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Abstract

\
\

Software testing is an indispensable part of software development process. The main 

goal of a test engineer is to choose a subset of test cases which reveal most of the 

faults in a program. Coverage measure could be used to evaluate how good the 

selected subset of test cases is. Test case coverage for a program was traditionally 

calculated from the white box (internal structure) perspective. However, test cases 

are usually constructed to test particular functionality of a program, therefore having 

a technique to calculate coverage from the functionality (black box) perspective will 

be beneficial for a test engineer. In this thesis we discuss a methodology of recording 

and evaluating the black box coverage for a program. We also implement a black 

box coverage calculation tool and perform experiments with it using three subject 

programs. We then collect and analyze experimental data and show the relationship 

between the two types of coverage and the fault-finding ability of a test suite.

K eyw ords: Software Testing, Black Box Testing, Equivalence Partitioning, Bound­

ary Value Analysis, Coverage Criteria, Statistical Analysis
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Introduction ■

The software development process is a set of activities performed by engineers, man­

agers and testers resulting in the creation of a software product. It usually involves 

requirements gathering, design, implementation, testing and maintenance activities. 

Nowadays software systems are becoming more large and complex, with greater risks 

and costs of a failure. Just imagine, a $2 billion mission to Mars failing because of 

one software defect. Therefore the importance of thorough software testing, which 

can help to prevent and eliminate these failures, cannot be underestimated. In this 

thesis we propose an improvement to the software testing activity. We will discuss 

the problem of selecting test cases which can detect errors efficiently, and propose a 

methodology of evaluating the thoroughness of a test suite.

1.1 Software Testing

Software testing is an indispensable part of software development process, which 

ensures quality and reliability of software under test (SUT), and verifies that SUT
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meets specified requirements.

There exist many software testing methodologies, which differ by testing objectives 

and could produce different results. These methodologies can be distinguished by the 

level o f granularity of software components, by the stage in the software development 

process during which testing is performed, by testing goals and the qualification of 

a tester. Unit testing is usually performed by a developer at the coding stage of 

a project and ensures correct work of individual units of source code, the smallest 

testable parts of the software system. The goal of integration testing is to ensure that 

separate modules of an application work correctly as a group, while system testing 

is performed on a complete integrated system to verify its functionality. Acceptance 

testing is usually done by the customer after all development and testing has been 

performed internally, to evaluate the compliance with the requirements of a finished 

product. Finally, regression testing is done during the maintenance stage, in order to 

verify that all defects have been fixed, and no new problems have been introduced as 

part of the maintenance process.

V
Construction of test cases at any of the described levels is usually based on one of the 

two fundamental approaches: white box and black box, which differ by the knowledge 

that a tester has about the software under test. In the black box methodology testing 

is based on the requirements and specification, while in the white box methodology 

testing is based on the knowledge about the code, internal structure, paths and im­

plementation of the software under test. In this thesis we are particularly interested 

in comparing the effectiveness of these two testing approaches.
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1.2 Coverage Criteria

In order to guarantee that a program works correctly, a test engineer needs to execute 

it with all possible input data combinations and test all logical paths which exist in 

the program. However even for a system of a small size the number of test cases 

which cover all input data combinations is infeasible. Therefore, the key issue of 

testing process is, as defined by Myers [24]: “What subset of all possible test cases 

has the highest probability of detecting the most errors” . \

A  single execution of a program with the predefined set of environmental conditions 

and input variables is called a test case. The effectiveness of a test case is the prob­

ability of detecting the errors in a program. In order to evaluate how effective the 

selected subset of test cases is, the use of coverage criteria is essential. Coverage is 

a measure of what portion of the subject program has been tested, and depending 

on the testing methodology it could include different coverage elements. Coverage
■ '  ' ‘ N

criteria can be used by test engineers in different ways [5]. One way is to have a 

particular coverage level as a goal during the generation of test'cases. Another way 

is to measure the coverage of the test suite generated manually or by other external 

mechanisms. In this thesis we concentrate on the second approach.

1.2.1 W hite Box Coverage

In white box testing (also called glass box, clear box or structural testing), the goal is 

to create test cases which cover particular lines of code, internal structures, decisions, 

etc. The most basic white box coverage criterion is statement coverage, in which 

each executed line of code is considered as a separate coverage element. A statement
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is considered to be covered if there exists at least one test case which causes this 

statement to be executed. Other more sophisticated white box coverage criteria refer 

to blocks of statements, decisions, conditions within the decision, and paths. Usage 

o f a white box coverage measure is based on the assumption that a test case is more 

thorough if it causes more elements of a program to be executed.

White box testing has been studied thoroughly in the software testing research field 

and used extensively by industry practitioners. In the software development industry 

white box testing is usually applied at the unit testing and integration levels.

' I .......................................... '  ̂ V

One of the advantages of white box coverage is that it is relatively straightforward 

to measure. For example, measurement of a statement coverage of a program can 

be done in the following steps. First, at the compilation stage when the source code 

is translated into the executable object code, special instructions are added to the 

executable file. These instructions are used to collect the information about executed 

lines of code in a separate file, when test cases are run against the program. This 

file could later be used by the coverage calculation tool to produce a coverage report 

in which each line from the source code is assigned the number of times which it 

has been executed. There exist various tools to measure statement coverage, block 

coverage, branch and path coverage for different programming languages; the most 

popular of them are gcov for C /C + +  [17], Cobertura [11] and Jtest [21] for Java.

On the other hand, white box testing has several disadvantages and limitations. First, 

some defects depend on the environment rather than the code: e.g., running a program 

in two different browsers might produce a different result: a web page could be 

displayed correctly in the Firefox browser and be messed up in the Internet Explorer. 

Second, test case maintenance is required in case of changes in the implementation, 

because we need to make sure that after changes in the source code the same coverage
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level is still achieved by test cases. Finally, it is not possible to cover all executions 

of loops by test cases. If a test case forces a loop in the source code to be executed 

three times, we cannot guarantee that the program will produce a correct result on 

the input which causes a loop to be executed 10 times. Therefore it is important 

to take into account both measures, black box and white box, as black box looks at 

the testing from the user’s perspective and could reveal faults which could not be 

found by a test suite with a high white box coverage. However, estimating the black 

box coverage is less evident, and there do not exist any techniques to estimate it. 

Therefore, white box testing method alone cannot be used as a guarantee of software 

quality: it should be supported by functional test cases.

1.2.2 Black Box Coverage

In the black box testing technique (also called functional testing) test cases are built 

solely based on the external information about the prograhi: specification, require­

ments and design documents. The goal of the black box testing ikto verify correctness 

o f the program from the user’s perspective. This type of testing is usually applied 

at higher levels, such as integration, system and acceptance testing, but can also be 

used as a basis for unit testing.

We have found out that the view on the black box testing methodology in industry 

and in most research works in this field differs significantly. The majority of the 

research work which falls into the category of black box techniques concentrates on 

the generation of test cases from formal specifications or UML diagrams.

In contrast, in industry formal specification of the SUT is available very rarely, there­

fore major text books written by industry experts place an emphasis on the techniques
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for constructing test cases manually or semi-automatically based on the informal 

specification and requirements. Myers [24], Copeland [12] and other authors consider 

equivalence partitioning and boundary-value analysis to be the two most basic black 

box testing techniques, and in this thesis we use these, techniques to derive black box 

coverage elements for the SUT.

1.2.2.1 Equivalence Partitioning
\

. . . .  \

The equivalence partitioning is the most basic black box testing method. According 

to this method, all possible input values are divided among equivalence classes. Each 

equivalence class involves input variables which are treated in a same way by a pro­

gram, i.e. if one test case in an equivalence class causes a program to fail, all other 

test cases in this equivalence class are likely to cause a program to fail, and vice versa. 

Based on this assumption, a tester could execute a program with only one test case 

from each equivalence class in order to ensure that a program works correctly. This 

method allows a great reduction in the number of test cases. \

1.2 .2.2 Boundary Value Analysis

The equivalence partitioning method is often complimented by the boundary value 

analysis method, which is the selection of test cases that explore boundary conditions 

on edges of equivalence classes. It is mostly suitable in case the input is a range 

o f numeric values, either integer or real numbers. This analysis is essential because 

boundary conditions are places where many of programming errors are made. For 

example, a programmer could mix up “greater than” with “greater than or equal to” 

in a conditional expression which will result in an invalid behavior only at the edge
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of an equivalence class.

Black box testing also has several disadvantages. First, program specification is not 

always available, which interferes with the good test case design. Second, a thorough 

black box test suite can leave some paths in the program unexamined. Hence, white 

box and black box testing strategies should be used in conjunction.

1.3 Test Case Effectiveness

The ultimate goal of a test engineer is to create test cases which are the most efficient 

in finding defects in a program. We are interested in comparing the effectiveness of a 

test case with its black box and white box coverage metrics. Effectiveness of a test case 

is the probability of finding a defect in a program. One of the methods of evaluation of 

the test case effectiveness is through mutation. Mutation is a mechanism of modifying 

the original source code of a program in small ways. These small mutations usually 

reflect typical programming errors - wrong operator, value assignment, missing or

extra statement. Effectiveness of a test case can be evaluated as the percentage of

mutants detected.

It has been shown by Andrews et al. [6] that automatically generated faults can 

be representative of real faults, therefore the use of mutation in our experiments is 

considered to be a good way to evaluate the effectiveness of test cases.



8
1.4 Thesis Focus

Since it is a well-established practice in industry to create test cases which cover 

particular functionality of SUT rather than particular lines of code, having a technique 

to evaluate the thoroughness of a test suite from the black box perspective could be 

advantageous for test engineers. It will allow them to get a high-level view on test 

suites that they are developing and see if any critical functionality is not covered. 

Figuring out the relationship between black box and white box coverage measures 

is critical to software testing research because it will allow software testers to better 

evaluate a test suite and construct test suites which will be able to find software 

failures more effectively.

In this thesis we explore a method to evaluate the thoroughness of a test suite from 

the black box perspective using equivalence partitioning and boundary value analysis 

techniques - the two most basic test case construction techniques used by industry
N

practitioners. The evaluation method is based on the three main components: Func­

tional Test Specification (FTS), which defines equivalence classes for each input and 

output variable, as well as multiplicities of components; Log Files, which are produced 

during the execution of a subject program, and FTS Tool, which matches elements 

from Log Files with elements from the FTS, and estimates the percentage of elements 

covered.

We also study the following questions: Does achievement of high black box coverage 

contribute to the thoroughness of a test suite, and Is it possible to use the black box 

coverage measure as a predictor of a test case effectiveness? In order to answer these 

questions we compare black box and white box coverage measures of test cases and 

randomly generated test suites, and study the relationship between the black box



coverage, white box coverage, test suite size and fault-finding ability of a test suite.

Our experiments have shown that the black box coverage has a statistically significant 

impact on the effectiveness of a test suite, but it is smaller than the impact of the 

white box coverage and size of a test suite. We have also found that there exists 

an exponential relationship between the black box and white box coverage measures, 

and a test case with low black box coverage is likely to be more effective than the 

test case with low white box coverage.
\

1.5 Thesis Organization

Chapter 1 contains an introduction to the topic and relevant background information. 

We will give an overview of some important concepts as well as related work that 

has been done studying white box and black box testing approaches in Chapter 2. 

We will talk about the method of calculating black box coverage, as well as the 

Functional Test Specification design and the implementation of the black box coverage 

calculation tool in Chapter 3. In Chapter 4, we will describe subject programs which 

have been selected for our experiments, as well as design and implementation of 

the experiments. We will also analyze experimental data, illustrate experimental 

results and draw conclusions in Chapter 4. In Chapter 5, we will present suggested 

improvements and future work which could be done in this area.

9



Related Work

In this chapter we give an overview of some important concepts of white box and black 

box testing techniques and test adequacy criteria, and discuss experiments which have 

been conducted in order to evaluate these techniques.

; , . •, \ ,
\

2.1 W hite Box Coverage

The terms white box and black box have been used for a long time in industry and 

were first defined by Myers in his classic book [24]. He also defined and explained 

the terms statement, decision, condition, decision-condition and multiple condition 

coverage.

