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Behavioral/Cognitive

Cannabidiol Counteracts Amphetamine-Induced Neuronal
and Behavioral Sensitization of the Mesolimbic Dopamine
Pathway through a Novel mTOR/p70S6 Kinase Signaling Pathway

Justine Renard,1,2 Michael Loureiro,1,2 X Laura G. Rosen,1,2 Jordan Zunder,1,2 Cleusa de Oliveira,2 Susanne Schmid,2

Walter J. Rushlow,1,2,3 and Steven R. Laviolette1,2,3

1Addiction Research Group, 2Department of Anatomy and Cell Biology, and 3Department of Psychiatry, Schulich School of Medicine and Dentistry,
University of Western Ontario, London, Ontario N6A 5C1, Canada

Schizophrenia-related psychosis is associated with disturbances in mesolimbic dopamine (DA) transmission, characterized by hyperdo-
paminergic activity in the mesolimbic pathway. Currently, the only clinically effective treatment for schizophrenia involves the use of
antipsychotic medications that block DA receptor transmission. However, these medications produce serious side effects leading to poor
compliance and treatment outcomes. Emerging evidence points to the involvement of a specific phytochemical component of marijuana
called cannabidiol (CBD), which possesses promising therapeutic properties for the treatment of schizophrenia-related psychoses.
However, the neuronal and molecular mechanisms through which CBD may exert these effects are entirely unknown. We used amphet-
amine (AMPH)-induced sensitization and sensorimotor gating in rats, two preclinical procedures relevant to schizophrenia-related
psychopathology, combined with in vivo single-unit neuronal electrophysiology recordings in the ventral tegmental area, and molecular
analyses to characterize the actions of CBD directly in the nucleus accumbens shell (NASh), a brain region that is the current target of most
effective antipsychotics. We demonstrate that Intra-NASh CBD attenuates AMPH-induced sensitization, both in terms of DAergic neu-
ronal activity measured in the ventral tegmental area and psychotomimetic behavioral analyses. We further report that CBD controls
downstream phosphorylation of the mTOR/p70S6 kinase signaling pathways directly within the NASh. Our findings demonstrate a novel
mechanism for the putative antipsychotic-like properties of CBD in the mesolimbic circuitry. We identify the molecular signaling
pathways through which CBD may functionally reduce schizophrenia-like neuropsychopathology.

Key words: cannabidiol; dopamine; mesolimbic system; nucleus accumbens; schizophrenia; ventral tegmental area

Introduction
Schizophrenia is a devastating psychiatric disorder characterized
by delusions, hallucinations, and cognitive filtering disturbances

(McGrath et al., 2008). For decades, schizophrenia has been
treated using antipsychotic drugs targeting dopamine (DA) re-
ceptors. However, there are significant side effects associated
with currently available antipsychotics (Awad and Voruganti,
2004), and no mechanistically novel treatment has emerged to
replace them. Disturbances in the brains endocannabinoid sys-
tem are increasingly recognized as etiological factors underlying
schizophrenia-related symptoms (Tan et al., 2014). Exposure to
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Significance Statement

The cannabis-derived phytochemical, cannabidiol (CBD), has been shown to have pharmacotherapeutic efficacy for the treatment
of schizophrenia. However, the mechanisms by which CBD may produce antipsychotic effects are entirely unknown. Using
preclinical behavioral procedures combined with molecular analyses and in vivo neuronal electrophysiology, our findings identify
a functional role for the nucleus accumbens as a critical brain region whereby CBD can produce effects similar to antipsychotic
medications by triggering molecular signaling pathways associated with the effects of classic antipsychotic medications. Specifi-
cally, we report that CBD can attenuate both behavioral and dopaminergic neuronal correlates of mesolimbic dopaminergic
sensitization, via a direct interaction with mTOR/p70S6 kinase signaling within the mesolimbic pathway.
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extrinsic cannabinoids, such as marijuana (MJ), can induce psy-
chotomimetic effects acutely, or following chronic neurodevel-
opmental exposure (D’Souza et al., 2004; Renard et al., 2014).
Nevertheless, MJ contains a complex mixture of phytochemicals,
the two largest being �-9-tetra-hydrocannabinol (THC) and
cannabidiol (CBD). THC and CBD possess highly distinct phar-
macological and psychotropic profiles. Whereas THC exposure is
associated with psychotomimetic effects, recent evidence sug-
gests that CBD, a nonpsychoactive component of MJ, has prom-
ising potential as an antipsychotic treatment.

In preclinical models of schizophrenia, CBD reduces
schizophrenia-like behaviors induced by psychotomimetic drugs
and has a neuropharmacological profile similar to atypical anti-
psychotics. For example, CBD is more effective than haloperidol
and similar to clozapine, in attenuating ketamine-induced hyper-
locomotion (Moreira and Guimarães, 2005). CBD has been
shown also to reverse MK-801-induced sensorimotor gating def-
icits in mice (Long et al., 2006) and MK-801-induced social with-
drawal in rats (Gururajan et al., 2011). CBD is comparable with
haloperidol in terms of reducing apomorphine-induced hyperlo-
comotion, but in contrast to haloperidol, is devoid of extrapyra-
midal side effects, even at high doses (Zuardi et al., 1991). A
recent clinical trial has confirmed that CBD possesses proper-
ties similar to antipsychotic medications and effectively re-
duces psychotic symptoms with equal efficacy to traditional
medications, but with significantly fewer side effects (Leweke
et al., 2012). However, the neuronal and molecular mecha-
nisms through which CBD may exert these effects are entirely
unknown.

At the molecular level, considerable evidence links schizo-
phrenia with disturbances in signaling pathways associated with
DA receptor function. These include the wingless (Wnt) signal
transduction pathway, protein kinase B (Akt), glycogen synthase
kinase-3 (GSK-3), and �-catenin. Importantly, both typical and
atypical antipsychotic medications can activate these pathways
(Alimohamad et al., 2005b; Sutton et al., 2007; Freyberg et al.,
2010). In addition, increasing evidence identifies the mammalian
target of rapamycin (mTOR) pathway, which regulates down-
stream activity of p70S6 kinase (p70S6K), as a crucial molecular
substrate underlying schizophrenia-related psychopathology and
antipsychotic efficacy (Gururajan and van den Buuse, 2014; Liu
et al., 2015).

