
Western University Western University

Scholarship@Western Scholarship@Western

Digitized Theses Digitized Special Collections

2011

State Complexity of Combined Operations on Finite Languages State Complexity of Combined Operations on Finite Languages

Jahedur Rahman Chowdhury

Follow this and additional works at: https://ir.lib.uwo.ca/digitizedtheses

Recommended Citation Recommended Citation
Chowdhury, Jahedur Rahman, "State Complexity of Combined Operations on Finite Languages" (2011).
Digitized Theses. 3508.
https://ir.lib.uwo.ca/digitizedtheses/3508

This Thesis is brought to you for free and open access by the Digitized Special Collections at
Scholarship@Western. It has been accepted for inclusion in Digitized Theses by an authorized administrator of
Scholarship@Western. For more information, please contact wlswadmin@uwo.ca.

https://ir.lib.uwo.ca/
https://ir.lib.uwo.ca/digitizedtheses
https://ir.lib.uwo.ca/disc
https://ir.lib.uwo.ca/digitizedtheses?utm_source=ir.lib.uwo.ca%2Fdigitizedtheses%2F3508&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ir.lib.uwo.ca/digitizedtheses/3508?utm_source=ir.lib.uwo.ca%2Fdigitizedtheses%2F3508&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:wlswadmin@uwo.ca

State Complexity of Combined Operations on
Finite Languages

(Thesis format: Monograph)

by

Jahedur Rahman Chowdhury

Graduate Program
in

Computer Science

A thesis submitted in partial fulfillment
of the requirements for the degree of

Master of Science
/

/■
The School of Graduate and Postdoctoral Studies

The University of Western Ontario
London, Ontario, Canada

©Jahedur Rahman Chowdhury 2011

Abstract

State complexity is a descriptive complexity measure for regular languages. It is a

fundamental topic in automata and formal language theory. The state complexity of

a regular language is the number of states in the minimal complete deterministic finite

automaton accepting the language. During the last few decades, many publications

have focused and studied the state complexity of many individual as well as combined

operations on regular languages. Also, the state complexity of some basic operations

on finite languages has been studied. But until now there has been no study on the

state complexity of combined operations on finite languages.

In this thesis, we will first study the state complexity of the combined operation,

star of union, on finite languages and give an exact bound. Then we will investigate

the state complexity of star of catenation and show its approximation with a good

ratio bound and finally, we will prove an upper bound for star of intersection.

Keywords: state complexity, finite automata, regular languages, finite languages,

combined operations.

m

Dedication

Contents

Certificate of Examination ii

Abstract iii

Acknowledgements iv

Dedication v

Table of Contents vi

List of Tables x

List of Figures xi

1 Introduction 1

1.1 Automata and Formal Language T h e o r y .. 1

1.2 State C om plexity ... 2

1.3 Motivation of State Complexity Study ... 3

1.4 Why Study State Complexity of Combined Operations on Finite Lan

guages .. 4

1.5 State Complexity Approxim ation.. 4

1.6 Organization of the T h esis ... 5

2 Basic Definitions and Notations 7

2.1 Alphabets, Strings and Languages.. 7

vi

Contents

Certificate of Examination ii

Abstract iii

Acknowledgements iv

Dedication v

Table of Contents vi

List of Tables x

List of Figures xi

1 Introduction 1

1.1 Automata and Formal Language T h e o ry ... 1

1.2 State Com plexity... 2

1.3 Motivation of State Complexity Study .. 3

1.4 Why Study State Complexity of Combined Operations on Finite Lan

guages .. 4

1.5 State Complexity Approxim ation... 4

1.6 Organization of the T h esis .. 5

2 Basic Definitions and Notations 7

2.1 Alphabets, Strings and Languages... 7

vi

2.1.1 A lphabets... 7

2.1.2 Strings.. 7

2.1.3 Languages... 8

2.2 Regular Languages.. 10

2.2.1 Regular Language... 10

2.2.2 Finite Language.. 10

2.3 Deterministic Finite Automata 10

2.4 Nondeterministic Finite Automata .. 13

2.5 NFA to DFA Conversion... 13

2.6 Minimization of D F A ... 14

2.7 Hopcroft’s Minimization A lgorithm .. 15

3 Background: State Complexity Research 16

3.1 From 1950s to Early 1990s.. 16

3.2 From Early 1990s to 2005 .. 17

3.3 From 2006 to Now .. 18

4 State Complexity: Previous Results 19

4.1 State Complexity of Basic Operations on Regular Languages............. 19

4.1.1 State Complexity of Catenation... 19

4.1.2 State Complexity of S ta r .. 20

4.1.3 State Complexity of Union and Intersection............................ 20

4.1.4 State Complexity of Reversal ... 21

4.1.5 Summary T ab le .. 21

4.2 State Complexity of Basic Operations on Finite Languages................ 22

4.2.1 State Complexity of Catenation.. 22

4.2.2 State Complexity of S tar.. 22

4.2.3 State Complexity of Union and Intersection............................ 23

4.2.4 State Complexity of Reversal ... 23
vii

4.2.5 Summary T a b le .. 24

4.3 State Complexity of Combined Operations on Regular Languages . . 24

4.3.1 State Complexity of Star of Union... 24

4.3.2 State Complexity of Star of Intersection.................................. 25

4.3.3 State Complexity of Reversal of U n io n 25

4.3.4 State Complexity of Reversal of Intersection............................. 26

4.3.5 State Complexity of Reversal of Catenation and Reversal of Star 26

4.3.6 Summary T a b le .. 26

5 State Complexity of Star of Union Operation on Finite Languages 28

5.1 Upper B o u n d .. 29

5.2 Lower Bound: Worst-case E xam ple... 36

5.2.1 Lower bound when m < 3 and n < 3 .. 47

5.2.2 Lower bound when m = 2 and n > 3 or m > 3 and n = 2 . . . 47

6 State Complexity of Star of Catenation Operation on Finite Lan

guages 48

6.1 Upper b o u n d 48

6.2 Lower Bound: Worst-case E xam ple... 55

6.3 Ratio Bound... 64

7 State Complexity of Star of Intersection Operation on Finite Lan

guages 66

7.1 Upper B o u n d .. 66

7.2 Lower Bound: Open P ro b le m ... 80

8 Conclusion and Future Work 84

8.1 Conclusion.. 84

8.2 Future W ork... 84

vm

Bibliography 86

Curriculum Vitae 91

IX

List of Tables

4.1 State complexity of basic operations on regular languages.................. 21

4.2 State complexity of basic operations on finite languages..................... 24

4.3 State complexity of combined operations on regular languages 27

x

List of

5.1 DFA A

5.2 DFA B

6.1 DFA A

6.2 DFA B

7.1 DFA A

7.2 DFA B

Figures

of 6 states for Theorem 3 ... 37

of 6 states for Theorem 3 ... 38

of m states for Theorem 5 ... 56

of n states for Theorem 5 ... 56

of 6 states to get the lower bound for star-of-intersection . . . 82

of 6 states to get the lower bound for star-of-intersection . . . 83

xi

1

Chapter 1

Introduction

1.1 Automata and Formal Language Theory

Automata theory is one of the oldest research topics in computer science. It includes

the study and application of automata, such as Nondeterministic Finite Automata

(NFA), Deterministic Finite Automata (DFA), Push Down Automata (PDA), Non

deterministic Push Down Automata (NPDA), etc. Research in this area started from

1930’s. Nowadays, a large number of applications are using finite automata. Au

tomata theory is helpful in the design and construction of various kinds of softwares

[13]-

Automata can be used as the representation of formal languages. Formal lan

guages are useful in natural languages processing, compiler design, and programming

languages, etc. The family of regular languages is a kind of formal language which is

often used in various practical applications such as vi, emacs, and Perl. Further

more, researchers developed a number of software libraries for manipulating formal

language objects with the emphasis on regular languages [7],

2

1.2 State Complexity

State complexity is a descriptive complexity measure for regular languages. It is dif

ferent from the time and space complexity but gives a lower bound for them. A large

number of publications have focused on the state complexity issues [1, 2, 3, 6, 7, 8, 9,

14, 15, 16, 19, 23, 27, 30, 35, 36, 32]. It is a fundamental topic in automata and formal

language theory. With respect to different automaton model, there are two kinds of

state complexity, namely, deterministic state complexity and nondeterministic state

complexity.

Deterministic state complexity

The deterministic state complexity of a regular language L, denoted by sc(L), is the

number of states in the minimal complete deterministic finite automaton (DFA) ac

cepting the language. In general, by state complexity we refer to deterministic state

complexity. The state complexity of a class £ of regular languages, denoted sc(£), is

the supremum among all sc(L), L G £.

The state complexity of an operation on regular languages is the number of states

in the minimal DFA that accepts the language resulting from that operation. For ex

ample, the state complexity of intersection between an m-state DFA language (i.e., a

language accepted by an m-state complete DFA) and an n-state DFA language is mn;

which means mn is the number of states in the minimal DFA that accepts the result

ing language from intersection of m-state DFA and n-state DFA in the worst case [32].

Nondeterministic state complexity

The nondeterministic state complexity of a regular language L, denoted by nsc(L),

is the number of states of a minimum-state nondeterministic finite automaton (NFA)

accepting the language. The nondeterministic state complexity of an operation on

3

regular languages is similarly defined.

1.3 Motivation of State Complexity Study

In the 60s and 70s, the number of states of finite automata used in applications

was usually small. Finite automata were used in different applications then, such as

switching theory, testing circuits, and pattern matching, etc. There was no strong

motivation from the practice to study the state complexity issues in general then.

In recent years, there have been many new applications of finite automata, e.g., in

natural language processing, programming languages, software engineering, image

generation and encoding, etc. Also, finite automata are becoming popular and at

tractive for solving problems in a wide range of computational domains, including

speech and handwriting recognition, optical character recognition, encryption, image

compression and indexing. There are some advantages of using finite automata in

these applications:

• Firstly, they are easy to implement, e.g. a simple automaton can be represented

by a matrix, which is useful in many cases.

• Secondly, they are fast to traverse, especially in the case of deterministic devices.

• Finally, they are mathematically elegant since they are closed under various

useful operations, such as catenation, union, intersection, and Kleene star.

In spite of these advantages, almost all of these applications use finite automata with a

large number of states, which results in large scale machines causing obstacles in terms

of time and space complexity. For example, in natural language and speech process

ing the Bell Labs multilingual Text-To-Speech (TTS) system needs 26.6 mbytes for

German, 30.0 for French, and 39.0 for Mandarin. The size of these modules becomes

a serious hurdle when the system is to be imported into a special-purpose hardware

4

device with limited memory [17]. Sometimes, even the machines can be unmanage

able. However, knowing the state complexities it is possible to design manageable

and efficient machines as well as reduce the time and space complexity. So, the study

of state complexity problems is strongly motivated by practical applications [33].

1.4 W hy Study State Complexity of Combined Op

erations on Finite Languages

There are two types of regular languages: finite languages and infinite languages.

Many applications of regular languages use essentially finite languages. State com

plexity of basic operations on finite languages has been studied in [2], Later the state

complexity of union and intersection of finite languages was studied in [7]. But until

now there has been no study about state complexity of any combined operations on

finite languages. There are no loops and backward transitions in finite automata ac

cepting finite languages except in the sink state. Therefore, the state complexity of

combined operations on finite languages will be different from, or rather less than, the

state complexity of the same combined operations on regular languages. Moreover,

similar to the regular languages, the state complexity of combined operations on fi

nite languages is usually not the same as their mathematical composition of the state

complexity of individual operations on finite languages. So, the state complexity of

combined operations on finite languages should be studied individually.

1.5 State Complexity Approximation

The number of combined operations on regular languages is not limited as the num

ber of individual operations on regular languages. There are two major problems

5

concerning the state complexities of combined operations.

1. The state complexities of many combined operations are extremely difficult to

compute.

2. A large proportion of results that have been obtained are pretty complex and

impossible to comprehend.

Also there is no general algorithm for a given operation and a set of regular lan

guages that can compute the state complexity of the operation on the set of regular

languages. Therefore, a good approximation of state complexities of combined oper

ations are useful in many automata applications [34].

An approximation of a state complexity is an estimate of the state complexity

with a ratio bound clearly defined. The ratio bound gives a precise measurement on

the quality of the estimate. A state complexity approximation is close to the exact

state complexity and normally not equal to it. The ratio bound shows the error

range of the approximation. In [34] the state complexity approximation of combined

operations has been proposed and studied.

1.6 Organization of the Thesis

In this thesis, we will investigate the state complexity of the star of union operation

on finite languages. We will also study the approximation of the state complexity of

star of catenation and the state complexity of star of intersection.

This thesis consists of eight chapters. The first chapter gives an introduction and

the second chapter describes some basic definitions and notations used in this thesis.

Chapter 3 describes some backgrounds on state complexity research.

In Chapter 4, we will describe previous results of the state complexity of some

basic operations on regular and finite languages. Also, we will describe earlier results

6

of the state complexity of some combined operations on regular languages.

In Chapter 5, we will study the state complexity of star of union operation on

finite languages. Then, in Chapter 6, we will study the state complexity of star of

catenation operation on finite languages. We also study the state complexity of star

of intersection operation on finite languages in Chapter 7. Finally, in Chapter 8, we

will give a conclusion and describe future research of state complexity issues.

7

Chapter 2

Basic Definitions and Notations

We will describe some basic definitions and notations that will be used in this thesis.

But for a detailed and complete background knowledge, the reader may refer to

[13, 28, 31].

2.1 Alphabets, Strings and Languages

2.1.1 Alphabets

An alphabet is a finite, nonempty set of symbols, denoted by £. Some examples of

alphabet are as follows.

1. £ = {a, b,..., z}, the set of all lower-case letters.

2. £ = {a , .., z, A , ..., Z}, the set of all upper-case and lower-case letters.

2.1.2 Strings

A string or word is a finite sequence of symbols chosen from some alphabet £. For

example, 0101 is a string from the binary alphabet £ = {0 ,1 }. £* is the set of all the

strings whose symbols are chosen from £. The set of nonempty string from alphabet

£ is denoted by £ +.

8

Length of a string

The length of a string x is the number of symbols in x. For any string x £ £*, \x\

denotes the length of x and |x|a, for some a £ £, denotes the number of occurrences

of a in x.

Empty string

The empty string is the string with zero occurrences of symbols. The empty string is

denoted by e. Therefore, |c| — 0 and it is over any alphabet.

Catenation of strings

The catenation of two string x and y is denoted by xy and it is the string formed by

the string x followed by the string y. So, \xy\ = |x| + \y\.

Reversal of a string

Let x = aia,2 ...a,n-ian, n > 0 be a string over the alphabet £. The reversal of x,

denoted by xR, is the string anan-i...a,2(ii.

2.1.3 Languages

A language L over an alphabet £ is a set of strings which are chosen from £*. The

empty language is denoted by 4>. The universal language over £, which is the language

consisting of all strings over £, is £*. For a language L, \L\ denotes the cardinality

of L, i.e., the number of strings in L. If an alphabet £ contains only one letter, i.e.

|£| = 1, then a language over £ is referred to as a unary language. Similarly, if

|£| = 2 then the language is referred to as a binary language.

Catenation of languages

9

The catenation of two languages Lx, L2 C E* is denoted by L1L2 where

L 1L2 = {w xw2 | w\ G L\ and w2 G L2}.

Union of languages

The union of two languages Lx, L2 C E*, denoted by LXUL2, consists of all the strings

which are contained either in Lx or L2, i.e.,

L\ U L2 = {re | w G L\ or w G L2}.

Intersection of languages

The intersection of two languages L\, L2 C E*, denoted by Lx D L2, consists of all the

strings which are contained in both languages Lx and L2, i.e.,

Lx (1 L2 = { vj \ w £ L\ and w G L2}.

Kleene star of a language

For an integer n > 0 and a language L, the nth power of L, denoted by Ln, is defined

by (i) L° = {e }, and (ii) Ln = Ln~lL , for n > 0. The Kleene star of a language L is

denoted by L* where OO
L* = |JU.

¿=0

Complement of a language

The complement of a language L with respect to a given alphabet E, denoted by

E* — L , consists of all the strings over the alphabet that are not in the language, i.e.,

E* - L = {w\w g L}.