According to Myers, 100% statement coverage on code is achieved if for every state­

ment in the code there is at least one test case which executes that statement. A 

more advanced coverage criterion is the decision coverage which looks at the condi­
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tional expressions in the i f ,  do, while, etc. statements. 100% decision coverage on 

code is achieved if for every decision in the code there is at least one test case which 

causes this decision to be true and at least one test case which causes this decision to 

be false. Condition coverage is an even more strong criterion, as it considers simple 

conditions within a decision, which do not contain any logical operators. In order 

to achieve 100% condition coverage we need to ensure that for every condition in 

each decision in the code there is at least one test case which causes this condition 

to be evaluated to true and at least one test case which causes this condition to be 

false. Decision-condition and multiple condition coverage types are more advanced 

extensions of these basic techniques.

Zhu et al. [31] have created a thorough classification of the existing black box and 

white box test adequacy criteria based on the research papers in the software testing 

area. First, the authors define the term test adequacy criteria as:

• a stopping rule which determines when enough testing has been performed (e.g. 

in statement testing, a test set is considered adequate if i^ causes the execution 

of every statement in the program);

• a measurement of a test quality (e.g. percent of statements executed), which is 

similar to the term coverage criterion.

The classification of test adequacy criteria is based on the testing approach, and is 

summarized in Figure 2.1. The following categories are identified:

• structural testing, in which coverage elements are based on the structure of the 

program or the specification;
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F igure 2.1 Adequacy criteria structure by Zhu et al.

! : . ;X
• fault-based testing, in which an adequacy criterion is based on the fault-finding 

ability of test suites;

• error-based testing, which uses domain analysis as a foundation.

The program-based and specification-based coverage criteria are distinguished within 

the structural testing category. Program-based criteria correspond to the white box 

coverage criteria and are divided into the control-flow and data-flow. Control-flow 

adequacy criteria are defined based on the flow graph model of a program - a graph 

in which nodes correspond to the linear sequences of statements, edges correspond to 

control statements or conditions, and each execution of the SUT corresponds to one 

path in the graph. Based on this notation, the 100% statement coverage criterion can
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be achieved if for every node in the flow graph there exists at least one path which 

covers it. Correspondingly, 100% branch coverage (also called all-edges coverage) is 

achieved if all edges of the flow graph are covered. Other control-flow criteria include 

path coverage and multiple condition coverage.

In the data-flow-based test adequacy criteria analysis focuses on the occurrences of 

variables within the program, and each occurrence is classified as a definition or a 

use. All definitions, all uses, and definition-use coverage criteria are among the basic 

criteria which are based on the data-flow analysis. Most of these coverage types are 

too strong to be used in practice to measure adequacy because the actual number of 

coverage elements could be unlimited.

In our experiments we use statement coverage, as it is the most basic adequacy 

criterion, it has been studied thoroughly and there exist a lot of tools to measure it. 

(Measuring other more strong adequacy criteria can be challenging because of the 

lack of tool support.) Specifically, we use the gcov tool, [17] to measure statement 

coverage of C and C + +  programs, and Cobertura [11] for Javavsubject programs.

2.2 Black Box Coverage

As discussed in the In troduction  section, the view on the black box testing method­

ology in industry differs from most research work in this field. In this section we first 

explain which black box techniques are being developed and studied in the research 

community, and then focus on the industry perspective on the black box testing.
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2.2.1 Black Box Testing Techniques in Research

Test case generation from formal specifications is a well-developed topic in the re­

search on black box software testing techniques. According to Zhu et al. [31], there 

exist two major approaches to structural specification-based testing: model-based 

specifications, such as Z notations, UML, VDM Specification Language [20] and RSL 

[18] specifications; and property-oriented specifications, such as axiomatic or algebraic 

specifications. \

Generation of test cases based on the formal Z notation specification is one of the well- 

explored and well-studied techniques. The Z notation language defines components 

o f the system and specifies constraints among them. It was originally proposed by 

Abrial, Schuman and Meyer [3] and was later used by many researchers to formally 

define software specification and requirements. Amla and Ammann [4] have developed 

a method to convert a formal Z specification into a specification in the TSL language 

[9], from which test cases could be extracted. Stocks and Carrington [28] have used

Z specification to build a specification-based testing framework) in which generation
\

of test cases could be automated.

Another well-known approach explores generation of test cases based on the Unified 

Modeling Language (UML) diagrams. UML is a modeling language and a set of 

graphic notations to create visual models of object-oriented software systems, devel­

oped and maintained by the Object Management Group. There exist many UML 

diagram types, which could describe both structural and behavioral aspects of a sys­

tem. Various UML diagrams have been utilized by software testing researchers to 

generate test cases. Prasanna and Chandran [27] have developed an algorithm for 

automatic test case generation using UML object diagrams based on a genetic al­
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gorithm. Mingsong et al. [23] have proposed a method to automatically generate 

test cases for UML activity diagrams by comparing execution traces of randomly 

generated test cases with the UML activity diagrams. Abdurazik and Offutt [2] are 

using UML collaboration diagrams for static checking and test case generation, which 

allows for both static and dynamic testing.

There exist a number of research papers which use black box techniques similar to 

the ones utilized in industry. One of the research papers by Balcer and Ostrand [26] 

describes a method for generating test cases from a functional specification based on 

a category-partition method. Within the bounds of this method a tester identifies 

functional units in SUT, and for each unit defines parameters and its characteristics, 

as well as objects in the environment which could affect execution of the SUT. Each 

category is then divided into partitions - different states of a parameter/environment 

object which could produce different results during execution. This method is similar

to the equivalence partitioning black box technique. Information about partitions is
\

written in a certain format called a Test Specification Language (TSL), which is later 

used by the TSL Tool to produce textual descriptions of test cases.

The second paper by these authors [9] describes improvements to TSL - a more 

advanced way to define a program’s inputs, environment conditions, outputs that it 

produces, and external changes in the environment. It also introduces an improved 

version of the TSL Tool which could generate not only a textual description of test 

cases, but also an executable script for running them and verifying the program’s 

output. At the time of publishing this paper, TSL has been used to test commercial 

software in the production environment.

The idea of input space partitioning is not unique to the software testing industry, and 

has different applications in the research papers. For example, Amla and Ammann
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[4] have applied category partitioning to Z specifications for test case generation, and 

the TSL specification language is based on the equivalence partitioning of inputs. 

However, these techniques are usually used as a supplement for the automated test 

case generation methods. In this thesis we’re interested in exploring the equivalence 

partitioning and boundary value analysis techniques from the industry perspective 

and apply these approaches to measure the thoroughness of any test case.

2.2.2 Black Box Testing Techniques in Industry

The majority of software testing text books written by industry experts for test 

engineers and for students in software testing courses, describe techniques which are 

used to construct test cases without a formal specification. Myers [24] was one of the 

first authors to define fundamental black box testing techniques, such as equivalence 

partitioning, boundary-value analysis, cause-effect graphing and error guessing.

He defines a test case design by equivalence partitioning as a tvro-step process: first, 

a tester needs to identify the equivalence classes for each of the inputs, and after that 

define test cases. He gives guidelines for a tester on the construction of equivalence 

classes, but mentions that it is very subjective, and two testers analyzing the program 

could come up with different lists of equivalence classes. According to Myers, in order 

to identify test cases based on equivalence classes, a tester first should cover all valid 

equivalence classes by test cases, and after that for each invalid equivalence class write 

a test case in which only one input variable belongs to the invalid equivalence class, 

and all other variables belong to valid equivalence classes. Usage of only one invalid 

input variable is essential because if we try to use several invalid values in one test 

case, an input check on one invalid variable could mask other erroneous-input checks.
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Myers [24] defines boundary-value analysis as a selection of test cases which explore 

situations on and around the edges of equivalence classes. If an input variable specifies 

a range of numbers, he suggests to write test cases which use both ends of the range 

as well as values slightly beyond the ends. In addition, he suggests to create test cases 

which cover boundaries of output variables. Finally, if an input or output variable is 

an ordered set, attention should be focused on the first and last elements from the 

set.

\

Cause-effect graphing is another technique defined by Myers [24], which explores 

combinations of input variables. In this technique, cause is an input variable or a 

single equivalence class of an input variable, and effect is an output variable or a 

system transformation. First, a graph which links causes and effects is constructed 

and annotated with system constraints. Second, the graph is converted into a decision 

table, where each column represents one test case.

The author also points out that the most effective way pf testing is by using all 

strategies together, because each of them targets a particular \type of defects. Our 

approach is based on the equivalence partitioning and boundary value analysis tech­

niques; however, incorporating cause-effect graphing technique might be beneficial 

and is considered to be one of the future work directions.

2.2.3 Terminology Update

As it was pointed out earlier, equivalence partitioning is one of the most fundamental 

black box testing techniques, which was created more than, thirty years ago. It was 

originally applied to small utility programs with text-only Unix-like command line 

interfaces, where main sources of input were command line parameters and text files.
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Both Myers [24] and Balcer et al. [9] use relatively small programs with no more 

than ten parameters as examples, and there was no need to develop a more advanced 

classification of input variable types.

Nowadays software systems have become much more advanced; they could include 

separate modules and components, each of which could consist of multiple GUI forms, 

and use numerous sources of inputs such as files, databases, network connections, etc.

However, modern software testing text books [12] are still using the same terminology
\

and apply it to small sample programs. x

Therefore there was a need to refine the equivalence partitioning approach and update 

terminology. Andrews [7] has proposed an equivalence partitioning scheme which 

takes into account the complexity of software systems and for each input variable 

defines in which software component it appears, what source of input was used and 

what input event has caused this input variable to be processed by the SUT. The 

same approach is applied to the output variables. The graphical representation of the 

revised equivalence partitioning on inputs and outputs is presented in Figure 2.2.

A  software component is an individual module of a single system, a software package 

or a web service which provides a set of related functions. For example, in a client- 

server system a client and a server could be considered as two separate software 

components. A  source of input is anything external to the SUT, provided by the 

user and which could influence the behavior of the SUT. Sample sources of input 

are command line parameters, standard input, files, and the graphical user interface 

(GUI). Correspondingly, an output destination is something created or modified as 

a result of the execution of the SUT, such as standard output, error logs, the GUI, 

and output files. An input event is any event which involves any of the SUT’s input 

sources. It could be a menu selection, button press, command typed by the user,
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F igure 2.2 Structure of coverage elements by Andrews et al.

program launch, etc. Accordingly, an output event is an event of producing output 

by the SUT, which involves one output destination. Examples of output events are 

messages presented to the user, data written to a file or a database, or messages sent.

Input and output variables are the most basic input and output elements in the 

equivalence partitioning method; they are usually strings, numbers or boolean values. 

Examples of input variables are user name, port number, side length, month number, 

day number, and column width. Each input and output variable could be broken down 

to value sets, which can be considered as value-level equivalence classes. Value sets 

of input variables, in contrast with output variables, could be invalid, which means
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that when a system receives such input, it is supposed to give an error message or 

indicate in some other way that this input variable is invalid.

We suggest that the proposed breakdown of SUT into components, input sources 

and input events, which does not require a formal specification, is a natural way of 

defining equivalence classes and using it as a basis for test case construction by a 

tester. ■ • ■

In this thesis we use the breakdown of software components described above in order 

to specify equivalence classes for input and output variables of the SUT. We also 

propose an improvement to this approach.

2.3 Empirical Studies of Test Effectiveness

There exist various testing techniques and coverage metrics of test suites, but as the 

ultimate goal of a testing process is to find faults in a program, the main concern of 

a test engineer is “how achieving high coverage contributes to the test case effective­

ness” . Multiple studies have been performed which support the correlation between 

various white box coverage criteria and test suite effectiveness.

Frankl and Weiss [15] have performed an experiment in which they have compared 

the effectiveness of the dataflow-based all-uses and controlflow-based all-edges test 

adequacy criteria for small Pascal programs with existing faults. They have mea­

sured the percentage of executable edges and definition-use pairs for each test suite, 

and counted how many program faults were revealed by this test suite. The results 

o f the experiments have shown that the fault-finding ability of a test suite is posi­

tively correlated with both all-uses and all-edges adequacy criteria only for half of the
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subject programs.

A similar experiment was performed by Hutchins et al. [19] in which they have used 

moderate-size C programs with seeded faults, and a different experimental setup. 