In the present study, we used amphetamine (AMPH)-induced
sensitization and sensorimotor gating in rats, two preclinical be-
havioral procedures relevant to schizophrenia-related psychopa-
thology, combined with molecular analyses and in vivo neuronal
electrophysiology to characterize the potential antipsychotic-like
properties of CBD within the mesolimbic system. We report that
CBD attenuates AMPH-induced psychomotor sensitization and
AMPH-induced sensorimotor gating deficits. Furthermore, we
report that CBD produces its effects through modulation of the
phosphorylation states of the mTOR/p70S6K signaling pathways
in the nucleus accumbens shell (NASh). Finally, we demonstrate
that CBD within the NASh can normalize AMPH-induced dys-
regulation of mesolimbic DA neuron activity states.

Materials and Methods
Animals. Male Sprague Dawley rats (300 –350 g) were obtained from
Charles River Laboratories. At arrival, rats were housed under controlled
conditions (12 h light/dark cycle, constant temperature, and humidity)
with access to food and water ad libitum. All procedures were performed
in accordance with Governmental and Institutional guidelines for appro-
priate animal care and experimentation.

Surgical procedures. Rats were anesthetized with an intraperitoneal
(i.p.) injection of ketamine (80 mg/ml)-xylazine (6 mg/kg) mixture.
Meloxicam (1 mg/kg; s.c.) was administered postoperatively to reduce
pain and inflammation. Rats were placed in a Kopf stereotaxic device and
stainless steel guide cannulae (22-gauge) were implanted bilaterally into
the NASh using flat skull stereotaxic coordinates as follows (12° angle, in
mm from bregma): anteroposterior 1.8 mm, lateral �2.6 mm, dorsoven-
tral �7.4 mm from the dural surface. Guide cannulae were held in place
using jeweler’s screws and dental acrylic cement. Rats were single-housed
after surgeries.

Drug preparation and administration
One week after surgery, rats received Intra-NASh bilateral infusions of
CBD (Tocris Bioscience, 100 ng in 20% DMSO and 80% NaCl (0.9%);
0.50 �l per side), vehicle (VEH, 20% DMSO and 80% NaCl (0.9%); 0.50
�l per side), coadministration of Torin2 (Tocris Bioscience, 40 ng in
20% DMSO and 80% NaCl (0.9%); 0.50 �l per side) and CBD
(Torin2�CBD) and coadministration of PF 4708671 (PF, Tocris Biosci-
ence, 100 ng in 50% DMSO and 50% NaCl (0.9%); 0.50 �l per side) and
CBD (PF�CBD) over 5 consecutive days using an injection cannulae
connected to a Hamilton syringe with Teflon tubing and a microinfusion
pump. A total volume of 0.5 �l per side was delivered over a period of 1
min. Microinjectors were left in place for an additional 1 min following
drug infusion to ensure adequate diffusion from the tip. Immediately
following the microinfusions, the rats received an intraperitoneal injec-
tion of D-AMPH sulfate (AMPH; Sigma-Aldrich; 5 mg/kg in 0.9% NaCl)
or VEH (0.9% NaCl). Following the final AMPH or VEH treatment
injection (on day 5), rats were left undisturbed in home cages until test
day (locomotor activity or prepulse inhibition [PPI]) on sensitization
day 16, when rats received the VEH or AMPH challenge (1 mg/kg; i.p.).

AMPH-induced hyperlocomotor activity
Locomotor activity, stereotypy, and rearing counts were recorded for 60
min in an automated open-field activity chamber (Med Associates). The
final number of rats in each group was as follows: VEH/Intra-NASh VEH
group (VEH/VEH), n � 9; VEH/Intra-NASh CBD group (VEH/CBD),
n � 10; AMPH/Intra-NASh VEH group (AMPH/VEH), n � 8; AMPH/
Intra-NASh CBD group (AMPH/CBD), n � 10; AMPH/Intra-NASh
Torin2�CBD, n � 8; and AMPH/Intra-NASh PF�CBD, n � 8.

Protein extraction and Western blotting
After completion of locomotor sensitization tests, rats received an over-
dose of sodium pentobarbital (240 mg/kg, i.p., Euthanyl). Under deep
anesthesia, rats were decapitated and brains removed and frozen. Coro-
nal sections (60 �m) containing the nucleus accumbens (NAc) were cut
on a cryostat and slide mounted. Some sections were stained with cresyl
violet for microinfusion site verification with light microscopy. For re-
maining sections, bilateral micropunches of the NAc, adjacent to, but not
including injection sites, were obtained for protein isolation. The West-
ern blotting procedure was performed as described previously (Lyons et
al., 2013). Primary antibody dilutions were as follows: �-tubulin (1:
120,000; Sigma-Aldrich), phosphorylated GSK-3�/� ser21/9 ( p-GSK-
3�/�; 1:1000; Cell Signaling Technology), total GSK-3�/� ser21/9 (t-
GSK-3�/�; 1:1000; Cell Signaling Technology), phosphorylated Akt
Ser473 ( p-Akt; 1:1000; Cell Signaling Technology), total Akt (t-Akt;
1:1000; Cell Signaling Technology), �-catenin (1:10,000; Sigma-
Aldrich), phosphorylated mTOR ser2448 ( p-mTOR;1:2000; Cell Signal-
ing Technology), total mTOR (t-mTOR; 1:2000, Cell Signaling
Technology), phosphorylated p70S6K thr389 ( p-p70S6K; 1:1000; Cell
Signaling Technology), and total p70S6K (t-p70S6K; 1:1000; Cell Signal-
ing Technology). Secondary antibodies (Thermo Scientific) were all used
at a dilution of 1:20,000.

