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Abstract

Observing nearby galaxies with submillimeter telescopes on the ground has two major challenges. First, the brightness
is significantly reduced at long submillimeter wavelengths compared to the brightness at the peak of the dust emission.
Second, it is necessary to use a high-pass spatial filter to remove atmospheric noise on large angular scales, which has
the unwelcome side effect of also removing the galaxy’s large-scale structure. We have developed a technique for
producing high-resolution submillimeter images of galaxies of large angular size by using the telescope on the ground
to determine the small-scale structure (the large Fourier components) and a space telescope (Herschel or Planck) to
determine the large-scale structure (the small Fourier components). Using this technique, we are carrying out the
HARP and SCUBA-2 High Resolution Terahertz Andromeda Galaxy Survey (HASHTAG), an international Large
Program on the James Clerk Maxwell Telescope, with one aim being to produce the first high-fidelity high-resolution
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submillimeter images of Andromeda. In this paper, we describe the survey, the method we have developed for
combining the space-based and ground-based data, and we present the first HASHTAG images of Andromeda at 450
and 850 μm. We also have created a method to predict the CO(J= 3–2) line flux across M31, which contaminates the
850 μm band. We find that while normally the contamination is below our sensitivity limit, it can be significant (up to
28%) in a few of the brightest regions of the 10 kpc ring. We therefore also provide images with the predicted line
emission removed.

Unified Astronomy Thesaurus concepts: Interstellar dust (836); Dust continuum emission (412); Andromeda
Galaxy (39); Submillimeter astronomy (1647)

1. Introduction

The Andromeda galaxy (Messier 31) is possibly the most
frequently observed galaxy in the sky. Galaxies in the Local
Group are important for the obvious reason that they are
closest, allowing us to study galaxies in the greatest possible
detail, but they are also important because they are the only
galaxies in which we can detect large numbers of individual
stars. The ability to see stars adds a large number of
investigative tools to the astronomer’s toolkit, which are not
possible to use on galaxies outside the Local Group.

There are only three spiral galaxies in the Local Group: our
own, Andromeda, and the Triangulum (Messier 33). The
Triangulum has a mass roughly ten times less than our own,
but Andromeda has a mass and other properties that are quite
similar to our own (Yin et al. 2009). However, there are also
some interesting differences. Andromeda has a larger bulge
(Yin et al. 2009), less obvious spiral arms (Gordon et al. 2006;
Kirk et al. 2015), and much of the star formation in the galaxy
is occurring in a large ring (Ford et al. 2013). The cause of this
ring is unknown. One interesting suggestion is that the ring
may be the result of the dwarf galaxy M32 passing through the
center of the disk, generating a density wave, and thus a wave
of star birth that propagates outward through the disk (Block
et al. 2006). This now seems unlikely since the star formation
history in the disk has no obvious radial gradient (Lewis et al.
2015), and the cause of the ring remains a mystery.

An iconic naked-eye object, Andromeda has now been
observed by professional astronomers for over a thousand
years. It was discovered, or at least first mentioned, in 964 by
the Persian astronomer Abd al Rahman al-Sufi (Book of Fixed
Stars). In the eighteenth century, it was observed by William
Herschel, who noticed the red colors of the central bulge
(Herschel 1785). In the twentieth century, Edwin Hubble used
the Cepheid variables in the Andromeda Nebula to show that
the nebula is actually a galaxy (Hubble 1929). In the modern
era, Andromeda has been surveyed by virtually every modern
observatory. A very incomplete list of the telescopes that have
surveyed Andromeda includes XMM-Newton which surveyed
the galaxy in X-ray (Stiele et al. 2011), GALEX in the
ultraviolet (UV, Thilker et al. 2005), Spitzer in the mid- and
far-infrared (Barmby et al. 2006; Gordon et al. 2006), Herschel
in the far-infrared and submillimeter (Fritz et al. 2012; Smith
et al. 2012; Draine et al. 2014), Westerbork and the Very Large
Array (VLA) in the radio 21 cm line (Braun et al. 2009; Koch
et al. 2021), and the IRAM 30 m telescope in the CO(J= 1–0)
line (Nieten et al. 2006). The northern third of the galaxy has
also been observed with Hubble in the Panchromatic Hubble
Andromeda Treasury Survey (PHAT), which detected ;117
million stars (Dalcanton et al. 2012).

A glaring omission on the list is a submillimeter telescope on
the ground, from where it is possible to get much better angular
resolution than is possible with the small mirrors of space

telescopes. The angular resolution of the Herschel observations
of Andromeda at 500 μm was 36″ (FWHM), which is
equivalent at the distance of Andromeda (780 kpc, de Grijs &
Bono 2014) to a spatial resolution of about 136 pc, roughly the
size of an association of giant molecular clouds (GMCs). But
with the SCUBA-2 camera on the James Clerk Maxwell
Telescope (JCMT), the world’s largest submillimeter telescope,
it should be possible to map Andromeda at 450 μm with a
resolution of ;8″, equivalent to a spatial resolution of ;30 pc,
slightly less than the size of a typical GMC. The reason that
such a map has not previously been created is due to the
atmospheric noise in the submillimeter wave band, which
requires the data to be filtered strongly on angular sizes larger
than that of the field of view of the camera, which is 45 arcmin2

in the case of SCUBA-2 (Holland et al. 2013), much smaller
than the 3× 1 deg2 (∼10 arcmin4 2) that Andromeda occupies
on the sky.
The solution to the problem is to combine data from a space

observatory with data from a camera on the ground, using the
camera on the ground to produce the high-resolution informa-
tion and the observatory in space to determine the large-scale
structure. In Fourier terms, we use the space data from Herschel
and Planck to provide the low-k Fourier components and the
camera on the ground to provide the high-k components.
We are using this technique to carry out a large survey of

Andromeda with the JCMT: The HARP and SCUBA-2 High
Resolution Terahertz Andromeda Galaxy Survey (henceforth
HASHTAG). HASHTAG has been awarded 276 hr on the
telescope, most of which is being used to carry out a survey
with SCUBA-2 at 450 and 850 μm (221/275 hr). The rest of
the time has been used to carry out a survey in the CO(J= 3–2)
line with HARP in 12 regions covering a total area of
60 arcmin2 within Andromeda’s disk. By combining the data
from SCUBA-2 with the Herschel images of Andromeda at six
wavelengths, using an algorithm that does not require any
smoothing of the data or assumptions about the temperature of
the dust (Marsh et al. 2015), our goal is to produce maps of the
bolometric dust emission and of the dust column density as a
function of dust temperature and dust emissivity index (β) with
a resolution of ;25 pc at ;70,000 independent positions within
the galaxy—maps that will be used for a large range of
scientific projects.
The CO part of HASHTAG has been completed and the

results published in Li et al. (2020). The continuum part of
HASHTAG is now about 70% complete and we have recently
made the first full mosaics. The images cover the entire galaxy
and have reached full sensitivity in the one third of the disk that
has been covered by Hubble by PHAT (Dalcanton et al. 2012),
by the Combined Array for Research in Millimeter wave
Astronomy in the CO(J= 1–0) line (Caldú-Primo &
Schruba 2016), and by higher-resolution (∼10″) VLA H I
observations (Koch et al. 2021). By using the Herschel image
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at 500 μm (Fritz et al. 2012) and the Planck image at 850 μm
(Planck Collaboration et al. 2015) to fill in the low-frequency
(low-k) Fourier components, we have produced the first high-
fidelity images of Andromeda from the ground, at two
wavelengths, 450 and 850 μm (Figure 1). These images are
being used in the first round of HASHTAG science papers.

This paper gives an overview of HASHTAG and describes
the observations and data-reduction procedure used to generate
the images shown in Figure 1, including a description of the
technique we have developed to combine the space-based and
ground-based continuum submillimeter observations, and the
measures we have taken to optimize the pipeline parameters.
All data products and codes presented here are available on the
HASHTAG website.41 Future data releases will also be made
available on this site.

The organization of the paper is as follows. Section 2 gives
an overview of the science program that can be carried out with
these images. Section 3 describes the observing method and
mapping strategy. Section 4 describes the data-reduction
pipeline and the method used to combine the space-based
and ground-based data. Sections 5 and 6 describes the
extensive simulations that we have carried out to optimize
and test the data-reduction pipeline and combination method
described in Section 4. Section 7 presents our final reduced
maps, including some simple analysis of their properties.
Finally, Section 8 describes how we estimate the contamination
from CO(J= 3–2) in our continuum observations.

2. Overview of Science Program

In this section we give a brief overview of the scientific
projects that will be possible with the HASHTAG data set.
These mostly fall into two categories: dust and star formation.