They have found out that test sets which achieve coverage levels of 90% or more have 

much higher effectiveness than randomly chosen test sets of the same size. Frankl and 

Iakounenko [16] have studied the relationship between the effectiveness of randomly

generated test suites, dataflow-based definition-use and controlflow-based decision
\

test adequacy criteria, and have observed a similar pattern. Faulty versions of a 

real-world C program for antenna configuration were used in this experiment.

In a more recent study Andrews et al. [25] have studied the relationship between 

effectiveness, white box statement coverage and the size of a test suite. They have 

prepared a much larger set of faulty versions of subject programs generated auto­

matically through mutation, which allowed them to prove statistical significance of 

results and also made experiments reproducible. The experiments indicate that both 

size and coverage influence test suite effectiveness; however, the ̂ relationship between 

these three variables is not linear. Instead, a linear relationship among variables 

log (size), coverage and effectiveness was observed for all subject programs. Within 

the bounds of this thesis we perform experiments which build on this work, and de­

termine if adding the black box coverage to the model could make it more accurate, 

and if a nonlinear relationship among the black box coverage, size and effectiveness 

o f a test suite still holds.

Another goal of this thesis is to compare the white box and black box coverage of 

test suites and individual test cases. While there do not exist any studies directly 

comparing the black box coverage with white box coverage of a test suite, a recent 

publication by Yu et al. [30] studies the white-box coverage of a test suite which was
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generated from the functional black box specification, and therefore achieves 100% 

black box coverage. Path coverage was selected as a white box coverage measure, as 

it is the strongest criterion. The study has revealed that a specification-based test 

suite may not take into account all implementation details, so the comparison was 

made using only “spec-related paths” . The study showed that a spec-based test suite 

covers about 97% of spec-related paths in the code, which is a very high number.

2.3.1 Mutation

Experimental results of running test cases on the SUT are usually used as an empirical 

assessment of a test case effectiveness. However, there are several problems connected 

to the design of experiments. First, a researcher needs to have a correct version 

of a program as well as several faulty versions, where each version contains only 

one fault. Finding and preparing such faulty versions is very difficult and time- 

consuming. Second, the number of faulty versions might not be enough in order 

to achieve statistical significance in the experiment. Therefore,Snany researchers are 

creating faulty versions of subject programs by introducing faults either automatically 

or by hand. Preparing the necessary number of faulty versions with hand-seeded faults 

could also take a long time, so it is more efficient to automate this process. In order 

to produce automatically-generated faulty versions, the original source code of the 

program is automatically modified in small ways to produce a program mutant. These 

small modifications are called mutation operators, and reflect typical programming 

errors: wrong operator in the logical condition, incorrect value assignment, missing 

statement, etc.

DeMillo et al. [13] have originally proposed an idea of using mutants to measure test
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case adequacy, and have implemented a prototype mutation system for the FOR­

TRAN language. This idea was later explored by DeMillo in collaboration with 

Offutt [14]. Andrews et al. [6] have performed experiments in order to identify if 

mutation is an appropriate tool for the empirical evaluation of testing techniques. 

They have compared the ability of test suites to detect real, hand-seeded and au­

tomatically generated faults, and have found out that mutants can provide a good 

indication of the fault detection ability of a test suite, when using carefully selected

mutation operators and after removing equivalent mutants [6]. Therefore mutants
\

are representative of the real-world faults, and can be used to assess the effectiveness 

of test cases.

\
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Chapter 3

Black Box Coverage Calculation 

Method

In this chapter, we go into detail about the design and implementation of the black box
, "x

coverage calculation approach. We describe three main components of this approach:

Functional Test Specification or FTS, log files, and FTS Coverage Calculation Tool
\

or FTS Tool We also write about the architecture of the FTS Tool, describe some 

important classes and methods, and give details of the algorithms for calculating the 

coverage of a test suite based on the log files and FTS.

3.1 Overview

As mentioned in the Related Work section, black box testing techniques, which are 

widely used in the software development industry, are not studied thoroughly in the 

software testing research field. Moreover, there does not exist a tool to measure the
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coverage of a test suite from the black box perspective. Therefore the main motivation 

of this thesis is to develop an approach to measure industry black box coverage based 

on the industry equivalence partitioning and boundary value analysis methods.

The first part of this approach is the construction of the Functional Test Specification 

for the SUT, which defines equivalence classes of input and output variables, as well as 

higher-level elements of the software system to which these variables belong. In order 

to determine which elements from the FTS have been used in a particular test case, 

we require that the SUT produces log files in a particular format during execution. 

Log files will contain information about values of input and output variables which 

have been used in a particular test case, as well as events, sources of input and 

components of the SUT, in which these variables appeared. This information will 

allow us to calculate the ratio of the number of tested elements to the total number 

of elements for each element type. As we are also interested in determining the 

number of repetitions of each element from the FTS, we’re going to organize logs in 

such a way that we will be able to determine how many times a particular element 

appeared within the parent element. Finally, the FTS Tool will^perform matching of 

the FTS with the log files and calculate the following coverage types:

• Simple existence coverage, according to which an element is considered to be 

covered if it appears in the log file at least once.

• Multiplicity coverage, which takes into account the number of repetitions of each 

element from the FTS.

• Boundary value coverage, which is calculated for each equivalence class consist­

ing of the range of numeric values, and checks if boundary values appear in the 

: log file.
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A detailed description of how the coverage measures are collected is given in Section

314.3. . ■ ' ’ '

3.2 Functional Test Specification

Functional Test Specification is a way to capture the result of applying the equiva­

lence partitioning method to input and output variables of the software system^ As 

mentioned in the Related Work section (see Section 2.2.3), modern software systems 

are very complex and can consist of many components with multiple GUI forms and 

sources of input. Therefore it is not enough to specify only input and output variables 

of the system. Instead, we’re going to use the breakdown of the software system into 

elements proposed by Andrews [7].

In our coverage calculation approach we would like to consider not only the appear­

ance of particular system elements, but also the number of repetitions of elements of 

a particular type. For example, if a utility requires only one input file, the tester will 

likely create at least one test case with one file given as input, one test case with no 

files given, and possibly one test case with two or more files given. One possibility of 

tracking the number of repetitions would be to create an additional artificial input 

variable which would represent the number of repetitions of a particular element. 

However, another more consistent approach is to specify a Multiplicity property for 

each of the elements for which it is necessary. The multiplicity property could be 

applied to any of the coverage elements except value sets, and could be broken down 

into valid and invalid value sets, just as any other input variable. In the previous 

example, the valid multiplicity of the “input file” element will be,“ l ” , and two invalid 

multiplicities will be “0” and “2” . If a tester is specifying a multiplicity property
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for a particular coverage element, this implies that he believes that in order for this 

element to be tested thoroughly, for each multiplicity value set there should be at 

least one test case with the corresponding number of elements of this type.

After a tester has analyzed a program’s structure, its input and output variables, and 

possible breakdown into value sets, he should store this information in some conve­

nient form. One of the most popular formats for storing information in a structured

form is the Extensible Markup Language (XML) [10]. We therefore chose XML for
. \

the representation of the FTS. It is a textual data format which allows users tov rep­

resent structured information using their own custom markup scheme. We wrote an 

XML schema which corresponds to the FTS. An XML schema is a set of restrictions 

which are assigned to a particular XML file, and can be used to verify the validity of 

XML. A visual representation of this schema is shown in UML format in Figure 3.1.

SoftwareDesc is the root element, which can contain one or more ComponentType 

elements. Each ComponentType element can include zero Qr one Multiplicity ele­

ments, and zero or more InputSourceType and OutputDestii^ationType elements. 

A  Multiplicity element specifies the number of repetitions of the parent compo­

nent; it consists of one or more ValueSetType elements and can be a child element of 

any other element except itself and ValueSetType. Each InputSourceType element 

can contain zero or more InputEventType elements, which in turn can contain zero 

or more InputVarType elements. Each of the ComponentType, InputSourceType, 

InputEventType and Input VarType elements must have a “name” attribute to spec­

ify a unique component name, which is used while matching specification with logs.

InputVarType must contain at least one ValueSetType element, which represents an 

equivalence class for this variable. ValueSetType does not have to have a unique 

name and can be uniquely identified by its set of values. An optional description
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F igure 3.1 XSD schema

child element can be used to write a comment or description. ValueSetType also 

has an optional type attribute, which can be assigned one of two values: “valid” or 

“invalid” . If this attribute is not specified, it is assumed by default that the value set 

is valid. Valid value set contains input values which are expected by a program as 

valid inputs and make the program operate in a normal mode. In contrast, invalid 

value set contains values which will cause error handling in the program or will make 

the program indicate to the user that such input will not be handled correctly.
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We have designed three options to specify the contents of a particular value set, which 

can be used individually or in conjunction:

• A single value or a collection of separate values can be specified using one or 

more value elements. In this case a value set will be considered tested if any 

value from the list appears in the logs.

• If a value set consists of a range of numeric values, instead of writing a list of
■ ’ , \

all possible values, a range can be specified in min and max child elements. It

is allowed to specify both integer and float numbers, but the min value should 

always be smaller than the max value. If the range does not have a lower or an 

upper bound, the “unlimited” keyword can be used instead of a number. How­

ever, setting both min and max values to “unlimited” is prohibited. Specifying 

a range of values allows us to perform boundary value analysis in addition to 

the equivalence partitioning.

' N

• A regular expression can be used to specify the set of values in the regexp child
\

element. Perl-compliant regular expression syntax must be used.

Correspondingly, OutputDestinationType contains at most one Multiplicity el­

ement and zero or more OutputEventType elements. OutputEventType consists of 

at most one Multiplicity element and of one or more OutputVarType elements. 

OutputVarType consists of zero or one Multiplicity elements as well as one or more 

ValueSetType elements, which are similar to those used in the InputVarType, but 

can only contain valid value sets.

Figure 3.2 shows an excerpt from the FTS specification for the mastermind game 

server, one of the subject programs which will be described in detail in Section 4.2.3.
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Figure 3.2 Sample Functional Test Specification

<Component name="Server">
cinputSource name="CommandLine">

<InputEvent name="ServerInitialized"> 
<InputVar name="PortNumber">

'

<Multiplicity>
<ValueSet type="invalid"> 

<value>0</value> 
</ValueSet>
<ValueSet type="valid"> 

<value>l</value>

■ -• '■>

</ValueSet>
</Multiplicity>
<ValueSet type=,,invalid,l> 

<min>0</min>
<max>1023</max> 

</ValueSet>
<ValueSet type="valid"> 

<min>1024</min>

\
\

<max>65535</max>
</ValueSet>

</InputVar>
</InputEvent>
<InputEvent name="GameInitialized"/> 

</InputSource>
</Component>

'n

\

According to the specification, exactly one port number value should be specified in 

the command line in order to initialize the server. Port numbers from 0 to 1023 are 

considered to be invalid, and numbers from 1024 to 65535 - valid.

3.3 Log File Format

After constructing the program’s FTS specification, we need to determine which of 

the specified coverage elements have been tested during the execution of the SUT, i.e.
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F igure 3.3 Format of log files

Component <ComponentType> <componentName>
InputSource <componentName> <InputSourceType> <inputSourceName>
InputEvent <componentName> <inputSourceName> <InputEventType>

<InputVarNamel>=<inputVarValuel> ... <InputVarNameN>=<inputVarValueN> 
OutputDestination <componentName> <OutputDestinationType> 

<outputDestinationName>
OutputEvent <componentName> <outputDestinationName> <OutputEventType>

<OutputVarNamel>=<outputVarValuei> ... <OutputVarNameN>=<outputVarValueN>

\
which components were used, what events occurred during execution, what variable 

values were set, and what output was produced by the program. Depending on the 

program type, structure and functionality, we could extract this information from the 

execution logs, standard output, database transactions, or GUI components. As we 

would like our approach to be applicable to a wide range of programs implemented in 

any programming language, we can not use any existing standard logging mechanism 

in order to collect this information automatically. Therefore instrumentation of the 

SUT, which will produce log files in the appropriate format, is required as part of our 

approach. V

Instrumentation could be done either by a tester or a developer, as it involves simple 

operations of writing necessary information into the file, and does not require special 

knowledge either about the system’s internal structure, or about the programming 

language used. A separate file with the unique name will be created during each 

execution of the program, so that one test case will correspond to one log file. A  log 

file will consist of separate lines; each of these lines will contain information about a 

particular coverage element, and will be written to the file when the corresponding 

event happens during the program’s execution. The format of log lines is presented 

in Figure 3.3.
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We have defined five different types of log lines, and each of them starts with a keyword 

which identifies the type of the coverage element from the specification. The first line 

starts with the Component keyword, followed by the name of the ComponentType from 

the specification and a unique component name, which will be used as a reference 

when defining other elements. The second line starts with the InputSource keyword, 

followed by a unique name of the component to which it belongs, the name of the 

InputSourceType from the specification, and a unique name. The third line starts 

with the InputEvent keyword and defines an input event for a particular component 

and input source. It does not have a unique name because it is not referenced further 

in other types of log lines. It also defines tuples of input variable names which have 

been used in this input event together with their values, where zero, one or more input 

variables of the same type could be specified in the same line. Output destinations 

and output events are defined similarly to input sources and input events.