PPI of startle reflex
Rats were acclimated to the startle chambers (Med Associates) for 5 min
over 3 d. On the last day of acclimation, rats were tested in an input/
output (I/O) function consisting of 12 increasing startle pulses (from 65
to 120 dB, 5 dB increments) to determine the appropriate gain setting for
each individual rat. The testing procedure consisted of the following
phases: the acclimation phase, a habituation phase (Block 1), and PPI
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measurement (Block 2). During acclimation, rats were exposed to the
chambers and white background noise (68 dB) for 5 min. During Block 1,
10 pulse alone trials (110 dB white noise, 20 ms duration) were delivered
at 15–20 s intertrial intervals. Block 2 consisted of 9 different trials pre-
sented 10 times in a pseudo-randomized order at 15–20 s intervals: 10
pulse-alone trials, and 10 of each of the three different prepulse-pulse
trial types (72, 76, 80) with interstimulus intervals of 30 and 100 ms.
Pulse-alone trials consisted of a startle stimulus-only presentation,
whereas prepulse-pulse trials consisted of the presentation of a weaker
nonstartling prepulse (white noise, 20 ms duration) before the startling
stimulus. PPI was calculated for each animal and each trial condition as
PPI (%) � (1 � average startle amplitude to pulse with prepulse/average
startle amplitude to pulse only) � 100. The final number of rats in each
group was as follows: VEH/Intra-NASh VEH group (VEH/VEH), n � 8;
VEH/Intra-NASh CBD group (VEH/CBD), n � 9; AMPH/Intra-NASh
VEH group (AMPH/VEH), n � 9; AMPH/Intra-NASh CBD group
(AMPH/CBD), n � 9; AMPH/Intra-NASh Torin2�CBD, n � 10; and
AMPH/Intra-NASh PF �CBD, n � 10.

In vivo ventral tegmental area (VTA) neuronal recordings
AMPH-treated rats received intraperitoneal injections of AMPH (Sigma-
Aldrich; 5 mg/kg in 0.9% NaCl) over 5 consecutive days. Following the
final AMPH treatment injection (on day 5), rats were left undisturbed in
their home cages until VTA neuronal activity recordings on sensitization
day 16. In vivo intra-VTA single-unit extracellular recordings were per-
formed as described previously (Loureiro et al., 2015), under urethane
anesthesia. For challenge administration of AMPH (Sigma-Aldrich; 1
mg/kg; i.p.), a syringe was maintained in place using a 25 G winged
infusion set. For Intra-NASh microinfusions of either VEH or CBD, a 1
�l Hamilton syringe was slowly lowered into the NASh using the same
stereotaxic coordinates described above. For intra-VTA recordings, glass
microelectrodes were lowered to the following coordinates: anteropos-
terior �5.2 mm from bregma, lateral �0.8 to 1 mm, dorsoventral �6.5
to �9 mm from the dural surface. Presumptive VTA DA neurons were
identified according to the following well-established electrophysiologi-
cal features (Ungless et al., 2004; Ungless and Grace, 2012): (1) action
potential with biphasic or triphasic waveform with duration �1.1 ms
from the start of the action potential to the negative trough; (2) a slow
spontaneous firing rate (	2–5 Hz); and (3) a single irregular or bursting
firing pattern. The response patterns of isolated VTA neurons following
the microinfusions of either CBD or VEH into the NASh and the intra-
peritoneal injection of the challenge dose of AMPH were determined by
comparing neuronal frequency rates between the 6 min of predrug base-
line versus each 6 min postadministration recording epochs (i.e., 0 – 6,
6 –12, 12–18, 18 –24, 24 –30, and 30 –36 min). We also analyzed the pro-
portion of DA neuronal spikes firing in burst mode. The onset of a burst
was defined as the occurrence of two consecutive spikes with an inter-
spike interval of 
80 ms (Grace and Bunney, 1983). The percentage of
spikes firing in burst was calculated by dividing the number of spikes
occurring in bursts by the total number of spikes occurring in the same
period of time. We sampled a total of n � 19 VTA DA neurons (Intra-
NASh VEH group, n � 10 cells in 8 rats; Intra-NASh CBD (100 ng/0.5 �l)
group, n � 9 cells in 6 rats). Histological analysis were performed as
described previously (Loureiro et al., 2015). Cells recorded outside the
anatomical boundaries of the VTA were excluded from data analysis.

Statistical analyses
Data were analyzed with one- or two-way repeated-measures ANOVA or
t tests where appropriate. Post hoc analyses were performed with Fisher’s
LSD. Densitometry values for Western blots were obtained with Kodak
digital analysis software and analyzed with t tests.

Results
Intra-NASh CBD attenuates AMPH-induced
psychomotor sensitization
Using a classic model of AMPH-induced DAergic sensitization,
we first challenged the effects of AMPH-induced psychomotor
sensitization with bilateral Intra-NASh microinfusions of CBD

