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: | A_bstrad

In northern témperate regions, climate warming is predicted to increase the
frequency of soil freeze-thav‘v cycles (FTC) and reduce plant cold acclimation in Jate fall
and early spring. To test if FTC inhibit plant nitroéen (’N) uptake, I exp;)sed Poa
pratensz's. tillers to FTC in late fall, mid winter, and early spring, fhen used A'ISN tracer to
assess N upt.ake from a hydroponic solution. To assess the direct effects of FTC on plarit
~ growth, I eki)oseci P. pratensis tillers to‘FTC: on the same dates, then measured plant
biozhass the following summer. Freezing éf short duration at =10 °C and loAnger freezipg
~at=>5 °C in fall and spring decreased N uptaké signiﬁrcantly. flant growth decreased the
mdst after spring FTC. Reduced plant cold acclimation in fall and spﬁng must thus be

coupled with extreme soil freezing to hinder plant N acquisition and growth.

Keywords: climate, freeze-thaw, growing season, >N uptake, plant productivity, Poa

pratensis, root damage, winter warming.
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. Chapter 1

General Introduction

1 1 Sc1ent1ﬁc Ratlonale

1.1.1 Global cllmate change

Climate warming predictions

.Climate, which is defined as the average 30-year weather pattern of a region, has )
been Warming since the 20" century, and this Warming is very likely to have been caused
by anthropogenic greenhouse gas (GHG) emissions (IPCC, 2007). Future climate
preriictions are variable because they are based on assumptions of future GHG emissicns,
lanci use changes and'ccnsistent behaviour of the climate system. Current climate models
predxct a global Warmmg of 1.1-6.4 °C over the next century, ‘with the greatest
_temperature 1ncreases occurring on land and at high latitudes (IPCC 2007) The Earth's
average surface temperature has already warmed by 0.6 °C over the past century (IPCC,
ZQOI), causing plantresponses such as shifts in phenclogy (Estrella and Menzel, 2001),
- lengtheningh of the groizving s’eascn (Keeling et ai., 1996), changes in species ranges
(Walther, 2001), species distribution (Pauli et al., 1996) and species abundance (Smith,
1994), as_weH as changes in plant growth rates (Graybill and Idso, 1993; Bisgrove and
| Hadley, 2002); Shifts in species distributions and extinction of some species can in turn

‘lead to changes in community structure and cemposition (Hughes, 2000; Kreyling, 2010).




: Win?er climate change
Warming over winter, especially at high latitudes, has Been occufring faster thaﬁ

Warming»during the summef (Sacterdsal et al., 1998) and the annual extent of sndw cover

over the northern hemisphere has declined by nearly ten percent duﬁng the period 1972-
2003 (Walsh et al., 2005). Despite this trend, snowfcover has generally increased over
Noﬁh America over the last century due to increased precipitation'(IPCC,' 2007, |
G;oisman’ et al., 2004). Nonetheless, ‘temperéte regions Wﬁeremean winter temperatures
remain close to-freezing may féceive less snow and exi)eriehce a higher ratio of fain to‘_‘
snow with climate change (Bélanger et al., 2002; Henry, 2'008). Future reductions in
snow cover would affect soil temperatures because of reduced insulation provided by
snow; for example, a mean annual air temperature of —10.3 °C can be reduced £o an
average,temperature of —1.4 °C at the soil surface by insi;lativé properties of snow
(Romanovsky,2001).,Despite lesé soil insulation, thirty to eighty‘percent fewer days with-. |
air temperam'res’below freezing that are more scattered over fime\ (Jylha et al., 2008) are
predicted to decrease the period of frozén soil in temperate regions. Nevertheless, in

northern temperate sYstems,’ an increase in the frequency of soil freeze-thaw cycles (FTC)

is also expécted with reduced snow cover (Groffman et al., 200.1§ Henry, 2008).
1.1.2 Plant winter survival =
Freezing ddmage in plants

Plants can be damaged by winter stresses such as ﬂuctuating air temperatures and

below freezing soil temperatures, excess soil moisture, ice encasement, soil heaving, and
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low temperature pathogens (Andrews, 1987). Plant injury and death result primarily from
the freezing of water within plant tissues. Ice initially forms in intercellul.ar—spaces (Xin
and Browse, 2000), partly Because the extracellular fluid has a lower solute concentration
: thgn does the intracellular fluid (Thomashow, 1999). Internal cell osmotic potential is
reduced (Guy, 1990), causing water to move from inside cells across the permeable
membrane which beéomes more‘p-ermeable at lower temperature (V asil'yev, 1961a).
Dehydration is the‘prinl'lary éause of freeze-induced damage to cell membranes and, in
tun"l, plant cells (Steponkus, ,1984; Steponkus et ?al.,\1993a)..lThe physiol(.)gical '- o
consequence of cell dehydration is a lo;s of compartmentatién throﬁgh a phase change in |
a fraction of the membrane lipids, from a bilayer to a non-bilayer structure, causing
.destabilization (Pearce, 2001). |

- Non-dehydration freeze-damage leads to freeze-induced production of réactive
oxygen species (McKersie and Bowley, 1998), céll rupture from formation of
intercellular.ice‘vadhevsions with ’c’ell walls and membranes (Oiien and Smith,' 1977), and
protein denaturation at low temperature (Guy et al., 1998). Mechanical damage _through
. ice foﬁnation results from tissue rupture rather than éell damage as water éxl;ands during
: freezing-(Pearce, 2001). |

Fast freezing and warming rates are generally more damaging than are §lower

rates due to faster pressure chzinges outside the protoplasm, which the cell membrane |
canno%t sustain (V a;il'yev, 1961b). Wann period; during FTC preventv roots from
'confinuouslsf experiencing dormancy-inducing températures (<5 C%), delaying cold .
acclimation in early Wintér (Cannell and Smith, 1986). Conversely, exposure to -

temperatures above 0 °C in winter can cause a loss of cold acclimation, in plants, with the
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speed of deaCClimation increasing with higher teniperaturés (Kalberer et al., 2006). Frost
vulnerability is then increased by sﬁbsequent exposure to subfreezing temperatures
(Ouellet and Desjardins, 1981 ; Suzuki, 1981). Such deacclirﬁaﬁon occurs at a much faster -
. rate than does cold acclimation, so winter survival 'c'an‘be affected by exposure to even
s‘hort» periods of warm {emperatures during winter (Eagles etal., 1997). Soil héaving
damage to fine roots is,alsc; induced by FTC by incréasing soil mdvemént and ice lens |
formation x;vhich, along with exposing roots to freezing temperatures and dry air,'may
cause further physfcal damage(Tierney"et al., 2001). In addition, heavy ;«vinter rainfall -
;:an induce ice-sheet formation at the soil surface, creating anoxic chditions and an

accumulatioq of CO,, ethanol, Jactic acid and ethylene in the soil (Bélanger. et al., 2005).

Cold dcclimation and freezing tolerance

Cold acclimation (al;o known as hardeniﬁg) is a suite of changes in gene -
expression ar;d physi_ology that increases plant tolerance to cold~.:;emperatures (Kalberer et
al., 2006). A reduced photoperiod and deglining temperatures initiaté.the start of winter
acclimation in perennial plants (McKenzie et al., 1988; Stout and Hall, 19'895; thié o
physiologi'cal process is accelerated once air temperatures droi) below a_pproxin’iately 5
°C (Paquin and’Pelletiér, 1980). Cold susceptibility is species-, provenance-, génotype-
and tlissue_-_s.pleciﬁc,vwith southern provenances being generally less cold tolerant than
northern provenances in the Northerh Hemisphere (Kozlowski and Pallardy, 2002).
Water stress, short days and low temperature each induce cqld acclifnatidri (Fuchigaﬁi et

al., 1971), the onset of which is also promoted by by an increase in concentration of



abscisic acid, which upregulates genes involved in cold accliation (Thomashow, 1999;

Gusta et al., 2005) |
| The onset of cold-aéclimation takes place between 16 °C and 20 °C in autumn,
with the accumﬁlation of carbohydrates and lipids (Kozlowski and Pallardy, 2002).
Acclimation is completed at low and sub-freezing temperatures with thé synthesis of anti-
freeze .and dehydrin proteins and stfuctural changes in membrgne iipids (Kozlowski and
Paliardy,_ 1997; Olien and Smith, :1981). Soiuble’ sugars accumulate from starch
mobilization during the acciimatiqn period (Sauter et al., 1996) and, together with othex;
solutes, lower th¢ fréezing point of the intracellular solution (Poirier et al., 2010). The’
extent of cellular‘dehydraﬁon is also reduced as the rate of water movement to the outside
of cells is lowered by decreased internall osmotic pressure (Xin and Browse, 2000), and
‘solute concentration is further increased as plants decrease their water content (Chen and
Gusta 1978; Axﬁéglio ét‘al.,'ZOOl ; Gusta et al., 2004). In addition, sugars also function as.
cryoprotectants’for specific enéymes (Carpehter etal., 1986). |

- Freezing is also retarded by super cooling, which results from;Water nét freezing

inside cells due to the absence of hetérogeneous ice nucleating ageﬁts (dust, iﬁacterial
proteins) and the presence of anti-freeze proteins. Such pfotein_s are traqscribed during |
the cold acclimation stage and incréase freezing tolerénCe by?cbntrolling sites of ice
formatlon the rate at which ice grows and inhibiting recrystalhzatmn (Grlfﬁth and
Antikienen, 1996) The absolute hmlt to super cooling of pure water is —40 °C at Wthh
point water freezes inside cells‘homdge‘neously (Without’nucleating agents) (Franks,

2003).



" Membrane lipid composition is also modified during acclimation to stabilize

membranes and resist freezing (Steponkus ef al., 1993°; Uemura and Steponkus, 1997%).