Some string values of input variables can contain whitespaces, e.g. an input variable 

for a user name “John Smith” . In our logging format a"whitespace is used as a 

separator, and a tester needs to take this into account while constructing logs: before 

writing a value into a log file he should check if it contains whitespaces, and put it 

into double quotes if necessary.

Figure 3.4 shows a sample of three log files for a mastermind game server which 

correspond to three test cases:

• A  server was launched with a valid port number 65535, and a new game was 

initialized.

• A port number has not been provided. , ;

• An invalid port number 80 was used.
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F igure 3.4 Sample log file

testcasel.txt:
Component Server server 
InputSource server CommandLine cl
InputEvent server cl Serverlnitialized PortNumber=65535 
InputEvent server cl GameInitialized

testcase2.txt:
Component Server server 
InputSource server CommandLine cl 
InputEvent server cl Serverlnitialized

testcase3.txt:
Component Server server 
InputSource server CommandLine cl .
InputEvent server cl Serverlnitialized PortNumber=80

3.4 FTS Coverage Tool

3.4.1 Overview

We have developed a Java utility program which matches coverage elements from the 

FTS with the coverage elements which appear in the log files, and produces a coverage 

report. It is called FTS Coverage Tool and was developed in the Java Development 

Kit (JDK) vl.6.17. It is compatible with all versions of JDK 1.6 and can run on any 

operating system with the Java Runtime Environment (JRE) installed.

Compiled Java class files are packaged into an archive f t s . ja r  which can be executed 

by the Java application launcher. The required parameter for the FTS Tool is the 

path to the FTS specification file, which should be passed after a keyword -xmlspec. 

The second required parameter is the path to the location of log files, which could 

be specified in two ways. A  tester could provide a list of log file names separated by
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a whitespace and preceded by the keyword - f  i l e l i s t .  Another option is to specify 

a directory name in which log files are stored, by using the keyword d ir . Options 

- f  i l e l i s t  and -d ir  cannot be used together. By default, FTS Tool calculates cover­

age for each type of coverage element and prints it in human-readable form. Specifying 

an optional parameter - l i s t c e  makes the tool printing the list of coverage elements, 

one coverage element per line, with the indication if this element was covered or not. 

For example, if we launch the program with the following parameters:

, . . ... \ 
java  - ja r  f t s . j a r  -xmlspec . ./mastermind/mastermind.xml

- f i l e l i s t  . ./m a sterm in d /log s /testca se l.tx t

FTS Tool will produce the default coverage report for each type of coverage element 

for only one test case t e s t c a s e l .t x t  using the mastermind.xml specification file.

3.4.2 Output Format

; _ , ■ \  ' '

The coverage report produced by the FTS Tool can have two different formats. The

sample of the report file with the default output is presented in Figure 3.5.

The report is broken down into four parts. The first part contains coverage values 

for three main types of coverage: simple existence, multiplicity and boundary value 

coverage. The ratio of the number of covered elements to all elements of this type 

as well as a percentage value are given. A breakdown into valid and invalid coverage 

elements is performed for the multiplicity coverage. The second section presents a 

detailed report on each type of simple existence coverage elements: components, input 

sources, input events, etc. The third section contains a list of element IDs which have 

not been covered during testing. This list includes all types of coverage elements -
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F igure 3.5 Sample FTS Tool output

----- Total coverage -----
Simple existence coverage: 32/79 = 40.51'/,
Total multiplicity coverage: 6/12 = 50.00'/,
Valid multiplicity coverage: 6/11 = 54.55'/,
Invalid multiplicity coverage: 0/1 = 0.00'/,
Boundary value coverage: 0/12 = 0.00'/,

-— —  Detailed simple existence coverage --—  
Components existence coverage: 1/1 = 100.00'/,
Input sources existence coverage: 2/2 = 100.00'/,
Input events existence coverage: 4/7 = 57.14'/,
Input vars existence coverage: 8/11 = 72.737,
Input value sets existence coverage: 11/49 = 22.45'/, 
Valid value sets existence coverage: 11/28 = 39.29'/, 
Invalid value sets existence coverage: 0/21 = 0.00'/, 
Output destinations existence coverage: 2/2 = 100.00'/, 
Output events existence coverage: 2/4 = 50.00'/,
Output variables existence coverage: 1/1 = 100.00'/, 
Output value sets existence coverage: 1/2 = 50.00'/,

----- Missing coverage elements -----
OutputEvent Concordance.StdOut.OutOfMemoryMsgPrinted
Valid ValueSet Concordance.InputFile.FileLoaded.Property: ’Empty file’
InputEventMultiplicity Concordance. CommandLine. HelpOption multiplicity
Max Boundary OutputValueSet Concordance.FileSystem.OutputFileCreated 

.WordsCount: ’Integers’

’ 1;

— :---Not matched variables -— -
InputVar InputFileName=invalid.txt

simple existence, boundary value and multiplicity, and in order to distinguish different 

elements, a unique identifier (ID) is constructed for each element. The ID includes 

not only the element name, but also names of its ancestor elements. For example, a 

unique ID for a ValueSetType element is constructed in the following way:

<ComponentType>.<InputSourceType>.<InputEventType>.<InputVarType>: 

[<description>|<value>|<regular expression I from <min> to <max>]
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As ValueSetType does not have a unique name assigned to it, its description from 

the FTS will be displayed. If the description was not specified, either a value, a range 

of values or a regular expression will be displayed, depending on the method which 

was used to construct this ValueSet in the FTS. In case of multiplicity value sets, we 

need to specify both the unique ID of the element to which this multiplicity property 

belongs, and an identifier of a multiplicity value set. For example, the multiplicity 

value set for an input variable can be specified in the following way:

\\
InputVarMultiplicity <ComponentType>.<InputSourceType>.<InputEventType> 

.<InputVarType> multiplicity <ValueSetUniqueID> .

When printing out information about the boundaries, we need to specify a type of 

boundary (minimum or maximum), value set type and a unique ID of this value set:

[Min|Max] Boundary [InputValueSetIOutputValueSetIMultiplicityValueSet] 

<ValueSetUniqueID> ^

The final section of the report displays coverage elements from the log file which did 

not match any value sets from the specification. This section helps to troubleshoot 

any problems, such as an error in the logging or in the specification. For example, 

if a particular value appears in the list of not matched values, but instead should 

belong to some value set, a tester might have to review the specification, and make a 

modification to the description of this value set.
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Figure 3.6 Calculation of simple existence components coverage

for each ComponentType c from spec do 
for each TestCase tc from logs do

N  <- number of components of type c in tc 
if (N  > 0) then c.tested <- true

3.4.3 FTS Coverage Calculation
■ ■ ' ' "  ■ ■ ■ ’ ■ .......................................... : \

The main functionality of the FTS Tool is the calculation of a test suite’s cover­

age, which is based on the comparison of the specification with the log files.. FTS 

Tool’s functionality includes calculation of three types of coverage: simple existence, 

multiplicity and boundary coverage.

3.4 .3.1 Sim ple E xistence Coverage

Simple existence coverage is calculated for each type of coverage elements defined in 

the XML specification (see Section 3.2), and the general rule is to consider a coverage 

element to be tested if it appears in the log file at least once. For example, in order 

to calculate coverage of software components, for each component type defined in the 

specification, we need to execute the following: for each test case (or each log file) we 

count the number of components of this type which appear in a particular test case, 

and mark this component type as “tested” if the number is greater than zero. After 

examining each component type from the specification, we can count the number of 

tested components, divide it by the total number of components and present to the 

user in a specified format. Pseudo code of the simple existence components coverage 

calculation algorithm is shown in Figure 3.6.
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The rule described above is applied to most of the coverage elements; however, the 

coverage of input variables and value sets has additional constraints, and is calculated 

in a different way. Specifically, we consider an input variable from the log file to 

contribute to the coverage only in the following cases:

• All values in the corresponding input event from the log file are from valid value 

sets, and multiplicity of all input variables in this input event is valid.

• One value in the corresponding input event from the log file is from an invalid 

value set, and multiplicity of all input variables in this input event is valid.

• All values in this input event are from valid value sets, and multiplicity of one 

input variable is invalid.

A good test case design assumes that each invalid condition is tested in a separate 

test case: if we run a program with several invalid conditions at once, we will not be 

able to determine which invalid condition has caused error-handling in the program. 

Therefore, we consider input variables to be tested if they appear in an input event 

which corresponds to a valid test case, where either all variables have valid values 

and multiplicities or only one variable has invalid value or multiplicity. For example, 

if a program takes as input a day number (1-31) and a month number (1-12), then 

providing an invalid day and a valid month will be considered as a valid test case, 

and will be counted towards the total coverage. An input with two valid day values 

and one valid month value will have an invalid multiplicity of a day variable, and will 

also be counted towards the total coverage. However, providing an invalid day and 

invalid month values will not be considered as a valid test case.

As shown in Figure 3.7, in order to check for these constraints, while iterating through 

all input events of a particular type, we execute the following steps:
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Figure 3.7 Calculation of simple existence input variables coverage

For each ComponentType ct from spec do 
For each InputSourceType ist from ct do 

For each InputEventType iet from ist do 
For each InputVarType ivt from iet do

For each InputEvent ie- of type iet from logs: 
nl <- number of invalid input variables in ie 
n2 <- number of invalid multiplicities of input variables in ie 
If (ni + n2 < 2)

N <- number of input variables of type ivt in input event ie 
If (.N > 0) then ivt. tested <- true \ 1 2 3

1. Calculate n l - the number of input variables which have invalid values in this 

input event.

2. Calculate n2 - the number of input variables which have invalid multiplicity. In 

order to check if any input variables in this input event have invalid multiplicity, 

we need to iterate through all input variable types, which are defined in the 

specification for an input event of this type, count the number of input variables, 

and compare it with the multiplicity value sets, if there are any. If the number 

matches an invalid multiplicity value set, we consider this input variable to have 

an invalid multiplicity.

3. If n l +  n2 is less than two (it covers situations when both values are zero or 

only one of the values is one), we proceed further to calculate simple existence 

coverage of the corresponding input variable type.

We consider input variables to be covered if they appear in a valid test case. However, 

in order to check for particular values of input variables, we need to apply a more 

strict rule. If a test case contains an invalid value or invalid multiplicity, it causes the
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Figure 3.8 Calculation of simple existence value sets coverage

For each ComponentType ct from spec do 
For each InputSourceType ist from ct do 

For each InputEventType iet from st do 
For each InputVarType ivt from iet do

For each valid ValueSetType vvst from ivt do 
For each InputEvent ie of type iet from logs: 

nl <- number of invalid input variables in ie 
n2 <- number of invalid multiplicities of input variables in ie 
If (nl == 0 and n2 == 0)

For each InputVar iv from ie \
If (.vvst.matchdv.value) = true) then 

vvst.tested <- true

For each invalid ValueSetType ivst from ivt :
For each InputEvent ie of type iet from logs: 

nl <- number of invalid input variables in ie 
n2 <- number of invalid multiplicities of input variables in ie 
If (nl == 1 and n2 == 0)

For each InputVar iv from ie 
If (ivst.matchdv.value)) then 

ivst.tested <- true

■ A  • ■ •

program to execute error-handling code for the invalid value, while the functionality 

which involves other valid values is not executed. Therefore, for a test case which 

contains an invalid value or multiplicity, we can only say that the value set which 

corresponds to the invalid value was tested. In order to cover other valid value sets, 

we need to execute a test case where all values are valid. Therefore, we apply the 

following coverage calculation rule:

• A  valid value set is considered to be covered if all values in the corresponding 

input event are from valid value sets and multiplicity of all input variables is 

valid.
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• An invalid value set is considered to be covered if all other values in the cor­

responding input event except the current one are from valid value sets and 

multiplicity of all input variables is valid.