or VEH (Fig. 1A,B). Our selected dose of CBD (100 ng/0.5 �l)
was chosen following Intra-NASh dose–response behavioral
analyses showing it to be the highest behaviorally effective dose,
without producing motoric side effects. Comparing locomotor
activity on day 1 versus challenge day 16, two-way repeated-
measures ANOVA revealed a significant effect of the factor day
(F(1,35) � 18.859; p 
 0.001) and a significant interaction between
the factors treatment and day (F(1,35) � 7.437; p 
 0.05). Post hoc
comparisons revealed that repeated exposure to AMPH (5 mg/
kg) followed by an 11 day sensitization period caused a typical
pattern of AMPH-induced psychomotor sensitization in Intra-
NASh VEH-pretreated rats (p 
 0.01; Fig. 1C), although it did
not produce such effects in Intra-NASh CBD pretreated rats (p �
0.05; Fig. 1C). Furthermore, when comparing both doses of acute
AMPH (1 mg/kg and 5 mg/kg), our pilot studies showed that
Intra-NASh VEH animals receiving an acute dose of AMPH of 1
mg/kg displayed no significant differences in terms of locomotor
ambulatory activity or vertical counts, relative to Intra-NASh
VEH rats receiving the dose of 5 mg/kg of AMPH on day 1 (t(14) �
1.105; p � 0.05; and t(14) � 0.174; p � 0.05; respectively; data not
shown). Ambulatory activity assessed in 5 min epochs over the 60
min recording session on the test day 16 is shown in Figure 1D.
One-way ANOVA analysis of locomotor activity revealed a sig-
nificant effect of treatment (F(3,36) � 18.711; p 
 0.001). Post hoc
comparisons revealed that, in VEH-treated rats, Intra-NASh
CBD pretreatment had no effects on locomotor activity relative
to Intra-NASh VEH controls (p � 0.05; Fig. 1D). However, in
AMPH-treated rats, Intra-NASh CBD pretreatment attenuated
AMPH-induced hyperlocomotor activity relative to Intra-NASh
VEH controls (p 
 0.01; Fig. 1D). Analysis of rearing revealed a
significant effect of treatment (F(3,36) � 9.262; p 
 0.001). Post
hoc comparisons revealed that, in VEH-treated rats, Intra-NASh
CBD pretreatment had no effects on rearing counts relative to
Intra-NASh VEH controls (p � 0.05; Fig. 1E). However, in
AMPH-treated rats, Intra-NASh CBD pretreatment significantly
decreased AMPH-induced rearing relative to Intra-NASh VEH
controls (p 
 0.01; Fig. 1E). Analysis of stereotypy counts re-
vealed a significant effect of treatment (F(3,36) � 31.184; p 

0.001). Post hoc comparisons revealed that, in VEH-treated rats,
Intra-NASh CBD pretreatment had no effects on stereotypy
counts relative to Intra-NASh VEH controls (p � 0.05; Fig. 1F).
However, in AMPH-treated rats, Intra-NASh CBD pretreatment
significantly decreased AMPH-induced stereotypy relative to
Intra-NASh VEH controls (p 
 0.01; Fig. 1F). Thus, Intra-NASh
CBD pretreatment attenuated AMPH-induced behavioral psy-
chomotor sensitization phenomena.

Intra-NASh CBD increases phosphorylation of mTOR and
p70S6K in AMPH-sensitized rats
To examine whether CBD may produce its putative antipsychotic-like
actions through previously identified, canonical antipsychotic
molecular pathways, we analyzed expression levels of Akt/
Wnt-related (i.e., �-catenin, GSK-3, Akt) or mTOR signaling
pathways (i.e., p70S6K and mTOR expression), comparing Intra-
NASh VEH versus CBD-pretreated rats from our previous
AMPH sensitization studies. Western blot analyses revealed a
significant decrease in levels of phosphorylated GSK-3� (p-GSK-
3�) (t(9) � 2.01; p 
 0.05) and the ratio of p-GSK-3�/total-
GSK-3� expression (t(9) � 2.56; p 
 0.05) when comparing
Intra-NASh VEH- versus Intra-NASh CBD-AMPH-sensitized
rats (Fig. 2A). Expression of total GSK-3� protein levels (t-GSK-
3�), p-GSK-3�, t-GSK-3�, and p-GSK-3�/t-GSK-3� were unaf-
fected (p � 0.05; Fig. 2A). We further found a significant decrease
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in levels of phosphorylated Akt Ser473 (p-Akt) (t(8) � 3.09; p 

0.05) and the ratio of p-Akt/total-Akt expression (t(8) � 2.05; p 

0.05) between groups (Fig. 2B). Expression of total Akt protein
levels (t-Akt) was unaffected (t(8) � 0.38; p � 0.05; Fig. 2B). In
contrast, �-catenin expression levels did not differ between
groups (t(6) � �0.35; p � 0.05) (Fig. 2C). In contrast, Western
blot analyses revealed a significant increase in levels of phosphor-
ylated mTOR (p-mTOR) (t(6) � �3.60; p 
 0.05) and the ratio of
p-mTOR/total-mTOR expression (t(6) � �3.35; p 
 0.05) when
comparing Intra-NASh VEH- versus Intra-NASh CBD-AMPH-
sensitized rats (Fig. 2D). Expression of total mTOR protein levels
(t-mTOR) was unaffected (t(6) � �0.39; p � 0.05; Fig. 2D). We
further found significantly increased levels of phosphorylated-

p70S6K (p-p70S6K) (t(6) � �3.70; p 
 0.05) and in the ratio of
p-p70S6K/total-p70S6K expression (t(6) � �5.94; p 
 0.01)
when comparing Intra-NASh VEH- versus Intra-NASh CBD-
AMPH-sensitized rats (Fig. 2E). Expression of total p70S6K protein
levels (t-p70S6K) was unaffected (t(6) � �0.79; p � 0.05; Fig. 2E).

Inhibition of the mTOR/p70S6K pathway blocks the effects of
CBD on AMPH-induced psychomotor sensitization
phenomena
Given our findings that Intra-NASh CBD selectively activated the
mTOR/p70S6K signaling pathways in AMPH-sensitized rats, we
next sought to demonstrate the functionality of the mTOR/
p70S6K pathway by examining whether Intra-NASh pharmaco-

Figure 1. Effects of Intra-NASh VEH versus CBD (100 ng/0.5 �l) pretreatment on AMPH-induced hyperlocomotion. A, Schematic representations of microinfusion locations in the NASh of
AMPH-sensitized rats. Black circles represent CBD (100 ng). Gray circle represents VEH. B, Microphotograph of a representative Intra-NASh injector placement. C, Exposure to AMPH (5 d, 5 mg/kg)
followed by an 11 day sensitization period caused a typical pattern of AMPH-induced psychomotor sensitization in Intra-NASh VEH-pretreated rats. D, Ambulatory activity assessed in 5 min epochs
over the 60 min recording session and total ambulatory activity. Intra-NASh CBD pretreatment significantly decreases the AMPH-induced locomotor activity observed in Intra-NASh VEH-pretreated
rats. E, Intra-NASh CBD pretreatment significantly decreases AMPH-induced rearing observed in Intra-NASh VEH-pretreated rats. F, Intra-NASh CBD pretreatment significantly decreases AMPH-
induced stereotypy observed in Intra-NASh VEH-pretreated rats. VEH/ Intra-NASh VEH, n � 9; VEH/Intra-NASh CBD, n � 10; AMPH/Intra-NASh CBD, n � 10; AMPH/Intra-Nash VEH, n � 8. **p 

