally attractive for $\tilde{R}_{0}<1$. For this purpose, we first introduce some basic notations. For a continuous and bounded function $f:[0, \infty) \rightarrow R$, let

$$
\begin{equation*}
f_{\infty} \triangleq \liminf f_{t \rightarrow \infty} f(t), \quad f^{\infty} \triangleq \limsup p_{t \rightarrow \infty} f(t) . \tag{3.20}
\end{equation*}
$$

Now, let $(x(t), y(t), z(t), v(t), w(t))$ be any solution of system (3.1) - (3.3). By Theorem 3.1, we know

$$
\begin{align*}
& 0 \leqslant x_{\infty} \leqslant x^{\infty}<\infty \\
& 0 \leqslant y_{\infty} \leqslant y^{\infty}<\infty \\
& 0 \leqslant z_{\infty} \leqslant z^{\infty}<\infty \tag{3.21}\\
& 0 \leqslant v_{\infty} \leqslant v^{\infty}<\infty \\
& 0 \leqslant w_{\infty} \leqslant w^{\infty}<\infty
\end{align*}
$$

Applying the fluctuation lemma (see [45]), there exists a sequence t_{n} with $t_{n} \rightarrow \infty$ as
$n \rightarrow \infty$ such that

$$
\begin{equation*}
x\left(t_{n}\right) \rightarrow x^{\infty} \quad \text { and } \quad x^{\prime}\left(t_{n}\right) \rightarrow 0 \quad \text { as } \quad n \rightarrow \infty \tag{3.22}
\end{equation*}
$$

From the first equation of system (3.1), we get

$$
\begin{equation*}
\dot{x}\left(t_{n}\right)+d x\left(t_{n}\right)+\beta x\left(t_{n}\right) v\left(t_{n}\right)=\lambda \tag{3.23}
\end{equation*}
$$

Letting $n \rightarrow \infty$ in the above equation leads to the following estimate

$$
\begin{equation*}
d x^{\infty} \leq\left(d+\beta v_{\infty}\right) x^{\infty} \leq \lambda \tag{3.24}
\end{equation*}
$$

Using a similar argument to the rest of the equations in (3.1) gives

$$
\begin{gather*}
a y^{\infty} \leq\left(a+\alpha w_{\infty}\right) y^{\infty} \leq \beta e^{-a \tau_{1}} x^{\infty} v^{\infty} \tag{3.25}\\
b z^{\infty} \leq \alpha w^{\infty} y^{\infty} \tag{3.26}\\
p v^{\infty} \leq k e^{-\tilde{a} \tau_{2}} y^{\infty} \tag{3.27}\\
q w^{\infty} \leq c z^{\infty} \tag{3.28}
\end{gather*}
$$

We claim that $y^{\infty}=0$. Otherwise, $v^{\infty}>0$ by (3.25). It then follows from (3.24), (3.25) and (3.27) that

$$
\begin{equation*}
p v^{\infty} \leq k e^{-\tilde{a} \tau_{2}} y^{\infty} \leq \frac{k \beta}{a} e^{-a \tau_{1}-\tilde{a} \tau_{2}} x^{\infty} v^{\infty} \leq \frac{k \beta \lambda}{a d} e^{-a \tau_{1}-\tilde{a} \tau_{2}} v^{\infty}, \tag{3.29}
\end{equation*}
$$

yielding

$$
\begin{equation*}
p \leq \frac{k \beta \lambda}{a d} e^{-a \tau_{1}-\tilde{a} \tau_{2}} \Rightarrow \tilde{R}_{0} \geq 1 \tag{3.30}
\end{equation*}
$$

which contradicts the assumption $\tilde{R}_{0}<1$. So, $y^{\infty}=0$, which in turn implies $z^{\infty}=0$, $v^{\infty}=0$ and $w^{\infty}=0$ by Equations (3.26)-(3.28). Therefore, we conclude that $y(t) \rightarrow 0$ as $t \rightarrow \infty$ by using the relation $0 \leq y_{\infty} \leq y^{\infty}$. Similarly, $z(t), v(t)$ and $w(t)$ all approach 0 as $t \rightarrow \infty$. Finally, applying the theory of asymptotical autonomous system (see, e.g. [5]) to the first equation of (3.1) with $v(t) \rightarrow 0$, we obtain that $\lim _{t \rightarrow \infty} x(t)=\frac{\lambda}{d}$. Summarizing the above, result yields the following theorem.

Theorem 3.3 The disease-free equilibrium \tilde{E}_{0} is globally asymptotically stable when $\tilde{R}_{0}<1$.

3.4 Stability of the single-infection equilibrium \tilde{E}_{s}

In this section, we assume $\tilde{R}_{0} \geq 1$. At $\tilde{R}_{0}=1, \tilde{E}_{0}$ loses its stability and the singleinfection equilibrium \tilde{E}_{s} comes into existence. To study the stability of \tilde{E}_{s}, we linearize system of (3.1) at \tilde{E}_{s} to obtain

$$
\begin{align*}
x^{\prime}(t)= & \tau_{1}\left(-\frac{k \beta \lambda}{a p} e^{-a \tau_{1}-\tilde{a} \tau_{2}} x(t)-\frac{a p}{k} e^{a \tau_{1}+\tilde{a} \tau_{2}} v(t)\right) \\
y^{\prime}(t)= & \tau_{1}\left\{\beta e^{-a \tau_{1}}\left(\frac{k \lambda}{a p} e^{-a \tau_{1}-\tilde{a} \tau_{2}}-\frac{d}{\beta}\right) x(t-1)+\frac{a p}{k} e^{\tilde{a} \tau_{2}} v(t-1)\right. \\
& \left.-a y(t)-\alpha w(t)\left(\frac{\lambda}{a} e^{-a \tau_{1}}-\frac{d p}{k \beta} a^{\tilde{\tau_{\tau}}}\right)\right\} \\
z^{\prime}(t)= & \tau_{1}\left(\alpha w(t)\left(\frac{\lambda}{a} e^{-a \tau_{1}}-\frac{d p}{k \beta} e^{\tilde{a} \tau_{2}}\right)-b z(t)\right), \tag{3.31}\\
v^{\prime}(t)= & \tau_{1}\left(k e^{-\tilde{a} \tau_{2}} y(t-r)-p v(t)\right) \\
w^{\prime}(t)= & \tau_{1}(c z(t)-q w(t))
\end{align*}
$$

The characteristic equation of (3.31) is

$$
\begin{align*}
& \left\{\left(\xi+\frac{\bar{k} \bar{\beta} \bar{\alpha}}{\bar{a} \bar{p}} e^{-\bar{\sigma} \bar{\tau}}\right)\left[(\xi+\bar{a})(\xi+\bar{p})-\bar{a} \bar{p} e^{-\xi \tau}\right]+\bar{\beta} e^{-\bar{a} \bar{\tau} \bar{\tau}}\left(\frac{\bar{k} \bar{\alpha}}{\bar{a} \bar{p}} e^{-\bar{a} \bar{\tau}}-\frac{\bar{d}}{\bar{\beta}}\right) e^{-\xi \tau} \bar{k}\left(\frac{\bar{a} \bar{p}}{k} e^{-\bar{a} \bar{\tau}}\right)\right\} \\
& \times\left[(\xi+\bar{b})(\xi+\bar{q})-\bar{c} \bar{\alpha}\left(\frac{\bar{\lambda}}{\bar{a}} e^{-a \tau_{1}}-\frac{\bar{d} \bar{p}}{k \bar{\beta}} e^{\tilde{a} \tau_{2}}\right)\right]=0, \tag{3.32}
\end{align*}
$$

which has two factors:

$$
\begin{equation*}
(\xi+\bar{b})(\xi+\bar{q})-\bar{c} \bar{\alpha}\left(\frac{\bar{\lambda}}{\bar{a}} e^{-a \tau_{1}}-\frac{\bar{d} \bar{p}}{k \beta} e^{\tilde{a} \tau_{2}}\right)=\xi^{2}+(\bar{b}+\bar{q}) \xi+\bar{b} \bar{q}-\bar{c} \bar{\alpha}\left(\frac{\bar{\lambda}}{\bar{a}} e^{-a \tau_{1}}-\frac{\bar{d} \overline{\bar{p}}}{k \beta} e^{\tilde{a} \tau_{2}}\right) \tag{3.33}
\end{equation*}
$$

and

$$
\begin{align*}
& \left(\xi+\frac{\bar{k} \bar{\beta} \bar{\lambda}}{\bar{a} \bar{p}} e^{-\bar{a} \bar{\tau}}\right)\left[(\xi+\bar{a})(\xi+\bar{p})-\bar{a} \bar{p} e^{-\xi \tau}\right]+\bar{\beta} e^{-\bar{a} \bar{\tau}}\left(\frac{\bar{k} \bar{d}}{\bar{a} \bar{p}} e^{-\bar{a} \bar{\tau}}-\frac{\bar{d}}{\bar{\beta}}\right) e^{-\xi \tau} \bar{k}\left(\frac{\bar{a} \bar{p}}{k} e^{-\bar{a} \bar{\tau}}\right) \\
= & \xi^{3}+\left(\bar{a}+\bar{p}+\frac{\bar{k} \bar{\beta} \bar{a} \bar{p}}{} e^{-\bar{a} \bar{\tau}}\right) \xi^{2}+\left[\frac{k \bar{\beta} \bar{\lambda} \bar{p}}{} e^{-\bar{a} \bar{\tau}}(\bar{a}+\bar{p})+\bar{a} \bar{p} \bar{p}\right] \xi+\bar{k} \bar{\beta} \bar{\lambda} e^{-\bar{a} \bar{\tau}}-\bar{a} \bar{p}(\xi+\bar{d}) e^{-\xi \tau} \tag{3.34}
\end{align*}
$$

It is clear that the quadratic factor has two roots with negative real part since $\tilde{R}_{d}<1$. For the cubic factor (3.34), we may rewrite it as

$$
\begin{equation*}
\xi^{3}+\tilde{a}_{2}(\bar{\tau}) \xi^{2}+\tilde{a}_{1}(\bar{\tau}) \xi+\tilde{a}_{0}(\bar{\tau})-\left(\tilde{c}_{1} \xi+\tilde{c}_{2}\right) e^{-\xi \tau}=0 \tag{3.35}
\end{equation*}
$$

where

$$
\begin{align*}
& \tilde{a}_{2}(\bar{\tau})=\bar{a}+\bar{p}+\frac{\bar{k} \bar{\beta} \bar{\lambda}}{\bar{a} \bar{p}} e^{-\bar{a} \bar{\tau}} \\
& \tilde{a}_{1}(\bar{\tau})=\frac{\bar{k} \bar{\beta} \bar{\lambda}}{\bar{a} \bar{p}} e^{-\bar{a} \bar{\tau}}(\bar{a}+\bar{p})+\bar{a} \bar{p} \\
& \tilde{a}_{0}(\bar{\tau})=\bar{k} \bar{\beta} \bar{\lambda} e^{-\bar{a} \bar{\tau}} \tag{3.36}\\
& \tilde{c}_{1}=\bar{a} \bar{p} \\
& \tilde{c}_{2}=\bar{a} \bar{p} \bar{d}
\end{align*}
$$

Because

$$
\begin{equation*}
\tilde{a}_{0}(\tilde{\tau})-\tilde{c}_{2}=\bar{k} \bar{\beta} \bar{\lambda} e^{-\bar{a} \bar{\tau}}-\bar{a} \bar{p} \bar{d}=\bar{a} \bar{p} \bar{d}\left(\tilde{R}_{0}-1\right)>0 \tag{3.37}
\end{equation*}
$$

when $\tilde{R}_{0}>1$, so $\xi=0$ is not a root of Equation (3.35). Next, we show that when $\tau=0$, all roots of (3.35) have negative real part. Indeed, if $\tau=0,(3.35)$ becomes

$$
\begin{equation*}
\xi^{3}+\tilde{a}_{2}(\bar{\tau}) \xi^{2}+\left(\tilde{a}_{1}(\bar{\tau})-c_{1}\right) \xi+\tilde{a}_{0}(\bar{\tau})-\tilde{c}_{2}=0 \tag{3.38}
\end{equation*}
$$

Note that when $\tilde{R}_{0}>1$,

$$
\begin{align*}
& \tilde{a}_{2}(\bar{\tau})=\bar{a}+\bar{p}+\frac{\bar{k} \bar{\beta} \bar{\lambda} \bar{a} \bar{p}}{} e^{-\bar{a} \bar{\tau}}>0, \\
& \tilde{a}_{1}(\bar{\tau})-\tilde{c}_{1}=\frac{\bar{k} \bar{\beta} \bar{\lambda}}{\bar{a} \bar{p}} e^{-\bar{a} \bar{\tau}}(\bar{a}+\bar{p})+\bar{a} \bar{p}-\bar{a} \bar{p}=\frac{\bar{k} \bar{\beta} \bar{\lambda} \bar{a} \bar{p}}{} e^{-\bar{a} \bar{\tau}}(\bar{a}+\bar{p}>0, \\
& \tilde{a}_{0}(\bar{\tau})-\tilde{c}_{2}=\bar{k} \bar{\beta} \bar{\lambda} e^{-\bar{a} \bar{\tau}}-\bar{a} \bar{p} \bar{d}=\bar{a} \bar{p} \bar{d}\left(\tilde{R}_{0}-1\right)>0, \\
& \tilde{a}_{2}(\bar{\tau})\left[\tilde{a}_{1}(\bar{\tau})-\tilde{c}_{1}\right]-\left[\tilde{a}_{0}(\bar{\tau})-\tilde{c}_{2}\right] \tag{3.39}\\
& =\left(\bar{a}+\bar{p}+\frac{\bar{k} \bar{\beta} \bar{\lambda}}{\bar{a} \bar{p}} e^{-\bar{a} \bar{\tau}}\right)\left[\frac{\bar{k} \bar{\beta} \bar{a} \bar{p}}{} e^{-\bar{a} \bar{\tau}}(\bar{a}+\bar{p})\right]-\left(\bar{k} \bar{\beta} \bar{\lambda} e^{-\bar{a} \bar{\tau}}-\bar{a} \bar{p} \bar{d}\right) \\
& =\left(\frac{\bar{k} \bar{\beta} \bar{\lambda}}{\bar{a} \bar{p}}\right)^{2}(\bar{a}+\bar{p})+\frac{\bar{k} \bar{\beta} \bar{\lambda}}{\bar{a} \bar{p}}\left(\bar{a}^{2}+\bar{a} \bar{p}+\bar{p}^{2}\right)+\bar{a} \bar{p} \bar{d}>0 .
\end{align*}
$$

By Routh-Hurwitz criterion (see [13]), we know that all roots of (3.38) have negative real part. Note that all roots of (3.35) depend continuously on τ (see [36]). Also, (2.18)
holds, so $\operatorname{Re}(\xi)<+\infty$ for any root of (3.35). As a result, the roots of Equation (3.35) are only able to enter into the right half of complex plane by crossing the imaginary axis when τ increases. Similarly, let $\xi=i \tilde{\omega}(\tilde{\omega}>0)$ be a purely imaginary root of (3.35). Then

$$
\begin{equation*}
-i \tilde{\omega}^{3}-\tilde{a}_{2}(\tilde{\tau}) \tilde{\omega}^{2}+\tilde{a}_{1}(\bar{\tau}) i \tilde{\omega}+\tilde{a}_{0}(\bar{\tau})-\left(\tilde{c}_{1} i \tilde{\omega}+\tilde{c}_{2}\right) e^{-i \tilde{\omega} \tau}=0, \tag{3.40}
\end{equation*}
$$

Taking moduli of the above equation gives

$$
\begin{equation*}
\tilde{H}\left(\tilde{\omega}^{2}\right):=\tilde{\omega}^{6}+\left(\tilde{a}_{2}(\bar{\tau})^{2}-2 \tilde{a}_{1}(\bar{\tau})\right) \tilde{\omega}^{4}+\left(\tilde{a}_{1}(\bar{\tau})^{2}-2 \tilde{a}_{0}(\bar{\tau}) \tilde{a}_{2}(\bar{\tau})-\tilde{c}_{1}^{2}\right) \tilde{\omega}^{2}+\tilde{a}_{0}(\bar{\tau})^{2}-\tilde{c}_{2}^{2}=0, \tag{3.41}
\end{equation*}
$$

where

$$
\begin{align*}
& \tilde{a}_{2}(\bar{\tau})^{2}-2 \tilde{a}_{1}(\bar{\tau})=\tilde{a}^{2}+\tilde{p}^{2}+\left(\frac{\bar{k} \bar{\beta} \bar{\lambda} \overline{\bar{p}}}{} e^{-\bar{a} \bar{\tau}}\right)^{2}>0, \\
& \tilde{a}_{1}(\bar{\tau})^{2}-2 \tilde{a}_{0}(\bar{\tau}) \tilde{a}_{2}(\bar{\tau})-\tilde{c}_{1}^{2}=\left(\frac{\bar{k} \overline{\bar{\lambda}} \bar{a} \bar{p}}{} e^{-\bar{a} \bar{\tau}}\right)^{2}\left(\bar{a}^{2}+\bar{p}^{2}\right)>0, \tag{3.42}\\
& \tilde{a}_{0}(\bar{\tau})^{2}-\tilde{c}_{2}^{2}=\left(\bar{k} \bar{\beta} \bar{\lambda} e^{-\bar{a} \bar{\tau}}+\bar{a} \bar{p} \bar{d}\right) \bar{a} \bar{p} \bar{d}\left(\tilde{R}_{0}-1\right)>0
\end{align*}
$$

It is obvious that the function $\tilde{H}\left(\tilde{\omega}^{2}\right)$ is monotonically increasing for $0 \leq \tilde{\omega}^{2}<\infty$ with $\tilde{H}(0)>0$, implying that Equation (3.35) has no positive roots for $\tilde{R}_{0}>1$. Therefore, all roots of (3.35) have negative real part for all $\tau>0$ if $\tilde{R}_{0}>1$.

Summarizing the above results, we have the following theorem.
Theorem 3.4 When $1<\tilde{R}_{0}<1+\frac{b k q \beta}{c d p \alpha} e^{-\tilde{a} \tau_{2}}$, the single-infection equilibrium \tilde{E}_{s} is asymptotically stable; at $\tilde{R}_{0}=1+\frac{b k a \beta}{c d p \alpha} e^{-\tilde{a} \tau_{2}}$ (i.e., $\tilde{R}_{d}=1$), \tilde{E}_{s} becomes unstable and bifurcates into \tilde{E}_{d}.

3.5 Stability of the double-infection equilibrium $\tilde{E}_{d}:$ Existence of Hopf and double Hopf bifurcations

To discuss the stability of double-infection equilibrium \tilde{E}_{d}, we assume $\tilde{R}_{d}>1$, since it is the necessary condition for the existence of \tilde{E}_{d}. The linearized system of (3.1) at $\tilde{E}_{d}=\left(\tilde{x}_{d}, \tilde{y}_{d}, \tilde{z}_{d}, \tilde{v}_{d}, \tilde{w}_{d}\right)$ is

$$
\begin{align*}
x^{\prime}(t) & =-\left(d+\beta \tilde{v}_{d}\right) x(t)-\beta \tilde{x}_{d} v(t) \\
y^{\prime}(t) & =\beta e^{-a \tau_{1}} \tilde{v}_{d} x\left(t-\tau_{1}\right)-\left(a+\alpha \tilde{w}_{d}\right) y(t)+\beta e^{-a \tau_{1}} \tilde{x}_{d} v\left(t-\tau_{1}\right)-\alpha \tilde{y}_{d} w(t) \\
z^{\prime}(t) & =\alpha \tilde{w}_{d} y(t)-b z(t)+\alpha \tilde{y}_{d} w(t) \\
v^{\prime}(t) & =k e^{-\tilde{a} \tau_{2}} y\left(t-\tau_{2}\right)-p v(t) \\
w^{\prime}(t) & =c z(t)-q w(t) \tag{3.43}
\end{align*}
$$

Let $\tilde{m}_{d}=d+\beta \tilde{v}_{d}, \tilde{m}_{a}=a+p$ and $\tilde{m}_{b}=b+q$. Using the facts that $c \alpha \tilde{y}_{d}=b q$ and $k \beta e^{-a \tau_{1}-\tilde{a} \tau_{2}} \tilde{x}_{d}=p\left(\alpha \tilde{w}_{d}+a\right)$, the characteristic equation of (3.43) can be written as

$$
\begin{align*}
D(\xi):= & \xi^{5}+\tilde{A}_{4}(\tau) \xi^{4}+\tilde{A}_{3}(\tau) \xi^{3}+\tilde{A}_{2}(\tau) \xi^{2}+\tilde{A}_{1}(\tau) \xi+\tilde{A}_{0} \\
& -\left(\tilde{B}_{3}(\tau) \xi^{3}+\tilde{B}_{2}(\tau) \xi^{2}+\tilde{B}_{1}(\tau) \xi\right) e^{-\xi\left(\tau_{1}+\tau_{2}\right)}=0 \tag{3.44}
\end{align*}
$$

where

$$
\begin{align*}
\tilde{A}_{4}(\tau) & =\tilde{m}_{a}+\tilde{m}_{b}+\tilde{m}_{d}+\alpha \tilde{w}_{d} \\
\tilde{A}_{3}(\tau) & =a p+\tilde{m}_{a} \tilde{m}_{d}+\left(\tilde{m}_{a}+\tilde{m}_{d}\right) \tilde{m}_{b}+\left(p+\tilde{m}_{b}+\tilde{m}_{d}\right) \alpha \tilde{w}_{d} \\
\tilde{A}_{2}(\tau) & =a p \tilde{m}_{d}+\tilde{m}_{b}\left(a p+\tilde{m}_{a} \tilde{m}_{d}\right)+\left(b q+\tilde{m}_{b} \tilde{m}_{d}+p \tilde{m}_{b}+p \tilde{m}_{d}\right) \alpha \tilde{w}_{d} \\
\tilde{A}_{1}(\tau) & =a p \tilde{m}_{b} \tilde{m}_{d}+\left(b q \tilde{m}_{d}+p b q+p \tilde{m}_{b} \tilde{m}_{d}\right) \alpha \tilde{w}_{d} \\
\tilde{A}_{0} & =\alpha b p q \tilde{w}_{d} \tilde{m}_{d} \tag{3.45}\\
\tilde{B}_{3}(\tau) & =p\left(\alpha \tilde{w}_{d}+a\right) \\
\tilde{B}_{2}(\tau) & =\left(d+\tilde{m}_{b}\right)\left(\alpha \tilde{w}_{d}+a\right) p \\
\tilde{B}_{1}(\tau) & =d \tilde{m}_{b}\left(\alpha \tilde{w}_{d}+a\right) p
\end{align*}
$$

