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Abstract

\
\

‘Software testing is an indispenseble part of software development process. The main
goal of a test engineer is to choose a subset of test cases which reveal most of the
faults in a program. Coverage measure could be used to evaluate how good the
selected subset of test cases is. Test case coverage for a program was traditionally
calculated from the white box (ihternal struoture):fserspective. | “Holwever, test cases
efeiusﬁally coristructed to test partiCUIé,r fﬁnctiOhalify of efprograni, therefore haViiig
a ftecl.mi(jue to calcolateé‘coverage from the functionality (black box) perspective will
be beneficial ’f}or a test engineer. In this thesis we di’scusssia methodology of recording
and evalyl‘latin”g; the Blackbox .oov‘er,é,ge for av. program. | We alé)o implemeot a black
box coverage ‘calculation tool and perform experimeﬁts with it ueing three subject
programs. We then collect and analyze experimental data and show the relationship

between the two types of coverage and the fault-finding ability of a test suite.

Keywords: Software Testing, Black Box Testing, Equivalence Partitionihg, Bound-

ary Value Analysis, Coverage Criteria, Statistical Analysis
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Chapter 1
Introduction

The software development process is a set of act1v1t1es performed by engmeers, man-
agers and testers resultmg in the creatlon of a software product It usually mvolves
requlrements gathermg, desrgn, 1mp1ementat10n testlng and mamtenance activities.
Nowadays software systems are becommg more 1arge and complex, wrth greater risks
and costs of a fallure Just 1mag1ne, a $2 bllhon mission to Mars fa111ng because of
one software defect. Therefore the importance of thorough software testing, which
can help to prevent and eliminate these failures, cannot be~underestimated. In this
thesis we propose an improvement to the software testing activityf We will discuss
the problem of selecting test cases which can detect errors efficiently, and propose a

methodology of evaluating the thoroughness of a test suite.

1.1 | Software Testing |

Software testing is an indispensable part of software development process, which

ensures quality and reliability of software under test (SUT), and verifies that SUT



meets specified requirements.

There exist many software testing methodologies, which differ by testing objectives
and could produce different results. These methodologles can be dlstmgmshed by the
level of granularlty of software components by the stage in the software development
process durmg ‘which testmg is performed,‘ by testrng goals and the quallﬁcatlon of
a tester.’“ Unittesting is nsually‘ perforrned by a developer at the coding stage of
a project and ensures correct work of indiVidnal units of source code, the sm\allest
testable parts ofthe software system'.‘ ’l‘he goal of lntegration testing is to erlsure\that
separate modules of an application work correctly as a group, while system testing
is performed on a complete integrated,system to verify its functionality. Acceptance
testing is usually done by the customer after all development and testing has been
performed internally, to evaluate the compliance with the requirements of a finished
product. Finally, regression testing is done during the maintenance stage, in order to
verify that all defects have been fixed, and no new problems have been introduced as
part of the maintenance process. | o i
. o \ |

'Constructmn of test cases at any of the descrlbed levels is usually based on one of the
two fundamental approaches whzte boz and black boz Wh1ch d1ffer by the knowledge
that a tester has about the software under test In the black box methodology testing
is based on the requirements and specification, while in the white box methodology
testing is based on the knowledge about the code, internal structure, paths and im-

~ plementation of the software under test. In this thesis we are particularly interested

in comparing the effectiveness of these two testing approaches. -



1.2 Coverage Criteria .

In order to guarantee that a program works correctly, a test engineer needs to execute
it with all possible input data combinations and test all logical paths which exist vin
the program. However even for a system of a small size the number of test cases
which cover all input data combinations is infeasible Therefore the key issue of
. testmg process is, as defined by Myers [24): “What subset of all poss1ble test cases

has the hlghest probability of detectmg the most errors | ‘ \\

A s1ngle execut1on of a program W1th the predeﬁned set of env1ronmental conditions
and input varlables is called a test c case. The eﬁectweness of a test case is the prob-
ablhty of detectmg the errors in a program. In order to evaluate how effective the
selected subset of test cases is, the use of covemge cr1ter1a 1s essential. Coverage is
a measure of What portlon of the subJect program has been tested, and dependlng
on the testmg methodology it could mclude different coverage elements Coverage
cr1ter1a can be used by test engmeers in dlfferent ways [5] One way is to have a
part1cular coverage level as a goal durmg the generat1on of test\cases Another way
is to measure the coverage of the test suite generated manually or by other external

mechamsms In this the51s we concentrate on the second approach

1.2.1 White Box Coverage

In white box testmg (also called glass bor, clear box or structuml testmg), the goal is
to create test cases which cover part1cular l1nes of code, 1nternal structures, de01s1ons,
etc. The most basic Wh1te box coverage crlterlon is statement coverage, in which

each executed line of code is cons1dered as a separate coverage element. A statement
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is considered to be covered if: there 'exists at least one test case which causes this
statement to be executed. Other more sophisticated white box coverage criteria refer
to.blocks of statements, decisions, conditions within the decision, and paths. Usage
of a white box coverage measure is based on the assumption that a test case is more

thorough if it causes more elements of a program to be executed.

Whlte box testlng has been studled thoroughly in the software testmg research ﬁeldi
and used extenswely by 1ndustry practltioners In the software development mdustry

Whlte box testmg is usually apphed at the un1t testmg and 1ntegrat10n levels

\ N . . . . \ ’ { N . . \
One of the advantages of white box coverage is that it is relatively straightforward

to measure. For example, measurement of a statement coverage of a program can
be done in the following steps. First, at the compilation stage when the source code
is translated into the executable object code, special instructions are added to the
executable file. These instructions are used to collect the information about executed
lines of code in a separate file, when test cases are r_un' against the program. This
file could later be used by the coverage calculation tool to produce a coverage report
in which each line from the source code is ass1gned the number. of times which 1t
has been executed. There ex1st varlous tools to measure statement coverage, block
coverage, branch and path coverage for different programming languages, the most

popular of them are gcov for C/C++ [17], Cobertura [11] and Jtest [21] for Java.

On the other hand, white box testing has several disadvantages and limitations. _First,
some defects depend on the environment rather than the code: e.g., running a program
in two different brovirsers might produce a , differ_ent result: a web page could be
displayed correctly ini the Firefox browser and be messed up in the lnternet Explorer.
Second, test case ‘maintenance is required in case of changes in the implementation,

because we need to make sure that after changes in the source code the same coverage



level is still achieved by test cases.‘ Finally, it is not possible to cover all executions
of loops by test cases. If a test case forces a loop in the source code to be executed
three times, we cannot guarantee that the program will produce a correct result on
the input which causes a loop to be executed 10 times. Therefore it is important
to take into account both measures, black box and white box, as black box looks at
the testing from the user’s perspective and could reveal faults which could not be
found by a test su1te ‘with 2 hlgh whlte box coverage. However estimating the black
box coverage is less evident, and there do not exist any techniques to estlmate it.
Therefore white box testmg method alone cannot be used as a guarantee of software

quahty it should be supported by funct1onal test cases.

1.2.2° Black Box Coverage

In the black box teSting'techriique (also called functional testing) test cases are built
solely based on the external information about the p*rog‘ram:" specification, require-
ments and design documents. The goal of the black box testing i% to verify correctness
of the program from the user’s perspective. This type of testing-is usually applied
at higher levels, such as integration, system and acceptance testiug, but can also be

used as a basis for unit testing.

We have found out that the view on the black box testmg methodology in 1ndustry
and 1n most research Works in th1s ﬁeld d1ffers srgmﬁcantly The majorlty of the
research work Wh1ch falls 1nto the category of black box techmques concentrates on

the generatmn of test cases from formal specrﬁcatlons or UML d1agrams

In contrast, in industry formal speciﬁcation' of the SUT is available very rarely, there-

fore major text books written by industry experts place an emphasis on the techniques



for constructing test cases manually or semi-automatically based on the informal
spemﬁcatlon and requ1rements Myers [24], Copeland [12] and other authors consider
equlvalence part1t1on1ng and boundary—value analys1s to be the two most basm black
box testmg techniques, and in this thes1s we use these techmques to derive black box

coverage elements for the SUT.

1.2.2.1 Equivalence Partitioning

\
\
™,
\

The equivalence partitioning is lthe most basic black box testing method. According
to th1s method, all poss1ble 1nput values are d1v1ded among equwalence classes Each
equwalence class mvolves 1nput variables whrch are treated in a same way by a pro-
gram, i.e. 1f one test case in an equlvalence class causes a 3 program to fail, all other
test cases in thls equlvalence class are likely to cause a program to fail, and vice versa.
Based on th1s assumpt1on, a tester could execute a program w1th only one test case
from each equlvalence class in order to ensure that a program works correctly This

method allows a great reduct1on in the number of test cases. \

1.2.2.2 Boundary Value Analysis -

The equivalence part1t10n1ng method is often compllmented by the boundary value
analys1s method, which is the selectron of test cases that explore boundary cond1t10ns
on edges of equivalence classes. It is mostly suitable in case the input is a range
of numeric values, either integer or real numbers. This analysis is essential because
boundary conditions are places where many of programming errors are made. For
example, a programmer could mix up “greater than” with “greater than or equal to”

in a conditional expression which will result in an invalid behavior only at the edge



of an equivalence class. -

Black box testing also has several d1sadvantages First, program spe01ﬁcat1on is not
always avallable, Wh1ch 1nterferes W1th the good test case design. Second, a thorough
black box test sulte can leave some paths in the program unexammed Hence Wh1te‘

box and black box testmg strateg1es should be used in conjunctmn

{

1.’3 ‘~ Test Case Eﬂ'ectiverlles's\ S f\

The ultimate goal of a test engineer is to create test cases which are the most efficient

in ﬁhding defeets m a program. We are interested in comparing the effectiveness of a
test case with its black box and white box coverage metrics. Eﬁectiveness of a test case
is the probability of finding a defect in a program. One of the metheds of evaluation of
the test case effectiveness is through mutation. Mutation is a mechanism of modifying
the original source code of a program in small ways. Tlméé_smadl mutations usually
reflect typical programming errors - wrong operator, value aé\signment, ‘issing or
extra statement. Effectiveness of a test case can be evalyated as,the \percentage of

mutants detected.:
Tt has ’been shown byk Andrews et al. [6] that aﬁtomatica,lly generated faults can
be repfesentative of real faults, therefore the use of mutation in our experiments is

considered to be a good way to evaluate the effectiveness of test cases.



1.4 Thesis Focus

Sinee it is a Well-establlehed ptactice in ’industry to create test cases: Whlch covef
part1cular funct10nahty of SUT rather than partlcular lines of code, havmg a techmque
to evaluate the thoroughness of a test sulte from the black box perspective could be
advantageous for test englneers It Wlll allow them to get a high-level view on test
suites that they are developmg and see 1f any cr1t1ca1 funct1onahty is not covered.
F1gur1ng out the relat1onsh1p between black box and white box coverage measures
is critical to software testing research because it will allow software testers to better
evaluate a test suite and colnstruct test suites which will be able to find software

failures more effectively.

In this thesis we explore a method to evaluate the thOroughness of a test suite from
.the black box perspective using equivalence partitioning and boundary value analysis
techniques - the two most basic test case construction techniques used by industry
practitioners. The evaluation method is based on the three\maln components: Func-
tional Test Specification (FTS), which defines equivalence classes for each input and
output variable, as well as multiplicities of components; Log Files, which are produced
during the execution of a subject program, and FTS Tool, which matches elements
from Log Files with elements from the FTS, and estimates the percentage of elements

covered.

We also study the following questions: Does achievement of high black box coverage
contribute to the thoroughness of a test suite, and Is it possible to use the black box
coverage measure as a predictor of a test case effectiveness? In order to answer these
o[uestions we compare black box and white box coverage measures of test cases and

randomly generated test suites, and study the relationship between the black box
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coverage, white box coverage, test suite size and fault-finding ability of a test suite.

Oﬁr experiments have shown that the black box coverage has a statistically significant
impact on the effectiveness of a test suite, but it is smaller than the impact of the
white box coverage and size of a test suite. We have also found that there exists
an exponential relationship between the black box and white‘ box coverage measures,
and a test case with low black box coverage is likely to be more effective than the

test case with low white box coverage.

1.5 Thesis Organization

Chapter 1 contains an introduction to the topic and relevant background information.
We. will .give an overview of some important concepts as well as related work that
has been done studying white box and black box testing approaches in Chapter 2.
We will talk about the method of calculating black box\coverage, as well as the
Functional Test Specification design and the implementation of t‘iie black box coverage
calculation tool in Chapter 3. In Chapter 4, we will describe subject ‘pr;)grams which
have been selected for our experiménts, as well as design and implementation of
the experiments. We will also analyze experimental data, illustrate experimental
results and draw conclusions in Chapter 4. In Chapter 5, we will present suggested

improvements and future work which could be done in this area.
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Chapter 2
Related Work‘ "

In this chapter we give an overview of some important concepts of white box and black
box testing techniques and test adequacy criteria, and discuss experiments which have

been conducted in order to evaluate these techniques.
2.1 White Box Coverage

‘The terms white box and black box have been used for a long time in industry and
were first defined by Myers in his classic book [24]. He also defined and explained
the terms statement; decision, condition, decision-condition and multiple condition

coverage.