- Fatty acids of membranes become more unsaturated, retaining their fluidity at colder

températures (Xin and Browse 2000), and membranes are further stabilized by

hydrophilic polypeptides (Thomashow, 1999). -

Winter climate change and plant productivizfy "

The effects of freezing on plant productivity have received little attention in
climate change research (Kreyling, 2010), despite the fact that warming and shorter
winters are nét likely to reduce the risk of frost damage to plants in many femperate
iegions (Meehl et al., 2000). The frequency of random frost events is predicted to remain
stable (IPCC, 2007) and an e;arlier onset of spring growth can result in greater plant
damage by late .spring frosts (H@inen, 1991). Major vegetation die offs, caused by the
combinatioﬁ of"early spfing and late fall frosts can occur over- very large spatial scales, as
observed in the spring of 2007 across fhe eastern United States.(Gu et al.,2008). The

reduction of yellow cedar '(Chamdecyparis nootkatensisj growth range has also been

attributed to reduced snow cover in late winter and-early spring, as a result of increased

root damage by freezing (Schaberg et al., 2008).' In addition to species speciﬁc freezing
responses, changes in species composition can result from interspecific variation in
resiliency to fre‘ezing damage (Kreyling, 2010).- . - | |

Both increaséd and.‘deéreased plant productivi‘.tyi have been attributed to increased

winter FTC (Ouellet, 1976; Kreyling ef al., 2008). Freeze damage causes substantial yield

losses of perennial forage crops in northern temperate regions (Ouellet, 1976). In contrast,




five artificially imposed FTC down to —2 °C in situ have led to increased summer
biomass in a temperate grassland cofnmunity, which was attributed to increased plant
nitrogen (N) availability thréughout the winter and earl_y spring (Kreyling et al., 2008), or
possibly as a result of interactions with root parasites (J. Kreyiing, pers.' comm.).
However, the mechanisms remain unclear because nope of these studies have

_ documented direct plant freezing responses in the absence of possible indirect effects via

changes to physical soil properties or microorganisms.

1.1.3 Impacts of climate warming on plant growth through changes in soil N

dynamics

Nasa lfmz’ting element in ecosystems.
| N is widely accepted as the most limiting nutrient for plant growth in most

terrestrial system's_ (Taten;) and Chapin, 1997). High N demand byplants and low N
‘ availabﬂity in usable forms aré responsible for N limitation (Vitousek e}ﬁd Howarth,
19915. Even though N makes up 78 % of the atmosphere's volume (Chapin ef al., 2002;
Vitousek et al ., 1997), 99.95 % of N exists as inert N gas, which plants are unable to use
(Galloway et al., 2004). Spécialized bacteria fix N from the a'ir, and other |
* microorganisms mineralize organic N (e.g. proteins, peptides, and amino acids) into
inorganic N. (NH; or NH, énd NO3) (Vitqﬁsek- and Howarth, 1991; Benbi and Richter,
2002). Some N gets immobilized during mineralization for microbial growth while the
rést is secreted as inorganic N, resulting in net mineralization (Chapin et al., 2002).

Northern temperate ecosystems are experiencing increasing rates of atmospheric N



deposition (Galloway et al., 2004), and the amount of added N that is retained in the
ecosystem will influence primary productivity and plant species composition (Tilman and

Downing 1994; Vitousek et al. 1997). FTC can increase the amount of N that is lost from

~ soils as leachate followiﬁg’ microbial and plant damage (Groffman et al., 2001; Fitzhugh

et al., 2001; Tierney et al., 2001), potentially leading to coastal and freshwater
eutrophication, as well as a decrease in ecosystem biodiversity through acidification

(Galloway et al., 2004; Vitousek et al., 1997).

Physiology of plant N uptake.
" Transpiration by plants causes bulk flow of water with nutrients in the soil
towards the roots. In addition, when plants take up nutrients and deplete the concentration

of nutrients in the rhizosphere, nutrients in the bulk soil move towards the rthizosphere by -

diffusion (Taiz and Zeiger, 2006). Plants acquire N with IOW-afﬁnity transport systems, - |

which operate at high nutrient concentrations (>1 mM) and with\high-afﬁnity transport

‘systems that predominate in the micromolar nutrient range (Wang ef\il., 1993)..‘7 i

Nitrate is transported either passively through anion channels (Poﬁliq\ﬁin etal,
2000) or through secondary active transport, where it enters the cell along with protons,
which are constantly. pumped out of cells ﬁsing H* ATPases (Taiz and Zeiger, 2006). The
cell's interior is more negatively charged than its exterior,' S0 ammonium is primarily
takgn up using uniborters that pass;ively'transport .ammonium along the electrochemical
gradiént (LudeWig et al., 2002, 2603). Peptides and amino acids are also taken up using

H' symporters with secbndary active transport (Mayer et al., 2006). In addition, plants

- form associations with plant growth promoting bacteria, which produce plant growth



- hormones, inducing root elongation, as well as N fixing bacteria and mycorrhizal

networks that enhance N uptake. (Kraiser ef al., 2011).

Seasonalitjz of N availability and plant uptake
A large pulse of N isvreleésed during snowmelt (Brooks et al., 1998; Lipson et al.,
1999), largely due to the release of inorganic and oréanic N froméoil microbés, which |
| have immobilized the N during the Winte‘:r (Schmidt and Lipson, 2004). The winter
microbial popﬁlation declineé due to carbon limitation towards the end of winter and )
intoleranc¢ of warmer temperatures, (Lipson et al., 1999; Lipson et al., 2000; Schmidt
and Lipson, 2004). |
~ Spring plantﬁ uptake is influenced by vegetation type. In alpine regions
graminoids have been shown to take up 12 % of their season-long nitrdgen reqﬁirements
during spring nﬁelt, compared to 7;4 % in pefennialforbes, (Bilbrough et al., éOOO)t
Throughout sufnmer, N availability decreases as plants grow 'act\ively and take up N.
Growing plahts input carbon compounds into soil through sloughing‘xpf root cells and the
exudatioﬁ of organic molecules into the rhizosphere, driving microbial gfow‘Eh (Rovira,
"~ 1969). By late '.fall,'N availlability increases again (Henry and Jefferies, 2002) when plants
‘senesce and N’ uptake rates decline, and microbes 'minéralize Sénescéd plant biomass,
releasing N through net mineralization (Brooks ef al., /1998). .
.- Winter rhicrobial communities remain active 1n temperate regions by virtue of the
insulative property of the snowpack (Brooks ef al.,1998), and sgfﬁcient water for
micrqbiél growth remainé unfrozen in the form of soil water films down fo at least =5 °C

(Anderson, 1970). Inorganic nutrients also accumulate under snow because net N.. -
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mineralization continues and plént ﬁptake is low (Brooks et al., 1998). FTC activity can
-also contﬁbute to high winter N availability throﬁgh microbial lysis (Henry‘. and Jefferies,
2002). By late winter, N axéailabilitydecreases as microbial populations grow,
predominantly immobilizing N'(Lipsbn et al., 1999, Schmidt and Lipson,'2004). Spring
melt‘folloWs with the N flush, c;)mpleting the cycle.
| Clirﬁate can influence the season’aiity of N availability (Weih, 1998). In tempeféte

and subarctic regioris;,_soil N generally peaké in midwinter (Henry énd Jefferies, 2002;
Schmidt and Lipson, 2004), aithough thicker snowpacks at higher elevation and latitudes
may cause comparably greater spring N availability due to N reléased from the melting -
énow (Haselwandter et al., 1983; B»owman, 1992). In addition, the inorganic soil N A
content of a moist heath was found to be three times higher than in a dry heath site during
the gfowing season (Weih, 1998).

As discﬁsged by Ueda et al., (2010), few studies have addressed the importance of
winter N uptaké for deciduous and perennial pla;nts. Uptak¢ of soluble N is slowed when
plants are dormant in winter (Laine et al., 1994). Root damage by ice encasement and soil
‘heaving (Ouellet, 1976)1can further decrease N uptake in trees found in hardwood forests
(Tierney ét al., 2001; Weih and Karlss‘on,~r2002). Despite theée factors tha;c hinder N
uptakc:, some graminoids can take up N in situ over winter (Andersén and Michelsen,
2005) in quantitiés cpmparable to sumrherN uptake in similar grassland species
(Nasholm et al ;, 2000; Bardgett et al., 2003). Although slowed, .Winte‘r N- uﬁtake may be
maintained by vascular plants rerhaining physioljdgiéally active and maintaining
photosynthesis at sﬁbzero air and soil temperatures (Larsen et al., 2007). The amount of | .

winter N uptake seems to be species-specific. For example, peach trees (Prunus persica)
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take up the majority of N in the spring, with very little uptake over the winter (Munoz et

al., 1993), while birch trees (Betula pubescens) can take up an amount of N in the >wi_nter
that enhances the summer growth rate by the same order of magnitude as an'increase in
growing season soil temperature of 1to 2 K (Weih, 2000). Winter N uptake may also
differ among plant functional groups. In a:ﬁemperate system, graminoids exhibited a more
favoribie summer growth response to winter FTC compared to shfubs, possibly due to
higher N uptake ability during midwinter N flushes after FTC, (Kreyling et al., 2008).

- Within graminoids, there is also evidence that winter N uptake can improve summer
growth. For exami)le, the growth of Poa pratensis was enhanced by N addition as late as |
December in regions where average temperatures ranged from —1.4 °C to 4.1 °C, with the
warmef regions having a more favorable effect of N addition on plant growth (Miltner ez

al., 2004).