Reversal of a language

The reversal of a language L , denoted by LR, is the language consisting of the reversal

10

of all string in L , i.e.,

Lr = {wR | w e L}.

2.2 Regular Languages

2.2.1 Regular Language

Regular language is a type of formal language which are recognized by finite automata.

Regular languages are closed under the operations of union, catenation and Kleene

star. The set of regular languages over an alphabet E is defined recursively as follows:

• The empty language 0 is a regular language.

• The empty string language {e } is a regular language.

• For each a 6 E, the singleton language {a } is a regular language.

• If L\ and L2 are regular languages, then Lx U L2, L\L2, and L* are regular

languages.

• No other languages over E are regular.

2.2.2 Finite Language

A language is finite if it consists of a finite number of strings, i.e., a finite language is

a set of n strings for some nonnegative number n.

2.3 Deterministic Finite Automata

A deterministic finite automaton (DFA) can be defined as A = (Q , E, 6, go, F), where

• Q is the finite set of states,

11

• E is the finite alphabet,

• S : Q x E — > Q is the transition function,

• qo £ Q is the start state, and

• F C Q is the set of final states.

The cardinality of Q , denoted by \Q\, is total number of states in DFA A. Similarly,

the cardinality of F, denoted by \F\, is total number of final states in DFA A.

Complete DFA

A complete DFA is such a DFA where the transition function 5 is defined for each of

the state q £ Q and each of the symbol a £ E, i.e., 5 is a total function.

The transition function 5 can be extended to S* : Q x E* — > Q , where E* is the

set of all strings over the alphabet E including the empty string e, S*(q,e) = q and

S*(q,ax) = 5*(5(q,a), x) for q G Q, a G E, and x £ E*. In the following, we will use

5 instead of S* if there is no confusion.

A string w £ E* is accepted by the DFA A if the state 5(qo, w) is a final state of

DFA A. The language accepted by DFA A is denoted by L(A), where

L(A) = {w £Z*\5(q0, w) £ F } .

Equivalent states

Given a DFA A — (Q, E, 8, q0, F), two states p,q £ Q are said to be equivalent,

denoted by p = a q, if and only if for every w £ E*,

S(p, w) £ F ô(q, w) € F.

12

Two states that are not equivalent are called distinguishable.

Equivalence relation

A binary relation R on a set S is a set of pairs of elements in S. If (a, b) is in R,

then we denote the relation between a and b as aRb. A relation which is reflexive,

symmetric, and transitive is called an equivalence relation. An important property of

equivalence relation is that if R is an equivalence relation on the set S then we can

divide S into k disjoint subsets, called equivalence classes, for some k between 1 and

infinity, inclusive, such that aRb if and only if a and b are in the same subset. An

equivalence relation ~ on strings of symbols from some alphabet E is said to be right

invariant if Vx, y e E* with x ~ y and Mw € E* we have xw ~ yw.

Myhill-Nerode Theorem

The following three statements are equivalent:

1. The set L C E* is accepted by some finite automaton.

2. L is the union of some of the equivalence classes of a right invariant equivalence

relation of finite index.

3. Let equivalence relation R be defined by: xRy if and only if for all z € E*,

xz G L exactly when yz G L. Then R is of finite index.

Minimal DFA

Myhill-Nerode theorem implies that there is a unique minimum-state DFA for each

regular language. We determine the number of states in the minimal DFA based on

the Myhill-Nerode equivalence relation. A DFA is called minimal if it has the number

of equivalence classes equal to the number of states, i.e., if L C E* is a regular language

then the number of states in the minimal DFA recognizing L is equal to the number

of equivalence classes of the relation In another way, we can say that a DFA

13

A = (Q,E,8,q0,F) is minimal if for every other automaton A' = (Q1, E, 8', q'0, F1)

such that L(A) = L(A'), we have \Q\ < \Q'\ [2], In particular, every regular language

has a unique minimal DFA up to isomorphism.

2.4 Nondeterministic Finite Automata

A nondeterministic finite automaton (NFA) can be defined as N = (Q,E,5,qo, F),

where

• Q is the finite set of states,

• E is the finite alphabet,

• S : Q x (E U {e }) — > 2® is the transition function (29 denotes the power set of

Q),

• qo G Q is the start state, and

• F C Q is the set of final states.

A string w £ E* is accepted by the NFA N if the set of states S(q0,w) contains an

accepting state of the NFA N. The language accepted by NFA N is denoted by L(N),

where

L(N) = {w eE *\ 6 (q0jw) n F ^ (j)}.

2.5 NFA to DFA Conversion

Any NFA M = (Q. £ , 6, q0, F) can be converted to an equivalent DFA M' = (2^, E, 5', q'0, F r)

using an algorithm known as the “subset construction” [24] in the following way:

1. Every state of the DFA M' is a subset of the state set Q.

2. The initial state of the DFA M ' is {go}-

14

3. A state R E 2® is an accepting state of the DFA M' if it contains an accepting

state of the NFA M.

4. The transition function 8' is defined by 5'(R,a) = (J 8(r,a) for any state
VreH

R e 2® and any symbol a E E.

The DFA M' need not be minimal since some of its states may be unreachable or

equivalent [14].

2.6 Minimization of DFA

Let A = (Q, E, S, qo, F) be a DFA. We can minimize A as follows:

1. Eliminate all the states which cannot be reached from the initial state.

2. Partition the remaining states into the blocks of equivalent states by using

table-filling algorithm [Algorithm 1].

3. Construct the minimum-state equivalent DFA B by using the blocks as its

states; the set of final states of B is the set of blocks containing final states of

A.

15

The running time of this algorithm is 0 (n 2).

Algorithm 1: Table-filling Algorithm
Data: Deterministic finite automaton

Result: Minimal automaton

1 Remove inaccessible states

2 Mark all pairs (p, q) where p E F and q ^ F

3 repeat

4 forall the non-marked pairs (p, q) do

5 forall the symbol a do

6 if the pair S(p, a), S(q, a) is marked then

r mark (p, q)

8 end

9 end

10 end

n until no new pairs are marked;

12 Construct the reduced automaton

2.7 Hopcroft’s Minimization Algorithm

Hopcroft’s DFA minimization algorithm is efficient and faster than previous algo

rithm. Also, it uses different partitioning technique to minimize the DFA. The run

ning time of this algorithm is 0 (n log n) [12],

16

Chapter 3

Background: State Complexity

Research

During the last few decades, many publications have been focused on the state com

plexities of different kinds of operations on regular languages. We can categorize the

history of the state complexity research into three periods as follows.

3.1 From 1950s to Early 1990s

In 1959, Rabin and Scott [24] proved that the number of states in a DFA that is

transformed from an n-state NFA is limited to 2n. Later, in 1971, F. Moore proved

that the bound is tight. In the 1960s, Arto Salomaa studied several state complexity

issues [26]. In 1970, Maslov [20] studied the state complexities of several basic op

erations on regular languages which include union, concatenation, and star without

rigorous proofs. The results obtained by him were almost accurate except that there

were minor problems in his results. E. Leiss [18] studied succinct representation of

regular languages in early 1980. J.C. Birget, in 1992, studied the state complexity of

multiple intersection and union of regular languages [1]. Some other scattered results

concerning state complexity have been obtained during this period of time.

17

3.2 From Early 1990s to 2005

In 1994, Yu, Zhang, and Salomaa systematically studied the state complexity prob

lems of basic operations on regular languages over a general alphabet as well as over

a one-letter alphabet [36]. They studied the state complexity of catenation, star, left

quotient, right quotient, reversal, union and intersection operations.

Nicaud [22] was the first who investigated the average state complexity of opera

tions on unary languages.

State complexity of some basic operations on finite languages was first studied

in 2001 by Campeanu, Culik, Salomaa and Yu [2], They have investigated the state

complexity of star, concatenation and reversal operations on finite languages.

J. Shallit studied the state complexity of the intersection of regular languages

over a one-letter alphabet in 2001 [30]. Pighizzini studied the state complexity of

concatenation over a one-letter alphabet in the same year [23].

The state complexity of nondeterministic finite automata was studied by Holzer

and Kutrib in 2002 [10, 11]. In 2005, Mera and Pighizzini investigated the nondeter

ministic state complexity of unary regular languages and that of their complements

[21]-

Domaratzki studied the state complexity on proportional removals of regular lan

guages in 2002. In the same year, Campeanu, Salomaa and Yu obtained tight bound

for the state complexity of shuffle of regular languages [3]. Jiraskova (one paper with

Szabari) had several results on state complexity issues including the concatenation

and complementation operations of finite automata [15, 16]. Many other results on

18

state complexity have been obtained in this period.

3.3 From 2006 to Now

The state complexity of the standard combinations of basic operations has not been

studied until early 2006. A. Salomaa, K. Salomaa and S. Yu studied the state com

plexity of two combined operations: star of union and star of intersection in 2007

[27]. Later in 2008, Gao, Salomaa, and Yu studied the state complexity of two other

combined operations: star of catenation and star of reversal [6]. The state complexity

of a number of other combinations of operations has been investigated until now, such

as the state complexity of reversal of union, reversal of catenation etc.

Han, Salomaa, and Wood investigated nondeterministic state complexity of some

basic operations for prefix-free regular languages in 2009 [8]. In the same year, the

state complexity of some combined operations for prefix-free regular languages was

also studied by Han, Salomaa, and Yu [9].

The state complexity of union and intersection of finite languages was studied in

2007 by Han and Salomaa [7].

The state complexity of combined operations and their estimations have been

studied by Salomaa and Yu in 2007 [29]. Later in 2009, Esik, Gao, Lio and Yu

studied the estimation of state complexity of some combined operations [5].

19

Chapter 4

State Complexity: Previous

Results

4.1 State Complexity of Basic Operations on Reg

ular Languages

4.1.1 State Complexity of Catenation

Let A be an m-state DFA and B be an n-state DFA defined on the same alphabet

E, accepting the languages L(A) and L(B), respectively. Then there exists a DFA of

m271 — k2n~1 states which accepts the language L(A)L(B), where k is the number of

final states in DFA A such that 0 < k < m [36]. In [14] it was shown that the upper

bound m2n — k2n~1 is tight for any integer k with 0 < k < m for three-letter alphabet.

In the case of m > 1 and n = 1, upper bound m was shown to be tight for a unary

alphabet. In the case of m = 1 and n > 2, the worst case 2n — 2n~1 was given by the

catenation of two binary languages . Otherwise, the upper bound m2n — 2n~1 was

proven to be tight for a three-letter alphabet [36]. For any integer n > 0, there exists

a 2-state DFA language and an n-state DFA language such that any DFA accepting

the catenation of the two languages needs at least 2n~1 states [25].

20

In [15], it was shown that the upper bound m2" — 2n~1 can also be reached by

the catenation of two binary languages. However, in case of unary language, the

optimal upper bound is mn that can be reached for any m, n > 1 such that m and

n are relatively prime, i.e., (m ,n) = 1 [36]. The unary case when m and n are not

necessarily relatively prime was studied by Pighizzini and Shallit in [23, 30]. In this

case, the tight bounds are given by the number of states in the noncyclic and in the

cyclic parts of the resulting automata.

4.1.2 State Complexity of Star

If L(A) is the language accepted by a DFA A, then the (Kleene) star of L(A) is

denoted by (L(A))*. An example was given in [25], showing that any DFA accepting

the star of an n-state DFA language needs at least 2"_1 states in some cases for

n > 0. However, in [36], the above result has been improved and it was proven that

2n~l + 2n~2 states are necessary in the worst case for a DFA to accept the star of an

n-state DFA language for each n > 1. The proof was for binary languages. However,

if the number of final states excluding the start state in an n-state DFA is k such that

k > 1, then there exists a DFA of at most 2n_1 -f 2n~~k~1 states that accepts (L(A))*.

The optimal upper-bound for the number of states which is needed to accept the star

of an n-state DFA language L over a one-letter alphabet is (n — l)2 + 1 [36].

4.1.3 State Complexity of Union and Intersection

The state complexity of the union of an m-state DFA language L\ and an n-state DFA

language L2 over a one-letter alphabet is mn where m and n are relatively prime.

Similarly, the state complexity of the intersection of an m-state DFA language L, and

an n-state DFA language L2 over a one-letter alphabet is mn where (m,n) = 1 [36].

These bounds for union and intersection are also tight for languages over any arbitrary

alphabet. However, these results are different when m and n are not relatively prime

21

and also if we consider tail and cycle in the DFAs. Let A and A' be two unary DFAs

and the transition diagram of A (resp. A') have a tail of size t and a cycle of size c

(resp. t!, d). Then for all t, t' > 0 and c, d > 1, the state complexity of intersection

of L(A) and L(A') is max(t, t') + lcm(c, d). The state complexity of union of L(A) of

L(A') is also same, i.e., max(t, t') + lcm(c, d) and this upper bound is tight for both

union and intersection [23, 30].

4.1.4 State Complexity of Reversal

Any DFA accepting the reversal of an n-state DFA language does not need more

than 2" states. In [4], a result on alternating finite automata implies that this upper

bound can be reached in the case where n is in the form 2k for some integer k > 0.

The worst case state complexity 2n can be reached by the reversal of a binary DFA

language for all n > 0 [18]. However, in case of a unary regular language L, the state

complexity of its reversal is n where n is number of states of a DFA accepting the

language L [36].

4.1.5 Summary Table

We assume that Ly is accepted by an m-state DFA and L2 is accepted by an n-state

DFA and m,n > 1. Table 4.1 shows the summary of the state complexity of some of

the basic operations on regular languages.

Operation |E| = 1 |£|>1
L\ U Z/2 mn, for (m, n) = 1 mn
L\ n Z/2 mn, for (m, n) = 1 mn
£* - Li m m

LlL2 mn, for (m, n) = 1 m2n - 2n~l
m 2m

LI (m — l)2 + 1 2m-l + 2™-2

Table 4.1: State complexity of basic operations on regular languages

22

4.2 State Complexity of Basic Operations on Fi

nite Languages

4.2.1 State Complexity of Catenation

Here the following notation is used:

Let Ai = (Qi, <5i, gfyi, FO be a DFA accepting the finite language L(A\) and

A 2 = (<32, 2, S2, go,2, F2) be a DFA accepting the finite language L(A2) where |E| = k,

|Qi| = m, IQ2I = n, and |Fi| = t. Then there exists a DFA A = (Q, E, 6, go, F) such

that L(A) = L(A i)L(A2) and

772— 2

k? i < E min
i - 0

k\
n — 2

< i

n — 2

< t - 1
+ min < km— 1

If t > 0 is a constant then there exists a DFA A = (Q, E, S, go, F) of 0(m n1_1 + n l)

states such that L(A) = L(A i)L(A2)- For k = 2 and m + 1 > n + 2, the upper bound

is (m — n + 3)2n-2 — 1. This upper bound is reachable and the proof was given for a

binary alphabet in [2].

4.2.2 State Complexity of Star

Let A = (Q, E, 6, g0, F) be a DFA accepting the finite language L(A), where g0 ^ F,

|F| = t > 2, and \Q\ = n > 4. Then there exists a DFA of at most 2n~3 + 2n~t~2

states that accepts (L(A))*. If t = 1, then the DFA accepting (L(A))* needs at most

n — 1 states. Otherwise an upper bound is 2n~3 + 2n~4. This upper bound is reachable

23

and the proof was shown for three-letter alphabet in [2],

4.2.3 State Complexity of Union and Intersection

Let A be an m-state DFA and B be an n-state DFA accepting the finite languages

L(A) and L(B), respectively. Then the DFA accepting the language L(A) U L(B)

needs at most mn — (m + n) states. This upper bound is reachable if the size of the

alphabet can depend on m and n.

Let A be an m-state DFA and B be an n-state DFA accepting the finite languages

L(A) and L(B), respectively. Then there exists a DFA of at most m n -3 (m + n) + 12

states which accepts the language L(A) C)L(B). This upper bound is reachable if |E|

depends on m and n.

If |£| is fixed and m and n are arbitrarily large, then it was shown that the upper

bounds for both union and intersection operation cannot be reached [7].