According to Myers, 100% statement coverage on code is achieved if for every state-
ment in the code there is at least one test case which executes that statement. A
more advanced coverage criterion is the decision coverage which looks at the condi-

~ : _ ‘ ) [
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tional expressions in the if, do, while, etc. statements. 100% decision coverage on
code is achieved if for every decision in the code there is at least one test case which
causes this decision to be true and at :leastz one test case which causes this decision to
be false. Condition coverage is an even more strong criterion, as it considers simple
conditions within a deciSion, which do not contain any logical operators. In order
to achieve 100% condition coverage we need to ensure that for every condition in
each decision in the code there is at least one test case which causes this cond1t1on
to be evaluated to true and at least one test case Wthh causes this COIldlthIl to be

false. Decision-condition and multlple condltlon coverage types are more advanced

extens1ons of these basic techmques

Zhu et al. [31] have created a thorough classification of the existing black box and
white box test adequacy criteria based on the research papers in the software testing

area. First, the authors define the term test adequacy criteria as:

e a stopplng rule Wthh determlnes when enough testlng has been performed (e.g.
in statement testmg, a test set is con31dered adequate if it ‘causes the execution

N\

of every statement in the program);
® 3 measurement of a test quality (e.g. percent of statements executed), which is

similar to the term coverage criterion.

The class1ﬁcat10n of test adequacy cr1ter1a 1s based on the testlng approach and is

summarlzed in F1gure 2 1 The followmg categorles are 1dent1ﬁed

. structural testmg, in Whlch coverage elements are based on the structure of the

program or the spec1ﬁcat10n,
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Figure 2.1 Adequacy criteria sti‘ucture by Zhu et al.

[Program-based input

PR ‘ " [Specificationb ': :,Sbeciﬁcatid,nfbas‘ediv v
Program-based Specification-based . input space partitioning . space partitioning

unctional an

F

' |Boundary analysis| |

) fault—baéed testing, in which an adequacy criterion is baseq\ on the fault-finding

ability of test suites;

e error-based testing, which uses domain analysis as a foundation.

The program-based and specification-based coverage criteria are distinguished within
the svtructUral'jte'éting'category. Prog'ram-'ba‘éedbritéria correspond to the white box
cherage criteria and are divided into the control—ﬂoib and “ddta-ﬂbw.‘ Control-flow
adequacy criteria are defined based on the flow grdph model of a\i)rbgrani -a graph
in which nodes correspond to the linear sequences of étateménts; ‘édgés'cbrresbdnd to
control statements or conditions, and each execution of the SUT corresponds to one

path in the graph. Based on this notation, the 100% statement coverage criterion can
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be achieved if for every node in the flow graph there exists at least one path which
covers it. Correspondingly, 100% branch coverage (also called all-edges coverage) is
achieved if all edges of the flow graph are covered. Other control-flow criteria include

path coverage and multiple condition coverage.

In the data-ﬁow—based test adequacy cr1ter1a analys1s focuses on the occurrences of
Varlables w1th1n the program, and each occurrence is classified as a deﬁmtwn or a
use. All deﬁmtzons, all uses, and deﬁmtzon-use coverage criteria are among the bas1c
criteria Wh1ch are based on the data-flow analysis. Most of these coverage types are

too strong to be used in practice to measure adequacy because the actual number of

coverage elements could be unlimited.

In our experlments we use statement coverage, as 1t is the most basic adequacy
crlterlon it has been studled thoroughly and there ex1st a lot of tools to measure it.
(Measurlng other more strong adequacy crlterla can be challengmg because of the
lack of tool support.) Spec1ﬁcally, we use the geov tool [17] to measure statement

coverage of C and C++ programs, and Cobertura [11] for Javaxsubject programs.

2.2 Black Box Coverage -

As discussed in the Introduction section, the view on the black box testing method-
ology in industry differs from most research work in this field. In this section we first
explain which black box techniques are being developed and studied in the research

community, and then focus-on the industry perspective on the black box testing.
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2.2.1. Black Box Testihg Techniques in Research -

Test base generation from formal specifications is a well-developed topic in the re-
search on black box software testing techniques. According to Zhu et al. [31], there
exist two major approaches to structural specification-based testing: model-based
specifications, such as Z notations, UML, VDM Specification Language [20] and RSL
[18] specifications; and property-oriented speciﬁCatiohé, sitch as axiomatic or algébraic
sbeCiﬁcatidns. | B - o o -
Generation of test cases based on the formal Z notation specification is one of the well-
explored and well-studied techniques. The Z notation language defines componenté
of the system and specifies constraints among them. It was originally proposed by
Abrial; Schuman and Meyer [3] and was later used by many researchers to formally
define software specification and requirements. Amla and Ammann [4] have developed
a method to convert a formal Z specification into a speciﬁcation in the TSL language
[9], from which test cases could be extracted. Stocks and Carrington [28] have used
Z specification to build a specification-based testing framework:“ in whi\ch generation

of test cases could be automated.

Another well-known approach explores generation of test cases based on the Unified
Modeling Language (UML) diagrams. UML is a modeling language and a set of
graphic notations to create visual models of object-oriented software systems, devel-
oped and maintained by the Object Management Group. There exist many UML
diagram types, which could describe both structural and behavioral aspects of a sys-
tem. Various UML diagrams have been utilized by software testing researchers to
génerate test cases. Prasanna and Chandran [27] have developed an algorithm for

automatic test case generéitiof’l’ using UML object diagrams based on a éeneﬁc al-
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gorithm. Mingsong et al. [23] have proposed a method to automatically generate
test cases for UML activity diagrams by comparing execution traces of randomly
generated test cases with the UML activity diagrams. Abdurazik and Offutt [2] are
using UML collaboration diagrams for static checking and test case generation, which

allows for both static and dynamic testing.

’fhére exist a nllrllber of researcll paperé which ﬁae black box.techniques similar to
the ones ut1hzed in industry. One of the research papers by Balcer and Ostrand [26]
describes a method for generating test cases from a functlonal specification based on
a category-partition method. Within the bounds of this method a tester identifies
functional units in SUT, and for each unit defines parameters and its characteristics;
as well as objects in the environment which could affect execution of the SUT. Each
category is then divided into partitions - different states of a parameter/environment
object which could produce different results during execution. This method is similar
to the equivalence partitioning black box technique. Informatibn about partitions is
written in a certam format called a Test Spec1ﬁcat1on Language (TSL), which is later

used by the TSL Tool to produce textual descr1pt10ns of test cases

N

The second paper by these authors [9] describes improvements to TSL - a more
“advanced way to define a program’s inputs, environment conditions, outputs that it
produces, and external changes in the environment. It also introduces an improved
version of the TSL Tool which could generate not only a textual description of test
cases; but also an executable script for running them and verifying the program’s
output. At the time of publishing this paper, TSL has been used to test commercial

software in the production environment.

The idea of input space partitioning is not.unique to the software testing industry, and

has different applications in the research papers. For example, Amla and Ammann
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[4] have applied category partitioning to Z specifications for test case generation, and
the TSL specification language is based on the equivalence partitioning of inputs.
However, these techniques are usually used as a supplement for the automated. test
case generation methods. In this thesis we’re interested in exploring the equivalence
partitioning and boundary value analysis techniques from the industry perspective

and apply these approaches to measure the thoroughness of any test case.

2.2.2 Black Box Testing Techniques in Industry

The majority of software testing text books Writtenv by. industry experts for test
engineers and for students in software testing courses, describe techniques which are
used to construct test cases without a formal specification.: Myers [24] was one of the
first authors to define: fundamental black box testing techniques, such as equivalence
partitioning, boundary-value analysis, cause-effect graphing and error guessing.

He defines a test case design by equivalence partitioning as a tyo-step process: first,
a tester needs to identify the equivalence classes for each of the inputs, and after that
define test cases. He gives guidelines for a tester on the construction of equivalence
classes, but mentions that it is very subjective, and two testers analyzing the program
could come up with different lists of equivalence classes. According to Myers, in order
to 1dent1fy test cases based on equlvalence classes, a tester first should cover all valid
equlvalence classes by test cases, and after that for each invalid equivalence class write
a test case m which only one input varlable belongs to the mvahd equlvalence cla.ss,
and all other varlables belong to valid equlvalence classes. Usage of only one 1nva11d
1nput varlable is essentlal because if we try to use several mvahd values in one test

case, an mput check on one 1nva11d vanable could mask other erroneous—mput checks
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Myers [24] defines boundary—value analysis as a selection of test cases which explore
situations on and around the edges of equivalence classes. If an input variable specifies
a range of numbers, he suggests to write test cases which use both ends of the range
as well as values slightly beyond the ends. In addition he suggests to create test cases
Whlch cover boundaries of output varlables Finally, 1f an input or output varlable is
an ordered set attention should be focused on the first and last elements from the
Se& . t o ,‘ . ,

Cause-effect graphing is  another technique defined by Myers [24], which explores
combinations of input variables. In this technique, cause is an input variable or a
s1ngle equivalence class of an 1nput variable and eﬁect is an output variable or a
system transformation. Flrst a graph which hnks causes and effects is constructed
and annotated with system constramts Second, the graph is converted into a decision

table where each column represents one test case.

The author also. points out that the most effective way of testing is by using all
strategies together, because each of them targets a particular \typelof defects. Our.
approach is based on the equivalence partitioning and boundary value analysis tech—
niques; however, mcorporatmg cause—effect graphmg techmque might be beneﬁc1al

and is cons1dered to be one of the future work directlons

2.2.3  Terminology Update - -

As it was pointed out earlier, equivalence partitioning is one of the most fundamental
black box testing techniques, which was created more than, thirty years ago. It was
originally applied to small utility programs with text-only Unix-like command line

interfaces, where main sources of input were command line parameters and text files.
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Both-Myersmr"[24]_wajnd Balcer et‘ al[9] us‘e'v'relati\'fely small programs withw, no more ‘
than ten parameters as examples, and there was no need to develop a more advanced

classification of input variable types.

Nowadays software systems have become much more advanced they could include
separate modules and components each of which could consist of multiple GUI forms,
and use numerous sources of inputs such as ﬁles, databases, network connections, etc.
However modern software testing text books [12] are still using the same termmology
and apply it to small sample programs R
Therefore there was a need to refine the equivalence partitioning approach and update
terminology. Andrews [7] has proposed an equivalence partitioning scheme which
takes into account the complexity of software systems and for each 1nput variable
deﬁnes in whlch software component it appears, what source of 1nput was used and
what input event has caused this input variable to be processed by the SUT. The
same approach is applied to the output variables. The graphical representation of the

revised equivalence partitioning on inputs and outputs is presented in Figure 2.2.

A softluare component is an individual module of a single system,la software package
or axweh service which provides a set'of related functions. For example, in a client-
server system a client and a server could be considered: as two' separate software
components A source of mput is anythmg external to the SUT, prov1ded by the
user and w}uch could 1nﬂuence the behav1or of the SUT Sample sources of 1nput
are command l1ne parameters standard 1nput ﬁles and the graphwal user 1nterface
(GUI) Correspondmgly, an output destmatzon is somethmg created or modlﬁed as
a result of the execut1on of the SUT such as standard output error logs the GUI
and output ﬁles An mput event is any event wh1ch 1nvolves any of the SUT S 1nput

sources. It could be a menu select1on button press, command typed by the user,
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Figure 2.2 Structure of coverage elements by Andrews et al.
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by the SUT Wthh involves one output destmatlon Examples of output events are

messages presented to the user, data wrltten to a file or a database, or messages sent.

Input and output uamables are the most basm mput and output elements in the

equ1valence partltronmg method they are usually strmgs, numbers or boolean values

Examples of 1nput varlables are user name port number, side length month number,

day number, and column wrdth Each mput and output Varlable could be broken down

to ualue sets whlch can be cons1dered as value—level equwalence classes. Value sets

of 1nput varlables m contrast ‘with output varlables could be mvalld Whlch means
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that when a system receives such input, it is supposed to give an error message or

indicate in some other way that this input variable is invalid.

We suggest that the proposed breakdown of SUT' into components, input 'sources
and input events, which does not require a formal specification, is a natural way of
defining equivalence classes and using it as a basis for test case construction by a

tester.:

In thls thes1s we use the breakdown of software components descrlbed above in order
to spec1fy equlvalence classes for 1nput and output varlables of the SUT We also

propose an 1mprovement to this approach

PR
Vri s

2.3 Empirical Studies of Test Effectiveness

There exist various testing techniques and coverage metrics of test suites, but as the
ultimate goal of a testing process is to find faults in a program, the main concern of
a test engineer is “how achieving high coverage contributes to the test case effective-
ness”. Multiple studies have been performed which support the correlation between

various white box coverage criteria and test:suite effectiveness.«:

Fraukl and Weiss [15] have,performed an expertment ‘in Which they haue : compared
the effectiveness of the dataﬂow—based all-uses and controlﬂow-based all-edges test
adequacy criteria for’small Pascal programs with existing faults. They have mea-
sured the percentage of executable edges and definition-use pairs for each test suite,
and counted how many program faults were revealed by this test suite. The results
of the experiments have shown that the fault-finding ability of a test suite is posi-

tively correlated with both all-uses and all-edges adequacy criteria only for half of the



21

subject programs. . © .