Winter.warming effects on microbial communities and N dynangz:és are confounded by

direct plant responses.. - N EEEN
Climate warming can increase rates of microBial litter decompositioi;.and N

mineralization, in turn increasing plant productivity tSierra 1997, Rustad etal.,2001). N
| cycling can also be altered by Winter "warming through changes in séil freezing dynamics
(Henry, 2008’). The function and composition of microbial cqmmunities is ﬁlodiﬁed by
FTC because nﬁcrobial cells are kilied by;fréezing aﬁd thawin'g;}of soil, V\_/ith the surviving
microbes benefitting f'rom‘the released nutﬁenfs; in turn, decomposition and plant -
nutrient supply are increased, potentially Apositively influencing plant growth jthrough

plant specific FTC growth response (Schimel and Clein, 1996). Increases in the
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frequency of FTC can lead to ecosystem N losses by promoting the release of soluble N -
 from soil (Henry, ‘2007). Soluble N in soil increases most in response to‘rapid FTC rvith,
‘largest temperature ﬂuctuations (Elliott and Henry, 2009). N is then lost through leaching
and N>O emissions as a result of reduced plant N uptake over Winter'(Sharma etal.,
2006; Matzner and Bo‘rken 2008). ]Secompo_sition, mineralization and nitrification of N
compounds from frost-ldlle_d fine roots, disruption of soil aggregates (Larsen et al., 2002)
and lysis of microbial cells (Yanai etal, 24004)/ are the proposed mechanisms ‘for |
lncreased soluble N supply following FTC (Fitzhugh et al., 2001; Henry, 200’7).
Therefore, i'n_'FTC‘ experiments, plant responses have typically been confounded by’ the
indirect effects of soil responses, and it is unclear to what extent plants might be .
responding directly to soil freezing. |

Plant mortality in response to frost events has been well documented in
agricultural systems, and winter climate change is predicted to increase winter crop
mortality (Bélangere‘t al., 2002). However, most studies of plant freezivng resbonses have
focused on lethal freez‘ingtemperatures (i.e.,.LD-sp Values),fwhereas stlblethal growth
' 'responses to freezing damage have not been addressed in detail. When sublethal effects
have been quantlfied relative electrolyte leakage has been the most common parameter
used as an 1nd1cator of freezmg damage (Blgras and Dumals 2005) However roots cells
damaged durmg freezmg treatments can lose electrolytes to the sorl pr1or to the
measurement thereby obscurmg the results (Repo and Ryyppo 2008) Therefore a
functlonal 1ndex of root re51stance to frost damage may be more 1nformat1ve leen that

plant N uptake has a strong 1nﬂuence on prrmary product1v1ty and plant species
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composition (Huenneke et al., 1990; Tilman and Downing, 1994; Vitousek et al., 1997),

the short term response of root N uptake to freeiing may be an ideal response parameter.

- Study species.

" Poa prafenSis isa shalldWl')‘f rooted, cool-season, pei‘ennial grass (Sather, 1996). It
starts gfowth in'eérly spring and éorries’ into bléom in early summer (Stuckey, 1941). It
grows best in moist soil (Hoffman et al 1980) is able to w1thstand ﬂoodmg (Schalitz,
1977) and freezing down to — 14 °C when acclimated (Gudlelfsson etal., 198 6) Its
growth peaks in spring and fall, but declines in midsummer, with maximum root
élbngation'océuring in April (Stuckey, 1941). The rhizomes constitute a major sink for
storage of éarbohydrates in Poa pratensis, and they grow throughout the year except late
winter and e'arl_y-spfing' (Brown, 1943). Poa pratensis is an apomictic species, as its
sexually reproducing individugls usually account for less than_ZO% of populations (Smith-
et al., 1946). In natural areas Poa pratehsis competes with native species, reducing

species diversity and ;al‘te.ring the natural floristic composition (Sather, 1996).

\

12 O'bjé’c'tives and H“ypothese's’ -

| I ‘selectedyl.;he grass‘Po‘a’ ?féiensi’s L. as a model species to evaluate FTC effects on
plant growth ‘becaus‘e it is the donﬁﬁaﬁt spécies at \av ﬁeld site where a series of plant and
soil freezing expefimenté have been conducted by Dr. Hugh Henry's research group over
the past six years. P. pratensis is utilized exfensively for turf grass and as a forage grass
species (Wieners et .al., 2006) and is found in all of the continental states and in Canada

from Labrador to the west coast, except in arid regions:(Hitchco'ck, 1950). The main
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objective of my thesis was to characterize the direct responses of P. pratensis to soil -
FTC, in isolatibn from potential indirect effects caused by freezing-induced changes in
microbial éctivity or nutrieﬁt availability. I also examined how responses differed among
plants exposed to FTC at different stages of cold acclimation, and how respdnses were
modulated by differe_nces in minimum temperature, freezing rate and the length of
 freezing. Wi.th réspept to plant responses, I measured the depressibn of N uptake, an
' 'impc')rtant ﬁnctional measure, immediately aftef exposure to ‘free‘zing. In addition; I

examined the longér-tenn growth response of plants to freezing. O

Objective 1. To use short-terzﬁ N uptake as an indicator of freezing dqmage inP.
pratensis tillers exposed to FTC at c.iifferent siages of cold acclimation.

- I'used soil-free roots of intact P. praten&is tillers and a "N tracer in a hydroponic
solution to test fhe hypothesis that short-term N uptake responds directly to .variations in -
root freezing rate, minimum soil temperature, freezing duration and timing of freezing
occﬁrrence‘. I predicted that N uptake would decrease the most.in response to FTC in fall
and‘spring, when plants are not fully acclimated to withstand potentially dam“éging soil
temperatures. I also predicted that freezing effects would occur abruptly at a threshold
minimum tgmp‘erature,_and'that rapid freezing and freezing‘of 1ong dﬁration would

intensify the depression of N uptake in response to freezing. -
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Objective 2. To determine the direct Zong-rerm growth response of P. pratensis to FTC

exposure at different stages of cold acclimation.

Tused FTC-treated P. pratensis tillers transplanted to a common untreated soil to

- test the hypothesrs that summer growth responds dlrectly to the t1m1ng of FTC over the

prevrous fall wmter and spr1ng, mdependent of freezmg effects on soﬂ microorganisms

‘ and nutrlent concentratlons I predlcted that plant growth would decrease with 1ncreas1ng

freezing intensity (defined by mrmmum ternper:a‘ture)‘, with the strongest effects exhibited
by plsants"treated 1n iafe‘ fall and early spring, when plantsﬁare not fully acclimated to |
Withstand p‘otentialliy‘ damaglng ksoil.'temperatures. Itesteid this prediction usmg 'both
tillers frozen under controlled conditionsinthelaboratory, and tillers exposed to snow

and litter removal treatments in the field.

1.3 Thesis Organisation
o My 'thesis is‘v'yritte‘n’in the integrated articleformat, and.contains two rnanuscripts.
Thi’s'ﬂrst introductory chapter included relevant information on‘the turrent state of .

knoWIedge in the topic of reseaICh and an o&érvi'ew of my objectives, hypotheses and

_ predlctrons The first manuscrlpt (Chapter 2) addresses my ﬁrst research ob_] ective by

descrlblng direct N uptake responses to varratron in FTC in P. pratenszs The second

manuscrlpt (Chapter 3) addresses my second research ob}ectrve by descnbmg how FTC

© at different stages of cold accl1mat10n d1rectly affect P. pratensis biomass productlon

The general drscussmn and conclusion (Chapter 4) connect the results of the experiments

and surnrnarize implications of my findings in a broader context:
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Chapter 2

| N1trogen uptake responses to soil freeze-thaw cycles at d1fferent
cold acchmatlon stages -

2.1 Introduction»

Changes in plant-productlyity in reSponse to climate warming over the next
“century will lrkely be mﬂuenced by changes in the avallabrhty of mineral nitrogen (N) (St
Cla1r and Lynch 2010) Although the effects of 1ncreased temperature on N avarlabrlrty
durrng summer have been studled extens1vely, less is known about how clrmate warming

during winter may affect nitrogen dynamics. Net N mineralization rates may increase
with winter clirnate Warming, increasing N availabllity (Rustad e:t'al .‘ 2‘(-)01' Aerts et al.,
2006) An increased frequency of soil freeze-thaw cycles (FTC) over w1nter can also
increase s01l soluble N concentratrons (Schrmel and Clein 1996 Groffman et al. 2001
Tierney etal., 200 1; Matzner and Broken, 2008). Winter N uptake can b'e‘sign.iﬁcant for
some plant snecies '.(Andresen and Michelsen, 2005), but it is unclear\to \yhat\;extent N
uptake over winter may haye implications for summer plant growtht R

| Plant N uptake decreases at low temperatures due, in.part o reduced ai)parent
| hydraullc conductance (Macduff and Jackson, 1991; Lalne et al., 1994). N translocatlon
from roots to shoots is ﬁ,trther reduced in the winter because of reduced shoot N demand
‘ '(Engels and Marschner, 1.9927), which increases root tissue N concentration and Causes a
negative feedback on further N uptake (Laine ef al., 1994)'; Nonetheless, the potentially
reduced but steady N uptake over winter can increase plant N root storage (Svensson and

Clarholm, 1994), preyenting N leaching from the soil (Catt et al., 1998; Ritter et al.,




27
1998), and benefiting summer plant growth (Weih, 2000). As an application of their N

catchment ability, crops such as winter fape (Brassica napus) and rye (Secale cereale) are
grown to immobilize N over winter in temperate regions (Laine et al., 1994).

The overwinter N dynamics of northern temperate systems have received less
~ attention than those of arcfic and alpine systems (Campbell ef al., 2005).. Soilsin . - -
terﬁperate systems remain clése to freezing (at 5 cm depth) for mﬁch of winter and thus‘
are highly vulnerable to reductioris- iﬁ SNOwW i;over and an increased }frequ.ency of FTC
(Henry, 2008). '.There are few empirical data documenting the effects of freezing on 'plgnt
N uptake, but N uptake is thought to be reduced by freeie damage (Bigras and Dumais,
2005).

Plant freezing damage has been quantified by measuring the leakage of Varioﬁs
cellulérv compouﬁds (Studer et al., 1978; Bigras, 1997), changes in metabolic activity -
(Lassheikki et él., 1991) and sugar content (Gibbons et al., 1982), as well as other iridices».
of root integrity and inorphology.i Relative electrolyte leakage (REL) is the most-
commonly used method to assess rpot'damage (Bigras and Dumais, 2‘005). Electrolytes
leak from the symplast to the apoplast following freeze damage and are used\ as the
primary symptom of cellular damage (Flint et al., 1967). However, assessment of root
damage only 'sho§vs evidence of freezing damage withput quantifying the functional
responses of roots to freezing. Furthermore, REL values have been shown to be
underestiﬁiated}(Bigrés 1997; Stattin and Lindstrom, 1999; Coursbllé et al .‘, 2000). This
underestimation occurs beéause' electrolytes can ‘be lost‘fme roots during soil freezing
‘and thawing as well as during washing the roots \free‘ from soil, before electrolyte

leakage is tested (Repo and Ryyppo, 2008). As an alternati{f-e' to REL, the measure of”
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short-term N uptake in response to freezing représeﬁts a potentially useful functional
measure of a plant's freezing response, given the strong influence of N uptake on plant
productivity (Huenneke et él‘, 1990; Tilman and Downing, 1994; Vitousek et al., 1997).