Similarly, letting $\tilde{R}(\omega)$ and $\tilde{S}(\omega)$ be the real and imaginary parts of $D(i \omega)$ yields

$$
\begin{align*}
\tilde{R}(\omega)= & -\frac{1}{\alpha^{2}\left(c d p \alpha+\beta b k e^{-a} \tau_{2}\right) c p}\left\{-\alpha^{3} c^{2} p^{2} d \omega^{4}(p+d+b+q)\right. \\
& +\omega^{2} \alpha^{3} c^{2} d p^{2}(b d p+q d p-b a q)+a^{2} b p^{3} q c^{2} d^{2} \alpha^{2} \\
& +e^{-\tilde{a} \tau_{2}}\left[-\omega^{4} \alpha^{2} c p \beta b k q(p+b+q+2 d)+\omega^{2} \alpha^{2} b c p \beta k q(2 b d p+2 q d p-b q a)\right. \\
& \left.+2 a^{2} b^{2} p^{2} q^{2} c d \alpha \beta k\right]+e^{-2 \tilde{a} \tau_{2}}\left[-w^{4} \alpha \beta^{2} b^{2} k^{2} q^{2}+\omega^{2} \alpha p \beta^{2} b^{2} k^{2} q^{2}(b+q)\right. \\
& \left.+a^{2} b^{3} p q^{3} \beta^{2} k^{2}\right]+e^{-a \tau_{1}-\tilde{a} \tau_{2}}\left[-\omega^{4} \alpha^{3} c^{2} p \beta \lambda k\right. \\
& +\omega^{2} \alpha^{3} c^{2} p \beta \lambda k(b q+d b+d q+p b+p q+d p)-a b p^{2} q c^{2} d \alpha^{2} \beta \lambda k \\
& +\cos \left(\left(\tau_{1}+\tau_{2}\right) \omega\right) \omega^{2} \alpha^{3} \beta \lambda c^{2} k p^{2}(b+d+q) \\
& \left.+\sin \left(\left(\tau_{1}+\tau_{2}\right) \omega\right) p^{2} \alpha^{3} \beta \lambda c^{2} k\left(\omega^{3}-\omega d b-\omega d q\right)\right] \\
& \left.+e^{-a \tau_{1}-2 \tilde{a} \tau_{2}}\left[\omega^{2} \alpha^{2} \beta^{2} b k^{2} q \lambda c(b+q+p)-a b^{2} p q^{2} \beta^{2} k^{2} \alpha \lambda c\right]\right\} \tag{3.46}
\end{align*}
$$

and

$$
\begin{align*}
\tilde{S}(\omega)= & \frac{1}{\alpha c p\left(c d p \alpha+\beta b k q e^{\left.-\tilde{a} \tau_{2}\right)}\right.}\left\{\omega \left\{\omega^{4} \alpha^{2} c^{2} p^{2} d-\omega^{2} c^{2} d p^{2} \alpha^{2}(d p+d q+d b+b p+p q)\right.\right. \\
& -b q c^{2} d p^{2} \alpha^{2} a(p+d)+e^{-\tilde{a} \tau_{2}}\left[\omega^{4} \alpha c p \beta b k q\right. \\
& -\omega^{2} c p \alpha \beta b k q(2 p d+2 d q+2 b d+p q+b p) \\
& \left.-b^{2} q^{2} c p \alpha \beta a k(2 d+p)\right]+e^{-a \tau_{1}-\tilde{a} \tau_{2}}\left[-\omega^{2} \alpha^{2} c^{2} p \beta \lambda k(p+b+q+d)\right. \\
& +p \alpha^{2} c^{2} \beta \lambda k(b p q+b d p+d p q+b d q) \\
& +\cos \left(\left(\tau_{1}+\tau_{2}\right) \omega\right) p^{2} \alpha^{2} \beta \lambda c^{2} k\left(-\omega^{2}+d b+d q\right) \\
& \left.+\sin \left(\left(\tau_{1}+\tau_{2}\right) \omega\right) \omega \alpha^{2} \beta \lambda c^{2} k p^{2}(b+d+q)\right] \\
& -e^{-2 \tilde{a} \tau_{2}}\left[\omega^{2} \beta^{2} b^{2} k^{2} q^{2}(b+p+q)+b^{3} q^{3} \beta^{2} k^{2} a\right] \\
& \left.\left.+e^{-a \tau_{1}-2 \tilde{a} \tau_{2}} \beta^{2} b k^{2} q \alpha \lambda c\left[-\omega^{2}+b q+p q+b p\right]\right\}\right\} \tag{3.47}
\end{align*}
$$

Then, in order to determine the stability of \tilde{E}_{d}, we solve the following two equations for τ_{1} and ω :

$$
\begin{equation*}
\tilde{R}(\omega)=0 \quad \text { and } \quad \tilde{S}(\omega)=0 \tag{3.48}
\end{equation*}
$$

where τ_{1} is our bifurcation parameter. The two equations in (3.48) have two solutions for $\tau_{1}: \tau_{1}=\tau_{11}$ and $\tau_{1}=\tau_{12}$, listed in Appendix. The solutions for ω can be obtained by substituting the two solutions of τ_{1} into any one of the above equations. Also, we need choose the positive value for $\tau_{1}=\tau_{11}$ or $\tau_{1}=\tau_{12}$ and the corresponding value for ω to determine the value of \tilde{R}_{d}. Hence, all the critical parameter values τ_{1}, ω and \tilde{R}_{d} are expressed in terms of $\alpha, \beta, \lambda, a, b, c, d, k, p, q$, called $\tilde{\tau}_{h}, \omega_{h}$ and \tilde{R}_{h}.

Same as the discussion in the previous chapter, if other three conditions need be satisfied (see [48]),

$$
\begin{gather*}
\tilde{R}(\omega)=0 \Rightarrow \tilde{S}(\omega)<0 \text { for } \tau_{1}<\tilde{\tau}_{h} \tag{3.49}\\
\left.\frac{\partial D\left(\xi, \tau_{1}\right)}{\partial \xi}\right|_{\xi=\omega_{h} i, \tau_{1}=\tilde{\tau}_{h}} \neq 0 \tag{3.50}
\end{gather*}
$$

and

$$
\begin{equation*}
\left.R e \frac{d \xi}{d \tau}\right|_{\xi=\omega_{h} i, \tau_{1}=\tilde{\tau}_{h}}<0 \tag{3.51}
\end{equation*}
$$

then (3.44) has a pair of purely imaginary roots when $\tau_{1}=\tilde{\tau}_{h}\left(\tilde{R}_{d}=\tilde{R}_{h}\right)$, implying existence of Hopf bifurcation. Therefore, when $1<\tilde{R}_{d}<\tilde{R}_{h}$, the equilibrium solution \tilde{E}_{d} is stable. At the critical point, $\tau_{1}=\tilde{\tau}_{h}\left(\tilde{R}_{d}=\tilde{R}_{h}\right), \tilde{E}_{d}$ loses its stability through Hopf bifurcation, leading to bifurcation of a family of limit cycles.

Finally, we show that there exists double Hopf bifurcation in system (3.1). In order to have double Hopf bifurcation, the corresponding characteristic equation (3.44) need have two pairs of purely imaginary eigenvalues. We choose τ_{1}, a, λ as our bifurcation
parameters. λ is solved from the first equation of (3.48) to yield

$$
\begin{align*}
\lambda= & -\left\{-w^{4} \alpha^{3} c^{2} p^{2} d(b+d+p+q)+\omega^{2} \alpha^{3} d c^{2} p^{2}(b d p+d p q-b a q)+a^{2} b p^{3} q d^{2} \alpha^{2} c^{2}\right. \\
& -e^{-\tilde{a} \tau_{2}}\left[\omega^{4} \alpha^{2} c p \beta b k q(p+b+q+2 d)+\omega^{2} \alpha^{2} b c p \beta k q(-2 b d p+b a q-2 d p q)\right. \\
& \left.-2 a^{2} b^{2} p^{2} q^{2} d \alpha c \beta k\right]+e^{-2 \tilde{a} \tau_{2}}\left[-\omega^{4} \alpha \beta^{2} b^{2} k^{2} q^{2}+\omega^{2} \alpha p \beta^{2} b^{2} k^{2} q^{2}(b+q)\right. \\
& \left.\left.+a^{2} b^{3} p q^{3} \beta^{2} k^{2}\right]\right\} /\left\{c k \alpha \beta \left\{e ^ { - a \tau _ { 1 } - \tilde { a } \tau _ { 2 } } \left[-c \alpha^{2} p \omega^{4}+\omega^{2} c \alpha^{2} p\right.\right.\right. \\
& \times(b q+b p+p q+d p+d b+d q)+c \alpha^{2} \cos \left(\left(\tau_{1}+\tau_{2}\right) \omega\right) \omega^{2} p^{2}(b+q+d) \\
& \left.+c \alpha^{2} \sin \left(\left(\tau_{1}+\tau_{2}\right) \omega\right) p^{2}\left(\omega^{3}-d b \omega-\omega d q\right)-c a b p^{2} q d \alpha\right] \\
& \left.\left.+e^{-a \tau_{1}-2 \tilde{a} \tau_{2}}\left[\omega^{2} k \alpha \beta b q(b++p+q)-k a b^{2} p q^{2} \beta\right]\right\}\right\} \tag{3.52}
\end{align*}
$$

Then, substituting the above λ into the second equation of (3.48) and assuming $\pm \omega_{1}$ and $\pm \omega_{2}$ being the two pairs of purely imaginary eigenvalues yields two equations: $\tilde{S}_{d 1}\left(\omega_{1}\right)=0$ and $\tilde{S}_{d 2}\left(\omega_{2}\right)=0$, given in Appendix. Also, note that the critical point giving rise to double Hopf bifurcation requires $a_{+}=a_{-}=a_{c}$. By solving a_{c} and setting $\omega_{2}: \omega_{1}=\omega_{r}$. The new equations are obtained for τ_{1}, ω_{1} and ω_{r} as

$$
\begin{align*}
& \tilde{S}_{d d 1}\left(\omega_{r}, a_{c}\right)=\tilde{F}\left(\tau_{1}, \omega_{1}\right) \\
& \tilde{S}_{d d 2}\left(\omega_{r}, a_{c}\right)=\tilde{F}\left(\tau_{1}, \omega_{r} \omega_{1}\right) \tag{3.53}
\end{align*}
$$

where $\tilde{F}\left(\tau_{1}, \omega_{1}\right)$ is shown in Appendix. If (3.53) has real positive solution for ω_{1} and τ_{1}, called $\omega_{1 c}$ and $\tau_{1 c}$, all the critical values of the bifurcation parameters can be determined as: $\left(\tau_{1}, a, \lambda\right)=\left(\tau_{1 c}, a_{c}, \lambda_{c}\right)$. Moreover, the two pairs of purely imaginary eigenvalues for the characteristic equation (3.44) are $\left(\pm \omega_{1 c}, \pm\left(\omega_{r} \times \omega_{1 c}\right)\right.$), implying existence of double Hopf bifurcation.

3.6 Numerical Simulation

In this section, numerical simulations are performed to verify the theoretical results obtained in the previous sections.

3.6.1 Periodic Solutions

Firstly, two examples are given to show that there exist periodic solutions in system (3.1).

Example 1. Again, setting $\lambda=0.24, d=0.004, \beta=0.004, a=\bar{a}=0.33, \alpha=0.004$, $b=2, k=50, p=2, c=2000, q=2, \tau_{2}=0.5$ and choosing τ_{1} as the bifurcation parameter, we have

$$
\begin{align*}
& \tilde{R}_{0}=18.1818 e^{-0.33\left(\tau_{1}+0.5\right)} \\
& \tilde{R}_{d}=0.09435144952\left(18.1818 e^{-0.33\left(\tau_{1}+0.5\right)}-1\right) \tag{3.54}
\end{align*}
$$

Then, the disease-free equilibrium \tilde{E}_{0} is

$$
\begin{equation*}
\tilde{E}_{0}=(60,0,0,0,0) \tag{3.55}
\end{equation*}
$$

which is stable for $\tau_{1}>8.289157860$. Numerical simulated solution result for $\tau_{1}=9$, shown in Figure 3.1, converges to \tilde{E}_{0}. If $\tau_{1}<8.289157860\left(\tilde{R}_{0}>1\right), \tilde{E}_{0}$ is unstable and the single-infection equilibrium is emerged, given by,

$$
\begin{equation*}
\tilde{E}_{s}=\left(3.3 e^{0.33\left(\tau_{1}+0.5\right)}, 0.7273 e^{-0.33 \tau_{1}}-0.03391574816,0,18.1818 e^{-0.33\left(\tau_{1}+0.5\right)}-1,0\right) \tag{3.56}
\end{equation*}
$$

which is stable for $0.8622168041<\tau_{1}<8.289157860$, as shown in Figure 3.2. When $\tau_{1}<0.8622168041$, the double-infection equilibrium \tilde{E}_{d} comes into exist, given by

$$
\begin{align*}
\tilde{E}_{d}= & \left(5.173006325,0.5,0.1293251581 e^{-0.33\left(\tau_{1}+0.5\right)}-0.0825,\right. \\
& \left.10.59867130,129.32515 e^{-0.33\left(\tau_{1}+0.5\right)}-82.5\right) \tag{3.57}
\end{align*}
$$

Figure 3.1: Simulated time history of system (3.1) for $\lambda=0.24, \alpha=\beta=d=0.004$, $k=50, a: \bar{a}=0.33, c=2000, b=p=q=2, \tau_{2}=0.5, \tau_{1}=9$ with the initial condition: $x(0)=5.0, y(0)=1.0, z(0)=2.0, v(0)=0.5, w(0)=4.0$, converging to the stable equilibrium solution $\tilde{E}_{0}=(60,0,0,0,0)$.
for which the characteristic equation (3.44) becomes

$$
\begin{align*}
D(\xi)= & \xi^{5}+\left(6.046394685+0.5173006324 e^{-0.33\left(\tau_{1}+0.5\right)}\right) \xi^{4} \\
& +\left(8.278368114+3.12780379 e^{-0.33\left(\tau_{1}+0.5\right)}\right) \xi^{3} \\
& +\left(-0.948842518+6.351607588 e^{-0.33\left(\tau_{1}+0.5\right)}\right) \xi^{2} \\
& +\left(-2.701240984+4.426405059 e^{-0.33\left(\tau_{1}+0.5\right)}\right) \xi \\
& +15.83999999 e^{-0.33\left(\tau_{1}+0.5\right)} \tag{3.58}\\
& -10.10476243-\left[\left(1.034601265 e^{-0.33\left(\tau_{1}+0.5\right)}\right) \xi^{3}\right. \\
& +\left(4.142543464 e^{-0.33\left(\tau_{1}+0.5\right)}\right) \xi^{2} \\
& \left.+\left(0.1655362024 e-1 e^{-0.33\left(\tau_{1}+0.5\right)}\right) \xi\right] e^{-\xi\left(\tau_{1}+0.5\right)}=0 .
\end{align*}
$$

Letting $\tilde{R}(\omega)$ and $\tilde{S}(\omega)$ be the real and imaginary parts of $D(i \omega)$, we have

$$
\begin{align*}
& \tilde{R}(\omega)=\left(6.046394685+.5173006324 e^{-0.33\left(\tau_{1}+0.5\right)}\right) \omega^{4} \\
&-\left(-.948842518+6.351607588 e^{-0.33\left(\tau_{1}+0.5\right)}\right) \omega^{2} \\
&+15.83999999 e^{-0.33\left(\tau_{1}+0.5\right)}-10.10476243 \\
&-\left(1.034601265 e^{-0.33\left(\tau_{1}+0.5\right)}\right) \omega^{3} \sin \left(\omega\left(\tau_{1}+0.5\right)\right) \tag{3.59}\\
&-\left(4.14254346 e^{-0.33\left(\tau_{1}+0.5\right)}\right) \omega^{2} \cos \left(\omega\left(\tau_{1}+0.5\right)\right) \\
&+\left(0.1655362024 e^{-0.33\left(\tau_{1}+0.5\right)}\right) \omega \sin \left(\omega\left(\tau_{1}+0.5\right)\right) \\
& \tilde{S}(\omega)=\quad \omega^{5}-\left(8.278368114+3.127803794 e^{-0.33\left(\tau_{1}+0.5\right)}\right) \omega^{3} \\
&+\left(-2.701240984+4.426405059 e^{-0.33\left(\tau_{1}+0.5\right)}\right) \omega \\
&-\left(1.034601265 e^{-0.33\left(\tau_{1}+0.5\right)}\right) \omega^{3} \cos \left(\omega\left(\tau_{1}+0.5\right)\right) \tag{3.60}\\
&+\left(4.14254346 e^{-0.33\left(\tau_{1}+0.5\right)}\right) \omega^{2} \sin \left(\omega\left(\tau_{1}+0.5\right)\right) \\
&+\left(0.1655362024 e-e^{-0.33\left(\tau_{1}+0.5\right)}\right) \omega \cos \left(\omega\left(\tau_{1}+0.5\right)\right)
\end{align*}
$$

Similarly, numerically solving the two equations,

$$
\begin{equation*}
\tilde{R}(\omega)=0 \quad \text { and } \quad \tilde{S}(\omega)=0 \tag{3.61}
\end{equation*}
$$

we obtain

$$
\begin{equation*}
\left(\tau_{1}, \omega\right)=(0.823938730,0.1509390973) \tag{3.62}
\end{equation*}
$$

Therefore, we have the critical value $\tilde{\tau}_{h}=0.823938730$ giving a corresponding value $\tilde{R}_{h}=\tilde{R}_{d}\left(\tau_{1}=\tilde{\tau}_{h}\right)=1.013911267$. Also, it can be shown that when $\tau_{1}<\tilde{\tau}_{h}$, the other three conditions are satisfied:

$$
\begin{gather*}
\tilde{R}(\omega)=0 \Rightarrow \tilde{S}(\omega)<0 \tag{3.63}\\
\left.\frac{\partial D\left(\xi, \tau_{1}\right)}{\partial \xi}\right|_{\xi=0.1509390973 i, \tau_{1}=0.823938730}=-0.3375687425+1.648144850 i \neq 0 \tag{3.64}
\end{gather*}
$$

and

Figure 3.2: Simulated time history of system (3.1) for $\lambda=0.24, \alpha=\beta=d=0.004$, $k=50, a=\bar{a}=0.33, c=2000, b=p=q=2, \tau_{1}=4$ and $\tau_{2}=0.5$ with the initial condition: $x(0)=5.0, y(0)=1.0, z(0)=2.0, v(0)=0.5, w(0)=4.0$, converging to the stable equilibrium solution $\tilde{E}_{s}=(14.5694,0.1604,0,3.1182,0)$.

$$
\begin{equation*}
\left.R e \frac{d \xi}{d \tau}\right|_{\xi=0.1509390973 i, \tau_{1}=0.823938730}=-0.317987439570544<0 \tag{3.65}
\end{equation*}
$$

Therefore, the roots of (3.58) have non-negative real part when $\tau_{1}<\tilde{\tau}_{h}\left(\tilde{R}_{d}>\tilde{R}_{h}\right)$, and (3.58) has a pair of purely imaginary roots when $\tau_{1}=\tilde{\tau}_{h}\left(\tilde{R}_{d}=\tilde{R}_{h}\right)$, implying existence of a Hopf bifurcation. Therefore, we conclude that when $0.823938730<$ $\tau_{1}<0.8622168041$, the equilibrium solution \tilde{E}_{d} is stable (see Figure 3.3). At the critical point, $\tau_{1}=\tilde{\tau}_{h}\left(R_{d}=\tilde{R}_{h}\right), \tilde{E}_{d}$ loses its stability through Hopf bifurcation, leading to bifurcation of a family of limit cycles, as shown in Figure 3.4.

Example 2. We choose τ_{2} as our bifurcation parameter and set $\tau_{1}=0.4$. Thus,

Figure 3.3: Simulated time history of system (3.1) for $\lambda=0.24, \alpha=\beta=d=0.004$, $k=50, a=\bar{a}=0.33, c=2000, b=p=q=2, \tau_{1}=0.85$ and $\tau_{2}=0.5$ with the initial condition: $x(0)=5.0, y(0)=1.0, z(0)=2.0, v(0)=0.5, w(0)=4.0$, converging to the stable equilibrium solution $\tilde{E}_{d}=(5.173,0.5,0.0003,10.5987,0.3333)$.

$$
\begin{align*}
& \tilde{R}_{0}=18.1818 e^{-0.33\left(\tau_{2}+0.4\right)} \\
& \tilde{R}_{d}=0.08 e^{-0.33 \tau_{2}}\left(18.1818 e^{-0.33\left(\tau_{2}+0.4\right)}-1\right) \tag{3.66}
\end{align*}
$$

The disease-free equilibrium \tilde{E}_{0} becomes

$$
\begin{equation*}
\tilde{E}_{0}=(60,0,0,0,0) \tag{3.67}
\end{equation*}
$$

which is stable for $\tau_{2}>8.389157861$. When $\tau_{2}<8.389157861, \tilde{R}_{0}>1$, for which \tilde{E}_{0}

Figure 3.4: Simulated time history of system (3.1) for $\lambda=0.24, \alpha=\beta=d=0.004$, $k=50, a=\bar{a}=0.33, c=2000, b=p=q=2, \tau_{1}=0.4$ and $\tau_{2}=0.5$ with the initial condition: $x(0)=5.0, y(0)=1.0, z(0)=2.0, v(0)=0.5, w(0)=4.0$, converging to a periodic solution. The bottom right graph is the phase portrait projected on $x-y$ plane indicating a limit cycle.
is unstable and the single-infection equilibrium bifurcates, given by

$$
\begin{equation*}
\tilde{E}_{s}=\left(3.3 e^{0.33\left(\tau_{2}+0.4\right)}, 0.6373389056-0.04 e^{0.33 \tau_{2}}, 0,18.1818 e^{-0.33\left(\tau_{2}+0.4\right)}-1,0\right) \tag{3.68}
\end{equation*}
$$

which is stable for $3.738097521<\tau_{2}<8.389157861$. Further decreasing τ_{2} to pass the critical value $\tau_{2}=3.738097521$ causes \tilde{E}_{s} to be unstable and appearing of the double-infection equilibrium:

$$
\begin{align*}
\tilde{E}_{d}= & \left(\frac{3.84}{0.064+0.8 e^{-0.33 \tau_{2}}}, 0.5, \frac{0.25\left(0.384 e^{-0.33\left(\tau_{2}+0.4\right)}-0.264 e^{-0.33 \tau_{2}}-0.2112\right)}{0.064+0.8 e^{-0.33 \tau_{2}}},\right. \\
& \left.12.5 e^{-0.33 \tau_{2}}, \frac{250\left(0.384 e^{-0.33\left(\tau_{2}+0.4\right)}-0.264 e^{-0.33 \tau_{2}}-0.2112\right)}{0.064+0.8 e^{-0.33 \tau_{2}}}\right) . \tag{3.69}
\end{align*}
$$