A snmlar expenment was performed by Hutchins et al [19] in wh1ch they have used
moderate—s1ze C programs w1th seeded faults, and a. different experlmental setup
They have found out that test sets wh1ch achleve coverage levels of 90% or more have
much hlgher effect1veness than randomly chosen test sets of the same size. Frankl and
Iakounenko [16] have studled the relat10nsh1p between the effectlveness of randomly

generated test suites, dataflow-based definition-use and controlflow-based decision

N\
S,

test adequacy criteria, and have observed a similar pattern. Faulty versions of a

real-world C program for antenna configuration were used in this experiment.

In ‘a more recent study Andrews et al [25] have studied the relationship between
effectweness Whlte box statement _coverage and the size of a test suite. They have
prepared a much larger set .Of faulty versions of subJect programs_generated auto-
matically thyrough”mutation, which allowed them_to prove statistical significance of
results and also made experiments reproducible. The experiments indicate that both
size, and coverage vinﬂuence test suite effectiveness; however, the\relationship, between
these three variables is not hnear Instead, a lmear relat1onsh1p among variables
log(s1ze), coverage and effectlveness ‘was observed for all subject programs. W1th1n
the bounds of this thesis we perform experiments which build on this work, and de-
termine if ,adding the black box coverage to the model could make it more accurate,
and if a nonlinear relationship among the black box coverage, size and effectiveness

of a test suite still hold_s.

Another goal of this thesis is to compare the white box and black box coverage of
test suites and individual test cases. While there do not exist any studies directly
comparing the black box coverage with white box coverage of a test suite, a recent

publication by Yu et al. [30] studies the white-box coverage of a test suite which was
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generated - from the functional black box specification, and therefore achieves 100%
black box coverage. Path coverage was selected as a white box coverage measure, as
it is the strongest criterion. The study has revealed that a specification-based test
suite may ‘not take into account all implementation details, so the comparison was
made using only “spec-related paths”. The study showed that a spec-based test suite

covers about 97% of spec-related paths in the code, which is a very high number.

2.3.1 Mutation | N

EXperimental results of running test cases on the SUT are usually used as an empirical
‘assessment of a test case effectiveness. However, there are several problems coﬂnected
to the design of experiments. First, a researcher needs to have a correct version
of a program as well as several faulty versions, where each version contains only
one fault. Finding and preparing such faulty versions is very difficult and time-
consuming. Second, the number of faulty versions mié;ht‘ not be enough in order
to achieve statistical significance in the experiment. Therefore,‘many researchers are
creating faulty versions of subject programs by introducing faults either \amutomatically
" or by hand. Preparing the necessary number of faulty versions with hand-seeded faults
coﬁld also take a long time, so it is more efficient to automate this process. In order
to produce automatically-generated faulty versions, the original source code of the
program is automatically modified in small ways to produce a program mutant. These
small modifications are called mutation operators, and reflect typical programming
errors: wrong operator in the logical condition, incorrect value assignment, missing

statement, etc.

DeMillo et al. [13] have originally proposed an idea of using mutants to measure test



23

case adequacy, and have implemented a prototype mutation syétem for the FOR-
TRAN language. This idea was later explored by DeMillo in collaboration with
Offutt [14]. Andrews et al. [6] have performed experiments in order to identify if
mutation is an appropriate tool for the empirical evaluation of testing techniques.
They have compared the ability of test suites to detect real, hand-seeded and au-
tbmatjcally generated faults, and have found out that mutants can provide a good
indication of the fault detection ability of a test suite, when using carefully selected
mutation operators and after removing equivalent mutants [6]. Therefore mufgants |
are representative of the real-world faults, and can be used to assess the effectiveness

of test cases.
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Chapter 3

\,

Black Box Coverage Calculation |

In this chapter, we go into detail about the design and implementation of the black box
coverage calculation apﬁrdach". ‘We describe three main"cc‘)r'r‘l\ponents' of this approach:
Functional Test Specification or FTS, log files, and FTS C’ove’;\"agé’C'a\lculatz'on' Tool
or FTS Tool. We also write about the architecture of the' FTS Tooi, describe some
importaht classes and methods, and give details of the algorithms for calculating the

coverage of a test suite based on the log files and FTS.

3.1 f .' O&erviéw |

As mentioned in the Related Wdrk seCti!in; black box te‘sting‘féchriiQue's, which are
widely used in the software déﬁélopment indﬁstry, are not studied fhorOughly in the

software tésting research field. Moreover, there does not exist a tool to measure the -
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coverage of a test suite from the black box perspective. Therefore the main motivation
of this thesis is to develop an approach to measure industry black box coverage based

on the industry equivalence partitioning and boundary value analysis methods.

The first part of th1s approach is the constructlon of the Functlonal Test Specification
for the SUT, which defines equivalence classes of input and output variables, as well as
higher—level elements of the software system to which these variables belong In order
to determrne Wh1ch elements from the FTS have been used in a partlcular test case,
we requ1re that the SUT produces log ﬁles m a part1cular format durmg executlon
Log ﬁles w1ll contaln 1nformatlon about values of 1nput and output variables which
have been used in a part1cular test case, as well as events _sources of mput and
components of the SUT 1n Wh1ch these var1ab1es appeared ThlS 1nformat1on will
allow us to calculate the rat1o of the number of tested elements to the total number
of elements for each element type As we are also interested in determining the
number of repetitions of each element from the FTS, we’re going to organize logs in
such a way that we will be able to determine how,manv times a particular element
appeared within the parent element. Finally, the FTS Tool will’perform matching of

\

the FTS with the log files and calculate the following coverage types:

o Simple existence coverage, according to which an element is considered to be

~covered if it appears in the log file at least once.

e Multzplzczty coverage, wluch takes 1nto account the number of repet1t1ons of each

o element from the FTS

e Boundary value covemge, which is calculated for each equivalence class consist-
~ing of the range of numeric values, and checks if boundary values appear in the

- log file. .
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A detailed description of how the coverage measures are collected is given in Section

3.4.3. .

3.2 Functional Test Specification

Functlonal Test Spemﬁcatlon is'a Way to capture the result of applymg the equ1va-
lence partltlomng method to 1nput and output variables of the software system, As
mentloned in the Related Work sectlon (see Sectron 2.2. 3) modern software systems
are very complex and can consist of many components W1th mult1ple GUI forms and
sources of 1nput Therefore it is not enough to spemfy only 1nput and output variables
of the system Instead we're gomg to use the breakdown of the software system 1nto

elements proposed by Andrews [7].

In our coverage calculatlon approach we would hke to con81der not only the appear—
ance of part1cular system elements, but also the number of repetltlons of elements of
a partlcular type For example 1f a utlhty requlres only one 1nput ﬁle, the tester w1ll
l1ke1y create at least one test case w1th one file grven as 1nput one. test\case w1th no
files glven, and poss1bly one test case with two or more files g1ven One poss1b111ty of
'tracklng the number of repet1t1ons would be to ‘create an addltlonal art1ﬁc1al mput
variable Wthh would represent the number of repet1t1ons of a partlcular element
However another more cons1stent approach is to spec1fy a Multzplzczty property for
each of the elements for Whlch 1t is necessary The mult1pl101ty property could be
apphed to any of the coverage elements except value sets, ‘and could be broken down
into valid \and invalid value sets, just as any other input variable. In the previous
example, the valid multiplicity of the “input ﬁle element will be. “1”, and two invalid

multiplicities .wlll be “0” and “2”. If a tester is specifying a multiplicity property
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for af'pa:rticular. coverage .ele'm'ent, this lmpli__esi thatlhe bel‘i‘e\‘res. thatrn order for this
element to be tested thoroughly; for heach multlplicity value set there should be at

least one test case with the corresponding number of elements of this type.

After a tester has analyzed a program’s structure, its input and output variables, and
poss1ble breakdown into ' value sets, he should store this 1nformat1on in some conve-

SR

-n1ent form. One of the most popular formats for storing 1nformat1on in a structured
form is the Extensible Markup Language (XML) [10]‘ ‘We therefore chose XML for
the representat1on of the FTS. It isa textual data format which allows users to rep-
resent structured 1nformat10n us1ng the1r own custom markup scheme We wrote an
XML schema which corresponds to the FTS. An XML schema is a set of restrictions
which are assigned to a part1cular XML file, and can be used to verify the validity of

XML. A visualrepresentation of this schema is shown in UML format in Figure 3.1.

SoftwareDesc is the root element, which ¢ani’contain one or more ComponentType
elements. Each ComponentType element can include zero Qr one Multiplicity ele-
ments, and zero or morewI{nputSourceType and OutputDestimationType elements.
A Mu1t1p11c1ty element spec1ﬁes the number of repetltlons of the parent compo-
nent; it consists of one or more ValueSetType elements and can be a ch1ld element of
any other element except itself and ValueSetType. Each InputSourceType element
can contain zero or more inputEventType ele’ments,\'which in turn can contain zero
or more InputVarType elements. Each of the ComponentType, InputSourceType,
InputEventType and Inp'utVarType'elements must have a “name” attribute to'spec-

ify ‘a unique component name, which is used while matching speciﬁcatiOn with logs.

InputVarType must contain at least one ValueSetType element, which represents an
equivalence class for this variable. ValueSetType does not have to have a unique

name and can be uniquely identified by its set of values. An optional description
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Figure 3.1 XSD schema -

SystemDescType
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inputSourceType | o ComponentType | 0.*  [OutputDestinationType |
name - name name I
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| __ . [outputEventType]
Multiplicity T 0.1
name 0.1 2 Hiplicity ypek — | name
0.1 01
1.* :
InputVarType OutputVarType |
name name |
M
\
[description [ max I )

child element can be used to write a comment or description. ValueSetType also

has an optional type attribute, which can be assigned one of two values: “valid” or

“invalid”. If this attribute is not specified, it is assumed by default that the value set

is valid. Valid value set contains input values which are expected by a program as

valid inputs ‘and make the program operate in a normal mode. In contrast, invalid

value set contams values which Wlll cause error handhng in the program or Wlll make

the program 1nd1cate to the user that such 1nput W111 not be handled correctly
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We have deSigned three options to speoifv the contents of a particularvalue set, which

can be used individually or in conjunction:

e A single value or a collection of separate values can be specified using one or
more value elements ln this case a value set will be considered tested if any

value from the list appears in the logs.

e Ifa value set consists of a range of numeric values, instead of writing a list of
all poss1ble values, a range can be specified in min and max child elements It
is allowed to spec1fy both integer and float numbers but the min value should
always be smaller than the max value. If the range does not have a lower or an
upper bound the ‘unlimited” keyword can be used instead of a number. How- -
ever, settlngboth min and max values to “unlimited” is prohibited. Specifying
a range To'f values allows us to perform boundary value analysis in addition to
the equivalence partitioning. |

™~

° A regula'r'ei('pression can be used to specify the set of values in the regexp child

N

- element. Perl-compliant regular expression syntax must be used.

‘Corryespondingly, OutputDestinationType oontains at most one Multiplicity el-
ement and ’zero or more OutputE_ventTv_pe elements. ‘Ou‘tputEventType consists of
at most one Multiplicity element and of kon’e or more OutputVarType elements.
OutputVarType consists of zero or one Multiplicity elements as well as one or more
ValueSetType elements, which are similar to those used in the InputVarType, but

can only contain valid value sets.

Figure'3.2 shows an"excerpt- from the FTS speciﬁcation"for thevrmaStermin(i‘vgame

server, one of the sub jeot‘programs which will be described in detail in Section 4.2.3.
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Figure 3.2 Sample Functional Test Specification

<Component name="Server"> - v
<InputSource name-"CommandL1ne">
.-<InputEvent: name="ServerInitialized">
' . <InputVar name="PortNumber'"> '
<Multiplicity>
<ValueSet: type="1nva11d">
<value>0</value> = - . . =i
. </ValueSet> e
<ValueSet type="valid">
~ <value>1</value>
</ValueSet>
</Multiplicity>
<ValueSet type-"lnvalld">
<min>0</min>
<max>1023</max>
- </ValueSet> <
<ValueSet type-"valld">
<min>1024</min>
‘ <max>65535</max> T
</ValueSet> -
- </InputVar>
</InputEvent>
<InputEvent name="GameInitialized"/>
-</InputSource>
</Component>

According to-the specification, exactly one port number value should be specified. in

the command line in order to initialize the server. Port numbers from 0 to 1023 are

considered to be invalid, and numbers from 1024 to 65535 - valid.

3.31.:, Log_ File Format

After constructing the program’s FTS specification, we need to determine which of

the speciﬁed'coveragé elements have been tested during the execution of the SUT, i.e.
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Figure 3.3 Format of log files

Component <ComponentType> <componentName> :

InputSource <componentName> <InputSourceType> <inputSourceName>

InputEvent <componentName> <inputSourceName> <InputEventType>
<InputVarNamel>=<inputVarValuei> ... <InputVarNameN>=<inputVarValueN> ...