2.1. Dust

Dust itself is interesting for two main reasons. First, it is of
great intrinsic interest because it is a vital phase of the
interstellar medium (ISM), containing half the heavy metals
(James et al. 2002) and being a catalyst in the networks of
chemical reactions in the ISM, including the vital one in which
atomic hydrogen is transformed into molecular hydrogen.
Second, mapping the continuum emission from dust grains is a
promising method for both mapping the ISM in galaxies and
estimating the total mass of the ISM (Hildebrand 1983; Eales
et al. 2012; Magdis et al. 2012; Scoville et al. 2014). The
standard tracer of the molecular phase, the CO molecule, has
many well-known disadvantages (Bolatto et al. 2013). There is
also now the more fundamental problem that one third of the
molecular gas in the Galaxy appears to contain no CO (Abdo
et al. 2010; Planck Collaboration et al. 2011; Pineda et al.
2013), and there are even galaxies in which the fraction of
“CO-dark” gas seems to be close to 100% (Dunne et al. 2021).
Some of the advantages of using dust grains rather than CO
molecules to trace the ISM are that the dust emission is
optically thin, dust grains are robust and not liable to be
destroyed by starlight, and the relationship between the gas-to-
dust ratio and metallicity seems to be much simpler than that
between CO abundance and metallicity (Eales et al. 2012;
Sandstrom et al. 2013; Rémy-Ruyer et al. 2014).
The biggest contribution that HASHTAG seems likely to

make to our understanding of the dust itself is to show how the
properties of dust vary within an individual galaxy. The earlier
Herschel observations of Andromeda revealed systematic
large-scale spatial variation in the properties of dust. The
emission from interstellar dust follows a modified blackbody
(Sν∝ Bν(Td)ν

β). The Herschel observations revealed that β
varies radially within Andromeda’s disk (Smith et al. 2012;
Draine et al. 2014; Whitworth et al. 2019), and radial variation
in β has subsequently been found in the Galaxy (Planck
Collaboration et al. 2014a), in M33 (Tabatabaei et al. 2014),
and in ;20 other galaxies (Hunt et al. 2015), although the form

Figure 1. The HASHTAG images created from the first ∼70% of the final SCUBA-2 data set. The 450 and 850 μm images have been smoothed with 7 9 and 13″
FWHM Gaussians, respectively. For the raw-resolution images see Figure 16.

41 https://hashtag.astro.cf.ac.uk/
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of the radial variation varies between galaxies (Hunt et al.
2015). There is also now some evidence that the global value of
β varies between galaxies (Lamperti et al. 2019). The variation
must be caused by changes in the structure, physics, or
chemistry of the dust, although what the key changes are is
currently unknown. One clue may be that in Andromeda β does
not appear to differ between low-density and high-density gas
(Athikkat-Eknath et al. 2021).

HASHTAG will produce measurements of β at ;70,000
positions in Andromeda’s disk, effectively producing a dust atlas
for Andromeda. The Hubble observations of one third of the disk
have produced estimates, from the optical extinction, of the
column density of dust with the same spatial resolution that
HASHTAG will provide (Dalcanton et al. 2012). The combina-
tion of measurements of the emission properties of dust from
submillimeter observations and the absorption properties of dust
from optical observations is a powerful one for testing theoretical
dust models. The emission and absorption properties of dust,
derived from Hubble and Herschel data, are already inconsistent
with all existing dust models (Whitworth et al. 2019). The
combination of the high-resolution measurements of β from
HASHTAG, the Hubble dust measurements, and the maps of the
ISM phases, star formation, chemical abundances, and other
properties that are available for Andromeda offers at least the
prospect of uncovering the physical/chemical causes of the
variation in dust.

The use of the dust emission to trace the ISM in Andromeda
offers a number of interesting possibilities. By comparing the
dust emission to the CO and H I emission it will be possible to
search for CO-dark gas in Andromeda (Planck Collaboration
et al. 2011; Sandstrom et al. 2013). It will also be possible to
produce catalogs of GMCs based on dust emission rather than
CO. This technique has already been applied to the Herschel
observations of Andromeda, producing a catalog of 326 clouds
with masses between 104Me and 107Me (Kirk et al. 2015). A
more recent study suggests that clouds found by the dust
method have a much lower CO-to-dust ratio than the clouds
found from their CO emission (Athikkat-Eknath et al. 2021),
suggesting there is much more variation in the properties of
clouds than one would expect from a CO-selected catalog. The
clouds in the Herschel catalog are probably associations of
GMCs rather than single GMCs, but with the extra resolution
of HASHTAG it will be possible for the first time to produce a
catalog of dust-selected clouds that are likely to be GMCs
rather than GMC associations.

2.2. Star Formation

One of the most important properties to measure within a
galaxy is the star formation rate, but there is still no gold-
standard way of doing this. There are at least 12 different
methods, which use different techniques for tracing the
obscured and unobscured star formation (Kennicutt &
Evans 2012; Speagle et al. 2014; Davies et al. 2016), all of
which have limitations, and none is clearly better than the
others.

HASHTAG will produce high-resolution maps of the
bolometric dust emission, which is a direct measurement of
the emission from the obscured OB stars, although it is really
an upper limit since much of the bolometric dust emission is
reradiated emission from the older stellar population (Bendo
et al. 2012, 2015; Kennicutt & Evans 2012; Ford et al. 2013;
Viaene et al. 2017). However, since Andromeda is close

enough for us to detect individual stars, there is at least the
possibility of combining Hubble observations of the unobs-
cured OB stars and the HASHTAG observations of the
emission from the obscured stars to provide a direct
measurement of the star formation rate, rather than the
measurements produced by the current methods, which mostly
rely on indirect tracers of the star formation. The PHAT team
made a first attempt to do this (Lewis et al. 2017), using optical
extinction measurements to correct for obscuration, but their
method was unable to account for the OB stars that are still
deep in GMCs and are completely hidden by dust. If it is
possible to correct for the part of the bolometric dust emission
that is reradiated emission from the older stellar population,
HASHTAG will provide estimates of numbers of these missing
OB stars.

3. Survey Strategy

HASHTAG is a JCMT Large Program (ID: M17BL005),
and is split into two components: the continuum submillimeter
observations of the entire galaxy and observations in the
CO(J= 3–2) line of selected regions.
We used 55.3 hr with HARP (Buckle et al. 2009) to observe

11 2′× 2′ fields and one 4′× 4′ field. We selected these fields
to cover a range of diverse ISM conditions in M31 and to
maximize overlap with useful ancillary data, e.g., Herschel far-
infrared spectroscopy (Kapala et al. 2015). Our observations
were carried out in 2017 using grade-3 weather, defined as
when the opacity at 225 GHz (τ225 GHz) is between 0.08 and
0.12, and reached a sensitivity of ;15 mK (antenna
temperature, Ta*) with an angular resolution of 15″ and spectral
resolution of 2.6 km s−1. A full discussion of our CO
observations is given in Li et al. (2020). The CO(J= 3–2)
line falls within the 850 μm continuum filter and so our CO
spectroscopic mapping is useful for assessing the effect of line
contamination on the continuum measurements.
The larger component of HASHTAG consists of the

continuum observations, which were allocated 221 hr in the
less-common grade-2 weather (0.05< τ225 GHz < 0.12) and
commenced in 2017 (expected to complete 2021). SCUBA-2
observes simultaneously at 450 and 850 μm, producing images
at the two wavelengths with the same field of view (Holland
et al. 2013) and angular resolutions of 7 9 and 13 0 at 450 and
850 μm, respectively (Dempsey et al. 2013). Our goal was to
observe the entire galaxy at both wavelengths.
Our continuum observing strategy is based on our

experience in a smaller project in 2015 (project M15BI082,
P.I. Smith) and was effectively HASHTAG’s pilot field. The
SCUBA-2 Pong observing mode is used for sources greater
than ∼5′ in size and can be used to map a circular region of
diameter 15′, 30′, or 60′ (since the design of HASHTAG a 45′
mode has been added). For the pilot we made a long Pong
exposure of a single circular region of diameter 30′. For this
field, we chose the position of the center so that this circular
region would also include a significant area in which there was
no obvious submillimeter emission in the Herschel images
from the galaxy itself, since we knew this “background region”
would help the data reduction to converge. The maximum
integration time for a SCUBA-2 observation is 45 minutes. We
chose an integration time of 43 minutes, repeating it 37 times.
We reached a sensitivity of 44.9 and 3.0 mJy beam−1 using 2 0
and 4 0 pixels, at 450 and 850 μm, respectively.
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Given the success of these observations, and our develop-
ment of a technique to use space-telescope data to replace the
large-scale structure severely suppressed by the filtering
necessary to remove atmospheric noise (see Sections 4 and
5), we realized it would be practical to use a similar strategy to
observe the whole of Andromeda.

We continued to use the 30′ Pongs, choosing the center of
each field so that the field contained a similar amount of blank
sky to the pilot field. This decision required us to have two
rows of Pongs along the major axis. To achieve fairly uniform
sensitivity we chose the positions of the centers so the circles
overlapped, as is shown in Figure 2. At each position we made
17 repeat observations of 43 minutes each. Since each position
in the galaxy will be covered by at least two Pongs, every point
in the galaxy will be observed, when the survey is complete, at
least 34 times, with a total integration time of 24.4 hr per 30′
diameter region, the same as the pilot survey. We also include
data from two significantly shallower projects (M12BU26 and
M13BU18) that also observed the entirety of M31.

There are two advantages of the design of the fields shown in
Figure 2. There is a very large amount of overlap in the
observations, especially as the area covered by a Pong is
somewhat larger than the nominal 30′ circle. This overlap and
redundancy in the data is a considerable help in the data
reduction, in particular for distinguishing real emission from
atmospheric emission. The second advantage is that the two
rows of Pongs overlap, so the sensitivity of the survey will be

much greater along the major axis of the galaxy, which
helpfully covers the central regions of Andromeda where the
dust emission is much weaker than in the star-forming ring.
Inspired by the discovery of luminous transients in the mid-

infrared (Kasliwal et al. 2017), one of our science goals is to
determine whether there are any luminous transient sources in
the submillimeter wave band. We have therefore split our 17
observations in each field into two sets of nine and eight
observations, with the aim of eventually producing two images
of Andromeda separated in time, so we can search for transient
phenomena. We have tried to prioritize our observations to
ensure that there is at least a six-month gap between the two
sets for each field, but due to the vagaries of the weather and
the flexible observing queue at the JCMT, it is impossible to do
this perfectly. However, we do achieve some time cadence in
the observations, which we will investigate in future works.