0.01 (one-way ANOVA). *p 
 0.05 (one-way ANOVA). ns, Not significant. Error bars indicate SEM. ac, Anterior commissure; NACore, core subdivision of the nucleus accumbens; VP, ventral pallidum.
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logical blockade of either mTOR or p70S6K signaling could
reverse the putative antipsychotic-like effects of CBD. Using our
above-described AMPH sensitization protocol, we coadminis-
tered CBD�Torin2 (a selective mTOR inhibitor) or CBD�PF
4708671 (PF; a novel and selective inhibitor of p70S6K) (Pearce
et al., 2010) via bilateral Intra-NASh infusions. The selected dose
of Torin2 (40 ng/0.5 �l) was chosen based upon pilot studies
demonstrating that this dose produced robust hyperlocomotor
activity via intra-NAc infusion. Analysis of locomotor activity
revealed a significant effect of treatment (F(3,33) � 3.99; p 
 0.05).
Post hoc comparisons revealed, as before, that Intra-NASh CBD
attenuated AMPH-induced psychomotor sensitization relative to
VEH controls (p 
 0.05; Fig. 3A). Remarkably, Intra-NASh CBD
cotreatment with either Torin2 or PF significantly reversed the
effects of CBD (p 
 0.05 and p 
 0.01, respectively; Fig. 3A).

Analysis of rearing revealed a slight, although nonsignificant, ef-
fect of treatment (F(3,33) � 2.75; p � 0.059). Post hoc comparisons
revealed that Intra-NASh CBD significantly decreased AMPH-
induced rearing relative to VEH controls (p 
 0.05) (Fig. 3B).
Similarly, Intra-NASh Torin2 significantly reversed CBD-
mediated attenuation of AMPH-induced rearing (p 
 0.05),
whereas Intra-NASh CBD cotreatment with PF had no effect
(p � 0.05) (Fig. 3B). Analysis of stereotypy counts revealed a
significant treatment effect (F(3,33) � 5.33; p 
 0.01). Post hoc
comparisons revealed, as before, that Intra-NASh CBD signifi-
cantly decreased AMPH-induced stereotypy relative to controls
(p 
 0.01) (Fig. 3C). Furthermore, CBD cotreatment with either
Torin2 or PF significantly reversed CBD-mediated attenuation of
AMPH-induced stereotypies (p 
 0.01) (Fig. 3C).

Figure 2. Effects of chronic Intra-NASh VEH or CBD (100 ng/0.5 �l) pretreatment on NAc expression levels of members of the Wnt (GSK-3, Akt, �-catenin) and mTORC1 (mTOR, p70S6K) signal
transduction pathway in AMPH-sensitized rats. A, Representative Western blot for phosphorylated and total GSK-3� and GSK-3� expression in the NAc (left). Densitometry analysis revealed a
decrease in both phosphorylated GSK-3� and the ratio of phosphorylated to total GSK-3� in Intra-NASh CBD compared with Intra-NASh VEH AMPH-sensitized rats. No significant changes in total
GSK-3�, and other levels of GSK-3� are observed. B, Representative Western blot for phosphorylated and total Akt expression in the NAc (left). Densitometry analysis revealed a decrease in both
phosphorylated Akt and the ratio of phosphorylated to total Akt in Intra-NASh CBD- compared with Intra-NASh VEH AMPH-sensitized rats. No significant changes in total Akt are observed. C,
Representative Western blot for �-catenin expression in the NAc (left). No significant changes in �-catenin expression are observed between Intra-NASh VEH- and CBD-AMPH-sensitized rats. D,
Representative Western blot for phosphorylated and total mTOR expression in the NAc (left). Densitometry analysis revealed an increase in both phosphorylated mTOR and the ratio of phosphor-
ylated to total mTOR in Intra-NASh CBD- compared with Intra-NASh VEH AMPH-sensitized rats. No significant changes in total mTOR are observed. E, Representative Western blot for phosphorylated
and total p70S6K expression in the NAc (left). Densitometry analysis revealed an increase in both phosphorylated p70S6K and the ratio of phosphorylated to total p70S6K in Intra-NASh CBD-
compared with Intra-NASh VEH AMPH-sensitized rats. No significant changes in total p70S6K are observed. **p 
 0.01 (t test). *p 
 0.05 (t test). Error bars indicate SEM.
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Inhibition of the mTOR/p70S6K pathway blocks the effects of
CBD on AMPH-induced sensorimotor gating deficits
Wenextevaluate theputativeantipsychotic-likeeffects of Intra-NASh
CBD and the functionality of the mTOR/p70S6K pathway using
the PPI test. Two-way repeated-measures ANOVA on PPI re-
sponses revealed a significant effect of treatment (F(5,164) � 2.83;
p 
 0.05) and a significant effect of prepulse intensity factor
(F(2,164) � 46.50; p 
 0.001). Post hoc comparisons revealed that,

in VEH-treated rats, Intra-NASh CBD pretreatment had no ef-
fects on PPI responses relative to Intra-NASh VEH controls (p �
0.05; Fig. 4). In AMPH-treated rats, repeated exposure to AMPH
(5 mg/kg) followed by an 11 day sensitization period induced
deficits in PPI in Intra-NASh VEH-pretreated rats at the pre-
pulse intensity levels of 72, 76, and 80 dB ( p 
 0.01, p 
 0.05,
and p 
 0.01, respectively; Fig. 4). Intra-NASh CBD pretreat-
ment reversed AMPH-induced PPI deficits relative to Intra-