A threshold plant N uptake response rﬁay ‘exist at subzero soil temperatures ,
because plants possess mechanisms that protect them from frost damage. Plants exhibit a
suite of change’sk in gene expfession and physiology that increase' éold tolerance (Kalberer
et al., 2006). Ac):cliAmat’edv blants c'onfair; a_higher carbohyd;atg aynd lipid c.:‘ontent,
antifreezé and deh}{dfig p_roteins, as well-as structural}ly r‘no‘diﬁ‘ed c_ell membrme lipids,
inhib’itin.g water.fr‘c.)m freezing within and outside cells, as well as prevenfcing cell .
membrane damage (Kozlowski and Pallardy, 1997; Kozlowski and Palla.rdy, 2002; Olien
and Smith, 1981; Poirier et al.,2010). _Fast :freezing‘ and wqrming rates are generally more
damaging than slo{yer ;ates due to faste; pressure changgs outside thé protoplasm, which
the cell membréne cannot sustain_(V asil'yev, 1961). Plants are also likely fo sustain
greate; root dén}age Whgn‘not fully cold acclimated in late fall and early spring (N oshiro
and Sakai, 1979; Harrison ef al., 1997; Bélanger et al., 2002). = \ .

In this study I examined hOV;f N uptake in the grass an pratensis is a\ffected

directly by vgr_iaﬁon in freezing temperature, rate and du;atior;. I,ev};ami.ned freezing
‘ responses both when plants were not fully cold apclimated in la;te fali gnd early spring
and when pldnts were acdlimated during mid winter. I hypotheisi.sed ‘f;hat short-term N
uptake would réspoﬁd dirgctly to variations in root fggezigg rate, duration, intensity and
fiming. _ Spcciﬁcally,vl p;edicted that a reduction in N uptake would occur abruptly at a

threshold minimum temperature, and that rapid freezing and freezing of long duration
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| would intensify the depression of N uptake in response to freezing. I also predicted that N -

uptake would decrease the most in response to freezing in fall and spring.
2.2 Methods

2.2.1 Site description

: I collected P. pratensis tillers from an old ﬁeld at the Agnculture Canada

o kSouthern Crop Protect1on and Food Research Centre in London, Ontarlo (43° 04' N, 81°

'V2O' W, elevation 264 m). The site is dominated by the grass species Poa pratensis L. The
site has ‘n'ot been ploughed, fertilized, or mowed for over 25 years. The soil at the site is
classiﬁed as well to imperfectly drained silt loam glaclal till (Hagerty and Kingston :
1992) Wlth an approx1mate pHof7.5 (Bell et al., 2010). Air and soil temperatures durmg'
the samphng period are presented in Fig. 2.1 (Envrronment Canada Natronal Chmate

™~

Data and Information Archive).

2.2.2 FTC treatments
1 evaluated freezrng responses of P. pratenszs tillers i in late fall (3rd of November),
m1d w1nter (21St of January) and early sprrng (24" of March) (Frg 2.1), representmg a .
range of plant acchmatron stages On each date I collected 51x drstrnct clumps of P.
p‘ratpen'sis» tillers frcm the ﬁeld and separated the clumps Vinto"individual tillers by hand. A
- grass tiller is an aerial shoot that develops in the axillary bud of live leaf tissue (Dahl and
Nyder, 1 977).. Grass samples remained in a refrigerator for up to 24 hours at 4-6 °C,' after

being brought from the ﬁeld, until it was time for the tillers to be separated and expolsed
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Air temperature (°C)

Soil temperature at 5 cm depth (°C)

Figure 2.1 A). Daily minimum (solid line) and maximum (dotted line) air temperatures
from November 2009 to April 2010 at the London CS weather station (Environment
Canada), approximately 5 km from the study site. B). Soil temperature at the Agriculture
Canada’s Southern Crop Protection and Food Research Centre in London, Ontario.
Arrows indicate dates when freezing treatments were carried out to test 15N uptake (black
arrows; 3rdof November 2009, 214 of January and 24thof March 2010) and growth
response (grey arrows; 24thof November, 1¢of February and 26thof March 2010) ofPoa
pratensis.
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t@ freezing treatmgents. I chose tillers of approximately the same size, measuring 15 -25
cm from roo.t tip to leaf edge, and with foots mgasuring 5-10 cm in length. I placed the
tillers in 25 % 95 mm:polysfyrene Drosophila vials firmly packed with sieved (2.36 mm)
field soil up to 2 cm from the rim, folding the roots and positioning ’Fhem in centers.of
vials. I placed th¢ Drosophila vials containing tillers rooted in soil directly into wells of
an aluminum chamber cooled by a 1:1 mix of propylene glycol and water, circulated by‘ a
Lauda Proline 3‘53 0C refrigeratedbatﬁ (Lauda,'Wurzburg, Gennany). I inserted tips of
36-AWG copper-constantan thermocouples (Omega, Laval, Quebec) 2 cm deep into the
soil. Thermocouples were connected to a Picotech TC-08 thermocouple interface; and
soil teﬁlperattlre was tracked usiné PicoLog software for Winddws (Pico Technology,
Cambridge, UK).

I eValuated the effects of freezing duration and an extreme winter FTC in a
refrigerated incﬁbator. I placed Drosophila vials on a rack in the incubator once the
internal ter’npergture had reached 1 °C and progfammed th¢ incubator interface for
temperathre decreases of either 0.5 °C/h or 0.2 °C/h. Ip.laced t'empefafure loggers .
(StowAway Tidbit Temp Logger, onset computer corporation, Cape Cod, M'c:.ssachusetts,
US) in 80 inl specimen collection containers (Starplex Scientific, Efobicoke, Ontario,
Canada), filled with soil to track the temperéture experienéeci by the plant roots.

I evaluated the effects of minimum temperature and freezing rate by exposing
each sample to bne of 9 treatments in either the refrigerated bath (specifications above) or
in a refrigerated incubator (REVCC model # BOD50A16, Thermo Electron Corporation,
Gdrmley,Ontario, Canadé.), which included all comBinatioris of freezing rates (2 °C/h, 1

°C/h, 0.5 °C/h, 0.2 °C/h) and minimum freezing 'ten-lperatures" (2°C,-5°C,-10 °C) in
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the refrigerated circulator (n=6 for each treatment combinatiﬁn), With the exception of —5
°C E;,'[ 0.2 °C/h, and —10 °C at Q.2 °C/hand 0.5 °C/h, which were not included because
they could not be completed in a single diel cycle. The samples were always cooled from
1 °C and the freezing rates-were chosen to reflect realistic rates of soil freezing that can |
occur at’th‘e field site (Elliott and Henry, 2009). I froze é.nother set of tillers for 1 and 3
days down to 5 °C at 05 °C/hin the fall and spring to examine the effect of freezing |
d;ration. In addition, I froze a set of tillers to",—l 5 °C in the winter at 0.2 °C/h to simulate

an extreme freeze-thaw event. For all tréatments,’ tillers underwent a single FTC.

2.2.31 5N z)ptake measurements

Upon‘completion of each cycle, I thawed the samplés for 1 hour at 4-6 °C, then
washed soil from the roots by hand in 0.5 mMCaClz. I used this salt concentration in all
solutlons to ‘maintain root membrane 1nte gnty I then immersed the tillers in an aerated
'solutlon of 100 pM 15N as l5NH415NO3 After 20 mmutes Iremqved the tlllers from the
15N solutlon and 1mmed1ately 1mmersed them in 5 mM KCL for 5 mmutes to remove
label left in the Donnan free space, before a final rinse with CaCl,. This method was
modified from Epstein ér al., (1963). Pilot trials indicated that the relationship bétweén
total ui)take and time was linear over the courée of the uptake experiments (Fig. 2.2)

I excised the roots with scissbrs after the final rinse and dried thém at 65 °C to |
constant welght‘m a forced air oven. I then ground the drled root material to a ﬁne
powder with a laboratory mill (SPEX SamplePrep Model 2000 Geno/Grlnder Metuchen,

New Jersey, US) and welghed it into tin capsules. Isotopic analyses were performed by

~
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Figure 2.2 '°N uptake by roots 1 to 20 minutes after exposure to a solution of 100 uM
’N as "NH,°NO; (n=2). The y axis shows percent of N in root.samples that was
enriched (°N) by mass, and the x axis shows the length of time that roots had been
exposed to the solution containing the labeled N. Error bars representstandard error. |
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the University of California Davis Stable Isotope Laboratory, who used a PDZ Europa

ANCA-GSL elemental analyzer interfaced to a PDZ Eurona 20-20 isotope ratio mass
spectrometer (Sercon Ltd., Cheshire, UK).. I converted the data from % atom PN to mg
15N absorbed per mg dry root mass per h using the eqnation: |

BN absorbed (mg'1 h'l) =3 x (% atom Nsalmpie —0.36809%) x mass Nsampte /'  MasSsample
| where 0.36809 % N was the background enrichment of P. pratei’zsis roots at our field |
site (J. Hutchinson, pers. comm.), mass Nsampie Was the mass of N in the sample, |
mMasSsample Was the dry mass of the sample, and a multiplier of three was used to convert

uptake over 20 min to uptake per h.

2.2.4 Statistical Analyses

N Given that the effects on N nptake by all minimum soil temperatures were not
examined over all freezing rates, I could not examine the three factors (niinirnum soil ,
temperatnre, freezing rate, and season) using a single factorial ANOVA "fherefore, I
used two-way ANQVAS to examine the effect of rate and its inter‘acticnvwith season onN
untake for each ‘rninirnu'm temperature. I then pooled N np_take da_ta from ail'_ freezing
ratesas rate had an insigniﬁcant effect onN uptake and used a tvi{ou-i?vay‘ ANOVA to. ‘
exarnine the interactive effects of minimum soil teinperature and seascn :on N nptake with
the pocled data from all freezing rates. I used one-way ANOVAS tc examine the effect
of minimum ternperature\ on N uptake for each season. After running the ANOVAS, I |
iised Tukey's post-hoc tests to distinguish between differences in. plant antake among

minimum temperature treatments within a specific season and freezing rate. Some
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treatments had less than 6 replicates (5 minimum) due to insufficient dry root biomass
.thét vsfas genéréted er PN nnaly_sis.

a I used a th-Way ANOV_A and then student's t-tests to .examine N uptake
differences aﬁer 1 day and 3 day fregzing treatments at 0.5 °C/h in the fall and _spring..I
loé—trariSforméd the N uptake daté pri‘or!fo anélyses to satisfy fhe assumptions of
no'nnality and homogeneity of varvian(':‘ss.k An aipha value of 0..05 nvas used for alll } -
statistical tests. I conducted all statistical anélys_es using JMP version 4.0 (SAS Institute

Inc,, Cary, NC, USA).