4.2.4 State Complexity of Reversal

Let A = {Qa i '̂ ‘i^AiQ.o,Ai Fa) be a DFA accepting a finite language L, where \Q\ =

n > 3 and |£| = k > 2. Also, let t be the smallest integer such that 2n_1_i < kl.

Then there exists a DFA B = (Qb , Qo,b , Fb), where

t-1

\Qb \ < + 2" - 1- 4,
i=0

that accepts the language LR, i.e., the reversal of L.

In case when |£| = 2, the DFA accepting LR needs at most 3 * 2P~X — 1 states if

n — 2p or 2P — 1 states if n = 2p — 1. This bound is reachable and the proof was

24

shown for a binary alphabet in [2].

4.2.5 Summary Table

We assume that L\ is accepted by an m-state DFA Ax and L2 is accepted by an

n-state DFA A2 and m,n > 1. We use t to denote the number of final states in A\.

Table 4.2 shows the summary of the state complexity of some of the basic operations

on finite languages.

Operation II h-* |E| > 1

L\ U L2 max(m,n), for (m ,n) = 1 0(mn)
L\ n L2 min(m,n), for (m, n) = 1 0(mn)

M * 1 m m
L\L2 m + n — 1, for (m, n) = 1 0{m n i_1 + n()
L? rn 2TO/2, for E = 2
L\ m2 — 7m -|- 13, for m > 4 2m-3 + 2m-4̂ for m > 4

Table 4.2: State complexity of basic operations on finite languages

4.3 State Complexity of Combined Operations on

Regular Languages

4.3.1 State Complexity of Star of Union

If Ai is a complete DFA with mi states accepting the language L\ and A2 is a complete

DFA of m2 states accepting the language L2, then the state complexity of star of union

of these two regular languages, i.e. sc{{L\ U L2)*) is 2mi+m2_1 — 2TOl~ 1 — 2m2_1 + 1.

This upper bound is tight for three-letter alphabet when mx,m 2 > 3 and four-letter

alphabet when one or both of m\ and m2 can be equal to two. It remains an open

question whether this upper bound can be reached by regular languages over a two-

letter alphabet [27].

25

4.3.2 State Complexity of Star of Intersection

If Li is accepted by a DFA with mx states and L2 is accepted by a DFA with m2

states, then from [36] we know that the state complexity of (Lx D L2)* is at most

2mim2_i + 2mim2“ 2 . However, in [27] it was shown that the state complexity of

star of intersection may become at least reasonably close to the composition of the

worst-case state complexities of the individual operations. In general case, i.e. when

mi, m2 > 3, sc((Li Pi L2)*) reaches at least 2Tnhm2~2) over a five-letter alphabet. But

in case of eight-letter alphabet, the state complexity becomes 2mdm2- 2) _j_2TO2(mi - 2) _

2mim2—2(mi+m2-i-i) By increasing the alphabet size this lower bound could be further

increased. By using large size of alphabet it can be verified that when m i,m 2 < 3,

the star-of-intersection can reach exactly 2mim2_1 + 2mim2~2.

4.3.3 State Complexity of Reversal of Union

Let Li and L2 be two regular languages recognized by two DFAs of size m and n

respectively. Then the reversal of union of these two languages is (Lx U L2)R. From

[36], we know that the state complexity of the union of an m-state DFA language

and an n-state DFA language is mn. We also know that the state complexity of

the reversal of an n-state DFA language is 2n. Therefore, from the mathematical

composition of the state complexity of union and the state complexity of reversal we

get sc((Lx\JL2)r) is 2mn. However, the state complexity of (Lx UL2)R is less than the

mathematical composition of the state complexity of individual operations. In [19],

it has been shown that the upper bound of the minimal DFA accepting (Lx U L2)R is

2m+n — 2TO — 2n + 2. This upper bound can be reached and a worst case example was

given for a three-letter alphabet in [19].

26

4.3.4 State Complexity of Reversal of Intersection

Similar to the reversal of union, the mathematical composition of the individual state

complexity of reversal of intersection of an m-state DFA language and an n-state DFA

language is 2mn. However, the actual state complexity of the reversal of intersection

is the same as that of reversal of union, i.e., sc((Li Pi L2)R) is 2m+n — 2m — 2n + 2.

This can be obtained by the following observation:

(L1n L 2)R = (T1u T 2)R

where L denotes the complement of L, and that the state complexity of the comple

ment of an n-state DFA language is n [19].

4.3.5 State Complexity of Reversal of Catenation and Re

versal of Star

Let L\ and L2 be an m-state DFA language and an n-state DFA language, respec

tively. Since (LiL2)r = LRLR, then the state complexity of reversal of catenation is

bounded by 2(n+2m) — 2̂ 2m_1). However, in [19], it was proved that the actual upper

bound is much better which is 3 • 2m+n~2 — 2n + 1, i.e., 3 • 2m+n-2 — 2n + 1 states are

sufficient for a DFA to accept the language (LiL2)r where m ,n > 1.

Let L be a language accepted by a DFA with n-state, then the state complexity

of the reversal of the star operation on L, i.e. sc((L*)R), is exactly 2” , for any n > 0

[19].

4.3.6 Summary Table

We assume that Li is accepted by an m-state DFA and L2 is accepted by an n-state

DFA and m, n > 3. Table 4.3 shows the summary of the state complexity of some of

the combined operations on regular languages.

Operation State Complexity
{L\ U L2)* ^m+n—l _ 2m~l _ 2n_1 1

(L\ n L2)* Qmn—1 _|_ 2

(Ti U L2)r 2m+n _ 2m - 2n + 2
(¿1 n l 2)h 2m+n - 2 n + 2

(-LiL2)h 3 • 2m+n~2 - 2n + 1
(M)H 2 m

Table 4.3: State complexity of combined operations on regular languages

28

Chapter 5

State Complexity of Star of Union

Operation on Finite Languages

In this chapter, we will study the state complexity of the combined operation, star of

union, on finite languages. By star of union combined operation, we mean that two

languages are combined using union operation first and then we perform the (Kleene)

star operation on the resulting language from the union operation. In case of general

regular languages, it has been shown in [27] that if A is a complete DFA with m

states accepting the language L(A) and B is a complete DFA of n states accepting

the language L(B), then the state complexity of star of union of these two regular

languages, i.e., sc((L(A) U L(B))*), is 2m+n~1 — 2m~ 1 — 2” “ 1 + 1. However, in this

chapter we will show that in the case where DFA A and B accept finite languages

rather than general regular languages, the corresponding bound is exactly 2m+n~5.

Let A be an m-state complete DFA accepting the finite language L(A) and B

be an n-state DFA accepting the finite language L(B). In [7] it was shown that the

upper bound for union operation on L(A) and L(B) is mn — (m + n). Also, in [2]

it was shown that the tight upper bound for star operation on L(B) is 2" -3 + 2n~4.

Therefore, the mathematical composition of the state complexity of star of union

will be 2mn-m~ "~ 3 + 2mn~m~n~4. But we will show that the actual state complexity

of star of union operation on finite languages is not the same as the mathematical

29

composition of the state complexity of individual operations.

5.1 Upper Bound

In the following subsection, we will prove an upper bound and then give a worst-case

example that reaches the upper bound in the next subsection.

Theorem 1 . Let A = (Qa , ?o> Fa) be an m-state complete DFA accepting the

finite language L(A) and B = (Qb ,F,,5b ,Po, FB) be an n-state complete DFA accept

ing the finite language L{B) such that \Fa — {go} I = fa and \Fb — {po}| = kb. Then

there exists a DFA of 2m+n~5 — 2m~3 — 2” ~3 + 2m~ka~2 + 2n~kb~2 states that accepts

the language (L(A) U L(B))*.

Proof. Let A = (QA, SA, Qo, Fa) be a DFA where IQ Î = m and \FA — {go}I = ka

and B = (Qb , S, $b , P o, Fb) be a DFA where \Qb \ = n and \FB — {po}| = fa. Here,

we assume that qm-i and pn-\ are the only sink states of DFA A and B, respectively,

without loss of generality. We will denote Fa — { qo} by F'A and FB — {p0} by F'B in the

following. For star-of-union combined operation we first perform the union operation

on A and B. Since there are no loops in the initial states of A and B , we can simply

merge the initial states q0 and po and make this merged state (qo,po) also as a final

state. Then we add ^-transition from each of the final states of A and B to the merged

initial state (qo,Po). That is how we get our NFA N = (Qn , £, ¿kv, (qojPo), Fjv) where

Qn = (Qa — {»Jo}) U (Qb — {po}) U {(g0,Po)}»

Fn = {{qo,Po)} U (Fa — {<7o}) U (Fb ~ {i>o}}

30

and the transition function, for each q G Qn and for all u G E, is

SN(q,u)

SA(q,u)

6A(q,u) U {(g0,Po)}

< SB(q,u)

SB(q,u) U {(g0,Po)}

if q e (Qa - {go}) and SA(q, u) £ FA

if q € (Qa - {g0}) and SA(q,u) G FA

if g G (Qb - {p0}) and SB(q,u) g FB

if g G (Qb - {p0}) and SB(q,u) G FB

SA(q0,u)\JSB(p0,u) if g = {(g0,i>o)}-

Now by subset construction we convert our NFA N to a DFA and then minimized

the DFA to get the DFA C = (Qc, Sc, {(gOiPo)}) Fc). We calculate the number of

states in (7, \Qc\, by applying the following rules.

Rule 1: After subset construction in the DFA we will have at most the set of states

Qi where Q\ = {PA U PB\PA C QA, PB C QB andP4 U ?g / (f) } . The cardinality of

Q i is

|Qi| = 2m+n — 1. (5.1)

Now we will find out the states which are not reachable and exclude those states

from the above number of states. Also, we will find out the equivalent set of states

and merge them.

Rule 2: A set of states in the DFA which contains any of the sink states of A and

B or both the sink states of A and B is equivalent to the set of states that contains no

sink states but all other states remaining the same because transitions from sink state

does not change the state. That is, if Q' is a set of states such that <p ^ Q' = PAUPB,

for Pa C Q a - {qm_x} and PB C QB — {pn_ J , then

Q' = Q' U {gm_i} = Q' U {pn- 1} = Q' u {gTO_i,p „_ i}.

31

So, we can exclude 3 • (2m+n 2 — 1) such states. However, we cannot merge the set of

states of the form PA U {pn- 1} with P'A and the set of states of the form P'B U {qm- 1}

with PB, where <j> ± P'A C QA - F'A - { q0, gm_i} and 4>ŷ PB C Q B - F B - {p0,Pn-i},

since P'A and P'B are not reachable as we must have at least one state from both A

and B. So, we have to include (2m-fca~2 — 1) + (2n~kb~2 — 1) such states. Therefore,

we get the set of states Q2 to be excluded and the cardinality of Q2 is

\Q2\ = 3 • (2m+n~2 - 1) - (2m-fc“-2 _ 1) - {2n~kb~2 - 1). (5.2)

Rule 3: Every set of states in the DFA must contain states from both A and B.

So, the set of states which contain states only from either A or B is not reachable.

We have such set of states P'A and PB where PA = {P \ (f) ^ P C QA — {gm_1} } and

P'B = {R | 4> 7̂ R Q Qb ~ {Pn-i}}- Therefore, \PA\ = 2m_1 — 1 and \PB\ = 2 "-1 — 1.

Also, we can merge the singleton sink states in the DFA, i.e., {qm_i} and {pn- 1},

with {gTO_ 1,pn_1}. So, we get the set of states Q3 that should be excluded where

|Q3| = 2m_1 + 2n~1. (5.3)

Rule 4: We mentioned before that the initial state of A, q0, and the initial state

of B, p0, can be merged because there are no loops in these states as DFA A and B

only accept finite languages. So, the set of states which contain either q0 or p0 but

not both does not exist. We can say, every set of states of the form {g0} U P' and

{pQ} U P', where

= P'A U P 'B ,

Pa — Qa {.Qô Qm—i }>

and

P 'b £ Q b ~ { P 0, P n - l } ,

32

is not reachable. That is, we should exclude 2 • (2m+n 4 — 1) such states. But, in rule

3, we already excluded the set of states of the form {g0} U SA and {p0} U S'B where

0 ± S’A C Qa - { g0, gm_i}

and

0 ^ S'B C Qb - {p0,Pn-l}-

That is, we already excluded (2m_2 — 1) + (2n_2 — 1) states. Finally, we get the set

of states Qi that should be excluded where

\Qa\ = 2 • (2m+n~4 - 1) - (2m_2 - 1) - (2n_2 - 1). (5.4)

Rule 5: Each set of states of the form {(go,Po)} U Pa , where 4> ^ Pa Q Qa —

{go, Qm-1}, is not reachable. Similarly, each set of states of the form {(go,i>o)} U Pb ,

where 0 ^ PB C QB — {po,Pn-i}, is not reachable. We can easily verify that transition

from any set of states which reaches the set {(go,Po)} U Pa must also add at least

one state from QB — {po}- Similarly, transition from any set of states which reaches

the set {(go,Po)} U PB must also add at least one state from QA — {go}- So, we will

exclude the set of states Q5 where

Qb = {P U R \ P = {(q0,p0)} U PA, R = {(q0,Po)} U Pb ,

0 7̂ Pa Q Q a - {g0, gm-i }a n d 0 7 ̂ PB C Q B - {p0,pn- 1} } .

Therefore, the cardinality of Q§ is

IQs| = (2m-2 - 1) + (2ra_2 - 1). (5.5)

Rule 6: To perform star operation, we added ^-transition from each of the final

states of A and B to the initial state (go,po) in the NFA. Therefore, any set of states

33

in the DFA which contains any of the final states of A and B, but doesn’t contain

the initial state (go,Po) doesn’t exist. So, we have such set of states of the form

(P'A U P ;) U P" where

pfr A c Qa -F 'a - 1 r-*—
\

O 1 i},

P'b c Qb -F 'b - 1 0 1 i},

= Pa 'U Pb ,
ptfr A c Fa , and

ptf r B c P'b -

That is, we should exclude (2m+n ka kb 4)(2fca+/Ci> — 1) such states. But, in rule 3, we

already excluded the set of states of the form S'A U S"A and S'B U SB where

S’A c Qa - F ’a {?()) Qm— l })

S'B c Qb - F ' b - {p0,Pn-l},

c F'a , and

0 7¿S"B c Flr B-

That is, we already excluded (2m ka 2){2ka — 1) + (2n kb 2)(2kb — 1) states. Finally,

we should exclude the set of states Qe where

|Q6| = (2m+n~k- - kb- A)(2ka+kb - 1) - (2m~fea~2)(2fea - 1) - (2n-*‘ - 2)(2fc* - 1). (5.6)

Rule 7: Since after star-of-union operation we made the merged initial state

(go,Po) also as a final state in the NFA, any set of nonfinal states that contains

(Qo,Po) doesn’t exist. Therefore, every set of states of the form {(g'cPo)} UP^U Pb ,

34

where

<t> i Pa Q Q a - F'a - {go, Qm-i} and

4> i Pb ^ Q b - F'b - {po,pn-i},

is not reachable. So, we should exclude the set of states Q7 where

Q7 = {P | P = {(g0,Po)} U Pa U Pb , 4> 7̂ Pa 1= Qa ~ F'A — {g0, qm-i} and

<i> i Pb C Qb - F'b - \jpQi Pn—l } } •

Therefore, the cardinality of Q7 is

\Q7\ = (2m- k“~2 - l)(2n- kb~2 - 1). (5.7)

Rule 8 : Any set of states that contains either qm- 2 or pn- 2 or both can be merged

into one set because all the transitions from qm- 2 and 2 go to the sink state qn_i

and pn-i, respectively. That is, if P' is the set of states such that 4> 7 ̂ P' = P'A U P'B,

for Pa C Q a - {g0, qm_2, qm_ 1} and P ’B Q Q B - {p0,pn_2,pn_i}, then

{(go,Po)} U P 7 U (gm_2> = {(g0,p o)}U P 'U {p n- 2} = {(qo,Po)} U P' U {gm_2,p„_2}.

