
Western University Western University 

Scholarship@Western Scholarship@Western 

Physics and Astronomy Publications Physics and Astronomy Department 

4-1-2021 

Distances to Galactic X-ray binaries with Gaia DR2 Distances to Galactic X-ray binaries with Gaia DR2 

R. M. Arnason 

H. Papei 

P. Barmby 
The University of Western Ontario, pbarmby@uwo.ca 

A. Bahramian 
Curtin University 

M. D. Gorski 
Chalmers University of Technology 

Follow this and additional works at: https://ir.lib.uwo.ca/physicspub 

 Part of the Astrophysics and Astronomy Commons, and the Physics Commons 

Citation of this paper: Citation of this paper: 
Arnason, R. M.; Papei, H.; Barmby, P.; Bahramian, A.; and D. Gorski, M., "Distances to Galactic X-ray binaries 
with Gaia DR2" (2021). Physics and Astronomy Publications. 80. 
https://ir.lib.uwo.ca/physicspub/80 

https://ir.lib.uwo.ca/
https://ir.lib.uwo.ca/physicspub
https://ir.lib.uwo.ca/physics
https://ir.lib.uwo.ca/physicspub?utm_source=ir.lib.uwo.ca%2Fphysicspub%2F80&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/123?utm_source=ir.lib.uwo.ca%2Fphysicspub%2F80&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/193?utm_source=ir.lib.uwo.ca%2Fphysicspub%2F80&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ir.lib.uwo.ca/physicspub/80?utm_source=ir.lib.uwo.ca%2Fphysicspub%2F80&utm_medium=PDF&utm_campaign=PDFCoverPages


MNRAS 000, 1–16 (2021) Preprint 5 February 2021 Compiled using MNRAS LATEX style file v3.0

Distances to Galactic X-ray Binaries with Gaia DR2

R. M. Arnason,1★ H. Papei1, P. Barmby1,2, A. Bahramian,3 M.D. Gorski1,4
1Department of Physics & Astronomy, 2Institute for Earth and Space Exploration, University of Western Ontario, 1151 Richmond Street, London, ON N6A 3K7, Canada
3International Centre for Radio Astronomy Research, Curtin University, GPO Box U1987, Perth, WA 6845, Australia
4Department of Space, Earth & Environment, Astronomy and Plasma Physics, Chalmers University of Technology 412 96 Gothenburg, Sweden

Accepted XXX. Received YYY; in original form ZZZ

ABSTRACT
Precise and accurate measurements of distances to Galactic X-ray binaries (XRBs) reduce uncertainties in the determination of
XRB physical parameters. We have cross-matched the XRB catalogues of Liu et al. (2006, 2007) to the results of Gaia Data
Release 2. We identify 86 X-ray binaries with a Gaia candidate counterpart, of which 32 are low-mass X-ray binaries (LMXBs)
and 54 are high-mass X-ray binaries (HMXBs). Distances to Gaia candidate counterparts are, on average, consistent with those
measured by Hipparcos and radio parallaxes. When compared to distances measured by Gaia candidate counterparts, distances
measured using Type I X-ray bursts are systematically larger, suggesting that these bursts reach only 50% of the Eddington limit.
However, these results are strongly dependent on the prior assumptions used for estimating distance from the Gaia parallax
measurements. Comparing positions of Gaia candidate counterparts for XRBs in our sample to positions of spiral arms in the
Milky Way, we find that HMXBs exhibit mild preference for being closer to spiral arms; LMXBs exhibit mild preference for
being closer to inter-arm regions. LMXBs do not exhibit any preference for leading or trailing their closest spiral arm. HMXBs
exhibit a mild preference for trailing their closest spiral arm. The lack of a strong correlation between HMXBs and spiral arms
may be explained by star formation occurring closer to the midpoint of the arms, or a time delay between star formation and
HMXB formation manifesting as a spatial separation between HMXBs and the spiral arm where they formed.
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1 INTRODUCTION

1.1 X-ray Binaries

X-ray binaries (XRBs) are rare systems comprised of a main-
sequence star in a close binary orbit with a neutron star (NS) or
black hole (BH). The accretion of material from the main-sequence
companion onto the compact object results in X-ray emission which
dominates much of the point source population of the X-ray sky.
Aside from the type of accretor, XRBs are principally categorized
based on the mass of the companion. Binaries where the compact
object accretes from the wind of a star > 10 M� are classified as
high-massX-ray binaries (HMXBs),while those that accrete from the
Roche lobe overflow of a < 1M� companion are known as low-mass
X-ray binaries (LMXBs; van Paradĳs 1998; Casares et al. 2017).
There are a handful of XRBs where the companion is of intermediate
mass 1 − 3M� , but they are rare compared to the other two types of
system. It is expected that many primordial intermediate-mass X-ray
binaries have evolved to LMXBs in the present day through mass
transfer (Podsiadlowski & Rappaport 2000).
XRBs are interesting extraterrestrial laboratories that permit the

testing of our understanding of physical processes under extremes
of gravity, rotation rate, pressure, temperature, and magnetic field
strength. In addition, a number of interesting astrophysical phenom-
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ena can be studied through XRBs, such as wind physics, neutron
star equation of state, and high-energy radiative processes. Aside
from their value to these astrophysical questions, XRBs can also
provide independent constraints on their formation environment on
larger scales (Lehmer et al. 2010; Boroson et al. 2011; Zhang et al.
2012; Tremmel et al. 2013). LMXBs can act as independent trac-
ers of stellar mass, since low-mass stars comprise the bulk of the
stellar mass in a population (Gilfanov 2004). Additionally, LMXBs
are preferentially found in areas of high stellar density, such as the
globular clusters of the Galaxy and in the direction of the Galac-
tic centre, likely due to their formation by dynamical mechanisms
(Clark 1975; Pooley et al. 2003; Muno et al. 2005; Verbunt & Lewin
2006; Degenaar et al. 2012). By contrast, the high-mass companions
of HMXBs are short-lived, so they are useful for tracing recent star
formation in a long-term galactic evolution context. Observations of
nearby galaxies have suggested that the star formation rate (SFR)
of a galaxy scales with both the number of HMXBs and their col-
lective X-ray luminosity, albeit with a moderate dispersion (Grimm
et al. 2003; Mineo et al. 2012). Finally, XRBs are one of the few
ways to observe the high mass end of the initial mass function in
an evolved population, since isolated neutron stars and black holes
are challenging to observe and study (Verbunt & Hut 1987; Verbunt
2003; Dabringhausen et al. 2012).

© 2021 The Authors
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2 R. M. Arnason et al.

1.2 X-ray Binaries and Galactic Structure

Although fieldMilkyWay XRBs can often be easier to study because
of their close proximity (compared to XRBs in globular clusters or
other galaxies), investigating the relationship between XRBs and
galaxy parameters for the Milky Way is complicated. Our location
within the disc of the Milky Way means that lines of sight where
XRBs are expected to be more abundant tend to be heavily extincted.
XRBs tend to have a spatial distribution that is distinct from or-

dinary stars belonging to the same parent stellar population because
the supernova that forms the compact object in an XRB system can
impart a velocity kick to the system, often known as a “natal” kick.
This velocity kick has two effects: it gives the XRB system a pe-
culiar velocity relative to galactic rotation, and it can substantially
displace the system (depending on XRB type) from the star form-
ing region where its progenitor formed (González Hernández et al.
2005; Dhawan et al. 2007). Repetto et al. (2012) investigated how
natal kicks at the birth of black hole LMXBs are necessary to explain
their observed distribution in the Milky Way, particularly the pres-
ence of LMXBs at significant (1 kpc) distances above the disc. They
found that these kicks tend to be similar to those found for neutron
stars, a property which has been interpreted as a consequence of the
asymmetry of the supernova explosion (Janka 2013).
Naively, we expect that if HMXBs are correlated with star forma-

tion on a global scale, they should have a spatial correlation with the
sites of star formation in the spiral arms. The shape and extent of the
Milky Way’s spiral arms is not easy to resolve compared to external
galaxies observed face-on. Positions of the spiral arms themselves
are typically inferred through the fitting of analytical models to an
ensemble of observational tracers, including CO maps, Hii regions,
pulsars, masers, stellar kinematics, and dust emission (Vallée 2014).
To date, investigations of the correlation between HMXBs and the
spiral arms have been done using only two proxies of the spiral arms.
Bodaghee et al. (2012) measured spatial cross-correlation between
OB associations and HMXBs, finding that they have a characteristic
offset of 0.4 ± 0.2 kpc, which is attributed to natal kicks received by
HMXBs at their formation. However, by the samemodels they find no
correlation between either OB associations or HMXBs and the spiral
arms themselves, which is unexpected given that OB associations are
expected to trace out the spiral arms (Brown et al. 1999). Coleiro &
Chaty (2013) investigated the spatial relation between HMXBs and
star forming complexes (SFCs) finding that they are correlated on two
characteristic scales: 0.3 ± 0.05 kpc and 1.7 ± 0.3 kpc, which they
interpret as the cluster size and cluster separation, respectively. They
also derive a mean migration distance for HMXBs of roughly 0.1 pc
and mean migration ages of around 50 Myr (depending on HMXB
type) though they note that sample sizes are small and uncertainties
are large. A large source of that uncertainty lies in the difficulty in
determining distances to XRBs within the Milky Way.

1.3 X-ray Binary Distances

A principal reason for desiring accurate distances to XRBs in the
Milky Way is that many of these XRBs can be studied in detail. With
the exception of XRBs located in the direction of the Galactic centre,
in the Milky Way the population of XRBs can be studied to fainter
X-ray luminosities, and identifications of a unique optical counter-
part are more straightforward. Since individual XRBs are most easily
studied in the Milky Way, our understanding of individual XRBs in
other galaxies and their parameters as an ensemble population are
affected by studies of nearby XRBs. Measuring the distance to in-
dividual XRBs accurately is important because the uncertainty on a

number of desired properties in an XRB system can be limited by the
uncertainty on distance. For example, measurements of distance can
affect the inferred size of the accretor (i.e., neutron star radius), in-
ferred mass of either component of the system (either the companion
mass or the mass of the accreting neutron star/black hole), inferred
mass transfer rate, and other relevant accretion physics due to the
inferred luminosity (Galloway et al. 2003; Jonker & Nelemans 2004;
Nättilä et al. 2017; Steiner et al. 2018).
The principal difficulty inmeasuring distances toXRBs is that they

lack a universal property or characteristic that would allow them to
be used as a standard candle. XRBs are also extremely rare com-
pared to ordinary stars, meaning that population-based methods of
determining distances to objects, such as main sequence fitting of a
star cluster, cannot be used on XRB populations. Although one can
use the main sequence of ordinary stars in a cluster to determine
the distance to XRBs in that cluster, the rarity of XRBs means that
constructing an “XRB main sequence" is untenable. X-ray emission
from the accretor which irradiates the companion may modify the
expected emission at longer wavelengths, causing an excess in the
bluer filters of the visible domain (Phillips et al. 1999;Muñoz-Darias
et al. 2005; Linares et al. 2018; Bozzo et al. 2018). Failing to account
for these effects on the expected optical emission of anXRBmay lead
to incorrect estimates of distance from photometric methods. These
effects are themselves modified by the mass transfer rate, accretion
geometry, orbital phase, and accretion state of the system, meaning
that they can change with time and may require simultaneous multi-
wavelength observations for distances to be usefully constrained.
A number of techniques have been used to constrain distance mea-

surements of Milky Way XRBs. The most common of these is to
measure a photometric distance by assuming that the emission is
dominated by the companion at longer wavelengths. In general, this
method is subject to substantial uncertainties, not only due to the
contribution of the accretor, but also due to uncertainties in spec-
tral classification and calibrating the absolute magnitude (Reig &
Fabregat 2015). A small number of XRBs have had their distances
determined via radio parallax or the proper motion of a launched
jet (Hjellming & Johnston 1981; Bradshaw et al. 1999; Miller-Jones
et al. 2009). This form of measurement provides relatively tight con-
straints on distance, but is possible only for objects that are sufficiently
radio-bright and moderately nearby.
An X-ray specific method of measuring distances is to use the

observed flux from Type I X-ray bursts. These bursts occur when a
sufficient amount of accretedmaterial, mostly hydrogen, accumulates
on the surface of a neutron star to trigger a thermonuclear runaway
that produces a characteristic burst (Lewin et al. 1993). The burst
is specifically the result of nuclear burning on the neutron star. A
subset of these bursts have steady hydrogen burning followed by ig-
nition of a helium layer beneath the hydrogen layer on the surface.
The ignition of this helium layer produces a burst that is sufficient to
lift the photosphere off the surface of the neutron star. These bursts
are known as photospheric radius expansion (PRE) bursts, and the
luminosity of the X-ray burst is expected to be at the Eddington lu-
minosity during the expansion and contraction of the photosphere
(Kuulkers et al. 2003). Since the Eddington limit is fixed for a par-
ticular accretor mass (and gas composition/opacity), this means that
the mass, radius, and distance of a neutron star can be constrained by
comparing the observed flux to the modelled Eddington luminosity
for that object. (Strohmayer & Bildsten 2006; Bhattacharyya 2010).
The use of X-ray bursts to infer distance was suggested not long after
the detection of such bursts by early X-ray satellites. This relation
has been calibrated using X-ray bursts observed in Galactic globular
clusters (van Paradĳs 1978, 1981; Verbunt et al. 1984) and applied
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Gaia distances to Galactic X-ray binaries 3