2.3 Résultsl

There weré integactivé effects of seéson and minirnum soil tenlpérature onN
uptéke, (Table 2.1, Fig. 2.3 A). Minimuﬁ’soii .témpefan‘l‘re’ nédﬂa signiﬁcant sfféct onN
uptake in fall and spring, but not in winter (Tabln 2.1). Under mild to moderate freezing -
(minimum temperatures of —2 °Cand -5 °C), N nptake was genérally_ higher in 5pringv
than in fall or winter (Fig. 2.3 A, B, C). N uptake decreased siéniﬁcta\nﬂy in response to
severe freezing (minimum temperature of -jIO °C), but only in fall and spring (Fig. 2.3
A). However, inbwinten, a very severe freezing temperature of ~15°C desreased N-
uptake (Fig. 2.3 C). The effects of rate and all interactions between rate and season on N
uptake were not siéniﬁcant over the range of minimum temperatures examined (Table
2.2). - |

Increased freezing duration (3 days instead of 1 day), which was examined in both

fall and spring, also decreased N uptake (p=0.019 and p<0.001 respegtively; Fig. 2.4),
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Table 2.1. Results of two-way and one-way ANOV As, summarizing effects of season,
and minimum soil temperature on "N uptake in Poa pratensis. Bold p values represent
significant differences. Some treatments had less than 6 replicates (5 minimum) due to
1nsufﬁ<:1ent dry root blomass that was generated for '°N analysis.

Season . Source _DF F P
All seasons . Season - : ' 2 . 5.336 0.006
|  Minimum temp = - A 55303 <0.001

Season x Minimum temp - 2 4.619 0.011
Error : : 145
. Fall . Minimum temp . 2 9514 <0.001
| Error , 47 | |
Winter Minimum temp 2 2.642 0.082
Error - : - 46 L
Spring ~ Minimum temp _ 2 21.325 <0.001
' Error : 49 ’
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Fall Winter Spring
Minimum soil temperature (°C)

Figure 2.3 15N uptake by Poa pratensis collected in different seasons and frozen at a
range of minimum temperatures and freezing rates. The y-axis indicates amount of 19\
that was recovered from the roots that had been frozen and then immersed in a 100 pM
BN as I3NH4I3N 0 3and the x-axis indicates minimum soil freezing temperatures. A).
Pooled BN uptake results from treatments that underwent 1 °C/h and 2 °C/h freezing
rates. B and C). 19N uptake results from treatments that underwent 0.5 °C/h and 0.2 °C/h
freezing rates respectively. Different lower case letters above bars represent significant
differences among treatments within each season and freezing rate. C) Fall, winter and
spring freezing were induced on 3rdof November 2009, 214 of January 2010 and 24thof
March 2010, respectively. Error bars represent standard error.



Table 2.2. Results of two-way ANOVAs, summarlzmg effects of rate and its interaction
with season on ’N uptake in Poa pratensis at each minimum temperature. Bold p value
 represents a significant difference. Some treatments had less than 6 replicates (4
minimum) due to insufficient dry root mass for °N analysis.

Minimum soil

Source DF F P
temperature _ v i
. -Season 2 2.042 _ ©0.149 '
-10°C ~ Rate 1 0.390 0.538
Season x Rate 2 0.600 0.556
Error 28
~ Season 2 2.046 0.142
- =5°C Rate , 2 0.138 0.871
' Season x Rate ‘ 4 0205 0.934
Error o - 43 ’
Season 2 6.485 0.003
-2°C Rate 3 0.233 0.873
o Season x Rate 6 1.155 0.344

Error 53
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1 400

Fall Spring

Figure 2.4 I3N uptake by Poa pratensis collected in fall (24thof November 2009) and
spring (24thof March 2010) after freezing exposure to -5 °C for 1 day (filled bars) and 3
days (open bars). Different lower case letters above bars represent significant differences
between treatments. Error bars represent standard error.
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while season, and its interaction with freezing duration was nonsignificant (p=0.301 and

p=0.453 respectively).

2.4 Discussion

Although other studles have’ examrned plant N uptake at low temperatures during
winter in the laboratory (e.g., Macduff and J ackson 1991; Engels and Marschner, 1992;
Laine et al.," 1994) or in the field (Andresen and Michelsen, 2005, Tlerney etal., 2001),
my study introduced the novel element ef measuring the direct response of N uptake to.
subfreezing temperatures. As I hypothesized, lower minimum temperatures, longer
freezing duration and the freezing in fall and spring ali reduced short-term N uptake.
Contrary to -my hypothesis, freezing rate had no effect on N uptake. The overall
inhibixtoryi effect of freezing on'N uptake could have resulted from fine root mortality,
which nas been associated previously with decreased plant N uptake and nutrient loss
from soil (V itousek, 1982; Mitchell et al., 1996)

" The interaction between minimum s011 temperature and season (Table 2.1)
resulted from plants being more susceptlble to freezmg effects in fall and spring than in
winter (Fig 2.3), likely due to plants not being fully acclimated during the fall and spring
(Noshiro and Sakai, 1979). 1 carried out fall freezing in earlfr November, and the
acclirnation‘period for forage crops (including P. prgztensis) in the Guelph forage
preducing region for 2010-2039 is predicted to end around the beginning of December.
(Bélanger et al., 2002); Lil<ewiée, I administeredlspring freezing in late Mareh, and -
spring deacclimation in onr region usually occurs from the beginning of March. to early

April (Bélanger et al., 2006). Consistent temperatures above zero cause plants to




41
deacclimate (Kalberer, 2006) much faster that they acclimate (Guy, 1990), and thus .

increase the ‘eusceptibility to injury by subsequent exposure to subfreezing temperatures
(Ouellet and Desjardins, 1981; Suzuki, 1981). High dayﬁme temperatures may be
particularly iﬁﬂuential in causing irreversible cold deacclimation in plants (Rapacz,
2002). My spring freezing treatments were preceded by a week of daytime temperatures
averaging around 15 °C degrees, which was likely responsible for fast deacclimation that
led to high N uptake at mild freezing (—2 °C and -5 °C; Fig 2.3). High spring N uptake

after mild freezdng temperatufes can be an indication of the start of plant growth,Which is
driven by changes in the balance between the rates of storage and consumption of
assimilates accumulated olv)er fall and winter (Klimov, 1997).

- The significant reduction in N uptake at —10 °C following a warm early spring
period (=10 °C; Fig 2.3 A) agrees with previously observed root damage at —10 °C,
which has been ehown to occur when 90% of the'osmotically-active water moves out of -
the cells (Thomashow, 1999). Total extractable soil N has been shown to increase in
soils exposed multiple'times to —10.°C at my study site, likely as a result of microbial
lysis (Elliott and Henry, 2009). This N may be lost as leachate if freeze- damaged plants

-are unable to take up thls newly avallable N during thaw periods.

My prediction that a threshold freezing temperature is required for a sigaiﬁcant
reduction in N uptake was partially supported, as significant N réduction occurred only |
belbw -5°C (Fig 2;3 A), although more temperature treatments would be 'required to -
narrow this threshéld ddwn to a critical damaging temperature. My finding that mild

freezing temperatures (—2 °C and —5 °C) were not strong enough to reduce N uptake
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ability (Fig. 2.3) supports the literature as even deacclimated P. pratensis does not exhibit
significant freeze damage at —5 °C (Noshiro and‘ Sakai, 1979).

- Freezing rate did nét havé an effect on N uptake, likely due to the omission of
extremely fast freezing rates. Fast freezing rates have been shown to increase damage to
plant cells as a result of the increased speed at which water is withdrawn from c;ells,
leéding to dehydration (Finkle et al., 1974; Livingston énd Tallury, 2009). For example‘,
beet (Befa vulgaris) Toot cells frozen down to —4 °Cat3.3 °C/hr exhibited‘ close to five
times‘ the amount of darﬁage cbmpared to cells frozen at 0.16 '°('3/hr (Finkle ez al., 1974).1
did not administer freezing rates faster than2 °C/h, so it is poésible,that a threshold
damaging freezing rafe was not reached. It is also possible that the handling of roots
during the washing resulted in fine root damage that caused only extreme differences in
plant N uptake at lowest minimum tempe?atures to be distinguishable. Regardless,
freeziﬁg rates féster than 1 °C/h are rarely encountered at my study site (Elliott and
Henry, 2009), which suggests that Variatioﬁ in freezing rate does not influence N uptake
in P. pratensis within the range of freezing rafes experienced in-the field. At my field site;
leaf litter reduceﬂs. free;zing rates and minimum temperatures, whereas in agricgultural aﬁd
turfgrass‘ éystems that are’frgquently' _m’o'wed,.pla’.nts may be eqused to more extreme
freezing, | : -

Increased freezing duration signiﬁcantly rgducéd plaht N uptake (Fig. 2.4),
possibly 'expl’ai‘ned by cellular‘ Adeath from»elxtrac;:llulﬂar icé fo.rmation‘ and cell
dghydratipn, Which can increas¢ with }longe‘r,free;zing bgriods J acqbsen et al., 2005). In a
previous study,i the percentage of freeze-daﬁ;aged c.ultivars. of quinoa (Chenopodium_

'Quinoq) at =8 °C doubled with an increase in freeziﬁg time of only two hours (Jacobsen
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et al.,2005). P. pratensis is very cold tolerant, able to survive cold exposure at least
down to —14 °C (Gudleifsson et al., 1986) and it is not surprising that only a severe cold N
exposure down to —15 .°C (Fig 2.3 C) resulted in significantly reduced N uptake in fully
acclimated tillers during winter. Nevertheless, this species was vulnerable at prolonged
mild freezing (=5 °C) in fall and spring.