Therefore, we have to exclude 2 • (2m+n-6 — 1) such states. But, in rule 7, we already

excluded the set of states of the form {(go,Po)} UPJU {grn_2} and {(<70, Po)} U f g U

{pn- 2} where

</> ^ P ^ Q Q a - {<7o, qm- 2, 9m-i) and

4> ¥= P b Q Q b - { P 0, P n - 2, P n - l } -

That is, we should include (2m 3 — 1) + (2n 3 — 1) states. Thus, we get the set of

35

states Qs to be excluded where

\Q8\ = 2 • (2m+n-6 - 1) - (2m_3 - 1) - (2n_3 - 1). (5.8)

Rule 9: The states { (f/o,Po)} and {{qo,Po),Qm-2,Pn-2} are equivalent because the

next transition from {qm- 2,Pn-2} is always {gn_i,pn_i}. Let the next transition from

{(<Zoi.Po)} be Q'. Therefore, the next transition from {(qo,po),qm- 2,Pn-2} will be

Q' U {qm- i ,p n- i } . But, in rule 2, we proved that

Q — Q U {Pm— 1 > Pn—1} •

So, we can exclude 1 state, i.e.,

|Q9| = 1. (5.9)

Finally, subtracting total number of states in 5.2 to 5.9 from 5.1, we get the upper

bound, i.e.,

\Qc\ = |Qi| — (IQ2I + IQ3I + ••• + IQ91) -

After calculating we get the following result

- 2 + 2 n - fc6-2 _ (5. 1 0)

We can see that as the value of ka and kb increases, less number of states in

2m—fca_2 + 2n~kb~2 is added to 2m+n_5 — 2m_3 — 2n-3. The upper bound 5.10 reaches

the worst-case when ka = 1 and kb = 1, and we get

\Qc\ = 2m+n~5. (5.11)

□

\Qc\ _2m+n—s 2m“ 3 2n~3 -f- 27 \—k.

Theorem 2. Let A be an m-state complete DFA accepting the finite language L(A)

36

and B be an n-state complete DFA accepting the finite language L(B). Then (L(A) U

L{B))* is accepted by a complete DFA of no more than 2m+n~5 states.

5.2 Lower Bound: Worst-case Example

In the following subsection, we will show a worst-case example that reaches the upper

bound.

Theorem 3. Let A and B be two DFAs of m states and n states accepting the

finite languages L(A) and L(B), respectively. Then the DFA accepting the language

(L(A) U L(B))* needs at least 2m+n~5 states in the worst case, when the size of the

alphabet |£| = m + n — 3 and either m > 3, n > 3 or m > 3, n > 3.

Proof. Let m and n be positive numbers such that either m > 3, n > 3 o r m > 3 , n > 3

and

£ = {c, d, e} U {a*,, bi\\ < k < m — 3 and 1 < l < n — 3}.

Let A = (Qa, £, SA, qo, FA) where QA = {q0, qx, q m-i } , FA = {qm- 2} and SA be

defined as follows:

SA (q i , c) =
1 9i+i

 ̂Qm— 1

SA (q i , d) = Qm— 1
/

&A { q u e) =
1 9»+i

 ̂Qm— 1

3a (Q i i Ofe) = Q i + k + l
/

SA (q i , b i) =
1 ft+1

I 9m—1

for 0 < i < m — 2

otherwise

for 0 < i < m — 1

for 0 < i < m — 2

otherwise

for 1 < k < m — 3 and 0 < i < m — k — 2

for 1 < l < n — 3 and 0 < i < m — 2

for 1 < l < n — 3 and i — m — 1.

37

All other transitions that are not mentioned above go to the sink state qm- 1- DFA

A is shown in the figure 5.1 where m = 6 and q5 is the sink state. In the figure we

omitted some transitions to the sink state for simplicity.

ill «1 fti *02*0.3

Figure 5.1: DFA A of 6 states for Theorem 3

Let B = (Qb , $b ,Po, Fb) where QB = {p0,pi, ...,pn- 1}, FB = {pn-2} and SB be

defined as follows:

SB(Pi,c)
1 Pi+i for 0 < i < n — 2

|Pn-l otherwise

SB(Pi,d)
1 Pi+1 for 0 < i < n — 2

1 Pn-l otherwise

ôB{Pi,e) = Pn-i for 0 < i < n — 1

SB(Pi, a,k)
1 Pi+1 for 1 < k < m — 3 and 0 < i < n — 2

(Pn-l for 1 < k < m — 3 and i = n — 1

SB(pi,bi) = Pi+l+1 for 1 < l < n — 3 and 0 < i < n — l — 2

All other transitions that are not mentioned above go to the sink state pn-\. DFA

B is shown in the figure 5.2 where n = 6 and p5 is the sink state. In the figure we

omitted some transitions to the sink state for simplicity.

38

bi &i bi bi ,62,b3

Figure 5.2: DFA B of 6 states for Theorem 3

Let C = (Q, E ,8, { (t7o, Po)}, F) be the DFA constructed from A and B to accept

the language (L(A) U L(B))*. Here, {((fcbPo)} is the singleton initial state. We define

Q = v u n

where V is the set of nonfinal states and 7Z is the set of final states. Here, { (q'o? Po)} ̂

V and {(io>Po)} G F. We define the transition function 8, for all u £ E, as follows:

SA(PA,u) U 8b (Pb , u)

8(Pa UPb , u) = <

8a (Pa, u) U 8b (Pb , u) U {(<7o,.Po)}

if 8a (p a, u) n f a ± 4>

and SB(PB, u) D FB ^ <p»

otherwise

where PA C <5.4 and PB C QB such that PA U PB G Q.

Nonfinal states: We can calculate nonfinal states as follows:

1) Pi = {PA UPb \4> ̂Pa C Q a - Fa - {q0, qm- i } and

Pb <^Qb ~ FB - {pOi Pn—l } }• SO,

|Pi| = (2m-3 — l)(2n~3 — 1). (5.12)

39

2) P2 — {P.A U P'b I P'a ~~ P̂ 4 U P^ — {(Jm-1} U Pg,

^ ^ Pa Q Q a - Fa - {q0, qm- 1}, and0 ± PB Q Q b ~ FB - {Po,Pn-i}}- So,

|P2| = (2m- 3 - 1) + (2n_3 - 1). (5.13)

3) Sink state P3 = {qm- i ,p n-i} - So,

IA| = i- (5.14)

Therefore,

|P| = |P1| + |P2| + |P3| = 2m+n- 6. (5.15)

Final states: We calculate final states as follows:

1) Ri = {{(<?o,Po)} U PU {qm- 2,Pn-2} \<t>̂ R = Pa 'J Pb ,

Pa Q Q a - Fa - {g0, Qm-1}, and PB Q Q b ~ Fb - {p0,pn- i } } . So,

\Rl \ = 2m+n~&- l . (5.16)

2) Final state P 2 = {(<?o,Po)} which is also initial state. So,

|P2| = 1. (5.17)

Therefore,

|7e| = |p1| + |p2| = 2m+ri- 6.

Finally,

\Q\ = \P\ + \U\ = 2m+n_5.

(5.18)

(5.19)

□

40

Now, we will prove that every state in Q mentioned above is reachable from the

initial state {(go,Po)} and pairwise inequivalent.

Claim 1. Every set of states in the form, Pa U {pn- i } and {gm_ i} U Pb , where f ^

Pa Q Qa ~ Fa ~ {?o, Qm-1} and f 7 ̂ PB Q Qb ~ Fb ~ {Po,Pn-i}, is reachable from

the initial state {(go,Po)}-

Proof, i) Each set of states {qi,pn- 1}, where 1 < i < m — 3, is obviously reachable

from the initial state {(go,Po)}- We know that DFA A has transition for letter e as

5A(qi, e) = <7i+i, 0 < i < m — 2, and DFA B has transition for letter e as SB(pj, e) =

pn- 1, 0 < j < n — 1. So, after taking z-times input of e, the initial state of DFA C

reaches the state {qi,pn- 1}, he., ¿({(go,Po)}, e4) = {quPn-1}-

Similarly, each set of states {qm-i,Pj}, where 1 < j < n — 3, is reachable

from the initial state {(go,Po)}- We know that DFA B has transition for letter d

as SB(pj,d) = pj+1, 0 < j < n — 2, and DFA A has transition for letter d as

SA(qi,d) = qm- 1, 0 < i < m — 1 . So, after taking j-times input of d, the initial

state of DFA C reaches the state {gm-i,P j}, i.e., ¿({(go,Po)}, dP) — {qm-i-,Pj}-

ii) Every set of states in the form Pa U {pn- 1} is also reachable, where 7 ̂Pa C

Qa Fa {?o, Qm—i}-

Let Pa = {g^, gj2, ..., qik+1}, 1 < ¿1 < *2 < ••• < A+i < m — 3. We will prove above

claim by induction process.

Base case: If \Pa \ — L then Pa = {gt}, 1 < t < m — 3. But we already proved in

(i) that {gt,pn- i } , 1 < t < m — 3, is reachable from {(go,Po)}-

Induction: Let X a = {g^ , gj2, ..., qik}, 1 < i\ < ¿2 < ••• < A < m — 3 and

X a U {pn- 1} be reachable from the initial state {(go,Po)}- We have to prove that

when PA = {qh ,qi2, ...,qik+1} = X A U {qik+1} above claim is also true, i.e., X A U

{qik+1} U 0?n-i} is also reachable from the initial state {(go,Po)}-

41

It is easy to see that if X a U {pn- 1} is reachable from {((foiPo)} then { (90,Po)} U

X a U Pn—2} is also reachable from { (qo,Po)}• We have SB(pn- i,e) = p„_i and

â (Qu)̂ = Qi+1- Therefore, after consuming some e, each state in X A is shifted for

ward until it reaches final state gm_2, which will add {q0, p0} U {pn- 2} to the set.

Now, by 6n_3-transition q\ will be added to the current set and element from the

end of X a will be removed. At the same time, the transition function SB will add

{(<?cnPo)} U {qm- 2,Pn-2} to the current set for &n_3-input. After some repetition of

frn_3-transition states of X a will be restored while { (90,Po)} U {qm- 2,Pn-2} still be

added in the current set. Now, using e-transition we can reach X a U {qik+1} U {pn- 1},

i.e., PA U {Pn-l}-

iii) Every set of states in the form {qm- i } UPB is also reachable, where <f PB C

Qb — FB — {po,pn-i } - This can be proved in the same way as above (ii). Only we

have to consider d-transition instead of e-transition and am_3-transition instead of

&n_3-transition. □

Claim 2. Each set of states of the form PXJPB, where f> Pa C Qa~ Fa ~ {do, qm- 1}

and <f f - PB Q Qb — FB — {po^Pn-i}, is reachable from the initial state { (? Po)}*

Proof. We consider the following cases.

Case 1: \Pa \ = 1 and \PB\ = 1 ,

Case 2: \PA\ > 1 and \PB\ = 1 ,

Case 3: \Pa \ = 1 and \PB\ > 1 ,

Case 4: |P̂ | > 1 and \PB\ > 1 .

Case 1: Every set of states {qt,pj}, for 1 < i < m — 3 and 1 < j < n — 3, is reach

able. If i = j , then from initial state {(<7o5Po)}> considering only transition labeled

by c, we can reach any set of states {qi,pj}. If i > j , then the set of states {qi,Pj}

can be reached from initial state {(^0, Po)} by transition labeled by only c and a*,,

42

1 < k < m — 3. If i < j , then the set of states {qi,Pj} can be reached from initial

state {(?o>Po)} by transition labeled by only c and &/, 1 < l < n — 3.

Case 2: In claim 1 (ii), we already proved that if PA = {qh,Qi2i 1 < i\ <

¿2 < ... < ik+i < m — 3, then P ^U {p„_i} is reachable from the initial state { (qo,Po)}■

So, if X A = {qiuqi2, ...,qik}, 1 < h < ¿2 < ••• < be < rn - 3, then X A U {pn- 1} is

also reachable. Also, in claim 1 (ii), we proved that if X A U {pn- 1} is reachable from

{(<7o,Po)} then {(g0,Po)} U X A U {qm- 2,Pn-2} is also reachable from { (90,Po)}-

Let Pb = {p j} where 1 < j < n — 3. Now, if we take c-transition then from

{(No. Po)} U X A U {<7m—2’ Pn—2} we will reach PA U {p i}. If we take ^-transition instead

of c, then we will reach PA U {pj+1}, 1 < j < n — 3. Thus we can reach any set of

state PA U {Pj}, 1 < j < n — 3.

Case 3: Case 3 is similar to case 2 and thus can be proved in the same way.

Case 4: If m = n, then we can reach any set of state {qi,Pi} from {(go>Po)} by only

c- transition, i.e., S({(q0,p0) } , c t) = {^oPi}- So, we can reach {qm-A,Pn-i}- If m > n ,

then we can use a/c-transition along with c-transition to reach the state {qm- 4 ,pn- 4}-

On the other hand, if m < n, then we can use ^-transition with c-transition to reach

the state {qm- 4iPn-4} • We can see that

3{{qm—4iPn-4}i ^l) ~ {(l?0> Po)i 9m-3: 9to-2? Pn—2}-,

${{(qO,Po),qm-3,qm-2,Pn-2}x) = { (<70, Po), qi, Pi, <7m-2, Pn-2>,

<5({(9o,Po),9l,Pl,im-2,Pn-2},c) = {<?!, <?2, Pi, P2, 9m-1, Pn-1 }■

Similarly, we can reach any set of states PA U Pb where < f) ^ PA C (51,^2, ...,9m-3}

and <j> ± PB C (p i,p2, ...,pn_3}. □

Claim 3. The sink state {qm-iiPn-i} is reachable from the initial state {(gtbPo)}-

43

Proof. It can be easily verified that we can reach {qm-i,Pn-i} from {(go,Po)} either

using d- or e-transitions or any other transitions. We can see

$ ({ (% , P o) } , d n~ %) = {q m- u P n - i }

and

¿({(<7o,Po)},em 3cti) = {qm- i ,p n- i } .

□

Claim 4. Each set of states of the form { (g o , P o) } U RU {q m~2 , Pn-2} , where <f> ^ R =

PA U PB, P a C Q a — Fa — { g o , and PB C Q B - Fb ~ {po,Pn-i}, is reachable

from the initial state { (g o , P o) } -

Proof i) Each set of states { (g o , P o) } U { g i } U { g m _ 2 , P n - 2 } , 1 < i < m — 3, is reachable

from { (g o , P o) } - We have

¿ ({ (< 70, P o) } , bn- 3) = { (g 0 , P o) } u { g i } U { g m - 2 , P n - 2 } -

Again, if we use c-transitions and/or a^-transitions we can reach any set of states

{qt,pn- 3}, 1 < t < m — 4. Then by next c-transition we will reach {(go,Po)} U

{qt-)-i} U {gm_2, Pn—2}, 2 < i + l < m — 3. Similarly, each set of states {(go,Po)} U

{ P j } U {gm—2,Pn—2}, 1 < j < n — 3, is reachable from {(go,Po)}- We have

¿ ({ (? o , P o) } , a m - 3) = {(<7o , P o) } u { p i } U { q m - 2 , P n - 2 } -

Again, if we use c-transitions and/or ^-transitions we can reach any set of states

{qm-ZiPt}-, 1 < t < n — 4. Then by next c-transition we will reach { (g o , P o) } U

{ p t + 1 } U { g m - 2 , P n - 2 } , 2 < t + 1 < n - 3 .

ii) Every set of states { (g o , P o) } U { g ^ P j } U { g m - 2 , P n - 2 } , where 1 < i < m — 3 and

44

1 < j < n — 3, is reachable.

We proved above that the set of states {(<7o,Po)} U {qm- 3} U {qm- 2,Pn-2} is

reachable. Using c-transition we can reach {(<7o,Po)} U {qi,P\} U { <7m-2,Pn-2} from

{(<Z0)Po)} U {qm- 3} U {qm- 2,Pn-2}- In claim 2 we proved that any set of states

{qiiPjiPn-3} is reachable. Now, we have

S{{qi,Pj,Pn-3},c) = {(qo,Po)}'J{qi+l,Pj+l}'j{qm-2,Pn-2},

1 < i < m — 4 and 1 < j < n — 4. Therefore, each set of states of the form

{(?o,Po)} U {quPj} U { qm- 2,Pn-2}, where 1 < i < m - 3 and 1 < j < n - 3, is

reachable.

hi) Each set of state {(<?0,p0)} U (PA U PB) U {qm- 2,Pn-2}, where <f> ± PA C

Qa ~ Fa ~ {qa,qm- i } and (p ± Pb Q Qb - Fb ~ {Po,Pn-i}, is reachable from the

initial state {(<7o>Po)}- We consider the following cases.