4. Data Reduction: 1. The Method

Big submillimeter data sets can be challenging to reduce, but
HASHTAG is particularly difficult. Large cosmology pro-
grams, for example, produce data sets as large as ours but they
have the advantage that the data can be reduced piecemeal; the
individual data sets are reduced separately and then the images
added together. We were not able to follow this approach
because we want to maximize our sensitivity to extended low
signal-to-noise emission, which required us to reduce all the
data together.
In this section we describe the elements of our method. In

Sections 5 and 6 we describe the sky simulations we carried out
to optimize the method. Unless stated otherwise, the methods
we used for the observations and for the data reduction are the
standard ones used for SCUBA-2 (Chapin et al. 2013;
Dempsey et al. 2013).

4.1. Initial Processing and Quality Review

As soon as one of our observations was made, we processed
it using a quick-look script that produced images at the two
wavelengths (450 and 850 μm) and saved the cleaned data from
the individual bolometers. We used these images to check for
any severe problems (e.g., array failures or low sensitivity),
which for SCUBA-2 data is extremely rare (only two out of
235 observations had issues). We used the saved bolometer
data from this initial processing as the input for the next stage,
which resulted in a considerable rationalization of the data,
since the initial processing converted the hundreds of raw data
files into just eight (one per array).

4.2. An Adaptable Skyloop: scubaDuperSkyloop

To reduce SCUBA-2 data, the observatory provides an
iterative data-reduction procedure called MAKEMAP, which at
the end of every iteration provides a better estimate of the
astronomical signal and the noise until no further improvement
is made. Here we provide a brief summary of the MAKEMAP
algorithm but refer the reader to Chapin et al. (2013) for full
details. MAKEMAP is provided as part of the STARLINK
software package (Currie et al. 2014), and throughout this
paper we use a recent development build of STARLINK (version
9072c4434 from 2020 April), because we required some
updates since the last 2018A stable release.
Initially MAKEMAP splits the raw data into individual

observations (subdivided into chunks if enough RAM is not

Figure 2. The HASHTAG observing plan superimposed on the Herschel
250 μm image (Smith et al. 2012). Each circle represents one of our 30′ Pong
observations, identified by a white label. The color of the circle represents the
observing status of the Pong when the DR1 products were constructed (2020
November): green shows pongs for which all 17 observations have been
completed; dashed blue shows roughly half (eight or nine) have been
completed; and dashed gray indicates no observation has yet been made (1a has
one observation). The cyan circle (1c) is our “pilot” field from 2015, which has
37 observations, which is why there is less overlap with the other circles. The
magenta squares show the regions covered by our CO(J = 3–2) observations.

5

The Astrophysical Journal Supplement Series, 257:52 (20pp), 2021 December Smith et al.



available, although for HASHTAG “chunking” was not
required). There is an initial cleaning step for each observation
in which bad bolometers are masked and artifacts (e.g.,
glitches) are removed from the timelines.

MAKEMAP then starts the iterative process. At the beginning
of each iteration, the common-mode signal (common to all
bolometers) is removed. The data are then corrected for
atmospheric extinction, and a high-pass filter is applied to the
timeline data to remove any residual, slowly varying signal.
Since in the SCUBA-2 arrays are moving across the sky, the
removal of a slowly varying signal is equivalent to removing
emission on a large angular scale. An image is then made from
the data. Any real astronomical signal is then identified in the
image, and this astronomical signal is then removed from the
timelines (an optional signal-to-noise cut or mask can be
applied). The process is then repeated on the new timeline data,
with the astronomical signal being updated in each iteration.
The process stops when the pixel variations in the map at the
end of each iteration fall below a set threshold (i.e., when the
map has “converged”). If we had used the standard
implementation of MAKEMAP, our final image of Andromeda
would have been a mosaic of the images made by MAKEMAP
from each individual observation.

However, a weakness of MAKEMAP is that a single ∼43
minute Pong observation does not have the sensitivity to detect
the low-surface-brightness emission in Andromeda’s disk.
Recognising this limitation, the STARLINK team created a
script called SKYLOOP,42 which runs MAKEMAP on all the
observations, one iteration at a time, combining the individual
images at the end of each iteration to produce the best estimate
of the astronomical signal, thus maximizing the signal-to-noise
ratio in the faint extended structure. However, the volume of
our data is so large that SKYLOOP would take too long to run.
We built on our previous work (Smith et al. 2019) to develop a
new version of SKYLOOP that we nicknamed “scubaDuperS-
kyloop”. The main difference from the old script is that while
SKYLOOP is given all the observations and internally processes
them individually, mosaicking the images at the end of every
iteration, our modified script calls MAKEMAP separately for
each iteration and each observation. We found that the new
script was more stable on our system (possibly due to more
regular memory clearance); however, the main advantage of
our approach is that each observation can be processed in
parallel, or even on separate machines. Although MAKEMAP
can process individual observations using multiple threads,
there are diminishing improvements in processing time.

To make the final images shown in this paper, we reduced all
the data using a new processing machine with 768 GB of RAM
and 32 cores/64 threads, which allowed us to run five
invocations of MAKEMAP in parallel. The main factor limiting
the speed of “scubaDuperSkyloop” was the speed of our hard
disk drives. We increased the speed of the simulations
described in Section 5 by running the script in parallel on
two separate smaller machines (with common storage access).

4.3. Restoring the Large-Scale Structure

Ground-based submillimeter surveys of sources with
extended emission (greater than a few arcminutes) face the
challenge of slow variations both in the atmospheric emission
and within the camera, which need to be removed from the

data. This is overcome using harsh high-pass filtering, which
also removes real astronomical signal on large angular scales.
However, there are submillimeter observations of many objects
with the space telescopes Planck and Herschel. The images
made with these telescopes do preserve the large-scale
structure; however, because of the small sizes of the telescopes’
mirrors they do not have as good resolution as images made
with telescopes on the ground. In principle, we can now
produce high-fidelity images of submillimeter sources with
large angular sizes by combining observations with telescopes
on the ground, which provide the small-scale structure, with
observations made with telescopes in space, which provide the
missing large-scale structure. This technique has often been
used in radio astronomy to combine single-dish and inter-
ferometer measurements; as the latter sparsely samples the UV
plane, the case here is potentially simpler.
We have produced the high-fidelity image of Andromeda at

850 μm by combining the SCUBA-2 image at 850 μm and the
Planck one at 353 GHz, which is virtually the same
wavelength. At 450 μm, we have combined the SCUBA-2
image at this wavelength with the Herschel image at 500 μm
(Smith et al. 2012). To combine the low- and high-resolution
images we have written a Python module that applies a
“feathering” technique (Bajaja & van Albada 1979). The
module performs the following steps:

1. The low-resolution FITS image is reprojected so that the
pixel scale and the celestial coordinates of the pixels are
the same as in the high-resolution image. The units of
both images are converted into Jy beam−1 using informa-
tion contained in the header or supplied by the user.

2. We apply color corrections to the high- and low-
resolution images to correct for the effect of different
instrumental filters, calibration schemes (e.g., different
reference spectra), and differing central frequencies. To
apply this correction the user can specify a fixed dust
temperature and β, provide maps of the dust parameters,
or a cube created by the PPMAP algorithm (Marsh et al.
2015) with the surface density of dust for a grid of dust
temperatures and βʼs. A precomputed grid specific to
each far-infrared/submillimeter instrument is used to
perform the corrections, and is provided with the task.

3. The median value in each image is subtracted from the
image and “NaN” pixels are replaced with zeros to avoid
artifacts.

4. Both images are Fourier transformed and shifted so a
spatial frequency of zero is assigned to the center. The
values in the Fourier transform (FT) of the low-resolution
image are scaled by the ratio of the beam areas of the
high-resolution and low-resolution images.

5. A filter is then created to weight the FT images by the
selected amount when they are combined. The standard
filter in the module, which we used for HASHTAG, is a
Gaussian filter in Fourier space. We chose the value of
the filter’s standard deviation using the simulations
described in the next section. The FT of the high-
resolution image is multiplied by one minus the Gaussian
filter. The FT of the low-resolution image by default is
not weighted, because the image is effectively already
weighted by the point-spread function of the image; this
is the same method employed by CASA (McMullin et al.
2007). In our simulations we also try the alternative
where the low-resolution FT image is weighted by the42 https://starlink.eao.hawaii.edu/docs/sun258.htx/sun258ss72.html
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Gaussian filter, which is applicable when the filter is on
significantly larger spatial scales than the resolution of the
images. For a full discussion of combining images in the
Fourier plane see Stanimirovic (2002). The weighted FT
images are then added together. There is also an option in
the module to use either a Butterworth filter (Csengeri
et al. 2016) or sigmoid filter, in which case both FTs are
multiplied by the filter. We tried these filters for
HASHTAG but found they did not produce appreciable
benefit over the Gaussian filter.

6. The combined FT image is then inverse Fourier transformed
(with appropriate inverse shifts applied). The NaN pixels are
restored, the median background from the original low-
resolution image is added back to the new image, and the
keywords in the image header are updated.43

7. As many spectral energy distribution (SED) fitting
procedures apply a color-correction step in their proces-
sing, we remove the color corrections performed in step
2, so the flux densities in the final images are based on the
same assumptions as regular SCUBA-2 images.