The corresponding characteristic equation (3.44) for the above \tilde{E}_{d} becomes

$$
\begin{align*}
D(\xi)= & \xi^{5}+\left(6.334+0.5 e^{-0.33 \tau_{2}}+\frac{0.384 e^{-0.33\left(\tau_{2}+0.4\right)}-0.264 e^{-0.33 \tau_{2}-0.2112}}{0.064+0.8 e^{-0.33 \tau_{2}}}\right) \xi^{4} \\
& +\left(10.00532+.3165 e^{-0.33 \tau_{2}}\right. \\
& \left.+\frac{\left(6.004+0.5 e^{-0.33 \tau_{2}}\right)\left(0.384 e^{-0.33\left(\tau_{2}+0.4\right)}-0.264 e^{-0.33 \tau_{2}}-0.2112\right)}{0.064+0.8 e^{-0.33 \tau_{2}}}\right) \xi^{3} \\
& +\left(2.67992+0.499 e^{-0.33 \tau_{2}}\right. \\
& \left.+\frac{\left(12.024+0.3 e^{-0.33 \tau_{2}}\right)\left(0.384 e^{-0.33\left(\tau_{2}+0.4\right)}-0.264 e^{-0.33 \tau_{2}}-0.2112\right)}{0.064+0.8 e^{-0.33 \tau_{2}}}\right) \xi^{2} \\
& +\left(0.1056+0.132 e^{-0.33 \tau_{2}}\right. \\
& \left.+\frac{\left(8.048+0.6 e^{-0.33 \tau_{2}}\right)\left(0.384 e^{-0.33\left(\tau_{2}+0.4\right)}-0.264 e^{\left.-0.33 \tau_{2}-0.2112\right)}\right.}{0.064+0.8 e^{-0.33 \tau_{2}}}\right) \xi \\
& +\frac{660\left(0.4+0.5 e^{-0.33 \tau_{2}}\right)\left(0.384 e^{-0.33\left(\tau_{2}+0.4\right)}-0.264 e^{-0.33 \tau_{2}}-0.2112\right)}{0.064+0.8 e^{-0.33 \tau_{2}}} \\
& -\left[\left(\frac{2\left(0.33+\left(0.384 e^{-0.33\left(\tau_{2}+0.4\right)}-0.264 e^{-0.33 \tau_{2}}-0.2112\right)\right.}{0.064+0.8 e^{-0.33 \tau_{2}}}\right) \xi^{3}\right. \\
& +\left(\frac{8.008\left(0.33+\left(0.384 e^{-0.33\left(\tau_{2}+0.4\right)}-0.264 e^{-0.33 \tau_{2}}-0.2112\right)\right.}{0.064+0.8 e^{-0.33 \tau_{2}}}\right) \xi^{2} \\
& +\left(\frac{0.032\left(0.33+\left(0.384 e^{-0.33\left(\tau_{2}+0.4\right)}-0.264 e^{\left.-0.33 \tau_{2}-0.2112\right)}\right)\right.}{0.064+0.8 e^{-0.33 \tau_{2}}}\right) \xi e^{-0.33 \xi\left(\tau_{2}+0.4\right)}=0 . \tag{3.70}
\end{align*}
$$

Let $\tilde{R}(\omega)$ and $\tilde{S}(\omega)$ be the real and imaginary parts of $D(i \omega)$. Then solving the two equations,

$$
\begin{equation*}
R(\omega)=0 \quad \text { and } \quad S(\omega)=0 \tag{3.71}
\end{equation*}
$$

we obtain $\tilde{\tau}_{2 h}=2.622465483$ as our critical value, giving a corresponding value $\tilde{R}_{h}:=$ $\tilde{R}_{d}\left(\tilde{\tau}_{2}=\tau_{2 h}\right)=1.084598722$. It is easy to show that when $\tau_{2}<\tilde{\tau}_{h}$,

$$
\begin{equation*}
\tilde{R}(\omega)=0 \quad \Rightarrow \quad \tilde{S}(\omega)<0 \tag{3.72}
\end{equation*}
$$

Further, we can verify that

$$
\begin{equation*}
\left.\frac{\partial D(\xi, \tau)}{\partial \xi}\right|_{\xi=0.2915019517 i, \tau_{2}=2.622465483}=-0.6623825246+1.865961951 i \neq 0 \tag{3.73}
\end{equation*}
$$

and

$$
\begin{equation*}
\left.R e \frac{d \xi}{d \tau}\right|_{\xi=0.2915019517 i, \tau_{2}=2.622465483}=-0.0517127986976842<0 . \tag{3.74}
\end{equation*}
$$

Thus, all roots of (3.70) have non-negative real part for $\tau_{2}<\tilde{\tau}_{2 h}\left(\tilde{R}_{d}>\tilde{R}_{h}\right)$, and (3.70)

Figure 3.5: Simulated time history of system (3.1) for $\lambda=0.24, \alpha=\beta=d=0.004$, $k=50, a=\bar{a}=0.33, c=2000, b=p=q=2, \tau_{1}=0.4, \tau_{2}=2$ with the initial condition: $x(0)=5.0, y(0)=1.0, z(0)=2.0, v(0)=0.5, w(0)=4.0$, converging to a periodic solution. The bottom right graph is the phase portrait projected on $x-y$ plane indicating a limit cycle.
has a pair of purely imaginary roots when $\tau_{2}=\tilde{\tau}_{2 h}\left(\tilde{R}_{d}=\tilde{R}_{h}\right)$, implying existence of Hopf bifurcation. Therefore, when $2.622465483<\tau_{2}<3.738097521$, the equilibrium solution \tilde{E}_{d} is stable. At the critical point, $\tau_{2}=\tilde{\tau}_{2 h}, \tilde{E}_{d}$ loses its stability through a Hopf bifurcation, leading to bifurcation of a family of limit cycles, as shown in Figure 3.5 .

3.6.2 Quasi-periodic Solutions

For quasi-periodic solutions, we present two cases: a resonant case and a non-resonant case. For convenience, we fix $d=0.002, \beta=0.004, \bar{a}=0.33, \alpha=0.004, b=2, k=50$, $p=2, c=2000, q=2, \tau_{2}=3$ and choose τ_{1}, a, λ as the bifurcation parameters.

Figure 3.6: Simulated time history of system (3.1) for $\lambda=0.83, \alpha=\beta=0.004$, $d=0.002, k=50, a=0.03, \bar{a}=0.33, c=2000, b=p=q=2, \tau_{1}=16.03, \tau_{2}=3$ with the initial condition: $x(0)=5.0, y(0)=1.0, z(0)=2.0, v(0)=0.5, w(0)=4.0$.

Resonant case. We choose $\omega_{1}: \omega_{2}=\omega_{r}=1: 2$, so system (3.53) is reduced to

$$
\begin{align*}
& \tilde{S}_{d d 1}\left(\omega_{r}, a_{c}\right)=\tilde{F}_{1} \\
& \tilde{S}_{d d 2}\left(\omega_{r}, a_{c}\right)=\tilde{F}_{2}, \tag{3.75}
\end{align*}
$$

where $\tilde{F}_{1}, \tilde{F}_{2}$ are given in Appendix. The numerical solution for the above two equations is $\left(\tau_{1}, \omega_{1}\right)=(16.0283293568469,0.548085462867220)$. Therefore, at the critical point, a double Hopf bifurcation occurs and all the critical values of the bifurcation parameters can be determined as: $\left(\tau_{1}, a, \lambda\right)=(16.028,0.0347,0.8326)$. The two pairs of purely imaginary eigenvalues for the characteristic equation are $(\pm 0.5481, \pm 1.0962)$, implying existence of double Hopf bifurcation. The simulated solutions for this case are shown in Figure 3.6.

Non-resonance case. We choose $\omega_{1}: \omega_{2}=\omega_{r}=1: \sqrt{2}$. Similarly, by using the two equations in (3.53), we obtain the numerical solution for (τ_{1}, ω_{1}), given by

$$
\begin{equation*}
\left(\tau_{1}, \omega_{1}\right)=(43.8987067132056,-0.398679840517696) \tag{3.76}
\end{equation*}
$$

Therefore, at the above critical point a double Hopf bifurcation occurs. All the critical values of the bifurcation parameters can be determined as:

$$
\begin{equation*}
\left(\tau_{1}, a, \lambda\right)=(43.8987067132056,0.0865744881680455,7.48065701077655) \tag{3.77}
\end{equation*}
$$

The two pairs of purely imaginary eigenvalues for the characteristic equation are

$$
\begin{equation*}
(\pm 0.398679840517696, \pm 0.563818437504870) \tag{3.78}
\end{equation*}
$$

The simulation results are shown in Figure 3.7.

3.7 Conclusion and discussion

In this chapter, we have analysed an HIV-1 infection model with two concentrated delays. We have identified the basic reproduction number \tilde{R}_{0}, and proved that if $\tilde{R}_{0}<$ 1 , the infection-free equilibrium \tilde{E}_{0} is globally asymptotically stable; if $<1 \tilde{R}_{0}<1+$ $\frac{b k q \beta}{c d p \alpha} e^{-\tilde{a} \tau_{2}}$, the single-infection equilibrium \tilde{E}_{s} is asymptotically stable. For the doubleinfection equilibrium \tilde{E}_{d}, we have showed how to determine the stability, existence of Hopf and double Hopf bifurcations.

Due to difficulty in constructing a suitable Lyapunov function for the single-infection equilibrium \tilde{E}_{s}, we didn't obtain its global stability. Moreover, the characteristic equation for the double-infection equilibrium \tilde{E}_{d} can not be factorized into lower degree polynomials, so it is not possible to provide explicit stability conditions.

Comparing with the results for single delay in Chapter 2, the results obtained in this chapter are more significant. With large τ_{2} and all other fixed parameters, the the critical values of τ_{1} are smaller than the ones obtained in Chapter 2. This implies that increasing τ_{2} also decreases \tilde{R}_{0}, which determines whether or not the HIV-1 virus in host will be persistent or will go to extinction. In other words, both prolonging the latent period and slowing down the virus production process can help control the HIV-1 infection.

Figure 3.7: Simulated time history of system (3.1) for $\lambda=7.4807, \alpha=\beta=0.004$, $d=0.002, k=50, a=0.0865744881680455, \bar{a}=0.33, c=2000, b=p=q=2$, $\tau_{1}=43.8987, \tau_{2}=3$ with the initial condition: $x(0)=5.0, y(0)=1.0, z(0)=2.0$, $v(0)=0.5, w(0)=4.0$.

References

[1] AT. Haase, K. Henry, M. Zupancic, G. Sedgewick, RA. Faust, H. Melroe, W. Cavert, K. Gebhard, K. Staskus, ZQ. Zhang, PJ. Daily, HH. Balfour, A. Erice, AS. Perelson. Quantitative image analysis of HIV-1 infection in lymphoid tissue. Science 274, 985-9, 1996.
[2] A. Martin and S. Ruan. Predator-prey models with time delay and prey havesting. J. Math. Biol 43, 247-267, 2001.
[3] B. Autran, G. Carcelain, TS. Li, C. Blanc, D. Mathez, R. Tubiana, C. Katlama, P. Debre, J. Leibowitch. Positive effects of combined antiretroviral therapy onCD4+ T cell homeostasis and function in advanced HIV disease. Science 277, 112-16, 1997.
[4] B.D. Hassard, N.D. Kazarinoff, Y.H. Wan. Theory and Applications of Hopf Bifurcation. Cambridge University Press 1981.
[5] C. Castillo-Chavez and H.R. Thieme. Asymptotically autonomous epidemic models.Mathematical Population Dynamics: Analysis of Heterogeneity. I. Theory of Epidemics (0. Arino et al. eds). Winnipeg, Canada: Wuerz 33-50, 1995.
[6] CH. Fox, K. Tenner-Racz, P. Racz, A. Firpo, PA. Pizzo, AS. Fauci. Lymphoid germinal centers are reservoirs of human immunodeficiency virus type 1 RNA. J. Infect. Dis. 164, 1051-57, 1991.
[7] D. Finzi, M. Hermankova, T. Pierson, LM. Carruth, C. Buck, RE. Chaisson, TC. Quinn, K. Chadwick, J. Margolick, R. Brookmeyer, J. Gallant, M. Markowitz, DD. Ho, DD. Richman, RF. Siliciano. Identification of a reservoir for HIV-1 in patients on highly active antiretroviral therapy. Science 278, 1295-1300, 1997.
[8] DD. Ho, AU. Neumann, AS. Perelson, W. Chen, JM. Leonard, M. Markowitz. Rapid turnover of plasma virions andCD4 lymphocytes in HIV-1 infection. Na ture 373, 123-26, 1995.
[9] DR. Henrard, E. Daar, FarzadeganH, SJ. Clark, J. Phillips, ShawGM, BuschMP. Virologic and immunologic characterization of symptomatic and asymptomatic primary HIV-1 infection. J. Acquir. Immune Defic. Syndr. 9, 305-10, 1995.
[10] E. Beretta and Y. Kuang. Geometric stability switch criteria in delay differential systems with delay dependent parameters. SIAM J. Math. Anal. 33, 1144-1165, 2002.
[11] ES. Daar, T. Moudgil, RD. Meyer, DD. Ho. Transient high levels of viremia in patients with primary human immunodeficiency virus type 1 infection. N. Engl. J. Med. 324, 961-4, 1991.
[12] E.K. Wagner and M.J. Hewlett. Basic Virology, Blackwell, New York, 1999.
[13] F.R. Gantmacher. The Theory of Matrices, Vol. 2, Chelsea, NewYork, 1959.
[14] FJ. Palella, KM. Delaney, AC. Moorman, MO. Loveless, J. Fuhrer, GA. Satten, DJ. Aschman, SD. Holmberg, HIV Outpatient Study Investigators. Declining morbidity and mortality among patients with advanced human immunodeficiency virus infection. N. Engl. J. Med. 338, 853C60, 1998.
[15] F. Verhulst. Nonlinear Differential Equation and Dynamical Systems. SpringerVerlag, New York 1990.
[16] G.P. Nolan. Harnessing viral devices as pharmaceuticals: fighting HIV-1s fire with fire, $90,821,1997$.
[17] G. Pantaleo, C. Graziosi, AS. Fauci. The immunopathogenesis of human immunodeficiency virus infection. N. Engl. J. Med. 328, 327-35, 1993.
[18] G. Pantaleo, C. Graziosi, JF. Demarest, L. Butini, M. Montroni, CH. Fox, JM. Orenstein, DP. Kotler, AS. Fauci. HIV infection is active and progressive in lymphoid tissue during the clinically latent stage of disease. Nature 362, 355-9, 1993.
[19] G. Stépán. Retarded Dynamical Systems: Stability and Characteristic Functions,Longman Science and Technical, New York, 1989.
[20] HK. Parmentier, D. Van Wichen, DMDS. Sie-Go, J. Goudsmit, JCC. Borleffs, HJ. Schuurman. HIV-1 infection and virus production in follicular dendritic cells in lymph nodes. Am. J. Pathol. 137, 247C51, 1990.
[21] Huiyan Zhu and Xingfu Zou. Dynamics of a HIV-1 infection model with cellmediated immune response and intracellular delay. Disc. Cont. Dyan. Syst. B. 12(2), 511-524, 2009.
[22] Huiyan Zhu and Xingfu Zou. Impact of delays in cell infection and virus production on HIV-1 dynamics.Math. Medic. Bio. 25, 99-112, 2008.
[23] J. Hale and S. M. Verduyn Lunel. Introduction to Functional Differential Equations, Applied Mathematical Science. Vol.99, Springer-Verlag, New York, 1993.
[24] J.P. LaSalle. The Stability of Dynamics Systems, SIAM, Philadelphia 1976.
[25] J. Mittler, B. Sulzer, A. Neumann and A. Perelson X. Influence of delayed virus production on viral dynamics in HIV-1 infected patients. Math.Biosci 152, 143163, 1998.
[26] JW. Mellors, CR. Rinaldo, P. Gupta, RM. White, JA. Todd, LA. Kingsley. Prognosis in HIV-1 infection predicted by the quantity of virus in plasma. Science 272, 1167-70.
[27] JK. Wong, M. Hezareh, HF. Gunthard, DV. Havlir, CC. Ignacio, CA. Spina, DD. Richman. Recovery of replicationC competent HIV despite prolonged suppression of plasma viremia. Science 278, 1291-95, 1997.
[28] KV. Komanduri, MN. Viswanathan, ED. Wieder, DK. Schmidt, BM. Bredt, MA. Jacobson, JM. McCune. Restoration of cytomegalovirusCspecific CD4+ TClymphocyte responses after ganciclovir and highly active antiretroviral therapy in individuals infected with HIV-1. Nature Med. 4, 953-56, 1998.
[29] K. Tenner-Racz, P. Racz, JC. Gluckman, M. Popovic. Cell-free HIV in lymph nodes of patients with persistent generalized lymphadenopathy and AIDS. N. Engl. J. Med. 318, 49-50, 1988.
[30] K. Tenner-Racz, P. Racz, S. Gartner, J. Ramsauer, M. Dietrich, JC. Gluckman, M. Popovic. Ultrastructural analysis of germinal centers in lymph nodes of patients with HIV-1-induced persistent generalized lymphadenopathy: evidence for persistence of infection. In Progress in AIDS Pathology, ed. H Rotterdam, SC Sommers, P Racz, PR Meyer. New York: Field and Wood 29C40, 1989.
[31] K. Tenner-Racz, P. Racz, H. Schmidt, M. Dietrich, P. Kern, A. Louie, S. Gartner, M. Popovic. Immunohistochemical, electron microscopic and in situ hybridization evidence for the involvement of lymphatics in the spread of HIV-1. AIDS 2, 299C309, 1988.
[32] M.J. Schnell, E. Johnson, L. Buonocore, J.K. Rose. Construction of a novel virus that targets HIV-1 infected cells and control HIV-1 infection. Cell 90, 849, 1997.
[33] Ovide Arino, M.L. Hbid, E. Ait Dads, Delay differential equations and applications. Springer 2006.
[34] R. Bellman, K.L. Cooke. Differential-Difference Equations. Academic Press, New York 1963.
[35] RA. Koup, JR. Safrit, Y. Cao, CA. Andrews, G. McLeod, W. Borkowsky, C. Farthing, DD. Ho. Temporal association of cellular immune responses with the initial control of viremia in primary human immunodeficiency virus type 1 syndrome. J. Virol. 68, 4650-55.
[36] S. Busenberg and K. L. Cooke. Vertically Transmitted Diseases; Models and Dynamics (Biomathematics. 23), Springer, New York, 1993.
[37] SJ. Clark, MS. Saag, WD. Decker, S. Campbell-Hill, JL. Roberson, PJ. Veldkamp, JC. Kappes, BH. Hahn, GM. Shaw. High titers of cytopathic virus in plasma of patients with symptomatic primary HIV-1 infection. N. Engl. J. Med. 324, 954-60, 1991.
[38] S. Ruan, G. Wolkowicz, J. Wu. Differential equations with applications to biology. AMS and Fields Institute Communications, 1999.
[39] TW. Chun, L. Stuyver, SB. Mizell, LA. Ehler, JAM. Mican, M. Baseler, AL. Lloyd, MA. Nowak, AS. Fauci. Presence of an inducible HIV-1 latent reservoir during highly active antiretroviral therapy. Proc. Natl. Acad. Sci. USA 94, 1319397, 1997.
[40] TS. Li, R. Tubiana, C. Katlama, Calvez, H. Ait Mohand, B. Autran. Long lasting recovery in CD4+ T cell function mirrors viral load reduction after highly active antiCretroviral therapy in patients with advanced HIV disease. Lancet 351, 168286, 1998.
[41] TC. Quinn. Global burden of the HIV pandemic. Lancet 348, 99-106, 1996.
[42] T. Revilla and G. Garcia-Ramos. Fighting a virus with a virus: a dynamic model for HIV-1 therapy. Math. Biosci. 185, 191-203, 2003.
[43] TW. Schacker, JP. Hughes, T. Shea, RW. Coombs, L. Corey. Biological and virologic characteristics of primary HIV infection. Ann. Intern. Med. 128, 61320, 1998
[44] W. Cavert, DW. Notermans, K. Staskus, SW. Wietgrefe, M. Zupancic, K. Gebhard, K. Henry, ZQ. Zhang, R. Mills, H. McDade, CM. Schuwirth, J. Goudsmit, SA. Danner, AT. Haase. Kinetics of response in lymphoid tissues to antiretroviral therapy of HIV-1 infection. Science 276, 960-64, 1997.
[45] W.M. Hirsch, H. Hanisch, and J.P. Gabriel. Differential equation models of some parasitic infections: methods for the study of asymptotic behaviour. Comm.Pure Appl. Math 38, 733-753, 1985.
[46] Xiamei Jiang, Pei Yu, Zhaohui Yuan, Xingfu Zou. Dynamics of an HIV-1 therapy model of fighting a virus with another virus. Journal of Biological Dynamics 3(4), 387-409, 2009.
[47] X. Wei, SK. Ghosh, ME. Taylor, VA. Johnson, EA. Emini, P. Deutsch, JD. Lifson, S. Bonhoeffer, MA. Nowak, BH. Hahn, MS. Saag, GM. Shaw. Viral dynamics in human immunodeficiency virus type 1 infection. Nature 373, 117-22, 1995.
[48] X. Zou. The Lecture Notes of AM 9512. 2010.
[49] Y. Kuang. Delay Differential Equations with Applications in Population Dynamics. Academic Press 1993.
[50] ZQ. Zhang, DW. Notermans, G. Sedgewick, W. Cavert, S. Wietgrefe, M. Zupancic, K. Gebhard, K. Henry, L. Boies, Z. Chen, M. Jenkins, R. Mills, H. McDade, C. Goodwin, CM. Schuwirth, SA. Danner, AT. Haase. Kinetics of CD4+ T cell repopulation of lymphoid tissues after treatment of HIV-1 infection. Proc. Natl. Acad. Sci. USA 95, 1154-59, 1998.