OutputDestlnatlon <componentName> <0utputDest1nat10nType>
<outputDest1nat10nName> -

OutputEvent <componentName> <outputDest1nat10nName> <0utputEventType>

"~ <OutputVarNamei>= <outputVarVa1ue1> ... <DutputVarNameN>= <outputVarValueN>

\‘.

which components were used, what events occurred during execution, what vari\able
values were set, and what output was produced by ’thprogljam.k Depending on the
program type, structure and functionality, we could extract this information from the
execution logs, standard output, database transactions, or GUI components: As we
would like our approach to be applicable to a wide rénge of programs implemented in
any programming language, we can not use any existing standard logging mechanism
in order to collect this information automatically. Therefore instrumentation of the
SUT, which will produce log files in the appropriate format,\is required as part of our
approach. * | ’ N |
Instrumentémtion could be done either by a tester or a developer, as it involves simple
- operations of writing necessary information into the file, and does ﬁot require special
knowledge either about the system’s internal structure, or about the progrémming
language used. A separate file with the unique name will be created during each
execution of the program, so that one test case will correspond to one log file. A log
file will consist of sepaféfe lines; rea.ch of these lines will contain information about a
particﬁlar 'cé)Véfage element, and will be written to the file when the corresponding
event happens during the program’s execution. The format of log lines is presented

in Figure 3.3.
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We have defined five different types of log lines, and each of them starts with a keyword
which identifies the type of the coverage element from the specification. The first line
starts with the Component keyword, followed by the name of the ComponentType from
the sp’eciﬁcetion and a unique component name, which will be used as a reference
\;vhen deﬁning other elements. The second line starts with the InputSource keyword,
follovrred by a unique name of the component to which it belongs, the name of the
InputSourceType from the Speciﬁcetion and a unique name. The third line starts
- with the InputEvent keyword and defines an input event for a particular component
and input source. It does not have a unique name because it is not referenced further
in other types of log lines. It also defines tuples of 1nput variable names which have
been used in this input event together w1th their values where zero, one or more input
variables of the same type ‘could be specified in the same line. Output destinations

and output events are defined similarly} to input sources and input events.

Some string values of input variables can contain whitespaces, e.g. an input variable
for a user name “John Smith”. In our logging format 8" whitespace is used as a
separator, and a tester needs to take this into account yvhile,oonstruotin_g logs: before
writing a value into a log ﬁle he should cheolr if it contains Whitespeces, and put it

into double quotes if necessary.

Flgure 3.4 shows a sample of three log ﬁles for a mastermmd game server Whlch

correspond to three test cases:

. A server was launched w1th a vahd port number 65535 and a new game was

: 1n1t1ahzed
e A port:number has not been provided. - .

"o An invalid port number 80 was used.
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Figure 3.4 Sample log file

testcasel.txt:

Component Server server .

InputSource server CommandLine cl

InputEvent server cl ServerInitialized PortNumber=65535
InputEvent server cl GameInitialized

testcase2.txt: o
Component Server server =~ =
InputSource server CommandLine cl
InputEvent server cl ServerInltlallzed

testcased.txt: _

Component Server server

InputSource server CommandLine-cl.. . = .

InputEvent server cl ServerInitialized PortNumber—8O

3;4 | FTS Coverage y’:I‘ooﬁl

3.4.1 Overview

We have developed a Java utility program Wh1ch matches covera\ge elements from the
FTS with the coverage elements which appear 1n the log ﬁles, and produces a coverage
report It is called FTS C’ovemge Tool and was developed in the Java Development
Kit (JDVK) v1.6.17. It is compat1ble with all versions of JDK 1.6 and can run on any

operating system with the Java Runtime Environment (JRE) installed. . »

Complled J ava class ﬁles are packaged into an arch1ve fts. Jar wh1ch can be executed
by the Java apphcatlon launcher The requlred parameter for the FTS Tool is the
path to the FTS spec1ﬁcat1on file, which should be passed after a keyword —xmlspec
The second requ1red parameter is the path to the locatlon of log ﬁles, Wthh could

be spec1ﬁed in two Ways A tester could prov1de a l1st of log file names separated by
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a vvhiteépace and precededbya the keyvvord '—f"illeiist’.: Another op'tion’is to specify
a directory name in which log files are stored, by using the keyword dir. Options
.?f ileliét and -dir cannot be used together. By default, FTS Tool calculates cover-
age for each type of coverage element and prlnts it in human-readable form. Specifying
an optlonal parameter ~listce makes the tool printing the list of coverage elements, |
one coverage element per line, with the indication if this element was covered or not.

For example, if we launch the”l‘p}rogram vvith the following parameters:

java -jar fts.jar ?XmlspeC' ./maétemind/mastemind.xml

~ -filelist ../mastermind/logs/testcasel.txt

FTS Tool will produce the default coverage report:for each type of coverage element

for only one test case testcasel.txt using the mastermind.xml specification file.

342 OutputFormat .
The coverage report produced by the FTS Tool can have two different formats. The
Sample of the re.port'ﬁle v‘rith’th‘e default output is presented in Figure 3.5.

The report is broken down into four ’parts The ﬁrst part contama coverage values
for three main types of coverage srmple ex1stence, multlphmty and boundary value
coverage The ratio of the number of covered elements to all elements of thls type
as well as a percentage value are g1ven A breakdown into valid and 1nval1d coverage
elements is performed for the multlphclty coverage The second sectlon presents a
detailed report on each type of simple existence coverage elements: components, input
sources, input eventé, etc. The third section contains a list of element IDs which have

not been'covered‘during” teSting. This list includes all types of coverage elements -



35

Figure 3.5 Sample FTS Tool output :

——— Total[coverage‘—?——4' b

Simple existence coverage: 32/79 = 40.51%
Total multiplicity coverage: 6/12 = 50.00Y%
Valid multiplicity coverage: 6/11 = 54.55)
Invalid multiplicity coverage: 0/1 = 0.00%
Boundary value coverage: 0/12 = 0.00% -

----- Detailed simple existence coverage -----
Components existence coverage: 1/1 = 100.00%

Input sources existence coverage 2/2 = 100.00%

Input events existence coverage:  4/7 = 57.14J \
Input vars existence coverage: 8/11 = 72.73)

Input value sets existence coverage: 11/49 ='22.45%
Valid value sets existence coverage: 11/28 39.29% .
Invalid value sets existence coverage: 0/21 = 0.00%
Output destinations existence coverage: 2/2 = 100.00%
Output events existence coverage: 2/4 = 50.00%

Output variables existence coverage: 1/1 .= 100.00%
Output value sets existence coverage: 1/2 = 50.00%

----- Missing coverage elements —-----

OutputEvent Concordance.StdOut.OutOfMemoryMsgPrinted

Valid ValueSet Concordance.InputFile.FileLoaded.Property: ’Empty file’

InputEventMult1p11c1ty Concordance . CommandLine. HelpOption multiplicity 10

Max Boundary OutputValueSet Concordance.FileSystem. OutputflleCreated
.WordsCount: ’Integers’

—----=- Not matched varlables ~~~~~

InputVar InputFileName=invalid.txt

s1mple ex1stence, boundary value and mult1phclty, and in order to d1st1ngulsh dlfferent
elements, a un1que ‘identifier (ID) is constructed for each element. The D mcludes
‘not only the element name, but also names of 1ts ancestor elements. For example, a

umque ID for a ValueSetType element is constructed in the following way:

<ComponentType>.<InputSourceType>.<InputEventType>.<InputVarType>:

[<description>|<value>|<regular expression>|from <min> to <max>]
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As ValueSetType does not have a unique name assigned to it, its description from
the FTS will be displayed. If the description was not specified, either a value, a range
of values or a regular expression will be displayed, depending on the method which
was used to construct this ValueSet in the FTS. In case of multiplicity value sets, we
need to specify both the unique ID of the element to which this multiplicity property
belongs, and an identifier of a multiplicity value set. For example, the multiplicity
value set for an input variable canbe specified in the following way: |
Input’V’a‘rMu‘].t’ iplicity <ComponentType>. <InputSourceType>.<InputEventType>

-<InputVarType> multiplicity <ValueSetUniqueID>

When_printing out information about the boundaries, we need to specify a type of

boundary (minimum or maximum), value set type and a unique ID of this value set:

[Min|Max] Boundary | lfinputvaliueSet | UutputValueSet [MultiplicityValueSet]
<ValueSetUniquelID> \

N

The ﬁnal sect1on of the report d1splays coverage elements from the log ﬁle Whlch d1d
not match any value sets from the spec1ﬁcat1on Th1s sect1on helps to troubleshoot
any problems, such as an error 1n the loggmg or in the spec1ﬁcat1on For example,
1f a part1cular value appears in the llst of not matched values but mstead should
belong to some value set a tester mlght have to review the spec1ﬁcat10n, and make a

' mod1ﬁcat1on to the descr1pt1on of thls value set
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Figure 3.6 Calculation of simple existence components coverage -

for each ComponentType ¢ from spec do
for each TestCase tc from logs do
N <- number of components of type ¢ in te
if (N > 0) then c.tested <- true

3.4.3 FTS Coverage Calculation
The main functionality of the FTS ’de is ‘the calculatlon of a test suite’s cover-
age, which is based on the comparison of the specification with the log files.. FTS

Tool’s functionality includes calculation of three types of coverage: simple existence,

multiplicity and boundary coverage.
3431 | Simple%Exis’[te’nce Coverage w

S1mple existence coverage 1s calculated for each type of coverage elements deﬁned in
the XML spec1ﬁcat10n (see Sect1on 3 2) and the general rule is to con31cler a coverage
element to be tested if it appears in the log file at least once. For example in order
to calculate coverage of software components for each component type deﬁned in the
spe<31ﬁcat1on we need to execute the followmg for each test case (or each log ﬁle) we
count the number of components of thls type Whlch appear m a partlcular test case,
, and mark th1s component type as “tested” 1f the number is greater than zero After
exammmg each component type from the spec1ﬁcat1on we can count the number of
tested components d1v1de it by the total number of components and present to the
user in a specified format. Pseudo code of the simple existence components coverage

calculation algorithm is shown in Figure 3.6.
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The ‘v:‘rule"‘ deSc,ribed above 1s applied to most of the coverage elements; hoWevef, _the
coverage of input variables and value sets has additional constraints, and is calculated
in a different way. - Specifically, we consider an input variable from the log file to

cont‘r’i‘b:ute to the COve_rage' only in the following cases:

e All values in the corresf)onding' input event from the log file are from valid value
sets, and multiplicity of all input variables in this input event is valid.

e One value in the corresponding‘ input event from the log file is from an invalid
value set, and multiplicity of all input variables in this input event is valid.

° Ally values in this input event are from valid value sets, and multiplicity of one

input variable is invalid.

A good test case design assumes that each invalid condition is tested in a separate
test case: if we run a program with several invalid conditions at once, we will not be
able to determine which invalid condition has caused error—handling in the program.
Therefore, we consider input variables to be tested if they appear in an input event
which corresponds to a valid test case, where either all variables have valid values
and multiplicities or only one variable has invalid value or multiplicity. For example,
if a program takes as input a day number (1-31) and a month number (1-12), then
prov1d1ng an 1nva11d day and a vahd month w111 be cons1dered as a vahd test case,
and w111 be counted towards the total coverage An mput w1th two vahd day values
and one vahd month value w1ll have an mvahd mu1t1p11c1ty of a day var1able and w111
also be counted towards the total coverage However providing an invalid day and

invalid month values will not be considered as a valid test case.

As shown in Figure 3.7, in order to check for these constraints, while iterating through

all input events of a particular type, we execute the following steps:
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Figure 3.7 Calculation of simple existence input variables coverage

For each ComponentType ct from spec do
For each InputSourceType st from ct do
For each InputEventType tet from ist do
For each InputVarType ivt from <et do
For each InputEvent te. of type tet from logs:
nl <- number of invalid input variables in e
n2 <- number of- 1nva11d mu1t1p11c1t1es of 1nput variables in e
If (n1 + n2 < 2) ' s - '
N <- number of input variables of type ivt in input event ie
If (N > 0) then ivt. tested <~ true \

1. Calculate n1 - the number" of inpylrt,variables Wthh 'have invalid values in this

input event.

2. Calculate né - the nurnber ,’of input variables which have invalid multiplicity. In
order to chech‘i_flahly' input'variables‘ in this input event have invalid multiplicity,
we need to iterate through all input variable types, which are defined in the

~ specification for an input event of this type, count the number of input variables,
~and compare it with the multiplicity value sets, if there are 'ar_ly. If the number
matches an invalid multiplicity value set, we consider this input variable to have

. an invalid multiplicity. .

3. Ifnt + n2 is less than two (1t covers 51tuat10ns When both Values are 7ero or
'only one of the values is one) we proceed further to calculate s1mple emstence

coverage of the correspondmg input variable type.

We con31der 1nput varlables to be covered if they appear ina vahd test case. However
in order to check for partlcular values of mput varlables, we need to apply a more

strict rule If a test case contains an invalid value or invalid multiplicity, it causes the
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Figure 3.8 Calculation of simple existence value sets coverage -

For each ComponentType ct from spec do:
For each InputSourceType i¢st from ct do
For each InputEventType tet from st do
For each InputVarType ivt from iet do .
For each valid ValueSetType vust from ivt do
For each InputEvent e of type tet from logs:
ni <- number of invalid input variables in ie
n2 <- number of invalid multiplicities of input variables in e
If (nl == 0 and n2 == 0) _ ' ,
For each InputVar iv from ie AN
If (vust.match(iv.value) = true) then -
vust.tested <- true

~ For each invalid ValueSetType ivst from vi:
For each InputEvent Ze of type iet from logs:
nl <- number of invalid input variables in e
n2 <- number of invalid multiplicities of input variables in ‘e
If (nl == 1 and n2 == 0)
" For each InputVar iv from ‘e
If (ivst.match(iv.value)) then
tvst.tested <~ true

~

program to execute error-handling code for the invalid value, Whilg the functionality
which involves other valid values is not executed. Therefore, for a test case which
_contains an invalid value or multiplicity, we can only say thdt the value set which
corresponds to thev invalid value was tested. In order to cover other valid value sets,
we need to execute a test case where all values are valid. Therefore, we apply the

following coverage calculation rule:-

K A vahd value set is considered to be covered if all values i in the correspondmg
mput event are from vahd value sets and mult1phc1ty of all 1nput varlables is

vahd
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‘.“ . ‘,’,: An'invali;d value set 1scons1dered to_be' covered 1f all other values 1n the corQ
responding input event except the current one are from valid value sets and

multiplicity of all input variables is valid.