The vulnerability of perennial_grasses to experience reduced N. uptake in the fall
could lead to reduced root N s_tOrage over fall and winter (Laine et al., 1994), at a time
When many 'plants otherwise remain physiolo gically_actlve.(Steenberg-Lar_sen etal.,
2007), and are able to maintain photosynthesis to respiration ratios greater than one, even ’
at temperatures close to freezing (Klimoy,' 2003). vMa‘x'imum N loss from soils within
northern hardWood'forests occurs in early spring (Muller and Bormann, 1976). Reduced
N uptake by perenmal grasses in the sprrng may increase sorl N losses during sprmg melt
and delay the start of plant growth given that gram1n01ds can take up as much as 12 % of - |
their season-,long N requirements durmg sprrng melt (Bllbrough ,gt}al.,‘_ZOOO)._
2.5 Conclusions

N uptake in P pratenszs in response to freea1ng was sensmve to the deéree of
cold acchmatron but even deacchmated P. pratenszs was able to marntam rapld N ’uptake
after short freezes down to =5 °C, although freezmg of longer duratron (3 days) or greater
1ntensrty (? 10 °C) decreased N uptake Freezing rates d1d not play a cntlcal role in
1nﬂuenc1ng N uptake at least across the range of rates I tested, which spans the range of
the freezmg rates that occur naturally in the field. Even though shorter fall acchmatron

and spring deacclimation periods are predicted with climate change (Bélanger et al.,
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2002), as well as longer winter plant deacclimation periods, the continued occurrence of
episodic frost events will likely reduce plant N uptake only if frost events are unusually

severe.-
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Chapter 3

Direct growth respohses of Poa pratensis to soil freeze-thaw
cycles at different cold acclimation stages

3.1 I:ntroduction-

- Climate warming is expected to increase global net primary terrestrial production
(Nemani et al., 2003), primarily as a resdlt of increased growing season length (Bisgrdve
and Hadley, 2002; Me'n'ze'l et al'.,’2006). Nevertheless, the highest temperature increases '
resulting from climate warming are‘predicted to occur over winter (IPCC, 2007). Even
though some year-round warming experimenfs have led to increased }plam: biomass
(Rustad et al., 2001), most have not simulated frost damage, which may not decrease or
even increase with warmer winters (Hanninen, 1991; Meehl ef al., 2000; Gu et al., 2008).
In particular, temperate regions, where mean Winjter_ temlper,atures currently remain close
to freezing, may experience considerably less snow cover (Bélanger et al., 2002), leading ,
td an increase in the frequency of soil freeze-thaw cycles (FTC) (Groffman et dl., 2001;
Henry, 2008),‘ as well as lower minimum soil temperatures (Ronianovsky, 2001).

B - Freezing effects on plant productivity in ‘temperate systems- have been
) underrepresented in the climate change literature (Kreyhng, 2010), although losses of
agricultural and forage crop product1v1ty (Ouellet, 1976 Allan et al., 1992), as well as
widespread vegetation die offs (Gu et al., 2008), have been attributed to frost events.
Unacclimat_ed plénts are especially vulhe;able to frost damage in late fall or early spring . .
(Gu et al., 2008). | As frost days are predicted to be more scatte‘red over time (Jylha et al.

2008), with potentially increased temperature variability (Schér et al. 2004), the chance
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of late fall and early spring frost is expected to'stay the same (IPCC, 2007; Eccel et al.,

2009), increasing_ plant vulnerability to frost due to the shortened acclimation and
oeacclim'ation perioels (Bélaoger et al., 2002). Frost damage may increase as a result,
although Schwartz et al., (2006) concluded that both increases and decreases in frost risk |
are possible due to large regional climate slariations. Extreme freezing and FTC events
over winter can also damage plants (Strimbeok et al. 1995, Bourque'et al. 2005, Lazarus et
al. 2006), and warm periods cause plants to deacclimate and become more susceptible to
freeze damege (Larcher and Bauer, 1981; Strimbeck etal., 1995; Eagles et al., 1997). .

- Despite the presence of many studies on plant freezing responses in the
agricultural literature, most of these studies have focused on plant suryival at crificai |
temperatures (i.e., LDs studies). In contrast, sublethal plant growth performence
| following winter freezing has rarely been studied (Kreyling et al., 200_8). Sublethal frost
damage can be \}ery important from an ecosystem perspective, because it leads to reduced .

terrestrial prima;y production'(‘Gu’etal., 2008), resulting in reduced forest carbon uptake,
and altered surface energy balance (Gu et al., 2006). Frost can cause'sublethal damage to
fine roots either through physiological damage or thfough physical damage}as a r‘es‘ultof '
soil heaving (Goulet, 1995), which can result in decreased ability of roots to take up
nifrogen (N) (Chapter 2). The mechanisms contributing to changes in. plant groorth after
FTC are unclear because plant responses have rarely been examined in the absence of
possible soﬂ effects Increased decomposmon mineralization and nitrification of N
compounds from frost-killed fine roots, disruption of soil aggregates (Larsen et al.,
2002), and lysis of microbial cells (Yanai et al., 2004) can all potentially increase soluble

N avaﬂability following FTC (Fitzhugh et al., 2001; Henry, 2007). Freezing also
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influences interactions between plant roots, soil partiéles and soil organisms (Goulet,
1995; Klironomos et al., 2001; Larsen et.al., 2002), the latter including microbial and.
mycorrhizal communities, Which inﬂﬁence plant nutrient uptake (Bardgett et al., 2003;
Kraiser et al,. 201 1‘) an’d growth (Clarholm, 1985). Plant responses to FTC are thus
influenced by their ability to take advantage of the newly available N (Kreyling ez al.,
2008), in addition to the amount of sustained root damage (Tiemesf et al .,»‘2001;(Weih and
Karlssqn, 2002). Increases in productivity in résponse to FTC are pqssible, as-a result Qf
increased N évailability for plaﬁts or freezel damage to root pafasites (Kreyling et al.’;;‘ g
2008; 7. Krleyling, pers. comm.).- . -

In this stﬁdy, I evaluated the sublethal growth response of th¢ grass P. praténsz’s,, "
exposed to FTC at different stages of cold acclimation, both at controlled temperatures in
an inc‘ubator, and in response to snow and litter removal in the field. f‘ollowing the
freezing treatménts, indirect freezing effects mediated through cﬁanges in soil organisms -,
and soil ‘chemistry were controlled by growing the planté in untreated field soil over the
growing season. I hypothesized that summer growth would respond directly to the timing
of FTC over the previous fall, winter and spring. I predicted that plant growih would |
decrease with increasing freezing intensity (defined by minimum ;oil temperature), with

the strongest effects exhibited by plants frozen in late fall and early spring. ’
3.2 Methods

3.2.1 Site description

Please refer to section2.2.1.
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3.2.2 Experiment 1: FTC exposure in the field.

f f I created variation in soil FTC number, FTC amplitude and duration of freezing
through snow manipulation and leaf litter removal from grass plots in the ﬁeld; The most
extreme freezing was initiated by the removal of both litter and snow simultaneously,
snow removal provided an intermediate freezing treatment, and anw addition was added
to impose the mildest freezing. Tlre.experiment was designed with 6 blocks, and each |
block was divided into 4 circular-piot's, 30 em in diameter, one for each treatment and a
control (n=6 for each treatment); I rernoved snow by hand to a depth of ~ 1 cm abQVe the
ground within 24 hours of the conclusion of each snowfall throughout the vrinter every
time it snowed more than 2 cm over a 24 hour period,. In the snow and leaf litter removal
plot, I remoxred leaf litter en the 8™ of December 2009, 2 days prior to the first snowfall.
Snow depth was measured with a ruler in the center of control and snow addition plots
after every snowfall. I maintained snow depth in the added snow treatments to be twice
the depth of control plots. I gently scooped the loose snow from the ground and‘ slowly let
- it fall on the snew addition plots as evenly as possible to minimize compaction of snow,
which decreases the snow's insulative property (Grundstein et al., 2005). 1 replkaced the
- litter on the snow and litter removal plots in the: i4th- of March to ensure even warming of
plants rn all treatments in the spring. I measured the soil ternperature from .8th of
December 2009 to 28" of March 2010 by temperature loggers (iButton®, DS1 9221,

* Maxim Integrated Products, Sunnyvale, California, US), inserted into the ground.ét 5cm
depth. | |
| At-spring thaw, I dug’up 5-7 tillers from each plot and removed the soil, as

described in Experiment 1, and I transplanted the tillers into untreated soil in the field. I
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harvested above and belowground biomass on the 14" of July and dried the washed roots

and leaves to a constant weight in a forced air oven at 65 °C. .

3.2.3 Experiment 2: FTC induced under controlled conditions
- T evaluated the growth response of P. pratensis tillers to FTC exposure in late fall
(24" of November 2009), mid winter (1 of February 2010), and early spring (26 of
' March 2010), representing a range of acelima;cion stages (Fig. 2. 1) Six distinct clumps of
P nrateneis tillers were collected from the ﬁeld and senaralted into}bunc‘hes of 5-7 tillers
by hand; Tillers with an average of three leaves each were chosen. Tillers ranged from
15-25 cm from root tip to leaf tip and roots were 5-10 cm long. After being transported
from the field, grass samples remained in a refrigerator for up to 24 hours at 4-6 °C until
it was tithe for.the.til_lers to be separated and exposed‘ to freezing treatments. I placed the
tillers in 80 ml specimen collection containers (Starplex Scientific, Etobicoke, Ontario,
Canada), packing the roots with sieved soil from the field site. I then wrapped the
- containers with perforated Saran-wrap film with holes 1-2 mm in diam\*eter_ ;to minimize
moisture loss. I froze the tillers from 1 °C to ~5 °C at 0.5 °C /hin a refrigerated incubator
- (REVCO medel # BODS OAI 6, Thermo Electron Corporation, Gormley, Ontario,
Canada), and they were maintained at the minimum temperature (-5 °C) for three days.
Controls were held at 4-6 °C in a refrigerator (n=6 for each treatment). In mid winter, I
added an additional treatment where a set of tillers was frozen to —15 ’°C at 0.2 °C/h. All
treatments cons1sted of one FTC

After the 3011 thawed I washed 1t from the roots by hand in 0.5 mM CaClz, Wlth

the 1atter added to mamtaln root membrane mtegnty, then transplanted the tlllers 1nto
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non-treated sieved (2.36 mm) ﬁeld soil. On 28t of March 201 0 I transplanted the tillers

1nto larger plastlc pots (8 cm dlameter X 9 cm tall cylmders) at the ﬁeld srte ensuring that
the soﬂ 1evel in the pots matched the surrounding soﬂ then cl1pped all tillers to a umform
lencth of 1‘ cm, to measure the growth of new tillers. I harvested above and belowground
b’ilomasson the 14" of July and dried the washed roots and leaves to-a constant weight in

a forced air oven at 65 °C.

| 3.2.4;Skz‘qz/‘z'stical analyses - | : - R
" For plants frozen in the field, I used one-way ANOVAs to examine treatment
| differences in aboveground, belowgronnd and total plant biomass. Similarly, for the
: plants frozen under controlled conditions, I used one-way ANOV As to examine treatment
| differences in aboveground, belowground and total plant biomass for each sampling .
. penod I log-transformed data prior to analysis to satisfy the assumptions ofvnormality-

| and homogeneity of variances, and conducted all statistical analyses using JMP version
4.0 (SAS Institute Inc Cary, NC, USA). An alpha value of 0.05 was'used for all
| statistical tests. Some treatments had less than 6 replicates (4 minimum) due to grazing

by herbivores.