Appendix A

Since Equations (2.37) and (2.38) can be directly obtained by setting $\tau_{2}=0$ in Equations (3.46) and (3.47), we have $\tau_{s 1}=\left.\tau_{11}\right|_{\tau_{2}=0}$ and $\tau_{s 2}=\left.\tau_{12}\right|_{\tau_{2}=0}$. Thus, we only need list τ_{11} and τ_{12} as following:

$$
\begin{align*}
& \tau_{11}=\frac{1}{a} \ln \left\{\frac{\tau_{11 n}}{\tau_{1 d}}\right\}, \\
& \tau_{12}=\frac{1}{a} \ln \left\{\frac{\tau_{12 n}}{\tau_{1 d}}\right\}, \tag{A.1}
\end{align*}
$$

where

$$
\begin{aligned}
\tau_{1 d}= & \left(d \alpha c p+\beta b k q e^{-\widetilde{a} \tau_{2}}\right)\left\{e ^ { - \tilde { a } \tau _ { 2 } } \left[2 b k q \beta p c \alpha^{3} \omega^{8} d+2 b k q \beta p c \alpha^{3} d\left(p^{2}+b^{2}+2 b q\right.\right.\right. \\
& \left.+q^{2}\right) \omega^{6}-2 b c k p q \alpha^{2} \beta\left(-p^{2} d \alpha q^{2}-2 p^{2} q \alpha b d-p^{2} q \alpha a ̀ b+p^{2} q a^{2} b-p^{2} b^{2} d \alpha\right. \\
& -p b q^{2} a \alpha+p q^{2} a^{2} b-p b^{2} q a \alpha-2 p q \alpha b a d+p q b^{2} a^{2}+2 p q b a^{2} d-2 \alpha b a d q^{2} \\
& \left.-2 b^{2} a d \alpha q\right) \omega^{4}-2 a^{2} b^{2} c k p q^{2} \alpha^{2} \beta\left(-2 b d p^{2}-b q \alpha p+a b p q-q \alpha b d\right. \\
& \left.\left.-2 d q p^{2}\right) \omega^{2}+2 b^{3} k q^{3} \beta c \alpha p^{3} a^{4} d\right]+e^{-2 a ̃ \tau_{2}}\left[b^{2} k^{2} q^{2} \beta^{2} \omega^{8} \alpha^{2}\right. \\
& +b^{2} k^{2} q^{2} \beta^{2} \alpha^{2}\left(2 b q+q^{2}+p^{2}+b^{2}\right) \omega^{6}--b^{2} k^{2} q^{2} \alpha \beta^{2}(-2 \alpha q b a p \\
& \left.-2 \alpha q^{2} b a-\alpha b^{2} p^{2}+2 a^{2} b p q-2 \alpha q b^{2} a-\alpha q^{2} p^{2}-2 \alpha q b p^{2}\right) \omega^{4} \\
& \left.+a^{2} b^{3} k^{2} q^{3} \alpha \beta^{2}\left(b q \alpha+2 q p^{2}+2 b p^{2}\right) \omega^{2}+b^{4} k^{2} q^{4} \beta^{2} a^{4} p^{2}\right] \\
& +p^{2} c^{2} \alpha^{4} \omega^{1} 0+p^{2} c^{2} \alpha^{4}\left(2 b q+d^{2}+p^{2}+q^{2}+b^{2}\right) \omega^{8}+p^{2} c^{2} \alpha^{4}\left(2 b q p^{2}\right.
\end{aligned}
$$

$$
\begin{aligned}
& \left.+p^{2} d^{2}+q^{2} p^{2}+b^{2} p^{2}+2 d^{2} b q+d^{2} q^{2}+d^{2} b^{2}+2 b q^{2} a+2 b^{2} q a\right) \omega^{6} \\
& -p^{2} c^{2} \alpha^{3}\left(-2 \alpha b q p^{2} d^{2}-\alpha q^{2} p^{2} d^{2}-\alpha b^{2} p^{2} d^{2}+2 p b^{2} q a^{2} d\right. \\
& -2 \alpha p b^{2} q a d-2 \alpha b^{2} q a d^{2}+2 p b q^{2} a^{2} d-2 \alpha p q^{2} a d-2 \alpha b q^{2} a d^{2} \\
& +2 p b q a^{2} d^{2}-2 \alpha p^{2} b q a d+2 p^{2} b q a^{2} d-2 \alpha p b q a d^{2}-\alpha b^{2} q^{2} a^{2} \\
& \left.-2 \alpha b^{2} q a p^{2}-2 \alpha b q^{2} a p^{2}\right) \omega^{4}-a^{2} b q p^{2} c^{2} \alpha^{3}\left(-\alpha q b p^{2}-2 b p^{2} d^{2}\right. \\
& \left.\left.-2 b q p \alpha d+2 b p q a d-b q \alpha d^{2}-2 q p^{2} d^{2}\right) \omega^{2}+b^{2} q^{2} c^{2} \alpha^{2} p^{4} a^{4} d^{2}\right\}
\end{aligned}
$$

and

$$
\begin{aligned}
& \tau_{11 n}=\left(\beta \alpha c \lambda k e^{-\tilde{a} \tau_{2}}\right)\left[\tau_{n 1}+\sqrt{-\alpha^{2} \omega^{2} \tau_{n 2}}\right], \\
& \tau_{12 n}=\left(\beta \alpha c \lambda k e^{-\tilde{a} \tau_{2} 2}\right)\left[\tau_{n 1}-\sqrt{-\alpha^{2} \omega^{2} \tau_{n 2}}\right],
\end{aligned}
$$

with

$$
\begin{aligned}
\tau_{n 1}= & e^{-\tilde{a} \tau_{2}}\left[b ^ { 2 } c k p q ^ { 2 } \alpha ^ { 2 } \beta \left(p^{2} \alpha-a p^{2}+\alpha q p-a p q+p \alpha b-a p \alpha\right.\right. \\
& \left.+2 \alpha p d-2 a p d+a^{2} p-b a p+2 \alpha q d+2 \alpha b d-2 \alpha a d\right) \omega^{4}-a b^{2} c k p q^{2} \alpha^{2} b e t a \\
& \times\left(-b p^{2} \alpha-2 b p^{2} d+b p^{2} a-2 \alpha p b q+2 b a p q-2 \alpha p b d+2 b a p d-2 \alpha b q d\right. \\
& \left.-p^{2} \alpha q-2 q p^{2} d+p^{2} q a+2 p^{2} a d-2 \alpha p q d+2 p q a d\right) \omega^{2} \\
& \left.+2 \beta \alpha c k b^{3} q^{3} p^{3} a^{3} d\right]+e^{-2 \tilde{a} \tau_{2}}\left[-b^{3} k^{2} q^{3} \alpha \beta^{2}(-\alpha b-\alpha q+\alpha a-p \alpha+a p) \omega^{4}\right. \\
& -a b^{3} k^{2} q^{3} \alpha \beta^{2}\left(-\alpha b q-p \alpha b-b p^{2}+b a p-\alpha q p-q p^{2}+a p q+a p^{2}\right) \omega^{2} \\
& \left.+\beta^{2} k^{2} b^{4} q^{4} p^{2} a^{3}\right]-\alpha^{4} c^{2} b q p^{2}(-b-q+a) \omega^{6}+b c^{2} p^{2} q \alpha^{3}\left(p^{2} \alpha q+b p^{2} \alpha\right. \\
& +\alpha p^{2} d-\alpha a p^{2}-p^{2} a d+\alpha p q d-p q a d-a p \alpha d+\alpha p d^{2}+\alpha p b d-b a p d \\
& \left.+a^{2} p d-a p d^{2}+\alpha q d^{2}+q \alpha b a+\alpha b d^{2}-\alpha a d^{2}\right) \omega^{4}-a c^{2} b p^{2} q \alpha^{3}\left(-\alpha b q p^{2}\right. \\
& -b \alpha p^{2} d+b p^{2} a d-b p^{2} d^{2}-2 p \alpha b q d+2 b p q a d-p \alpha b d^{2}+b a p d^{2}-\alpha b q d^{2} \\
& \left.-\alpha p^{2} d q+p^{2} q a d-q p^{2} d^{2}+p^{2} a d^{2}-p \alpha d^{2} q+p q a d^{2}\right) \omega^{2}+\alpha^{2} c^{2} b^{2} q^{2} p^{4} a^{3} d^{2}
\end{aligned}
$$

$$
\begin{aligned}
& \tau_{n 2}=e^{-\tilde{a} \tau_{2}}\left[4 p^{3} c^{3} \alpha^{5} b k b e t a q d \omega^{14}+2 b c^{3} k p^{3} q \alpha^{4} \beta\left(\left[4 \alpha b^{2} d-\alpha p b q+b a p q\right.\right.\right. \\
& \left.+4 b d q \alpha+3 \alpha p^{2} d+4 \alpha q^{2} d+2 \alpha d^{3}\right] \omega^{12}-2 b c^{3} k p^{3} q \alpha^{4} \beta\left[\alpha q p b^{3}\right. \\
& -2 \alpha p b q a d-4 \alpha q b^{3} d-4 \alpha q b d^{3}-2 \alpha q^{4} d-\alpha p^{4} d-\alpha q^{2} p^{2} b+\alpha q^{2} p b^{2} \\
& +\alpha q p^{3} b-4 \alpha q^{3} b d-6 \alpha p^{2} b^{2} d-q p b^{3} a+q p^{2} b^{2} a+q^{2} p^{2} b a-q p^{3} b a \\
& +q^{2} p b a^{2}-q^{2} p b^{2} a+q p^{2} b a^{2}-q p^{3} b a-q^{3} p b a+q p b^{2} a^{2}-3 \alpha p^{2} d^{3} \\
& -3 b p q d^{2} a+2 q p^{2} b a d-4 \alpha q^{2} b a d-4 \alpha q b^{2} a d-\alpha q p b^{2} a-6 \alpha q p^{2} b d \\
& -\alpha q p^{2} b a-\alpha q^{2} p b a+3 \alpha p b q d^{2}-2 \alpha q p b^{2} d-2 \alpha q^{2} p b d-4 \alpha q^{2} d^{3} \\
& -4 \alpha b^{2} d^{3}-2 \alpha b^{4} d+2 q p b^{2} a d+2 q^{2} p b a d+2 b p q a^{2} d-\alpha q p^{2} b^{2}+\alpha q^{3} p b \\
& \left.-6 \alpha q^{2} p^{2} d-6 \alpha q^{2} b^{2} d\right] \omega^{10}-2 b c^{3} k p^{3} q \alpha^{4} \beta\left[\alpha q p b^{3}-2 \alpha p b q a d-4 \alpha q b^{3} d\right. \\
& -4 \alpha q b d^{3}-2 \alpha q^{4} d-\alpha p^{4} d-\alpha q^{2} p^{2} b+\alpha q^{2} p b^{2}+\alpha q p^{3} b-4 \alpha q^{3} b d \\
& -6 \alpha p^{2} b^{2} d-q p b^{3} a+q p^{2} b^{2} a+q^{2} p^{2} b a+q^{2} p b a^{2}-q^{2} p b^{2} a+q p^{2} b a^{2} \\
& -q^{3} p b a+q p b^{2} a^{2}-3 \alpha p^{2} d^{3}-3 b p q d^{2} a+2 q p^{2} b a d-4 \alpha q^{2} b a d-4 \alpha q b^{2} a d \\
& -\alpha q p b^{2} a-6 \alpha q p^{2} b d-\alpha q p^{2} b a-\alpha q^{2} p b a+3 \alpha p b q d^{2}-2 \alpha q p b^{2} d \\
& -2 \alpha q^{2} p b d-4 \alpha q^{2} d^{3}-4 \alpha b^{2} d^{3}-2 \alpha b^{4} d+2 q p b^{2} a d+2 q^{2} p b a d+2 b p q a^{2} d \\
& \left.-\alpha q p^{2} b^{2}+\alpha q^{3} p b-6 \alpha q^{2} p^{2} d-6 \alpha q^{2} b^{2} d\right] \omega^{8}-2 b c^{3} k p^{3} q \alpha^{3} \beta \\
& \times\left[-2 \alpha^{2} q^{2} p^{4} d-2 \alpha^{2} p^{4} b^{2} d-3 \alpha^{2} p^{2} b^{4} d-3 \alpha^{2} q^{2} p b a d^{2}-4 \alpha^{2} q^{2} p^{2} b a d\right. \\
& -3 \alpha q^{3} \dot{p} d^{2} b a+2 \alpha q^{2} p^{3} b a d+2 \alpha q p^{3} b^{2} a d+4 \alpha q^{2} p b d^{3} a-2 \alpha^{2} q^{3} p b a d \\
& -3 \alpha^{2} q p b^{2} a d^{2}-2 \alpha^{2} q^{2} p d b^{2} a-3 \alpha^{2} q p^{2} b a d^{2}+2 \alpha q^{3} p b a^{2} d-2 \alpha^{2} q^{3} p^{2} b^{2} \\
& +\alpha^{2} q^{3} p^{3} b+3 \alpha^{2} q p^{3} b d^{2}+\alpha q^{3} p^{2} b a^{2}+\alpha q p^{2} b^{3} a^{2}+3 \alpha^{2} q p b^{3} d^{2} \\
& -\alpha q^{3} p^{3} b a-\alpha^{2} q^{3} p b^{2} a+2 \alpha q^{3} p^{2} b^{2} a-4 \alpha^{2} q^{3} p b^{2} d+\alpha q^{3} p b^{2} a^{2} \\
& +2 \alpha q^{2} p^{2} b^{3} a-4 \alpha^{2} q^{2} p b^{3} d+\alpha q^{2} p b^{3} a^{2}-\alpha^{2} q^{4} p b a-\alpha q^{2} p^{3} b^{2} a-2 \alpha^{2} q p^{4} b d \\
& -3 \alpha^{2} q p^{2} b^{2} d^{2}-4 \alpha^{2} q p b^{2} d^{3}-4 \alpha^{2} q^{2} p b d^{3}-\alpha^{2} q^{3} p^{2} b a-\alpha^{2} q p^{2} b^{3} a \\
& -8 \alpha^{2} q p^{2} b d^{3}-4 \alpha^{2} q b^{2} a d^{3}-4 \alpha^{2} q^{2} b a d^{3}-4 \alpha^{2} q^{4} b a d-8 \alpha^{2} q^{3} b^{2} a d \\
& -8 \alpha^{2} q^{2} b^{3} a d-4 \alpha^{2} q b^{4} a d+\alpha q^{2} p^{4} b a-\alpha q p^{3} b^{3} a-3 \alpha^{2} q^{2} p^{2} b d^{2} \\
& +3 \alpha^{2} q^{2} p b^{2} d^{2}-\alpha^{2} q p b^{4} a+\alpha q^{4} p^{2} b a+\alpha q p^{2} b^{4} a+2 \alpha q p b^{3} a^{2} d \\
& -4 \alpha^{2} q p b a d^{3}-3 \alpha q p d^{2} b^{3} a-4 \alpha^{2} q p^{2} b^{2} a d+4 \alpha q^{2} p b^{3} a d-2 \alpha^{2} q p b^{3} a d \\
& +2 \alpha q^{4} p b a d+2 \alpha q p^{4} b a d+4 \alpha q^{3} p b^{2} a d+3 \alpha q^{2} p^{2} d^{2} b a+3 \alpha q p^{2} d^{2} b^{2} a \\
& +4 \alpha q^{2} p^{2} b^{2} a d+3 \alpha q^{2} p b a^{2} d^{2}+4 \alpha q p b^{2} d^{3} a-2 \alpha q^{2} p^{2} b a^{2} d-\alpha^{2} p^{4} d^{3} \\
& -2 \alpha^{2} b^{4} d^{3}-2 \alpha^{2} q^{4} d^{3}+4 \alpha q p^{2} b d^{3} a-\alpha^{2} q p^{2} b^{4}-\alpha^{2} q^{2} p^{4} b-4 \alpha^{2} q b^{3} d^{3} \\
& -\alpha^{2} q^{4} p^{2} b+3 \alpha q p^{2} b a^{2} d^{2}+2 \alpha q^{2} p b^{2} a^{2} d-3 \alpha q p^{3} b d^{2} a-6 \alpha^{2} q^{2} b^{2} d^{3} \\
& -6 \alpha^{2} p^{2} b^{2} d^{3}+2 \alpha q^{3} p^{2} b a d+2 \alpha q p^{2} b^{3} a d-3 \alpha q^{2} p d^{2} b^{2} a+4 \alpha q p b a^{2} d^{3} \\
& +2 \alpha q p b^{4} a d+3 \alpha q p b^{2} a^{2} d^{2}-2 \alpha^{2} q p^{3} b^{2} d+3 \alpha^{2} q^{3} p b d^{2}-2 \alpha^{2} q^{4} p b d \\
& -q^{2} p^{2} b^{2} a^{2} d-2 \alpha^{2} q p b^{4} d+\alpha q^{4} p b a^{2}-\alpha^{2} q^{2} p^{2} b^{2} a-\alpha^{2} q^{2} p b^{3} a+\alpha q p b^{4} a^{2} \\
& +\alpha q^{2} p^{2} b^{2} a^{2}-2 \alpha^{2} q^{2} p^{3} b d-6 \alpha^{2} q p^{2} b^{3} d-9 \alpha^{2} q^{2} p^{2} b^{2} d-6 \alpha^{2} q^{3} p^{2} b d \\
& +\alpha q p^{4} b^{2} a-6 \alpha^{2} q^{2} p^{2} d^{3}-4 \alpha^{2} q^{3} b d^{3}-2 \alpha q p^{2} b^{2} a^{2} d+\alpha^{2} q p^{3} b^{3}-\alpha^{2} q p^{4} b^{2} \\
& \left.-3 \alpha^{2} q^{4} p^{2} d-2 \alpha^{2} q^{2} p^{2} b^{3}+\alpha^{2} q^{2} p^{3} b^{2}\right] \omega^{6}-2 b c^{3} k p^{3} q \alpha^{3} \beta\left[4 \alpha q^{3} p b^{3} a^{2} d\right.
\end{aligned}
$$

$$
\begin{aligned}
& -2 \alpha^{2} q^{4} p b^{2} a d+2 \alpha q^{4} p^{3} b a d+3 \alpha b p^{4} d^{2} a q^{2}+4 \alpha^{2} b^{2} q^{2} a p^{3} d-2 \alpha^{2} b q^{2} a p^{4} d \\
& +2 \alpha b p^{4} a q^{3} d+2 \alpha b^{2} p^{4} a q^{2} d-6 \alpha q^{3} p^{2} b^{2} a^{2} d-6 \alpha^{2} q^{3} p^{2} b^{2} a d-2 \alpha^{2} q^{2} p b^{4} a d \\
& -2 \alpha^{2} q p^{3} b a d^{3}-4 \alpha^{2} q^{3} p b a d^{3}-6 \alpha q^{2} p^{2} b^{3} a^{2} d+2 \alpha q^{2} p b^{4} a^{2} d-4 \alpha^{2} q p b^{3} a d^{3} \\
& -4 \alpha q^{2} p^{2} b a^{2} d^{3}+4 \alpha q p^{2} b^{3} d^{3} a+2 \alpha q^{4} p b^{2} a^{2} d-4 \alpha^{2} q^{4} p^{2} b a d+3 \alpha q p^{2} b^{4} d^{2} a \\
& +2 \alpha q p^{3} b^{4} a d-2 \alpha^{2} q p^{4} b^{2} a d-4 \alpha^{2} q^{4} p b d^{3}-2 \alpha^{2} b^{2} p^{3} d q^{3}+2 \alpha b^{3} p^{4} a q^{2} \\
& -2 \alpha^{2} b^{4} p^{3} d q+\alpha^{2} b^{2} q^{2} a p^{4}-\alpha b^{2} q^{2} p^{4} a^{2}+\alpha b q^{4} p^{4} a-2 \alpha^{2} b^{3} q^{2} p^{3} d \\
& -4 \alpha^{2} b q^{2} p^{3} d^{3}-4 \alpha^{2} b^{2} p^{3} d^{3} q-3 \alpha^{2} b p^{4} d^{2} q^{2}-2 \alpha^{2} b^{2} p^{4} q^{2} d-2 \alpha^{2} b p^{4} q^{3} d \\
& +2 \alpha b^{2} q^{3} p^{4} a-2 \alpha^{2} b q^{4} p^{3} d-\alpha^{2} q^{2} p b^{4} a^{2}-\alpha^{2} q^{2} p^{2} b^{4} a-8 \alpha^{2} q^{3} p b^{2} d^{3} \\
& -3 \alpha^{2} q^{3} p^{2} b^{2} d^{2}-\alpha^{2} q^{3} p^{2} b^{2} a^{2}-10 \alpha^{2} q^{2} p^{2} b^{2} d^{3}+\alpha q^{3} p^{2} b^{2} a^{3}-3 \alpha^{2} q^{4} p^{2} b d^{2} \\
& +6 \alpha^{2} q^{2} p^{3} b^{2} d^{2}+\alpha q^{4} p^{2} b^{2} a^{2}+2 \alpha^{2} b^{3} q^{2} p^{3} a-2 \alpha q^{2} p^{3} b^{3} a^{2}-8 \alpha^{2} q p^{2} b^{3} d^{3} \\
& -8 \alpha^{2} q^{3} p^{2} b d^{3}-4 \alpha^{2} q p^{4} b d^{3}-8 \alpha^{2} q^{2} p b^{3} d^{3}-3 \alpha^{2} q^{2} p^{2} b^{3} d^{2}+2 \alpha q^{3} p b^{3} a^{3} \\
& -\alpha q^{2} p^{3} b^{2} a^{3}+\alpha q p^{4} b^{4} a+3 \alpha^{2} q^{3} p^{3} b d^{2}+3 \alpha^{2} q p^{3} b^{3} d^{2}-2 \alpha q^{3} p^{3} b^{2} a^{2} \\
& -3 \alpha^{2} q p^{4} b^{2} d^{2}+\alpha^{2} q^{2} p^{3} b^{2} a^{2}-2 \alpha^{2} q^{3} p^{2} b^{3} a-\alpha^{2} q^{4} p^{2} b^{2} a+\alpha q^{2} p b^{4} a^{3} \\
& -2 \alpha^{2} q p^{4} b^{3} d+2 \alpha q^{3} p^{2} b^{3} a^{2}+\alpha q^{2} p^{2} b^{4} a^{2}-2 \alpha^{2} b^{3} p^{4} q^{2}-\alpha^{2} b q^{4} p^{4} \\
& -2 \alpha^{2} q^{3} b^{2} p^{4}-\alpha^{2} p^{4} b^{4} d-3 \alpha^{2} p^{2} b^{4} d^{3}-2 \alpha^{2} b^{2} p^{4} d^{3}-\alpha^{2} q^{4} p^{4} d-2 \alpha^{2} q^{2} p^{4} d^{3} \\
& -3 \alpha^{2} q^{4} p^{2} d^{3}-\alpha^{2} q p^{4} b^{4}-2 \alpha^{2} q^{2} p b^{3} a^{2} d+4 \alpha q p b^{4} d^{3} a+\alpha^{2} q^{2} p^{2} b^{2} a^{2} d \\
& -3 \alpha^{2} q^{2} p b^{3} a d^{2}-6 \alpha q^{2} p^{3} b^{2} a^{2} d-3 \alpha^{2} q^{3} p b^{2} a d^{2}+3 \alpha q p^{4} b^{2} d^{2} a+4 \alpha q p^{3} b^{2} d^{3} a \\
& +4 \alpha q^{2} p^{3} b d^{3} a-2 \alpha^{2} q p^{2} b^{2} a d^{3}+3 \alpha q^{4} p^{2} b d^{2} a+4 \alpha q^{3} p^{2} b d^{3} a+2 \alpha q^{2} p b^{3} a^{3} d \\
& -2 \alpha^{2} q^{2} p^{2} b a d^{3}+4 \alpha q^{3} p b a^{2} d^{3}+2 \alpha q p^{3} b a^{2} d^{3}+4 \alpha q p b^{3} a^{2} d^{3}-3 \alpha^{2} q^{4} p b a d^{2} \\
& -3 \alpha^{2} q^{3} p^{2} b a d^{2}-2 \alpha^{2} q p^{4} b a d^{2}-3 \alpha^{2} q p^{2} b^{3} a d^{2}+4 \alpha q p^{4} b d^{3} a-3 \alpha q^{2} p^{2} b^{2} a^{2} d^{2} \\
& +2 \alpha q p^{3} b^{2} a^{2} d^{2}+3 \alpha q p b^{4} a^{2} d^{2}-2 \alpha q p^{2} b^{4} a^{2} d-2 \alpha^{2} q p^{3} b^{2} a d^{2}-3 \alpha^{2} q p b^{4} a d^{2} \\
& -2 \alpha^{2} q^{3} p b^{2} a^{2} d-4 \alpha q p^{2} b^{2} a^{2} d^{3}-4 \alpha^{2} q^{3} p b^{3} a d-6 \alpha^{2} q^{2} p^{2} b^{3} a d+3 \alpha q^{3} p b^{2} a^{2} d^{2} \\
& +2 \alpha q^{3} p b^{2} a^{3} d+3 \alpha q^{4} p b a^{2} d^{2}+2 \alpha q^{2} p^{3} b a^{2} d^{2}+3 \alpha q^{2} p b^{3} a^{2} d^{2}-4 \alpha^{2} q^{2} p b^{2} a d^{3} \\
& +4 \alpha q^{2} p b^{2} a^{2} d^{3}-9 \alpha q^{2} p^{3} b^{2} a d^{2}-2 \alpha q^{4} p^{2} b a^{2} d-3 \alpha q p^{3} b^{3} d^{2} a+8 \alpha q^{2} p b^{3} a d^{3} \\
& +8 \alpha q^{3} p b^{2} a d^{3}+4 \alpha q^{2} p^{2} b^{2} a d^{3}+2 \alpha q p^{4} b^{3} a d-3 \alpha q^{3} p^{3} b d^{2} a+4 \alpha q^{4} p b d^{3} a \\
& -2 \alpha^{2} q^{3} p b^{3} a^{2}-\alpha^{2} q^{2} p^{2} b^{3} a^{2}-3 \alpha^{2} q p^{2} b^{4} d^{2}-4 \alpha^{2} q p b^{4} d^{3}+\alpha q^{4} p b^{2} a^{3}+2 q^{3} p^{3} b^{2} a^{2} d \\
& -\alpha^{2} q^{4} p b^{2} a^{2}+2 \alpha^{2} q^{3} p^{3} b^{2} a+\alpha q^{2} p^{2} b^{3} a^{3}-4 \alpha^{2} q b^{4} a d^{3}-4 \alpha^{2} b q^{4} a d^{3}+2 \alpha q p^{4} b a^{2} d^{2} \\
& -2 \alpha^{2} q^{4} b^{2} a^{2} d-2 \alpha^{2} q^{2} b^{4} a^{2} d-8 \alpha^{2} b^{3} q^{2} a d^{3}-8 \alpha^{2} q^{3} b^{2} a d^{3}-4 \alpha^{2} q^{3} b^{3} a^{2} d \\
& +3 q^{2} p^{2} b^{3} a^{2} d^{2}+2 q^{2} p^{2} b^{3} a^{3} d+3 q^{3} p^{2} b^{2} a^{2} d^{2}+2 q^{2} p^{3} b^{2} a^{3} d+3 q^{2} p^{3} b^{2} a^{2} d^{2} \\
& +3 q^{2} p^{2} b^{2} a^{3} d^{2}+2 q^{3} p^{2} b^{2} a^{3} d+2 q^{2} p^{3} b^{3} a^{2} d-4 \alpha^{2} q p^{2} b^{4} a d+3 \alpha q^{3} p^{2} b a^{2} d^{2} \\
& \left.+3 \alpha q p^{2} b^{3} a^{2} d^{2}-2 \alpha^{2} b q^{2} p^{3} a d^{2}\right] \omega^{4}-2 a^{2} b^{2} c^{3} d k p^{5} q^{2} \alpha^{3} \beta\left[\alpha^{2} q b^{3} d^{2}+2 \alpha^{2} q^{2} b^{2} d^{2}\right. \\
& +b^{3} q a^{2} p^{2}+b q^{3} a^{2} p^{2}+2 q^{2} p^{2} b^{2} a^{2}-4 \alpha q^{3} b a d^{2}-2 \alpha q^{3} p^{2} d^{2}-4 \alpha q b^{3} a d^{2} \\
& -4 \alpha q p d^{2} b^{3}-4 \alpha q^{3} p d^{2} b+\alpha^{2} q^{3} p d b-3 \alpha q p^{2} d b^{3}+\alpha^{2} q p d b^{3}-3 \alpha q^{3} p^{2} d b \\
& +2 \alpha^{2} q^{2} p d b^{2}-8 \alpha q^{2} p d^{2} b^{2}+3 q p d b^{3} a^{2}+6 q^{2} p d b^{2} a^{2}+3 q^{3} p d b a^{2}+3 q^{3} p^{2} b a d \\
& +3 q^{2} p^{2} b a^{2} d-6 \alpha q^{2} p^{2} d^{2} b-6 \alpha q^{2} p^{2} d b^{2}-2 \alpha p^{2} b^{3} d^{2}-3 \alpha q p^{2} d b^{2} a-4 \alpha q p d b^{3} a \\
& -8 \alpha q^{2} p d b^{2} a-4 \alpha q^{3} p d b a-4 \alpha q^{2} p d^{2} b a-3 \alpha q^{2} p^{2} d b a-4 \alpha q p d^{2} a b^{2}+\alpha^{2} q^{3} b d^{2} \\
& -8 a b^{2} d^{2} q^{2} \alpha-4 \alpha q^{2} p^{2} b^{2} a-2 \alpha q^{3} p^{2} b a-2 \alpha q p^{2} b^{3} a-6 \alpha q p^{2} d^{2} b^{2}+4 q^{3} p b a d^{2}
\end{aligned}
$$