Figure 3. Effects of Intra-NASh VEH, -CBD, -CBD�Torin2 or -CBD�PF 4708671 (PF) pretreatment on AMPH-induced psychomotor sensitization. A, Intra-NASh CBD pretreatment significantly
decreases AMPH-induced locomotor activity observed in Intra-NASh VEH-pretreated rats. Intra-NASh CBD cotreatment with either Torin2 or PF significantly reverses CBD-induced decreases in
hyperactivity. B, Intra-NASh CBD pretreatment significantly decreases AMPH-induced rearing observed in Intra-NASh VEH-pretreated rats. Intra-NASh CBD cotreatment with Torin2 significantly
reverses CBD-induced attenuation in rearing, whereas Intra-NASh CBD cotreatment with PF has no effect. C, Intra-NASh CBD pretreatment significantly decreases AMPH-induced stereotypies
observed in Intra-NASh VEH-pretreated rats. Intra-NASh CBD cotreatment with either Torin2 or PF significantly reverses CBD-induced decrease in stereotypy levels. Intra-NASh CBD, n � 10;
Intra-Nash VEH, n � 8; Intra-NASh Torin2�CBD, n � 8; Intra-NASh PF�CBD, n � 8. The Intra-Nash CBD and VEH groups are the same as those shown in Figure 1. **p 
 0.01 (one-way ANOVA).
*p 
 0.05 (one-way ANOVA). Error bars indicate SEM.

Figure 4. Effects of Intra-NASh VEH, -CBD, -CBD�Torin2 or - CBD�PF 4708671 (PF) pretreatment on AMPH-induced PPI deficit. Exposure to AMPH (5 d, 5 mg/kg) followed by an 11 day
sensitization period caused PPI deficit in Intra-NASh VEH-pretreated rats. Intra-NASh CBD pretreatment significantly decreases the AMPH-induced PPI deficit observed in Intra-NASh VEH-pretreated
rats. Intra-NASh CBD cotreatment with either Torin2 or PF significantly reverses CBD-induced increases in PPI. VEH/Intra-NASh VEH (VEH/VEH), n � 8; VEH/Intra-NASh CBD (VEH/CBD), n � 9;
AMPH/Intra-NASh VEH (AMPH/VEH), n � 9; AMPH/Intra-NASh CBD (AMPH/CBD), n � 9; AMPH/Intra-NASh Torin2�CBD (AMPH/Torin2�CBD), n � 10; and AMPH/Intra-NASh PF �CBD
(AMPH/PF�CBD), n � 10. **p 
 0.01 (two-way repeated-measures ANOVA). *p 
 0.05 (two-way repeated-measures ANOVA). Error bars indicate SEM.
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NASh VEH controls ( p 
 0.01 and p 

0.05, respectively; Fig. 4) at the prepulse
intensity levels of 72 and 76 dB. Re-
markably, Intra-NASh CBD cotreat-
ment with either Torin2 or PF
significantly reversed the effects of CBD
on PPI responses observed at 72 and 76
dB ( p values 
0.01; Fig. 4). Impor-
tantly, the startle amplitude responses
were unchanged between groups (F(5,54) �
1.01; p � 0.05) (data not shown).

Effects of Intra-NASh CBD on VTA DA
neuronal sensitization
Finally, given the ability of Intra-NASh
CBD to attenuate behavioral effects of
AMPH sensitization, we next sought to
determine whether Intra-NASh CBD may
also counteract neuronal VTA DA sensiti-
zation effects. Schematic representations
of VTA neuronal recording sites and mi-
croinfusion locations in the NASh are
shown in Figure 5A. A microphotograph
of a representative VTA neuronal record-
ing placement is shown in Figure 5B.
Two-way ANOVA comparing firing fre-
quency rates relative to preinfusion base-
line levels showed a significant interaction
between treatment (VEH vs CBD) and re-
cording epoch time (F(5,113) � 4.17, p 

0.01). Post hoc comparisons showed that
following AMPH challenge, VEH rats dis-
played significantly increased VTA DA
neuronal firing frequency rates beginning
at 30 min after AMPH (p 
 0.01; Fig. 5C).
Conversely, Intra-NASh CBD-treated rats
displayed significantly decreased VTA DA
neuronal firing frequency (p 
 0.01) at 30
min after AMPH (Fig. 5C). Furthermore,
frequency rates in CBD versus VEH-
treated DA neurons were significantly
lower at the 18 –24 min epoch (p 
 0.05),
and all subsequent time-point compari-
sons (p values 
0.01; Fig. 5C). Compar-
ing DA neuron spikes firing in bursting
mode, two-way ANOVA showed a signif-
icant interaction between treatment
(VEH vs CBD) and recording epoch time
(F(5,107) � 4.12, p 
 0.01) (Fig. 5D). Post
hoc comparisons demonstrated that, whereas VEH-treated neu-
rons showed significantly increased bursting levels relative to
baseline beginning 30 min after AMPH (p 
 0.01), Intra-NASh
CBD-treated neurons were significantly decreased at this same
time point (p 
 0.05; Fig. 5D). In addition, DA neuron bursting
levels were significantly lower in CBD versus VEH-treated neu-
rons at the 6 –12 min epoch (p 
 0.05), and all subsequent com-
parison time-points (p values 
0.01; Fig. 5D). Sample VTA DA
neuronal recording traces from VEH or CBD-treated neurons
after AMPH exposure are presented in Figure 5E, F. Thus, Intra-
NASh CBD effectively attenuated AMPH-induced VTA DA neu-
ronal sensitization effects both in terms of firing frequency and
bursting levels.