In order to check for these constraint"s, we calculate the number of invalid input
variables and thenumber of invalid'multiplicities of input variables, similarly to the
input variables coverage calculation. As shown in Figure 3.8, we process valid and
invalid value set types separately For valid value set types, we check that there are
no mvahd variables and mvalld mult1p11c1t1es in the current 1nput event for invalid
value set types, we check that there is exactly one 1nvahd value set and no invalid

multiplicities.

3.4.3.2 Multiplicity Coverage'

Mult1phc1ty is  an optional property in the FTS spemﬁcatlon, and is usually specrﬁed
only for a small number of coverage elements, SO there is no rreed to report on the
multlphclty for each type of elements Instead, the report presents total mult1phc1ty
coverage for all elements as Well as separate coverage values for valid and invalid
multrphc1ty value sets In order to calculate mult1p11c1ty coverage for each mult1p11c1ty
value set from the spec1ﬁcat1on we assign a flag which indicates if this value set
appeared in the logs We then 1terate through all multiplicity value sets and count
the number of tested valid and 1nvalid multlpllcltles Fmally, we 1ncorporate this

information into the report. -

As shown in Figure 3.9, in order to check multiplicity of element e from the spec-
ification, for each element of type e.parent from logs, we will count the number of

elements of type e which appear in the log lines with e.parent, and compare this
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Figure 3.9 Calculation of components multiplicity coverage

For each ComponentType ¢ from spec do
For each TestCase tc from logs do
N <- number of components of type ¢ in tc
For each multiplicity value set mvs of ¢ do
If (mvs.match(N) = true) then . -
mus.tested <- true

\

number with each of the mult1pl1c1ty value sets for e defined in the spec1ﬁcatlon We

Wlll mark mult1p1101ty value set as “tested” if 1t matches the number of elements of

type e.
3433 4 Boundary‘Value‘ :Coverage |

Boundary value coverage 1s calculated for value sets Wh1ch are deﬁned as ranges of
numbers Input and output value sets as Well as mult1phc1ty value sets are taken 1nto
account As W1th mult1phc1ty coverage, it 1s not necessary to report on the boundary
value coverage for each element from the spec1ﬁcat1on 1nstead the report contains

a total coverage value and a l1st of not covered boundarles Calculatlon of boundary

value coverage cons1sts of the followmg steps:

1. Calculate the total number of boundaries which appear in the specification.
- 2. Calculate the number of boundary values which appear in the log files.

3.. Calculate coverage by dividing the number of covered boundaries by the total

‘ ;number. R e
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Figure 3.10 Calculation of components multiplicity boundary value coverage

For each ComponentType ¢ from spec do
For each TestCase tc from logs do
N <~ number of components of type ¢ in tc
For each multiplicity value set mus of c¢ do
If (mvs.min != null) then mvs.numBoundaries++
If (mvs.max != null) then mvs.numBoundaries++
'If (mvs.numBoundaries > 0) then- :
If mvs.min = N then mvs.isMinTested <- true
If mvs.max = N then mvs.isMaxTested <- true

In order to calculate the total number of boundarles, we 1terate through all value
sets which have ranges of numerlc values we add 2 to the total 1f both min and
max values are deﬁned and add 1 if only one boundary is deﬁned (and the other
one 1s set to* unhmlted”) Then, for each value set Wlth the boundary, we check 1f
m1n and max values appear in the log file at least once For example, as shown in
Flgure 3 10 1n order to check the boundary value coverage for component mult1pl1c1ty
value sets, after calculatmg the number of components of a partlcular type 1n a test
case, we compare tlus number with min and max values for each mult1pl1c1ty value set
Wh1ch is deﬁned as a range of values, and set approprlate values to 1sM1nTested and

- 1sMaxTested boolean variables.

344 Architecture

A hrgh—level orgamzatmn of the FTS Tool utlhty is presented in Flgure 3 11 The
program takes as 1nput FTS spec1ﬁcatron log ﬁles and a report formattmg optlon
‘and produces a coverage report as a result of its execut1on It con51sts of 4 main

components. log parser, specification parser, coverage calculator and reporter. The
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Figure 3.11 FTS Tool componénts

FTS coverage tool ™

FTS

Coverage

speciﬁaatibn ’parser takes as input an XML ﬁie and"unmavr'shalls it into the Java object
representatlon of the FTS. Slmllarly, the log parser takes as mput the location of the
log files, and produces the Java object representatlon of elements which appear in the
logs. The coverage calculator iterates through every element from the specification
and matches it with elements from log files. As a result, it assigns a “tested” flag to
each coverage element from the specification depending on i\ts appearance in the logs.
Finally, the reporter component processes all FTS objects, analyzes tested elements,
and assembles this information into a report, whose format depands on the option

specified by the user.

345 De51gn and Impleme»nt‘,ati'on' -

We have carefully des1gned the FTS Tool in such a Way that any modlﬁcatlons and
addltlonal functlonahty could be 1mplemented eas1ly We use a Umﬁed Modellng
| Language (UML) package dlagram to 1llustrate package orgamzatlon of the FTS Tool '
in Figure 3. 12 |
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Figure 3.12 Package organization‘of E'TS Tool

ca.uwo.csd.fts |
]
parser uses |  model
..................... N
— ~ specification log
coverage CoverageRunner
reporter IE R o usesi
multiplicity simpleexistence | |  boundary

As shown in Figure 3.12, FTS Tool consists of 11 packagee. The ca.uwo.csd.fts
package contains the main method in the CoverageRunner class }vhich is being called
when the program is launched. The package ca.uwo.csd..:fts.mo\del contains two
nested packageS’ spe01f ication ban"d iog,' Wthh represent the mapping of specifica-
tion and log elements into Java classes Classes LogParser and Specif 1cat10nParser
from the ca. uwo csd fts. parser package are respon51ble for producmg log and spec-
1ﬁcat10n 1nstances correspondmgly ‘ Thel FTSCoverage class from the
ca.uwo. csd fts coverage package performs the actual comparlson of logs and spec—
lﬁcatlon obJects The ca.uwo. csd fts. reporter package contams multlple 1mp1e-
mentatlons of the Report er interface which are used to assemble dlfferent types of cov-

erage lnformatlon 1nto a report. Flnally, the ca.uwo. csd.fts.utll package cons1sts
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of miscellaneous utility methods. Later in this chapter we explain technical details
about  the ~ most  important ' packages' ' - - ca.uwo.csd.fts.model,

ca.uwo.csd.fts.coverage and ca.uwo.csd.fts.reporter.

3.4.5.1 Package ca.uwo.csd.fts.model.specification

The package ca.uwo.csd.fts.model.specification consists of schema-derived
classes which represent specification elements.' These classes were generated automat-
ically based on the FTS XSD schema (see Section 3.2) using the Java Architecture for
XML Binding (JAXB) library. A UML class diagram for this package is presented in
Figure 3.13 and corresponds: to the XSD schema by its structure. Generated classes
preserve all attributes and relationships between elements from the XSD schema. In
addlt\ien, each class has a:’boolean ﬁel<l is‘l‘ested Wh1ch1s ‘use(l during the coverage
calculation. The ValueSetTypeclass has three more additional lields (isMinTested'
1sMaxTested and numBoundanes) Whlch are used 1n the boundary value coverage

calculat1on S - \

3.4.5.2 Package ca.uwo.csd.fts.model.log

The package ca.uuo csd.fts.tnodel.log.‘_contains J aVa classes Whlch represent the
structure of log files. A UML class d1agram for this package is shown 1n F1gure
3.14. The Log class is at the top of the hierarchy and represents 1nformat1on about
the collectlon of test cases. It contains a list of TestCase objects, each of which
has a un1que name (canonical file name of the corresponding log file) and a list of
Component objects. The structure of the Component class is similar to the structure

of the ComponeutType class from the FTS. Instead of the Multiplicity property, each
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class has a method which returns the number of child elements of a particular type,
and this number is used to identify which Multiplicity value sets have been tested.
InputVar and OutputVar classes contain name and value fields, which are used to

identify to which ValueSetType they belong.
3.4.5.3 Package ca.uvo.csd.fts.model.parser

The pacl{ageca.uwo.csd.fts .model.parser contains two classes for parsing XML
specification and log files correspondingly. The SpecificationParser class unmar-
shalls Java objects using the JAXB library unmarshal method, and returns an in-

stance of SystemDescType class, the root specification element.

The Iv.ogParserlin‘lblemehts the .furlctionality of parsing log ﬁles and producing ‘in-
stances of the ca.uwo. csd fts model.log package classes In contrast w1th the
Spec1f 1cat10nParser, the 1mplementat1on is more complex, because log files have
a. custom structure and can not be parsed automat1cally Wlf;h the help of an exter-
nal tool The parser reads log ﬁles 11ne by hne and creates co\rrespondmg objects.
LogParser also checks log - ﬁles for Val1d1ty Flrst each l1ne should start Wlth an ap-
propriate keyword, whlch identifies the type of element. Secqud, _each element wh1ch
| is refer‘enced in the log file, must be (leﬁned earlier, in the same file. For exarhple,
input scurce cannot be ‘deﬁned before the component to which it belongs. ‘LogParser
should also take into account the fact that if avalue of input or output variable con-

tainslwhitespaces,‘it is surrounded by double-quotes, and any double-quote should be

preceded by the backslash.
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3.4.5.4 Package ca.uwo.csd.fts.model.coverage

The package ca.uwo.csd.fts.model.coverage contains class FTSCoverage which
is responsible for the coverage caiculation.; FTSCoverage class iterates through: the
ca.uwo.csd.fts.model.specif icationaﬁd fdr‘each object checks if the element of
this type appeared in the ca.uwo.csd.fts.model.log structure.. Coverage calcula-
tion for each component type.is performed according to the algorithm described in

Section 3.4.3. T YU TR PENEE PR ‘ NP
- \

3.4.5.5 Package ca.uvo.csd.fts.model.reporter

The package ca.uwo.céd.fts.mod’e'i.repoi'fer contains classes for Vproducinvg the
coverage report. UML class diagram for this p‘éckége is shown in Figure 3.15. The
final report, which contains ‘cdvérage' ihforrﬁaﬁioﬁ‘ about all édmpbnént types, can
be broken down ifito”smaﬂ ‘parts, ea'c'h-"fepfés'enting "a‘i)a(tiCMar coverage aspect.
Similarly, we have decided to break down the functionality of p{oducing the report.
This will allow us to easily modify any existing part of the report, of add a new
section to it. We have created the Reporter interface with the ‘\report method,
which is implemented by all of the reporter classes. In order to prbduce a report,
the ReportFactory class creates instances of the Reporter interface, and then the

CoverageRunner calls the report method on all reporter instances.

Classes SimpleExistenceReporter, MultiplicityReporter and BoundaryReporter
calculéte the total coverage of the corresponding types, while other classes, such as
ComponentsReporter, InputSourcesReporter and others, print coverage of par-
ticular element types. These classes use similar algorithm - iterate through ev-

ery FTS object, count the number of tested elements and divide it by the total
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number of elements of the specified type. These classes are inherited from the
abstract class ReporterImpl, which implements the Reporter interface. Classes
SimpleExistenceMissingReporter, MultiplicityMissingReporter and
BoundaryMissingReporter are used to produce the second section of thé‘“report,
where missing coverage elements are printed. NotMatchedVarsReporter is a sepa-
rate type of a reporter, because ’itsireportmethod has an additional Log parameter.
In contrast with the coverage calculatlon th1s class iterates through the 1nstances of
the logs and checks, if every mput and output var1able value was assigned to a. par-
tlcular value set from the spemﬁcatmn If it ﬁnds a value which does not match any
* of the value sets from the specification, this value is included in the report. Classes
SimpleEdc:lstenceCEReporter MultiplicitjCEReporter and BounderyCEReporter
are used when the -listce report format opt1on is spec1ﬁed by the user, and the list
of umque 1dent1ﬁers of each coverage element should be printed. ReportWriter is a
helper class Whlch 1mp1ements the write method and is respons1ble for creating a

new report ﬁle W1th the umque name in the reports folder

™~
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Figure 3.13 Class diagram of ca.uwo.csd.fts.specification package
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Figure 3.14 Class diagram of ca.uwo.csd.fts.log package -
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Figure 3.15 Class diagram of ca.uwo.csd.fts.reporter package
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Chapter 4
) EXperiments a

In this chapter, we describe subject programs which were selected for the experiments,
and evaluate. how the black box coverage calculation method was applied to them.
We then describe the preparat1on and execution of the experiments, analyze the data
and 1llustrate the relat1onsh1ps W1th plots Fmally, we draw conclus1ons based on the

analys1s Y

4. 1 Motlvatmn

In order to evaluate the black box calculatlon approach we apply 1t to several sub Ject
programs We des1gn and 1mplement several exper1ments Wthh aim to answer the

followmg research questions:

e How easy is it to apply the black box coverage calculation approach to subject

programs of different sizes and programming languages?
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Table 4.1 Characteristics of subject programs

Program Language | Number of test cases | SLOC | Classes | Functions
| flex . c. .| - 567 10,421 | N/A |- 162
concordance | C++ 372 1,034 5] 39

yamm - Java 238 ‘ 780 13| 48

. What iéithe”relationship bet‘wéen‘the} black bbx and white box coverégél med-
suréS? | B o | |

\«
N\

.o What is the relationship between the black box, white box, test suite size and

. effectiveness? Is it consistent with the experimental results in [25]7

o Is the black box coverage a good predictor of test case effectiveness?