$+3 q p^{2} b^{3} a d+4 q p b^{2} a^{2} d^{2}+4 q p^{2} b^{2} a d^{2}+8 q^{2} p b^{2} a d^{2}+6 q^{2} p^{2} b^{2} a d+4 q^{2} p b a^{2} d^{2}$
$\left.\left.+q p^{2} b a^{2} d^{2}+3 q p^{2} b^{2} a^{2} d+4 q^{2} p^{2} b a d^{2}+4 q p b^{3} a d^{2}\right] \omega^{2}+2 \alpha^{3} c^{3} b^{3} q^{3} p^{7} a^{4} d^{3} \beta k(b+q)^{2}\right]$
$+e^{-2 a a_{2}}\left[2 b^{2} k^{2} q^{2} \beta^{2} \alpha^{4} p^{2} c^{2} \omega^{14}+b^{2} k^{2} q^{2} \beta^{2} \alpha^{4} p^{2} c^{2}\left(4 q^{2}+3 p^{2}+6 d^{2}+4 b^{2}+4 b q\right) \omega^{12}\right.$
$-b^{2} c^{2} k^{2} p^{2} q^{2} \alpha^{3} \beta^{2}\left[6 \alpha q p b d-2 \alpha q p b a-12 \alpha q b d^{2}+2 b p q a^{2}-\alpha p^{4}-2 \alpha q^{4}\right.$
$-12 \alpha d^{2} q^{2}-4 \alpha q b^{3}-12 \alpha d^{2} b^{2}-6 \alpha q^{2} p^{2}-6 \alpha q b p^{2}-4 \alpha q^{3} b-4 \alpha q b^{2} a-6 b p q a d$
$-2 \alpha q p b^{2}+2 q p b^{2} a-2 \alpha q^{2} p b-4 \alpha q^{2} b a+2 q p^{2} b a+2 q^{2} p b a-6 \alpha b^{2} q^{2}-2 \alpha b^{4}$
$\left.-6 \alpha b^{2} p^{2}-11 \alpha p^{2} d^{2}\right] \omega^{10}-b^{2} c^{2} k^{2} p^{2} q^{2} \alpha^{2} \beta^{2}\left[-2 \alpha^{2} q^{2} p^{4}-3 \alpha^{2} q^{4} p^{2}-2 \alpha^{2} b^{2} p^{4}\right.$
$-6 \alpha^{2} b^{4} d^{2}-5 \alpha^{2} p^{4} d^{2}-3 \alpha^{2} b^{4} p^{2}-6 \alpha^{2} q^{4} d^{2}-12 \alpha^{2} q b^{3} d^{2}-6 \alpha^{2} b q^{3} p^{2}$
$+2 \alpha q b^{2} p^{3} a-12 \alpha^{2} q b^{2} a d^{2}+2 \alpha q p b^{3} a^{2}-2 \alpha^{2} q b p^{4}-18 \alpha^{2} q^{2} b^{2} d^{2}+6 \alpha^{2} q^{3} p d b$
$-4 \alpha^{2} q b^{2} a p^{2}-12 \alpha^{2} q^{3} b d^{2}+6 \alpha^{2} q p d b^{3}-9 \alpha^{2} b^{2} q^{2} p^{2}-2 \alpha q p^{2} b^{2} a^{2}-q^{2} p^{2} b^{2} a^{2}$
$+2 \alpha p b q^{3} a^{2}-2 \alpha^{2} p b q^{4}-12 \alpha^{2} q^{2} p b d^{2}-8 \alpha^{2} q^{2} b^{3} a+2 \alpha q^{2} p b^{2} a^{2}-6 \alpha^{2} q^{2} p b a d$
$+4 \alpha p b^{2} a q^{3}-6 \alpha^{2} q^{2} p^{2} b d-2 \alpha^{2} q^{2} b p^{3}-6 \alpha q b a p^{3} d+2 \alpha p b a q^{4}-8 \alpha^{2} b^{2} q^{3} a$
$-4 \alpha^{2} b q^{4} a-22 \alpha^{2} p^{2} d^{2} b^{2}+6 \alpha^{2} q b p^{3} d-6 \alpha^{2} q b^{3} p^{2}-4 \alpha^{2} q^{2} b a p^{2}+2 \alpha q b p^{4} a$
$+6 \alpha^{2} q^{2} p d b^{2}-22 \alpha^{2} p^{2} d^{2} q^{2}-2 \alpha^{2} q p b^{3} a+2 \alpha q^{2} b p^{3} a-4 \alpha^{2} q b^{4} a+12 \alpha q p^{2} b d^{2} a$
$-12 \alpha^{2} q p b a d^{2}+4 \alpha q^{2} p b^{3} a+2 \alpha q p b^{4} a-12 \alpha^{2} q^{2} b a d^{2}-2 \alpha^{2} q p b^{4}+6 \alpha q p^{2} b a^{2} d$
$-4 \alpha^{2} p b^{2} q^{3}-2 \alpha^{2} q b^{2} p^{3}-32 \alpha^{2} q b p^{2} d^{2}-2 \alpha^{2} p b q^{3} a+6 \alpha q p b^{2} a^{2} d-2 \alpha q^{2} p^{2} b a^{2}$
$+6 \alpha q^{2} p b a^{2} d-6 \alpha^{2} q p^{2} b^{2} d+12 \alpha q p b a^{2} d^{2}-6 \alpha^{2} q p b^{2} a d+6 \alpha q p^{2} d b^{2} a-6 \alpha q p d b^{3} a$
$-6 \alpha q^{2} p d b^{2} a-6 \alpha q^{3} p d b a+12 \alpha q^{2} p d^{2} b a+6 \alpha q^{2} p^{2} d b a+12 \alpha q p d^{2} a b^{2}-4 \alpha^{2} q^{2} p b^{3}$
$\left.-2 \alpha^{2} q^{2} p b^{2} a+4 \alpha q^{2} p^{2} b^{2} a+2 \alpha q^{3} p^{2} b a+2 \alpha q p^{2} b^{3} a-12 \alpha^{2} q p b^{2} d^{2}-6 \alpha^{2} q p^{2} b a d\right] \omega^{8}$
$-b^{2} c^{2} k^{2} p^{2} q^{2} \alpha^{2} \beta^{2}\left[-2 \alpha^{2} q^{2} p^{4}-3 \alpha^{2} q^{4} p^{2}-2 \alpha^{2} b^{2} p^{4}-6 \alpha^{2} b^{4} d^{2}-4 \alpha^{2} q^{2} b a p^{2}\right.$
$-5 \alpha^{2} p^{4} d^{2}-3 \alpha^{2} b^{4} p^{2}-6 \alpha^{2} q^{4} d^{2}-12 \alpha^{2} q b^{3} d^{2}-6 \alpha^{2} b q^{3} p^{2}+2 \alpha q b^{2} p^{3} a$
$-12 \alpha^{2} q b^{2} a d^{2}+2 \alpha q p b^{3} a^{2}-2 \alpha^{2} q b p^{4}-18 \alpha^{2} q^{2} b^{2} d^{2}-4 \alpha^{2} q b^{2} a p^{2}-12 \alpha^{2} q^{3} b d^{2}$
$+6 \alpha^{2} q p d b^{3}-9 \alpha^{2} b^{2} q^{2} p^{2}-2 \alpha q p^{2} b^{2} a^{2}-q^{2} p^{2} b^{2} a^{2}+2 \alpha p b q^{3} a^{2}-2 \alpha^{2} p b q^{4}$
$-12 \alpha^{2} q^{2} p b d^{2}-8 \alpha^{2} q^{2} b^{3} a+2 \alpha q^{2} p b^{2} a^{2}+4 \alpha p b^{2} a q^{3}-6 \alpha^{2} q^{2} p^{2} b d-4 \alpha^{2} b q^{4} a$
$-2 \alpha^{2} q^{2} b p^{3}-6 \alpha q b a p^{3} d+2 \alpha p b a q^{4}-8 \alpha^{2} b^{2} \dot{q}^{3} a+6 \alpha^{2} q b p^{3} d-6 \alpha^{2} q b^{3} p^{2}$
$-22 \alpha^{2} p^{2} d^{2} b^{2}+6 \alpha^{2} q^{3} p d b-6 \alpha^{2} q^{2} p b a d+2 \alpha q b p^{4} a+6 \alpha^{2} q^{2} p d b^{2}-4 \alpha^{2} q b^{4} a$
$-22 \alpha^{2} p^{2} d^{2} q^{2}-2 \alpha^{2} q p b^{3} a+2 \alpha q^{2} b p^{3} a+12 \alpha q p^{2} b d^{2} a-12 \alpha^{2} q p b a d^{2}$
$+4 \alpha q^{2} p b^{3} a+2 \alpha q p b^{4} a-12 \alpha^{2} q^{2} b a d^{2}-2 \alpha^{2} q p b^{4}+6 \alpha q p^{2} b a^{2} d-4 \alpha^{2} p b^{2} q^{3}$
$-2 \alpha^{2} q b^{2} p^{3}-32 \alpha^{2} q b p^{2} d^{2}-2 \alpha^{2} p b q^{3} a+6 \alpha q p b^{2} a^{2} d+12 \alpha q p b a^{2} d^{2}-2 \alpha q^{2} p^{2} b a^{2}$
$+6 \alpha q^{2} p b a^{2} d-6 \alpha^{2} q p^{2} b^{2} d-6 \alpha^{2} q p b^{2} a d+6 \alpha q p^{2} d b^{2} a-6 \alpha q p d b^{3} a$
$-6 \alpha q^{2} p d b^{2} a-6 \alpha q^{3} p d b a+12 \alpha q^{2} p d^{2} b a+6 \alpha q^{2} p^{2} d b a+12 \alpha q p d^{2} a b^{2}-4 \alpha^{2} q^{2} p b^{3}$
$\left.-2 \alpha^{2} q^{2} p b^{2} a+4 \alpha q^{2} p^{2} b^{2} a+2 \alpha q^{3} p^{2} b a+2 \alpha q p^{2} b^{3} a-12 \alpha^{2} q p b^{2} d^{2}-6 \alpha^{2} q p^{2} b a d\right] \omega^{6}$
$+b^{2} c^{2} k^{2} p^{2} q^{2} \alpha^{2} \beta^{2}\left[-54 \alpha q^{2} b^{3} a^{2} p^{3} d+5 q^{2} p^{2} b^{2} \alpha^{2} a^{2} d^{2}-12 \alpha q^{2} p^{2} b^{2} a^{3} d^{2}\right.$
$+12 \alpha^{2} q^{3} p b^{3} a^{2} d-12 \alpha q^{3} p b^{2} a^{3} d^{2}-6 \alpha q^{4} p b^{2} a^{3} d-6 \alpha q b^{3} a^{2} p^{4} d+2 q^{2} b^{3} a^{3} p^{4}$
$+2 q^{3} p^{4} b^{3} a^{2}+p^{2} b^{2} q^{4} a^{4}+q^{2} p^{2} b^{4} a^{4}+q^{2} p^{4} b^{4} a^{2}+4 q^{3} p^{3} b^{3} a^{3}+2 q^{2} p^{3} b^{3} a^{4}+2 q^{3} p^{3} b^{2} a^{4}$
$+2 q^{3} p^{2} b^{3} a^{4}+2 q^{2} p^{3} b^{4} a^{3}+\alpha^{2} q^{4} b^{2} p^{4}+\alpha^{2} q^{2} b^{4} p^{4}+5 \alpha^{2} q^{4} p^{4} d^{2}+2 \alpha^{2} b^{3} q^{3} p^{4}$
$+5 \alpha^{2} b^{4} p^{4} d^{2}+6 \alpha^{2} q b^{3} a p^{4} d+6 \alpha^{2} q b^{4} a p^{3} d-12 \alpha p^{2} b^{2} q^{3} a^{2} d^{2}-6 \alpha q^{3} b^{2} p^{3} a^{3}$ $+\alpha^{2} b^{2} q^{2} p^{4} a^{2}+12 \alpha^{2} q^{3} b^{3} a^{2} d^{2}+6 \alpha^{2} q^{2} b^{4} a^{2} d^{2}+6 \alpha^{2} q^{4} b^{2} a^{2} d^{2}-2 \alpha q^{2} p^{4} b^{2} a^{3}$ $+6 \alpha^{2} q^{2} p^{3} b^{4} d+4 \alpha^{2} q^{2} p^{3} b^{4} a+36 \alpha^{2} q^{2} p^{3} d^{2} b^{3}-2 \alpha q^{2} p^{4} b^{4} a+20 \alpha^{2} q b^{3} p^{4} d^{2}$ $+2 \alpha^{2} q b^{4} a p^{4}+12 \alpha^{2} q p^{3} d^{2} b^{4}+6 \alpha^{2} q b^{4} p^{4} d-6 \alpha q^{2} b^{4} p^{3} a^{2}-8 \alpha q^{2} b^{3} p^{4} a^{2}$ $+8 \alpha^{2} q^{2} b^{3} a p^{4}+2 \alpha^{2} q^{2} b^{4} a^{2} p^{2}-18 \alpha p^{2} b^{2} a^{2} d q^{4}+18 \alpha^{2} q^{2} b^{3} p^{4} d-12 \alpha b p^{3} d^{2} a q^{4}$ $+30 \alpha^{2} b^{2} q^{3} a p^{3} d-6 \alpha b q^{4} p^{4} a d+6 \alpha^{2} b q^{3} a p^{4} d-6 \alpha b q^{3} a^{2} p^{4} d-12 \alpha b^{2} q^{4} a p^{3} d$ $-12 \alpha b p^{4} d^{2} a q^{3}-54 \alpha q^{3} b^{2} a^{2} p^{3} d+8 \alpha^{2} b^{3} q^{3} a p^{3}-6 \alpha b q^{4} a^{2} p^{3} d-48 \alpha b^{2} p^{3} d^{2} a q^{3}$
$+42 \alpha^{2} b^{2} q^{3} a p^{2} d^{2}-24 \alpha p b^{3} q^{3} a^{2} d^{2}+24 \alpha^{2} p^{2} b^{3} q^{3} a d-36 \alpha p^{2} b^{3} q^{3} a^{2} d$
$+24 \alpha^{2} p b^{3} q^{3} a d^{2}+12 \alpha^{2} p b^{2} q^{4} a d^{2}-12 \alpha p b^{2} q^{4} a^{2} d^{2}+12 \alpha p^{2} b q^{4} a^{2} d^{2}-12 \alpha q^{2} b^{4} p^{3} a d$
$-24 \alpha q^{3} b^{2} p^{4} a d-24 \alpha q^{2} b^{3} p^{4} a d-18 \alpha q^{2} p^{2} b^{3} a^{3} d+20 \alpha^{2} b q^{3} p^{4} d^{2}-24 \alpha p^{2} b^{3} d^{2} a q^{3}$
$+6 \alpha^{2} q^{4} b^{2} p^{3} d+8 \alpha^{2} b^{2} q^{3} a p^{4}+36 \alpha^{2} b^{2} p^{3} d^{2} q^{3}+18 \alpha^{2} b^{2} q^{3} p^{4} d-6 \alpha b^{2} q^{4} p^{3} a^{2}$
$-8 \alpha q^{3} b^{2} p^{4} a^{2}+6 \alpha^{2} b q^{4} p^{4} d-2 \alpha b^{2} q^{4} p^{4} a+2 \alpha^{2} b q^{4} a p^{4}+6 \alpha^{2} b^{4} p^{2} d^{2} q^{2}$
$-4 \alpha p^{4} b^{3} a q^{3}+30 \alpha^{2} p^{4} d^{2} b^{2} q^{2}+12 \alpha^{2} b^{3} q^{3} p^{3} d+12 \alpha^{2} p^{2} b^{3} q^{3} d^{2}-12 \alpha b^{3} q^{3} p^{3} a^{2}$
$+4 \alpha^{2} q^{3} b^{3} a^{2} p^{2}-6 \alpha q^{2} b^{3} p^{3} a^{3}+12 \alpha^{2} b^{2} q^{2} p^{4} a d+12 \alpha q p^{2} b^{4} a^{2} d^{2}-12 \alpha q^{2} p b^{4} a^{2} d^{2}$
$-18 \alpha q^{3} p^{2} b^{2} a^{3} d+12 \alpha^{2} q^{2} p^{2} b^{4} a d+12 \alpha^{2} q^{4} p^{2} b^{2} a d-48 \alpha q^{2} p^{3} d^{2} b^{3} a$
$-6 \alpha q b^{4} a^{2} p^{3} d-12 \alpha q p^{3} d^{2} b^{4} a+10 \alpha^{2} q b^{4} a p^{2} d^{2}-10 \alpha q b^{3} a^{2} p^{3} d^{2}+30 \alpha^{2} q^{2} b^{3} a p^{3} d$
$+42 \alpha^{2} q^{2} b^{3} a p^{2} d^{2}+10 \alpha^{2} q b^{3} a p^{3} d^{2}+20 \alpha^{2} q^{2} b^{2} p^{3} a d^{2}-32 \alpha q^{2} b^{2} p^{3} a^{2} d^{2}$
$-24 \alpha q^{2} b^{2} p^{4} a d^{2}+10 \alpha q^{2} b p^{4} a^{2} d^{2}+10 \alpha q b^{2} p^{4} a^{2} d^{2}-18 \alpha q^{2} b^{2} a^{2} p^{4} d$
$+12 \alpha^{2} q^{2} p b^{4} a d^{2}-12 \alpha q^{3} p b^{3} a^{3} d-12 \alpha q^{2} p^{2} b^{4} a d^{2}-12 \alpha q^{2} p^{2} b^{3} a^{2} d^{2}$
$-6 \alpha q b^{4} p^{4} a d-18 \alpha q^{2} p^{2} b^{4} a^{2} d-12 \alpha q p^{4} d^{2} b^{3} a-12 \alpha q^{2} p b^{3} a^{3} d^{2}-12 \alpha p^{2} b^{2} q^{4} a d^{2}$
$+12 \alpha^{2} q^{3} p b^{2} a^{2} d^{2}-6 \alpha q^{2} p b^{4} a^{3} d+12 \alpha^{2} q^{2} p b^{3} a^{2} d^{2}+6 \alpha^{2} q^{2} p b^{4} a^{2} d$
$+6 \alpha^{2} p b^{2} q^{4} a^{2} d+6 \alpha^{2} q^{4} p^{2} d^{2} b^{2}+6 q^{3} p^{2} b^{2} a^{4} d+24 q^{2} p^{3} b^{3} a^{3} d+12 q^{2} p^{3} b^{3} a^{2} d^{2}$
$+12 q^{3} p^{3} b^{2} a^{2} d^{2}+12 q^{3} p^{2} b^{3} a^{3} d+6 q^{2} p^{2} b^{4} d^{2} a^{2}+24 q^{3} p^{3} b^{2} a^{3} d+6 q^{2} p^{3} b^{2} a^{4} d$
$+6 q^{2} b^{3} p^{4} a^{2} d+6 q^{2} b^{2} a^{3} p^{4} d+6 q^{3} b^{2} p^{4} a^{2} d+2 p^{2} b^{2} \alpha^{2} a^{2} q^{4}+6 p^{3} b^{2} q^{4} a^{2} d$
$+6 q^{2} p^{3} b^{4} a^{2} d+6 q^{2} p^{2} b^{4} a^{3} d+6 q^{2} p^{4} b^{2} a^{2} d^{2}+6 q^{2} p^{2} b^{2} a^{4} d^{2}+6 q^{2} p^{2} b^{3} a^{4} d$
$+4 \dot{\alpha}^{2} q^{2} p^{3} b^{3} a^{2}+4 \alpha^{2} b^{2} p^{3} q^{3} a^{2}+12 q^{2} p^{2} b^{3} a^{3} d^{2}+12 q^{3} p^{2} b^{2} a^{3} d^{2}+6 p^{2} b^{2} q^{4} d^{2} a^{2}$
$+4 \alpha^{2} q^{4} b^{2} p^{3} a+12 \alpha^{2} b p^{3} d^{2} q^{4}-12 \alpha q^{2} p^{3} b^{2} a^{3} d+12 q^{3} p^{3} b^{3} a^{2} d$
$-10 \alpha b q^{3} a^{2} p^{3} d^{2}+6 \alpha^{2} b q^{4} a p^{3} d+10 \alpha^{2} b q^{4} a p^{2} d^{2}+12 q^{3} p^{2} b^{3} d^{2} a^{2}+12 q^{2} p^{3} b^{2} a^{3} d^{2}$
$+10 \alpha^{2} b q^{3} a p^{3} d^{2}-24 \alpha b^{3} q^{3} a p^{3} d+12 q^{2} p^{2} b^{3} \alpha^{2} a^{2} d+6 p^{2} b^{2} q^{4} a^{3} d$
$\left.+6 q^{2} p^{3} b^{2} \alpha^{2} a^{2} d+12 q^{3} p^{2} b^{2} \alpha^{2} a^{2} d+b^{2} p^{4} a^{2} q^{4}+2 p^{3} b^{2} q^{4} a^{3}+2 q^{3} b^{2} a^{3} p^{4}\right] \omega^{4}$
$-b^{3} a^{2} c^{2} k^{2} p^{4} q^{3} \alpha^{2} \beta^{2}\left[\alpha^{2} q b^{3} d^{2}+2 \alpha^{2} q^{2} b^{2} d^{2}+\alpha^{2} q^{3} b d^{2}+b^{3} q a^{2} p^{2}+b q^{3} a^{2} p^{2}\right.$
$+2 q^{2} p^{2} b^{2} a^{2}-12 \alpha q^{3} b a d^{2}-10 \alpha q^{3} p^{2} d^{2}-12 \alpha q b^{3} a d^{2}-30 \alpha q p^{2} d^{2} b^{2}$
$-12 \alpha q p d^{2} b^{3}-12 \alpha q^{3} p d^{2} b-6 \alpha q p^{2} d b^{3}-6 \alpha q^{3} p^{2} d b-24 \alpha q^{2} p d^{2} b^{2}+6 q p d b^{3} a^{2}$
$+12 q^{2} p d b^{2} a^{2}+6 q^{3} p d b a^{2}+6 q^{3} p^{2} b a d+12 q^{3} p b a d^{2}+6 q^{2} p^{2} b a^{2} d-30 \alpha q^{2} p^{2} d^{2} b$
$-12 \alpha q^{2} p^{2} d b^{2}-10 \alpha p^{2} b^{3} d^{2}-6 \alpha q p^{2} d b^{2} a-6 \alpha q p d b^{3} a-12 \alpha q^{2} p d b^{2} a$
$-6 \alpha q^{3} p d b a-12 \alpha q^{2} p d^{2} b a-6 \alpha q^{2} p^{2} d b a-12 \alpha q p d^{2} a b^{2}-24 a b^{2} d^{2} q^{2} \alpha$
$-4 \alpha q^{2} p^{2} b^{2} a-2 \alpha q^{3} p^{2} b a-2 \alpha q p^{2} b^{3} a+6 q p^{2} b^{3} a d+12 q p b^{2} a^{2} d^{2}+12 q p^{2} b^{2} a d^{2}$
$+24 q^{2} p b^{2} a d^{2}+12 q^{2} p^{2} b^{2} a d+12 q^{2} p b a^{2} d^{2}+q p^{2} b a^{2} d^{2}+6 q p^{2} b^{2} a^{2} d+12 q^{2} p^{2} b a d^{2}$