Discussion
The phytochemical complexity of MJ is revealed by both clinical
and preclinical evidence demonstrating that THC and CBD can
produce opposing effects on both mesolimbic neuronal function,
and neuropsychiatric phenomena. However, little is currently
known about how CBD modulates the mesolimbic system, par-
ticularly in the context of DAergic function. Whereas THC is
primarily associated with propsychotic effects (D’Souza et al.,
2004; Kuepper et al., 2010; Tan et al., 2014), CBD has been shown
to counteract the psychotomimetic properties of THC and sig-
nificantly improve psychosis symptoms in schizophrenia patients
(Leweke et al., 2012; Englund et al., 2013). For example, using
fMRI imaging, Bhattacharyya et al. (2009) reported that disrup-
tion of cognitive processing by THC administration in otherwise

Figure 5. Effects of Intra-NASh VEH versus CBD on VTA DA neuronal activity following AMPH challenge. A, Histological local-
ization of microinfusion sites in the NASh and recording sites in the VTA for each treatment condition performed during electro-
physiological recordings. Black circles represent CBD (100 ng). Gray circle represents VEH. A total of n � 19 VTA DA neurons were
sampled: Intra-NASh VEH group, n � 10 cells in 8 rats; Intra-NASh CBD (100 ng/0.5 �l) group, n � 9 cells in 6 rats. B, Micropho-
tograph of a representative VTA neuronal recording placement. C, Time-dependent consequences of Intra-NASh VEH and CBD (100
ng/0.5 �l) treatments on VTA DA neuronal firing frequency following the challenge dose of systemic AMPH (1 mg/kg). D, Time-
dependent consequences of Intra-NASh VEH and CBD (100 ng/0.5 �l) treatments on VTA DA spikes firing in burst mode following
AMPH challenge. E, Representative histogram showing the increase response activity of one DA neuron following the microinfu-
sion of Intra-NASh VEH and systemic AMPH (top) or Intra-NASh CBD and systemic AMPH (bottom). Inset, Action potential wave-
form of the selected neuron. F, Activity patterns observed 20 min after the microinfusions of either Intra-NASh VEH (top) or CBD
(bottom) and systemic AMPH. **p 
 0.01 (two-way repeated-measures ANOVA). *p 
 0.05 (two-way repeated-measures
ANOVA). Error bars indicate SEM.
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healthy subjects, was blocked by coadministration of CBD. Inter-
estingly, CBD also blocked dysregulation of striatal activation
patterns induced by acute THC administration. Similarly, En-
glund et al. (2013) reported that pretreatment with CBD before
acute administration of THC was able to attenuate psychosis-like
effects of THC, further demonstrating the potential for CBD-
mediated antipsychotic applications. Nevertheless, the underly-
ing neuronal and/or molecular mechanisms by which CBD may
produce these effects have thus far not been identified.

In the present study, we demonstrate a novel molecular and
neuronal mechanism for the putative antipsychotic-like effects of
CBD, within the mesolimbic system. Using a well-established and
validated animal model of DAergic sensitization, we found that
CBD acting in the NASh, a neural region critical for antipsychotic
efficacy, attenuated AMPH-induced sensitization, in terms of
psychotomimetic behaviors (hyperlocomotion and sensorimo-
tor gating deficits) and DAergic neuronal activity within the
VTA. In addition, we found that the effects of CBD were depen-
dent upon the mTOR/p70S6K signaling pathway, as Intra-NASh
CBD selectively increased the phosphorylation states of these sig-
naling pathways, whereas directly blocking these molecular ef-
fects in the NASh was sufficient to reverse the effects of CBD on
DA-dependent, psychomotor sensitization behaviors and PPI
deficits. Although the present study focused exclusively on the
NAc, the effects of CBD on the mTOR/p70S6K signaling pathway
may be related to other NAc output targets, such as the prefrontal
cortex and/or the VTA.

The endogenous DA sensitization hypothesis postulates that a
sensitized DA system is intrinsic to schizophrenia and leads to the
development of schizophrenia-related psychopathology (Lieber-
man et al., 1997; Laruelle, 2000; Abi-Dargham and Laruelle,
2005). This can be modeled in humans and rodents using chronic
AMPH administration, which sensitizes the mesolimbic DA
pathway (both in terms of psychomotor activity and neuronal
activity levels) to subsequent “challenge” administration of
AMPH. Indeed, in human subjects, intermittent AMPH expo-
sure leads to neural and cognitive alterations similar to those
observed in schizophrenia (O’Daly et al., 2014a, b). In rodents,
psychomotor sensitization following chronic systemic AMPH
administration leads to enduring, sensitized responses to
subsequent AMPH challenge (Pierce and Kalivas, 1997; Peleg-
Raibstein et al., 2008). In the context of cannabinoid transmis-
sion and schizophrenia, this model is appropriate for several
reasons. First, both clinical and preclinical evidence demon-
strates that the psychotomimetic effects of MJ are mediated by
increased DA release within the mesolimbic pathway (Kuepper et
al., 2010, 2013). Second, chronic THC administration has been
shown to sensitize mesolimbic DA receptor sensitivity (Ginovart
et al., 2012). Furthermore, AMPH sensitization transcends
species barriers as a model for schizophrenia-like mesolimbic
DAergic abnormalities. Finally, AMPH sensitization induces sen-
sorimotor gating deficits measured in the PPI procedure (Tenn et
al., 2003; Peleg-Raibstein et al., 2006, 2008). PPI is used to mea-
sure sensorimotor gating (i.e., the ability to filter extraneous sen-
sory information to attend to salient environmental stimuli).
Deficits in sensorimotor gating are a well-established endophe-
notype of schizophrenia (Braff and Geyer, 1990), and antipsy-
chotic drugs, such as haloperidol, clozapine, and risperidone,
prevent PPI disruption (Geyer et al., 2001).

Intra-NASh CBD pretreatment significantly attenuated AMPH-
induced behavioral psychomotor sensitization and PPI deficit
phenomena. These effects are consistent with previous findings
using classical antipsychotic drugs (Meng et al., 1998; O’Neill and

Shaw, 1999; Geyer et al., 2001; Herrera et al., 2013), further dem-
onstrating the putative antipsychotic-like efficacy of CBD. Thus,
the present findings demonstrating a strong counter sensitization
effect of CBD directly within the mesolimbic pathway is consis-
tent with current theories and evidence emphasizing the impor-
tance of DAergic dysfunction as a critical underlying variable in
schizophrenia and cannabis-related psychotomimetic effects (Di
Forti et al., 2007; Luzi et al., 2008).