In order to check for these constraints, we calculate the number of invalid input 

variables and the number of invalid multiplicities of input variables, similarly to the 

input variables coverage calculation. As shown in Figure 3.8, we process valid and 

invalid value set types separately. For valid value set types, we check that there are 

no invalid variables and invalid multiplicities in the current input event; for invalid 

value set types, we check that there is exactly one invalid value set and no invalid 

multiplicities.

3.4.3.2 Multiplicity Coverage

Multiplicity is an optional property in the FTS specification, and is usually specified 

only for a small number of coverage elements, so there is no need to report on the 

multiplicity for each type of elements. Instead, the report presents total multiplicity 

coverage for all elements, as well as separate coverage values for valid and invalid 

multiplicity value sets. In order to calculate multiplicity coverage, for each multiplicity 

value set from the specification, we assign a flag which indicates if this value set 

appeared in the logs. We then iterate through all multiplicity value sets and count 

the number of tested valid and invalid multiplicities. Finally, we incorporate this 

information into the report.

As shown in Figure 3.9, in order to check multiplicity of element e from the spec­

ification, for each element of type e.parent from logs, we will count the number of 

elements of type e which appear in the log lines with e.parent, and compare this
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F igure 3.9 Calculation of components multiplicity coverage

For each ComponentType c from spec do 
For each TestCase tc from logs do

N  <- number of components of type c in tc 
For each multiplicity value set m s  of c do 

If (.mvs.match(N) = true) then 
m s .  tested <- true * 1 2 3

number with each of the multiplicity value sets for e defined in the specification. We 

will mark multiplicity value set as “tested” if it matches the number of elements of 

type e.

3.4 .3.3  B oun dary  Value Coverage

Boundary value coverage is calculated for value sets which are defined as ranges of 

numbers. Input and output value sets as well as multiplicity value sets are taken into 

account. As with multiplicity coverage, it is not necessary to report on the boundary 

value coverage for each element from the specification; instead, the report contains 

a total coverage value and a list of not covered boundaries. Calculation of boundary 

value coverage consists of the following steps:

1. Calculate the total number of boundaries which appear in the specification.

2. Calculate the number of boundary values which appear in the log files.

3. Calculate coverage by dividing the number of covered boundaries by the total

number. . ■
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Figure 3.10 Calculation of components multiplicity boundary value coverage

For each ComponentType c from spec do 
For each TestCase tc from logs do

N  <- number of components of type c in tc 
For each multiplicity value set rrivs of c do

If (mvs.min != null) then mvs.numBoundaries++
If (mvs.max != null) then mvs.numBoundaries++
If (mvs.numBoundaries > 0) then

If mvs.min = N then mvs.isMinTested <- true 
If mvs.max = N then mvs.isMaxTested <- true \

In order to calculate the total number of boundaries, we iterate through all value 

sets which have ranges of numeric values; we add 2 to the total if both min and 

max values are defined, and add 1 if only one boundary is defined (and the other 

one is set to “unlimited” ). Then, for each value set with the boundary, we check if 

min and max values appear in the log file at least once. For example, as shown in 

Figure 3.10, in order to check the boundary value coverage for component multiplicity 

value sets, after calculating the number of components of a particular type in a test 

case, we compare this number with min and max values for each multiplicity value set 

which is defined as a range of values, and set appropriate values to isMinTested and 

isMaxTested boolean variables.

3.4.4 Architecture

A  high-level organization of the FTS Tool utility is presented in Figure 3.11. The 

program takes as input FTS specification, log files and a report formatting option, 

and produces a coverage report as a result of its execution. It consists of 4 main 

components: log parser, specification parser, coverage calculator and reporter. The
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F igure 3.11 FTS Tool components

specification parser takes as input an XML file and unmarshalls it into the Java object 

representation of the FTS. Similarly, the log parser takes as input the location of the 

log files, and produces the Java object representation of elements which appear in the 

logs. The coverage calculator iterates through every element from the specification

and matches it with elements from log files. As a result, it assigns a “tested” flag to
\

each coverage element from the specification depending on its appearance in the logs.
V

Finally, the reporter component processes all FTS objects, analyzes tested elements, 

and assembles this information into a report, whose format depends on the option 

specified by the user.

3.4.5 Design and Implementation

We have carefully designed the FTS Tool in such a way that any modifications and 

additional functionality could be implemented easily. We use a Unified Modeling 

Language (UML) package diagram to illustrate package organization of the FTS Tool 

in Figure 3.12.



45
Figure 3.12 Package organization of FTS Tool

ca.uwo.csd.fts

As shown in Figure 3.12, FTS Tool consists of 11 packages. The ca .u w o .csd .fts  

package contains the main method in the CoverageRunner class which is being called 

when the program is launched. The package ca .u w o.csd .fts .m odel contains two 

nested packages: s p e c if ica t io n  and log , which represent the mapping of specifica­

tion and log elements into Java classes. Classes LogParser and S pecif icationPaxser 

from the c a . uwo. c sd . f  t s . parser package are responsible for producing log and spec­

ification instances correspondingly. The FTSCoverage class from the 

c a . uwo. c sd . f  t s . coverage package performs the actual comparison of logs and spec­

ification objects. The ca .u w o .csd .fts .re p o rte r  package contains multiple imple­

mentations of the Reporter interface which are used to assemble different types of cov­

erage information into a report. Finally, the c a .u w o .c s d .ft s .u t il  package consists



of miscellaneous utility methods. Later in this chapter we explain technical details 

about the most important packages - ca.uwo.csd.fts.model, 

ca.uwo.csd.fts.coverage and ca.uwo.csd.fts.reporter. ^

3.4.5.1 Package ca.uwo.csd.fts.model.specification

The package ca.uwo.csd.fts.model.specification consists of schema-derived 

classes which represent specification elements. These classes were generated automat­

ically based on the FTS XSD schema (see Section 3.2) using the Java Architecture for 

XML Binding (JAXB) library. A UML class diagram for this package is presented in 

Figure 3.13 and corresponds to the XSD schema by its structure. Generated classes 

preserve all attributes and relationships between elements from the XSD schema. In 

addition, each class has a boolean field isTested which is used during the coverage 

calculation. The ValueSetType class has three more additional fields (isMinTested, 

isMaxTested and numBoundaries), which are used in theNboundary value coverage 

calculation. \

3.4.5.2 Package ca.uwo.csd.fts.model.log

The package ca.uwo.csd.fts.model.log contains Java classes which represent the 

structure of log files. A UML class diagram for this package is shown in Figure 

3.14. The Log class is at the top of the hierarchy and represents information about 

the collection, of test cases. It contains a list of TestCase objects, each of which 

has a unique name (canonical file name of the corresponding log file) and a list of 

Component objects. The structure of the Component class is similar to the structure 

of the Component Type class from the FTS. Instead of the Multiplicity property, each

46
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class has a method which returns the number of child elements of a particular type, 

and this number is used to identify which Multiplicity value sets have been tested. 

InputVar and Out put Var classes contain name and value fields, which are used to 

identify to which ValueSetType they belong.

3.4.5.3 Package ca.uwo.csd.fts.model.parser

The package ca.uwo.csd.fts.model.parser contains two classes for parsing XML 

specification and log files correspondingly. The SpecificationParser class unmar­

shalls Java objects using the JAXB library unmarshal method, and returns an in­

stance of SystemDescType class, the root specification element.

The LogParser implements the functionality of parsing log files and producing in­

stances of the ca.uwo.csd.fts.model.log package classes. In contrast with the 

Specif icationParser, the implementation is more complex, because log files have
■ X

a custom structure and can not be parsed automatically with the help of an exter- 

nal tool. The parser reads log files line by, line and creates corresponding objects. 

LogParser also checks log files for validity. First, each line should start with an ap­

propriate keyword, which identifies the type of element. Second, each element which 

is referenced in the log file, must be defined earlier in the same file. For example, 

input source cannot be defined before the component to which it belongs. LogParser 

should also take into account the fact that if a value of input or output variable con­

tains whitespaces, it is surrounded by double-quotes, and any double-quote should be 

preceded by the backslash.
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3.4.5.4 Package ca.uwo.csd.fts.model.coverage

The package ca.uwo.csd.fts.model.coverage contains class FTSCoverage which 

is responsible for the coverage calculation. FTSCoverage class iterates through the 

ca.uwo.csd.fts.model.specification and for each object checks if the element of 

this type appeared in the ca.uwo.csd.fts.model.log structure. Coverage calcula­

tion for each component type is performed according to the algorithm described in 

Section 3.4.3. v
\

3.4.5.5 Package ca.uwo.csd.fts.model.reporter

The package ca.uwo.csd.fts.model.reporter contains classes for producing the 

coverage report. UML class diagram for this package is shown in Figure 3.15. The 

final report, which contains coverage information about all component types, can 

be broken down into smalTparts, each representing a particular coverage aspect. 

Similarly, we have decided to break down the functionality of producing the report. 

This will allow us to easily modify any existing part of the report, or add a new 

section to it. We have created the Reporter interface with the report method, 

which is implemented by all of the reporter classes. In order to produce a report, 

the Report Factory class creates instances of the Reporter interface, and then the 

CoverageRunner calls the report method on all reporter instances.

Classes SimpleExistenceReporter, MultiplicityReporter and BoundaryReporter 

calculate the total coverage of the corresponding types, while other classes, such as 

ComponentsReporter, InputSourcesReporter and others, print coverage of par­

ticular element types. These classes use similar algorithm - iterate through ev­

ery FTS object, count the number of tested elements and divide it by the total
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number of elements of the specified type. These classes are inherited from the 

abstract class Reporterlmpl, which implements the Reporter interface. Classes 

SimpleExistenceM issingReporter, M ultip licityM issingR eporter and 

BoundaryMissingReporter are used to produce the second section of the report, 

where missing coverage elements are printed. NotMatchedVarsReporter is a sepa­

rate type of a reporter, because its report method has an additional Log parameter. 

In contrast with the coverage calculation, this class iterates through the instances of 

the logs, and checks, if every input and output variable value was assigned to a par­

ticular value set from the specification. If it finds a value which does not match any 

o f the value sets from the specification, this value is included in the report. Classes 

SimpleExistenceCEReporter, M ultiplicityCEReporter and BoundaryCEReporter 

are used when the - l i s t c e  report format option is specified by the user, and the list 

of unique identifiers of each coverage element should be printed. ReportW riter is a 

helper class, which implements the w rite method, and is responsible for creating a 

new report file with the unique name in the reports folder.
' n

\
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F igure 3.13 Class diagram of c a .u w o .c s d .ft s .s p e c if ic a t io n  package
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F igure 3.14 Class diagram of c a .u w o .c s d .fts .lo g  package
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F igure 3.15 Class diagram of ca .u w o .csd .fts .re p o rte r  package



Chapter 4

In this chapter, we describe subject programs which were selected for the experiments, 

and evaluate how the black box coverage calculation method was applied to them. 

We then describe the preparation and execution of the experiments, analyze the data 

and illustrate the relationships with plots. Finally, we draw conclusions based on the 

analysis. ^

4.1 Motivation

In order to evaluate the black box calculation approach, we apply it to several subject 

programs. We design and implement several experiments which aim to answer the 

following research questions:

• How easy is it to apply the black box coverage calculation approach to subject 

programs of different sizes and programming languages?
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Table 4.1 Characteristics of subject programs

Program Language Number of test cases SLOC Classes Functions
f l e x c 567 10,421 N /A 162
concordance C + + 372 1,034 5 39
yamm Java 238 780 13 48

• What is the relationship between the black box and white box coverage mea­

sures?

\

• What is the relationship between the black box, white box, test suite size and 

effectiveness? Is it consistent with the experimental results in [25]?

• Is the black box coverage a good predictor of test case effectiveness?