to several Galactic XRBs that exhibit either PRE or PRE-like bursts
(Basinska et al. 1984; Galloway et al. 2003; Jonker et al. 2004).
Evaluations of this method have shown that uncertainties around the
modelling assumptions in this method can result in uncertainties in
distance, neutron star mass, and neutron star radius (Galloway et al.
2008b).
With the exception of Type I X-ray bursts, most of the distance-

determination techniques require the identification of an opti-
cal/infrared counterpart to the X-ray source. Identification of a coun-
terpart requires high spatial resolution and accurate determination of
X-ray position. Existing catalogues of XRBs include sources which
have not been re-detected since their discovery prior to the era of high
angular resolution telescopes, and as such have poorly-determined
positions that could have many candidate counterparts. The presence
of interstellar extinction along particular lines of sight can interfere
with the identification of optical counterparts for many XRB sources.
Aside from studies of individual objects using telescopes such as the
Hubble Space Telescope, the principal existing parallax survey of
objects in the Milky Way was conducted by the Hipparcos satellite
(Perryman et al. 1997). Hipparcos provides parallax for only ∼ 105
sources, and has a fairly shallow limiting magnitude of 12. A handful
of nearby XRBs have had their distances determined via Hipparcos
parallax (see, for example, Chevalier & Ilovaisky 1998). Hipparcos
data provides reliable measurements of distance within a few hun-
dred parsecs of the Sun, which excludes (based on estimates using the
other distance methods described above) the overwhelming majority
of XRBs known in the Milky Way.

1.4 Gaia DR2 as a Probe of XRB Distances

The successor toHipparcos, theGaia satellite, was launched in 2013
and aims to have full five-parameter measurements (position, proper
motion, parallaxes) for ∼ 1 billion stars and parallaxes accurate to
10% for approximately 100 million sources by the end of its five-year
mission (Gaia Collaboration et al. 2016a). To date, there have been
two full data releases of Gaia results and an early release of a third
version (Gaia Collaboration et al. 2016b, 2018, 2020). Gaia data
release 2 (DR2), released in April 2018 and based on the first 22
months of data taken, contains over 1.3 billion sources which have
full five-parameter measurements, an improvement of five orders
of magnitude of Hipparcos for parallax measurements. Depending
on the required uncertainties, Gaia DR2 contains measurements for
objects to a limiting 𝐺 magnitude of 17–21. So far, Gaia DR2 has
already provided a wealth of information for studying populations in
and nearby the Milky Way that deviate from the expected dynamics
of ordinary stars in the Milky Way. For example, measurements of
candidate hypervelocity stars usingGaiaDR2 have shown that many
of them are in fact bound to the Milky Way, but at least one object
has an origin in the direction of the Magellanic Clouds, suggesting
the presence of a supermassive black hole in the Large Magellanic
Cloud (Boubert et al. 2018; Erkal et al. 2019). Gandhi et al. (2019)
searched forGaiaDR2 candidate counterparts forGalactic black hole
transients, finding that distances from Gaia counterparts generally
agreed with prior distance estimates. Notably, they found that the
black hole BW Cir has a Gaia distance of ∼ 0.6± 0.2 kpc, making it
the closest dynamically-confirmed transient black hole, although this
distance is difficult to reconcile with interpretations of the properties
of the donor star.
In this work, we seek to expand the use of Gaia to measure dis-

tances to XRBs and assess the accuracy of pre-Gaia distance mea-
surements. We include not only binaries with black holes/black hole
candidates but also neutron star/neutron star candidate binaries and

those with no clear identification of accretor type. Given that XRBs
are expected to deviate from the Milky Way’s stellar distribution in
subtle to dramatic ways, Gaia DR2 offers a unique chance to create
a sample of XRBs whose distances are determined by a uniform
method, as compared with the heterogeneous mix of methods used
for XRB distance determination whose accuracies, systematics, and
model dependencies may vary greatly. It also offers an opportunity to
calibrate alternativemethods ofmeasuring distance for use in the gen-
eral case where parallax measurements are not available. Gaia DR2
measurements are subject to several known systematic effects, in-
cluding centroid wobble caused by unresolved stellar companions
(Belokurov et al. 2020) and variation in the parallax zero-point with
source colour and spatial location (Lindegren et al. 2018; Arenou
et al. 2018). However the widespread use of Gaia data means that
these systematics have been investigated and characterized by many
different groups (e.g., Chan&Bovy 2020, summarize many determi-
nations of the zero-point offset). Uncertainties and systematics are,
in general, more poorly understood for the one-off distance measure-
ments available in the literature for many XRBs.

2 SAMPLE AND METHODS

Cross-matching XRBs to Gaia requires input catalogue(s) of known
XRBs and XRB candidates. To date, the most comprehensive cata-
logues ofXRBs in theMilkyWay are the catalogues of high-mass and
low-mass XRBs by Liu et al. (2006, 2007). In general, properties of
these XRBs (including positional uncertainties) are compiled using
the best/most recent (at the time of catalogue creation) observations
of these objects. These catalogues are assembled from published ob-
servations taken with a variety of X-ray telescopes, includingUhuru,
Einstein, ROSAT, RXTE, Chandra, and XMM-Newton. As such, the
specific X-ray energies sampled, sensitivities, and coverage of these
catalogues are non-uniform. Since the most recent updates to these
catalogues were in 2006 and 2007, they do not include a number
of Galactic XRB candidates discovered since then. However, an ad-
vantage of these catalogues is that many of these objects have been
studied in detail, especially those with identified counterparts. This
implies that the expected number of non-XRB contaminants should
be low.

2.1 XRB Sample

In order to assemble a sample of XRBs for Gaia counterpart match-
ing, we combine the Liu et al. (2006) and Liu et al. (2007) catalogues
of Galactic HMXBs and LMXBs. Although the most recent revision
of these catalogues is now over a decade old, they still represent the
most complete sample in the literature. In total, these catalogues con-
tain 301 XRBs or XRB candidates. We have removed two objects
from the Liu catalogues: 1H 0556+286, and 1H 1255-567 (Mu-2
Cru), on the basis that they appear to have been misclassified as
HMXBs and are in fact ordinary stars (Berghoefer et al. 1996; Tor-
rejón & Orr 2001). The majority of the objects have positional ac-
curacies (equivalent 90 percent confidence) ∼ 1′′or better, typically
through identification of an optical counterpart or high-resolution X-
ray observation. However, a number of the candidate objects in these
catalogues have poorly determined positions, especially those that
have not been re-observed since the beginning of the Chandra era.
We assume that long-wavelength counterparts identified in the cata-
logues are true counterparts to the LMXB/HMXB or LMXB/HMXB
candidates. In order to feasibly attempt to identifyGaia counterparts,
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we select only objects whose positional accuracy is quoted in the cat-
alogues as better than < 10′′, which provides a sample of 220 XRBs,
of which 136 are LMXBs and 84 are HMXBs.

2.2 Published distance estimates

Distances to XRBs are estimated using many different methods and
a goal of this work is to evaluate the quality of these methods (see
also Jonker & Nelemans 2004; Thévenin et al. 2017). The Liu et al.
(2006) and Liu et al. (2007) catalogues provide distance estimates
in the notes to the main catalogue files. We include the previous
distances and original references, as well as an indication of the
distance measurement method in Tables 1 and 2, for LMXBs and
HMXBs matched to Gaia sources, respectively. In some cases, only
a distance range is quoted in the Liu et al. catalogues and we give
the centre of this range. In cases where an upper or lower limit
was given, we quote that number as the distance. Fifteen of the
XRBs with Gaia candidate counterparts (subsection 2.4) had no
previous distance measurement as of the Liu catalogues. The results
of our literature search for these objects are discussed in Appendix A;
we found published distances for ten of these fifteen objects. We
also updated distances for fifteen additional objects that had more
recently-published distances than those given in the Liu catalogues.
The majority of the objects in our sample have distances mea-

sured through photometry of the companion, using measured appar-
ent magnitude and extinction with an assumed absolute magnitude
based on modelling. Many XRBs with a neutron star have had their
distance measured using Type I X-ray bursts. Aside from these cat-
egories, there are also a handful of objects with Hipparcos or radio
parallaxes, and a variety of other methods for individual objects. We
use the following labels for different distance methods:

• phot: photometric distance using apparent magnitude, extinc-
tion, and assumed absolute magnitude of companion

• SEDfit: broad-band SED is fit to an assumed model of the
companion star/accretion disc with distance as a fitted parameter

• 𝐴𝑉 : distance measured using extinction models/Galactic col-
umn density

• jetPM: distance measured using jet proper motion
• cluster: distance is assumed to be that of an associated clus-

ter/OB association
• burst: X-ray burst is used as a standard candle to obtain distance
• VLBAPLX/VLBIPLX: parallax measured using radio interfer-

ometery
• Kin: distance inferred from the kinematics of associated Hii re-

gions
• HipPLX: distance measured using parallax from the Hipparcos

satellite
• unknown: no previous distance measurement

In the literature, uncertainties on distances to XRBs are reported
in different ways, including making approximations with no quoted
uncertainties. As such, in this work we do not attempt to track the
uncertainties associated with previous measurements, except for a
handful of cases. In particular, we expect that distances from a radio
parallax (VLBI or VLBA) measurement should be more precise
than those from Gaia DR2, and Gaia DR2 distances should agree
with parallaxes measured with the Hipparcos satellite. In general
we expect that the distance to Gaia candidate counterparts is more
reliable and that the Gaia DR2 methodology and systematics are,
when taken as a whole, better understood than for the heterogeneous
ensemble of other methods.

2.3 Cross-matching

We searched for counterparts to our XRB sample by cross-matching
with the Gaia DR2 public release. Initially, we collected all po-
tential counterparts with a tolerance of < 10′′and then refined the
matches to only include counterparts whose angular separation was
less than the quoted positional uncertainty for each individual ob-
ject. As per the catalog description, any object that does not have a
quoted positional uncertainty is assumed to be accurate to ∼ 1′′or
better (Liu et al. 2006, 2007). We have chosen the conservative case
of a ∼ 1′′positional uncertainty for these objects. In the case that
an object had asymmetric positional uncertainties in right ascension
versus declination, we conservatively chose the maximum of these
two. With this refinement, 99 XRBs from the Liu catalogues have at
least one candidate Gaia counterpart. In total, we find 126 potential
counterparts for the Liu XRBs. Most objects have only one counter-
part, while a handful (those with more poorly determined positional
accuracy) return two or more potential counterparts.
We further refined our sample of potential XRB counterparts by

considering the probability that each Gaia source is aligned with
the position of the XRB by chance alone. To estimate probability of
our X-ray sources matching a random Gaia source, we picked 5000
random coordinates within 0.1 deg of each X-ray source and cross-
matched these random realisations against theGaia catalog to identify
the closest real Gaia source to each random pair of coordinates and
measured the angular distance between each random pair of coordi-
nates and the closest realGaia source to that pair. The distribution of
these distances in the vicinity of each X-ray source (for which these
random samples were generated and crossmatched against Gaia) is
directly proportional to the probability of chance overlap between a
source in the Gaia catalog and any random pair of coordinates (in-
formed partially by the density of Gaia catalog in the vicinity of each
X-ray source). We approximated the probability of a random match
by the fraction of random points which are located within a distance
of a Gaia source equal to the separation between the X-ray source
and the candidateGaia counterpart. After removing the counterparts
with a probability of chance overlap greater than 10%, we obtain 88
Gaia candidate counterparts to the Liu XRB sample, most of which
have reported parallaxes.1 A complete list of Liu et al. (2006, 2007)
catalog sources that were excluded from the final sample and the
step at which they were excluded is found in the online supporting
information. At this level, only two objects have more than one po-
tential Gaia counterpart: AX J1639.0-4642 and SAX J1711.6-3808.
Each of these objects has one potential counterpart with a parallax,
and one without. In the case of AX J1639.0-4642, the counterpart
with parallax is the more probable and we retain that parallax for our
analysis. The opposite is true for SAX J1711.6-3808; as for other ob-
jects where theGaia counterpart does not have a parallax, it does not
feature in our further analysis. We searched the literature for more
recent distance determinations and any changes to the XRB-type
classification for all of the 88 matches. We found no strong evidence
to reclassify individual source types but did find a few additional
published distances (see Appendix A).
Before proceeding, we consider the potential biases of our sample

compared to the unmatched sample. HMXBs have more luminous
main-sequence components and unsurprisingly are more likely to
have a counterpart than LMXBs: there are 187 LMXBs and 114
HMXBs in the Liu catalogues, but we find only 33 and 55 Gaia can-

1 Except for 2S 0053+604 (see Appendix A), the counterparts without par-
allaxes are faint (18.8 < 𝐺 < 21.0) and the lack of parallax measurement is
consistent with the distributions given by Gaia Collaboration et al. (2018).
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didate counterparts to LMXBs andHMXBs, respectively (these num-
bers each decrease by one after removing the extra candidate coun-
terparts as described above). Our counterpart matching is also more
sensitive to objects that are away from the Galactic centre and away
from the Galactic plane - the fraction of objects in the Liu catalogue
that have a Gaia candidate counterpart is higher in those directions.