One key parameter in the “feathering” algorithm is the scale
of the Gaussian filter. As the feathering step is a relatively
quick process (compared to the SCUBA-2 pipeline) we keep
this as a free parameter, which we optimize in Sections 5 and 6.
For the color corrections we assume the SED in each pixel
estimated by Whitworth et al. (2019), who applied the PPMAP
algorithm to the Herschel data set to generate SEDs with the
angular resolution of the highest-resolution Herschel image.
For the Herschel and Planck images, we calculated the color
corrections using these SEDs and the filter curves available on
the observatories’ websites, after removing the standard SED
used to estimate the Planck and Herschel flux densities
(Fν∝ ν−1). SCUBA-2 flux densities, on the other hand, are
calibrated relative to Mars and Uranus, which means that they
are based on a very different assumption about SEDs (roughly
Fν∝ ν1.7, Lellouch & Amri 2008; Orton et al. 2014). We
calculated the color corrections for the SCUBA-2 images after
removing this assumption and then using the PPMAP SED in
each pixel. For SCUBA-2, an additional complication is that
the effective filter function is the product of the actual filter
function and the atmospheric transmission. We calculated the
effective filter function from the filter function available on the
observatory’s website and a model for the transmission of the
atmosphere44 with τ225 GHz= 0.065 to match the weather for
our survey. The color corrections are small (�3%) for the two
SCUBA-2 filters and for the Herschel 500 μm filter, apart from
the large correction needed to change the flux at 500 μm to one
at 450 μm, which ranges from a factor of ∼1.5 in the center to
∼1.34 in the ring. The color correction for the Planck filter
is ;10%.

Figure 3 shows the results of the feathering technique when
applied to SCUBA-2 simulation (see Section 5), illustrating
how it is effective at restoring the structure on all spatial scales.
The red line shows the power spectrum of a simulated “true”
image of the sky at 850 μm. The green and blue lines show
models of what Planck and SCUBA-2 would see, respectively,

in one case missing the high-k and in the other case the low-k
Fourier components. The orange line shows the power
spectrum of our reconstruction of the sky by applying our
feathering technique to the artificial Planck and SCUBA-2
images.
We performed a sanity-check of the method by applying it to

a Herschel 250 μm image of the Milky Way (Molinari et al.
2016), in which the large-scale emission is detected with high
signal-to-noise ratio. We created an artificial image at the
Planck resolution by smoothing the Herschel image, and we
created a rough simulation of what a camera such as SCUBA-2
would see by using the NEBULISER algorithm developed by the
Cambridge Astronomical Survey Unit45 to remove the structure
on large scales. When we produced our combined image by
applying our feathering technique to the two artificial images,
we found a good agreement with the original image (to within a
few percent), although in the brightest regions there were
differences up to the 10% level.
There are also some parameters to tune in MAKEMAP, in

particular the scale of the high-pass filter used to remove the
signal from the atmosphere and the camera itself. To produce a
reliable map of Andromeda it is crucial to get these values
right. This is a particular challenge at the longer of the two
SCUBA-2 wavelengths because of the need to ensure that
emission on the SCUBA-2 images is preserved on all angular
scales up to the angular resolution of Planck (;5′, FWHM). In
the next section, we describe the simulations of the sky that we
used to determine the best values of the parameters.

Figure 3. A demonstration of the ability of our feathering technique to recover
the structure of the sky on all spatial scales, using the final simulation in
Section 5. The red line shows the power spectrum of a simulated “true” image
of the sky at 850 μm (with artificial noise added to match the SCUBA-2
image). The green line shows the power spectrum of what Planck should see,
obtained by convolving the true image to the Planck resolution. The blue line
shows what SCUBA-2 should see, obtained by passing the true image through
the SCUBA-2 data-reduction pipeline. As expected, the Planck spectrum is
missing the high-k Fourier components and the SCUBA-2 spectrum the low-k
Fourier components. The orange line shows the power spectrum of our
reconstruction of the sky by applying our feathering technique to the artificial
Planck and SCUBA-2 images. For reference the location of the half-width at
half-maximum (HWHM) for SCUBA-2 and Planck is shown by the gray
vertical lines. Note that in all cases we have restricted the images to the central
30′ region.

43 There is an option in the module to add back a background by calculating
the offset between the original low-resolution image and the new image
smoothed to the same resolution.
44 Atmospheric model from from the Caltech Submillimeter Observatory
(Pardo et al. 2001), http://www.submm.caltech.edu/cso/weather/atplot.
shtml.

45 http://casu.ast.cam.ac.uk/surveys-projects/software-release/background-
filtering
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5. The Simulations at 850μm

We carried out simulations of the sky to optimize the data-
reduction procedure described in the previous section. The
SCUBA-2 pipeline has many parameters that can be tweaked to
optimize the reduction process depending on the angular extent
of the source, the observing strategy, and the atmospheric
conditions. Two of the big unknowns are the scale of the
Gaussian filter used in combining the low- and high-resolution
data and the angular scale of the high-pass filter that should be
used in the SCUBA-2 data reduction to remove the noise on
large angular scales caused by the atmosphere and the camera.
Too harsh a filter would remove the noise but also remove too
much astronomical signal, too weak a filter would leave the
astronomical signal alone but not remove the noise. In this
section we create a “simulation” to test the effects of the
various pipeline parameters so we can obtain the most accurate
map of M31ʼs submillimeter emission. In this process we have
restricted ourselves to the SCUBA-2 pipeline, rather than
attempt alternative methods (e.g., SCANAMORPHOS, Rous-
sel 2013) or complex atmospheric modeling.

An outline of our method is as follows. (1) We used real
SCUBA-2 data from a cosmology Large Program with similar
noise properties to our own data set. (2) We then created a
“true” image of Andromeda from a Herschel image and
inserted this into the timelines for the cosmology program. (3)
We convolved the true image to produce an artificial Planck
image. (4) We ran the SCUBA-2 data set (cosmology timelines
injected with our model galaxy) through the SCUBA-2 data-
reduction pipeline (Section 4.2). (5) We combined the reduced
SCUBA-2 image and the Planck image to try to recover the
original image using the method of Section 4.3. (6) We
measured the statistical differences between our recovered
image of Andromeda and the original true image. We ran
thousands of simulations, trying different variants of the
SCUBA-2 data-reduction pipeline, in particular trying different
values of the scale of the high-pass filter, and trying a range of
values for the scale of the Gaussian filter used to combine the
low-resolution and high-resolution data (Section 4.3). In this
section we describe the simulations at 850 μm, which were
more critical because Planck at 850 μm has a much lower
resolution than Herschel at 500 μm. We describe what we did
for the 450 μm data in Section 6.

5.1. Simulation Setup

We chose to carry out a simulation of a single 30′ Pong
observation with a similar sensitivity to our pilot field. While
ideally we would have simulated observations of the whole
galaxy, the processing time would have been too long and there
was no suitable SCUBA-2 data we could use for a simulation
of the entire galaxy at our depth. For our simulation we used
data from the SCUBA-2 Cosmology Legacy Survey (Geach
et al. 2017). We chose to use the data from the survey of the
Lockman Hole because it was carried out in similar weather
conditions and consisted of 35 30′ Pongs, the same as we used
in our observations of our pilot field (Section 3), reaching a
similar sensitivity.

We made our “true” image out of the Herschel 250 μm
image, which has a resolution (18″, FWHM) that is not very
different from that of SCUBA-2 at 850 μm (13 5, FWHM).
We first reprojected the Herschel image onto a 4″ pixel grid and
then multiplied the intensity values in each pixel by the ratio of

the global 250 and 850 μm fluxes (Planck Collaboration et al.
2015). The Lockman Hole data are actually slightly less
sensitive than the data for our pilot field (3.4 versus
3.0 mJy beam−1), so to make the signal-to-noise ratio of our
artificial image the same we multiplied the intensity values by
the ratio of the noises. We also applied color corrections. We
then converted the intensity values into instrumental units of
picowatts (pW) and ran MAKEMAP with the options “fakemap”
and “exportclean” set so that our artificial 850 μm image was
added to the SCUBA-2 timelines for the Lockman Hole survey.
We used the data files exported by this process, which also did
the initial cleaning of the timelines, to carry out our
simulations. We produced our artificial Planck image by
convolving our input image to the Planck resolution.
We performed five different sets of simulations, to optimize

different aspects of the method. While in an ideal world every
possible combination of parameters in the SCUBA-2 data-
reduction pipeline would be tested, each individual simulation
required ∼8–10 hr to run. Therefore, we varied one parameter
at a time. However, our reconstruction process in which we
combined the processed SCUBA-2 image with our artificial
Planck image was quite quick to run, so at the end of every run
of the pipeline, we applied our reconstruction technique many
times, each time with a different value for the scale of the
Gaussian filter, with scales ranging from 160″ to 840″.
We measured the success of a simulation by the differences

between our final image and the original true image. We
assessed the significance of the differences using the noise
image produced by the pipeline, but since changes to the
pipeline also change the noise in the final image we also used a
reference noise image (from a run using typical values of all the
pipeline parameters). For each final SCUBA-2 image, we
created several “difference maps” of the difference between the
image and the true image: (1) a basic residual image, i.e., the
final image minus the “true” image; (2) the residual image
divided by the noise image; (3) the residual image divided by
the reference noise image; (4) the residual image divided by the
true image.
To assess the agreement, we measured statistics in two

different regions of these difference maps: (1) the full-depth
region of the Pong; (2) the full-depth region of the Pong but
only for pixels where the flux in the pixel in the Herschel
500 μm image is above a critical value (500 μm is used as it is
the closest in wavelength to both SCUBA-2 bands). The point
of the second region was to stop the more numerous pixels
outside the galaxy with little emission biasing the results,
because a method producing a flat map (e.g., harsh Fourier
filtering) would be preferred. We inspected all of these methods
of assessing the agreement at one time or another. The statistic
that we found most useful was the mean of the absolute
difference between the final image and the true image divided
by the reference noise image, for pixels in the deep region
above the 500 μm threshold. This statistic using a reference
noise map has the advantage that changes in the noise map do
not bias the estimate of how well we recover the galaxy, while
still accounting for variations in the sensitivity across the map.