$$
\begin{aligned}
& \left.\left.+12 q p b^{3} a d^{2}\right] \omega^{2}+5 \alpha^{2} c^{2} b^{4} q^{4} p^{6} a^{4} d^{2} \beta^{2} k^{2}(b+q)^{2}\right]+e^{-3 a \overline{T_{2}}}\left[4 b^{3} k^{3} q^{3} \beta^{3} \alpha^{3} p c d \omega^{12}\right. \\
& +2 b^{3} c k^{3} p q^{3} \alpha^{2} \beta^{3}\left(4 d \alpha b^{2}-b p q \alpha+b p q a+4 b d \alpha q+4 d \alpha p^{2}+4 d \alpha q^{2}\right) \omega^{10} \\
& -2 b^{3} c k^{3} p q^{3} \alpha^{2} \beta^{3}\left[-2 b^{4} d \alpha-2 d \alpha q^{4}-2 d \alpha p^{4}-4 p q \alpha b a d-4 \alpha b d q^{3}-6 q^{2} d \alpha b^{2}\right. \\
& -4 q \alpha b^{3} d+p^{3} b q \alpha-p^{3} b q a-p^{2} b q^{2} \alpha-8 p^{2} d \alpha q^{2}+p^{2} q^{2} a b-p^{2} b^{2} q \alpha+p^{2} q b^{2} a \\
& +p^{2} q b a^{2}-8 p^{2} d \alpha b^{2}+p b q^{3} \alpha-p q^{3} a b+p b^{2} q^{2} \alpha-p b^{2} q^{2} a+p q^{2} b a^{2}+p b^{3} q \alpha \\
& +p q b^{2} a^{2}-p q b^{3} a-4 q^{2} \alpha b a d-4 q \alpha b^{2} a d-12 p^{2} b d \alpha q-p^{2} q b a \alpha+4 p^{2} q b a d \\
& \left.-4 p q^{2} \alpha b d-p b q^{2} a \alpha+4 p q^{2} b a d-4 p q d \alpha b^{2}-p b^{2} q a \alpha+4 p q b a^{2} d+4 p q b^{2} a d\right] \omega^{8} \\
& -2 b^{3} c k^{3} p q^{3} \alpha \beta^{3}\left[-4 p^{2} b^{4} d \alpha^{2}-4 p^{2} b q^{2} \alpha a^{2} d-p^{2} q \alpha^{2} b^{4}+p^{2} q^{2} a^{3} b^{2}+4 p^{2} q^{3} \alpha b a d\right. \\
& -4 p^{2} q^{2} \alpha^{2} b a d+4 p^{3} b q \alpha a^{2} d+4 p^{3} q \alpha b^{2} a d-4 p^{3} q \alpha^{2} b a d+4 p^{2} q^{2} \alpha b^{2} a d+8 p q^{3} \alpha b^{2} a d \\
& +4 p b q^{3} \alpha a^{2} d-4 p q^{2} \alpha^{2} b^{2} a d+p^{2} q^{3} \alpha b a^{2}-16 p^{2} q^{2} b^{2} d \alpha^{2}-p^{2} q^{2} \alpha b^{2} a^{2}-p^{2} q b^{3} a \alpha^{2} \\
& -12 p^{2} q \alpha^{2} b^{3} d+p^{2} q b^{3} a^{2} \alpha+p^{2} b^{4} q a \alpha+p^{2} b q^{4} a \alpha-4 p q^{4} \alpha^{2} b d-p q^{4} \alpha^{2} a b+p q^{4} \alpha b a^{2} \\
& -p q^{3} \alpha^{2} b^{2} a-8 p q^{3} b^{2} d \alpha^{2}+p q^{3} \alpha b^{2} a^{2}-p q^{2} b^{3} a \alpha^{2}-8 p q^{2} \alpha^{2} b^{3} d+p q^{2} b^{3} a^{2} \alpha \\
& -4 p q b^{4} d \alpha^{2}+4 p b^{2} q^{2} \alpha a^{2} d-p^{4} b^{2} \alpha^{2} q+8 p q^{2} \alpha b^{3} a d+p^{4} b^{2} q a \alpha+p^{4} q \alpha b a^{2}+p^{3} q^{3} \alpha^{2} b \\
& -p^{4} b \alpha^{2} q^{2}+p q \alpha b^{4} a^{2}+p^{3} q^{2} b^{2} a^{2}-4 p^{2} q \alpha^{2} b^{2} a d+4 p^{3} q^{2} \alpha b a d-4 p q \alpha^{2} b^{3} a d \\
& +4 p q \alpha b^{4} a d+p^{3} q b^{3} \alpha^{2}-p^{3} q^{3} b a \alpha-p^{3} b \alpha^{2} a q^{2}-4 p^{3} q^{2} \alpha^{2} b d-3 p^{3} q^{2} \alpha b^{2} a \\
& +p^{3} q^{2} \alpha b a^{2}-4 p^{3} q b^{2} d \alpha^{2}-p^{3} b^{2} \alpha^{2} a q+p^{3} q \alpha b^{2} a^{2}-p^{3} q \alpha b^{3} a-12 p^{2} q^{3} \alpha^{2} b d \\
& +4 p^{4} q \alpha b a d-4 p^{2} b^{2} q \alpha a^{2} d+4 p q^{4} \alpha b a d+4 p^{2} q \alpha b^{3} a d+2 p^{3} q^{2} \alpha^{2} b^{2}+p^{2} q^{3} b^{2} a^{2} \\
& -p^{2} q^{3} \alpha^{2} b^{2}-p^{2} q^{4} \alpha^{2} b-4 p^{2} q^{4} \alpha^{2} d+p^{2} q^{2} b^{3} a^{2}-4 p q^{3} \alpha^{2} b a d-4 b^{4} a d \alpha^{2} q-p q \alpha^{2} b^{4} a \\
& +p^{4} b q^{2} a \alpha-p^{4} q \alpha^{2} a b-8 p^{4} q \alpha^{2} b d-p^{2} q^{2} b^{3} \alpha^{2}-p^{2} q^{3} \alpha^{2} a b+4 p b^{3} q \alpha a^{2} d \\
& \left.-4 p^{4} q^{2} \alpha^{2} d-4 \alpha^{2} b a d q^{4}-8 \alpha^{2} b^{2} a d q^{3}-8 \alpha^{2} b^{3} a d q^{2}-4 p^{4} b^{2} d \alpha^{2}\right] \omega^{6} \\
& -2 b^{3} c k^{3} p q^{3} \alpha \beta^{3}\left[-4 p^{2} b^{4} d \alpha^{2}-4 p^{2} b q^{2} \alpha a^{2} d-p^{2} q \alpha^{2} b^{4}+p^{2} q^{2} a^{3} b^{2}+4 p^{2} q^{3} \alpha b a d\right. \\
& -4 p^{2} q^{2} \alpha^{2} b a d+4 p^{3} b q \alpha a^{2} d+4 p^{3} q \alpha b^{2} a d-4 p^{3} q \alpha^{2} b a d+4 p^{2} q^{2} \alpha b^{2} a d \\
& +8 p q^{3} \alpha b^{2} a d+4 p b q^{3} \alpha a^{2} d-4 p q^{2} \alpha^{2} b^{2} a d+p^{2} q^{3} \alpha b a^{2}-16 p^{2} q^{2} b^{2} d \alpha^{2} \\
& -p^{2} q^{2} \alpha b^{2} a^{2}-p^{2} q b^{3} a \alpha^{2}-12 p^{2} q \alpha^{2} b^{3} d+p^{2} q b^{3} a^{2} \alpha+p^{2} b^{4} q a \alpha+p^{2} b q^{4} a \alpha \\
& -4 p q^{4} \alpha^{2} b d-p q^{4} \alpha^{2} a b+p q^{4} \alpha b a^{2}-p q^{3} \alpha^{2} b^{2} a-8 p q^{3} b^{2} d \alpha^{2}+p q^{3} \alpha b^{2} a^{2} \\
& -p q^{2} b^{3} a \alpha^{2}-8 p q^{2} \alpha^{2} b^{3} d+p q^{2} b^{3} a^{2} \alpha-p q \alpha^{2} b^{4} a-4 p q b^{4} d \alpha^{2}+4 p b^{2} q^{2} \alpha a^{2} d \\
& -p^{4} b^{2} \alpha^{2} q+8 p q^{2} \alpha b^{3} a d+p^{4} b^{2} q a \alpha+p^{4} q \alpha b a^{2}+p^{3} q^{3} \alpha^{2} b-p^{4} b \alpha^{2} q^{2} \\
& +p q \alpha b^{4} a^{2}+p^{3} q^{2} b^{2} a^{2}-4 p^{2} q \alpha^{2} b^{2} a d+4 p^{3} q^{2} \alpha b a d-4 p q \alpha^{2} b^{3} a d+4 p b^{3} q \alpha a^{2} d \\
& +4 p q \alpha b^{4} a d+p^{3} q b^{3} \alpha^{2}-p^{3} q^{3} b a \alpha-p^{3} b \alpha^{2} a q^{2}-4 p^{3} q^{2} \alpha^{2} b d-3 p^{3} q^{2} \alpha b^{2} a \\
& +p^{3} q^{2} \alpha b a^{2}-4 p^{3} q b^{2} d \alpha^{2}-p^{3} b^{2} \alpha^{2} a q+p^{3} q \alpha b^{2} a^{2}-p^{3} q \alpha b^{3} a-12 p^{2} q^{3} \alpha^{2} b d \\
& -p^{2} q^{3} \alpha^{2} a b+4 p^{4} q \alpha b a d-4 p^{2} b^{2} q \alpha a^{2} d+4 p q^{4} \alpha b a d+4 p^{2} q \alpha b^{3} a d+2 p^{3} q^{2} \alpha^{2} b^{2} \\
& +p^{2} q^{3} b^{2} a^{2}-p^{2} q^{3} \alpha^{2} b^{2}-p^{2} q^{4} \alpha^{2} b-4 p^{2} q^{4} \alpha^{2} d+p^{2} q^{2} b^{3} a^{2}-4 p q^{3} \alpha^{2} b a d \\
& -4 b^{4} a d \alpha^{2} q+p^{4} b q^{2} a \alpha-p^{4} q \alpha^{2} a b-8 p^{4} q \alpha^{2} b d-p^{2} q^{2} b^{3} \alpha^{2}-4 p^{4} q^{2} \alpha^{2} d-4 \alpha^{2} b a d q^{4} \\
& \left.-8 \alpha^{2} b^{2} a d q^{3}-8 \alpha^{2} b^{3} a d q^{2}-4 p^{4} b^{2} d \alpha^{2}\right] \omega^{4}-2 b^{4} a^{2} c(b+q) k^{3} p^{3} q^{4} \alpha \beta^{3}\left[-p^{2} b^{2} q \alpha\right. \\
& +p^{2} q b^{2} a-4 p^{2} d \alpha b^{2}-p b^{2} q a \alpha-4 p q d \alpha b^{2}+4 p q b^{2} a d+p q b^{2} a^{2}-4 q \alpha b^{2} a d-p^{2} b q^{2} \alpha \\
& +p^{2} q^{2} a b-8 p^{2} b d \alpha q-p^{2} q b a \alpha+4 p^{2} q b a d+p^{2} q b a^{2}-p b q^{2} a \alpha-4 p q^{2} \alpha b d \\
& \left.+4 p q^{2} b a d+p q^{2} b a^{2}-4 p q \alpha b a d+4 p q b a^{2} d-4 q^{2} \alpha b a d-4 p^{2} d \alpha q^{2}\right] \omega^{2}
\end{aligned}
$$

$\left.+4 a^{4} b^{5} c d k^{3} p^{5} q^{5} \alpha \beta^{3}(b+q)^{2}\right]+e^{-4 a \tau_{2}}\left[b^{4} k^{4} q^{4} \beta^{4} \alpha^{2} \omega^{12}+2 b^{4} k^{4} q^{4} \beta^{4} \alpha^{2}\right.$
$\times\left(q^{2}+p^{2}+b^{2}+b q\right) \omega^{10}-b^{4} k^{4} q^{4} \alpha \beta^{4}\left[-2 \alpha q^{3} b-2 \alpha q b^{3}-\alpha q^{4}-\alpha b^{4}-\alpha p^{4}\right.$
$+2 b p q a^{2}+2 p b q^{2} a+2 p b^{2} q a+2 p^{2} q b a-2 q^{2} \alpha b a-6 \alpha q b p^{2}-2 p q^{2} \alpha b-2 q \alpha b^{2} a$
$\left.-4 p^{2} q^{2} \alpha-4 \alpha b^{2} p^{2}-2 p q \alpha b a-3 \alpha q^{2} b^{2}-2 \alpha q b^{2} p\right] \omega^{8}-2 b^{4} k^{4} q^{4} \alpha \beta^{4}\left[-\alpha q^{2} b^{2} p a\right.$
$-\alpha q b^{3} a p-q^{2} \alpha b a p^{2}-\alpha q b a p^{3}-\alpha q^{3} b a p-q \alpha b^{2} a p^{2}-\alpha q^{4} b a-4 \alpha q^{2} b^{2} p^{2}$
$-2 \alpha q^{2} b^{3} a-2 \alpha q b p^{4}-\alpha q^{2} b p^{3}-\alpha q b^{2} p^{3}-3 \alpha q b^{3} p^{2}-q b^{2} p^{2} a^{2}+b q p^{4} a+q b^{3} p a^{2}$
$-3 \alpha q^{3} b p^{2}-2 \alpha q^{3} b^{2} a+2 q^{2} b^{3} p a+b q p^{3} a^{2}+q^{2} b^{2} p^{2} a+q^{3} b a p^{2}-q^{2} b p^{2} a^{2}+q b^{2} p^{3} a$
$-2 p q^{3} \alpha b^{2}-2 p q^{2} \alpha b^{3}+2 q^{3} b^{2} p a-p^{4} q^{2} \alpha-p^{2} q^{4} \alpha+q^{3} b p a^{2}-\alpha b^{4} p^{2}+q^{2} b^{2} p a^{2}$
$+q^{4} b p a-p^{4} b^{2} \alpha+q^{2} b p^{3} a+q b^{3} a p^{2}-\alpha q^{4} b p+q b^{4} p a-\alpha q b^{4} p-\alpha q b^{4} a j \omega^{6}$
$+b^{4} k^{4} q^{4} \beta^{4}\left[p^{2} q^{4} b^{2} a^{2}+\alpha^{2} b^{4} p^{4}+\alpha^{2} q^{4} p^{4}+p^{2} q^{2} b^{2} a^{4}+p^{2} q^{2} b^{4} a^{2}+2 p^{2} q^{3} b^{3} a^{2}\right.$
$+q^{2} p^{2} b^{2} \alpha^{2} a^{2}+2 \alpha^{2} p b^{2} q^{4} a+2 \alpha p^{2} b q^{4} a^{2}-2 \alpha p b^{2} q^{4} a^{2}-2 \alpha p^{2} b^{2} q^{3} a^{2}+4 \alpha^{2} p b^{3} q^{3} a$
$-4 \alpha p b^{3} q^{3} a^{2}+4 \alpha^{2} q^{2} b^{2} p^{3} a+2 \alpha^{2} q^{2} p b^{3} a^{2}-2 \alpha q^{2} p b^{3} a^{3}-2 \alpha q^{3} p b^{2} a^{3}+2 \alpha^{2} q^{2} p b^{4} a$
$-2 \alpha q^{2} p b^{4} a^{2}+2 \alpha q p^{2} b^{4} a^{2}-2 \alpha q^{2} p^{2} b^{3} a^{2}+2 \alpha^{2} q^{3} p b^{2} a^{2}+8 \alpha^{2} q^{2} b^{3} a p^{2}-6 \alpha q^{2} b^{2} p^{3} a^{2}$
$-4 \alpha q^{2} b^{2} p^{4} a-2 \alpha q p^{3} b^{4} a-2 \alpha q p^{4} b^{3} a+2 \alpha^{2} q b^{4} a p^{2}+8 \alpha^{2} b^{2} q^{3} a p^{2}+2 \alpha^{2} b q^{4} a p^{2}$
$-2 \alpha b p^{3} a q^{4}-2 q b^{3} p^{3} a^{2} \alpha-2 q^{2} b^{4} \alpha a p^{2}-2 q^{3} b p^{3} a^{2} \alpha-2 \alpha b p^{4} a q^{3}-4 q^{3} b^{3} \alpha a p^{2}$
$-2 q^{2} b^{2} \alpha p^{2} a^{3}-8 q^{3} b^{2} \alpha a p^{3}-2 q^{4} b^{2} \alpha a p^{2}+2 q^{3} b a p^{3} \alpha^{2}+2 q b^{3} a p^{3} \alpha^{2}+2 q^{2} p^{3} b^{3} a^{2}$
$+2 q^{2} b \alpha p^{4} a^{2}-8 q^{2} b^{3} \alpha a p^{3}+2 q b^{2} \alpha p^{4} a^{2}+p^{4} q^{2} b^{2} a^{2}+2 p^{2} q^{3} \alpha^{2} b^{3}+2 q^{3} p^{2} b^{2} a^{3}$
$+2 q^{2} p^{2} b^{3} a^{3}+2 q^{3} p^{3} b^{2} a^{2}+2 q^{2} p^{3} b^{2} a^{3}+4 \alpha^{2} b q^{3} p^{4}+6 \alpha^{2} b^{2} p^{3} q^{3}+2 \alpha^{2} b p^{3} q^{4}$
$+6 \alpha^{2} b^{2} q^{2} p^{4}+6 \alpha^{2} q^{2} p^{3} b^{3}+4 \alpha^{2} q b^{3} p^{4}+2 \alpha^{2} q p^{3} b^{4}+2 \alpha^{2} q^{3} b^{3} a^{2}+\alpha^{2} q^{4} b^{2} a^{2}$
$\left.+\alpha^{2} q^{2} b^{4} a^{2}+p^{2} q^{2} \alpha^{2} b^{4}+p^{2} q^{4} \alpha^{2} b^{2}\right] \omega^{4}-2 a^{2} b^{5} k^{4} p^{2} q^{5}(b+q) \beta^{4}\left[-\alpha q b^{2} \dot{p}\right.$
$-\alpha b^{2} p^{2}-q \alpha b^{2} a+p b^{2} q a-p q^{2} \alpha b+p b q^{2} a-p q \alpha b a+b p q a^{2}+p^{2} q b a-q^{2} \alpha b a$
$\left.\left.-2 \alpha q b p^{2}-p^{2} q^{2} \alpha\right] \omega^{2}+a^{4} b^{6} k^{4} p^{4} q^{6} \beta^{4}(b+q)^{2}\right]+p^{4} c^{4} \alpha^{6} \omega^{16}+p^{4} c^{4} \alpha^{6}$
$\left(2 b q+2 q^{2}+p^{2}+2 d^{2}+2 b^{2}\right) \omega^{14}+p^{4} c^{4} \alpha^{5}\left(2 \alpha b^{2} p^{2}+2 p^{2} q^{2} \alpha+2 p^{2} \alpha d^{2}\right.$
$-2 p b d q \alpha+2 p b a d q+\alpha q^{4}+\alpha d^{4}+2 q^{2} \alpha b a+2 q \alpha b^{2} a+4 \alpha d^{2} b q+4 \alpha d^{2} q^{2}+4 \alpha d^{2} b^{2}$
$\left.+3 \alpha b^{2} q^{2}+2 \alpha b^{3} q+2 \alpha b q^{3}+\alpha b^{4}\right) \omega^{12}-p^{4} c^{4} \alpha^{5}\left(2 p b^{2} q a^{2} d+2 p b q^{2} a^{2} d\right.$
$-2 \alpha p b q^{2} a d-2 \alpha p b q a d^{2}-2 \alpha p^{2} b q a d-2 p b^{3} a d q+2 p b q a^{2} d^{2}-2 p b^{2} q^{2} a d-2 p d^{3} b a q$
$-2 \alpha p b^{2} q a d+2 p^{2} b a d^{2} q-2 p^{3} b a d q+2 p^{2} b^{2} a q d-2 p q^{3} b a d+2 p^{2} b a d q^{2}+2 p^{2} b q a^{2} d$
$+2 p a b d^{2} q^{2}+2 p a b^{2} d^{2} q-4 \alpha b^{2} q a d^{2}-4 \alpha b q^{2} a d^{2}-2 \alpha p b d^{2} q^{2}-2 \alpha p^{2} b q^{2} d$
$+2 \alpha p^{3} b d q+2 \alpha p q^{3} b d+2 \alpha p b^{3} d q+2 \alpha p b^{2} q^{2} d+2 \alpha p d^{3} b q-2 \alpha p^{2} b q^{2} a-2 \alpha p b^{2} d^{2} q$
$-2 \alpha p^{2} b^{2} q a-2 \alpha p^{2} b q d^{2}-2 \alpha p^{2} b^{2} d q-2 \alpha b^{4} d^{2}-\alpha p^{2} b^{4}-2 \alpha b^{2} d^{4}-2 \alpha q^{4} d^{2}$
$-2 \alpha q^{2} d^{4}-\alpha p^{2} q^{4}-\alpha p^{2} d^{4}+2 \alpha b q p^{4}-6 \alpha q^{2} d^{2} b^{2}-4 \alpha b^{3} q^{2} a-2 \alpha b q^{4} a$
$\left.-2 \alpha b^{4} q a-4 \alpha b q^{3} d^{2}-2 \alpha b q d^{4}-4 \alpha b^{3} q d^{2}-4 \alpha b^{2} q^{3} a-4 \alpha p^{2} q^{2} d^{2}-4 \alpha p^{2} b^{2} d^{2}\right) \omega^{10}$
$-p^{4} c^{4} \alpha^{4}\left(-2 \alpha p^{3} d^{3} b a q-3 \alpha^{2} q^{2} d^{4} b^{2}+2 \alpha p d^{4} a b q^{2}+q^{2} p^{2} b^{2} \alpha^{2} a^{2}\right.$
$+4 \alpha p^{2} b^{2} q^{3} a d+4 \alpha p^{2} b^{3} q^{2} a d-2 \alpha^{2} p b q a d^{4}+2 \alpha p d^{4} a b^{2} q+2 \alpha p^{2} d^{3} b^{2} a q-2 \alpha p b^{2} q^{2} d^{3} a$
$-2 \alpha^{2} q^{2} b a d^{4}-2 q p^{2} b \alpha^{2} d^{4}-p^{2} b^{2} a^{2} d^{2} q^{2}+2 \alpha^{2} p q^{3} d^{3} b+2 \alpha^{2} p b^{3} d^{3} q+2 \alpha^{2} p^{3} d^{3} b q$
$-2 \alpha^{2} p d^{4} b q^{2}-2 \alpha^{2} p^{2} d^{3} b^{2} q-2 \alpha^{2} p^{2} d^{3} b q^{2}-2 \alpha^{2} p d^{4} b^{2} q+2 \alpha p b q a^{2} d^{4}+2 \alpha p^{2} b q a^{2} d^{3}$
$+2 \alpha p b^{2} q a^{2} d^{3}-2 \alpha^{2} p b d^{2} q^{4}-4 \alpha^{2} p b^{2} d^{2} q^{3}-4 \alpha^{2} p^{2} b^{2} q^{3} d-2 \alpha^{2} p^{2} b q^{4} d$
$-4 \alpha^{2} q b^{4} a d^{2}-8 \alpha^{2} q^{2} b^{3} a d^{2}-4 \alpha^{2} q^{2} p d^{2} b^{3}-2 \alpha^{2} q p d^{2} b^{4}-2 \alpha^{2} p b^{2} q a d^{3}$