MNRAS 000, 1–16 (2021)
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Table 1. Properties of Gaia candidate counterparts to Galactic LMXBs

Names RA DEC Pinterloper Gaia DR2 ID \sep mG,mean GOF dGaia dprev dprev Type dprev Ref
" mag kpc kpc

GRO J0422+32/V518 Per 04 21 42.790 +32 54 27.10 0.0100 172650748928103552 0.86 20.85 ± 0.05 4.4 · · · 2.49 SEDfit Gelino & Harrison (2003)
Swift J061223.0+701243.9/- 06 12 22.600 +70 12 43.40 0.0001 1107229825742589696 0.29 21.00 ± 0.06 1.6 · · · · · · · · · · · ·
4U 0614+091/V1055 Ori 06 17 07.400 +09 08 13.60 0.0051 3328832132393159296 0.65 18.56 ± 0.02 1.4 3.3+1.3−2.4 3.0 burst Brandt et al. (1992)
1A 0620-00/V616 Mon 06 22 44.503 -00 20 44.72 0.0070 3118721026600835328 0.73 17.52 ± 0.01 3.0 1.6+0.4−0.7 1.06 phot Cantrell et al. (2010)
4U 0919-54/*X 09 20 26.950 -55 12 24.70 0.0009 5310395631783100800 0.1 20.73 ± 0.02 3.0 · · · 5.4 burst in’t Zand et al. (2005)
GS 1124-684/GU Mus 11 26 26.700 -68 40 32.60 0.0209 5234956524083372544 0.64 19.57 ± 0.01 0.4 2.3+1.1−3.1 5.9 SEDfit Gelino (2001)
1A 1246-588/*X 12 49 39.364 -59 05 14.68 0.0002 6059778089610749440 0.04 20.495 ± 0.008 1.2 2.0+1.2−2.4 5.0 burst Bassa et al. (2006)
4U 1456-32/V822 Cen 14 58 22.000 -31 40 08.00 0.0077 6205715168442046592 0.96 17.865 ± 0.005 0.7 2.1+0.6−1.2 1.3 burst Kaluzienski et al. (1980)
3A 1516-569/BR Cir 15 20 40.900 -57 10 01.00 0.0763 5883218164517055488 0.87 17.92 ± 0.02 11.5 6.2+2.0−2.9 9.2 burst Jonker & Nelemans (2004)
1E 1603.6+2600/UW CrB 16 05 45.820 +25 51 45.10 0.0018 1315375795016730880 0.75 19.67 ± 0.01 2.4 2.1+0.7−1.2 6.0 burst Hakala et al. (2005)
H 1617-155/V818 Sco 16 19 55.070 -15 38 24.80 0.0001 4328198145165324800 0.22 12.48 ± 0.02 9.4 2.13+0.21−0.26 2.8 VLBAPLX Bradshaw et al. (1999)
4U 1636-536/V801 Ara 16 40 55.500 -53 45 05.00 0.0819 5930753870442684544 0.87 18.27 ± 0.02 0.5 4.4+1.6−3.1 6.0 burst Galloway et al. (2008a)
GRO J1655-40/V1033 Sco 16 54 00.137 -39 50 44.90 0.0022 5969790961312131456 0.15 16.224 ± 0.006 4.0 3.3+0.7−1.1 3.2 jetPM Hjellming & Rupen (1995)
2A 1655+353/HZ Her 16 57 49.830 +35 20 32.60 <0.0001 1338822021487330304 0.26 13.61 ± 0.02 10.4 5.0+0.6−0.7 6.6 SEDfit Reynolds et al. (1997)
MXB 1659-298/V2134 Oph 17 02 06.500 -29 56 44.10 0.0517 6029391608332996224 0.48 19.44 ± 0.04 0.1 · · · 10.0 burst Muno et al. (2001)
4U 1700+24/HD 154791 17 06 34.520 +23 58 18.60 <0.0001 4571810378118789760 0.09 6.743 ± 0.001 20.0 0.536+0.009−0.009 0.42 phot Masetti et al. (2002)
3A 1702-363/V1101 Sco 17 05 44.500 -36 25 23.00 0.0011 5976748056765619328 0.11 17.757 ± 0.008 -0.0 4.9+1.7−2.9 9.2 unclear van Paradĳs & White (1995)
SAX J1711.6-3808/- 17 11 37.100 -38 07 05.70 0.0299 5973177495780065664 0.99 21.05 ± 0.02 0.5 · · · · · · · · · · · ·
4U 1724-307/Ter 2 17 27 33.300 -30 48 07.00 0.0347 4058208396397618688 0.34 18.20 ± 0.02 17.2 6.6+2.8−4 9.5 cluster Kuulkers et al. (2003)
3A 1728-247/V2116 Oph 17 32 02.160 -24 44 44.00 0.0012 4110236324513030656 0.15 15.860 ± 0.009 20.0 7.6+2.8−4 4.5 phot Chakrabarty & Roche (1997)
4U 1735-444/V926 Sco 17 38 58.300 -44 27 00.00 0.0742 5955379701104735104 0.96 17.77 ± 0.01 1.0 5.6+2.1−4 9.1 burst Augusteĳn et al. (1998)
SLX 1737-282/- 17 40 43.000 -28 18 11.90 0.0816 4060255373456473984 0.69 14.602 ± 0.003 47.8 4.5+2.1−4 6.5 burst in’t Zand et al. (2002)
EXO 1747-214/star 17 50 24.520 -21 25 19.90 0.0067 4118590585673834624 0.17 20.24 ± 0.03 3.0 · · · 11.0 burst Tomsick et al. (2005)
Swift J1753.5-0127/- 17 53 28.290 -01 27 06.22 <0.0001 4178766135477201408 0.04 16.698 ± 0.009 0.6 5.6+1.8−2.8 6.0 A𝑉 Cadolle Bel et al. (2007)
4U 1755-33/V4134 Sgr 17 58 40.000 -33 48 27.00 0.0277 4042473487415175168 0.35 19.500 ± 0.007 3.7 · · · 6.5 phot Wachter & Smale (1998)
2A 1822-371/V691 CrA 18 25 46.800 -37 06 19.00 0.0186 6728016172687965568 0.52 15.53 ± 0.02 3.7 6.1+1.6−2.7 2.5 SEDfit Mason & Cordova (1982)
HETE J1900.1-2455/star 19 00 08.650 -24 55 13.70 0.0007 4074363039644919936 0.17 18.10 ± 0.01 -0.1 3.5+1.7−3.5 5.0 burst Kawai & Suzuki (2005)
4U 1908+005/V1333 Aql 19 11 16.000 +00 35 06.00 0.0638 4264296556603631872 0.87 18.901 ± 0.004 2.4 3.0+1.3−2.6 5.2 burst Jonker & Nelemans (2004)
4U 1916-05/V1405 Aql 19 18 47.870 -05 14 17.09 0.0066 4211396994895217152 0.37 20.92 ± 0.03 0.6 · · · 8.9 burst Galloway et al. (2008a)
3A 1954+319/star 19 55 42.330 +32 05 49.10 0.0014 2034031438383765760 0.12 8.370 ± 0.002 23.6 3.3+0.6−1.0 1.7 phot Masetti et al. (2006b)
GS 2023+338/V404 Cyg 20 24 03.830 +33 52 02.200 0.0058 2056188620566335360 0.24 17.19 ± 0.01 4.0 2.1+0.4−0.6 2.39 VLBIPLX Miller-Jones et al. (2009)
4U 2129+47/V1727 Cyg 21 31 26.200 +47 17 24.00 0.0106 1978241050130301312 0.53 17.600 ± 0.001 1.9 1.75+0.26−0.4 6.3 phot Cowley & Schmidtke (1990)

First name in each column indicates the first name in the catalogue, while the second name indicates the name of the optical counterpart (if any). Optical counterparts that have numbers/letters following a * refers to the corresponding object on the finding chart as described in the
Liu catalogues. Optical counterparts with the name "star" do not have a labelled object on their corresponding finding chart. \sep indicates the separation between the candidate Gaia counterpart and the quoted position of the XRB in Liu et al. (2006, 2007). GOF is the Gaia DR2
goodness-of-fit statistic astrometric_gof_al.
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Table 2. Properties of Gaia candidate counterparts to Galactic HMXBs
Names RA DEC Pinterloper Gaia DR2 ID \sep mG,mean GOF dGaia dprev dprev Type dprev Ref

" mag kpc kpc
2S 0053+604/gamma Ca 00 56 42.50 +60 43 00.0 0.0041 426558460877467776 0.66 1.82 ± 0.01 190.5 · · · 0.19 HipPLX Perryman et al. (1997)
2S 0114+650/V662 Cas 01 18 02.70 +65 17 30.0 0.0005 524924310153249920 0.17 10.520 ± 0.001 5.5 6.6+1.1−1.6 7.2 phot Reig et al. (1996)

RX J0146.9+6121/LS I +61 235 01 47 00.20 +61 21 23.7 0.0001 511220031584305536 0.1 11.210 ± 0.002 19.3 2.50+0.18−0.21 2.3 phot Coe et al. (1993)

IGR J01583+6713/- 01 58 18.44 +67 13 23.5 0.0009 518990967445248256 0.3 13.7000 ± 0.0007 -1.1 7.4+0.8−1.1 6.4 phot Masetti et al. (2006c)

1E 0236.6+6100/LS I +61 303 02 40 31.70 +61 13 46.0 0.0031 465645515129855872 0.48 10.390 ± 0.001 3.3 2.45+0.21−0.26 2.4 Kin · · ·
V 0332+53/BQ Cam 03 34 59.90 +53 10 24.0 0.0025 444752973131169664 0.71 14.220 ± 0.002 8.6 5.1+0.8−1.0 7.0 phot Negueruela et al. (1999)

RX J0440.9+4431/LS V +44 17 04 40 59.30 +44 31 49.0 0.0014 252878401557369088 0.41 10.430 ± 0.001 -0.0 3.2+0.5−0.6 3.2 phot Motch et al. (1997)

EXO 051910+3737.7/V420 Aur 05 22 35.20 +37 40 34.0 0.0025 184497471323752064 0.52 7.220 ± 0.001 11.8 1.29+0.09−0.10 1.7 phot Polcaro et al. (1990)

1A 0535+262/V725 Tau 05 38 54.60 +26 18 57.0 0.0011 3441207615229815040 0.37 8.680 ± 0.007 5.6 2.13+0.21−0.26 2.45 phot Steele et al. (1998),Lyuty & Zaĭtseva (2000)

IGR J06074+2205/- 06 07 26.60 +22 05 48.3 0.0039 3423526544838563328 0.57 12.180 ± 0.001 3.1 5.5+1.0−1.5 4.5 phot Reig et al. (2010)

SAX J0635.2+0533/- 06 35 18.29 +05 33 06.3 <0.0001 3131755947406031104 0.15 12.510 ± 0.006 0.7 5.7+1.3−2.0 3.75 phot Kaaret et al. (1999)

XTE J0658-073/[M81] I-33 06 58 17.30 -07 12 35.3 0.0004 3052677318793446016 0.2 12.030 ± 0.003 4.1 5.1+0.9−1.4 3.9 phot McBride et al. (2006)

3A 0726-260/V441 Pup 07 28 53.60 -26 06 29.0 0.0019 5613494119544761088 0.3 11.620 ± 0.003 4.5 9.5+2.1−3.1 5.35 phot Corbet & Mason (1984),Negueruela et al. (1996)

1H 0739-529/HD 63666 07 47 23.60 -53 19 57.0 0.0005 5489434710755238400 0.22 7.5200 ± 0.0004 21.0 0.643+0.017−0.018 0.52 HipPLX Chevalier & Ilovaisky (1998)

4U 0900-40/HD 77581 09 02 06.90 -40 33 17.0 0.0044 5620657678322625920 0.46 6.720 ± 0.002 9.6 2.42+0.16−0.19 1.9 phot Sadakane et al. (1985)