5.2. Filter Scale and PCA Components

The most important parameter in the SCUBA-2 data-
reduction pipeline is the scale of the high-pass filter used to
remove residual emission from the atmosphere or the
instrument. We started our simulations with the expectation
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that we would need to set the scale to roughly the angular
resolution of Planck. In our early results we found that with
a filter scale of 340″ we were able to reproduce the true
image well.

In 2019 April, however, the observatory released a new
mode for the SCUBA-2 pipeline in which principal component
analysis (PCA) is used to remove residual atmospheric and
instrumental noise. The advantage of PCA is that it makes it
possible to increase the angular scale of the high-pass filter,
reducing the attenuation of the emission on the SCUBA-2
images on large angular scales. Of course, if one allows PCA to
remove too many components, it is also possible to remove real
astronomical emission from the image. In the SCUBA-2
pipeline the default number of PCA components to remove is
20 components per subarray, but after inspecting the final
images made with this setting we decided it led to the removal
of some real emission. We therefore decided to run a suite of
simulations in which we varied both the scale of the high-pass
filter and the number of PCA components.

In our initial simulations without PCA we had found an
optimum filter scale of 340″. We realized that with PCA we
should be able to increase this scale. We therefore ran
simulations with filter scales between 340″ and 560″ and the
number of PCA components between 0 and 20, running 91
simulations to cover this 2D parameter space (20 PCA
components is the default in the new pipeline mode).

Figure 4 shows the effect of changing the number of PCA
components while keeping a constant filter scale of 520″. The
top left panel shows what happens if no PCA components are
removed. The filter may not remove much large-scale emission
from the galaxy but much of the emission visible in the picture

is clearly spurious. Increasing the number of PCA components
leads to better removal of these artifacts, but the removal of too
many PCA components leads to the removal of real
astronomical signal, producing the negative regions around
the image in the bottom right panel, which has had 20 PCA
components removed.
An important point to note is that, although the eye tells us

that the patches in the top left panel in Figure 4 are artifacts, the
SCUBA-2 data-reduction pipeline treats these as real emission,
which means that the values in the noise image produced by the
pipeline are too low. Figure 5 shows how the average noise on
an image depends on the number of PCA components and on
the scale of the high-pass filter. The solid lines show the results
if the noise is measured from empty areas of the final image;
the dashed lines show the result if the noise is measured from
the noise image produced by the SCUBA-2 data-reduction
pipeline. The pipeline estimates are much lower, showing the
effect of the pipeline treating the artifacts as real astronomical
signal (users of the SCUBA-2 pipeline beware!). The more
reliable noise values, measured from the images themselves,
show that the noise in an image can be reduced either by
decreasing the scale of the high-pass filter or by increasing the
number of PCA components. In either case, of course, one also
runs the risk of removing real astronomical signal.
We chose the best combination of filter scale and number of

PCA components based on a combination of visual inspection
of the residual maps and the statistical estimates of the
difference between the recovered image and the true image.
Figure 6 shows the mean absolute residual for the difference
map made by dividing the residual image by the reference
noise image (number three in the list in Section 5.1). The
statistic has been calculated for the pixels that are in the full-
depth region and are above the 500 μm threshold value (see
above).
The figure shows that there is an advantage in increasing the

scale of the high-pass filter from the 340″ that we had originally

Figure 4. Reconstructed SCUBA-2 images made with a high-pass filter in the
SCUBA-2 pipeline of 520″ but with different numbers of PCA components
removed (0, 3, 7, and 20). The red area is the circular region with a diameter of
30′ in which the Pong reaches full sensitivity. The color scale has been chosen
to enhance faint features. The removal of too few PCA components leads to
large-scale artifacts in the image (top left panel); too many PCA components
removes real astronomical signal, leading to the negative regions close to the
bright structure (bottom right panel).

Figure 5. The relationship between the average noise in an image as a function
of the scale of the high-pass filter and the number of PCA components that
have been removed. The solid lines show the results when the noise is
measured from empty areas of the image and the dashed lines show when it is
measured from the noise image produced by the SCUBA-2 data-reduction
pipeline. The difference between the two sets of lines shows that the noise
values from the variance map produced by the pipeline are unreliable because
the pipeline mistakenly identifies large-scale noise as real astronomical signal
and therefore underestimates the noise. Even when these artifacts are removed
with a harsh high-pass filter or by removing a large number of PCA
components, there is still a small difference of ∼0.2 mJy beam−1, which is
possibly caused by faint sources in the apparently empty regions of the image.
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considered (see above) if removal of PCA components is
included in the analysis. The best agreement between the
recovered and true image is obtained for a filter scale of ;520″.
The figure also shows that there is an optimum number of PCA
components of ;8—removing more increases the difference
between the recovered and true images. Based on these results,
we visually inspected the recovered images for a filter scale of
480″ and five or six PCA components and for a filter scale of
520″ with seven or eight PCA components, concluding that the
best results came with a filter scale of 520″ with seven PCA
components. However, in the next stage of the simulations we
also tested the method with a filter scale of 480″ and five PCA
components, in order to check whether the optimum values
shifted if other parameters in the method were varied.

In the simulations, we also checked the number of iterations
in the pipeline required for each set of parameters, since the
computer processing time is directly proportional to the number
of iterations. We found, as expected, that there is a processing
cost to setting a larger filter scale (from 8 to 19 iterations) but
including PCA analysis can reduce this.

5.3. The Mask

An important element in the SCUBA-2 data-reduction
pipeline is a mask provided by the user as their best guess of
the area in which real astronomical signal will be found. This
greatly helps the convergence of the iterative procedure
because it makes it easier for the algorithm to distinguish
between real astronomical emission and extended structures
that are actually the result of atmospheric emission or noise in
the camera (see Figures 4 and 5). This does not mean that a
pixel in the final image that is not within the mask will
necessarily contain no astronomical signal. The software only
subtracts astronomical signal from samples in the timelines that
will contribute to image pixels within the mask, but once all
data-reduction stages are completed (subtraction of PCA
components etc.) even pixels outside the mask, which are the
averages of many samples in the timeline, may still contain
astronomical signal.

The mask we used was created from the Herschel 500 μm
image of Andromeda (Smith et al. 2012), the Herschel image
closest in wavelength to our 850 μm image. We defined the
mask as all pixels above a 500 μm flux-density threshold, with
this threshold providing another knob we could twiddle in our
analysis. Too high a threshold makes it possible for the
algorithm to treat real astronomical signal as noise and remove
it from the timelines; too low a threshold leads to slower
convergence of the algorithm and higher noise. In the
simulations described in the previous section, we set the
500 μm flux-density threshold at 200 mJy beam−1, which
seemed a reasonable compromise because the mask then
included most of the disk and some inner regions of the galaxy
while excluding some regions between the rings where the
emission is faint.
Once we had identified the best combinations of filter scale

and number of PCA components (520″ and seven PCA
components or 480″ and five PCA components), we used these
to test the effect of changing the flux threshold used to
construct the mask. We ran simulations with values of the
500 μm flux threshold between 120 and 520 mJy beam−1.
Figure 7 shows masks created with a range of flux thresholds
that are representative of the ones we used in the simulations.
Figure 8 shows the results of the simulations. The agreement
between the input and output images is clearly best for a
500 μm flux threshold of 280 mJy beam−1 (this includes ∼25%
of the total flux of M31), which is the threshold we adopted to
create the mask for the real 850 μm observations of
Andromeda. We found that changing the flux threshold and
thus the mask had a negligible effect on the noise of the final

Figure 6. The mean absolute residual in the difference map vs. the angular
scale of the high-pass filter. Each line shows the result when a different number
of PCA components is removed. The difference map is the residual image (true
– recovered) divided by the reference noise image, and pixels have only been
included if they lie in the central region (30′ diameter) of the Pong and if the
500 μm flux in the Herschel image of Andromeda (Smith et al. 2012) is greater
than 200 mJy beam−1. The figure shows the best combination (smallest
difference between input and output images) is a filter scale of∼480″–520″ and
5–10 PCA components.

Figure 7. The grayscale image is the 500 μm Herschel image that we used to
create the mask used in the SCUBA-2 data-reduction pipeline. We defined the
mask as all pixels with a 500 μm flux density greater than a threshold value. In
the simulations described in Section 5.3, we tested the effect of changing this
threshold value. The five contours show the masks created from flux thresholds
that are representative of the ones we used in the simulations.
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image, a very slight increase (<1%) for masks generated with a
500 μm flux threshold below 200 mJy beam−1.

5.4. Tolerance Level

The next parameter we investigated was the map-tolerance
parameter, which the SCUBA-2 data-reduction pipeline uses to
decide whether the algorithm has converged or whether more
iterations are required. The default tolerance value is 0.05, which
means that the iterations stop when the average change in the flux
in a pixel from the last iteration is less than 0.05σ, σ being the
noise in that pixel (calculated from the distribution of instrument
samples contributing to that pixel). There have, however, been
some studies (Mairs et al. 2015; Smith et al. 2019) that suggest a
lower tolerance value might improve results—something we
wanted to explore in our simulations.

Given our huge volume of data, another important
consideration was processing time, which increases if the
tolerance value is reduced because a greater number of
iterations are then needed to reach a lower tolerance value
(processing time scales linearly with number of iterations). We
therefore carried out simulations over a fairly small range of
tolerance values: 0.0075–0.05. In Section 5.3 we found that we
achieved the best results with a mask generated with a 500 μm
threshold of 280 mJy beam−1. In the simulations described in
this section, we also experimented with masks created with
500 μm thresholds of 200 and 240 mJy beam−1 to see whether
the choice of best mask changed if we also changed the
tolerance parameter. We also tried both winner and runner-up
from the competition between filter-scale/PCA combinations
of Section 5.2 to see whether the order might be reversed with a
different value of the tolerance parameter.