4.2 Subject Programs

In order to test our approach on programs of various sizes, functionality and program­

ming languages, we have selected the following subject programs for our experiments: 

f le x , concordance and yamm. Characteristics of these programs can be found in Table 

4.1. The size of programs was estimated using the SLOC (lines of code not counting 

comments or whitespace) metric, which was calculated by the LLOC tool [22]. f le x  

is a C program with the biggest size and the largest test case pool; concordance 

is a medium-size utility C + +  program; and yamm is a Java GUI-based client-server 

program.
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4.2.1 Subject Program flex

The subject program f le x  (fast lexical analyzer generator) is a free implementation 

of the original Unix le x  program, which generates programs that perform pattern­

matching on text. The program takes as input a text file which consists of three 

sections: definitions, rules and code. After processing an input file f l e x  generates 

a C source code file “lex.yy.c” which implements the yy lexO  function. The rules

section specifies pairs of regular expressions and C code, such that when the “lex.yy.c”\\

file is compiled and run on some input, it analyzes input text, and executes the 

corresponding C code each time it finds a text which matches a regular expression 

defined in the rules. The definitions section of an input file can be used to ease the 

construction of rules by assigning custom names to regular expressions used in the 

rules section. The last optional section of the input file contains custom C code which 

is copied to “lex.yy.c” without any modifications.

In our experiments we use the version of f l e x  which was obtained from the Software- 

artifact Infrastructure Repository (SIR) at the University of Nebraska- 

Lincoln. The package contains several sequential previously released versions of the 

program, and we use the latest version v5 for our experiments. The SIR researchers 

have used the informal documentation to create a specification in the TSL language 

[9]. After applying a TSL generator to it they have obtained textual descriptions of 

test cases in the form of TSL test frames, and assigned a line in a “universe” format 

to each test frame. The package which was obtained from SIR contained 6 TSL test 

frames with “universe lines” assigned to them; in order to get an automated shell 

script which could execute all test cases, we ran a JavaMTS tool (also obtained from 

SIR) with a “universe” file, which produced an automated test suite consisting of 567 

test cases.
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4.2.2 Subject Program concordance

The subject program concordance is a C + +  utility program which makes word 

indices of documents. It was introduced as a subject program for the first time by 

Andrews et al. and is described in [25]. This program takes as input a text file 

“filename” and creates two output files with the information about concordances. 

The output file “filename.wds” contains a list of all words used in the input file. It 

also specifies the length of each word, number of times it appeared in the input file, 

and locations where it appeared. Location can be counted by a page, line or stanza, 

and can be specified using options p, 1 or s. The output file “filename.abc” contains 

a list of characters from the input file, the number of appearances and the overall 

percentage of uses for each character. In our experiments, we use the pool of 372 test 

cases created for the study in [25].

4.2.3 Subject Program yamm \

The subject program yamm (Yet Another Mastermind) is a version of a famous mas­

termind game written in Java. It is a multi-player version of a game with a GUI 

implemented using the Java AWT library. This program consists of two components: 

server and client. In order to play the game, the server should be launched first, with 

the port number and the mode of generating game combinations specified. Then one 

or more clients can connect to the server, using the server address and port number,

and specifying the user name. When the connection is established, a GUI is shown to

the user, where he can select colours by clicking on circles, and submit his guess. The 

guess is evaluated by the server, and the response is sent back, which tells the user 

how close he is to the winning combination. The first player who guesses correctly
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within 12 attempts, wins the game.

This program was written by Laurent Cavallin and Corentin Massot and can be found 

on various open source repositories in the Internet. The version which is being used 

is a beta release 0.10beta2. Test cases for this subject program have been created 

by 22 students in the class of Computer Science 4472 at UWO in 2009. The Abbot 

automated testing package [1] was used in test cases to access and manipulate GUI 

components of yamm. These test suites formed a test pool with the total of 256 test 

cases.

4.3 Evaluating Black Box Coverage Calculation 

Method

In order to evaluate the black box coverage calculation method, we have executed the 

following steps for each of the subject programs: ^

• Analyze the informal specification and perform equivalence partitioning on in­

puts and outputs.

• Assemble equivalence classes into an FTS XML specification. .

• Instrument the source code so that logs will be written in the specified format.

• Create a bash shell script which will execute all test cases automatically.

• Execute the script and collect log files.

• Run FTS Tool with the FTS specification and log files in order to obtain the 

coverage report.
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We were able to successfully apply the black box coverage calculation to all subject 

programs. However, flex appeared to be the most difficult program to create an 

FTS specification for, primarily because of the large number of switch options which 

could be specified as input for flex and affect the generation of the “lex.yy.c” file. 

According to the informal program specification, it is not enough to test each switch 

individually; instead, there is a need to run the program with certain combinations of 

switches and also check that invalid combinations are tested as well. Therefore there

is a need to take into account valid and invalid combinations of value sets, which is\
not supported by the current implementation of the FTS Tool. This limitation of 

our approach is discussed in the next chapter. Figure 4.1 shows an extract from the 

FTS specification for the yamm subject program. It presents the FTS specification 

in a plain text format, omitting closing tags, angle brackets and Multiplicity and 

ValueSet elements. As an example, ValueSet elements for the PortNumber input 

variable have been included.

Instrumenting; the flex source code also appeared to be mbre difficult than instru­

menting the two other programs. It was required by the specificatW that the contents 

of rules and definitions sections of the input file are captured. However, it was not 

possible to capture these values in the logical flow of the program which was imple­

mented in a state machine fashion, where each character of an input file was processed 

individually. As a result, we had to add code which would parse the input file, extract 

the necessary information and write it into the log file.

After running all available test cases and obtaining execution logs, we have calculated 

the black box coverage for each of the subject programs. Table 4.2 provides coverage 

values for each of the subject programs displayed both as a ratio of the number of 

covered elements to the total number of elements, and as a percentage. As shown in
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Figure 4.1 FTS specification for yamm
SystemDesc ■

Component name=Server
InputSource name=CommandLine

InputEvent name=ServerInitialized 
InputVar name=PortNumber 

Valid ValueSet From 1024 to 65535 
Invalid ValueSet Negative numbers 
Invalid ValueSet From 0 to 1023 
Invalid ValueSet From 65536 to unlimited 
Invalid ValueSet Number in incorrect format 

InputVar name=GameMode 
InputSource name=StdInput

InputEvent name=GameInitialized 
InputVar name=ColoursSpecified 
InputVar name=PegColour 

InputSource name=ComboGenerator 
InputEvent name=GameInitialized 

OutputDestination name=ClientConnection 
OutputEvent name=UserWon

OutputVar naime=NumberOfGuesses 
OutputEvent name=GameFinished 

OutputVar name=Result 
OutputEvent name=Gue s sEvaluat ed 

OutputVar name=NumberOfRedLines 
OutputVar name=NumberOfWhiteLines 

Component name=Client
InputSource name=ServerMessage

InputEvent name=NewGameMe s sageRe c e ived 
InputEvent name=GameOverMessageReceived 
InputEvent name=ConnectionSucceededMessageReceived 
InputEvent name=ConnectionFailedMessageReceived 

InputSource name=CommandLine
InputEvent name=ClientInitialized 

InputVar name=PortNumber 
InputVar name=UserName 
InputVar name=ServerName 

InputSource name=MastermindGUI 
InputEvent name=UserGuess

InputVar name=ColoursSelected 
InputEvent name=GameStopped 
InputEvent name=ClickOnPeg 

InputVar name=PegNumber 
InputVar name=NumberOfClicks
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Table 4.2 Black box and white box coverage measurements for subject programs

Coverage elements f le x concordance yamm
Simple existence 125/139 =  89.93% 74/79 =  93.67% 100/106 =  94.34%
Valid value sets 59/66 28/28 35/38
Invalid value sets 12/14 17/21 11/14
Output value sets 12/17 2/2 15/15
.MultipL. value sets 50/72 12/12 19/23
Boundary value sets 3/48 5/12 13/32
Total black box 178/259 =  68.73% 91/103 =  88.35% 132/161 =  81.99%
Total white box 80.73% 100% 91.76%

\

the table, the yamm subject program has the highest simple existence coverage, while 

concordance has the highest total coverage. All three programs have low boundary 

value coverage, but as concordance has the smallest number of boundary values in 

the specification, its total coverage is the largest among the three programs. Low 

boundary value and invalid value sets coverage can be explained by the fact that 

boundary and incorrect conditions are usually taken into account after all valid test
'n

cases have been explored, and very often these conditions are forgotten. As we can 

see from Table 4.2, the total number of coverage elements appears to be greater 

than 100 for all subject programs, however, it still provides less granularity than the 

white box statement coverage in which the number of coverage elements equals to the 

number of executable lines of code. We can also see from Table 4.2 that f l e x  has 

the smallest white box coverage value among the three programs, while concordance 

has the highest coverage value of 100%.



4.4 Comparison of Black Box and W hite Box Cov­

erage Metrics

61

The first set of experiments which we execute aims to compare the white box coverage 

of each single test case with its black box coverage.

4.4.1 Experiment Design \

In the first step of the experiment we obtain the white box coverage using the gcov 

utility for f l e x  and concordance, and the Cobertura utility for yamm. The basic prin­

ciples of statement coverage calculation utilities is described in Section 1.2.1. The first 

step is to compile the original source code of each subject program using two special 

GCC options - fp r o f i le -a r c s  -fte s t -co v e ra g e  or instrument Java bytecode with 

Cobertura after compiling yamm source code. After execution of each test case we 

generate a coverage report, save it and clear the coverage file for future use. As the 

statement coverage report is generated in the format specific to the coverage calcu­

lation tool, the next step is to transform a report generated for each test case into a 

plain text file which contains only numbers of lines executed by a particular test case. 

In case of a Cobertura report, each line contains a class name and a line number. 

Finally, we calculate the white box statement coverage by dividing the number of 

unique lines in each file by the total number of coverable source lines.

The second step is to collect the black box coverage information using the FTS Tool. 

We run the FTS Tool for each individual log file with the - l i s t c e  option, which 

produces a report file with the list of unique identifiers of covered elements. As 

we can see from Table 4.2, none of the test suites for subject programs achieve 100%
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black box coverage, and only concordance achieves 100% white box coverage. For the 

comparison purposes, we calculate the relative coverage values, where the maximum 

coverage achieved by the whole test pool will be considered as a 100%. Finally, we 

assemble percentage values for each of test cases into a single text file and analyze 

them.

In order to see if combining individual test cases into test suites will have an effect on

the relationships which we study, we generate test suites of various sizes from 2 to 50,
\

with 100 test cases in each test suite, resulting in 4900 test suites in total. For each 

test suite, we choose test cases randomly using a permutation tool, and store test 

case numbers in a text file corresponding to this test suite. As we have information 

about black box and white box elements covered by each test case, we are able to 

calculate the coverage of each test suite without actually running test cases or running 

the FTS Tool on the log files. Instead, we compute the union of the collections of 

coverage elements of individual test cases which comprise this test suite, and divide

the number of distinct elements in the set by the total number of coverage elements.
\ '

4.4.2 Experimental Results

Figure 4.2 shows the scatterplot of the total black box and white box statement 

coverage measures for individual test cases of f le x . As we can see from the figure, 

the majority of the test cases are grouped together and have a positive correlation 

between the two coverage measures. The white box coverage measure is greater than 

the black box measure for all test cases in this group. There is also a small number of 

outliers for which the black box coverage is greater than the white box coverage, and 

the white box coverage is smaller than the average white box coverage. These outliers
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Figure 4.2 Scatterplot of black box and white box measures for flex
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F igure 4.3 Scatterplot of black box and white box measures for concordance
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Figure 4.4 Scatterplot of black box and white box measures for yamm
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represent erroneous test cases which test invalid inputs to the program. For these test 

cases, only the error-handling lines of code are executed. The number of the error­

handling lines is small compared to the total size of the program, making the white 

box coverage smaller. However, the black box coverage is relatively high because the 

erroneous inputs correspond to particular value sets from the specification.

Figure 4.3 shows a scatterplot of the black box and white box coverage measures for 

the concordance subject program. We can divide the points into several groups of 

test cases: the biggest group represents correct executions with high coverage; the 

group in the bottom left has lower coverage and represents invalid test cases which 

caused the program to do error-handling; the small group in the middle represents 

invalid inputs which have forced the program to execute part of its functionality (e.g. 

parsing an input file), and then terminate with an error message.