GRO J1008-57/star 10 09 46.90 -58 17 35.5 0.0052 5258414192353423360 0.52 13.900 ± 0.001 10.8 3.6+0.4−0.5 5.0 phot Coe et al. (1994)

1A 1118-615/Hen 3-640 11 20 57.20 -61 55 00.0 0.0055 5336957010898124160 0.25 11.6000 ± 0.0005 4.7 2.93+0.22−0.26 5.0 phot Janot-Pacheco et al. (1981)

4U 1119-603/V779 Cen 11 21 15.10 -60 37 25.5 0.0021 5337498593446516480 0.14 12.890 ± 0.003 8.2 6.4+1.0−1.4 9.0 phot Krzeminski (1974),Hutchings et al. (1979)

IGR J11215-5952/HD 306414 11 21 46.81 -59 51 47.9 0.0017 5339047221168787712 0.12 9.760 ± 0.001 6.3 6.5+1.1−1.5 6.2 phot Masetti et al. (2006a)

IGR J11435-6109/- 11 44 10.70 -61 07 02.0 0.0363 5335022901224296064 0.64 13.000 ± 0.002 52.8 3.9+1.1−1.8 8.6 phot Masetti et al. (2009)

2S 1145-619/V801 Cen 11 48 00.00 -62 12 25.0 0.0023 5334823859608495104 0.18 8.630 ± 0.002 7.1 2.23+0.16−0.19 3.1 phot Stevens et al. (1997)

1E 1145.1-6141/V830 Cen 11 47 28.60 -61 57 14.0 0.0594 5334851450481641088 0.64 12.280 ± 0.001 6.6 9.1+1.6−2.2 8.0 phot Ilovaisky et al. (1982)

4U 1223-624/BP Cru ? 12 26 37.60 -62 46 13.0 0.0075 6054569565614460800 0.37 9.760 ± 0.001 12.6 3.5+0.4−0.5 4.1 phot Leahy (2002)

1H 1249-637/HD 110432 12 42 50.30 -63 03 31.0 0.0037 6055103928246312960 0.24 5.120 ± 0.002 76.4 0.416+0.021−0.023 0.392 A𝑉 Megier et al. (2009)

1H 1253-761/HD 109857 12 39 14.60 -75 22 14.0 0.0003 5837600152935767680 0.16 6.5200 ± 0.0004 22.3 0.2117+0.0014−0.0014 0.24 HipPLX Chevalier & Ilovaisky (1998)

4U 1258-61/V850 Cen 13 01 17.10 -61 36 07.0 0.0005 5863533199843070208 0.36 12.650 ± 0.003 16.0 2.01+0.13−0.15 2.4 phot Parkes et al. (1980)

2RXP J130159.6-635806/- 13 01 58.70 -63 58 09.0 0.0029 5862285700835092352 0.22 17.340 ± 0.001 6.7 5.5+1.7−2.8 5.5 phot Chernyakova et al. (2005)

2S 1417-624/*7 14 21 12.90 -62 41 54.0 0.0995 5854175187681966464 0.81 20.490 ± 0.006 0.6 3.8+1.7−2.7 6.2 phot Grindlay et al. (1984)

4U 1538-52/QV Nor 15 42 23.30 -52 23 10.0 0.0267 5886085557746480000 0.72 13.190 ± 0.001 13.6 6.6+1.4−2.1 4.5 phot Clark (2004),Reynolds et al. (1992)

1H 1555-552/HD 141926 15 54 21.80 -55 19 45.0 0.0610 5884544931471259136 0.74 8.680 ± 0.001 4.3 1.35+0.08−0.09 0.96 · · · Grillo et al. (1992)

IGR J16318-4848/*1 16 31 48.31 -48 49 00.7 0.0002 5940777877435137024 0.04 17.170 ± 0.002 32.4 5.2+1.8−2.7 0.9 SEDfit Filliatre & Chaty (2004)

AX J1639.0-4642/- 16 39 05.40 -46 42 14.0 0.0149 5942638074996489088 0.4 19.800 ± 0.006 7.3 4.0+1.7−2.6 · · · · · · · · ·
IGR J16465-4507/- 16 46 35.26 -45 07 04.5 0.0008 5943246345430928512 0.11 13.510 ± 0.001 9.0 2.70+0.35−0.5 12.5 phot Smith (2004)

IGR J16479-4514/- 16 48 07.00 -45 12 05.8 0.0724 5940244030149933696 1.29 19.580 ± 0.005 3.5 2.8+1.4−2.5 4.45 phot Coley et al. (2015)

4U 1700-37/HD 153919 17 03 56.80 -37 50 39.0 0.0154 5976382915813535232 0.33 6.400 ± 0.001 12.9 1.75+0.19−0.23 2.12 A𝑉 Megier et al. (2009)

XTE J1739-302/- 17 39 11.58 -30 20 37.6 0.0039 4056922105185686784 0.4 12.670 ± 0.001 34.1 5.3+2.1−4 2.3 phot Negueruela et al. (2006)

IGR J17544-2619/*C1 17 54 25.28 -26 19 52.6 0.0006 4063908810076415872 0.1 11.670 ± 0.001 9.5 2.66+0.33−0.4 3.2 phot Pellizza et al. (2006)
SAX J1819.3-2525/V4641 Sgr 18 19 21.48 -25 25 36.0 0.0168 4053096217067937664 0.28 18.82 ± 0.02 3.2 · · · 6.2 SEDfit MacDonald et al. (2014)
RX J1826.2-1450/LS 5039 18 26 15.06 -14 50 54.3 0.0004 4104196427943626624 0.08 10.8000 ± 0.0004 -2.6 1.96+0.19−0.23 2.5 phot Casares et al. (2005)

AX J1841.0-0536/- 18 41 00.43 -05 35 46.5 0.0017 4256500538116700160 0.09 12.940 ± 0.003 34.3 7.6+2.2−3.1 10.0 A𝑉 Bamba et al. (2001)

XTE J1901+014/star 19 01 39.90 +01 26 39.2 0.0045 4268294763113217152 0.6 19.450 ± 0.007 0.2 2.2+1.1−2.2 · · · · · · · · ·
XTE J1906+09/star 19 04 47.48 +09 02 41.8 0.0014 4310649149314811776 0.23 19.73 ± 0.01 6.8 2.8+1.4−2.3 10.0 A𝑉 Marsden et al. (1998)

3A 1909+048/SS 433 19 11 49.60 +04 58 58.0 0.0102 4293406612283985024 0.56 12.63 ± 0.02 18.1 3.8+0.8−1.1 5.5 jetPM Hjellming & Johnston (1981)

4U 1909+07/*A 19 10 48.20 +07 35 52.3 0.0028 4306419980916246656 0.62 20.170 ± 0.008 10.6 2.6+1.3−2.3 7.0 A𝑉 Wen et al. (2000)

IGR J19140+0951/- 19 14 04.20 +09 52 58.3 0.0056 4309253392325650176 0.41 18.200 ± 0.006 13.7 2.8+1.3−2.3 3.6 phot Torrejón et al. (2010)

1H 1936+541/DM +53 2262 19 32 52.30 +53 52 45.0 0.0009 2136886799749672320 0.48 10.370 ± 0.002 23.2 3.3+0.4−0.5 · · · · · · · · ·
XTE J1946+274/*A 19 45 39.30 +27 21 55.4 0.0422 2028089540103670144 0.76 15.7100 ± 0.0007 6.8 12.6+2.9−4 9.5 SEDfit Wilson et al. (2003)

KS 1947+300/*3 19 49 30.50 +30 12 24.0 0.0359 2031938140034489344 0.57 20.48 ± 0.01 -0.0 3.1+2.0−3.5 9.5 pulsar Tsygankov & Lutovinov (2005)

4U 1956+35/HD 226868 19 58 21.70 +35 12 06.0 0.0051 2059383668236814720 0.37 8.5200 ± 0.0008 3.6 2.23+0.15−0.18 1.86 VLBAPLX Reid et al. (2011a)

EXO 2030+375/*2 20 32 15.20 +37 38 15.0 0.0116 2063791369815322752 0.9 16.910 ± 0.003 13.5 3.6+0.9−1.3 7.1 A𝑉 Wilson et al. (2002)

RX J2030.5+4751/SAO 49725 20 30 30.80 +47 51 51.0 0.0125 2083644392294059520 0.54 9.0300 ± 0.0006 9.1 2.49+0.16−0.19 2.2 phot Motch et al. (1997)

GRO J2058+42/star 20 58 47.50 +41 46 37.0 0.0048 2065653598916388352 0.45 14.190 ± 0.005 -0.3 8.0+0.9−1.2 9.0 · · · Reig et al. (2005)

1H 2202+501/BD +49 3718 22 01 38.20 +50 10 05.0 0.0029 1979911002134040960 0.37 9.3000 ± 0.0004 15.4 1.16+0.05−0.05 0.7 HipPLX Chevalier & Ilovaisky (1998)

4U 2206+543/BD +53 2790 22 07 56.20 +54 31 06.0 0.0086 2005653524280214400 0.52 9.7400 ± 0.0007 8.5 3.34+0.32−0.4 2.6 phot Blay et al. (2006)

First name in each column indicates the first name in the catalogue, while the second name indicates the name of the optical counterpart (if any). Optical counterparts that have numbers/letters following a * refers to the corresponding object on the finding chart as described in the Liu catalogues. Optical counterparts with the name “star” do
not have a labelled object on their corresponding finding chart. \sep indicates the separation between the candidate Gaia counterpart and the quoted position of the XRB in Liu et al. (2006, 2007). GOF is the Gaia DR2 goodness-of-fit statistic astrometric_gof_al.
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2.4 Distances and Final Sample

To obtain the distance for each counterpart, wematch theGaia source
ID to the catalogue of Bailer-Jones et al. (2018), which uses a
Bayesian method to infer distances. In this work, we quote distance
uncertainties as the 1𝜎 bounds on the posterior probability density
function for distance. In general, this function is asymmetric about
the peak value, so we have asymmetric error bars. The prior of this
Bayesian method models the Galactic stellar density as an exponen-
tial disc, so the particular distance prior assumed for each object de-
pends on that object’s position in Galactic coordinates. For ordinary
stars, information such as line-of-sight extinction, measured𝑇eff , and
magnitude/colours in theGaia filters can provide additional distance
constraints. However, for XRBs we prefer the position-plus-parallax-
only method used by Bailer-Jones et al. (2018), since modelling the
expected value of the additional other parameters in an XRB system
is more complex than for an individual star or ordinary binary.
Since LMXBs do not follow the same spatial distribution as the

stellar distribution assumed by Bailer-Jones et al. (2018), we must
cautiously interpret the distances to LMXBs (Grimm et al. 2002)(see
subsection 3.1). For example, an exponential discmodel would prefer
smaller distances for objects along lines of sight that are out of
the plane of the Milky Way. However, this may not be optimal for
LMXBs, given that they can be displaced from the stellar distribution
by supernova kicks. Of the matched XRBs, 76 of the Liu catalogue
counterparts have a parallax: 24 of these counterparts are associated
with LMXBs, while 52 are associated with HMXBs. As the GOF
values in Tables 1 and 2 show, the astrometric goodness-of-fit is poor
for many of these sources. The Gaia DR2 documentation suggests
that |GOF| > 3 indicates possible problems with the fit: 12 LMXBs
and 44 HMXBs have values in this range. A large subset of sources
in our sample (30) appear to show a large excess noise in their
astrometric fit (larger than 5-𝜎). A reason for the high GOF and large
excess noise in these systems could be the orbital motion.
Several of the matched objects have a negative measured parallax.

In this case, the distance we obtain is dominated by the assumptions
of the prior (see discussion in Luri et al. 2018 and Hogg 2018). We
plot the positions of theGaia candidate counterparts to the XRBs for
a face-on projection of the Milky Way in Figures 1 and 2.

3 RESULTS

Several expected results are evident in the Galactic distributions
of the XRB sample. First, as shown in Figure 1, HMXBs appear
to trace out the nearby (i.e., within 5–8 kpc) arms of the Galaxy.
Since HMXB luminosity is correlated with star formation rate in
star-forming galaxies (Grimm et al. 2003; Mineo et al. 2012), and
spiral arms are the primary sites of star formation, it is reasonable
to infer that they should be spatially close to spiral arms. Figure 2
shows that theLMXBs are preferentially found in the direction toward
the Galactic centre. A Rayleigh test rejects the null hypothesis that
the Galactic longitudes of the LMXBs are uniformly distributed at
𝑝 = 1.5 × 10−5 (and a Kuiper two-sample test rejects the hypothesis
that the Galactic longitude distributions of the LMXBs and HMXBs
are drawn from the same distribution at 𝑝 = 0.02.) The concentration
of LMXBs toward the Galactic centre is also expected since LMXBs
have been shown to trace stellar mass in galaxies (Gilfanov 2004) and
are preferentially formed in dense areas with high stellar encounter
rate, such as the Galactic Bulge (Muno et al. 2005; Degenaar et al.
2012).