4.2 Subject Programs -

In order to test our approach on programs of various sizes, fqnctiQnality and program-
ming languages, we have seleéted thé foliowing subjec;ty programs for our experiments:
flex, concordance and yamm. Characteristics of these progré,ms can‘ be found in Table
4.1. The size of programs was estimated using the SLOC (lines of code not counting
comments or whitespace) metric, which was calculaf;ed by the LLOC tool [22]. flex
is a C program with the biggest size andﬁ,the largest test case pool; c_oncbr@ance
is a medium-size utility C++ program; and yamm is a Java \GUI-basgd plient?:servey

program. - .
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4.2.1 Subject Program flex

The subject program flex (fast lexical analyzer generator) is a free implementation
of the original Uﬁix lex program, which generates programs that perform pattern-
matching on text. The program takes as input a text file which consists of three
sections: definitions, rules and code. . After processing an input file flex generates
a C source code file “lex.yy.c” which implements the yylex() function. The rules
section specifies pairs of regular expressions and C code, such that when the “lex.yy.c”
file is compiled and run on some input, it analyzes input text, and executes \the
corresponding C code each time it finds a text which matches a regular expression
defined in the rules. The definitions section of an input file can be used to ease the
construction of rules by assigning custom names to regular expressions used in the
rules section. The last optional section of the input file contains custom C code which

is copied to “lex.yy.c” without any modifications.

In our experiments we use the version of £1lex which was ;)bt\ained from the Software-
artifact Infrastructure Repository (SIR) at the University of Nebraska-
Lincoln. The package contains several sequential previously released versions of the
program, and we use the latest version v5 for our experiments. The SIR researchers
have used the informal documentation to create a specification in the TSL language
[9]. After applying a TSL generator to it they have obtained textual descriptions of
test cases in the form of TSL test frames, and assigned a line in a “universe” format
to each test frame. The package which was obtained from SIR contained 6 TSL test
frames with “universe lines” assigned to them; in order to get an automated shell
script which could execute all test cases, we ran a JavaMTS tool (also obtained from
SIR) with a “universe” file, which producéd an automated test suite consisting of 567

test cases.
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4.2.2  Subject Programconcordance

The subJect program concordance is a C++ utility program which makes ‘word
indices of documents It was 1ntr0duced as a subJect program for the ﬁrst t1me by
Andrews et al. and is descrrbed in [25] Th1s program takes as 1nput a text file
“flename” and creates two output files w1th the 1nformat1on about concordances
The output file “ﬁlename wds” lcontams a list of all words used in the 1nput ﬁle It
also specifies the length of each word, number of times it appeared in the 1nput ﬁle,
and locations where it appeared. Location can be counted by a page, line or stanza,
and can be specified using options p, 1 or s. The output file “filename.abc” contains
a list of characters from the input file, the number of ‘appearances and the overall
percentage of uses for.each character. In our experiments, we use the pool of 372 test

cases created for the study in [25].

4.2.3 Subject Program yamm N
The subject program yammn (Yet Another Mastermmd) is a version of a famous mas-
termind game ertten in Java. It is a multl-player version of a game Wlth a GUI |
1mplemented usmg the Java AWT library. This program consists of two components:
server and client. In order to play the game, the server should be launched first, with
the port number and the mode of generating game combinations specified. Then one
or more clients can connect to the server, using the server address and port number,
and specifying the user name. When the connection is established,} a’GUI‘is shown to
the user, where he can select colours by clicking on circles, and submit his guess. The
guess is evaluated by the server, and the response is sent back, Wthh tells the user

how close he is to the wmmng comb1nat1on The first player who guesses correctly
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within 12 attempts, wins the game.

Thls program was vs}rittén by Laurent Cavallin and Corentin Massot and cé_n be fo_und
on various open souréé repositories in the Internet. The version which is being ﬁsed
ié_a beta release 0.10beta2. Test cases.‘ for this subjeét program have beén created
byrk22 students in the class of Comp1;1‘te_r‘ Science 4472 at UWO in 2009. T_hé Abboj:
automated‘ testing package [1] was used in test ica‘ds‘es to access and manipulate GUI
comenenté of yamm. These test suites formed a test pool Wyith‘the tbtal of 256 teé_t

cases.

4.3 Evaluating Black Box Coverage Calculation

-~ Method

In order tQ evaluate the black qu coverage calculation methgd, we hayg executgd the
fqllowing ’st‘epsj ’(fqr gagh Qf the ’su.b-jéct Prog?afins:; \ | . o
’o‘.Analj.fze t‘hve infofméluis{).ééif‘icafﬁonv and perform eqﬁi;aleﬁce partltlomng :o‘n 1n—
Pu_tsan_do’gtp}ﬁts..lw - R o
- e Assemble eq‘uivalence,classes into an ‘FTS XML sﬁeciﬁcation. L
e Instrumént the source code so ﬁhat logs will be written in the specified format.
o Create a bash shell script which will execute all test cases automatically.
; ’E)’vc‘écute the ‘sc‘:‘rif)t» é,nd collect lbg'ﬁlve?'s.}'
| ‘@ Run FTS .’I"o;;)lrb Wlththe FTS spéciﬁca;tion éﬁd‘_;log ﬁles in ;(;r(i}er to obtain the

coverage report.
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We We're'al)le tosuccessfullyapply the hl_ack box coverage Calculation't‘o all: subject
programs. . However, flex appeared to be the most difficult program to create an
FTS specification for, primarily because of the large number of switch options which
could be speciﬁed as‘input‘ for flex and affect the generation of the “lex.yy.c” file.
According to'the vinformal pro‘gram’speciﬁcation, it is not enough to test each switch
individually; lnstead, there 1s a need Vto Tun ther program with certain combinations of
switches and also check'that invalid combinations are tested as well. Therefore there
is a need to take 1nto account valld and 1nval1d comb1nat10ns of value sets, wh1ch is
not supported by the current 1mplementat10n of the FTS Tool. This llmltat1on of
our approach i is discussed in the next chapter. Figure 4.1 shows an extract from the
FTS speclfication for the yalnm _subject program. It presents the FTS specification
in a plain te)rt forrnat, _omitting closmg tags, angle brackets and Multiplicity and
Valueset elements. “As an example, ValueSet elements for the PortNumber input

variable‘have been included.

Instrumentmg the flex source code also appeared to be more difficult than instru-
menting the two other programs It was requ1red by the spec1ﬁcatlon that the contents
of rules and deﬁmtwns sect10ns of the 1nput ﬁle are captured. However it was not
poss1ble to capture these values in the loglcal flow of the program which was imple-
mented in a state machlne fashlon, Where each character of an 1nput file was processed
individually. As a result, we had t_o add code which would parse the input file, extract

the necessary information and write it into the log file.

After runmng all ava1lable test cases and obtaining execution logs, we have calculated
the black box coverage for each of the subject programs. Table 4.2 provides coverage
values for each of the subJect programs displayed both as a ratio of the number of

covered elements to the total number of elements, and as a percentage. As shown in
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Figure 4.1 FTS specification for yamm

SystemDesc
Component name=Server
, InputSource name=CommandLine -
InputEvent name=ServerInitialized
InputVar name—PortNumber -
Valid ValueSet From 1024 to 65535
Invalid ValueSet Negatlve numbers
- Invalid ValueSet From O to 1023
Invalid ValueSet From 65536 to unlimited
-Invalid ValueSet Number in incorrect format
InputVar name=GameMode . '
- InputSource name=StdInput
InputEvent name=GameInitialized
InputVar name=ColoursSpecified
InputVar name=PegColour
.InputSource name=ComboGenerator
InputEvent name=GamelInitialized
DutputDestlnatlon name=ClientConnection
.. OutputEvent name=UserWon 3
OutputVar name=NumberOfGuesses
/. OutputEvent: name=GameFinished -
OutputVar name=Result
OutputEvent name=GuessEvaluated -
OutputVar name=NumberOfRedLines
OutputVar name=NumberOfWhiteLines
Component name=Client ‘ ‘
InputSource name—ServerMessage .
'InputEvent name=NewGameMessageReceived
InputEvent name=GameOverMessageReceived

InputEvent name—Connect1onSucceededMessageRece1ved

. - InputEvent name=ConnectionFailedMessageReceived
InputSource name=CommandLine
InputEvent name=ClientInitialized
InputVar name=PortNumber
InputVar name=UserName
InputVar name=ServerName
InputSource name=MastermindGUI
InputEvent name=UserGuess
InputVar name=ColoursSelected
InputEvent name=GameStopped
InputEvent name=ClickOnPeg
InputVar name=PegNumber
InputVar name=Number0fClicks
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Table 4.2 Black box and white box coverage measurements for subject programs - -

Coverage elements | . . flex concordance yamm
Simple existence 125/139 = 89.93% | 74/79 = 93.67% | 100/106 = 94.34%
Valid value sets 59/66 28/28 35/38
Invalid value sets 12/14 17/21 11/14
Output value sets 12/xT o e 22 - 15/15
Multipl. value sets . .80/72. | . 12/12 19/23
Boundary value sets 3/48 5/12 13/32
| Total black box | 178/259 = 68.73% | 91/103 = 88.35% I 132/161 = 81.99% |
[ Total white box | 80.73% | 100% | 91.76% |

the table, the yamm subject program has the highest simple existence coverage, while
concordance has the highest total coverage. ! All three programs have low boundary
value coverage, but as concordance has the smallest number of boundary values in
the spec1ﬁcat1on 1ts total coverage 1s the largest among the three programs. Low
boundary value and 1nval1d value sets coverage can be explalned by the fact that
boundary and 1ncorrect cond1t1ons are usually taken into account after all vahd test
cases have been explored and very often these condltlons \are forgotten As we can
see from Table 4.2, the total number of coverage elements a?)‘pears to be greater
than 100 for all subJect programs, however it stlll prov1des less granularlty than the
Wh1te box statement coverage in whlch the number of coverage elements equals to the
| number of executable 11nes of code We can also see from Table 4.2 that flex has
the smallest wh1te box coverage value among the three programs Wh1le concordance

has the hlghest coverage value of 100%
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4.4 - Comparison of Black Box and White Box Cov-

erage Metrlcs

The first set of experiments which we execute aims to compare the white box coverage

of each single test case with its black box coverage.
4.4.1 Experiment DeSign S - , .

In the ﬁrst step of the experiment we obtam the wh1te box coverage using the gcov ‘
ut111ty for flex and concordance, and the Cobertura ut1hty for yamm. The bas1c prin-
c1ples of statement coverage calculatlon ut111t1es is descr1bed in Sectlon 1.2.1. The ﬁrst
step is to complle the ongmal source code of each subJect program usmg two special
GCC optlons -fprof ile- arcs -ftest coverage or 1nstrument Java bytecode w1th
Cobertura after compllmg yamm source code After execut1on of each test case we
generate a coverage report save it and clear the coverage ﬁle foR future use. As the
statement coverage report is generated in the format specific to the coverage calcu-
lation tool, the next step is to transform a report generated for each test case into a
plain text file which contains only numbers of lines executed by a particular test case.
In case of a Cobertura report, each line contains a class name and a line number.
Fihally, we calculate the white box statement coverage by dividing the number of

unique lines in each file by the total number of coverable source lines.

The second step is to collect the black box coverage 1nformat10n usmg the FTS Tool
We run the FTS Tool for each 1nd1v1dual log file w1th the —llstce option, whlch
produces a report ﬁle Wlth the 11st of umque 1dent1ﬁers of covered elements As

we can see from Table 4.2, none of the test suites for subject programs achleve 100%
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black box coverage, and only concordance achieves 100% white box coverage. For the
comperison purposes, iWe calculate the relative coverage values, Where'the maximum
coverage achieved by the whole test pool will be considered as a 100%. Finally, we
assemble percentage values for each of test cases into a single text file anei analyze

them.

In order to see if combining individual test cases into test suites will have an effect on
the relationships which we study, we genere,te test suites of various sizes from 2 t\o 50,
with 100 test cases‘ in each test suite,. resulting in 4900 test suites in total. For veach
test suite, we choose test cases randomly using ’a permutation tool, and store test
case numbers in a text file corresponding to this test suite. As we have information‘
about black box and white box elements covered by each test case, we are able to
calculate the eeyerage of each test suite :rxyithout actually running test cases or running
the FTS Toel on the log files. Instead, we compute the union of the collections of
coverage elements of 1nd1v1dua1 test cases which compnse thlS test sulte and divide

the number of dlstmct elements in the set by the total number of coverage elements
e : , N

4.4.2 Experimental Results

Figure 4.2 shoWs the scatterplot of the total black box and white boxhe?tatement
coverage measures for individual test cases of flex. As we can see from tile figure,
the majority ef the test cases are grouped together and have a positive correlation
between the two coverage measuree. The white box coverage measure is‘ greater than
the black box meaSure for all test cases in this group. There is also a small number of
outliers for WHich the black box coverage is greater th@n.,th(? white box_covefage, and

-the white box ceverage is smaller than the average Whitebox coverage. These outliers
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Figure 4.2 Scatterplot of black box and white box measures for flex
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Figure 4.4 Scatterplot of black box and white box measures for yamm-
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represent erroneous test cases which test invalid inputs to the program. For these test
cases, only the error-handling lines of code are executed. The number of the error-
handling lines is small compared to the total size of the program, making the white
box coverage smaller. However, the black box coverage is relati\}\ely high because the

\
erroneous inputs correspond to particular value sets from the specification.