The molecular pathways underlying the psychotropic proper-
ties of cannabinoids are not entirely understood. In the present
study, we focused on several signaling pathways known to be
dysregulated in schizophrenia and which have also been linked to
antipsychotic efficacy, within the mesolimbic system. Specifi-
cally, we examined the direct effects of Intra-NASh CBD on the
expression levels of the (Wnt) signal transduction pathway, pro-
tein kinase B (Akt), GSK-3, and �-catenin. In addition, we exam-
ined the mTOR and p70S6-kinase signaling pathways, both of
which are dysregulated in neuropsychiatric disorders, and are
modulated by typical and atypical antipsychotic medications
(Emamian et al., 2004; Alimohamad et al., 2005b; Sutton et al.,
2007; Freyberg et al., 2010; Jernigan et al., 2011; Gururajan and
van den Buuse, 2014; Liu et al., 2015).

In contrast to the well-characterized signaling effects of tradi-
tional antipsychotic medications, which typically increase me-
solimbic phosphorylation levels of Akt/Wnt-related signaling
pathways (e.g., protein kinase B [Akt], GSK-3, and �-catenin)
(Alimohamad et al., 2005a, b; Sutton et al., 2007; Freyberg et al.,
2010), we found that CBD selectively activates mTOR signaling
and downstream p70S6K to counteract AMPH-induced psy-
chomotor sensitization effects and PPI deficits. Interestingly, this
effect was not dependent on upstream mTOR-activating sub-
strates, such as Akt or its downstream target GSK-3. Indeed, we
observed significant downregulation of these molecules, suggest-
ing that CBD may bypass the striatal Akt-GSK-3 signaling path-
ways to increase phosphorylation levels of mTOR and p70S6K.
These findings provide further evidence for a novel mechanistic
effect underlying CBD’s putative antipsychotic-like properties,
directly in the NASh. One interesting implication is that the ob-
served molecular signaling differences between CBD versus tra-
ditional antipsychotic medications may in part explain the
reported lack of adverse side effects associated with CBD, in both
clinical and preclinical studies (Zuardi et al., 1991; Leweke et al.,
2012).

Evidence implicating mTOR signaling as a critical regulator of
synaptic plasticity, memory, and neuronal morphology (Antion
et al., 2008; Hoeffer and Klann, 2010; Jernigan et al., 2011) has
been growing over the past decade. Several clinical and preclinical
studies have linked dysregulated mTOR signaling with neurode-
velopmental and neuropsychiatric disorders, such as depression
and schizophrenia (Li et al., 2010; Jernigan et al., 2011; Bonito-
Oliva et al., 2013; Gururajan and van den Buuse, 2014; Liu et al.,
2015). For example, a significant reduction in mTOR/p70S6K
signaling was observed in the prefrontal cortex of patients with
major depressive disorder relative to controls (Jernigan et al.,
2011). In addition, the noncompetitive NMDA receptor antago-
nist ketamine has been reported to have rapid and long-lasting
antidepressant-like effects in patients with major depressive dis-
order (Berman et al., 2000), and preclinical studies suggest that
this effect is mediated by mTOR activation (Li et al., 2010). Fur-
thermore, in a developmental animal model of schizophrenia, it
has been reported that early postnatal treatment with the NMDA
receptor antagonist MK801 affects mTOR/p70S6K-related path-
ways in the frontal cortex of the adult rat brain (Kim et al., 2010).
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Interestingly, we recently demonstrated that chronic THC expo-
sure during adolescence in rats induces schizophrenia-like be-
haviors and decreases mTOR-p70S6K signaling pathway in the
prefrontal cortex of adult rat brains, demonstrating that CBD and
THC can induce opposite functional effects within these signal-
ing pathways (Renard et al., 2016). Consistent with our findings
with CBD, antipsychotic medications have been recently re-
ported to increase mTOR and p70S6K signaling through direct
actions on DA D2-selective neuronal populations in the striatum.
For example, the typical antipsychotic haloperidol selectively in-
creases phosphorylation levels of p70S6K in D2R-expressing stri-
atal medium spiny neurons (Valjent et al., 2011). While future
studies are required to identify the neuronal and pharmacological
targets of CBD within the NASh, this evidence suggests that CBD
and haloperidol may share a common striatal molecular target,
by causing increased phosphorylation of the mTOR-p70S6K sig-
naling pathway.

In terms of the potential mechanistic actions of CBD within
the mesolimbic system, the VTA and NAc share functional and
reciprocal connections via DAergic and GABAergic afferents
from the VTA, and GABAergic efferents from subpopulations of
NAc medium spiny neurons projecting back to the VTA (Kalivas
and Duffy, 1993; Lu et al., 1998; Usuda et al., 1998; Carr and
Sesack, 2000; Tripathi et al., 2010; Xia et al., 2011). Specifically,
NAc GABAergic projections target GABAergic VTA neurons
through GABAA receptor substrates (Xia et al., 2011). This pro-
jection is thought to mediate a “long-loop” inhibitory feedback to
regulate VTA DA neurons (Einhorn et al., 1988; Rahman and
McBride, 2000; Xia et al., 2011). Consistent with functional ef-
fects within this circuitry, we report that Intra-NASh CBD effec-
tively blocked AMPH-induced VTA DA neuronal sensitization
effects both in terms of firing frequency and bursting levels. Thus,
while future studies are required to address these issues, one pos-
sibility is that intra-NASH CBD may inhibit VTA projecting
medium spiny neurons, thereby removing tonic inhibitory tone
onto non-DAergic VTA neurons.

In conclusion, the present findings demonstrate, at the behav-
ioral, molecular, and neuronal levels of analysis, direct mechanis-
tic effects of CBD linked to antipsychotic-like phenomena within
the mesolimbic pathway. CBD attenuates DAergic sensitization
phenomena within the mesolimbic pathway, the primary brain
target for antipsychotic efficacy. Furthermore, we demonstrate a
novel mechanistic pathway though which CBD may exert its
antipsychotic-like properties. These findings have critical impli-
cations not only for understanding how specific phytochemical
components of MJ may differentially impact neuropsychiatric
phenomena, but demonstrate a potential mechanism for the
therapeutic effects of MJ derivatives in the treatment of DA-
related, psychiatric disorders.
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