Figure 1. Face-on distribution of Gaia counterparts for Liu HMXBs. The
spiral arms are modelled using the symmetric spiral arm model of Vallée
(2008). Interarm regions are modelled as the symmetric arm model phase
shifted by 45 degrees. Error bars for distance/parallax represent the 1𝜎 un-
certainties. The sun is located at the red star in the middle upper portion of
the Figure.

Figure 2. Face-on distribution ofGaia counterparts for Liu LMXBs. The spi-
ral arms are modelled using the symmetric spiral armmodel of Vallée (2008).
Interarm regions are modelled as the symmetric arm model phase shifted by
45 degrees. Error bars for distance/parallax represent the 1𝜎 uncertainties.
The sun is located at the red star in the middle upper portion of the Figure.
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Table 3. Statistical significance of previous distance measurements of
LMXBs comparing to Gaia DR2 distances using Bailer-Jones priors.

Method mean 95%CI p-value

Burst −0.36 [−0.66, −0.06] 0.01
Photometry 0.13 [−0.76, 1.02] 0.35
Radio Parallax −0.19 [−1.22, 0.84] 0.20
Other −0.19 [−0.69, 0.31] 0.20

3.1 Distance Measurement Comparison

We find Gaia parallax measurements for less than one third of the
combined LMXB/HMXB catalogue; in general, parallax measure-
ments will not be available for Galactic XRBs. Hence it is useful
to use objects with parallax measurement as a diagnostic for other
distance methods. We show a comparison of previous distance mea-
surements with those derived from the Gaia candidate counterparts
using Bland-Altman plots in Figures 3 and 4. These two figures show
the ratio of the difference between previous measured distances and
Gaia DR2 distances (this work) to the average of the measurements
versus the average of the measurements. To estimate the error bars in
these plots, we only used the uncertainties for ourGaia counterparts,
but omit the uncertainties on previous measurements given the dif-
ficulties in comparing methods, instruments, and the fact that many
distances are assumed rather than measured directly. A useful com-
ponent of this work is to tabulate distance methods for XRBs with
Gaia candidate counterparts, since in the Liu catalogue, distances are
reported without specifying the methodology or whether distances
are measured or assumed.
Most previous distance-measurement methods produce distances

consistent with Gaia , within their uncertainties where available.
GaiaDR2 measurements agree well with objects whose parallax has
been previously measured either by Hipparcos or radio interferome-
tery (VLBI/VLBA). Radio interferometery parallaxes are expected to
be significantly more accurate than Gaia ; therefore, comparing with
radio parallaxes verifies the assumptions of theGaia prior, at least for
the distance ranges and directions where objects with radio parallax
are available. In addition, the mean and median differences between
distances previously measured photometrically and Gaia DR2 dis-
tances are consistent with zero.
LMXB distances measured using Type I X-ray bursts do show ev-

idence of a trend with a plausible physical interpretation. As shown
in the left panel of Figure 3, distances measured using Type I X-ray
bursts are systematically larger than those measured via Gaia candi-
date counterparts. This figure shows the ratio of difference between
previously measured distance and Gaia distance to the average of
previously measured distance and Gaia distance. The mean of this
quantity over all the methods excluding the Type I X-ray bursts is
−0.07 ± 0.32, consistent with the null hypothesis of no difference
(zero mean) with a 𝑝-value of 0.17. However, the mean for the Type
I X-ray bursts is −0.36 ± 0.29 with a 𝑝-value of 0.01, which means
we can reject the null hypothesis of no systematic difference be-
tweenmeasured distances fromGaia and distances fromType I X-ray
bursts. The statistical significances of comparing other methods used
in measuring LMXB distances with respect to Gaia distances are re-
ported in Table 3. In this table, means and 95% confidence-intervals
of differences are reported, and the p-values are calculated for the
null-hypothesis of zero means. According to this table, distances
measured using Type I X-ray bursts are the only method which show
a systematic difference with new measured distances in this work.
These results would seem to suggest that Type I X-ray bursts are

intrinsically less luminous than predicted by modelling. This agrees
with previous results on systematic biases in distance determination
via Type I X-ray bursts. Galloway et al. (2008b) demonstrated that
the choice to assume that the touchdown flux (the flux measured
when the expanded photosphere of the neutron star touches down
back onto its surface) is either at the Eddington luminosity or sub-
Eddington may introduce large systematic uncertainties to distance
measurements of X-ray bursting XRBs. Studies of bursting sources
using the Rossi X-ray Timing Explorer have indicated that a number
of these sources are significantly sub-Eddington in their peak fluxes
(e.g., Galloway et al. 2008a).
As mentioned in subsection 2.4, LMXBs do not follow the same

spatial distribution as the stellar distribution assumed by Bailer-Jones
et al. (2018). To investigate the effect of the priors on LMXB dis-
tances, we also measured the Gaia DR2 distances using the prior
developed by Atri et al. (2019), which considers the distribution of
LMXBs in the MilkyWay based on the work of (Grimm et al. 2002).
The right panel of Figure 3 shows the result of our distance com-
parisons using this prior. The most noticeable effect of using the
Atri et al. (2019) prior is an increase in distances for most of the
LMXBs. As a result, distances measured using Type I X-ray bursts
are systematically smaller than those measured via Gaia candidate
counterparts. This is in contradiction with the suggestive results of
our analysis using theBailer-Jones et al. (2018) prior, which indicated
that distances based on type I X-ray bursts are overestimated, and thus
that bursts only reach 0.5 LEddington. As a model-independent check,
we have also done the same analysis without using any prior. In this
scenario, the Type I X-ray burst distances are consistent with the null
hypothesis of no difference with the Gaia distances, with a 𝑝-value
of 0.19. This discrepancy highlights the importance of priors when
using Gaia data for sources with large uncertainties.
Individual objects with particularly large discrepancies between

previously-published and Gaia candidate counterpart distances are
discussed in Appendix B.

3.2 Spatial Distribution and Spiral Arms

To investigate the relationship between XRBs and Galactic structure,
we compare the XRB distributions to a model of the spiral arms of
the MilkyWay. Pettitt et al. (2020) show evidence for spiral structure
traced by young stars, though it is not clear what the precise phys-
ical properties of the spiral structure are. Gorski & Barmby (2020)
suggest a four arm spiral structure traced by maser-bearing evolved
stars. We use the symmetric arm model of Vallée (2008). This model
is analytically defined: the precise shape, symmetries, structure, and
extent of the spiral arms of the Galaxy are nontrivial to determine due
to our location within the Milky Way. This symmetric model is fitted
to agree with a variety of observations, including dust, HI gas, CO
gas, and maps of stellar velocities. This model defines the midpoint
of four identical arms phase shifted by 90◦. We further define the
midpoint of interarm regions by shifting the existing arms by 45◦.
For each XRB, we compute three properties:

(i) the two-dimensional distance to the nearest spiral arm for a
face-on projection
(ii) whether the XRB is leading or trailing its closest spiral arm
(iii) whether the XRB is closer to the midpoint of a spiral arm or

the midpoint of an interarm region

Given that many of the uncertainties for the distances quite large,
counts of these quantities depend strongly on the posterior distribu-
tion function of the distances. In order to assess how much these
quantities change, we create 10,000 realizations of the distance for
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Figure 3. Difference between literature distance measurements for Liu catalogue LMXBs and the distances obtained in this work, versus the average of these
distances. Error bars are lower limits because the uncertainties in the previous distance measurements were omitted. The horizontal yellow lines show the mean
and 95% confidence interval of the sources with previously measured distances using Type I X-ray burst. Left panel: Gaia DR2 distances calculated using the
prior of Bailer-Jones et al. (2018). Right panel:GaiaDR2 distances calculated using the prior of Atri et al. (2019). Type I X-ray burst distances show a systematic
overestimate with respect to the Gaia distances using the Bailer-Jones prior, and a systematic underestimate with respect to the Gaia distances that use the Atri
et al. priors. The comparison using the prior of Bailer-Jones et al. (2018) implies that X-ray bursts (assuming they are PRE bursts) only reach 0.5 LEddington.

Figure 4. Difference between previous distance measurements for Liu cat-
alogue HMXBs and the distances obtained in this work, versus the average
of these distances. Previous distances are obtained from the literature refer-
ence given in Table 2, while the distance in this work is the distance to the
Gaia candidate counterpart for each HMXB.

each object using the posterior distribution function defined inBailer-
Jones et al. (2018), and compute the three quantities above for each
object in each iteration.
After computing whether each object is closer to an arm or inter-

arm region, whether it is leading or trailing the nearest spiral arm,
and the distance to the nearest spiral arm, we calculate the frac-
tion of objects leading/trailing and fraction of objects close to an
arm/interarm for each of the 10,000 runs. Under this construction,
sincewe have effectively partitioned the galaxy into two equally-sized
regions (closer to arm/closer to interarm, leading/trailing the near-
est spiral arm), we expect the following for the distribution of these
fractions: If the distribution of LMXBs/HMXBs fractions peaks at a
value greater than 0.5 for a particular structure (arm/interarm/leading
edge/trailing edge), then we interpret that LMXBs/HMXBs as being
correlated with that structure. Conversely, if the distribution peaks
at a value less than 0.5, we interpret LMXBs/HMXBs as being anti-
correlated with that structure. If the distribution peaks at 0.5, we
interpret LMXBs/HMXBs as being uncorrelated with that structure.
We treat the uncorrelated case as the null hypothesis for LMXBs and
HMXBs individually.
In each run, we exclude from the fraction any object that lies at

a distance of less than 3.1 kpc from the Galactic centre, classifying
them separately as bulge sources. We choose 3.1 kpc because it is
given as the half-length of the bar superimposed on the cartographic
plots of Vallée (2008), and it is noted therein that it becomes difficult
to separate the beginnings of the spiral arms from the bar itself at
approximately this distance. In each run, on average twoHMXBs and
five LMXBs were classified as bulge sources. The resulting fractions
and their uncertainty distributions are plotted in Figure 5.
Across the simulation, LMXBs and HMXBs both appear to ex-

hibit a roughly normal distribution in both fractions, though in both
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Figure 5.Distributions of population fraction correlated with spiral arms and leading edges for 10,000 realizations of the XRBswithGaia candidate counterparts.
The vertical line marks a fraction of 0.5, where the populations would be interpreted as being uncorrelated with the structure.

Figure 6. Cumulative distribution of XRB distances to the nearest spiral
arm. We mark the characteristic clustering scales of HMXBs against OB
associations and star-forming complexes measured by Bodaghee et al. (2012)
and Coleiro & Chaty (2013) for reference using the vertical grey regions. We
also plot the 0.1, 0.5, 0.9, and 0.99 quantiles of the HMXB distribution for
comparison.

the leading/trailing or arm/interarm case, the LMXB distribution
possesses a larger spread. To compare these measurements to each
other and to the null hypothesis (that they are uncorrelated with
arms/interarms and leading/trailing spiral arms), we tested these un-
certainty distributions for normality. Since the interarm/trailing frac-
tion is complementary to the arm/leading fraction, we consider only
the arm/leading fractions. None of the four distributions is consid-
ered normal by the D’Agostini𝐾2 test or the Anderson-Darling test at
𝑝 = 0.05. Only the LMXB leading fraction is considered normal by
the Jarque-Bera test for 𝑝 = 0.05. Since the distributions are not truly
normal, we report the fraction measurements and their uncertainty
in two ways: first using the standard deviation as the 1𝜎 uncertainty,
and then reporting the the 95th/5th quantiles as the uncertainty.
Our measurements of the fraction of HMXBs/LMXBs that are

correlated with spiral arms/inter-arm regions yields the following
results:

• Fraction of HMXBs that are closer to a spiral arm: 0.54 ± 0.05
(at 1𝜎), 0.54+0.08−0.08 at the 95th and 5th quantiles

• Fraction of LMXBs that are closer to a spiral arm: 0.39 ± 0.09
(at 1𝜎), 0.39+0.16−0.15 at the 95th and 5th quantiles

• Fraction of HMXBs that are leading the nearest spiral arm:
0.46 ± 0.05 (at 1𝜎), 0.46+0.09−0.09 at the 95th and 5th quantiles

• Fraction of LMXBs that are leading the nearest spiral arm:
0.50 ± 0.10 (at 1𝜎), 0.49+0.16−0.17 at the 95th and 5th quantiles

We cannot reject the null hypothesis that HMXBs or LMXBs are
spatially uncorrelated with spiral arms, at even 1𝜎, since the un-
certainties overlap with 𝐹fraction = 0.5. We cannot reject the null
hypothesis for either HMXBs or LMXBs exhibiting no preference
leading or trailing their nearest spiral arm. The LMXB and HMXB
fractions also overlap with each other at the 1𝜎 level. LMXBs ex-

MNRAS 000, 1–16 (2021)



12 R. M. Arnason et al.

hibit a mild preference for being found in interarm regions, while
HMXBs show only a mild preference for being found in the spiral
arms. LMXBs appear to be uncorrelated with leading or trailing their
spiral arm, while at low significance the HMXBs appear to prefer
trailing their nearest spiral arm.
In the context of Galactic structure, previous work has shown that

HMXBs trace SFR on Galactic scales (Grimm et al. 2003), so it is
reasonable to expect they should trace it on resolved scales in some
fashion and should exhibit a distinct spatial correlation. Naively it can
be assumed that star formation should happen at the leading edge of
a spiral armwhere the gas accumulates (see Koda et al. 2012 forM51
as an illustrative example of star formation and its relation to spiral
arm structure). Taking these assumptions together, HMXBs should
be found at the leading edge of spiral arms, and should exhibit a strong
preference for spiral arms versus interarm regions. However, we find
only a mild preference for spiral arms: the distribution of fractions
for the simulation peaks at 54% of the HMXBs being closer to an
arm than an interarm region, but the wings of the distribution include
the uncorrelated and anti-correlated cases.
The lack of strong preference for HMXBs being closely associated

with spiral arms could have a number of possible implications:

• Star formation does not occur at the leading edge of spiral arms.
• The time delay between star formation and HMXB accretion

starting manifests itself as a spatial separation between the spiral arm
and HMXBs due to the pattern speed of spiral arms.