‘Figure 4.3 shows a scatterplot of the black box and white box coverage measures for
the concordance subject program. We can divide the points into several groups of
test cases: the biggest -gfoup represents correct executions with high coverage; the
group in the bottom left has lower coverage and represents invalid test cases which
caused the program to do error-handling; ‘the ‘sméll group in the middle represents
invalid inputs which have forced the program to execute part of its functionality (e.g.

parsing an input file), and then terminate with an error message.

Figure 4.4 shows a scatterplot for the yamm program. In this scatterplot, the number of
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erroneous test cases Wlth small coverage values is rather large. ThlS can be explamed
by the fact that the maJorlty of test cases from the test pool examme erroneous
conditions, whlle the number of valid test scenarios is small. As we can see from the
figure, there 1s a group of points in the center with a wide range of white Box values
but almost the same black box value. These points correspond to test case scenarios
in which both‘_ the client and server were launched and the connection between then
was established, but the game did not finish correctly.

The scatterplots for individual test cases show that on average the black box coverage

is smaller than the white box coverage and has less variability of values: for flex and
concordance the majority of test cases have a black box value in the range from 20% |
to 40%, while white box changes from 0% to 80%. We also notice that the black box
coverage value does not directly correspond to the number of executed lines of code.
Consider two test cases: the ﬁrsﬁ one tests an erroneous condition, which causes the
program to execute only the error-handling code; while the other test case tests a valid
input to the program, which causes the program to 'execut“e its main functionality.
These two test cases have similar black box coverage values but ‘he first one has low

\

white box coverage, and the second one - high white box coverage.'.

‘We also analyze the relationship between black box and white box coverageimeasure—
ments for the pool of randomly generated test suites of sizes from 2 to 50, containing
4900 test suites in total. Figures 4.5, 4.6 and 4.7 show scatterplots of the total black
box and white box statement coverage measures for the yamm, concordance and flex
subject programs respectively. In these plots, each point corresponds to one ‘test suite
from the pool of test suites of sizes from 2 to 50. As we can see from these ﬁgures, all
flex test suites are grouped together, while the concordance and yamm piots have

a group of outliers with smaller coverage values. This can be explained by the fact
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Figure 4.5 Scatterplot of black box and white box measures for yamm test suites
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Figure 4.7 Scatterplot of black box and white box measures for £1ex test suites
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that in the scatterplots with black box and white box values for individual test éases,
the number of outliers with smaller black box and white box values is considerably
smaller for flex in comparison with concordance and yamﬁl Correspondingly, when
several test cases with low coverage values are grouped together\mto a test suite, the

coverage value of a test suite is also likely to be low.

| We can notice that the relationship between the black box and white box coverage
- measures is not linear in these scatterplots. In order to get a deeper understanding
of the relationship, we fit several linear models into the data using the R statistical
package and try to determine which model is the most accurate. Linear regression is
the process of ﬁndiné tfalués for the coefficients of a linear model which best fit the
actual data. We can evaluate how well a model fits the actual data by calculating
the coefficient of determlnatlon R2. An R? ranges from 0 to 1, where the value of 1

indicates that the regressmn model perfectly fits the data
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Table 4.3 Goodness of fit of black box vs. white box relationship, measﬁred by R?

Linear model o R?

flex | concordance | yamm
black_box = white_box 0.7899 0.4997 0.7289
black_box = log(white_box) 0.7725 0.241 0.4518
log(black_box) = white_box - | 0.8156 | = 0.6122 0.831
log(black_box) = log(white_box) | 0.8084 [  0.3393 0.5961

Table 4.3 shows R? values for four linear regression models of black box and white
o ‘ . . N

box coverage measures. The R? values are very close to each other for flex, while the

values for concordance and yamn clearly show that the model of the form white_boz

= B0 + B1*log(black-boz) is the most accurate model.

J

We have noticed from the scatferplots for individual test cases that there exist a
lot of test cases with relatlvely low black box coverage which execute most of the
‘program’s code. When test cases are combined into test sultes we can see a large
number of tes_t suites with low black box coVera’ge'and a relatively high white box
coverage. However, if we look at test suites with higher black bex values, we can see
that when the black box coverage of a test suite increases, its white. box coverage does

not change s1gn1ﬁcant1y

4.5 The Relatlonshlp Among Slze, Coverage and

Effectlveness

Andrews’ experiments [25] indicate that both size and coverage influence test suite
effectiveness, and a linear relationship among variables log(size), coverage and effec-

tiveness exists for studied programs. In this set of experiments we determine if adding
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the black box coverage to the model makes it more accurate, and if a nonlinear re-

lationship among the black box coverage, size and effectiveness of a test suite still

holds.:

We use two subJect programs flex and concordance for thls expenment as ex1st1ng
test cases for yamm have 11m1tat1ons Wthh make th1s ‘program not sultable for the
experlments Spec1ﬁcally, yamm test cases do not have a mechamsm of checkmg if
a mutant was detected by a partlcular test case. The majority of yamm test cases
interact with the chent GUI using the Abbot library, and do not have a mechamsm

to check if all elements of GUI are in the correct state.

4.5.1 Mutant Generati:on‘ H

The ﬁrst step of the experlment 1s the preparat1on of faulty versions of the or1g1nal
programs. We reuse concordance mutants Wthh were generated for studies in [25]
We generate mutants for flex usmg the mutant generator Wluch is descrlbed in
[6] and wh1ch uses four types of mutant operators “replace operator “replace
constant” negate dec1s1on and “delete statement” We apply mutant operators to
the lmes of code Wthh were covered by the test pool We then 1dent1fy equ1valent
and non-equlvalent mutants In order to do th1s we ﬁrst run test cases on the “gold”
version of the program (the or1g1nal version Wlth no known faults) and save that
program S output Wh1ch w1ll act as a test oracle We then run all test cases on each
of the faulty versions, and cons1der a mutant to be equlvalent if the output of all test
cases is the same. If any test case produces a different output while being executed
on the faulty version, this version is considered to be non-equivalent. The ratio of

non-equivalent to equivalent mutants appeared to be different for the two subject



70

programs: we have selected 135:non-equiva,1ent mutants for concordance from the
pool of 200 niutants, and 125 non-equivalent mutants for flex from the pool of 1000
mutants. In this experiment, the mutant equivalence is approximated because We
are using only a subset of test cases from the infinite set of potential test cases, in
order to decide if a mutant is equlvalent We have prepared a set of shell scripts to
automate the execution of subJect programs and collectlon of the experlmental data

in order to make the exper1ments reproduc1b1e

4.5.2 Data Collection -

The best way to measure how size, black box and white box coverage separately
influence the effectiveness is to consider low and high values of each factor: (low size,
high size), (low black box, high black box), (low white box, high white box). In order
to use this approach, we would have to construct test suites with all combinations of
factor levels, measure the effectiveness of each test suite, aﬁd‘then perform the 4-factor
2-level analysis of variance (ANOVA) to see which factors influehce the effectiveness:
- However, our initial analysis showed that all three factors - size, black b\ox and white
box coverage, are positively correlated, and constructing a test suite with high black
box and white box coverage but small size is almost impossible. Instead we perform
the analysis of covariance (ANCOVA) which requires a continuous outcome variable,
at least one categdrical faCfor V\}.arié,ble and at least one continuous factor variable,

and combines features of simple linear regression with ANOVA.

Therefore we use a data set which consists of 100 random test suites of each size from
2 to 50, resulting in 4900 test suites. Generation of this set of test suites was described

in Section 4.4.1: For each test suite, we record the black box and white box coverage
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as well as the effectiveness, which is calculated as a fraction of the number of mutants
killed by a particular test suite. In this data set, we have one continuous outcome
variable (effectiveness), two continuous factors (white box and black box coverage),

and one discrete factor (size).

Aﬂs“j‘the way of generating tes_t ‘sui.tes rnight affect the resnlt, vve also .prepare_d a_ set
of test sultes Wh1ch ach1eve partlcular black box coverage thresholds and generated
1000 test smtes of each black box threshold value We p1cked thresholds 50, 60, 70
80, 85 90, 91 92 and 93 for concordance, and 50, 60 70 75 80 81 and 82 for flex,
as the maximum feas1ble coverage of the flex and concordance _test pools is 82%
and 93% correspondingly." The earller stndies _by Andrews et al. [8] have shown that.
the effectiveness rises sharply as the 100% feasible white box coverage is approached.
In order to see if this“pattern holds for the black box coverage, we made the threshold
black box coverage values more fine-grained as we approached the maximum feasible
coverage.. We did not add any test cases to the existing test pools to achieve 100%
black box coverage, as we did not want to change the.test pools that were supplied
- with the subJect programs. For each test sulte, we record the white box coverage test
sulte size and eﬂ'ectlveness In thls case, a dlscrete factor is the black box threshold

and two contmuous var1ables are size and Whlte box coverage '

4.5.3 Experimental Results.

We visualize the experimental data with various plots, perform ANCOVA in order to
see which factors influence the effectlveness, and perform several linear regress1ons in
order to get a deeper understandmg of the relat1onsh1ps among factors. We use the

R stat1st1cal package [29] for stat1st1cal analys1s of data o
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4.5.3.1 Visualizations

We first analyze test suites of fixed sizes Jfrom 2 to 50, and compare their effectiveness,
black box ‘and white box cbverage valnes With their sizes. Figure 4.8 shows how test
suite size mﬁuences ‘the effectlveness, for the concordance subject program This
figure shows a box and ‘whisker plot W1th distributions of the effectiveness values for
each test suite size. As we can see from the figure, test suites of sizes from 2 to 6 have
several outliers, which have low effectiveness values. These outliers correspond\to
test suites which consist of test cases with very low white box and black box coverage
measures. Effectlveness increases slowly for test suites of sizes from 7 to 30, and has

very s1m11ar d1str1but10ns and mean values for test sultes of sizes from 31 to 50.

Figures 4.9, 4.10 and 4.11 show how test suite size influences the effectiveness, white
box and black box coverage, for both subject programs. In all three figures, each
‘ pomt represents the average value for 100 test sultes of the given size. All three

PN

ﬁgures show a pos1t1ve correlatlon among the factors |
\
Figures 4. 12 and 4.13 show scatterplots of the black box coverage and test suite

effectiveness: for the concordance and flex subject programs respectlvely In these
plots, each pomt corresponds to one test suite from the pool of test suites of sizes from
2 to 50. These scatterplots show that increasing the black box coverage frorn 35% to
55% results 1n the significant increase of effectiveness for both subject prograrns, while
increasing the black box coverage from 70% to 90% does not result in the increased

effectiveness.

We also analyze the set of test sultes Whlch have fixed black box threshold values.
Figures 4.14, 4. 15 and 4 16 show how black box coverage measure influences the

effectlveness, white box coverage and s1ze, for both subJect programs. In all three
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Figure 4.10 The relationship between size and black box coverage
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Figure 4.14 The relatlonshlp between black box coverage and effectlveness for dlS—
crete black box data set '
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Figure 4.16 The relationship between black box coverage and size for discrete black
box data set
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figures, each point represents the average value for 1000 test suites with the given
black box threshold value. The test suites with the smallest black box threshold
~ value of 50 ha,vé average sizes of 12 and 7 for flex and con‘cordan'\?e-correspondingly,
compared to the lowest size of 2 test cases for the first data set. We; can . notice that
these figures exhibit relationships similar to the ones in the previous sét of test suites,
as test suites which have larger:black box threshold values also tend to contain a
lérger number of test cases. However, due to the difference in the ranges of test suite

sizes, the relationships are not identical. *

4.5.3.2  Data Analysis

AnélySis of ‘coxfariahce (ANCOVA) in's‘tati'sti’cs" is an"al[‘)pr(i)'a,:éh‘_ivs%hi‘(:h' combines lin-

ear vfegréssion with the analysis of variance. We have performed ANCOVA on the
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experime‘ntalrdata‘ uSing the linear model E’ﬁ = 'BO + Bi*'log(sz'ze) + B?* black_box
+ B.?*whzte_box We include the constant term B0 (also called an intercept) into

the model as we only have data for pos1t1ve values of size, and do not expect the

regress1on line to go through the or1g1n. -

The aov funct1on prov1ded by the R system produced a value of p for each factor
and all factor interactions?. A value of p below 0 05 1nd1cates that the correspondmg
null hypothes1s is reJected and the factor or 1nteract10n s1gn1ﬁcantly influences the
outcome var1able The P values for both subJect programs were always smaller than
0. 0001 for the three factors and ﬁrst order factor mteract1ons, meaning that these
factors 1ndependently 1nﬂuence the effect1veness, but the s1gn1ﬁcant mteractlon effect

exists between factors

After ensuring that all factors significantly influence the outcome variable, we perform
regression analysis on the data in order to determine the relationship among variables.
We use R’s linear regression function to fit various linear models to the experimental
~ data. First, we take' the model Suggested by Andrews in [25] and'\add the black box
coverage factor to it. We then compare this model to 12 other ‘Inodels which we
consider to be less accurate. These models consist of_the"cOmbinatio‘rl‘of factors size,
log(size), black.box, log(black-box) and white_box. We use the adjusted R? value
reported by the R’s 1m function as’'a measurement of how well the model fits the
data®. Adjusted R? is a modification of the R? value which adjusts for the number of

variables used in the model.