Case 1: \PA\ > 1 and \PB\ = 1,

Case 2: \PA\ = 1 and \PB\ > 1,

Case 3: \PA\ > 1 and \PB\ > 1.

Case 1: Let PA = {qiuqi2, ...,qik+1}, 1 < i\ < ¿2 < ••• < ik+i < m — 3 and

Pb = {Pj}, 1 < j < n - 3.

Base case: If \PA\ = 1, then PA = {qt) where 1 < i < m — 3. Therefore, the

set of states {(<70, Po)} U {qi,Pj} U {qm- 2,Pn-2} is reachable from {(<70, Po)}, which we

already proved above.

Induction: Let X A = {qiuqi2, ..., qik}, 1 < i\ < i2 < ••• < ik < m — 3. Also, let the

set of states {(<7o,Po)} UX A U {pj, qm- 2->Pn-2} is reachable from {(<7o,Po)}- Using only

45

c-transition from {(go,Po)} U ly i U {pn- 3 ,qm-2,Pn-2} we can reach

{ (9o,Po)} U X A U {qik+1,Pi,qm- 2,Pn-2},

i.e.,

{(<7o,Po)} U PA U {pu qm-2,Pn-2}-

Now, if {(q0,p0)}UPA\J{pu qm- 2 ,Pn-2} is reachable from { (q0,Po)}, then {(g0,Po)}U

-^CiU{gTO_3, Pi, qm-2,Pn-2} is also reachable. So, by c-transition we can reach the state

{(q0,Po)}'JXA U { qik+1,P2,qm-2,Pn-2},

i.e.,

{(<70,Po)} UPA U {p2,Qm-2,Pn-2}-

If we use ^-transition instead of c-transition, we can reach any set of states of the

form {(<?o,Po)} UPA U {pj, gm_2,pn_2}, 3 < j < n - 3.

Case 2: Case 2 is symmetric to case 1 and thus can be proved in the same way.

Case 3: We already proved that {(<7o,Po)} U PA U {pj, qm- 2,Pn-2}, for 4> ^ PA C

Qa — Fa — and 1 < j < n — 3, is reachable. Therefore, the set of states

{(qo,Po), qi, qm-3 ,Pi, qm- 2 ,Pn-2} is also reachable. Now, if we use c-transition we get

S({(qo,P o),q i,qm- 3 , P u q m- 2 , P n - 2 } , c) = {{qo,Po),qi,q2,PuP2,qm-2,Pn-2}-

Similarly, we can reach any set of states {(<70, Po)} U (PA U Pb) U {gm_2)Pn-2}, for

<P¥= Pa ^ {qi,q2,—,qm-3} and <p ± PB C {pi,p2, ...,pn- 3}- □

Thus we proved that all the states in DFA C are reachable.

46

Claim 5. All the states in the DFA C are pairwise inequivalent.

Proof. Let P = Pi U P2 and R = Pi U P 2 be distinct states of Q, where Pi, Pi C

(Qa ~ {<7o}) U {(go,Po)} and P2, R 2 C QB — {po}- Consider the case where Pi ^ R\.

We assume that there exists an element q E Pi — Pi, without loss of generality.

i) If q = {(go,Po)}, then R does not contain any of the final states, since any set

of states containing any final state must contain {(go,Po)} in the set. Since, {(go,Po)}

is a final state of C , it implies that P is an accepting state of C and R is not an

accepting state of C , and consequently P and R are inequivalent.

ii) If q = qm- 1, then we have Pi = {qm- 1} and P2 = <fi and in that case, on any

input Pi remains the same and never reaches the final state, but Pi can reach gm_2.

So, P and P are inequivalent.

ii) If q = qi, 1 < i < m —3, then we claim that 5(P, cm~l~2) € P and 6(R, cm~l~2) ^

F. We can verify that 5a transition function of DFA A takes the state to qm - 2 on

input cm~l~2 which adds { (q'o,Po)} to the current set.

On the other hand, we can see that while the transition function 5a is taking input

cm-1- 2, ge£ ^ can j-ggLch the state qm- 2 which adds {(<7o>.Po)} to the current set

before consuming all the input c. So, the remaining input c will shift the state qm- 2

to qn- 1 and {(?o,Po)} to qj where qj < qi. Otherwise, the set Pi can reach the state

up to q m- 3, which implies that 5{P,cm~l~2) e F and 5(R,cm~t~2) $ F and thus P

and P are inequivalent.

The other case P2 7 ̂ P 2 can be proved in the similar way. Thus, we proved that

all the states in Q are pairwise inequivalent. □

47

5.2.1 Lower bound when m < 3 and n < 3

The lower bound in 5.19 is true when m > 3 and n > 3 or, when m > 3 and n > 3.

But, in the case when m < 3 and n < 3, we have only 1 state in the minimal DFA

which is {(q0,Po)}-

5.2.2 Lower bound when m = 2 and n > 3 or m > 3 and n — 2

Let A be an m- state complete DFA accepting the finite language L(A) and B be an

n- state complete DFA accepting the finite language L(B). In case when m = 2 and

n > 3, then L(A) = 0 and (L(A) U L(B))* = (L(B))*. Therefore, sc(L(A) U L(B))*

becomes sc(L(B))* which is the state complexity of star operation on L(B). Similarly,

when m > 3 and n = 3, then L(B) = 4> and (L(A) U L(B))* = (L(A))*. Therefore,

sc(L(A) U L(B))* becomes sc(L(A))* which is the state complexity of star operation

on L(A).

48

Chapter 6

State Complexity of Star of

Catenation Operation on Finite

Languages

In this chapter, we will study the state complexity of the star of catenation operation

on finite languages. By star of catenation combined operation we mean that first we

combine two languages by catenation and then we do the (Kleene) star operation on

the resulting language from the catenation.

6.1 Upper bound

Let A = (Qa , L, ¿a , Qo, Fa) be a complete DFA accepting the finite language L(A),

where \Qa \ = and \Fa \ = ka and B = (Qb ,F, 5b ,Po, FB) be a complete DFA

accepting the finite language L(B), where \Qb \ = n, and |Fg| = kb. Here, we assume

that in DFA A, qm-\ is the only sink state and in DFA B , pn- i is the only sink state,

without loss of generality.

First, we construct an NFA N = (Qn , L, Sn , qo, F/v) by catenating DFA A and B

by adding e-transition from each of the final states of A, / a G F i, to the initial state

of B, p0, and adding e-transition from each of the final states of B, fo G Fg, to the

initial state of A, q0. Since there is no loop in the state qo, we simply make this initial

49

state as a final state. Here, Qn = Qa U Qb , T/v = Fb U {go}, and the transition

function 5, for each g € QN and for all u G E, is

5N{q,u)

SA(q,u)

SA(q,u) U {po}
<

SB(q,u)

SB(q,u) U {g0}

if q e Qa and SA(q, u) FA

if q € Qa and SA(q, u) £ FA

if q € Qb and 5B(q,u) & FB

if q € Qb and SB(q,u) £ FB.

Then we convert NFA N to a, DFA by subset construction and minimize it and thus

get DFA C = (Q, E, S, {g0}, F) which accepts the language (L(A)L(B))*. We calcu

late the upper bound by applying the following rules.

Rule 1: After subset construction from NFA to DFA, we have at most Q\ set of

states where Q i = {Pi U P2 | P\ C QA, P2 C QB and Pi U P2 7 ̂ 0 } and the cardinality

of Q 1 is

|Q1| = 2m+n- l . (6.1)

Now, we will find out the states which are not reachable and then exclude those

states from Qi. Also we will find out the equivalent set of states and merge them.

Rule 2: A set of states in the DFA which contains any of the sink states of A and

B or both the sink states of A and B is equivalent to the set of states that contains no

sink states but all other states remaining the same because transitions from sink state

does not change the state. That is, if P' is a set of states such that <p ^ P' — PAUPB,

for Pa C Q a - {qm_i} and PB Q Q b ~ {pn- 1}, then

P' = P' U {qm- 1} = P* U {pn- 1} = P' U {qm- i ,p n-i}-

So, we can exclude the set of states Q2 which consists of all the sets P' U {gm_i},

50

P' U {pn- 1}, and P' U {qm- i ,p n- i } - Therefore, the cardinality of Q2 is

\Q2\ = 3 • (2m+n_2 - 1). (6.2)

Rule 3: The states {gm_ 1} and {pn- 1} can be merged with {qm-uPn-i}- So, we

can exclude

\Qz\ = 2. (6.3)

Rule 4: Any set of nonfinal states that contains g0 doesn’t exist, since q0 is a final

state in the NFA, it cannot be in the set of nonfinal states in the DFA. We have such

set of states of the form {g0} U P where <fi ^ P = Pa U Pb , Pa Q Qa — { go, qm- 1} and

Pb Q Qb — Fb — {Pn-1}- So, we get the set of states Q4 to be excluded where

Qa = {{go} U P\ (j) ^ P = PA U Pb ,P a Q Qa ~ {<70, 9m -i} and

Pb ^ Qb — Fb — {pn- 1}}-

Therefore, we get

\Qa\ = 2m+n- k»-3 - 1 . (6.4)

Rule 5: Any set of states which contains any of the final states of B but doesn’t

contain q0 doesn’t exist, since there is ^-transition from each of the final states of B

to the initial state of A, q0. We have such set of states of the form Pa U Pb U P'b

where

Pa ^ Qa {qo,qm-i } ,

Pb Q Qb ~ Fb — {pn- 1},

<}) ^ P'b Q F b

and

51

So, we have to exclude the set of states Q5 where

Q5 — {-Pa U Pb U P'b \ Pa Qa — {qo,Qm-i},

Pb ^ Q b - Fb ~ {pn- 1} and 0 ^ P'B C FB}.

Therefore, we have

|Qs| = (2m+n- kb~3)(2kb - 1). (6.5)

Rule 6: The states {g0} and {qo,pn- 2} are equivalent because all the transitions

from pn- 2 go to the sink state of B , pn-\. Let the next transition from {g0} be Q'.

Therefore, the next transition from {g0,Pn-2} will be Q' U {pn- 1}- But, in rule 2, we

proved that

Q' = Q' U {pn- 1}.

So, we can exclude 1 state, i.e.,

|Q6| = 1 . (6.6)

Rule 7: Any set of states that contains any of the final states of A must contain

the initial state of B , p0) because there is e-transition from each of the final states of

A to the initial state of B in the NFA N. So, each set of states that contains any of

the final states of A but does not contain po is not reachable. That is, we have such

set of states of the form P'A U PA U P'B where

P'a ^ Qa — Fa — {qm- 1 }5

^ ^ Pi C Fa

and

Pb — Qb {poiPn—i}-

So, we should exclude (2m+n ka 3)(2ka — 1) such states, if q0 ^ Fa - However, if

52

g0 £ Fa , then we already merged {go} with {qo,pn- 2} in rule 6. Therefore, in that

case, we should exclude (2m+n~fca~3)(2fca — 1) — 1 such states. But, in rule 4, we

already excluded the set of states of the form {g0} U R! where

R! = R'a U R"a U R'b if g0 i f a

(p ^ R' = R'a U R"a U R'b otherwise,

and

Qa - Fa - {go, qm- i } if Qo £ FA

Qa ~ Fa - {gm_i} otherwise,

cP ^ R '^ C F a if g0 0 Fa

R"a C Fa — {go} otherwise,

R'b Q
Qb - Fb - {p0,p „_i} i ip o ^ F B

Qb - Fb - {Pn-i} otherwise.

So, we have to include

(i) if g0 i Fa and p0 £ FB, then {2m+n- k̂ ~ A){2K - 1) states,

(ii) if go ^ Fa and p0 £ FB, then (2Tn+n~ka~kb~i)(2ka — 1) states,

(iii) if g0 £ Fa and Po & FB, then (2rn+n~ka~kb~3)(2ka~1) — 1 states,

(iv) if g0 £ Fa and p0 £ FB, then 2̂m+n~ka~kb~2)(2ka~1) — 1 states.

Again, in rule 5, we already excluded the set of states of the form S'AUSAUSBUSB

where

, . Q a ~ Fa - {g0, gm- i } if Qo £ FA
SA Q

Qa ~ Fa ~ {qm- i } otherwise,

0 7̂ S^C
Fa if g0 $ Fa

Fa — {go} otherwise,

53

S'b Q
Qb ~ Fb ~ {po,Pn-l} tfpo<£FB

Qb - FB - {pn- i } otherwise,

and

4>^S'b C
Fb if Po ^ Fb

Fb — {po} otherwise.

So, we should include

(i) if g0 i Fa and p0 <£ FB, then {2m+n- k« -kb~4)(2k“ - l)(2kb - 1) states,
(ii) if g0 i Fa and p0 G FB, then (2^+n-fc0-fc6-3)(2fca _ i) (2*»-i _ i) states,

(iii) if g0 G Fa and p0 £ FB, then (2m+n-fca-*6-3)(2fc» -1)(2*«< - 1) states,

(iv) if g0 G Fa and p0 G Fb , then (2m+n~ka~kb~2)(2ka~1)(2kb~1 — 1) states.

Therefore, we actually have to exclude the set of states Q7 where

ICM — <

2?ri+n

2 m+n

-4

-4

2̂ +71—fca—4

2m-hn—/ca—4

27n-fn—4 _ 2m+n— 6̂—3

Qm+n—3 2771+n—̂a —̂5—2

if g0 0 Fa and po 0 FB

if g0 ^ F 4 andpo € FB

if g0 G F 4 and p0 0 FB

if g0 G F 4 and p0 G FB

(6.7)

Finally, subtracting total number of states in 6.2 to 6.7 from 6.1, we get the upper

bound, i.e.,

\Q\ — IQil — (IQ2I + IQ3I + + IQrl)-

After calculating we get the following results:

54

(a) if g0 ^ Fa, then

\Q\ = 2m+n~4 + 2m+ri- fc“" 4, (6.8)

(b) if g0 G Fa and p0 £ FB, then

|Q| = 2m+n_4 + 2m+n~k“- kb~3, (6.9)

(c) if g0 G Fa and p0 G FB, then

|Q| = 2"*+"-fc«-*6- 2. (6.10)

We can easily eliminate the third option since it returns smaller number of states

than the other two options. If ka = 1 and kb = 1, then for catenation operation we

can simply merge the final state of A with the initial state of B, po, and remove the

sink state of A, gm_i, by shifting all the transitions to this sink state to the sink state

of B , Pn—i- Then for star operation we can merge the final state of B with the initial

state of A, g0, and remove the sink state of B, pn-\. Therefore, in that case we will

have a DFA of at most m + n — 2 states accepting the language (L(A)L(B))*.

However from 6.8 and 6.9, we can see that as the value ka and kb increases |Q|

decreases. So, to get the upper bound we must have either ka = 2 or ka = 1 and

kb = 2. Hence, we get the upper bound

|Q| = 2m+n~4 + 2m+n-6 = 5 • 2m+ri~6. (6.11)

Thus we get the following theorem.

Theorem 4. Let A be an m-state complete DFA accepting the finite language L(A)

and B be an n-state complete DFA accepting the finite language L(B). Then 5-2m+n~6

55

states are sufficient for a DFA to accept the language (L(A)L(B))*.

6.2 Lower Bound: Worst-case Example

Theorem 5. Let A and B be two DFAs of m states and n states accepting the finite

languages L(A) and L(B), respectively, and m ,n > 4. Then the DFA accepting the

language (L(A)L(B))* needs at least 3 • 2m+n~6 states in the worst case.

Proof. Let m > 4 and n > 4 be positive numbers and £ = {a ,b ,c}. Let A =

(QA,E ,5A,q0,F A) where QA = {q0, qu FA = {qm- 3 ,qm-2}, and SA be de

fined as follows:

for 0 < i < m — 2

otherwise

for 0 < i < m — 3

for i = m — 4

otherwise

for 0 < i < m — 2 and i / m — 4

otherwise.