• HMXB natal kicks may be larger than expected.
• Our sample is not large enough and does not have sufficiently

small distance uncertainties as an ensemble to measure the correla-
tion we expect from first principles.

OurHMXBsample comprises only∼50 objects, and the uncertainties
are still substantial. As such, though we can rule out a very strong
spatial correlation or anti-correlation between HMXBs and spiral
arms (using the Gaia DR2 data specifically), we cannot use our
result to distinguish between the scenarios listed above. Since we
are unable to reject the null hypothesis that HMXBs are uncorrelated
with spiral arms, our result is consistent with Bodaghee et al. (2012)’s
analysis, which found that HMXBs are not spatially correlated with
spiral arms. The scale at which the HMXB/SFR correlation breaks
down (if at all) is not well-constrained. In nearby galaxies, the X-ray
sources are typically studied by considering the integrated properties
of the entire population (for example, X-ray luminosity function) and
comparing to global parameters of the galaxy. Correlating XRBs
with galactic structure is challenging since galaxies that are close
enough to resolve on the desired scales require many fields in order
to encompass the entire galaxy. In addition, contamination from
X-ray sources in front of or behind the galaxy creates additional
difficulties. Swartz et al. (2003) investigated the relationship between
the spiral arms ofM81 and its X-ray source population, finding strong
correlation between spiral arm position and X-ray source density.
They note that brighter sources tend to be closer to spiral arms,
attributable to the brightest and shortest-lived HMXBs being close
downstream from their spiral arms.More recently, Kuntz et al. (2016)
performed a deep Chandra survey of M51. This study also finds that
X-ray sources are concentrated in spiral arms, though the distances
to spiral arm midpoints are not presented. Both studies also found
a non-trivial population of supernova remnants contributing to the
total X-ray source population.
In contrast to HMXBs, we expect that LMXBs should exhibit no

strong preference for spiral arms; they represent (collectively) an
older population that is also more strongly perturbed by the strength
of its SN kicks (Grimmet al. 2002). Since LMXBs can bemuch older,

it is not expected or required that they are still near the spiral arm
that formed their progenitor – there may have been multiple Galactic
rotations since the LMXB itself formed. Additionally, LMXBs’ high
velocity kicks mean they can be substantially displaced from the star-
forming region where they initially formed. This process is already
required to explain the presence of LMXBs at high Galactic latitudes
where they would not be expected to form a priori due to the low
stellar density (see, for example, Repetto et al. 2012). Consequently,
LMXBs as a population should be uncorrelatedwith spiral arms since
their distribution would be unperturbed by either the presence or
absence of spiral arms. This makes our result, which shows LMXBs
anti-correlated with spiral arms (though at low significance), difficult
to explain.
We also computed the distribution of distances to the nearest spi-

ral arm across all the simulations, shown in Figure 6, in order to
compare with previous works that measured the distances to OB as-
sociations and star-forming complexes for HMXBs (Bodaghee et al.
2012; Coleiro & Chaty 2013). In these works, clustering distances
between HMXBs and SFCs/OB associations were inferred from the
critical points of the cumulative distribution of the distances to the
nearest SFC/OB association. As discussed in Section 1.1, distances
to OB associations and SF complexes are distinct from distances to
the spiral arms themselves, and as such we might not expect HMXBs
to have the same clustering distance to the spiral arm. The distribu-
tion of HMXB distances to the nearest spiral arm that we measure
does not show a strong preference for the clustering sizes measured
for OB associations or SF complexes in previous works, though we
note that the Vallée (2008) model does not fit spiral arms to either of
these structures. The 0.1, 0.5, 0.9, and 0.99 quantiles of the HMXB
distribution to be at 127, 570, 1296, and 2340 pc, respectively. For
the LMXB distribution, the 0.1, 0.5, 0.9, and 0.99 quantiles of the
LMXB distribution are at 130, 610, 1090, and 1780 pc, respectively.
Given the substantial width of these distributions, it is difficult

to determine a characteristic separation from the spiral arms. The
interarm separation of a few kpc as set by the symmetric arms model
means that, by construction, it is difficult to have an XRB more than
a few kpc away from a spiral arm in face-on projection. Further, we
have chosen to model the galaxy using a symmetric model fitted to
observables in the Milky Way, which is a simple albeit potentially
unrealistic choice. The primary advantage of this model is that it
permits us to easily define inter-arm and arm regions for analysis
of the locations of XRBs. In reality, the number of arms and the
symmetry (e.g., are the four arms symmetric with each other or
are there major/minor axes?) of these arms in the Milky Way is
difficult to characterize (see Vallée 2017 and references therein),
and discussion exists about which tracers to use and how far to
project the model based on nearby observables. Future attempts to
characterize the relationship between the Galaxy’s spiral arms and
its XRB population would be improved by the use of a model that
relaxes the symmetry constraint.

4 CONCLUSIONS

• Wehave assembled the largest sample of Galactic X-ray binaries
whose distances have all been measured using the same method, and
hence have the same systematics and uniform presumed biases.

• Comparing XRB distances measured byGaia (using the Bailer-
Jones prior) to previous methods shows that measuring distances
using Type I X-ray bursts appears to systematically overestimate dis-
tance. This suggests that assumptions about X-ray bursts, namely that
bursting neutron stars consistently reach the Eddington luminosity,
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may need to be modified to use X-ray bursts as a distance estimator.
This effect is prior-dependent, as choosing a different prior, such as
the one in Atri et al. (2019), can cause burst distances to be system-
atically lower than those from Gaia DR2.

• We have compared the positions of XRBs to the locations of
the midpoints of spiral arms in the Milky Way. Galactic HMXBs
in our sample show only a modest preference for being spatially
co-located with spiral arms versus interarm regions, and show only
a modest preference for being on the leading edge of spiral arms.
This suggests that the delay time between star formation and HMXB
formation/accretion beginning manifests itself observationally as a
spatial separation between HMXBs and spiral arms due to the pattern
speed of spiral arm rotation. Other possible explanations for this
effect are scattering due to natal HMXB kicks or the possibility of
star formation occurring closer to the midpoint of the arm than the
leading edge.

• We further find that HMXB distances to the nearest spiral arm
do not show a strong preference for the clustering sizes previously
observed for OB associations or SF complexes.

• We find that LMXBs are very weakly anti-correlated with spiral
arms. This disagrees with the expectation that LMXBs should be
uncorrelated with spiral arms, though we note that the significance
of this result is low.

A main source of uncertainty in our analysis is the low num-
ber of XRBs with Gaia counterparts. Further releases of Gaia will
hopefully yield additional Gaia candidate counterparts for Galactic
XRBs, particularly for the intrinsically optically fainter LMXBs. For
objects with identifiedGaia candidate counterparts, smaller distance
uncertainties are expected from the improved baseline in DR3 and
subsequent releases. The small sample size from the Liu catalogues
is another limitation of our analysis. The Chandra Source Catalog
(Evans et al. 2010) provides an excellent foundation for studying the
Galactic X-ray sky in the Chandra era, but at present it has not been
data-mined to make a Milky Way-specific catalogue as a potential
successor to the Liu catalogues. Our knowledge of the Galactic XRB
source population can be improved through future all-sky surveys,
such as with the newly-launched eROSITA mission (Merloni et al.
2012). This mission, designed as a successor to the ROSAT mis-
sion, will survey the sky at approximately 20 times the sensitivity
of ROSAT in soft X-rays (0.5–2.0 keV), while providing the first
imaging survey of the sky in hard X-rays (2–10 keV). The on-axis
angular resolution of this telescope is expected to be comparable to
that of XMM-Newton. An improved all-sky survey will allow us to
find Gaia counterparts to an X-ray catalogue that is more up-to-date
and is has more uniform systematics, enhancing our understanding
of how XRB positions correlate with Galactic structure.
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Lyuty V. M., Zaĭtseva G. V., 2000, Astronomy Letters, 26, 9
MacDonald R. K. D., et al., 2014, ApJ, 784, 2
Marsden D., Gruber D. E., Heindl W. A., Pelling M. R., Rothschild R. E.,
1998, ApJ, 502, L129

Masetti N., et al., 2002, A&A, 382, 104
Masetti N., et al., 2006a, A&A, 449, 1139
Masetti N., Orlandini M., Palazzi E., Amati L., Frontera F., 2006b, A&A,
453, 295

Masetti N., et al., 2006c, A&A, 455, 11
Masetti N., et al., 2009, A&A, 495, 121
Mason K. O., Cordova F. A., 1982, ApJ, 262, 253
Massey P., Johnson K. E., Degioia-Eastwood K., 1995, ApJ, 454, 151
McBride V. A., et al., 2006, A&A, 451, 267
McClintock J. E., Remillard R. A., Margon B., 1981, ApJ, 243, 900
Megier A., Strobel A., Galazutdinov G. A., Krełowski J., 2009, A&A, 507,
833

Merloni A., et al., 2012, preprint, (arXiv:1209.3114)
Miller-Jones J. C. A., Jonker P. G., Dhawan V., Brisken W., Rupen M. P.,
Nelemans G., Gallo E., 2009, ApJ, 706, L230

Mineo S., Gilfanov M., Sunyaev R., 2012, MNRAS, 419, 2095
Motch C., Haberl F., Dennerl K., Pakull M., Janot-Pacheco E., 1997, A&A,
323, 853

Muñoz-Darias T., Casares J., Martínez-Pais I. G., 2005, ApJ, 635, 502
MunoM. P., Chakrabarty D., Galloway D. K., Savov P., 2001, ApJ, 553, L157
Muno M. P., Pfahl E., Baganoff F. K., Brandt W. N., Ghez A., Lu J., Morris
M. R., 2005, ApJ, 622, L113

Nättilä J., Miller M. C., Steiner A. W., Kajava J. J. E., Suleimanov V. F.,
Poutanen J., 2017, A&A, 608, A31

Negueruela I., Roche P., Buckley D. A. H., Chakrabarty D., Coe M. J.,
Fabregat J., Reig P., 1996, A&A, 315, 160

Negueruela I., Roche P., Fabregat J., Coe M. J., 1999, MNRAS, 307, 695
Negueruela I., Smith D. M., Harrison T. E., Torrejón J. M., 2006, ApJ, 638,
982

Parkes G. E., Murdin P. G., Mason K. O., 1980, MNRAS, 190, 537
Pellizza L. J., Chaty S., Negueruela I., 2006, A&A, 455, 653
Perryman M. A. C., et al., 1997, A&A, 323, L49
Pettitt A. R., Ragan S. E., Smith M. C., 2020, MNRAS, 491, 2162
Phillips S. N., Shahbaz T., Podsiadlowski P., 1999, MNRAS, 304, 839
Podsiadlowski P., Rappaport S., 2000, ApJ, 529, 946
Polcaro V. F., et al., 1990, A&A, 231, 354
Pooley D., et al., 2003, ApJ, 591, L131
Prišegen M., 2019, A&A, 621, A37
Reid M. J., McClintock J. E., Narayan R., Gou L., Remillard R. A., Orosz
J. A., 2011a, ApJ, 742, 83

Reid M. J., McClintock J. E., Narayan R., Gou L., Remillard R. A., Orosz
J. A., 2011b, ApJ, 742, 83

Reig P., Fabregat J., 2015, A&A, 574, A33
Reig P., Chakrabarty D., Coe M. J., Fabregat J., Negueruela I., Prince T. A.,
Roche P., Steele I. A., 1996, A&A, 311, 879

Reig P., Negueruela I., Papamastorakis G., Manousakis A., Kougentakis T.,
2005, A&A, 440, 637