Table 4.4 shows adjust'ed R? values for two sets of test suites for all 13 models and two

1The R’s aov function works as a wrapper to the lm functlon (see below) to perform an analys1s
of covariance by fitting an analysis of variance model for each value of discrete factor. -
2The R’s 1m function is used to fit linear models.
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Table 4.4 Goodness of fit of models of effectiveness, measured by adjusted R?

Model of Effectiveness Adjusted R*
: ' | Discrete size data set | Discrete black box data set
v flex concordance flex concordance
size ‘L 0.5375| = 0.4259 0.6706 0.5355
log(size) -0 107151 -0.6009 | 0.7276 0.6187
black_box 0.7001 0.6977 0.6992 0.5947
log(black_box) 0.7437 0.7767 0.7161 0.631
white_box 0.9081 {  0.8395 0.8942 0.5663
black_box + wh1te_box 0.9085 0.9098 0.8953 0.6261
log(size) + black_box . .| 0.7819 | ~ 0.7002 - [ 0.7295 | 0.6189
log(size) + white_box 09133 |  0.9079 0.8944 , ~0.635
log(size) + b.b. + w.b 0.9149 | 0.912 | 0.9002 - 0.6353
log(size) + log(b.b.) + w.b | 0.9136 |~ 0.9119 ~ | 0.899 | . 0.6441
size + black_box , 0.7258 0.7154 0.7 0.6175
size + white_box ' 0.9087|  0.8946 08943 | - 0.604
size + b.b. + wb 0.9096 -0.9104 0.8967 ~0.6408

subject programs. ‘We first analyze the data set of test suites with fixed sizes. The
adjusted R? values 1ndlcate that of all three factors the wh1te box factor 1nﬂuences the
r effectlveness most of all wh1le swe and black box measures add a llttle more accuracy
to the model The table shows that the model of the form Eﬁ BO o BI*log(szze )
+ BQ*whzte bo:c + B3* black_bo:c has the largest adJusted R2 value for both subJect
programs and therefore is cons1dered to be the most accurate model We also not1ce
that the model of the form Eﬁ BO + Bl*log( black bo:r) is more accurate than the
model of the form Eﬁ BO + BI*black boac, whlch is consrstent with the shape of
the scatterplots in Figures 4.12 and 4.13. -

o1

In order to determme 1f a model Wh1ch uses logar1thm1c s1ze is more accurate than the
model Wh1ch uses raw s1ze, we compare varlous models W1th lmear and loganthmlc
size factors We ﬁnd that models of the form Eﬁ B0 + Bi*log(szze ) + BQ*whzte bo:r
and Eﬁ B0 + BI*log(szze) + BQ*whzte_bom + BS’*black_bo:v are more accurate than
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Table 4.5 Coefﬁments for the linear model Eﬁ B0o + B]*log(szze) + B2xblack_bozx
-+ BS’*whzte_box ~

Subject - Coefficient

v : BO | B1 B2 B3
flex -5.01} 1.61 | -0.01 | 1.11
concordance | -0.31 | 1.637 | 0.171 | 0.788

the similar fnodels with linear size. This observation is consistent with the findings
~ of Andrews;in [25]. However, the model of the form Eff = B0 + B1xlog(size) +
B2xblack-boz is slightly less accurate that the corresponding model with linear size.
We can also see that log(size) and black.-box add similar amount of accuracy to the
model, because the models of the form Eff = B0 + Blxlog(size) + B2xwhite_boz and
Eff = B0 + Bl1xblack_boz + B2xwhite_box have adjusted R? values which are close to
each other. We can conclude from these observations that the log(size) and black_boz

factors have similar effect on the outcome variable, and are highly correlated.

The output 6f R’s anova function indicates that there exists d\statistically significant
- difference between the model Eff = B0 + Blxlog(size) f“'B,Q_’EWhA?:te,‘EOID + B3xblack_.box
and all other models, making it the best fitted function for the collected dé;ta (p value
of t test is less than 0.0001 for all pairs of models). Table 4.5 shows coefficients for
this model for the two subject programs. Figures 4.18 and 4.17 show graphs of actual

(Y-axis) vs. predicted (X-axis) values for the effectiveness model.

We have perforrhed a similar analysis for the second set of test suites with ﬁ;ced black
box threshoid values. The adjusted R? values for this data set are shown in Figure
4.4. The adjusted R? values for the flex subject program are consistent with the
values for the first set of data: the white box factor influences the effectiveness most of

all; models with logarithmic size are more accurate than the models with linear size;
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Figure 4.17 Predicted vs. actual Effectiveness for concordanéé using the model Eff

= B0 + B1xlog(size) + B2xblack_-box + BSxwhite_box
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and the model of the form Eff = BO + B1lxlog(size) + B2xwhite_box + B3xblack-box

is considered to be the most accurate one.

In contrast the adJusted R2 values for the concordance subJect program are much
lower and change in the range from 0. 53 to 0.64, which is cons1dered to be low
accuracy. The low accuracy of the models explalns 1ncons1stency w1th the prev1ously
observed patterns the black box factor has sl1ghtly larger adJusted R2 value than the
wh1te box factor, suggestmg that the black box has more 1nﬂuence on the outcome
varlable Also, the model of the form Eﬁ BO + BI*log(szze) + BQ*whzte_box +
B.S’*log( black_ box) is cons1dered to be the most accurate one, which is inconsistent

with the previous results.

A possible explanatlon of the low accuracy of these models is in the way of choosmg
the threshold values whlle generatmg test sultes We have prev1ously 1dent1ﬁed that
' the relat1onsh1p between the black box coverage and effectiveness is logar1thm1c, and
test cases w1th low black box coverage can ensure hlgh levels of effectweness We have
selected black box threshold values startlng from 50 (wrth the average test suite size
of 8 test cases), which i is a relatlvely thh coverage value Increasmg the black box
~ coverage from 50 to a maximum feasible value did not affect the test suite effectiveness

very much, which may result in the lower accuracy of the models.

4.5.4 Di‘scuSSion

It is cons1dered a general rule in the software test1ng 1ndustry that a tester must take
into account both black box and white box approaches when constructmg test cases.
Although our experlments have shown that there does exist a statistically 31gn1ﬁcant

difference between the models of the forms Eff = B0 + Bl*log(szze ) + B2xwhite_box
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and Eff = B0 + Blxlog(size) + BQ*black_boa: + B8xwhite_boz, the effect of adding the
black box factor to the model is relatively small (less than 0.01 difference in adjusted
R?). This difference does not have a large impact in practice. We have also found that
the white box coverage alone is better at predicting the effectiveness than the black
box coverage alone, while log(black.box) is better at predicting the effectiveness than
the raw black box coverage value when size is not taken into account. The logarithmic
relationship between the black box coverage and effectiveness means that a test case
with low black box coverage is likely to be more effective than a test case Withxlow
white box coverage “However when we increase the black box coverage, after a certain

pomt the effectlveness does not increase very much.

Based on these findings, we suggest that a good testing strategy is first to use the
black box coverage approach to construct test cases, as this will ensure a high level
of effectiverresSi After rthat it is useful to add the White. box test cases to the test
suite to make sure that the high code coverage is achieved which in turn will lead to

the increased effectiveness. This 'property makes the black box approach suitable for

‘ smoke tests and regression tests, in Whlch a small amount of test \Cases must provide

a h1gh level of confidence about the quahty of the program

We_ also suggest that the black box approach is more suitable at the early stages
of software development, before the final release of the product. A tester will use
test cases constructed using the black box approach to ensure that no functionality
is missing and all features are working as they are designed to. However, when all
functionality is implemented,, it is more appropriate to run test cases which aim to
achieve high code coverage in order to find more bugs. Therefore both black box
and white box approaches are eQually important, but should be used for different

purposes. .
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Chapter 5
Conclusion

5.1 Conclusion

This thesis has presented a method to evaluate the thqroughness of a test suite from
-the black box perspective. This method is based on the two most: widely used :in-
dustry black box techniques: equivalence partitioning and boundary-ly'alué analysis.
The method cdnsists of three main components: Functional Test Specification, which
defines equivalence classes for each input and output variable; lég files, which are'pro?
duced during the execution of a subject prdgrain, ‘and the FTS "Tool,‘i which éompares
elements from log files with elements from the FTS, and calculates the pércentage of
elements covered.  This thesis also presented the architecture and implementation of
the FTS Tool coverage calculation program. The' design of the tool is scalable and
will allow easy addition of other coverage types to the report. Several experiments
havé been conducted in order to evaluate the proposed method, as well as to study

the relationship among the black box and white box coverage measures, test suite
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size and effectiveness, and see if the black box coverage can be a good predictor of

test suite effectiveness.

We have successfully apphed the black box coverage calculation method to three
subject programs of different sizes 1mplemented in dlfferent programmmg languages
Expenmental results 1nd1cate that the white box coverage is better at pred1ct1ng the
effectlveness than the black box coverage We suggest that the lower accuracy of the |
black box factor i in comparlson w1th the Wh1te box factor can be due to the smaller
granulanty of the black box spec1ﬁcat1on . the number of black box coverage elements
is very small compared to the number of lines of code i 1n the program. We have also
found that there exrsts an exponent1al relat10nsh1p between the black box coverage
and effectlveness wh1ch means that a test case with low black box coverage is likely
to be more effective than the test case w1th low whlte box coverage However, when
we further increase the black box coverage the effectiveness increases only slightly.
We have also found that the model of the form log(size) + black_box + white_box
is the most accurate model based on the statistical adjusted R2 parameter; however,
- adding the black box coverage factor to:the model of the form log\(size) + white_box

RN

does not significantly increase the accuracy of the model.

Our ﬁndmgs suggest that When constructmg test cases, the black box testmg approach
should be g1ven the preference at the early stages, as the relatlvely low black box
coverage can provxde high test su1te effectlveness After ach1ev1ng a hlgh level of
the spemﬁcatlon coverage, it is appropnate to add the thte box test cases to make
sure that h1gh code coverage is achleved ThlS is consmtent w1th the general testmg

pract1ces
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5.2  Future Work

Several improvements can be made to the coverage calculation program and exper-
iments. The current implementation of the FTS Tool does not take into account
combinations of values of different input variables. For example, if we want to test a
system which takes as input a date in the form of a day number and a month number,
then valid values for the month variable will be from 1 to 12, and valid values for
the day varlable will be from 1 to 31. However certaln comblnatlons of these valid
values, such as 2/ 30, 4/ 31 etc are mvahd We Would hke to extend the XML specrﬁ-
catlon deﬁmtlon 80 that 1t w111 allow to spe01fy combmatlons of value sets and indicate -
whether they are Vahd or 1nvahd and also change the FTS Tool 1mplementat10n SO

that 1t will check 1f a certain comblnatlon of value sets was present in the logs

One 11m1tat10n of the current approach has been uncovered during the experiments
Wlth the concordance subject program. concordance has two modes of operation:
help printing mode, when the --help optron is specrﬁed and a regular mode in which
an 1nputF11eName ‘variable is requlred (Wluch is captured in thé FTS as an invalid
multiplicity of “0”) Both of these arguments belong to the mput event “Options-
Spemﬁed” So, when the followrng 1nput event appears in the log file: “InputEvent
program commandLme Opt10nsSpec1ﬁed Help-—help” the multlphclty of the 1nput—
FileName variable is considered to be 1nvahd by the FTS Tool. Accordlng to the
value set coverage calculation algorithm, a value set can be considered tested if the
corresponding input event does not contain invalid variable values or multiplicities.
Therefore in this input event the value set “Help=-help” is not considered to be cov-
ered. We would like to incorporate into the FTS a way to specify the restriction that
certain input variables cannot be used together in one input event, which in turn will

be taken into account by the FTS Tool while calculating the coverage.
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~ We also would like to incorporate the following improvements to the experiments:

e Add more test cases to the existing pool of test cases for the two subject pro-
grams, so that the test pool will achieve 100% white box and 100% black box

" coverage. In this case we will not need to scale the coverage values for the ex-
periments, which will potentially improve the accuracy of the linear regression

models of effectiveness.

e Test the black box coverage calculation approach on a wider range of subject

programs, including programs of larger sizes, programs with GUI and a more
"diverse'functiohality This Will'allow us to have a more advanced FTS speci-
fication, which will increase the number of coverage elements and i 1mprove the

accuracy of statlstlcal ana.lys1s

. Generate mutants for the yamm subJect program and perform analysis 31mllar

to the one descr1bed in Sectlon 4.5.

e In Section 4.5.4 we suggest ktha‘,t ‘the white box technique is more useful for
a eomplete 'brogfa‘ﬁif Whlch ‘does not chang.e‘ over :time, while -«:_‘the ‘black box
approach is useful during the implementation of the program. In order to test
‘this hybothesis we would like to pierfOrm(an'alysis of several different versions of

_the same program, containihg different sets of features. |
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