DFA A is shown in the figure 6.1 where qm-\ is the sink state.

Let B = (Qb , Po, Fb) where QB = {p0,pu ...,p„_i}, FB = {pn- 2}, and SB

be defined as follows:

SA(qi,b)

6(qi,c) =

Qi+ 1

Qm—1

9i+i

9 m - 2

9m —1

9 i + l

9m —1

56

Figure 6.1: DFA A of m states for Theorem 5

$B(Pi,b)

SB(Pi,c)

Pi+x for 0 < i < n — 2

pn- i otherwise

pi+ 1 for 1 < i < n — 2

pn-1 otherwise

pi+ 1 for 0 < i < n — 2

otherwise.

DFA B is shown in the figure 6.2 where pn-i is the sink state.

b

Figure 6.2: DFA B of n states for Theorem 5

Let C = (Q , E, 6, {go}, F) be the DFA constructed from A and B to accept the

57

language (L(A)L(B))*. We define

q = r u n

where V is the set of nonfinal states and 72 is the set of final states. Here, { 50} 4- 'P

and {go} £ 72.. We define the transition function (5, for all u £ £, as follows:

SA(PA, u) U SB{PB, u) if SA(PA, u) n Fa ± 4>

andSB(PB,u) fl FB 4 4>

SA(PA, u) U {po} U Sb (PB: u)

S(PA U PB,u) = <

{g0} U SA(PA, u) U SB{PB, u)

H8a {Pa , u) n F A = 4>

and8b (Pb , u) n F B <̂f>

if SA(PA,u)n F A i

and SB(PB, u) (1 Fb = <fi

{g0} U SA(PA, u) U {po} U SB(PB, u) otherwise

where PA C QA and PB C QB such that PA U PB £ Q.

Nonfinal states: We can calculate nonfinal states as follows:

1) Px = {P A U PB | PA C Qa - Fa - {g0, gm_i}, PB C QB - FB - {p0,pn- 1} and

PA UPB ^ 4>}- So,
| Pi | = 2m+n~7 — 1. (6.12)

2) P2 = {P A U {gm- 3,Po} U PB | PA C Qa - Fa - {g0, qm-\} and

Pb Q Qb ~ FB — {pOiPn-l}}- So,

\P2\ = 2m+n~7. (6.13)

3) P3 = {PA U {gm_2,Po} UPb \PA Q Q A - F a - {g0, gm_ i} and

58

Pb Q Q b - FB - {p0,Pn-l}}- So,

|P3| = 2m+n~7. (6.14)

4) Sink state P4 = {qm-i,P n -i}- So,

|P4| = 1. (6.15)

Therefore,

\V\ = |Pi| + |P2| + |P3| + |P4| = 2m+n~6 + 2m+n~7. (6.16)

Final states: We calculate final states as follows:

1) = {{g 0} UPa UPb U {pn- 2} \Pa Q Q a ~ Fa ~ {go, qm- 1} and

Pb Q Qb - Fb - {po,Pn-i}}- So,

\R1\ = 2m+n~7. (6.17)

2) R2 = {{g 0} U PA U {qm- 3, p0} U PB U {Pn-2} \Pa Q Q a ~ Fa - {g0, gTO_ i} and

Pb Q Qb ~ Fb ~ {poiPn-i}}- So,

\R2\ = 2m+n~7. (6.18)

3) P3 = { {g 0} U ? A U {gm_2, Po} UPB U {pn- 2} \Pa Q Q a ~ Pa ~ {<7o, qm- 1} and

Pb Q Q b ~ Fb ~ {po,Pn-i}}- So,

\R3\ = 2m+n- 7. (6.19)

Therefore,

\U\ = |Pi| + |P2| + \Rs\ = 2m+n~6 + 2m+n~7. (6.20)

Finally,

(6 .21)|Q| = \P\ + |ft| = 2m+n~5 + 2m+»-6 = 3 -2 m+n—6

□

Now, we will prove that every state in Q mentioned above is reachable from the

initial state {go} and pairwise inequivalent.

Claim 6 . Every set of states in the form ^ Pa U Pb , where Pa C Qa — FA —

{q0,qm- 1} and PB C QB — FB — {po,pn- i } , is reachable from the initial state {go}-

Proof, i) Every set of states {g*}, 1 < i < m — 4, and {p j}, 1 < j < n — 3, is

obviously reachable from the initial state {go}- Using only a-transition we can reach

any of the state {g^}, 1 < i < m — 4, since SA(qo,al) = qi, 1 < i < m — 4. Next,

we have <5({gm_4},6) = {gm- 2,Po} and then <5({gm_2,Po}, a) = {pi}- Now, using only

a-transition we can reach any of the state {p j}, 2 < j < n — 3, from {p i}, since

SB(pi,aJ) = p^ 2 < j < n - 3.

ii) Let the set of states X A = {gq , g*2, qik}, 1 < ?i < z2 < ... < < m — 4, be

reachable from {go}- We will prove by induction process that PA = X A U {qik+1} is

also reachable from {go}-

Base case: If k = 1 then |P/i| = 1 and PA = {g*}, 1 < i < m — 4. We already

proved that {g^} is reachable from {go}-

Induction: If X A is reachable from {g0} then using only a-transition we can shift

each state in X A until we reach the state gm_4. Next a-transition will add gm_3 and p0

to the set, and then next a-transition will add gm_2, po, and p4, while removing state

from front of X A. After some repetition we will reach the state set {g0}UXAU{pn_2}-

Then by next a-transition we will reach PA.

60

iii) Let the set of states X B = {Pi1,Pi2, ■■■■,Pik)i 1 < *1 < ¿2 < < n — 3, be

reachable from {go}- We will prove by induction process that Pb — X b U {Pik+1} is

also reachable from {go}-

Base case: If k = 1, then \PB\ = 1 and PB = {Pj}, 1 < j < n — 3. We already

proved that {p j} is reachable from {go}-

Induction: If X b is reachable from {g0} then using only a-transition we can shift

each state in X b until we reach the state pn- 3- Next a-transition will add pn~2 and

go to the set while removing state from front of X b - After some repetition we will

reach the state set {gm- 2,Po} U X b - Then by next a-transition we will reach PB.

iv) Now, we will prove the set of states of the form Pa U Pb, where 4> ^ Pa Q

Qa ~ Fa ~ { g o , Qm-i} and (f> ^ PB Q Qb ~ Fb ~ {Po,pn- i }, is reachable. There are

three cases.

Case 1 : \Pa \ > 1 and \PB\ = 1

Case 2: \Pa\ = 1 and \PB\ > 1

Case 3: \Pa \ > 1 and \PB\ > 1

Case 1 : Let us assume PA = {qu,qi2, ...,qik+1}, 1 < i\ < 12 < ••• < k+i < m - 4,

and PB = {Pj}, 1 < j < n ~ 3.

Let X A = {gin gj2, ...,gifc}, 1 < h < i2 < ■■■ < ik < m - 4, and X A U {p j} is

reachable from {go}- If we use a-transitions then each state in X A as well as the state

Pj will be shifted to the next state. If any of the state in X A reaches gm_4 or gm_3,

then the next transition will add po to the set. Similarly, if pj reaches pn_3, then the

next transition will add go to the set. Therefore, after some repetition we will have

the set of states as {g0} U X A U {p j-1}. In some cases, we may have {gm- 2,Po,i'j-i},

j — 1 ^ 0, in the same set. We can easily eliminate {gm_2,Po} if we use 6-transition in

stead of a-transition so that finally only one pj exists in the set. By next a-transition

we will reach X A U {qik+1} U {p j}, i.e., PA U {pj}- If we reach the set of states as

61

{q0}U X AU{qm-2,P o,P j-i}, then by next 6-transition we will reach X AU{qlk+]}U {p:j},

i.e., PA U {pj}.

Case 2: Let PB = {Pp,Pj2, —,Pjk+1}, 1 < ji < h < ••• < Jk+i < n - 3, and

Pa = {?*}, 1 < * < m - 4.

Let X B = {pjj,Pj2,...,Pjfc}, 1 < j\ < h < - < jk < n - 3, and {g*} U l B is

reachable from {go}- If we use a-transitions then each state in as well as the

state qi will be shifted to the next state. If any of the state in X B reaches pn- 2, then

the next transition will add g0 to the set. Similarly, if qi reaches qm- 4 or qm- 3, then

the next transition will add p0 to the set. Therefore, after some repetition we will

have the set of states as {q i-i,qm- 2,Po} U X B. By next a-transition we will reach

{qi} U X B U {pjk+l}, i-e., { * } UPB-

Case 3: When any state q £ PA reaches either qm- 3 or gTO_2, Po is added to the

current set. So, from X'AU{qm- 3 , po}U X R we can reach X AUPB. where X'A, X"A C PA

and X B C PB. Similarly, when any state p € PB reaches 2, go is added to the

current set. So, from X ALSX'BU{q0,pn^2} we can reach PAUXB, where X'B, X ”H C PB

and X A C PA. Thus we can reach any set of states of the form PA U PB, where

Pa Q Q a - Fa - {go, gm_ i} and (f) ^ PB C QB - FB - {p0,pn- 1}. □

Claim 7. Every set of states in the form PA{j{qm- 3 , Po}U PB and PAU{qm- 2,Po}UPB,

where PA C Q A - F A - {g0, gm_ i} and PB C QB - FB - {p0,pn- 1} ? is reachable from

the initial state {go}-

Proof. In claim 6, we proved that PA U PB is reachable from {g0} where

Pa = { qu,Qi2, -.ftfc+i}, 1 < ¿1 < *2 < - < ik+i < m - 4, and

Pb = {Pn,Pj2, - ,P j l+l}, 1 < 3i < 32 < - < ji+ 1 < n - 3 .

Therefore, {g0} U X A U I b U {Pn-2} is also reachable where

X A = {qi,,qi2, . . . ,g ij , 1 < ii < 12 < ••• < ik < m - 4, and

62

pB = {Ph,Pj2, - ,P j l+J , 1 < ji < h < - < 3i+i < n - 3 .

Now, if we use a-transition then gm_3 and p0 will be added to the set, i.e.,

<5({go} U X A U X b U {pn- 2}, a) = Pa U {gm-3iPo} U Pb-

But if we use 6-transition then qm - 2 and po will be added to the set, i.e.,

<5({go} U X a U X b U {pn- 2}, 6) = Pa U {qm- 2 ,Po} U Pb -

□

Claim 8 . The state {qm-i,Pn-\) is reachable from {go}-

Proof. We have S(q0, bm~2) = {qm- 2,Po} and b) = {qm-i,P n-i}- □

Claim 9. Every set of states in the form {g0} U Pa U Pb U {pn_2}, where Pa C

Qa — Fa — {qo,qm- i } and PB C QB — FB — {po,pn- i } , is reachable from the initial

state {go}-

Proof. We proved earlier that P\ U PB is reachable. Therefore, P'A U P'B U {pn- 3}

is also reachable where P'A is the set of states from PA making each state shifted

1 step backward, and P'B is the set of states from PB making each state shifted

1 step backward. Then using a-transition from P'A U P'B U {pn- 3} we will reach

{go} U P 4 U PB U {pn_2}. □

Claim 10. Every set of states in the form {g0} U PA U {gm- 3,Po} U PB U {Pn-2}

and {g0} U PA U {gm_2,p0} UPB U {pn- 2}, where PA C QA - FA - {g0, qm- i } , and

Pb C Qb — Fb — {po^Pn-i}; is reachable from the initial state {go}-

Proof. We can prove this claim using the claim 9. We can reach the set {g0} U PA U

{gm_3,Po}UPBU{j9n_2} using a-transition from P^U{gm- 4}U P^U {pn_3} and the set

{g0}UPAU{gm_2,po}UPBU{pn_2} using 6-transition from P^U{gm_4}U P 5 U{pn_3},

where P'A and P'B are defined as in claim 9. □

63

Claim 11. All the states in DFA C are pairwise inequivalent.

Proof. Let P = Pi U P2 and R = Pi U R2 be distinct states of Q, where Pi, Pi C QA

and P2, P 2 C Qb . Consider the case where P\ ^ R\. We assume that there exists an

element q E Pi — Pi, without loss of generality.

i) If q = qo, then P2 must contain pn- 2 and P 2 must not contain pn_2, since any

set of states containing the final state of B, pn~2, must contain q0 in the set. Since,

q0 is a final state of C, it implies that P is an accepting state of C and R is not an

accepting state of C, and consequently P and R are inequivalent.

ii) If q = qm-\, then we have P\ = {gm_ i} and P2 = 4>. Therefore, R\ = f> and

P 2 = {Pn-i}, since there is only set of states in DFA C which contains qm-i and pn-\,

i.e., {qm-i,P n -i}- That is, in this case P and R are inequivalent.

iii) If q = (ft, 1 < i < m — 4, then we claim that S(P,bm~l~4ban~2) e F and

S(R, 6m~l-46a"“ 2) ^ P. We can verify that SA transition function of DFA A takes the

state qt to qm- 4 on input bm~l~4. Then next ^-transition takes qm-A to qm- 2 which

adds po to the current set. Next an~2 input takes p0 to the final state of B, adding

qo to the current set.

On the other hand, we can see that while the transition function SA is taking input

bm- i - 4, two cases may occur:

1) The set Pi can reach the state gm_4 before reading all the input b. The next

input b will take the state qm- 4 to gm_2 and add p0 to the set. However, there will

still one or more than one 6-input remaining. So, the remaining input 6 will take p0

to the sink state of B , pn-i , and the input an~ 2 will keep the state pn- 2 unchanged.

2) Otherwise, the set Pi can reach the state up to qm- 5 while reading input bm~l~4.

The next input 6 will take qm_5 to qm-A- Now we will have only an ~ 2 input remaining.

64

If we read one a input gm_4 will be shifted to qm- 3 adding po to the set. Still we have

an~3 input. It is easy to see that po will reach p„_ 3 consuming an~3 input. That is po

will never reach pn- 2-, the final state of B.

Therefore, in both cases P and R are inequivalent.

iv) If q = qm- 3 or q = qm~2, then we claim that 8(P, abn~3) € F but 8(R, abn~3) ̂

F. It is easy to see that if gm_3 or qm_2 is in Pi, then P2 must contain po- Therefore,

R does not contain po. Now on input a, po will reach pi and then input bn~3 will take

Pi to the final state of B, pn_2, adding q0 to the current set.

On the other hand, on input a, if Pi reaches {gTO- 3,Po} ° r {qm-2,Po}, then input

bn~3 will take po to the sink state pn_i and stay there. In the mean time, other

states in P 2 will simply pass the state pn_2. Again, on input a, if Pi does not reach

{qm- 3 ,Po} or {qm-2,Po}, then it will take all or some of bn~3 input to reach the state.

However, reading the remaining input b, R will never reach pn_2. That is, P and P

are inequivalent.

The other case P2 7 ̂ P 2 can be proved in the similar way. Thus, we proved that

all the states in Q are pairwise inequivalent. □

6.3 Ratio Bound

We have an upper bound 5 • 2rn+n~6 and a lower bound 3 • 2m+n-6. We can see that

the lower bound does not coincide with the upper bound. We didn’t get the exact

state complexity of star of catenation yet. However, we obtained the approximation

of the state complexity for this combined operation. We consider the upper bound,

i.e., 5 • 2m+n-6, as the approximation of the state complexity of star of catenation and

the ratio bound for this approximation is

5
3

ĉ rri+n- 6

m̂+Tl-6
5
- = 1. 666.
3

66

Chapter 7

State Complexity of Star of

Intersection Operation on Finite

Languages

In this chapter, we will study the state complexity of the star of intersection operation

on finite languages. By star of intersection combined operation we mean that first we

combine two languages by intersection operation and then we do the (Kleene) star

operation on the resulting language from the intersection.

7.1 Upper Bound

In the following subsection, we will prove an upper bound for star of intersection

combined operation.

Lem m a 1. Given two minimal DFAs A and B accepting the finite languages L(A)

and L(B), respectively, mn — 3m — 3n + 12 states are sufficient for the intersection of

L(A) and L(B), where m and n are the numbers of states of A and B, respectively.