Reig P., Zezas A., Gkouvelis L., 2010, A&A, 522, A107
Repetto S., Davies M. B., Sigurdsson S., 2012, MNRAS, 425, 2799
Reynolds A. P., Bell S. A., Hilditch R. W., 1992, MNRAS, 256, 631
Reynolds A. P., Quaintrell H., Still M. D., Roche P., Chakrabarty D., Levine
S. E., 1997, MNRAS, 288, 43

Sadakane K., Hirata R., Jugaku J., Kondo Y., Matsuoka M., Tanaka Y.,
Hammerschlag-Hensberge G., 1985, ApJ, 288, 284

Samus’ N. N., Kazarovets E. V., Durlevich O. V., Kireeva N. N., Pastukhova
E. N., 2017, Astronomy Reports, 61, 80

Smith D. M., 2004, The Astronomer’s Telegram, 338, 1
Steele I. A., Negueruela I., Coe M. J., Roche P., 1998, MNRAS, 297, L5
Steiner A. W., Heinke C. O., Bogdanov S., Li C. K., Ho W. C. G., Bahramian
A., Han S., 2018, MNRAS, 476, 421

MNRAS 000, 1–16 (2021)

http://dx.doi.org/10.1051/0004-6361/201219470
http://adsabs.harvard.edu/abs/2012A%26A...545A..49D
http://dx.doi.org/10.1086/520111
http://adsabs.harvard.edu/abs/2007ApJ...668..430D
http://dx.doi.org/10.1093/mnras/sty2674
http://dx.doi.org/10.1093/mnras/sty2674
http://dx.doi.org/10.1088/0067-0049/189/1/37
http://dx.doi.org/10.1086/424869
https://ui.adsabs.harvard.edu/#abs/2004ApJ...616..469F
http://dx.doi.org/10.1051/0004-6361:20054686
https://ui.adsabs.harvard.edu/#abs/2006A&A...457..249F
http://dx.doi.org/10.3847/0004-637X/826/1/66
https://ui.adsabs.harvard.edu/abs/2016ApJ...826...66F
http://dx.doi.org/10.3847/1538-4357/ab881c
https://ui.adsabs.harvard.edu/abs/2020ApJ...894...86F
http://dx.doi.org/10.1051/0004-6361/201629272
http://adsabs.harvard.edu/abs/2016A%26A...595A...1G
http://dx.doi.org/10.1051/0004-6361/201629512
http://adsabs.harvard.edu/abs/2016A%26A...595A...2G
http://dx.doi.org/10.1051/0004-6361/201833051
http://adsabs.harvard.edu/abs/2018A%26A...616A...1G
http://dx.doi.org/10.1086/375049
http://adsabs.harvard.edu/abs/2003ApJ...590..999G
http://dx.doi.org/10.1086/592044
https://ui.adsabs.harvard.edu/#abs/2008ApJS..179..360G
http://dx.doi.org/10.1111/j.1365-2966.2008.13219.x
http://adsabs.harvard.edu/abs/2008MNRAS.387..268G
http://dx.doi.org/10.1093/mnras/stz438
http://dx.doi.org/10.1086/379311
https://ui.adsabs.harvard.edu/abs/2003ApJ...599.1254G
http://dx.doi.org/10.1111/j.1365-2966.2004.07473.x
http://adsabs.harvard.edu/abs/2004MNRAS.349..146G
http://dx.doi.org/10.1051/0004-6361:20042453
http://adsabs.harvard.edu/abs/2005A%26A...435.1185G
http://dx.doi.org/10.1093/mnras/staa1187
https://ui.adsabs.harvard.edu/abs/2020MNRAS.495..726G
http://dx.doi.org/10.3847/1538-4357/ab5362
https://ui.adsabs.harvard.edu/abs/2019ApJ...887...93G
http://dx.doi.org/10.1086/191705
https://ui.adsabs.harvard.edu/#abs/1992ApJS...81..795G
http://dx.doi.org/10.1051/0004-6361:20020826
http://adsabs.harvard.edu/abs/2002A%26A...391..923G
http://dx.doi.org/10.1046/j.1365-8711.2003.06224.x
http://adsabs.harvard.edu/abs/2003MNRAS.339..793G
http://dx.doi.org/10.1086/161650
https://ui.adsabs.harvard.edu/#abs/1984ApJ...276..621G
http://dx.doi.org/10.1111/j.1365-2966.2004.08543.x
https://ui.adsabs.harvard.edu/#abs/2005MNRAS.356.1133H
http://dx.doi.org/10.1086/183571
https://ui.adsabs.harvard.edu/#abs/1981ApJ...246L.141H
http://dx.doi.org/10.1038/375464a0
http://adsabs.harvard.edu/abs/1995Natur.375..464H
http://arxiv.org/abs/1804.07766
http://dx.doi.org/10.1086/157042
https://ui.adsabs.harvard.edu/#abs/1979ApJ...229.1079H
https://ui.adsabs.harvard.edu/#abs/1982A&A...114L...7I
http://dx.doi.org/10.1093/mnras/stt1106
http://adsabs.harvard.edu/abs/2013MNRAS.434.1355J
https://ui.adsabs.harvard.edu/#abs/1981A&A....99..274J
http://dx.doi.org/10.1111/j.1365-2966.2004.08193.x
http://adsabs.harvard.edu/abs/2004MNRAS.354..355J
http://dx.doi.org/10.1111/j.1365-2966.2004.08246.x
http://adsabs.harvard.edu/abs/2004MNRAS.354..666J
http://dx.doi.org/10.1086/307711
https://ui.adsabs.harvard.edu/#abs/1999ApJ...523..197K
http://dx.doi.org/10.1086/158388
https://ui.adsabs.harvard.edu/#abs/1980ApJ...241..779K
https://ui.adsabs.harvard.edu/#abs/2005ATel..534....1K
http://dx.doi.org/10.1088/0004-637X/761/1/41
http://adsabs.harvard.edu/abs/2012ApJ...761...41K
http://dx.doi.org/10.1088/0067-0049/209/1/14
http://dx.doi.org/10.1051/0004-6361/201014935
http://dx.doi.org/10.1086/181609
https://ui.adsabs.harvard.edu/#abs/1974ApJ...192L.135K
http://dx.doi.org/10.3847/0004-637X/827/1/46
https://ui.adsabs.harvard.edu/#abs/2016ApJ...827...46K
http://dx.doi.org/10.1051/0004-6361:20021781
http://adsabs.harvard.edu/abs/2003A%26A...399..663K
http://dx.doi.org/10.1111/j.1745-3933.2010.00860.x
https://ui.adsabs.harvard.edu/abs/2010MNRAS.405L..66L
http://dx.doi.org/10.1051/0004-6361:20020781
https://ui.adsabs.harvard.edu/abs/2002A&A...391..219L
http://dx.doi.org/10.1088/0004-637X/724/1/559
http://adsabs.harvard.edu/abs/2010ApJ...724..559L
http://dx.doi.org/10.1007/BF00196124
http://adsabs.harvard.edu/abs/1993SSRv...62..223L
http://dx.doi.org/10.1088/0004-637X/756/1/27
http://dx.doi.org/10.3847/1538-4357/aabde6
http://adsabs.harvard.edu/abs/2018ApJ...859...54L
http://dx.doi.org/10.1051/0004-6361/201832727
https://ui.adsabs.harvard.edu/abs/2018A&A...616A...2L
http://dx.doi.org/10.1051/0004-6361:20064987
https://ui.adsabs.harvard.edu/#abs/2006A&A...455.1165L
http://dx.doi.org/10.1051/0004-6361:20077303
https://ui.adsabs.harvard.edu/#abs/2007A&A...469..807L
http://dx.doi.org/10.1051/0004-6361/201832964
http://adsabs.harvard.edu/abs/2018A%26A...616A...9L
http://dx.doi.org/10.1134/1.20364
https://ui.adsabs.harvard.edu/#abs/2000AstL...26....9L
http://dx.doi.org/10.1088/0004-637X/784/1/2
https://ui.adsabs.harvard.edu/abs/2014ApJ...784....2M
http://dx.doi.org/10.1086/311510
https://ui.adsabs.harvard.edu/#abs/1998ApJ...502L.129M
http://dx.doi.org/10.1051/0004-6361:20011543
https://ui.adsabs.harvard.edu/#abs/2002A&A...382..104M
http://dx.doi.org/10.1051/0004-6361:20054332
https://ui.adsabs.harvard.edu/abs/2006A&A...449.1139M
http://dx.doi.org/10.1051/0004-6361:20065025
https://ui.adsabs.harvard.edu/#abs/2006A&A...453..295M
http://dx.doi.org/10.1051/0004-6361:20065111
https://ui.adsabs.harvard.edu/abs/2006A&A...455...11M
http://dx.doi.org/10.1051/0004-6361:200811322
https://ui.adsabs.harvard.edu/abs/2009A&A...495..121M
http://dx.doi.org/10.1086/160416
https://ui.adsabs.harvard.edu/#abs/1982ApJ...262..253M
http://dx.doi.org/10.1086/176474
https://ui.adsabs.harvard.edu/#abs/1995ApJ...454..151M
http://dx.doi.org/10.1051/0004-6361:20054239
https://ui.adsabs.harvard.edu/abs/2006A&A...451..267M
http://dx.doi.org/10.1086/158655
https://ui.adsabs.harvard.edu/abs/1981ApJ...243..900M
http://dx.doi.org/10.1051/0004-6361/20079144
https://ui.adsabs.harvard.edu/abs/2009A&A...507..833M
https://ui.adsabs.harvard.edu/abs/2009A&A...507..833M
http://arxiv.org/abs/1209.3114
http://dx.doi.org/10.1088/0004-637X/706/2/L230
https://ui.adsabs.harvard.edu/#abs/2009ApJ...706L.230M
http://dx.doi.org/10.1111/j.1365-2966.2011.19862.x
http://adsabs.harvard.edu/abs/2012MNRAS.419.2095M
https://ui.adsabs.harvard.edu/#abs/1997A&A...323..853M
http://dx.doi.org/10.1086/497420
http://adsabs.harvard.edu/abs/2005ApJ...635..502M
http://dx.doi.org/10.1086/320682
https://ui.adsabs.harvard.edu/#abs/2001ApJ...553L.157M
http://dx.doi.org/10.1086/429721
http://adsabs.harvard.edu/abs/2005ApJ...622L.113M
http://dx.doi.org/10.1051/0004-6361/201731082
http://adsabs.harvard.edu/abs/2017A%26A...608A..31N
https://ui.adsabs.harvard.edu/#abs/1996A&A...315..160N
http://dx.doi.org/10.1046/j.1365-8711.1999.02682.x
https://ui.adsabs.harvard.edu/#abs/1999MNRAS.307..695N
http://dx.doi.org/10.1086/498935
https://ui.adsabs.harvard.edu/#abs/2006ApJ...638..982N
https://ui.adsabs.harvard.edu/#abs/2006ApJ...638..982N
http://dx.doi.org/10.1093/mnras/190.3.537
https://ui.adsabs.harvard.edu/#abs/1980MNRAS.190..537P
http://dx.doi.org/10.1051/0004-6361:20054436
https://ui.adsabs.harvard.edu/#abs/2006A&A...455..653P
https://ui.adsabs.harvard.edu/#abs/1997A&A...323L..49P
http://dx.doi.org/10.1093/mnras/stz3155
https://ui.adsabs.harvard.edu/abs/2020MNRAS.491.2162P
http://dx.doi.org/10.1046/j.1365-8711.1999.02357.x
http://adsabs.harvard.edu/abs/1999MNRAS.304..839P
http://dx.doi.org/10.1086/308323
http://adsabs.harvard.edu/abs/2000ApJ...529..946P
https://ui.adsabs.harvard.edu/abs/1990A&A...231..354P
http://dx.doi.org/10.1086/377074
http://adsabs.harvard.edu/abs/2003ApJ...591L.131P
http://dx.doi.org/10.1051/0004-6361/201832682
http://dx.doi.org/10.1088/0004-637X/742/2/83
http://adsabs.harvard.edu/abs/2011ApJ...742...83R
http://dx.doi.org/10.1088/0004-637X/742/2/83
http://dx.doi.org/10.1051/0004-6361/201425008
http://adsabs.harvard.edu/abs/2015A%26A...574A..33R
https://ui.adsabs.harvard.edu/#abs/1996A&A...311..879R
http://dx.doi.org/10.1051/0004-6361:20052684
https://ui.adsabs.harvard.edu/#abs/2005A&A...440..637R
http://dx.doi.org/10.1051/0004-6361/201014788
https://ui.adsabs.harvard.edu/abs/2010A&A...522A.107R
http://dx.doi.org/10.1111/j.1365-2966.2012.21549.x
http://adsabs.harvard.edu/abs/2012MNRAS.425.2799R
http://dx.doi.org/10.1093/mnras/256.3.631
https://ui.adsabs.harvard.edu/#abs/1992MNRAS.256..631R
http://dx.doi.org/10.1093/mnras/288.1.43
https://ui.adsabs.harvard.edu/#abs/1997MNRAS.288...43R
http://dx.doi.org/10.1086/162791
https://ui.adsabs.harvard.edu/#abs/1985ApJ...288..284S
http://dx.doi.org/10.1134/S1063772917010085
https://ui.adsabs.harvard.edu/#abs/2004ATel..338....1S
http://dx.doi.org/10.1046/j.1365-8711.1998.01593.x
https://ui.adsabs.harvard.edu/#abs/1998MNRAS.297L...5S
http://dx.doi.org/10.1093/mnras/sty215
http://adsabs.harvard.edu/abs/2018MNRAS.476..421S