$$
\begin{aligned}
& -2 \alpha^{2} q p^{2} b^{4} d-4 \alpha^{2} q^{2} p^{2} b^{3} d-2 \alpha^{2} q^{2} b^{3} a p^{2}-2 \alpha^{2} q^{2} b p^{3} d^{2}+2 \alpha^{2} q b p^{4} d^{2}+2 \alpha^{2} q^{2} b^{2} p^{3} d \\
& -2 \alpha^{2} q b^{2} p^{3} d^{2}-2 \alpha^{2} q b^{2} \dot{p}^{4} d-2 \alpha^{2} q^{2} b p^{4} d+2 \alpha^{2} q b^{3} p^{3} d-2 \alpha^{2} q b^{3} p^{2} d^{2}-2 \alpha^{2} q b^{4} a p^{2} \\
& -8 \alpha^{2} b^{2} q^{3} a d^{2}-4 \alpha^{2} b q^{4} a d^{2}+2 \alpha^{2} b q^{3} p^{3} d-2 \alpha^{2} b q^{3} p^{2} d^{2}-3 \alpha^{2} p^{2} d^{2} b^{2} q^{2} \\
& -2 \alpha^{2} b^{2} q^{3} a p^{2}+2 \alpha p b q^{2} a^{2} d^{3}+4 \alpha p b^{2} d^{2} a q^{3}+2 \alpha q^{2} p b^{3} a^{2} d+2 \alpha p^{2} b q^{3} a^{2} d \\
& -2 \alpha^{2} b q^{4} a p^{2}-2 \alpha^{2} b q^{3} d^{4}-2 \alpha^{2} b^{3} q d^{4}-2 \alpha^{2} p^{2} b^{2} d^{4}-2 q^{2} p^{2} \alpha^{2} d^{4}+2 \alpha p^{2} d^{3} b a q^{2} \\
& +2 \alpha p^{2} d^{4} b a q-2 q p^{2} b \alpha^{2} a d^{3}-2 \alpha p q^{3} d^{3} b a-2 \alpha^{2} p b q^{2} a d^{3}-2 q^{2} p^{2} b^{2} \alpha^{2} a d \\
& -2 \alpha p b^{3} d^{3} a q-2 \alpha^{2} q^{4} p^{2} d^{2}+2 \alpha^{2} b q^{3} p^{4}+3 \alpha^{2} b^{2} q^{2} p^{4}-2 \alpha^{2} b^{4} p^{2} d^{2}+2 \alpha^{2} q b^{3} p^{4} \\
& -2 \alpha^{2} q^{3} b^{3} a^{2}-\alpha^{2} q^{4} b^{2} a^{2}-\alpha^{2} q^{2} b^{4} a^{2}+2 \alpha p^{2} b d^{2} a q^{3}+2 \alpha p b q^{4} a^{2} d-2 \alpha^{2} q b^{2} a p^{2} d^{2} \\
& -2 \alpha^{2} p^{2} b q^{3} a d+2 \alpha p^{2} b q^{4} a d-2 \dot{\alpha}^{2} p b^{2} q^{3} a d+2 \alpha p b d^{2} a q^{4}+2 \alpha p b^{2} q^{3} a^{2} d \\
& +2 \alpha p b q^{3} a^{2} d^{2}-2 \alpha^{2} p b q^{4} a d-2 \alpha^{2} p b q^{3} a d^{2}+2 \alpha q p^{2} b^{4} a d+2 \alpha q p^{2} d^{2} b^{3} a \\
& +2 \alpha q p^{2} b^{3} a^{2} d-2 \alpha^{2} q p^{2} b^{3} a d-2 \alpha^{2} q p b^{4} a d+4 \alpha q^{2} p d^{2} b^{3} a+2 \alpha q p b^{4} a^{2} d+2 \alpha q p d^{2} b^{4} a \\
& +2 \alpha q p b^{3} a^{2} d^{2}-2 \alpha^{2} q^{2} p b^{3} a d-2 \alpha^{2} q p b^{3} a d^{2}-2 \alpha^{2} q^{2} p b^{2} a d^{2}+2 \alpha q^{2} p b^{2} a^{2} d^{2} \\
& -2 \alpha q^{2} p^{2} b a^{2} d^{2}+2 \alpha q b^{2} p^{4} a d+4 \alpha q^{2} p^{2} b^{2} a d^{2}-2 \alpha q p^{2} b^{2} a^{2} d^{2}+2 \alpha q^{2} p^{2} b^{2} a^{2} d \\
& -2 \alpha q^{2} b^{2} a p^{3} d+2 \alpha q^{2} b p^{4} a d+2 \alpha q^{2} b p^{3} d^{2} a+2 \alpha q b p^{4} d^{2} a+2 \alpha q b^{2} p^{3} d^{2} a \\
& -2 \alpha^{2} q^{2} b a p^{2} d^{2}-2 \alpha q b^{3} a p^{3} d-2 \alpha b q^{3} a p^{3} d-\alpha^{2} q^{4} d^{4}-\alpha^{2} b^{4} d^{4}+2 \alpha^{2} p b^{2} q^{2} d^{3} \\
& \left.-2 \alpha^{2} q b^{2} a d^{4}\right) \omega^{8}-p^{4} c^{4} \alpha^{4}\left(-4 \alpha q^{2} b^{3} a^{2} p^{3} d+2 q^{2} p^{2} b^{2} \alpha^{2} a^{2} d^{2}-4 \alpha^{2} q^{3} p b^{3} a^{2} d\right. \\
& +2 \alpha q^{3} p b^{2} a^{3} d^{2}+2 \alpha q^{4} p b^{2} a^{3} d-2 \alpha^{2} p q^{4} d^{4} b-2 \alpha^{2} p^{2} q^{4} d^{3} b+4 \alpha^{2} p^{3} b^{2} q^{2} d^{3} \\
& -4 \alpha^{2} p b^{3} q^{2} d^{4}-4 \alpha^{2} p b^{2} q^{3} d^{4}+2 \alpha^{2} p^{3} q^{3} d^{3} b-4 \alpha^{2} b^{3} q^{2} a d^{4}-4 \alpha^{2} b^{2} q^{3} a d^{4} \\
& -2 \alpha^{2} p^{2} b^{2} q^{2} d^{4}-2 \alpha^{2} p b^{4} d^{4} q-2 \alpha^{2} p^{2} b^{4} d^{3} q+2 \alpha^{2} p^{3} b^{3} d^{3} q-2 \alpha^{2} p^{2} b^{3} q^{2} d^{3} \\
& -2 \alpha^{2} p^{2} b^{3} q d^{4}-2 \alpha^{2} p^{2} b q^{3} d^{4}-2 \alpha^{2} p^{3} d^{4} b^{2} q-2 \alpha^{2} p^{3} d^{4} b q^{2}-2 \alpha^{2} p^{4} d^{3} b^{2} q \\
& -2 \alpha^{2} p^{4} d^{3} b q^{2}-2 \alpha^{2} p^{2} b^{2} q^{3} d^{3}-2 \alpha^{2} b q^{4} a d^{4}-2 \alpha^{2} b^{4} q a d^{4}+2 p^{2} b^{2} q^{3} a^{2} d^{3} \\
& +2 p^{2} b^{2} q^{2} a^{3} d^{3}+2 p^{2} b^{3} q^{2} a^{2} d^{3}-6 \alpha p^{2} b^{2} q^{3} a^{2} d^{2}+\alpha^{2} b^{2} q^{2} p^{4} a^{2}+2 p^{3} b^{2} q^{2} a^{2} d^{3} \\
& -4 \alpha^{2} q^{3} b^{3} a^{2} d^{2}-2 \alpha^{2} q^{2} b^{4} a^{2} d^{2}-2 \alpha^{2} q^{4} b^{2} a^{2} d^{2}-2 \alpha^{2} q^{2} p^{3} d^{2} b^{3}-2 \alpha q p^{2} b^{4} a^{2} d^{2} \\
& +2 \alpha^{2} q b^{3} p^{4} d^{2}-2 \alpha^{2} q p^{3} d^{2} b^{4}-2 \alpha^{2} q b^{4} p^{4} d-4 \alpha^{2} q^{2} b^{3} p^{4} d+2 \alpha^{2} q^{2} b^{3} a p^{4} \\
& -\alpha^{2} q^{2} b^{4} a^{2} p^{2}+2 \alpha p^{2} b^{2} a^{2} d q^{4}+2 \alpha b p^{3} d^{2} a q^{4}+4 \alpha^{2} b^{2} q^{3} a p^{3} d+2 \alpha b q^{4} p^{4} a d \\
& +2 \alpha b p^{4} d^{2} a q^{3}-4 \alpha q^{3} b^{2} a^{2} p^{3} d+4 \alpha p b^{3} q^{3} a^{2} d^{2}-4 \alpha^{2} p^{2} b^{3} q^{3} a d+4 \alpha p^{2} b^{3} q^{3} a^{2} d \\
& -2 \alpha^{2} p b^{2} q^{4} a d^{2}+2 \alpha p b^{2} q^{4} a^{2} d^{2}-2 \alpha p^{2} b q^{4} a^{2} d^{2}+4 \alpha q^{3} b^{2} p^{4} a d-4 \alpha^{2} p b^{3} q^{3} a d^{2} \\
& +4 \alpha q^{2} b^{3} p^{4} a d+2 \alpha q^{2} p^{2} b^{3} a^{3} d+2 \alpha^{2} b q^{3} p^{4} d^{2}+2 \alpha^{2} b^{2} q^{3} a p^{4}-2 \alpha^{2} b q^{4} p^{4} d \\
& -2 \alpha^{2} b^{2} p^{3} d^{2} q^{3}-4 \alpha^{2} b^{2} q^{3} p^{4} d+4 \alpha^{2} p^{4} d^{2} b^{2} q^{2}-2 \alpha^{2} q^{3} b^{3} a^{2} p^{2}+2 \alpha^{2} b^{2} q^{2} p^{4} a d \\
& -\alpha^{2} p^{2} q^{4} d^{4}+2 \alpha q^{2} p b^{4} a^{2} d^{2}+2 \alpha q^{3} p^{2} b^{2} a^{3} d-2 \alpha^{2} q^{2} p^{2} b^{4} a d-2 \alpha^{2} q^{4} p^{2} b^{2} a d \\
& +2 \alpha q p^{3} d^{2} b^{4} a-2 \alpha^{2} q b^{4} a p^{2} d^{2}+4 \alpha^{2} q^{2} b^{3} a p^{3} d+4 \alpha^{2} q^{2} b^{2} p^{3} a d^{2}-6 \alpha q^{2} b^{2} p^{3} a^{2} d^{2} \\
& +2 \alpha q^{2} b^{2} p^{4} a d^{2}-2 \alpha q^{2} b^{2} a^{2} p^{4} d-2 \alpha^{2} q^{2} p b^{4} a d^{2}+4 \alpha q^{3} p b^{3} a^{3} d-6 \alpha q^{2} p^{2} b^{3} a^{2} d^{2} \\
& +2 \alpha q b^{4} p^{4} a d+2 \alpha q^{2} p^{2} b^{4} a^{2} d+2 \alpha q p^{4} d^{2} b^{3} a+2 \alpha q^{2} p b^{3} a^{3} d^{2}-2 \alpha^{2} q^{3} p b^{2} a^{2} d^{2} \\
& +2 \alpha q^{2} p b^{4} a^{3} d-2 \alpha^{2} q^{2} p b^{3} a^{2} d^{2}-2 \alpha p^{3} b^{3} d^{3} a q-2 \alpha^{2} p b^{3} q a d^{4}-2 \alpha^{2} p b q^{3} a d^{4} \\
& -2 \alpha^{2} p^{2} b^{3} q a d^{3}-2 \alpha^{2} p^{2} b q^{3} a d^{3}+2 \alpha p b^{2} q^{2} a^{2} d^{4}+2 \alpha p q^{4} d^{4} a b+2 \alpha p^{2} b^{4} d^{3} a q \\
& +2 \alpha p b q^{3} a^{2} d^{4}+2 \alpha p^{2} b^{2} q^{2} a d^{4}+2 \alpha p^{2} b^{3} q a^{2} d^{3}+2 \alpha p^{2} b q^{3} a^{2} d^{3}+2 \alpha p b^{3} q a^{2} d^{4} \\
& +2 \alpha p b^{3} q^{2} a^{2} d^{3}+2 \alpha p b^{2} q^{3} a^{2} d^{3}+2 \alpha p^{2} b^{3} d^{4} a q+2 \alpha p b^{4} d^{4} a q+2 \alpha p^{4} d^{4} b a q \\
& +2 \alpha p^{3} d^{4} a b^{2} q+2 \alpha p^{3} d^{4} a b q^{2}+2 \alpha p^{4} d^{3} b a q^{2}+4 \alpha p b^{3} q^{2} a d^{4}+4 \alpha p b^{2} q^{3} a d^{4}
\end{aligned}
$$

$$
\begin{aligned}
& -6 \alpha p^{3} b^{2} q^{2} a d^{3}+2 \alpha p^{2} q^{3} d^{4} b a+2 \alpha p^{2} q^{4} d^{3} b a-2 \alpha p^{2} b q^{2} a^{2} d^{4}+2 \alpha p b q^{4} a^{2} d^{3} \\
& -2 \alpha p^{2} b^{2} a^{2} d^{3} q^{2}-2 \alpha^{2} p b^{4} q a d^{3}+2 \alpha p^{4} d^{3} b^{2} a q+2 \alpha p b^{4} q a^{2} d^{3}-2 \alpha^{2} p b^{2} q^{2} a d^{4} \\
& -2 \alpha^{2} p b^{3} a d^{3} q^{2}-2 \alpha^{2} p b^{2} a d^{3} q^{3}-2 \alpha p^{3} q^{3} d^{3} b a-2 \alpha p^{2} b^{2} q a^{2} d^{4}-2 \alpha^{2} p b q^{4} a d^{3} \\
& -2 \alpha^{2} q^{2} p b^{4} a^{2} d-2 \alpha^{2} p b^{2} q^{4} a^{2} d+2 q^{2} p^{3} b^{3} a^{2} d^{2}+2 q^{3} p^{3} b^{2} a^{2} d^{2}-p^{2} b^{2} \alpha^{2} a^{2} q^{4} \\
& -2 \alpha^{2} b q^{4} a p^{2} d^{2}+2 q^{2} p^{3} b^{2} a^{3} d^{2}+2 q^{2} p^{2} b^{3} a^{3} d^{2}+2 q^{3} p^{2} b^{2} a^{3} d^{2}-2 \alpha^{2} b p^{3} d^{2} q^{4} \\
& -2 \alpha q^{2} p^{3} b^{2} a^{3} d-2 q^{2} p^{2} b^{3} \alpha^{2} a^{2} d+2 q^{2} p^{3} b^{2} \alpha^{2} a^{2} d-2 q^{3} p^{2} b^{2} \alpha^{2} a^{2} d \\
& \left.-\alpha^{2} p^{2} b^{4} d^{4}\right) \omega^{6}+b c^{4} d p^{4} q \alpha^{4}\left(2 \alpha p^{2} b^{3} a^{2} d^{3}-8 \alpha q p^{4} b^{2} a d^{2}-8 \alpha q p^{4} b^{2} a^{2} d\right. \\
& +2 \alpha^{2} q^{3} p b a d^{3}-8 \alpha q^{2} p^{4} b a d^{2}-2 \alpha q^{3} p^{4} b a d-4 \alpha q^{3} p^{3} a b d^{2}+\alpha^{2} q p^{2} b^{3} a^{2} d \\
& +4 \alpha^{2} q p^{2} b^{2} a^{2} d^{2}+2 \alpha^{2} q p d^{3} b^{2} a^{2}+8 q^{2} p^{3} d^{2} b a^{3}+4 \alpha^{2} q^{2} p^{2} d^{2} b a^{2}-6 \alpha q^{2} p^{3} d b a^{3} \\
& +2 \alpha^{2} q^{2} p d^{3} b a^{2}+q p^{2} d^{3} b a^{4}-2 \alpha q p d^{3} b^{2} a^{3}-2 \alpha q^{2} p d^{3} b a^{3}+4 \alpha^{2} q^{2} p^{3} d b a^{2} \\
& +q^{3} p^{2} d b a^{4}+q p^{2} d b^{3} a^{4}+2 q p^{3} d b^{3} a^{3}+q p^{4} d^{3} b a^{2}+2 q^{3} p^{3} d^{2} b a^{2}+2 q p^{2} b^{3} a^{3} d^{2} \\
& -2 \alpha q p^{4} d^{2} b a^{2}+4 \alpha^{2} q^{3} p^{2} b a d^{2}-8 \alpha q^{2} p^{3} d^{3} b a+8 \alpha^{2} q^{2} p^{3} b^{2} a d+\alpha^{2} q^{3} d^{3} b a^{2} \\
& -2 \alpha q p^{4} b^{3} a^{2}-2 \alpha q p^{4} b^{2} a^{3}+\alpha^{2} q d^{3} b^{3} a^{2}+\alpha^{2} q p^{4} b^{3} d+2 \alpha^{2} q p^{4} b^{3} a \\
& +6 \alpha^{2} q p^{4} b^{2} d^{2}+2 \alpha^{2} q p^{3} b^{3} d^{2}+2 \alpha^{2} q^{3} p^{3} b d^{2}+2 \alpha^{2} q^{2} p^{2} b^{2} d^{3}+2 \alpha^{2} q p^{4} b^{2} a^{2} \\
& +6 \alpha^{2} q^{2} p^{4} d^{2} b+6 \alpha^{2} q p^{3} b^{2} d^{3}+6 \alpha^{2} q^{2} p^{3} d^{3} b+2 \alpha^{2} q^{2} d^{3} b^{2} a^{2}+\alpha^{2} q^{3} p^{4} b d \\
& -2 \alpha p^{4} d^{3} b^{2} a+2 q^{2} p^{2} d^{2} b a^{4}+2 q^{3} p^{2} d^{2} b a^{3}+q p^{4} d b^{3} a^{2}+\alpha^{2} q^{3} p^{2} d b a^{2}+2 q p^{3} d^{2} b a^{4} \\
& +2 \alpha^{2} q^{3} p d^{2} b a^{2}+2 q^{2} p^{2} d b^{2} a^{4}-4 \alpha q^{2} p^{2} d^{3} b^{2} a-2 \alpha p^{3} b^{3} d^{3} a+2 \alpha^{2} p^{3} q^{3} d^{3} \\
& +2 q p^{2} d^{2} b^{2} a^{4}-2 \alpha p^{4} d^{2} b^{3} a+2 \alpha^{2} q^{3} p^{4} d^{2}+2 p^{2} b^{2} a^{2} d^{3} q^{2}+2 \alpha^{2} p^{3} b^{3} d^{3} \\
& +2 \alpha^{2} b^{3} p^{4} d^{2}-2 \alpha q^{3} p^{4} b a^{2}+2 \alpha^{2} q^{3} p^{4} b a+2 q^{2} p^{3} d^{3} b a^{2}-2 \alpha q^{2} p^{4} b a^{3}+2 q^{2} p^{2} d^{3} b a^{3} \\
& -12 \alpha q^{2} p^{3} d^{2} b a^{2}+4 \alpha^{2} q^{2} p^{3} d^{2} b a+2 q^{2} p^{4} d b a^{3}+2 q^{2} p^{3} d b a^{4}+2 q^{3} p^{3} d b a^{3} \\
& +2 \alpha^{2} q p^{2} d^{3} b^{2} a-2 \alpha q p^{3} d^{2} b a^{3}-6 \alpha q p^{2} d^{2} b^{2} a^{3}+4 \alpha^{2} q^{3} p^{3} d b a-2 \alpha q^{3} p^{2} d^{3} b a \\
& -8 \alpha q^{2} p^{4} d b a^{2}-6 \alpha q^{2} p^{2} d^{2} b a^{3}+q^{3} p^{4} d b a^{2}-6 \alpha q p^{3} b^{3} a^{2} d-2 \alpha q p b^{3} a^{2} d^{3} \\
& -6 \alpha q^{3} p^{2} b a^{2} d^{2}-2 \alpha q^{2} p^{2} b a^{2} d^{3}-4 \alpha q^{2} p b^{2} a^{2} d^{3}-2 \alpha q p b^{3} a^{3} d^{2}-4 \alpha q^{2} p b^{2} a^{3} d^{2} \\
& +4 \alpha^{2} q p^{3} b^{3} a d+2 \alpha^{2} q^{2} p^{2} b^{2} a^{2} d-4 \alpha q^{2} p^{4} b^{2} a d-12 \alpha q^{2} p^{3} b^{2} a^{2} d-2 \alpha q^{3} p b a^{2} d^{3} \\
& -12 \alpha q^{2} p^{2} b^{2} a^{2} d^{2}-12 \alpha q p^{3} b^{2} a^{2} d^{2}-2 \alpha q p^{2} b^{2} a^{2} d^{3}+2 \alpha^{2} q p^{4} b^{2} d a \\
& +2 q p^{3} b^{2} a^{2} d^{3}+2 q p^{3} b^{3} a^{2} d^{2}+4 q^{2} p^{2} b^{2} a^{3} d^{2}+2 q p^{2} b^{2} a^{3} d^{3}+8 q p^{3} b^{2} a^{3} d^{2} \\
& +2 \alpha^{2} q^{2} p^{4} b a^{2}+p^{2} b^{3} q a^{2} d^{3}+p^{2} b q^{3} a^{2} d^{3}+4 q^{2} p^{3} b^{2} a^{3} d-2 \alpha q p^{4} b^{3} a d-6 \alpha q p^{3} b^{2} a^{3} d \\
& +4 \alpha^{2} q^{2} p a^{2} b^{2} d^{2}+2 \alpha^{2} q^{2} p^{2} b a d^{3}-6 \alpha q p^{2} b^{3} a^{2} d^{2}-2 \alpha q^{3} p d^{2} b a^{3}-4 \alpha q p^{4} d^{3} b a \\
& +2 q p^{3} d b^{2} a^{4}+4 q^{2} b^{2} p^{3} a^{2} d^{2}+2 q^{2} b^{2} a^{2} p^{4} d+2 \alpha^{2} q p a^{2} b^{3} d^{2}+4 \alpha^{2} q p^{3} b^{2} a d^{2} \\
& +2 \alpha^{2} q p b^{3} a d^{3}+4 \alpha^{2} q^{2} p b^{2} a d^{3}+4 \alpha^{2} q p^{3} b^{2} a^{2} d+8 \alpha^{2} q^{2} p^{2} d^{2} b^{2} a-2 \alpha q p^{4} d b a^{3} \\
& -8 \alpha q p^{3} b^{2} a d^{3}+2 \alpha^{2} q^{2} p^{4} d b a-8 \alpha q^{2} p^{3} d^{2} b^{2} a+2 q p^{3} d^{3} b a^{3}-2 \alpha q p^{3} d^{3} b a^{2} \\
& +2 q p^{4} d^{2} b a^{3}-4 \alpha q p^{3} d^{2} b^{3} a-2 \alpha q p^{2} d^{3} b^{3} a+4 \alpha^{2} q p^{2} d^{2} b^{3} a+2 q^{2} p^{4} d^{2} b a^{2} \\
& +2 q p^{4} d^{2} b^{2} a^{2}+2 q p^{4} d b^{2} a^{3}-2 \alpha q p^{2} d^{3} b a^{3}-6 \alpha q^{3} p^{3} d b a^{2}-4 \alpha q^{2} b^{2} a^{2} p^{4}-2 \alpha p^{3} q^{3} d^{3} a \\
& -2 \alpha p^{4} d^{2} a q^{3}+2 \alpha^{2} b^{2} q^{2} p^{4} d+4 \alpha^{2} q^{2} b^{2} p^{3} d^{2}+\alpha^{2} p^{2} b^{3} q d^{3}+\alpha^{2} p^{2} b q^{3} d^{3} \\
& \left.+4 \alpha^{2} b^{2} q^{2} p^{4} a+2 \alpha p^{2} q^{3} a^{2} d^{3}-2 \alpha p^{4} d^{3} a q^{2}\right) \omega^{4}-p^{6} c^{4} \alpha^{4} b^{2} a^{2} d^{2} q^{2}\left(2 q p^{2} a^{2} d\right. \\
& -2 \alpha q^{2} p d^{2}-2 \alpha p^{2} b a d-2 \alpha p b d^{2} a-2 \alpha q^{2} a d^{2}-2 \alpha q^{2} a p^{2}+2 q p^{2} d^{2} a+d^{2} q^{2} \alpha^{2} \\
& +p^{2} d^{2} a^{2}+2 q p a^{2} d^{2}+2 q^{2} p d^{2} a+2 q^{2} p a^{2} d+2 p^{2} q^{2} a d-4 \alpha q p b d^{2}+2 q p^{2} b \alpha^{2}
\end{aligned}
$$