3.3 .Results

3.3.1 Experiment 1: growth response to FTC exposure in the field
Soil temperature responses of the field plots to snow and leaf litter manipulation

treatments are presented in Table 3.1 and Fig. 3.1. Relative to control plots, the snow
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Table 3.1 Mean soil temperature (+ standard error) characteristics of plots in response to
snow and litter manipulation treatments from 8" of December 2009 to 29™ of March
2010 (n=3). A FTC was defined as an event during which the soil temperature dropped
below 0 °C and then rose above 0 °C. The added snow treatment had twice the snow
depth of the control treatment. The snow and snow and litter removal treatments had
~snow removed down to ~ 1 cm above the ground within 24 hours of snow falls that
accumulated more than 2 cmof snow in a given 24 hour period.

Added snow Control Snow | Snow and litter
~ : removal removal

Average : : :
temperature (°C) | 1.71+0.10 '1.66_ +0.29 0.98 +0.02 0.70+0.18

Minimum ‘ » :
temperature (°C) | 0.42+0.16 | 0.14+0.02 | -1.09+0.16 | -3.91£0.77

‘Number of days , | :
soil stayed frozen | . 0 0 124+2.6 182+ 8.0

Total number of 0 0 L 8%2 7+5
FTC . , . _

Number of FTC 0 - 0 . ‘A 1 2
attaining a ’
minimum
temperature of . h
| less than 1°C | :
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Figure 3.1 Snow depth in field plots and their corresponding soil temperatures (5 cm

~ depth) during the 2009-2010 winter. A). Filled circles represent plots that had snow
added, open circles represent control plots, and filled triangles represent snow removal
plots. B). Solid, dotted and dashed lines represent the temperature of the soil in the
control plots, snow removal plots, and snow and litter removal plots, respectively. The
snow addition soil temperature profile is omitted as it d1d not differ from the control
treatment.
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removal treatment and the snow and litter removal treatment lowered the minimum soil
teﬁiptera;ture: by 12 _°'C and 4.1 °C, inéré;ased the number of déys of frozen soil by 124 .
and 18.:2'dayé, Iand increaseci the nuinber é'f FTC (<-1 °C) by 1 and 2, respect‘ivel‘yA
(Table 3’.1,.Fi~g 3.1). Soil ;t_emlﬁeratures in the snow addition treatment did not vary
étlbstaﬁtiélly from the control, with differences in average soil temperature and minimum
soil temperature of 0.05 °C and 0.28 °C, respectively (Table 3.1). There \év—ere no
wsigniﬁcan_t différéﬁces in abovégrc;ﬁnd and bélowgroﬁnd biomass amoné ans.r‘sno'w'

* removal/addition treatments (Table 3.2, Fig. 3.2).

3.3.2 Experiment 2: growth ré;vpbﬁse to FTC »exposure uné’ér controlled conditions .
| Sprihg freezing under controlled conditions significantly reduced aboveground,
belowgrbund and total,biom‘as‘s:(p=0.029, p=6.033 and p=d.024, respectively, Table 3.2
:A)_“,‘Whéfeas‘fall freézing of fhe same magnitude (=5 °C qu'3 days) had no effect on '
| biomass ‘(Table‘3A.2; Fig.'3..2).'Extfe'fne winter freezing (—15 °C at 0.2 °C/h) dééréased
: /leva‘fvbio/mass significantly (P%Oi‘()14),"but not root biqmass},f andthe detrease in total

\

biomass was marginally non-signiﬁcant, (p=0.059; Fig. 3.2; Table 3.2). -
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Table 3.2 A). Results of one-way ANOV As summarizing biomass responses of Poa

' pratensis to freezing treatments in different seasons (-5 °C at 0.5 °C/h for 3 days in fall
and spring and —15 °C at 0.2 °C/h for 6 days (total) in winter), compared to their
respective controls. B). Results of one-way ANOVAs summarizing biomass responses of
P. pratensis to the snow manipulation treatments. Bold numbers represent significant -
treatment effects. Some treatments had less than 6 replicates (4 minimum) due to grazing
by herbivores. ‘ ‘

A) Seasonal

‘freezing vs. Source , d F p
controls:
o - Leaf biomass 1 0.042 0.843
Fall Root b,i'omass 5 1 0.299 0.599
o Total biomass 1 0.089 0.774
' Error 8 -
Leaf biomass 1 9.794 0.014
Winter Root biomass 1 1.112 0.322
: Total biomass 1. 4.834 ' 0.059
Error 8
. Leaf biomass 1 6.691 0.029
Spring - Root bi.omass 1 6.332 ~ 0.033
I Total biomass 1 7.332. 0.024
o ~ Error 9 7N
B) Field snow
- manipulation  Source d F p
‘treatments o -
Leaf biomass 3 0.221 - 0.881
- Root biomass 3 0.457 - 0.716
Total biomass 3 0.249 0.861
Error 20 '
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Figure 3.2 Dry biomass of Poa pratensis on 14thJuly 2010 in response to freezing
treatments administered in different seasons (-5 °C at 0.5 °C/h for 3 days in fall and
spring and -15 °C at 0.2 °C /h for 6 days (total) in winter) under controlled conditions
(left of divider), and following winter snow/litter manipulations in the field. Different
lower case letters represent significant differences among treatments.
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3.4 Discussion

- A significant reductiqn of biomass response to freezing at —5 °C under controlled
condﬁions in the sprihg supported my prediction of dirégt frost damage to plants at this -
time. This resulf is‘ coﬁsistent with the previously obseﬁed damage to deacclimated
plénts in response to warm periods 'in eaﬂy spring (Menzel aﬁd Fabian, 1999, Cox and'
Arp,' 2001, Gu et al., 2008). The lack of a plént growth response to s»nox%f and litter
addition iﬁ the field was contrary to my prediétion that plant growth would réSpond to
variation in freezing intensity in situ. However, the comparison of growth responsés .
between plants frozen under controlled conditions (at —15 °C in mid-wintér), that |
exhibited reduced aboveground biomass, and those thét experienced a minimum
temperature of -3.9 °C in the field in response to snow and litter removal, that did not-
respond to freezing, indicated a potential threshold response to freezing below —4 °C in
: coid acclimated tillers. My results support a previbus study, which showed that
acclimated roots of P. pratensis are susceptible to freeze damage starting at -7 °C
| N oshiro and Sakai, 19-7‘9)." Plants from the snow and liﬁer rerﬁbval tr\éatment may also
have expérienced earlier spring growth, as the soil temperatures in these plots rose
‘q‘uicykér and earlier in the spring compared to control plots (Fig 3.1, B). Thinner snow and
litter cover may have thus accelerated the growth of these plants in early spring,
canceling out the effects of freeze damage on biomass production.

Although plé'nt's: can also deacclimafe:ih’ midwinter in response to loﬁg thaw

‘p.eriodsl- and suffer \s’ubs.equent frost damage ‘(Shabfba:r and Bonéél, 2003), I did not

att'em‘pt' to simulate the latter in my~ expérifrient. Such pefidds could result in a 4signiﬁcant
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reduction in plant N uptake at higher minimum soil temperatures than those that .
reduced plant summer growth in my experiments.

Contrary to my prediction, fall freezing did not result in reduced summer “'growtth,

- possibly because the plarits were already cold acclimated by the time freezing was -

administered. The freezing date (November 24™) was selected with the aim of strestsing
the plénts during a late acclimation stage, when fall soil frosts are most likely to occur.
Tempe'ratﬁres of 2°Cto 5°Care éonsidered to be optimal for cold acclimation (Jacobsen
et al., 2004), and such temp'er-atufes occurr_ed for aféund twolweeks prior to the féll‘
freeze. The plants méy have thus acclimated sufficiently to withstand freezing at -5 °C.

" Despite the rapid re-growth of roots often observed following soil freezing

damage (Tiery et al., 2001; Kreyling, 2010), belowground biomass did not fully recover

by the end of the growing season in the plants frozen in spring, as it did in the winter-
frozen plants. The damage plants experienced in response to spring freezing may have
been parﬁcularlysevere because the roots were gctively growing.and had fully =
deacclimated. Fine roots of grasses‘ including P. pratensis are more sﬁsceptiBle to freeze
damage than are abovéground tissues, (Noshiro and Sakai, 1979). Accdrdingiy, the

significantly feduced aboveground biomass in the winter-frozen plants could be

| explained by the allocation of plant resources to root repair instead of shoot growth.

Another possible mechanism for reduced summer growth could be lower nutrient stores

in plant ti_séﬁés due\tol the reduced ability of damaged roots to take up and store N,
directly through root freezing damage and through the disruption of root - mycorrhizal
associations (Klironomos et al., 2001; Tierriey et al., 2001). Resorption of nutrients, -

particularly of N and phosphorus from plant tissues, plays a significant role in shoot - -
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growth in the spring (Karlsson, 1994; Cheng and Fuchigami, 2002). Fine roots contain

high amounts of stored N (Pregitzer et al., 1997), and their loss to freeze.damage can lead
to lower reserves of N for plants to draw upon at the start of growing season. Lack of N
resorption in spring can be particularly detrimental, because root N uptake may already
be reduced as a result of freezing darnage (Chapter 2).