Gaia distances to Galactic X-ray binaries 15

Stevens J. B., Reig P., Coe M. J., Buckley D. A. H., Fabregat J., Steele I. A.,
1997, MNRAS, 288, 988

Strohmayer T., Bildsten L., 2006, in Lewin W. H. G., van der Klis M., eds,
Compact stellar X-ray sources. Cambridge Astrophysics Series. Cam-
bridge University Press, pp 113–156, doi:10.2277/0521826594

Swartz D. A., Ghosh K. K., McCollough M. L., Pannuti T. G., Tennant A. F.,
Wu K., 2003, ApJS, 144, 213

Tetarenko B. E., Sivakoff G. R., Heinke C. O., Gladstone J. C., 2016, ApJS,
222, 15

Thévenin F., Falanga M., Kuo C. Y., Pietrzyński G., Yamaguchi M., 2017,
Space Sci. Rev., 212, 1787

Tomsick J. A., Gelino D. M., Kaaret P., 2005, ApJ, 635, 1233
Torrejón J. M., Orr A., 2001, A&A, 377, 148
Torrejón J. M., Negueruela I., Smith D. M., Harrison T. E., 2010, A&A, 510,
A61

Tremmel M., et al., 2013, ApJ, 766, 19
Tsygankov S. S., Lutovinov A. A., 2005, Astronomy Letters, 31, 88
Vallée J. P., 2008, AJ, 135, 1301
Vallée J. P., 2014, AJ, 148, 5
Vallée J. P., 2017, The Astronomical Review, 13, 113
Verbunt F., 2003, in Piotto G., Meylan G., Djorgovski S. G., Riello
M., eds, Astronomical Society of the Pacific Conference Series
Vol. 296, New Horizons in Globular Cluster Astronomy. p. 245
(arXiv:astro-ph/0210057)

Verbunt F., Hut P., 1987, in Helfand D. J., Huang J.-H., eds, IAU Symposium
Vol. 125, The Origin and Evolution of Neutron Stars. p. 187

Verbunt F., Lewin W. H. G., 2006, in Lewin W. H. G., van der Klis M., eds,
Compact stellar X-ray sources. Cambridge Astrophysics Series. Cam-
bridge University Press, pp 341–379, doi:10.2277/0521826594

Verbunt F., van Paradĳs J., Elson R., 1984, MNRAS, 210, 899
Wachter S., Smale A. P., 1998, ApJ, 496, L21
Wen L., Remillard R. A., Bradt H. V., 2000, ApJ, 532, 1119
Wenger M., et al., 2000, A&AS, 143, 9
Wilson C. A., Finger M. H., Coe M. J., Laycock S., Fabregat J., 2002, ApJ,
570, 287

Wilson C. A., Finger M. H., Coe M. J., Negueruela I., 2003, ApJ, 584, 996
Zhang Z., Gilfanov M., Bogdán Á., 2012, A&A, 546, A36
in’t Zand J. J. M., et al., 2002, A&A, 389, L43
in’t Zand J. J. M., Cumming A., van der Sluys M. V., Verbunt F., Pols O. R.,
2005, A&A, 441, 675

van Paradĳs J., 1978, Nature, 274, 650
van Paradĳs J., 1981, A&A, 101, 174
van Paradĳs J., 1998, in Buccheri R., van Paradĳs J., Alpar A., eds, NATO
Advanced Science Institutes (ASI) Series C Vol. 515, NATO Advanced
Science Institutes (ASI) Series C. p. 279 (arXiv:astro-ph/9802177)

van Paradĳs J., White N., 1995, ApJ, 447, L33

APPENDIX A: UPDATED DISTANCES AND
CLASSIFICATIONS OF XRBS WITH
Gaia COUNTERPARTS

For the 88 Gaia candidate counterparts to the Liu XRB sample
(see §2.3), we searched the literature for more recently-published
distances and compilations (Tetarenko et al. 2016; Corral-Santana
et al. 2016; Wenger et al. 2000) for updates to classifications.
Two Liu catalogue objects have controversial classifications but

do not figure in our analysis because their Gaia DR2 counterparts
have no parallax. SIMBAD notes that the nature of 2S 0053+604 (𝛾
Cas) as an X-ray binary is controversial (for a summary, see Prišegen
2019). Although the star itself is in Gaia DR2, its bright magnitude
(𝐺 = 1.82) means that its observations require special processing
expected in a later data release (Gaia Collaboration et al. 2018). The
object designated by Liu et al. (2006) as Swift J061223.0+701243.9
is claimed by SIMBAD to have incorrect nomenclature. As far as we
can tell, this object is real and correctly designated by Liu but it is not

particularly well-studied, with no published distance estimate. The
most recent analysis is by Butters et al. (2011) who conclude that
Swift J061223.0+701243.9 is probably an intermediate polar, but an
X-ray binary nature cannot be ruled out.
Six objects listed by Liu et al. (2006) as LMXBs are classified

by SIMBAD as HMXBs. For three of these (1A 0620-00, GS 1124-
684, GS 2023+338) the reference for the HMXB classification is
Tetarenko et al. (2016); however that catalogue does not give explicit
LMXB/HMXB classifications. SIMBAD lists 3A 1516-569 (Cir X-
1) and 3A 1954+319 as being classified as LMXBs by Baumgartner
et al. (2013) and as HMXBs by Samus’ et al. (2017) and Krivonos
et al. (2010) respectively. Neither of the latter two sources gives a
reference or justification for the HMXB classification. SIMBAD lists
GRO J1655-40 as being classified as HMXB by Lin et al. (2012) and
LMXB by Krimm et al. (2013). However, Lin et al. (2012) did not
classify sources as high- or low-mass XRBs, and the classifications
in Krimm et al. (2013) are cited as originating from the literature
or SIMBAD itself. With no strong reasons to reclassify these six
objects, we retain them in our list of LMXBs.
We were able to find published distance estimates for ten objects

that had no distance estimates listed by Liu et al. (2006, 2007). Fifteen
additional objects in our sample had distance determinations more
recent than those listed by Liu et al. (2006, 2007). We tabulate these
in Table A1 and use them in our analysis in subsection 3.1.
Two objects in our sample have controversial distances: Cyg X-1

and GRO J1655-40. The discrepancy between radio parallax distance
(from Reid et al. 2011b) and optical parallax from Gaia of Cyg X-1
is peculiar, as this system is one of the closest and brightest X-
ray binaries (both in radio and optical). This apparent tension is
likely caused by impact of the radio jet on the radio parallax (Miller-
Jones et al., in prep). The Gaia distance is more consistent with that
reported in the Liu catalogue (2.14 kpc; Massey et al. 1995). Foellmi
et al. (2006) challenged the accepted distance to GRO J1655-40 of
3.2 kpc, finding a distance of 1.7 kpc. Despite their strong claim,
these authors show in their table 1 that the uncertainty in spectral
class allows the upper limit on distance to be as high as 3–4 kpc
(e.g., if the companion is F7ii ). Interestingly, the Gaia counterpart
parallax is consistent with the larger distance. However, the location
of the source makes distance calculation based on parallax strongly
dependent on the prior model: there is a large discrepancy between
the distance based on Bailer-Jones prior (∼ 3 kpc) and one that
considers distribution of BHs in the Milky Way (∼ 6 − 7 kpc), as
shown by Atri et al. (2019).

APPENDIX B: DISTANCE DISCREPANCIES

In this section we discuss five objects with large discrepancies be-
tween distances gathered from the literature and measured from
Gaia DR2 with the Bailer-Jones et al. (2018) prior. Here we
define ‘large’ as |𝑑Gaia − 𝑑prev |/(0.5 × (𝑑Gaia + 𝑑prev)) > 1.
For all of these objects, the previously-published distance is well
outside the Gaia low-to-high range. We report the Gaia DR2
astrometric_gof_al value as GOF. This quantity is expected to
follow a normal distribution with zero mean and unit standard devi-
ation; hence absolute values & 3 indicate a poor fit.

4U 2129+47/V1727 Cyg: Gaia distance 1.75 kpc, GOF 1.92. The
Liu et al. (2007) distance for this object is from the work of Cow-
ley & Schmidtke (1990), who derive a distance of 6.3 kpc to the
optical companion. Those authors mention that it is unclear that the
companion and XRB are a true physical association, and that pre-
vious distance estimates to the XRB system generally give smaller
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Table A1. XRBs with Gaia candidate counterparts and newer published
distances

Name Liu dist type dprev (newer) type
kpc kpc

LMXBs
GRO J0422+32 · · · · · · 2.49 SEDfit
1A 0620-00 1.16 phot 1.06 phot
GS 1124-684 5.5 phot 5.9 SEDfit
3A 1516-569 · · · · · · 9.2 burst
GRO J1655-40 1.7 phot 3.2 jetPM
3A 1702-363 · · · · · · 9.2 unclear
4U 1724-307 7 burst 9.5 cluster
SLX 1737-282 7.5 burst 6.5 burst
4U 1908+005 5 Roche 5.2 burst
HMXBs
IGR J01583+6713 · · · · · · 6.4 phot
EXO 051910+3737.7 · · · · · · 1.7 phot
IGR J06074+2205 · · · · · · 4.5 phot
XTE J0658-073 · · · · · · 3.9 phot
IGR J11215-5952 8 phot 6.2 phot
IGR J11435-6109 · · · · · · 8.6 phot
2S 1145-619 2.25 phot 3.1 phot
4U 1223-624 5 phot 4.1 phot
1H 1249-637 0.3 HipPLX 0.392 Av
IGR J16479-4514 · · · · · · 4.45 phot
4U 1700-37 1.9 phot 2.12 Av
IGR J17544-2619 10 unknown 3.2 phot
SAX J1819.3-2525 6 SEDfit 6.2 SEDfit
IGR J19140+0951 · · · · · · 3.6 phot
KS 1947+300 10 phot 9.5 pulsar
4U 1956+35 2.14 cluster 1.86 VLBAPLX

’Newer’ here means non-Gaia DR2 distances published after the Liu et al.
catalogues.

distances (e.g., 2.2 kpc; McClintock et al. 1981). We conclude that
the Gaia distance is consistent with these earlier estimates.

IGR J16318-4848: Gaia distance 5.22 kpc, GOF 32.4. The Liu
et al. (2006) distance for this object is from the work of Filliatre &
Chaty (2004) who give a range of distances between 0.9 and 6.2 kpc,
derived from SED fitting. A more recent work (Fortin et al. 2020)
determines a distance from Gaia matching and derives the same
distance as our work. We conclude that the Gaia distance, although
imprecise, is consistent with the broad range in the previous estimate.

IGR J16465-4507: Gaia distance 2.70 kpc, GOF 9.0. The Liu
et al. (2006) distance for this object is from the work of Smith (2004)
who give an estimated distance of 12.5 kpc based on photometry
of the companion. The discussion of this object by La Parola et al.
(2010) explains that the optical companion is highly absorbed; Opti-
cal spectroscopic studies also provide additional evidence reaffirming
the optical counterpart. The tension between the Gaia and previous
distance estimates remains unresolved.

XTE J1906+09: Gaia distance 2.77 kpc, GOF 6.8. The Liu et al.
(2006) distance distance for this object is from the work of Marsden
et al. (1998) who give an estimate distance of 10 kpc based on neu-
tral hydrogen absorption. However, 3D dust maps in this directions
(Green et al. 2019) indicate that 𝐸 (𝑔 − 𝑟) ≤ 2.2, which would sug-
gest that the Galactic hydrogen column density in this direction is
≤ 2 × 1022 cm−2 (Bahramian et al. 2015; Foight et al. 2016). Thus
we conclude that the Gaia distance is likely more reliable for this
object.

KS 1947+300: Gaia distance 3.1 kpc, GOF 0.0. The Liu et al.
(2006) distance distance for this object is from the work of Tsygankov

& Lutovinov (2005) who give an estimate distance of 9.5 kpc based
on its X-ray pulsation properties. While the Gaia fit appears good, it
is important to note that the measured parallax is insignificant when
uncertainties are considered.

This paper has been typeset from a TEX/LATEX file prepared by the author.
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