$$
\begin{aligned}
& -2 \alpha p b^{2} d^{2}-2 \alpha p^{2} b^{2} d-4 \alpha q p^{2} b d-2 \alpha b^{2} a d^{2}-2 \alpha q p^{2} a d-2 \alpha q p d^{2} a-2 \alpha b^{2} a p^{2} \\
& +2 p^{2} b^{2} a d+2 p b^{2} d^{2} a+2 p^{2} b d^{2} a+2 p b a^{2} d^{2}+2 p b^{2} a^{2} d+2 p^{2} b a^{2} d-4 \alpha \dot{q}^{2} p a d \\
& +\alpha^{2} p^{2} b^{2}-4 \alpha p^{2} b a q+2 \alpha^{2} q^{2} p d+4 q b p^{2} a d+4 p b a d^{2} q+2 \alpha^{2} p b^{2} d+q^{2} p^{2} a^{2} \\
& +4 \alpha^{2} q p b d+q^{2} p^{2} \alpha^{2}-2 \alpha q^{2} p^{2} d+2 q p^{2} b a^{2}-8 \alpha q p b a d+4 q p d b a^{2}-4 \alpha p b^{2} a d \\
& \left.+2 \alpha^{2} q b d^{2}-4 \alpha q b d^{2} a+p^{2} b^{2} a^{2}+d^{2} b^{2} \alpha^{2}\right) \omega^{2}
\end{aligned}
$$

$$
\begin{equation*}
\tilde{F}\left(\tau_{1}, \omega_{1}\right)=\frac{\tilde{S}_{d d 1 n}}{\tilde{S}_{d d 1 d}} \tag{A.2}
\end{equation*}
$$

where

$$
\begin{aligned}
\tilde{S}_{d d 1 d}= & {\left[\alpha c p\left(d \alpha c p+b e t a b k q e^{-\tilde{a} \tau_{2}}\right)\right]\left\{\beta b k q \left(b a p q-b \omega^{2} \alpha-\omega^{2} \alpha q\right.\right.} \\
& \left.-\alpha \omega^{2} p\right) e^{-a \tau_{1}-2 \tilde{a} \tau_{2}}+[c p \alpha[(-p b \alpha-p \alpha q-\alpha d b-\alpha b q \\
& \left.-\alpha d q) \omega^{2}+p a b q d\right]+\sin \left(\left(\tau_{1}+\tau_{2}\right) \omega\right) c \alpha^{2} \omega p^{2}\left(-\omega^{2}+d b+d q\right) \\
& \left.\left.-\cos \left(\left(\tau_{1}+\tau_{2}\right) \omega\right) c \alpha^{2} \omega^{2} p^{2}(d+b+q)\right] e^{-a \tau_{1}-\tilde{a} \tau_{2}}\right\}
\end{aligned}
$$

and

$$
\begin{aligned}
\tilde{S}_{d d 1 n}= & \omega\left\{e ^ { - a \tau _ { 1 } - \tilde { a } \tau _ { 2 } } \left[w^{8} \alpha^{4} c^{3} p^{3} d+w^{6} d \alpha^{4} c^{3} p^{3}\left(p^{2}+d^{2}+b q+b^{2}+q^{2}\right)+w^{4} d \alpha^{3} c^{3} p^{3}\right.\right. \\
& \times\left[d^{2} \alpha p^{2}+b^{2} \alpha q a+q^{2} \alpha b a+p d a b q-d \alpha p b q+b p^{2} q \alpha+b q d^{2} \alpha+d^{2} \alpha q^{2}\right. \\
& \left.+\alpha p^{2} b^{2}+\alpha p^{2} q^{2}+d^{2} \alpha b^{2}\right]-w^{2} d \alpha^{3} c^{3} p^{3}\left[-b^{2} q d^{2} \alpha a-b q d^{2} \alpha p a\right. \\
& -p q^{2} d \alpha b a-b q^{2} d^{2} \alpha a-b^{2} p^{2} q \alpha a-b p^{2} q^{2} \alpha a-b p^{2} q \alpha a d+d^{2} p^{2} a b q \\
& +p^{2} a^{2} b q d+d^{2} p b^{2} a q+d^{2} p q^{2} a b-2 b d^{2} \alpha p^{2} q-b^{2} p^{2} q \alpha d \\
& +b^{2} p a^{2} q d+p^{2} b^{2} d a q+p^{2} q^{2} d a b+q^{2} p a^{2} b d+d^{2} p a^{2} b q-b^{2} d \alpha p q a \\
& \left.-b p^{2} q^{2} \alpha d-b^{2} q d^{2} \alpha p-b q^{2} d^{2} \alpha p-b^{2} d^{2} \alpha p^{2}-p^{2} q^{2} d^{2} \alpha\right] \\
& +a^{2} b d^{3} \alpha^{3} c^{3} p^{5} q(b+q)+\cos \left(\left(\tau_{1}+\tau_{2}\right) \omega\right)\left[w^{6} \alpha^{4} c^{3} p^{5} d+w^{4} c^{3} d p^{4} \alpha^{4}\left(d^{2} p\right.\right. \\
& \left.+2 b p q+b^{2} p+q^{2} p+b q a\right)-w^{2} c^{3} d p^{4} \alpha^{3}\left(-\alpha p b^{2} q a-d^{2} b q \alpha a-\alpha p d a b q\right. \\
& -\ddot{\left.\left.\alpha p b q^{2} a-2 b q d^{2} \alpha p-\alpha d^{2} p b^{2}-\alpha q^{2} d^{2} p+p d a^{2} b q\right)+a^{2} b d^{3} \alpha^{3} c^{3} p^{5} q(b+q)\right]} \\
& +\sin \left(\left(\tau_{1}+\tau_{2}\right) \omega\right)\left[-\alpha^{4} c^{3} p^{4} d w^{7}-\alpha^{4} c^{3} p^{4} d\left(d^{2}+2 b q+b^{2}+q^{2}\right) w^{5}-\alpha^{4} c^{3} p^{4} d\right. \\
& \times\left(b^{2} q a+2 d^{2} b q+b^{2} d^{2}-p b q a+d^{2} q^{2}+q^{2} b a\right) w^{3}+a b c^{3} d^{2} p^{4} q \alpha^{3}(-d b \alpha \\
& -\alpha p b+b a p+d a p-d q \alpha-p \alpha q+p q a)]]+e^{-a \tau_{1}-2 \bar{a} \tau_{2}}\left[w^{8} \alpha^{3} c^{2} p^{2} b e t a b k q\right. \\
& +w^{6} b q \alpha^{3} c^{2} p^{2} \beta k\left(p^{2}+3 d^{2}+b q+b^{2}+q^{2}\right)+w^{4} b q \alpha^{2} c^{2} p^{2} \beta k\left[3 d^{2} \alpha p^{2}+\alpha b^{2} q a\right. \\
& +\alpha q^{2} b a+2 p d a b q-2 d \alpha p b q+b p^{2} q \alpha+3 d^{2} b q \alpha+3 \alpha q^{2} d^{2}+\alpha p^{2} b^{2}+\alpha p^{2} q^{2}
\end{aligned}
$$

$\left.+3 \alpha b^{2} d^{2}\right]-w^{2} b q \alpha^{2} c^{2} p^{2} \beta k\left[-3 \alpha d^{2} b^{2} q a-3 b q d^{2} \alpha p a-3 \alpha d^{2} b q^{2} a-b^{2} p^{2} q \alpha a\right.$
$-b p^{2} q^{2} \alpha a-2 b p^{2} q \alpha a d+3 d^{2} p^{2} a b q+2 p^{2} a^{2} b q d+3 d^{2} p b^{2} a q+3 d^{2} p q^{2} a b$
$+2 p d b^{2} a^{2} q+2 p^{2} b^{2} d a q+2 p^{2} q^{2} d a b+2 p d q^{2} a^{2} b+3 p d^{2} a^{2} b q-2 \alpha p d b^{2} q a$
$-2 \alpha p d b q^{2} a-6 b d^{2} \alpha p^{2} q-2 b^{2} p^{2} q \alpha d-2 b p^{2} q^{2} \alpha d-3 b^{2} q d^{2} \alpha p-3 b q^{2} d^{2} \alpha p$
$\left.-3 b^{2} d^{2} \alpha p^{2}-3 p^{2} q^{2} d^{2} \alpha\right]+3 a^{2} b^{2} p^{4} \beta k q^{2} d^{2} \alpha^{2} c^{2}(b+q)+\sin \left(\left(\tau_{1}+\tau_{2}\right) \omega\right)$
$\times\left[-\alpha^{3} c^{2} p^{3} \beta b k q w^{7}-w^{5} b c^{2} k p^{3} \alpha^{3} \beta q\left(q^{2}+2 b q+b^{2}-p d+2 d^{2}\right)\right.$
$-w^{3} \alpha^{3} c^{2} p^{3} \beta b k q\left(-p d b^{2}+b^{2} a q+2 b^{2} d^{2}-b p a q-2 b p q d+b a q^{2}+4 d^{2} b q\right.$
$\left.-b q d a-p d q^{2}+2 d^{2} q^{2}\right)+w a b^{2} c^{2} d k p^{3} q^{2} \alpha^{2} \beta(-2 b d \alpha-b \alpha p+2 b p a+2 p d a$
$-2 d \alpha q-p \alpha q+2 p a q)]+\cos \left(\left(\tau_{1}+\tau_{2}\right) \omega\right)\left[\omega^{6} b c^{2} \alpha^{3} p^{3} \beta k q(p+d)\right.$
$+w^{4} \alpha^{3} c^{2} p^{3} \beta b k q\left(p b^{2}+d b^{2}+2 b p q+b a q+2 d b q+p q^{2}+2 d^{2} p+d q^{2}\right)$
$-w^{2} b c^{2} k p^{3} q \alpha^{2} \beta\left(-2 q^{2} \alpha d^{2} p-q^{2} \alpha b a d-q^{2} \alpha b p a-q \alpha d b^{2} a\right.$
$\left.-2 q \alpha b d^{2} a-q \alpha p d a b-4 d^{2} b q \alpha p-q \alpha p b^{2} a+2 q p b a^{2} d-2 d^{2} p b^{2} \alpha\right)$
$\left.\left.+2 a^{2} b^{2} p^{4} \beta k q^{2} d^{2} \alpha^{2} c^{2}(b+q)\right]\right]+e^{-a \tau_{1}-3 \bar{a} \tau_{2}}\left[3 b^{2} q^{2} \beta^{2} k^{2} c p \alpha^{2} d w^{6}\right.$
$+w^{4} b^{2} q^{2} \beta^{2} k^{2} c p \alpha\left[3 q^{2} \alpha d+p b q a+3 p^{2} \alpha d-b q \alpha p+3 b q \alpha d+3 b^{2} \alpha d\right]$
$-w^{2} b^{2} q^{2} \beta^{2} k^{2} c p \alpha\left[3 b q^{2} a p d+3 b^{2} q a p d+3 q p b a^{2} d+3 p^{2} b q a d-b p^{2} q \alpha a\right.$
$+b^{2} p a^{2} q+q^{2} p a^{2} b+p^{2} b^{2} q a+p^{2} q^{2} b a+p^{2} a^{2} b q-3 b^{2} q \alpha d p-3 b q^{2} \alpha d p$
$-3 b^{2} d \alpha p^{2}-6 b d \alpha p^{2} q-b^{2} p^{2} q \alpha-b p^{2} q^{2} \alpha-3 p^{2} q^{2} d \alpha-3 q \alpha d b^{2} a-q \alpha p b^{2} a$
$\left.-q^{2} \alpha b p a-3 q \alpha p d a b-3 q^{2} \alpha b a d\right]+3 a^{2} b^{3} d \alpha c p^{3} q^{3} \beta^{2} k^{2}(b+q)$
$+\sin \left(\left(\tau_{1}+\tau_{2}\right) \omega\right)\left[-w^{5} b^{2} c \alpha^{2} p^{2} \beta^{2} k^{2} q^{2}(-p+d)+w^{3} b^{2} c k^{2} p^{2} q^{2} \alpha^{2} \beta^{2}\left(b^{2} p\right.\right.$
$\left.-b^{2} d+2 b p q-2 b q d+b a q+p q^{2}-d q^{2}\right)+w a b^{3} c k^{2} p^{2} q^{3} \alpha \beta^{2}(p b a-b d \alpha+p q a$
$+p a d-q \alpha d)]+\cos \left(\left(\tau_{1}+\tau_{2}\right) \omega\right)\left[w^{6} b^{2} c k^{2} p^{2} q^{2} \alpha^{2} \beta^{2}+w^{4} b^{2} c \alpha^{2} p^{2} \beta^{2} k^{2} q^{2}\right.$
$\times\left(p d+q^{2}+b^{2}+2 b q\right)-w^{2} b^{2} c k^{2} p^{2} q^{2} \alpha \beta^{2}\left(-p q^{2} \alpha d-2 p b q \alpha d+q p b a^{2}\right.$
$\left.\left.\left.-p b^{2} \alpha d-q^{2} \alpha b a-q \alpha b a d-q \alpha b^{2} a\right)+a^{2} b^{3} d \alpha c p^{3} q^{3} \beta^{2} k^{2}(b+q)\right]\right]$
$+e^{-a \tau_{1}-4 a ̃ \tau_{2}}\left[w^{6} \beta^{3} b^{3} k^{3} q^{3} \alpha+w^{4} \beta^{3} b^{3} k^{3} q^{3} \alpha\left(b q+b^{2}+q^{2}+p^{2}\right)-w^{2} b^{3} k^{3} q^{3} \beta^{3}\right.$
$\times\left(-q b a \alpha p-q b^{2} \alpha p-q^{2} b \alpha p+q b p^{2} a-2 q b p^{2} \alpha-q \alpha b^{2} a-q^{2} p^{2} \alpha\right.$
$\left.\left.\left.-q^{2} \alpha b a-b^{2} p^{2} \alpha+q^{2} b a p+q b^{2} a p+q p b a^{2}\right)+a^{2} b^{4} p^{2} \beta^{3} k^{3} q^{4}(b+q)\right]\right\}$.

$$
\begin{aligned}
\tilde{S}_{d d 1}\left(\omega_{r}, a_{c}\right)=\tilde{F}_{1}= & 1.6 \omega\left\{-3.305 \omega^{8}-\omega^{6}\left(5.285+7.93 \times 10^{-15} a\right)\right. \\
& -\omega^{4}(157.6-365.2 a)+\omega^{2}\left(1890 a^{2}+2370 a-1.070\right) \\
& -\cos \left(0.1 \omega\left(3+10 \tau_{1}\right)\right)\left[1.35010^{1} \omega^{6}+\omega^{4}(216.2+2.642 a)\right. \\
& \left.-\omega^{2}\left(624.5 a^{2}-216.4 a-0.02\right)+5 a^{2}\right] \\
& +\sin \left(0.1 \omega\left(3+10 \tau_{1}\right)\right)\left[6.610 \omega^{7}+\omega^{5}\left(105.2+1.586 \times 10^{-14} a\right)\right. \\
& \left.\left.+\omega^{3}(5.170 a-9.570)+\omega\left(0.4330 a-2502 a^{2}\right)\right]-118.4 a^{2}\right\} \\
& /\left[42.32 \omega^{2} \cos \left(0.1 \omega\left(3+10 \tau_{1}\right)\right)+\omega \sin \left(0.1 \omega\left(3+10 \tau_{1}\right)\right)\right. \\
& \left.\times\left[10.57 \omega^{2}-0.08459\right]-5.287 \omega^{4}+64.94 \omega^{2}-500 a\right]
\end{aligned}
$$

$$
\begin{equation*}
\tilde{S}_{d d 2}\left(\omega_{r}, a_{c}\right)=\tilde{F}_{2}=3.2 \omega\left\{-21.15 \omega^{8}+21.15 \omega^{7} \sin \left(\left(0.2\left(3+10 \tau_{1}\right)\right) \omega\right)\right. \tag{A.4}
\end{equation*}
$$

$$
-\omega^{6}\left[21.6 \cos \left(\left(0.2\left(3+10 \tau_{1}\right)\right) \omega\right)+1.269 \times 10^{-14} a+84.56\right]
$$

$$
+\sin \left(\left(0.2\left(3+10 \tau_{1}\right)\right) \omega\right) \omega^{5}\left[84.12+1.269 \times 10^{-14} a\right]
$$

$$
-\omega^{4}\left[\cos \left(\left(0.2\left(3+10 \tau_{1}\right)\right) \omega\right)[86.5+10.57 a]+63.06+146.1 a\right]
$$

$$
+\sin \left(\left(0.2\left(3+10 \tau_{1}\right)\right) \omega\right) \omega^{3}[10.34 a-1.914]
$$

$$
+\omega^{2}\left[\cos \left(\left(0.2\left(3+10 \tau_{1}\right)\right) \omega\right)\left[62.45 a^{2}-21.64 a-0.002\right]\right.
$$

$$
\left.+189.0 a^{2}+237 a+1.07\right]
$$

$$
+\sin \left(\left(0.2\left(3+10 \tau_{1}\right)\right) \omega\right) \omega\left[-125.1 a^{2}+0.02165 a\right]
$$

$$
\left.-0.1250 \cos \left(\left(0.2\left(3+10 \tau_{1}\right)\right) \omega\right) a^{2}-2.960 a^{2}\right\}
$$

$$
/\left\{-2.115 \omega^{4}+2.114 \omega^{3} \sin \left(\left(0.2\left(3+10 \tau_{1}\right)\right) \omega\right)\right.
$$

$$
+\omega^{2}\left[4.232 \cos \left(\left(0.2\left(3+10 \tau_{1}\right)\right) \omega\right)+6.495\right]
$$

$$
\left.-0.0423 \omega \sin \left(\left(0.2\left(3+10 \tau_{1}\right)\right) \omega\right)-12.50 a\right\}
$$