Proof. For proof the reader may refer to [7]. □

Let A = (Qa , L, 8a , Qo, Fa) be a complete DFA where \Qa \ = nr and \FA — {?o}| =

ka and B = (QB, L, 8B,Po, FB) be a complete DFA where \Qb \ = n and \FB — {po}| =

67

kb . Here, we assume that qm - 1 and p n - \ are the only sink states of DFA A and B .

respectively, without loss of generality. We will denote Fa — {¿7o} by F 'A and F B — {p0}

by F'b . For star-of-intersection combined operation we follow the following steps.

Step 1: We construct a DFA M = (Q m , E, 5M, (q o , P o) , Fm) by taking the Carte

sian product of states of A and B, where Q M = Q a x Q b , Fm = Fa x Fb , and the

transition function, 5m , for all q G Q A and p E Q B and a E E, is

$Af((q,p),a) = (5A(q,a),5B(p,a))-

So, we have L (M) = L (A) D L (B) and \ Q m \ = mn-

In the following when there is no danger of confusion, we will denote a singleton

set { (^ i) } by (i , j) where (i , j) G Q A x Q s .

Step 2: Next, we remove all the non-reachable states and merge all the equivalent

states in M to get the minimal DFA D = (QD, E, SD, (qo,Po), F D) where QD = {q | q G

Q m } , Fd = { / | / G Fm}, and 5D = SM- So, we have \ Q d \ = mn — 3m — 3n + 12 by

Lemma 1.

Step 3: Now, to perform the star operation we add e-transition from each of the

final states of D, f G F D , to the initial state of D , (q o , p o) and make the initial state

(q o , P o) also as a final state and thus get the NFA N = (Q n , E, 5 n , (q o , P o) , F N) where

Q n = Q d ,

\ f d i f (q o , P o) £ f d
Fn = \

F D U (q 0 , P o) otherwise,

68

and the transition function, ¿at, for all q € Qn and a G £, is

\sD(q,a) if SD(q ,a)£ F D
5N{q,a) = <

a) U (qQ,po) otherwise.

Step 4: Finally, we convert NFA N to a DFA by subset construction and then

minimize the DFA to get our minimal DFA C = (Q, E, 6, (qo,Po), F) which accepts the

language (L(A) n L{B))\ Here, Q = {Q 1 | 0 / Q' C QN}, F = {X C QN \ X n FN ^

0 }, and the transition function S, for Y C Q and for all u G E, is

. I {Sn {v, u) \y e Qn } i fSN(y,u) <£ FN
5(Y,u) = <

 ̂{6N(y, u)\y e Qn } U (q0, p0) otherwise.

Now, we calculate the upper bound by applying the following rules.

Rule 1: By Lemma 1, we have |Qjv| = mn — 3m — 3n + 12 states in step 3 in the

NFA N. So, after subset construction from NFA N, we will have at most the set of

states Q i , where Q i = { Q ' \ 0 ^ Q ' C Q ^}, in the DFA. The cardinality of Q \ is

10:
>mn—3m—3n+12

(7. 1)

Now we will find out the states which are not reachable and exclude those states from

the above number of states. Also, we will find out the equivalent set of states and

merge them.

Rule 2: A set of states in the DFA which contains the sink state (qm-uPn-i)

is equivalent to the set of states that contains no sink states but all other states

remaining the same because transitions from the sink state does not change the state.

69

That is, if Q' is a set of states such that (j) ^ Q' C QN — {(gm-i,i>n- i) } then

Q' = Q' U { (9 m - l , P n - l) } -

So, we can exclude the set of states Q2 = {P | P = Q' U {(gm_i,p „_ i)} and (f> ^ Q' C

Qn ~ {(qm-i ,p n-\)}} and thus

\Q2\ = 2mn- 3m- 3n+u - 1. (7.2)

Rule 3: Since after star-of-intersection operation we made the initial state (qo,Po)

also as a final state, then any set of nonfinal states in the DFA C which contains the

initial state (qo,Po) doesn’t exist.

We have \F'A j = ka and \F'B\ = kb. So, we have ka x kb final states, excluding

{QoiPo) if {Qo,Po) ^ Pm , in the DFA M. But according to the Lemma 5 of [7], a state

(qi,pn- 2), for 1 < i < m — 3, is equivalent to the final state (qm- 2, Pn-2) if qi is a final

state of A. Similarly, a state (qm- 2,Pj), for 1 < j < n — 3, is equivalent to the final

state (qm_2,Pn-2) if Pj is a final state of B. So, if q 6 F'A — {qm- 2}, thep

(q,P n-2) = (qm-2,Pn-2),

and if p e F'b - {pn- 2}, then

(qm—2,P) — iji‘m—2,Pn—2̂ -

Therefore, we already merged ka + kb~2 final states in DFA D. So, in DFA D as well

as in NFA N, we have kakb — ka — kb + 2 final states excluding (qo,po), if (qo,Po) £ FD.

Thus we have mn — 3m — 3n — kakb + k„ + kb + 8 nonfinal states in NFA N excluding

the sink state (qn- i ,p n-i) . So, we have to exclude the set of states Qz in the DFA

70

where
_ 2Trm“ 37n—3n—kakb+ka+kb+S (7.3)

Rule 4: Any set of final states in the DFA that doesn’t contain the initial state

(QoiPo) does not exist, since there is an ^-transition from each of the final states of

NFA N to the initial state (qo,Po)• So, we have to exclude the set of states Q4 where

(7.4)

Rule 5: The states {(go,Po)} and {(q0,p0), (qm- 2,Pn-2) } are equivalent because

the next transition from (qm_2,pn- 2) is always (gn_i,p„_i). Let the next transition

from {(go,Po)} be Q'■ Therefore, the next transition from {(go,Po), (qm- 2,Pn- 2)} will

be Q' U {(qm-i,P n -i)}- But, in rule 2, we proved that

Let i = level(qi) = the length of the longest word from q0 to ^ in DFA A , for

1 < i < m — 1, and

j = level(pj) = the length of the longest word from p0 to pj in DFA B , for

1 < j < n - l .

In the NFA N, the state {q^.Pj^ can only have transition to the state (qi2,Pj2) if

and only if both z2 > i\ and j 2 > ji- Otherwise, there will not exist any transition

from the state {q^.Pp) to the state (qi2,Pj2)• We will denote such states as mutually

exclusive. Now, after subset construction from NFA N to the DFA, there cannot be

any set of states where both {q^iPj^) and (qi2,Pj2) are in the same set in the DFA.

Of = Q' U {{qm-l,P n-l)}-

So, we can exclude 1 state, i.e.,

IQ5I — 1- (7.5)

Rule 6:

71

That is, if (qiiiPj-i), (qi2,Pj2), •••) iVikiPh) are mutually exclusive states in NFA N,

then Q' £ Q , where Q = {Pi | Px C QN} and (f> ± Q' C (qi2,Pj2), (ftfc,P j,)}}

and Q' is not a singleton.

To get the maximum number of states we consider in given DFA A and B, each

state except the initial state has level greater than the level of previous state, i.e.,

level(qi+i) = level(qi) + 1

level(pi+i) = level(pi) + 1.

Since, there is always a transition to the initial state (qo,Po), the final state

(qm- 2,p n- 2) and the sink state (qm-i,Pn-i) from all other remaining states in NFA

N , to calculate non-reachable set of states in DFA C we have to consider only the set

Q9 = Q n - {(go,Po), (?m-2,Pn-2), 0?n-i,Pn-i)}- Therefore, \Ql\ = mn - 3m - 3n + 9.

Let the reachable set of states in 2®' be 7Z. So, we have to exclude the non-reachable

set of states Qq, where

Qe = {P U P' | P' = (q0,Po) U P U (qm- 2,Pn-2), <f> ^ p Q Q 'andP £ K }, in the

DFA.

We will define a formula f(m ', n') which will calculate the number of reachable set

of states from (q-i,pi) to (qm>,pn')- Since we have non-reachable set of states among

states (qi,pi) to (qmSiPn-s), we have \TZ\ = f(m — 3,n — 3). Therefore,

|Q6| = 2{2mn- 3m- 3n+9 - 1 - |P|)

= 2{2mn_3m_3n+9 — 1 — f(m — 3,n — 3)},

i.e.,

\Qe\ = 2mn_3m_3n+1° - 2 • f(m - 3, n - 3) - 2. (7.6)

72

Finally, subtracting total number of states in 7.2 to 7.6 from 7.1, we get the upper

bound, i.e.,

I <91 = |<9i| — (IQ2I + IQ3I + + IQ61) -

After calculating we get the following result

|Q| = 2 - / (m —3,n —3) + 2. (7.7)

Calculating f(m ',n '): Here we will use (qi,Pj) —> {qi^Pf) notation to denote that

the states (q i , P j) and (1j i ' , P j ') are not mutually exclusive, i.e., each state in the left

side of the arrow has transition to each state in the right side of the arrow. So, in the

DFA there can be set of states where both (qi,Pj) and (qi>,Pj>) exist in the same set.

There are some cases we have to consider:

Case 1. If i = 1 and j = 1 then for [q^pj), we get

(qi,Pi) —> (qi',Pj>) for i + 1 < i! < m' and j + 1 < j' < n'

(qi,Pi) —> (qi',Pj') for i + 2 < i' < m! and j + 1 < j' < n' — 1

(quPi) (qi'iPp) for i! = m' and j' = j + 1.

Thus we will get at most

m!

1 + Yh (2m'_i'+2 - 2) = 2m' - 2m! - 1
i f= i + 1

reachable set of states.

Case 2. Again if i = 1 and j = 1 then for (q^pj), we get

(qiiPi) —»■ (qviPj') for i + 1 < i' < m! — 1 and j + 2 < j' < n'

(qi,Pi) —>■ (qi'iPy) for i + 2 < i' < m' — 2 and j + 3 < j ' < n'

(q u P i) - t (q i ' , P f) for i' = i + 1 and j ' = n ' .

73

Thus we will get at most

(r ' - i '+ 2 - 2) = 2’
j ' = j + 2

2 n'

reachable set of states.

Case 3. For i = 2 to m! — 1 and j = 1, we get

(q u P i) -> (q i ' , P f) for z + 1 < i' < m! - 1 and j + 1 < / < n' - (z - j)

(9i,Pj) ->• (q i ' , P j >) for i + 2 < i' < m! - 2 and j + 2 < / < n' - (z - j) - 1

(quPj) - » (ft './y) for *' = V and / = j + 1.

Thus we will get at most

m '-l m ' - l

^ 2 i 1 + (2m' - i,+1 - l) > = (2m'“ i+1 - 1 - r r i + i)
i=2 l i'=i+1 ¿=2

= 2nt' — 1 m'tm' — 1) 1 — 3

reachable set of states.

Case 4. For i = 2 to m' — 1 and j = 1, we get

(qi,Pj) -> (qv,Pj>) for z + 1 < i' < m! — (* — j) + 1 and j + 2 < j ' < n'

(■quPj) -> (qi',Pj') for i + 1 < i' < m! - (i — j) and j + 3 < j ' < n'

{qv,Pj>) for i! = * + 1 and j = n .

Thus we will get at most

>m'—i'+l _ + £ (2"/-J,+1 - 1)
f=i-f 1

m '-l I j f=i
E < E (a-
i=2 Jv=j+2

m7 —1 m' —1
= E {(i-2)(2m'-i - l) }+ E (2il'-i+1 - 2 - n' + i)

¿=2 ¿=2
= 2m'~1—2m'+2—| W V V j + 2̂"' - 2n' - m'+2 - m V + 2n' + | m'V ~ 5)| + 3j

reachable set of states.

Case 5. For i = m! and j = 1, we get only (qmi,Pi), i.e., 1 state.

Case 6. For i = 1 and j = 2 to n' — 1, we get

(qi,Pj) - t (qi>,Pj>) for i + 1 < i! < m! - 1 and j + 1 < j ' < n' - (i - j)

(qi,Pj) -> (qi>,Pj>) for i + 2 < i' < m! - 2 and j + 2 < j ' < n' - {i - j) -

(■Qi,Pj) -> (qi>,Pj>) for i' = m! and j ' = j + 1.

Thus we will get at most

reachable set of states.

Case 7. For i = 1 and j = 2 to n' — 2, we get

{quPj) - » (qi>,Pj>) for z + 1 < i! < m! - (i - j) + 1 and j + 2 < j ' < u'

(■quPj) (qi',Pf) for z + 1 < i! < m! — (z — j) and j + 3 < j' < n'

(qi,Pj) -> {qv,Pj>) for i! = i + 1 and / = n'.

Thus we will get at most

j=2 j=2

\ nf—2

j=2 Vj'=j+2
>

i —9

reachable set of states.

Case 8. For z = 1 and j = n', we get only (gi,pn/), i.e., 1 state.

75

Adding the number of above reachable set of states we get

h{m ',n ') = 9 • 2m'~1 + 7 • 2n'~l
m! + 3)
~2

4(2m'-n' + _ 2m'n' _ j

n'(n' + 3) 1
2 (7.8)

We have considered above only 1 state in left side of the arrow. Now we will

Case 1. For i = 1 and j = 1, and i' = i + 1 to m! — 2 we have

(<7i)ih)> (Qi',Pr) i' + 2 < i" < m! and j' + 1 < j " < n' — 1

(tfnih), (<li',Pj>) -> (qi",Pf'), i' + 3 < i" < m! and j' + 1 < j " < n; - 1

(gi,pi), (Qi',Pj') -»■ (qi",Pj"), i" = m' and / ' = / + 1.
Thus we will get at most

consider more than one state in left side of the arrow. We have to consider some

cases as follows:

reachable set of states. But in the left side of the arrow if we have c > 2 states

then we will get at most

reachable set of states. Let

{m! - i! - 3)(2m'~i,+1) + 2m! - 2i' + 6. (7.9)

76

So, we have at most
m' - 2

¿'=¿+1

reachable set of states.

Case 2. Again for i = 1 and j = 1, i' = i + 1 to m' — 1 we have

(<7i,Pi), (Qi",Pj"), i' + 1 < *" < rn! - 1 and j ' + 2 < j" < n'

(qi,Pi), (qi>,Pf) -> (qi",Pj"), i' + 1 < i" < m1 - 2 and j ' + 3 < j" < n'

(quPi), {qi',Pj') -> (qi»,Pj»), i" = i '+ 1 and / ' = n'.
Thus we will get at most

reachable set of states. But in the left side of the arrow if we have d > 2 states

then we will get at most

i '= 2 t i " = j '+ 2

reachable set of states. Let

d - 2 , d ~ d + 1
(n' - / - 3)(2n'^ '+1) + 2n' - 2 f + 6. (7.10)

= m '- l

^ 2
i f ~ i + 1
j'=j+1

So, we have at most

77

reachable set of states.

Case 3. Similar to the above cases, for i = 1 and j = 1, and i1 = i + 1 and j' = j + 2

to n' — 1, we will get at most

j , = n f — 1 n '—2
X I { / 3 (" C < C /) } + X {/4(rM/,n ,,z,>/) }

j '= j + 2 j ' = j + 2
¿/=i+l

reachable set of states.

Case 4. For i = 2 to m! — 1 and j = 1, and i' = i + 1 to m! — 1 we will get at most

m! —2 i ' =m' — 1X { / 3 (m ' , n ' , z ' , /) } + X { / 4 (m ' , n , , i ,) /) }
i'=i+l i/=z+l

reachable set of states.

m'-l
E
i =2

Case 5. For i — 2 to m' — 1 and j = 1, and i' = i + 1 and / = j + 2 to n' — 1 we will

get at most

m! — 1

E
f = n f~ 1
X {/sO'X,

f '= J+ 2

n —2
f)}+ X CM™',

¿'=¿+2

reachable set of states.

Case 6. For i — 1 and ̂ = 2 to n' — 1, and = z + 1 to m! — 1 we will get at most

n' — l
E X {hi™!,riJd')} + X {/4(ra',n', *',/)}

i'=Z+l ¿'=1+1
0>=3 +1

reachable set of states.