Figure 4.4 shows a scatterplot for the yamm program. In this scatterplot, the number of



65
erroneous test cases with small coverage values is rather large. This can be explained 

by the fact that the majority of test cases from the test pool examine erroneous 

conditions, while the number of valid test scenarios is small. As we can see from the 

figure, there is a group of points in the center with a wide range of white box values 

but almost the same black box value. These points correspond to test case scenarios 

in which both the client and server were launched and the connection between then 

was established, but the game did not finish correctly.

The scatterplots for individual test cases show that on average the black box coverage 

is smaller than the white box coverage and has less variability of values: for f l e x  and 

concordance the majority of test cases have a black box value in the range from 20% 

to 40%, while white box changes from 0% to 80%. We also notice that the black box 

coverage value does not directly correspond to the number of executed lines of code. 

Consider two test cases: the first one tests an erroneous condition, which causes the 

program to execute only the error-handling code; while the other test case tests a valid 

input to the program, which causes the program to execute its main functionality.

These two test cases have similar black box coverage values but \;he first one has low
\

white box coverage, and the second one - high white box coverage.

We also analyze the relationship between black box and white box coverage measure­

ments for the pool of randomly generated test suites of sizes from 2 to 50, containing 

4900 test suites in total. Figures 4.5, 4.6 and 4.7 show scatterplots of the total black 

box and white box statement coverage measures for the yamm, concordance and f le x  

subject programs respectively. In these plots, each point corresponds to one test suite 

from the pool of test suites of sizes from 2 to 50. As we can see from these figures, all 

f l e x  test suites are grouped together, while the concordance and yamm plots have 

a group of outliers with smaller coverage values. This can be explained by the fact
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Figure 4.5 Scatterplot of black box and white box measures for yamm test suites
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Figure 4.7 Scatterplot of black box and white box measures for flex  test suites

Flex
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that in the scatterplots with black box and white box values for individual test cases, 

the number of outliers with smaller black box and white box values is considerably 

smaller for f l e x  in comparison with concordance and yamm. Correspondingly, when 

several test cases with low coverage values are grouped togetherMnto a test suite, the 

coverage value of a test suite is also likely to be low.

We can notice that the relationship between the black box and white box coverage 

measures is not linear in these scatterplots. In order to get a deeper understanding 

of the relationship, we fit several linear models into the data using the R statistical 

package and try to determine which model is the most accurate. Linear regression is 

the process of finding values for the coefficients of a linear model which best fit the 

actual data. We can evaluate how well a model fits the actual data by calculating 

the coefficient of determination R2. An R2 ranges from 0 to 1, where the value of 1 

indicates that the regression model perfectly fits the data.



Table 4.3 Goodness of fit of black box vs. white box relationship, measured by R2
Linear m odel R 2

f le x concordance yamm
black_box =  white-box 0.7899 0.4997 0.7289
black_box =  log(white_box) 0.7725 0.241 0.4518
log(black-box) =  white-box 0.8156 0.6122 0.831
log (black_box) =  log (white-box) 0.8084 0.3393 0.5961

Table 4.3 shows R2 values for four linear regression models of black box and white
\ .

box coverage measures. The R2 values are very close to each other for f le x , while the 

values for concordance and yamm clearly show that the model of the form white-box 

=  BO +  B1 Hog (black-box) is the most accurate model.

We have noticed from the scatterplots for individual test cases that there exist a 

lot of test cases with relatively low black box coverage which execute most of the 

program’s code. When test cases are combined into test suites, we can see a large 

number of test suites with low black box coverage and a relatively high white box 

coverage. However, if we look at test suites with higher black box values, we can see 

that when the black box coverage of a test suite increases, its white box coverage does 

not change significantly.

4.5 The Relationship Among Size, Coverage and 

Effectiveness

Andrews’ experiments [25] indicate that both size and coverage influence test suite 

effectiveness, and a linear relationship among variables log (size), coverage and effec­

tiveness exists for studied programs. In this set of experiments we determine if adding
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the black box coverage to the model makes it more accurate, and if a nonlinear re­

lationship among the black box coverage, size and effectiveness of a test suite still 

holds.

We use two subject programs f le x  and concordance for this experiment, as existing 

test cases for yamm have limitations which make this program not suitable for the 

experiments. Specifically, yamm test cases do not have a mechanism of checking if

a mutant was detected by a particular test case. The majority of yamm test cases\\
interact with the client GUI using the Abbot library, and do not have a mechanism 

to check if all elements of GUI are in the correct state.

4.5.1 Mutant Generation

The first step of the experiment is the preparation of faulty versions of the original 

programs. We reuse concordance mutants which were generated for studies in [25]. 

We generate mutants for f l e x  using the mutant generator which is described in 

[6], and which uses four types of mutant operators: “replace operator” , “replace 

constant” , “negate decision” and “delete statement” . We apply mutant operators to 

the lines of code which were covered by the test pool. We then identify equivalent 

and non-equivalent mutants. In order to do this we first run test cases on the “gold” 

version of the program (the original version with no known faults) and save that 

program’s output, which will act as a test oracle. We then run all test cases on each 

of the faulty versions, and consider a mutant to be equivalent if the output of all test 

cases is the same. If any test case produces a different output while being executed 

on the faulty version, this version is considered to be non-equivalent. The ratio of 

non-equivalent to equivalent mutants appeared to be different for the two subject
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programs: we have selected 135 non-equivalent mutants for concordance from the 

pool of 200 mutants, and 125 non-equivalent mutants for f l e x  from the pool of 1000 

mutants. In this experiment, the mutant equivalence is approximated because we 

are using only a subset of test cases from the infinite set of potential test cases, in 

order to decide if a mutant is equivalent. We have prepared a set of shell scripts to 

automate the execution of subject programs and collection of the experimental data 

in order to make the experiments reproducible.

\. - . -  . ■ . -  , ■ \

4.5.2 Data Collection

The best way to measure how size, black box and white box coverage separately 

influence the effectiveness is to consider low and high values of each factor: (low size, 

high size), (low black box, high black box), (low white box, high white box). In order 

to use this approach, we would have to construct test suites with all combinations of 

factor levels, measure the effectiveness of each test suite, and then perform the 4-factor

2-level analysis of variance (ANOVA) to see which factors influence the effectiveness.
\

However, our initial analysis showed that all three factors - size, black box and white 

box coverage, are positively correlated, and constructing a test suite with high black 

box and white box coverage but small size is almost impossible. Instead we perform 

the analysis of covariance (ANCOVA) which requires a continuous outcome variable, 

at least one categorical factor variable and at least one continuous factor variable, 

and combines features of simple linear regression with ANOVA.

Therefore we use a data set which consists of 100 random test suites of each size from 

2 to 50, resulting in 4900 test suites. Generation of this set of test suites was described 

in Section 4.4.1. For each test suite, we record the black box and white box coverage
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as well as the effectiveness, which is calculated as a fraction of the number of mutants 

killed by a particular test suite. In this data set, we have one continuous outcome 

variable (effectiveness), two continuous factors (white box and black box coverage), 

and one discrete factor (size).

As the way of generating test suites might affect the result, we also prepared a set 

of test suites which achieve particular black box coverage thresholds, and generated 

1000 test suites of each black box threshold value. We picked thresholds 50, 60, 70, 

80, 85, 90, 91, 92 and 93 for concordance, and 50, 60, 70, 75, 80, 81 and 82 for f le x , 

as the maximum feasible coverage of the f l e x  and concordance test pools is 82% 

and 93% correspondingly. The earlier studies by Andrews et al. [8] have shown that 

the effectiveness rises sharply as the 100% feasible white box coverage is approached. 

In order to see if this pattern holds for the black box coverage, we made the threshold 

black box coverage values more fine-grained as we approached the maximum feasible 

coverage. We did not add any test cases to the existing test pools to achieve 100% 

black box coverage, as we did not want to change the test pools that were supplied 

with the subject programs. For each test suite, we record the whitel box coverage, test 

suite size and effectiveness. In this case, a discrete factor is the black box threshold, 

and two continuous variables are size and white box coverage.

4.5.3 Experimental Results

We visualize the experimental data with various plots, perform ANCOVA in order to 

see which factors influence the effectiveness, and perform several linear regressions in 

order to get a deeper understanding of the relationships among factors. We use the 

R  statistical package [29] for statistical analysis of data.
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4.5.3.1 Visualizations

We first analyze test suites of fixed sizes from 2 to 50, and compare their effectiveness, 

black box and white box coverage values with their sizes. Figure 4.8 shows how test 

suite size influences the effectiveness, for the concordance subject program. This 

figure shows a box and whisker plot with distributions of the effectiveness values for 

each test suite size. As we can see from the figure, test suites of sizes from 2 to 6 have 

several outliers, which have low effectiveness values. These outliers correspond to 

test suites which consist of test cases with very low white box and black box coverage 

measures. Effectiveness increases slowly for test suites of sizes from 7 to 30, and has 

very similar distributions and mean values for test suites of sizes from 31 to 50.

Figures 4.9, 4.10 and 4.11 show how test suite size influences the effectiveness, white 

box and black box coverage, for both subject programs. In all three figures, each 

point represents the average value for 100 test suites of the given size. All three 

figures show a positive correlation among the factors.

■' ' ' .̂.. V
Figures 4.12 and 4.13 show scatterplots of the black box coverage and test suite 

effectiveness for the concordance and f l e x  subject programs respectively. In these 

plots, each point corresponds to one test suite from the pool of test suites of sizes from 

2 to 50. These scatterplots show that increasing the black box coverage from 35% to 

55% results in the significant increase of effectiveness for both subject programs, while 

increasing the black box coverage from 70% to 90% does not result in the increased 

effectiveness.

We also analyze the set of test suites which have fixed black box threshold values. 

Figures 4.14, 4.15 and 4.16 show how black box coverage measure influences the 

effectiveness, white box coverage and size, for both subject programs. In all three
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F igure 4.8 Boxplot of the effectiveness and size for concordance test suites

Concordance

F igure 4.9 The relationship between size and effectiveness
Size vs. Effectiveness
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F igure 4.10 The relationship between size and black box coverage

F igure 4.11 The relationship between size and white box coverage
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F igure 4.12 The relationship between black box coverage and effectiveness for 
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F igure 4.14 The relationship between black box coverage and effectiveness for dis­
crete black box data set

Black Box vs. Effectiveness

F igure 4.15 The relationship between black box and white box coverage for discrete 
black box data set n

Black Box vs. White Box
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F igure 4.16 The relationship between black box coverage and size for discrete black 
box data set ___________________________________________

Black Box vs. Size

figures, each point represents the average value for 1000 test suites with the given 

black box threshold value. The test suites with the smallest black box threshold

value of 50 have average sizes of 12 and 7 for f l e x  and concordance correspondingly,\
compared to the lowest size of 2 test cases for the first data set. We can notice that 

these figures exhibit relationships similar to the ones in the previous set of test suites, 

as test suites which have larger black box threshold values also tend to contain a 

larger number of test cases. However, due to the difference in the ranges of test suite 

sizes, the relationships are not identical.

4.5.3.2 Data Analysis

Analysis of covariance (ANCOVA) in statistics is an approach which combines lin­

ear regression with the analysis of variance. We have performed ANCOVA on the
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experimental data using the linear model Eff =  BO +  BM og(size) +  B2*black-box 

+  B3* white-box. We include the constant term BO (also called an intercept) into 

the model as we only have data for positive values of size, and do not expect the 

regression line to go through the origin.

The aov function provided by the R system produced a value of p for each factor 

and all factor interactions1. A value of p below 0.05 indicates that the corresponding 

null hypothesis is rejected, and the factor or interaction significantly influences the 

outcome variable. The p values for both subject programs were always smaller than 

0.0001 for the three factors and first order factor interactions, meaning that these 

factors independently influence the effectiveness, but the significant interaction effect 

exists between factors.

After ensuring that all factors significantly influence the outcome variable, we perform 

regression analysis on the data in order to determine the relationship among variables. 