Figure 9 shows that decreasing the value of the tolerance
parameter does improve the agreement between the true and
recovered images. It also shows that the best choices for mask
and filter-scale/PCA combination generally remain the best
choices at all values of the tolerance parameter. The
improvement with decreasing tolerance parameter is fairly
slow, and there is a high price in increased processing time.
Therefore, as a trade-off, we adopted a tolerance parameter of

0.03 for the real observations. Even with this tolerance
parameter, reducing the current HASHTAG 850 μm data set,
which is only 70% of the final data set, required 7.5 days of
computer processing time.

5.5. Feather Scale

The final parameter we investigated was the scale of the
Gaussian filter, the “feather scale,” used to combine the
SCUBA-2 and Planck images. In this final round of
simulations, we changed the pixel scale from 4 0 to 4 5,
which makes the pixels in the final 850 μm image close to one
third of the FWHM of the point-spread function, the value that
was eventually adopted after some experimentation for making
Herschel images. Figure 10 shows the results from the
simulations. The agreement between the “true” input image
and the recovered output image is best when the scale of the
filter is 320″, which is roughly what we expected; the
resolution of Planck is 4 8 (290″) (Planck Collaboration et al.
2014b) and so the Planck image should supply all Fourier
components on angular scales larger than this. In all the
850 μm simulations the feathering method where the low-
resolution image is not weighted is preferred (see Section 4.3).

5.6. The Final Values of the Parameters

As the result of these simulations, we adopted the following
values for all of the parameters when reducing the real
SCUBA-2 data.

1. We set the scale of the high-pass filter in the SCUBA-2
data-reduction pipeline to 520″ (FLT.FILT_EDGE_
LARGESCALE= 520).

2. We set the number of PCA components per array in the
SCUBA-2 data-reduction pipeline to seven (PCA.
PCATHRESH=−7) with the values of all the other
parameters in the PCA analysis having their default
values.

Figure 8. Mean absolute residual in the difference map vs. the 500 μm flux
threshold used to define the mask used in the SCUBA-2 data-reduction pipeline
(see the caption of Figure 6 for details of the difference map and of the region
used to measure the statistic). The two lines are the results from using the best
combinations of filter scale and number of PCA components identified during
the simulations described in Section 5.2. The plot shows the best 500 μm flux
threshold for creating a mask is 280 mJy beam−1 for both combinations of filter
scale and PCA number.

Figure 9. Mean absolute residual in the difference map vs. the value of the
tolerance parameter used in the SCUBA-2 data-reduction pipeline (see the
caption of Figure 6 for details of the difference map and of the region used to
measure the statistic). The blue lines show the results from simulations with a
filter scale of 520″ and seven PCA components, and the orange lines show the
results from simulations with a filter scale of 480″ and five PCA components.
The solid, dashed, and dotted lines show the results from simulations with a
mask made with a 500 μm flux threshold of 280, 240, and 200 mJy beam−1,
respectively. The plot shows that there is an improvement made by reducing
the value of the tolerance parameter, but the improvement is modest, and there
is a trade-off with an increase in computer processing time.
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3. We use an input mask to define the region where there is
likely to be astronomical signal created from the Herschel
500 μm image (Smith et al. 2012). This is used by the
SCUBA-2 data-reduction pipeline (the AST model in the
pipeline). We defined the mask as all pixels with a
500 μm flux greater than 280 mJy beam−1.

4. We set the tolerance parameter in the SCUBA-2 data-
reduction pipeline to 0.03.

5. We use a pixel scale for the final 850 μm image of 4 5.
6. We used a Gaussian filter with a scale (the “feathering

scale”) of 320″ to combine the final SCUBA-2 image
with the Planck image.

These pipeline parameters are optimized for the observing
strategy, source properties, and weather for HASHTAG and
M31. For other SCUBA-2 data sets with extended structure, we
would recommend performing a similar simulation to optimize
the processing; however, these results should provide a useful
initial guess.

5.7. A Test of the Image Fidelity

The final stage in the simulations was to assess the fidelity of
the final image produced with the values of the parameters
listed in the previous section. How close is the structure in the
final image to the structure in the original true image? This
analysis gives us a useful estimate of the fidelity of our real
image. Note, however, that analysis will yield an upper limit to
the errors on the real image because the simulations have been
carried out for only one Pong (Section 3); the spatial overlaps
of the many Pong fields for the real observations (Figure 2)
should improve the fidelity of the final real image.

Figure 11 shows the input “true” image, the recovered output
image, and the difference between the two divided by the noise
image produced by the SCUBA-2 data-reduction pipeline. If
our recovery method were perfect, the final panel should
simply show random noise, but in fact there is some faint
structure in the noise that is clearly correlated with bright
structures. We therefore need to assess the importance of these
systematic errors.

We estimated the random and systematic errors in the flux
densities from a plot of D= (Fo− Fi)/σpipe versus Fi, in which
Fo is the flux in a pixel in the output image, Fi is the flux in that
pixel in the input image, and σpipe is the estimate from the
SCUBA-2 data-reduction pipeline for the noise in that pixel.
The top panel of Figure 12 is a surface-density plot showing
how the number of pixels depends on D and Fi. We have only
included pixels in the full-sensitivity central circular region of
the image (diameter of 30′). If the fidelity of the final image
were perfect, and if our noise estimates were correct, D should
have a Gaussian distribution around zero with a standard
deviation of one. In reality, the plot shows that there is a clear
bias in D, which is systematically higher than zero at high flux
densities in the input true image. The standard deviation of D is
also slightly higher than one, showing that the estimate of the
noise produced by the pipeline is too low.
Given the discrepancy between the actual distribution of D

and its predicted distribution, we have assumed that the true
uncertainty of the flux in each pixel is given by three
uncertainties added in quadrature:

s s= + +a b fS 1tot
2 2

pipe
2

o
2( ) ( ) ( )

in which a is a constant, b is a multiplicative factor for the error
given by the SCUBA-2 data-reduction pipeline (σpipe), and f is
a multiplicative factor for the flux in the output image (So). The
third error in Equation (1) is effectively a photometric
calibration error, which exists for all astronomical observations,
although in this case it is an error on top of the standard
SCUBA-2 photometric calibration error, which we have not
included in the equation. We estimated the values of a, b, and f
by applying the minimization package LMFIT (Newville et al.
2016) so that the standard deviation of D approached as closely
as possible a value of 1. We carried out the minimization on a
rolling group of 800 pixels ranked in flux. We found a= 0,
b= 1.04, showing the SCUBA-2 data-reduction pipeline had
slightly underestimated the random errors in the fluxes, and that
f= 0.12, showing that there is a systematic error that depends
on the brightness of the emission, confirming the qualitative
impression produced by Figure 11.
The bottom panel of Figure 12 shows the same surface-

density plot of pixels as the top panel but with the noise value
predicted by the pipeline (σpipe) replaced by the noise value
calculated from Equation (1) (σtot). The distribution shows that
while the width of the distribution of D now is roughly correct,
the distribution is still distorted, in the sense that as the output
flux density (Fo) increases, it becomes progressively higher
than the input flux density (Fi), although there is a suggestion
above 30 mJy beam−1 that this reduces. We could have
corrected the flux densities in the real HASHTAG image using
the red curve in the bottom panel of the figure. We decided not
to do this for two reasons. First, the real HASHTAG image is
made of a large number of spatially overlapping data sets, so it
is possible this effect is less for the real image. Second, this
systematic effect is fairly small compared with the statistical
error: only 0.6σ at Fo= 21 mJy beam−1.

6. The Simulations at 450μm

Optimizing our data-reduction was much simpler at 450 μm
than at 850 μm because at the shorter wavelength the space-
based image has structure down to a much smaller angular

Figure 10. The mean absolute residual in the difference map vs. the scale of the
Gaussian filter, the “feather scale,” used to combine the SCUBA-2 and Planck
images (see the caption of Figure 6 for details of the difference map and of the
region used to measure the statistic). The two lines show the results of the
simulations for our winning and runner-up combinations of high-pass filter
scales in the SCUBA-2 data-reduction pipeline and number of PCA
components. The plot shows we get the best results for our winning
combination (520″ and seven PCA components) when we combine the
SCUBA-2 and Planck images with a Gaussian filter with a scale of 320″.
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scale (Herschel—36″) than at 850 μm (Planck—5′). The ranges
of Fourier components of the space-based and SCUBA-2
observations are therefore much closer than at the long
wavelength. Nevertheless, we performed the same set of
simulations as at 850 μm, and we summarize the results in this
section.
Figure 13 shows how the noise in the 450 μm image varies

with the filter scale and the number of principal components
used in the reduction. The number of PCA components is
found to be particularly important, with the noise changing
from ∼60 to ∼45 mJy beam−1 with increasing number of PCA
components. As before, we investigated the effect on the mean
absolute residual in the difference map of changing the filter
scale in the pipeline and the number of PCA components. We
tried filter scales between 120″ and 480″, with the lower bound
chosen because it is used by the Cosmology Legacy Survey
(Geach et al. 2013), which was optimized for detecting point
sources. The number of PCA components was again from 0 to
20. Figure 14 shows that the filter scale has little effect on the
mean absolute residual, but that it is reduced by increasing the
number of PCA components. We decided to use a filter scale of
320″ with 14 PCA components; there was little improvement
by increasing the number of PCA components further and there

Figure 11. The “true” input image we used in our simulations (left panel), the output image we recovered using the data-reduction parameters listed in Section 5.6
(middle panel), and the difference between the two divided by the noise estimate from the SCUBA-2 data-reduction pipeline (right panel). The colored area is the
central circular region (diameter 30′) in which the observations have their full sensitivity.