78

Case 7. For i — 1 and j = 2 to n' — 1, and i' = i + 1 and j ' = j + 2 to n' — 1 we will

get at most

n' - 1

E
3= 2

j '=ri- 1 n'—2

Y {/3 (m /,n /, ^ { / 4(ra',n', * ' , /) }
j '= j+2 =̂¿+1 j ’=j+2

reachable set of states.

Finally, adding the above reachable set of states we get
i=m, — l

f 2(m',n') = E
i=l,j=l

m! —2 z7—m' —1
E {/aim ', n', i 'J ')} + E {/iirn '.n ', * ' , /) }

¿' = ¿+1
j ' = j +1

- E { / 3 (m / , n ' , * , , j ,) } + E {.AO',
j'= j+2 j'=j+2
i' =i+ 1

j=n' —1
+ Ej=2,z=l

m!—2 i'=m’ — 1

¿'=¿+1 z'=z+1
j'=J+l

j ,=nf — l n'—2
+ E j')} + E {/4(m/, 7i#, *',y)}

j ' = j + 2 j ' = j - \ - 2
i1 =i-\-1

i.e.

/ 2(m', n') = {m '(n ')2 + m'n' — 5(n')2 — 13n' + 4}2m,_2

+ {(m ')2n/ + m'n' — 5(m')2 — 13m' — 2 n' + 14}2”,_2

+ - { (m ')3 + (n')3 — 6(m')2 — 6(n')2 + 9 (m')2n' + 9m'(n')2O
-6 m V H- 29 m! + 23 n' — 30). (7.11)

79

Therefore,

f (m , n) = /i(m ',n) + f 2(m ,n)

= { m'(n')2 + m'n' — 5(n') 2 — 13 n' + 22}2m'~2

+ {(m ')2n' + m'n' — 5 {m')2 — 13 m' — 2 n' + 28}2"~2

_-j- 2n'~m')

+ i{2 (m ') 3 + 2(n') 3 + 18(m')2n' + I8m!(n')2 — 15(m')2

-1 5 (n ')2 - 24m'n' + 49m' + 37n' - 66}.

Now, if we put m! = m — 3 and n! — n — 3 in equation (7.12), we will get

f(m — 3, n — 3) = (mn2 — 8n2 — 5mn + 6m + 32n — 2)2m 5

+(m2n — 8 m2 — 5 mn + 32 m + 4n + 10)2n-5

_4^2171—71 _|_

+ -(2m 3 + 2n3 + 18m2n + 18mn2 — 87 m2 — 87 n2
6

—2407rm + 751m + 739n — 1890).

Finally, putting this value in equation (7.7), we get

|Q| = (mn2 — 8n2 — 5mn + 6m + 32n — 2)2m~4

+ (m2n — 8m2 — 5mn + 32 m + 4n + 10)2n~4

_ 8 (2m-n + 2n-m^

+ ̂ (2m3 + 2773 + 18m2n + 18mn2 — 87 m2 — 87n2
O

—240mn T 751m + 739n — 1884).

(7.12)

(7.13)

We can see that if ka = 1 and kb = 1, then to perform the star operation, instead

of adding ^-transition from the final state of NFA N to the initial state (qo,Po),

80

we can simply merge the final state (qm- 2,Pn-2) with the initial state (go, po) and

remove the sink state (qm-i ,p n-i)- Thus we will get the minimized DFA accepting

(L(A) D L(B))*, where the DFA will have only mn — 3m — 3n + 10 states. So, we

need more than two final states in the NFA N, excluding (go,Po), he., ka, kb > 2, to

get the above upper bound. Hence, we get the following theorem.

Theorem 6. Let A = (QA,T,,SA,qo,FA) be an m-state complete DFA accepting the

finite language L(A) and B = (QB, E, SB,p0, FB) be an n-state complete DFA accept

ing the finite language L(B) such that \FA — {g0}| = ka and \FB — {po}| = kb and

ka,kb > 2. Then there exists a DFA of (mn2 — 8n2 — 5mn + 6m + 32n — 2)2m~4

+ (m2n — 8m2 — 5 mn + 32m + 4 n + 10)2” -4 — 8(2m~n + 2n~m) + |(2m3 + 2 n3 +

18m2n + 18mn2 — 87m2 — 87n2 — 240mn + 751m + 739n — 1884) states that accepts

the language (L(A) n L (B))*.

7.2 Lower Bound: Open Problem

It is still an open problem whether there is a worst-case example that reaches the

above upper bound. It is obvious that for a fixed size alphabet this upper bound

cannot be reached. We didn’t get the lower bound for star of intersection operation.

But applying the following example, we found in our experiment that the number of

states in the minimal DFA accepting (L(A) Pi L(B))* is close to the upper bound. So,

we propose the following example that might be suggestive and helpful to find out

the lower bound.

Example. Let m and n be positive numbers and |E| = m + n where

E = {c, d, e, / , g , h} U {a^, bi\l < k < m — 3 and 1 < l < n — 3}.

Let A = (Qa , E, SA, go, FA) where QA = {g0, g i,..., qm- 1}, FA = {gm_3, qm-2} and

SA be defined as follows:

81

• Sa {Qî, c)
qi+ 1 for 0 < i < m — 2

qm-\ otherwise

• SA(qi,d)
qi+ 1 for 0 < i < m — 2 and i ^ m — 4

qm-i otherwise

• ôA{qi,e)
qm- 2 if i = m - 4

çm_i otherwise

• SA(qi,f)
qm- 2 if i = m - 3

çm_i otherwise

ôA(q»g) = <

qi+i for 0 < i < m — 2 and i ^ m — 4

qm- 2 if i = m - 4

gm_! otherwise

SA(qi,h) = <

qi+ 2 for 0 < z < m — 4

9m- 2 if i — ni 3

9m_i otherwise

<5A(qi, ûfc) = 9i+fc+i for 1 < /c < m — 3 and 0 < i < m — k — 2

{<qi+\ for 1 < l < n — 3 and 0 < i < m — 2

qm - i for 1 < l < n — 3 and i = m — 1.

All other transitions that are not mentioned above go to the sink state qm-\. DFA

A is shown in the figure 7.1 where m = 6 and 95 is the sink state. In the figure, we

omitted some transitions to the sink state for simplicity.

82

oiA ayjl «1 ,€,gth a i ,a 2,o. g

Figure 7.1: DFA A of 6 states to get the lower bound for star-of-intersection

Let B = (Q b , Y , , 6 b ,Po, F b) where Q B = {po,Pi, F B - { p n - ^ P n - 2 } and

SB be defined as follows:

$B{Pi,c) =

SB{pi,d) =

¿£>(Pi,e) =

Sb (PzJ) =

8b {Pu 9)

}pi+l for 0 < i < n —2

(Pn-1 otherwise

1 Pi+l for 0 < i < n —2 and i ^ n — 4

(ffn-l otherwise

1 Pn-2 if i = n — 4

[Pn-1 otherwise

I Pn-2 if i = n — 3

[Pn-1 otherwise

r
Pi+2 for 0 < i < n —4

Pn-2

CO1eII•<s>
t+H

Pn-1 otherwise

83

ôB(Pi,h) = <

Ôb { P ù a k) =

Pi+l for 0 < i < n — 2 and i ^ n — 4

Pn-2 if i = n — 4

Pn- 1 otherwise

I Pi+l for 1 < k < m — 3 and 0 < i <

Pn-1 for 1 < k < m — 3 and i = n —

• <5b (pî, bi) = Pi+i+1 for 1 < l < n — 3 and 0 < i < n — l — 2.

All other transitions that are not mentioned above go to the sink state pn-\. DFA

B is shown in the figure 7.2 where n = 6 and p5 is the sink state. In the figure, we

omitted some transitions to the sink state for simplicity.

,9 f>iyg b i , c , g J i 6i ,&2 i &3

Figure 7.2: DFA B of 6 states to get the lower bound for star-of-intersection

84

Chapter 8

Conclusion and Future Work

8.1 Conclusion

In this thesis we have studied the state complexity of star of union, star of catena

tion, and star of intersection combined operations on finite languages. For the first

combined operation, we have shown an exact bound and shown a worst-case example

which reaches the bound. We have proved an upper bound and a lower bound for

the second combined operation and shown an approximation of the state complexity

with a good ratio bound. Finally, for star of intersection combined operation we have

given an upper bound and suggested a worst-case example to achieve the lower bound.

From these results, we have seen that the state complexities of these combined op

erations on finite languages are different from the mathematical compositions of the

state complexities of individual operations on finite languages. Also, these results are

very different from the results of the similar combined operations on general regular

languages.

8.2 Future Work

There are still many combined operations on finite languages, such as reversal of

union, reversal of intersection, star of reversal etc., which have not been studied yet

and can be worthy research topics for future study. Also, combined operations on

85

more than two finite languages are worth of study. It will also be interesting to know

the lower bound for both star of union and star of intersection combined operations

for a fixed size alphabet.

86

Bibliography

[1] Jean-Camille Birget, Intersection and union of regular languages and state com

plexity, Inf. Process. Lett. 43 (1992), 185-190.

[2] Cezar Campeanu, K. Culik, Kai Salomaa, and Sheng Yu, State complexity of ba

sic operations on finite languages, Proceedings of the 4th International Workshp

on Automata Implementation, Lecture Notes in Computer Science, vol. 2214,

Springer Berlin / Heidelberg, 2001, pp. 60-70.

[3] Cezar Campeanu, Kai Salomaa, and Sheng Yu, Tight lower bound for the state

complexity of shuffle of regular languages, J. Autom. Lang. Comb. 7 (2002),

303-310.

[4] Ashok K. Chandra, Dexter C. Kozen, and Larry J. Stockmeyer, Alternation, J.

ACM 28 (1981), 114-133.

[5] Zoltán Esik, Yuan Gao, Guangwu Liu, and Sheng Yu, Estimation of state com

plexity of combined operations, Theor. Comput. Sci. 410 (2009), 3272-3280.

[6] Yuan Gao, Kai Salomaa, and Sheng Yu, The state complexity of two combined

operations: Star of catenation and star of reversal, Fundam. Inf. 83 (2008), 75-

89.

[7] Yo-Sub Han and Kai Salomaa, State complexity of union and intersection of finite

languages, Proceedings of the 11th international conference on Developments in

language theory (Berlin, Heidelberg), DLT’07, Springer-Verlag, 2007, pp. 217-

228.

87

[8] Yo-Sub Han, Kai Salomaa, and Derick Wood, Nondeterministic state complexity

of basic operations for prefix-free regular languages, Fundam. Inf. 90 (2009), 93-

106.

[9] Yo-Sub Han, Kai Salomaa, and Sheng Yu, State complexity of combined op

erations for prefix-free regular languages, Proceedings of the 3rd International

Conference on Language and Automata Theory and Applications (Berlin, Hei

delberg), LATA ’09, Springer-Verlag, 2009, pp. 398-409.

[10] Markus Holzer and Martin Kutrib, State complexity of basic operations on non

deterministic finite automata, Proceedings of the 7th international conference

on Implementation and application of automata (Berlin, Heidelberg), CIAA’02,

Springer-Verlag, 2003, pp. 148-157.

[11] Markus Holzer and Martin Kutrib, Unary language operations and their nonde

terministic state complexity, Proceedings of the 6th international conference on

Developments in language theory (Berlin, Heidelberg), DLT’02, Springer-Verlag,

2003, pp. 162-172.

[12] John E. Hopcroft, An n logn algorithm for minimizing states in a finite automa

ton, Technical Report CS-71-190 (1971).

[13] John E. Hopcroft, Rajeev Motwani, and Jeffrey D. Ullman, Introduction to au

tomata theory, languages, and computation (3rd edition), Addison-Wesley Long

man Publishing Co., Inc., Boston, MA, USA, 2006.

[14] Jozef Jiräsek, Galina Jiräskova, and Alexander Szabari, State complexity of con

catenation and complementation of regular languages, Implementation and Ap

plication of Automata (Michael Domaratzki, Alexander Okhotin, Kai Salomaa,

and Sheng Yu, eds.), Lecture Notes in Computer Science, vol. 3317, Springer

Berlin / Heidelberg, 2005, pp. 178-189.

88

[15] Galina Jirâskovâ, State complexity of some operations on binary regular lan

guages, Theor. Comput. Sci. 330 (2005), 287-298.

[16] Galina Jirâskovâ, On the state complexity of complements, stars, and reversals of

regular languages, Proceedings of the 12th international conference on Develop

ments in Language Theory (Berlin, Heidelberg), DLT ’08, Springer-Verlag, 2008,

pp. 431-442.

[17] George Anton Kiraz, Compressed storage of sparse finite-state transducers, Re

vised Papers from the 4th International Workshop on Automata Implementation,

WIA ’99, Springer-Verlag, 2001, pp. 109-121.

[18] Ernst Leiss, Succinct representation of regular languages by boolean automata,

Theoretical Computer Science 13 (1981), no. 3, 323 - 330.

[19] Guangwu Liu, Carlos Martin-Vide, Arto Salomaa, and Sheng Yu, State complex

ity of basic language operations combined with reversal, Inf. Comput. 206 (2008),

1178-1186.

[20] A. N. Maslov, Estimates of the number of states of finite automata, Dokl. Akad.

Nauk SSSR 194 (1970) 1266-1268 (in Russian) (1970).

[21] Filippo Mera and Giovanni Pighizzini, Complementing unary nondeterministic

automata, Theor. Comput. Sci. 330 (2005), 349-360.

[22] Cyril Nicaud, Average state complexity of operations on unary automata, Pro

ceedings of the 24th International Symposium on Mathematical Foundations of

Computer Science, MFCS ’99, Springer-Verlag, 1999, pp. 231-240.

[23] Giovanni Pighizzini, Unary language concatenation and its state complexity, Re

vised Papers from the 5th International Conference on Implementation and Ap

plication of Automata (London, UK), CIAA ’00, Springer-Verlag, 2001, pp. 252-

262.

89

[24] M. O. Rabin and D. Scott, Finite automata and their decision problems, IBM J.

Res. Dev. 3 (1959), 114-125.

[25] B. Ravikumar and 0. H. Ibarra, Relating the type of ambiguity of finite automata

to the succinctness of their representation, SIAM J. Comput. 18 (1989), 1263-

1282.

[26] Arto Salomaa, On the reducibility of events represented in automata, (Annales

Academiae scientiarum Fennicae), Suomalainen tiedeakatemia, 1964.

[27] Arto Salomaa, Kai Salomaa, and Sheng Yu, State complexity of combined oper

ations, Theor. Comput. Sci. 383 (2007), 140-152.

[28] Arto Salomaa and Ian N. Sneddon, Theory of automata, Pergamon Press Reprint,

1969.

[29] Kai Salomaa and Sheng Yu, On the state complexity of combined operations and

their estimation., Int. J. Found. Comput. Sci. (2007), 683-698.

[30] Jeffrey Shallit, State complexity and Jacobsthal’s function, Revised Papers from

the 5th International Conference on Implementation and Application of Au

tomata (London, UK), CIAA ’00, Springer-Verlag, 2001, pp. 272-278.

[31] Sheng Yu, Handbook of formal languages, vol. 1. Chapter 2: Regular languages,

Springer-Verlag New York, Inc., New York, NY, USA, 1997, pp. 41-110.

[32] Sheng Yu, State complexity of regular languages, J. Autom. Lang. Comb. 6

(2001), 221-234.

[33] Sheng Yu, State complexity: Recent results and open problems, Fundam. Inf. 64

(2004), 471-480.

90

[34] Sheng Yu and Yuan Gao, State complexity research and approximation, Develop

ments in Language Theory (Giancarlo Mauri and Alberto Leporati, eds.), Lec

ture Notes in Computer Science, vol. 6795, Springer Berlin / Heidelberg, 2011,

10.1007/978-3-642-22321, pp. 46-57.

[35] Sheng Yu and Qingyu Zhuang, On the state complexity of intersection of regular

languages, SIGACT News 22 (1991), 52-54.

[36] Sheng Yu, Qingyu Zhuang, and Kai Salomaa, The state complexities of some

basic operations on regular languages, Theor. Comput. Sci. 125 (1994), 315-328.

	State Complexity of Combined Operations on Finite Languages
	Recommended Citation

	tmp.1642709657.pdf.2RKw3