" In tlre snow removal experrment the control treatment accumulated a maximum
of approxnnately 30 cm of snow yet it drd not differ in soil temperature from the onow
addition treatment, where enow depth was doubled. This result confirms the observatron
t_lrat a: snow depth of 30-40 cm can ;effe'ctivelyl decouple soil and air temperatures
(Edwards et al., 2007). The observation that snow and litter removal resulted ina
nrinirnum soil temperaturealrnost 3 degrees lolwer tlian the snow removal treatment alone
similarlyvdernons:trates”the irnportﬁance of litter for protection from ’frost.

The abeence of ‘Signiﬁcant effect‘son plant growth in response to snow and litter
removal ;implie_s; that reductions in snow cover with climate warming (Henry, 2008) may
have little effect on frost damage in P. pratensis in northern ternperate regions in the

o

absence of extreme freezing events and prolonged mid-winter thaw periods.

3.5 Conclusions

: | :erile fros}tvdarnage 2to partially deacclimated plants in springdresulted in .
srgnrﬁcant reductlon of b1ornass 1ncreased midwinter freezrng through snow and litter -
renroval d1d not affect plant bromass hkely due to hlgh cold tolerance of acchmated P.
pratenszs (N oshrro and Sakar 1979) and a lack of prolonged midwinter thaw perrods that

could have deacchmated the plants. P. pratenszs is - thus lrkely to be most Vulnerable t0
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frost damage during spring deacclimation periods in the future, provided the frequency of

~ random freeze events stays the same (Shaver ef al., 2‘000).' :
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Chapter 4 -

General Discussion & Conclusions

4.1 Rese’arch ﬁndings

Both ‘immediat‘e (nltrogen (N) uptake) and long term (summer growth) plant
responses to freeiinv were detrimentally affected by extreme soil freeze-thaw cycles
| (F TC) w1th the'most detnmental effects bemg ev1dent when plants that were not fully
acchmated were exposed to freezmg Prolonged freezm0 in the winter and spring also
s1gn1ﬁcantly reduced both plant response parameters, with winter and spring freezes
down to 15 °C and =5 °C, respectrvely, resultmg in decreased N uptake and summer
growth. Two likely explanatrons emerge for similar responses of N uptake and growth to
F TC. The short terrn redu.ction in plant N uptake after freezing could have persisted until
sprmg, causrng Poa pratenszs to take up less N over w1nter and sprmg compared to
_' undamaged plants The plants Would then have less N stored in its tissues at the start of
sprlng growth AsNis the most hmltrng nutrrent plant growth (Tateno and Chaprn |
1997) and a sxgmﬁcant portlon of spnng growth results from ut11121ng stored N in the
plants (Karlsson 1994 Cheng and Fuchrgaml, 2002), lower N stores would lead to
lower productrvrty, at least at the 1mt1al growth stage Another possible explanatron is
that the prlmary cause of reduced summer growth was the energy oost of re- growmg
.freeze damaged roots in whrch case the reduced short term N uptake was merely a
symptom ’,of freezing dama.ge, similar to electrolﬁe leakage, but not a cause (Bigras and

Dumais, 2005). The latter would imply that either winter N uptake is insignificant
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compared to spring and summer N uptake, or that plants can regain N uptake capability
* within a short time period. Differentiaﬁng between these two alternative explanations
Wodld require knowing Whetner reduced N _uptake following freeze stress is sustained
over Winter, and if N uptake during winter increases plant biomass over the following
growing seaeon.

N uptake was sioniﬁcantly reduced in the fall after freezing down to -5 °C, as I
predlcted while no significant growth reductlon was observed in the summer, contrary to
- my 1n1t1a1 predlcuon This 1ncon51stency may be attributed to the fact that the N uptake

experiment took place earlier in the fall (3™ of November), when plants were less
| acclimated, than the plants that had been frozen later in the fall (24" of November) to. -
measure the growth response.
| Increased soil N content resulting from microbial lysis (Henry and Jefferies,
2002) and increased root ddmage (Tierney et al., 2001; Weih and Karlsson; 2002) can
both occur in response to FTC. My results indicate ‘ehat root damage after FTC hinders N
uptake and- it can thus be hypothesised that the net effect of FTC on plant growth may be
- dependent on thebaldnce between survival of the microbial community and pldnt roots. If
microbes are damaged less compared to plant roots, their populations may expand as they
feed on the frost-killed foots. If the reverse happens, plants may benefit By takingA
advantage of the increased N availability resuiting from microbial cell lysis. This balance
may shift depending.on the specific microbial community present and the cold teleran‘ce
of rodts of speeiﬁc plant species.‘ The resulting summer growth," ‘eherefore, likely depends

on the interactions among the soil; microbial, and plant responses to freezing.
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My results also indicate that FTC can interact with increasing atmospheric N -~
. depésition (Galloway et al., 2004) by limiting the amount of N that can be immobilized
by plahts during the winter aﬁd spring. With future predicted increases in midwintér thaw
periods (NRCan, 2008), plants may deacclimate and become more vulnerable to FTC,
reducing ecosystem N retention. These midwinter thav_yg may function similarly to spring
| thaw events, with the release Qf N pulées, primaril)} dué: to microbial turnover (Lipson et
v‘al.., 2000; Schmidt and Lips_on, 2004). F urtheﬁnore, because plant productivity over -
| summer ca‘n} also be réduced folio(\/.vi'ng FTC (Chapter 3),1 sufnnier immobillizatvio’n of N
Would be further reduced. .
| | In a more global context, more frequent FTC (Henry, 2008) of short duration and.
mild freezing temperatures, res_ulting from warmer winters, are unlikely to decréaée plant
prqductivity. Plant ?ro’ductiyitjr could decrease howevef, if midwinter thaw periods
increase in duraﬁon, and the frequency of random frost events remains unchanged (IPCC,
2_007). Théréfore, even though plant death may not increase with warmer winters, B
- inéreaééd deaqclamation of plants in the future could still increase sublethal plant
aamage, reducing'forest carbon uptake, and altering surface energy bala,nce thr;)ugh
reduced plant prodgctiyitf (Gu et’al.v, 2006). | | |
- ~ Plant respoﬁées toF TC.méy'also be; quiﬁed by large scale environmentql
changes such as the increasing z;tmospheric carbon ‘dioxi\dev(COz)‘ conc,entratjon (IPCC,V
2007) Plan‘;rexposure to ing_reaséd CO; has beeﬁ shown to affect plant cold acclimation,
~ resulting in bgth inci‘egsed and decfeaséd golci tolerance (Hanslin ef al., 2010). It can also

increase plant N uptake and growth (He et al., 2010; Tingey ot al., 1997), which makes
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future FTC experiments incorporating a CO, concentration factor useful in getting a more

. complete understanding of winter climate change impacts on plants.

4.2 Potential limitations

Plants ‘we'r‘e frozen in soil in the laboratory to simulate the natural root disturbance
that bcéurs by soil héaving duﬁng FTC. Freezing in the field occurs starting from the soil
surface and p"ropagates downwards, while in test tubes, the freezing occurred evenly from
all sides around the roots. The déepeSt:rootS may have thus exper'ienced more damage |
 than they would have experienced in the field. However, larger scale soil heaving and ice
formation in the field can cause vertical (frbét heaving) and lateral (frpst tﬁrusting) soil
disruptions, increasing seediing niortal‘ity (Reg¢hr and Bazzaz 1979). Such detrimental
effects were likely lessened by the loo's'e“packing‘ of SOil around the roots in the
laboratory. Also, the initial syeparation of roots ‘fr'om soil prior to freezing may have
damaged fine roots and diminished their contribtion to N uptake, but this effect would

have beeri consistent among treatments. = i

Although indirect effects on plants mediated through soil freezing were controlled
by growing ?plants‘ 1n untreatéd soil, a separate treatment where plénts were grown'in
treat’éd soil for comparis:on was not included in thé'expei'i’méntal design due to time
constraints..' Inclusion .of this additional treatment would have shown the exteﬁt to which
indirect soil effects modify plant freezing responses relativ.e to direct effects. In addition, -
'only’ sin_glé FTC kwere'reproduced in the laboratdry,'whereas mllltipie FTC can occur in
~ the field. Multiple FTC have been shown to intensify freézing effe‘{:ts" on soil N content

(Joseph and Henry, 2008), miéfobial’biomass (Larsen et al., 2002), and plant growth o
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response (Kreyling et al., 2008). Lastly, during the field experiment, neither prolonged
midwinter thaw periods nor late spring frost events were examined, and the increased
occurrence of these erfents in the future could result in substantial plant deacclimation

and increased freezing damage.

4.3 Directions for future research

Freezing responses should be evaluaterl with more species to allow formore
- general conclusions regarding plant winter climate change responses and to enable
predictions of how plant community composition may change in response to freezing, as
different si)ecies may experience differential freezing impacts (Gu et al., 2008). In
avdciition,‘ even within one species such as P prdtensis, individuals of local and regional
populatrons develop traits that cause local adaptation to their specific env1ronment '
(ecotyprc varlatron) Evaluatmg dlfferences among‘ecotypes would show the 1mportance
of local adaptatron in modifying plant responses within a species. T here is evidence that
' ecot}”'pic varration can play a large role in plant responses to clrfnate change, for exampie
in response to drouéht (Beierkuhnlein ez al., 201 l). Ih addition , long term studres are
scarce in Wmter chmate changve research compnsrng only 4 % of all cases (Kreyhng
2010) Longer term studies on the responses to FTC would be beneﬁcral as plant
responses have been»shown to vary between 1 and 2 years after FTC treatments (Kreyhng .
et al 2008)

Although the frequency of frost events is predrcted to remain the same (IPCC

2007) mldwmter thaw perrods are predrcted to increase in frequency and duratlon

(NRCan 2008) and future Wrnter climate change studres should therefore s1mu1ate FIC
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of variable durations that occur immediately after or during thaw events; Lastly,
 interactions with freezing and increased N ayailability follouring FTC should be
addressed. Durmg extended midwinter thaws plants may deacchmate (Kalberer 20006)
and increase their N uptake ability. Few studles have addressed the 1mpact of N uptake on
the amount of sustaine_d FTC damage and subsequent plant growth, although the amount
and'timing of N availability in relation to the cold acclimation process is t}rought to play a

critical role (Bélanger et al., 20006). -
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