Figure 12. A surface-density plot showing how the number of pixels depends
on D and the input “true” flux in a pixel. D is the difference between the flux
density in a pixel in the recovered image and the flux density in the true image
divided by the noise in that pixel. The distribution has been renormalized,
column by column, so that the figure is not dominated by the number of pixels
with faint flux densities. The top panel shows the distribution if the noise that is
used is the noise produced by the SCUBA-2 pipeline. The red and cyan lines
are the rolling (800 pixels) mean and ±1σ standard deviation, respectively. For
a perfect observation the red line would follow a mean of zero (black line) and
the standard deviation lines would follow the gray lines at ±1. The green
vertical lines show the average 1σ noise in the true image. The bottom panel
shows the same distribution when the noise has been rescaled using the method
described in the text.

Figure 13. The same plot as Figure 5, but for 450 μm data rather than at
850 μm. Increasing the number of PCA components leads to a significant
reduction in the noise measured in the image.
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was a marginal sign that using a filter with a smaller angular
scale increased the mean absolute residual.

As before, we tested the effect of varying the 500 μm
threshold used to make the mask and of varying the tolerance
value, both of which are used in the SCUBA-2 pipeline. We
found that the mean absolute residual in the difference map
varied very little when either parameter was adjusted. We
therefore decided to use the same values as at 850 μm.

We tested the effect of varying the feather scale, finding that
the optimum feather scale was 40″, similar to the size of the
Herschel beam at 500 μm. We found very little difference in
the resulting image when using feathering scales up to 100″
(above 50″ the low-resolution data must be weighted in the
feathering, see Section 4.3).

The final stage in the simulations was to test the fidelity of
the image made with the values of the parameters above. We
used exactly the same procedure as at 850 μm (Section 5.7).
We found that at 450 μm the noise estimate from the pipeline
(σpipe) was a much better estimate of the true noise (σtot) than at
850 μm. We found that the noise scaling term, b in
Equation (1), was only 1.02, and the other two terms (a and
f ) were both zero. The input and the output images and the
residual map divided by the noise value from the pipeline are
shown in Figure 15. The fact that the residual map shows no
structure at all demonstrates that at 450 μm the random errors
are much greater than the systematic errors.

It is known that Herschel can miss emission on the very
largest scales, predominantly due to the finite size of the
images. Clark et al. (2021) have investigated this for the Local
Group, and found in the case of M31 that very little extended
dust emission is missing from the SPIRE 500 μm image. We
therefore have chosen to feather with the normal SPIRE map,
but have provided all the tools and instructions on our
website41 if users wish to feather with an alternative map.

7. The Real Data

7.1. Calibration

The SCUBA-2 MAKEMAP routine produces maps in
instrumental units of picowatts, and so a flux conversion factor
(FCF) is used to convert these units into either Jy beam−1 or
Jy arcsec−2. There have recently been two changes at the
JCMT, which have adjusted the standard FCF values used at
the observatory. First, in 2016 November a filter set in
SCUBA-2 was changed, which predominantly affected the

850 μm FCF. Second, in 2018 May the maintenance of the
secondary mirror resulted in a change in the value of the FCF
for 450 μm. We have observations both before and after these
changes. Based on an interim analysis by observatory staff
(private communication), we assume FCF values of 3.62 and
2.14 - -Jy pW arcsec1 2 at 450 and 850 μm, respectively, for
observations post 2018 May.46 For our older observations, we
multiply the “cleaned” data (see Section 4.1) by a correction
factor, so that the final data can be calibrated with the same
FCF. We adopted values for this correction factor of 1.21053
and 1.06481, for 450 and 850 μm, respectively.
The final factor we have to consider is that the standard

JCMT calibration scheme is not designed for such extended
objects as Andromeda. The JCMT calibration scheme (Demp-
sey et al. 2013) uses the flux of a calibrator source within a 30″
radius aperture, after subtracting a background measured in an
annulus around the calibrator between radii of 45″ and 60″.
This scheme is fine for calibrating images that contain point
sources. But we are trying to calibrate very extended emission,
and the beam of the telescope extends to much larger radii than
the radii used in the standard calibration scheme.
We have adopted the calibration scheme we devised for the

JINGLE Large Program (Smith et al. 2019), where we
multiplied the FCFs so that the flux densities in the images
matched the convention of other telescopes, that an aperture
centered on a galaxy would only include the entire flux of the
galaxy if the radius were increased to infinity. By integrating
the beam model in Dempsey et al. (2013), we calculated that
the standard 850 μm FCF should be multiplied by 0.91, which
agreed with the curve of growth found by Dempsey et al.
(2013). Doing the same calculation at 450 μm, we obtain a
correction factor of 0.99. The curve of growth given in
Dempsey et al. (2013), however, suggests a slightly smaller
factor of 0.97. We suspect the difference is caused by extra
non-Gaussian features in the beam at large radii. We therefore
adopt the smaller value of 0.97. The final values of the FCF
used to create these HASHTAG images were therefore the FCF
values given above multiplied by these correction factors.
These are 3.51 and 1.95 Jy pW−1 arcsec−2 at 450 and 850 μm,
respectively.

7.2. Final Maps

The real HASHTAG data were reduced using the method
outlined in the previous subsections, using the best values of
the parameters found from the simulations. Our final maps
(Data Release 1, DR1) are composed of two multi-extension
fits files that contain the flux density, uncertainty, and
sensitivity maps for the 450 and 850 μm images, respectively.
The uncertainty map contains the true uncertainty values we

derived in Section 5.7, which include both the statistical
uncertainty in each pixel and the systematic uncertainty as the
result of the flux density in that pixel (the third term in
Equation (1)). The sensitivity map is the same except that this
map does not include the systematic term ( f in Equation (1) is
set to zero). At both wavelengths, the sensitivity of our final
images exceeds our targets. In the 10 kpc ring, the typical

Figure 14. The same plot as Figure 6, but for 450 μm data rather than at
850 μm. See the caption of the earlier figure for details.

46 Since we calibrated the data, new (but still preliminary) values of the FCF
have been released (https://www.eaobservatory.org/jcmt/instrumentation/
continuum/scuba-2/calibration/), which are slightly different from the values
we use (resulting in approximately 3.5% and 5% lower flux density at 450 and
850 μm, respectively). As the correction depends on individual observing
conditions, we will apply the new calibration in the next data release.
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sensitivity is ∼2.0 and ∼30 mJy beam−1 at 850 and 450 μm,
respectively, with peak sensitivities in the center of 1.5 and
20.6 mJy beam−1 at 850 and 450 μm, respectively. As a rough
comparison the Herschel 500 μm observations have an
instrumental sensitivity of ∼11 mJy beam−1 (Smith et al.
2017), and the point source sensitivity of Planck at 850 μm is
∼69 mJy beam−1 (Planck Collaboration et al. 2014c).

The flux-density and sensitivity maps are shown in
Figure 16. The sensitivity is not quite as uniform at 450 μm,
which we attribute to variations in submillimeter opacity during
the periods we took the data, since opacity variations have a
bigger effect at the shorter wavelength.

As well as the images shown in Figure 16, we also provide
versions that have three different levels of Gaussian smoothing
(for example, Figure 1), so that users can balance resolution
versus signal-to-noise ratio. In these smoother images, the raw
images have been smoothed with Gaussians with FWHMs of
4″, 5″, and 7 9 at 450 μm and 7″, 10″, and 13″ at 850 μm (this
equates to effective resolutions of 8 9, 9 3, and 11 2 at
450 μm, and 15 2, 16 8, and 19 1 at 850 μm).

8. CO(J= 3–2) Subtraction

A possible contamination in the 850 μm image is the
contribution of the CO(J= 3–2) line, which has a rest
frequency of 345.796 GHz, putting it within the 850 μm
passband. This line has been shown to contribute anything
from 0.7% to 41% of the 850 μm emission in nearby galaxies,
although it is normally less than 15% (Smith et al. 2019), and in
the Milky Way the contamination is typically small (<5%) but
can be 30% (Moore et al. 2015). The contamination seems
likely to be low in M31 because of the low fraction of
molecular gas. We can get a rough idea of the likely scale of the
contamination using our CO(J= 3–2) survey of selected
regions within the galaxy (Li et al. 2020). In our CO survey
the strongest line flux we found was ICO(J = 3−2); 5 K km s−1,
which corresponds, using the relationship given in Parsons
et al. (2018), to an 850 μm flux density of ;3 mJy beam−1,
;1.5 times the typical noise (Section 7.2).