We use R ’s linear regression function to fit various linear models to the experimental 

data. First, we take the model suggested by Andrews in [25] and^add the black box

coverage factor to it. We then compare this model to 12 other models which we\
consider to be less accurate. These models consist of the combination of factors size, 

log(size), black_box, log(black_box) and white_box. We use the adjusted R2 value 

reported by the R ’s lm function as a measurement of how well the model fits the 

data2. Adjusted R2 is a modification of the R2 value which adjusts for the number of 

variables used in the model.

Table 4.4 shows adjusted R2 values for two sets of test suites for all 13 models and two

1The R ’s aov function works as a wrapper to the lm function (see below) to perform an analysis 
of covariance by fitting an analysis of variance model for each value of discrete factor.

2The R ’s lm function is used to fit linear models.
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T able 4.4 Goodness of fit of models of effectiveness, measured by adjusted R2

M o d e l o f  E ffectiveness A dju sted  R 2
Discrete size data set Discrete black box data set
f l e x concordance f l e x concordance

size 0.5375 0.4259 0.6706 0.5355
log(size) 0.7151 0.6009 0.7276 0.6187
black_box 0.7001 0.6977 0.6992 0.5947
log(black_box) 0.7437 0.7767 0.7161 0.631
white.box 0.9081 0.8395 0.8942 0.5663
black_box +  white-box 0.9085 0.9098 0.8953 0.6261
log(size) +  black_box 0.7819 0.7002 0.7295 0.6189
log (size) +  white.box 0.9133 0.9079 0.8944 0.635
log(size) +  b.b. +  w.b 0.9149 0.912 0.9002 0.6353
log(size) +  log(b.b.) +  w.b 0.9136 0.9119 0.899 0.6441
size +  black_box 0.7258 0.7154 0.7 0.6175
size +  white-box 0.9087 0.8946 0.8943 0.604
size +  b.b. +  w.b 0.9096 0.9104 0.8967 0.6408

subject programs. We first analyze the data set of test suites with fixed sizes. The 

adjusted R2 values indicate that of all three factors the white box factor influences the 

effectiveness most of all, while size and black box measures add a |ittle more accuracy 

to the model. The table shows that the model of the form Eff =  BO +  Bl*log(size) 

+  B2*white-box +  B3*black-box has the largest adjusted R2 value for both subject 

programs and therefore is considered to be the most accurate model. We also notice 

that the model of the form Eff =  BO +  Bl*log(black-box) is more accurate than the 

model of the form Eff =  BO +  Bl*black-box, which is consistent with the shape of 

the scatterplots in Figures 4.12 and 4.13.

In order to determine if a model which uses logarithmic size is more accurate than the 

model which uses raw size, we compare various models with linear and logarithmic 

size factors. We find that models of the form Eff — BO +  Bl*log(size) +  B2*white-box 

and Eff =  BO +  BM og(size) +  B2*white-box +  B3*black-box are more accurate than
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Table 4.5 Coefficients for the linear model Eff =  BO +  Bl*log(size) +  B 2*black-box 
+  B3*whiteJ)ox.

Subject Coefficient
BO B1 B2 B3

f l e x -5.01 1.61 -0.01 1.11
concordance -0.31 1.637 0.171 0.788

the similar models with linear size. This observation is consistent with the findings 

of Andrews in [25]. However, the model of the form Eff =  BO +  Bl*log(size) +  

B2*black-box is slightly less accurate that the corresponding model with linear size. 

We can also see that log (size) and black-box add similar amount of accuracy to the 

model, because the models of the form Eff =  BO +  Bl*log(size) +  B2*white-box and 

Eff =  BO +  Bl*black-box +  B2*white-box have adjusted R2 values which are close to 

each other. We can conclude from these observations that the log (size) and black-box 

factors have similar effect on the outcome variable, and are highly correlated.

The output of R ’s anova function indicates that there exists a statistically significant

difference between the model Eff =  BO +  BM og(size) +  B2*white-box +  B3*black-box
\

and all other models, making it the best fitted function for the collected data (p value 

of t test is less than 0.0001 for all pairs of models). Table 4.5 shows coefficients for 

this model for the two subject programs. Figures 4.18 and 4.17 show graphs of actual 

(Y-axis) vs. predicted (X-axis) values for the effectiveness model.

We have performed a similar analysis for the second set of test suites with fixed black 

box threshold values. The adjusted R2 values for this data set are shown in Figure 

4.4. The adjusted R2 values for the f l e x  subject program are consistent with the 

values for the first set of data: the white box factor influences the effectiveness most of 

all; models with logarithmic size are more accurate than the models with linear size;
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F igure 4.17 Predicted vs. actual Effectiveness for concordance using the model Eff 
=  BO +  Bl*log(size) +  B2*blacEbox +  B3*white-box

Concordance

F igure 4.18 Predicted vs. actual Effectiveness for f l e x  using the model Eff =  BO +  
Bl*log(size) +  B2*black-box +  B3*white-box v

Flex ; \
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and the model of the form Eff — BO +  Bl*log(size) +  B2*white-box +  B3*black-box 

is considered to be the most accurate one.

In contrast, the adjusted R2 values for the concordance subject program are much 

lower and change in the range from 0.53 to 0.64, which is considered to be low 

accuracy. The low accuracy of the models explains inconsistency with the previously 

observed patterns: the black box factor has slightly larger adjusted R2 value than the 

white box factor, suggesting that the black box has more influence on the outcome 

variable. Also, the model of the form Eff =  BO +  BM og(size) +  B2*white.box +  

B3*log(black-box) is considered to be the most accurate one, which is inconsistent 

with the previous results.

A possible explanation of the low accuracy of these models is in the way of choosing 

the threshold values while generating test suites. We have previously identified that 

the relationship between the black box coverage and effectiveness is logarithmic, and 

test cases with low black box coverage can ensure high levels of effectiveness. We have 

selected black box threshold values starting from 50 (with the average test suite size 

of 8 test cases), which is a relatively high coverage value. Increasing the black box 

coverage from 50 to a maximum feasible value did not affect the test suite effectiveness 

very much, which may result in the lower accuracy of the models.

4.5 .4  Discussion

It is considered a general rule in the software testing industry that a tester must take 

into account both black box and white box approaches when constructing test cases. 

Although our experiments have shown that there does exist a statistically significant 

difference between the models of the forms Eff =  BO +  BM og(size) +  B2*white-box
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and E ff— BO +  Bl*log(size) +  B2*black-box +  B3* white-box, the effect of adding the 

black box factor to the model is relatively small (less than 0.01 difference in adjusted 

R2). This difference does not have a large impact in practice. We have also found that 

the white box coverage alone is better at predicting the effectiveness than the black 

box coverage alone, while log(black_box) is better at predicting the effectiveness than 

the raw black box coverage value when size is not taken into account. The logarithmic 

relationship between the black box coverage and effectiveness means that a test case 

with low black box coverage is likely to be more effective than a test case with low 

white box coverage. However when we increase the black box coverage, after a certain 

point the effectiveness does not increase very much.

Based on these findings, we suggest that a good testing strategy is first to use the 

black box coverage approach to construct test cases, as this will ensure a high level 

of effectiveness. After that it is useful to add the white box test cases to the test 

suite to make sure that the high code coverage is achieved which in turn will lead to 

the increased effectiveness. This property makes the black box approach suitable for 

smoke tests and regression tests, in which a small amount of test \;ases must provide 

a high level of confidence about the quality of the program.

We also suggest that the black box approach is more suitable at the early stages 

of software development, before the final release of the product. A tester will use 

test cases constructed using the black box approach to ensure that no functionality 

is missing and all features are working as they are designed to. However, when all 

functionality is implemented, it is more appropriate to run test cases which aim to 

achieve high code coverage in order to find more bugs. Therefore both black box 

and white box approaches are equally important, but should be used for different 

purposes.
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Chapter 5

\\

Conclusion

5.1 Conclusion

This thesis has presented a method to evaluate the thoroughness of a test suite from 

the black box perspective. This method is based on the two mo&t widely used in­

dustry black box techniques: equivalence partitioning and boundary .value analysis. 

The method consists of three main components: Functional Test Specification, which 

defines equivalence classes for each input and output variable; log files, which are pro­

duced during the execution of a subject program, and the FTS Tool, which compares 

elements from log files with elements from the FTS, and calculates the percentage of 

elements covered. This thesis also presented the architecture and implementation of 

the FTS Tool coverage calculation program. The design of the tool is scalable and 

will allow easy addition of other coverage types to the report. Several experiments 

have been conducted in order to evaluate the proposed method, as well as to study 

the relationship among the black box and white box coverage measures, test suite
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size and effectiveness, and see if the black box coverage can be a good predictor of 

test suite effectiveness.

We have successfully applied the black box coverage calculation method to three 

subject programs of different sizes implemented in different programming languages. 

Experimental results indicate that the white box coverage is better at predicting the 

effectiveness than the black box coverage. We suggest that the lower accuracy of the 

black box factor in comparison with the white box factor can be due to the smaller 

granularity of the black box specification - the number of black box coverage elements 

is very small compared to the number of lines of code in the program. We have also 

found that there exists an exponential relationship between the black box coverage 

and effectiveness, which means that a test case with low black box coverage is likely 

to be more effective than the test case with low white box coverage. However, when 

we further increase the black box coverage the effectiveness increases only slightly. 

We have also found that the model of the form log(size) +  black_box +  white-box 

is the most accurate model based on the statistical adjusted fl2 parameter; however, 

adding the black box coverage factor to the model of the form log(size) +  white-box 

does not significantly increase the accuracy of the model. V . ■

Our findings suggest that when constructing test cases, the black box testing approach 

should be given the preference at the early stages, as the relatively low black box 

coverage can provide high test suite effectiveness. After achieving a high level of 

the specification coverage, it is appropriate to add the white box test cases to make 

sure that high code coverage is achieved. This is consistent with the general testing 

practices.
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5.2 Future Work

Several improvements can be made to the coverage calculation program and exper­

iments. The current implementation of the FTS Tool does not take into account 

combinations of values of different input variables. For example, if we want to test a 

system which takes as input a date in the form of a day number and a month number, 

then valid values for the month variable will be from 1 to 12, and valid values for 

the day variable will be from 1 to 31. However, certain combinations of these valid 

values, such as 2/30, 4/31 etc. are invalid. We would like to extend the XML specifi­

cation definition so that it will allow to specify combinations of value sets and indicate 

whether they are valid or invalid, and also change the FTS Tool implementation so 

that it will check if a certain combination of value sets was present in the logs.

One limitation of the current approach has been uncovered during the experiments 

with the concordance subject program, concordance has two modes of operation:
'n

help printing mode, when the —help option is specified, and a regular mode in which 

an “inputFileName” variable is required (which is captured in the FTS as an invalid 

multiplicity of “0” ). Both of these arguments belong to the input event “Options- 

Specified” . So, when the following input event appears in the log file: “InputEvent 

program commandLine OptionsSpecified Help=-help” , the multiplicity of the input- 

FileName variable is considered to be invalid by the FTS Tool. According to the 

value set coverage calculation algorithm, a value set can be considered tested if the 

corresponding input event does not contain invalid variable values or multiplicities. 

Therefore in this input event the value set “Help=-help” is not considered to be cov­

ered. We would like to incorporate into the FTS a way to specify the restriction that 

certain input variables cannot be used together in one input event, which in turn will 

be taken into account by the FTS Tool while calculating the coverage.
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• Add more test cases to the existing pool of test cases for the two subject pro­

grams, so that the test pool will achieve 100% white box and 100% black box 

coverage. In this case we will not need to scale the coverage values for the ex­

periments, which will potentially improve the accuracy of the linear regression 

models of effectiveness.

• Test the black box coverage calculation approach on a wider range of subject 

programs, including programs of larger sizes, programs with GUI and a more 

diverse functionality. This will allow us to have a more advanced FTS speci­

fication, which will increase the number of coverage elements and improve the 

accuracy of statistical analysis.

• Generate mutants for the yamm subject program and perform analysis similar 

to the one described in Section 4.5.
'■s

• In Section 4.5.4 we suggest that the white box technique is more useful for 

a complete program which does not change over time, while the black box 

approach is useful during the implementation of the program. In order to test 

this hypothesis we would like to perform analysis of several different versions of 

the same program, containing different sets of features.

We also would like to incorporate the following improvements to the experiments:
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