We used the results of our CO(J= 3–2) survey, which
covered small regions but over a range of environments
(Figure 2), as the ground truth for developing a method to
estimate the CO contamination at all points across M31. As our
starting point, we used the CO(J= 3–2) cubes presented by Li
et al. (2020). However, we created a new set of integrated
intensity maps (moment-0 maps), using a new VLA H I data set

(Koch et al. 2021). The VLA data set provides a 58″ resolution
(FWHM) image of the entire galaxy, and a higher-resolution
18″ image of the region covered by Hubble. To create the CO
integrated intensity maps we use the H I data as a prior to mask
the channels in the cube that are not expected to contain any
CO emission, using the moment-1 map to predict the center of
the line with a width based on the H I line width (with a
minimum 40 km s−1 adopted). Using the H I as a prior is a
similar technique to that applied by Schruba et al. (2011).
Our overall approach was to use a combination of several

data sets to predict the CO(J= 3–2) emission, using our own
CO(J= 3–2) survey to determine the combination that gives
the best prediction. We included maps of the dust emission
(column density, temperature, and emissivity index; Whitworth
et al. 2019), images in the Wide-field Infrared Survey Explorer
(WISE) bands (Wright et al. 2010; Cutri et al. 2013), in the UV
(Thilker et al. 2005), in the mid-infrared (Spitzer, MIPS;
Gordon et al. 2006), a survey of part of the galaxy with
CARMA in CO(J= 1–0) (Caldú-Primo & Schruba 2016,
A. Schruba et al. 2021, in preparation), and a map of the
estimated star formation rate in the galaxy calculated using UV
and 24 μm (Ford et al. 2013). While some of these data sets
may be degenerate, our aim was to find the best model to
predict the CO(J= 3–2) line flux, rather than understanding the
physical meaning of the model obtained.
The most useful data set for predicting the CO(J= 3–2)

emission is a map in another CO line. We decided not to use
the map in the CO(J= 1–0) line over the whole galaxy (Nieten
et al. 2006) because its resolution (23″) is significantly lower
than that of our 850 μm image (13″), and we found that a
model derived at 23″ resolution when applied on 13″ scales did
not perform as well as one derived at the higher resolution. The
CARMA survey was our key data set because it was a survey
in the CO(J= 1–0) line with a resolution of 5 5 (we use the
version corrected for missing large-scale CO emission using
the IRAM single-dish data). The survey, however, only covers
∼323 arcmin2 (see Figure 19) and our CO(J= 3–2) survey
covers an even smaller region (see Figure 2). We were
therefore forced to develop a two-stage method.
In the first stage of the approach, we restricted our analysis to

the small portion of the galaxy covered by our CO(J= 3–2)
survey that was also within the region covered by CARMA.
We do not explicitly include the CO(J= 3–2)/CO(J= 1–0)
ratio, which has been found to vary across M31 (Li et al. 2020),
but implicitly include it in the model. We first performed a
background subtraction on the input continuum images where

Figure 15. As for Figure 11, but for the 450 μm simulations.
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necessary, convolved these images to the same resolution as the
850 μm/JCMT CO products, and finally reprojected them to
match each of the six JCMT CO(J= 3–2) integrated intensity
maps that overlap with the CARMA field. We took as our
inputs the logarithms of all the input maps except for the dust
temperature and emissivity index. We assigned the pixels
randomly into a training set (80% of the data) and a testing set
(20% of the data). We then used the SCIKIT-LEARN (Pedregosa
et al. 2011) “standard scaler” routine, which standardizes each
of the inputs by removing the mean and dividing by the
standard deviation. To perform the fitting, we tried both linear

and nonlinear methods (random forest and the multilayer
perceptron neural network) but found the linear model
performed as well as the more complicated routines. As the
JCMT data are relatively noisy, to incorporate the uncertainties
we built a model using PYMC3 (Salvatier et al. 2016), in which
the predicted CO value is given by

=
å

y 10 2
c m x

model i
i i ( )

·

in which c is a constant, mi is the gradient of each input, and xi
is each input “feature” (i.e., each input image). For both the

Figure 16. Our final 450 and 850 μm images and sensitivity maps for HASHTAG Data Release 1. The colored regions of the images are approximately where our
observations and complete and at our full sensitivity (equivalently, the grayscale shows regions where observations are still ongoing). The images have a resolution of
7 9 and 13 0 (FWHM) at 450 and 850 μm, respectively, and are available in both mJy beam−1 and mJy arcsec−2 units. The sensitivity maps are shown on a log scale
and are described in Section 7.2.
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constant and gradients we assumed a weakly informative
Gaussian prior with μ= 0 and σ= 10 for the intercept and
σ= 20 for the gradient. Table 1 provides the best-fitting values
of mi and c.

Figure 17 shows a plot of the predicted versus the measured
CO(J= 3–2) emission. Above 1.0 K km s−1 the average
accuracy is ∼28%, although the true uncertainty may be lower
because there is significant uncertainty associated with some of
the data points.

In the second stage of our method, we extend our analysis to
create a model for regions of M31 where we do not have
CARMA CO(J= 1–0). To create this model we extend our
analysis to the entire CARMA region, for which we have
CO(J= 1–0) observations but not CO(J= 3–2) observations.
In this much larger region we use the linear combination we
derived in stage 1 to predict the CO(J= 3–2) fluxes. We then
use these predictions as the “measurements” in this stage of the
analysis, as well as our JCMT CO(J= 3–2) measurements not
used in “stage 1” (e.g., outside the CARMA footprint). In this
stage we use Equation (2) as above to determine the
combination of inputs that makes the best prediction of the
CO(J= 3–2) “measurements,” except this time we do not use
the CARMA CO(J= 1–0) measurements as one of the inputs.

We found, as before, that there was no advantage when using
the nonlinear methods, so we used the simpler linear method.
CARMA covers a large continuous region, so instead of
assigning pixels randomly to the training and test data, we used
slices in decl., which avoids pixels in the same cloud being
assigned to both data sets. Since predicted CO(J= 3–2) fluxes
below 0.5 K km s−1 correspond to 850 μm fluxes significantly
less than the statistical noise in the HASHTAG image, we only
trained our model on regions with CO(J= 3–2) “measure-
ments” greater than this value. Figure 18 shows the relationship
between the prediction of this new model and the CO(J= 3–2)
measurements (either our real measurements or the predictions
from stage 1).

Figure 19 shows the CO(J= 3–2) line flux predicted by our
models. Inside the CARMA region, where we have
CO(J= 1–0) measurements, we have used the stage 1 model.
Outside the CARMA region, we used our stage 2 model. The

statistical noise in the HASHTAG 850 μm image is ;2 mJy,
which corresponds to a CO(J= 3–2) line flux of ;3 K km s−1.
The figure shows that generally the line contamination is not a
problem. In bright cores, though, it can be important. If σ850 μm

is the statistical uncertainty in the 850 μm without the inclusion
of the systematic term (the third term in Equation (1)), the
maximum CO(J= 3–2) signal is ;5.7σ850 μm. But if the
systematic term is included, this reduces to ;1.5σ. If only
pixels are included where the signal-to-noise ratio of the
850 μm image is greater than 3σ (not including the systematic
term), the maximum contamination in a pixel is 28%, but in
80% of the pixels the CO line flux is less than 0.5 K km s−1,
which is only ;16% of the statistical noise in the continuum

Table 1
Parameters of CO(J = 3–2) Models

“Feature” Gradient Coefficient (mi)

Image Including CARMA Excluding CARMA

CARMA 0.403 ± 0.020 L
Dust surface density 0.076 ± 0.023 0.220 ± 0.004
Dust temperature 0.060 ± 0.019 0.160 ± 0.005
Dust β 0.032 ± 0.009 0.030 ± 0.003
MIPS 24 μm 0.014 ± 0.049 0.133 ± 0.010
SFR surface density 0.011 ± 0.039 −0.115 ± 0.009
WISE W1 −0.173 ± 0.053 −0.153 ± 0.011
WISE W2 0.046 ± 0.058 0.079 ± 0.012
WISE W3 0.030 ± 0.044 −0.076 ± 0.008
WISE W4 0.022 ± 0.042 0.063 ± 0.010

Constant (c) −0.288 ± 0.016 0.420 ± 0.0003

Note. The best-fit parameters from the model described by Equation (2) for
both the model including CARMA observations (“stage 1”) and that excluding
CARMA observations (“stage 2”). See Section 8 for more details. Figure 17. The measured CO(J = 3–2) flux vs. the flux predicted by our linear

model for the six regions of our CO(J = 3–2) survey that fall within the region
of the CARMA(J = 1–0) survey. The blue data points are for the 20% of pixels
that are in our test data set, which we did not use in determining the best
combination of parameters. The green points are from our training data set. At
low line fluxes the scatter is dominated by the uncertainty in the JCMT
CO(J = 3–2) observations. The orange line shows the 1-to-1 line that we
would achieve if our prediction method were perfect.

Figure 18. The CO(J = 3–2) line flux predicted by our final model vs.
CO(J = 3–2) measurements (either our real measurements or the predictions
from stage 1). The blue data points are from our “test” data set (20% of the
pixels), which was not used to derive the model. Error bars have not been
included for clarity. The orange line shows the 1-to-1 line for a perfect
prediction.
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map. In general, then, contamination by the CO(J= 3–2) line is
not a significant problem. We have provided 850 μm images in
the data release both with and without a correction for line
contamination, allowing users to either ignore the effect of line
contamination completely, use our corrected image, or make
their own correction.

9. Conclusions

We have presented submillimeter images of the Andromeda
galaxy obtained at 450 and 850 μm, the first images made from
the ground that properly represent the structure of the galaxy on
all spatial scales. We have described the method we have
developed to optimize the SCUBA-2 pipeline for M31 and how
we use a feathering technique to combine the small-scale
structure (high-k Fourier components) from SCUBA-2 and data
from space observatories (Herschel and Planck) to provide the
large-scale structure (low-k Fourier components).

We describe the maps that comprise the HASHTAG DR1
data release, which have a typical sensitivity of ∼2.0 and
∼30 mJy beam−1 at 850 and 450 μm, respectively (at native
SCUBA-2 resolution). As the CO(J= 3–2) line falls within the
bandpass of the 850 μm band we derive a method to predict the
line flux across M31, and find that while generally the
contamination is small compared with the uncertainty in our
continuum measurements, for some bright regions of the ring
the contamination is significant. We provide data products both
with and without the CO correction and at different resolutions.
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