
Western University Western University

Scholarship@Western Scholarship@Western

Digitized Theses Digitized Special Collections

2011

RECORDING AND EVALUATING INDUSTRY BLACK BOX RECORDING AND EVALUATING INDUSTRY BLACK BOX

COVERAGE MEASURES COVERAGE MEASURES

Tatiana Tokareva

Follow this and additional works at: https://ir.lib.uwo.ca/digitizedtheses

Recommended Citation Recommended Citation
Tokareva, Tatiana, "RECORDING AND EVALUATING INDUSTRY BLACK BOX COVERAGE MEASURES"
(2011). Digitized Theses. 3493.
https://ir.lib.uwo.ca/digitizedtheses/3493

This Thesis is brought to you for free and open access by the Digitized Special Collections at
Scholarship@Western. It has been accepted for inclusion in Digitized Theses by an authorized administrator of
Scholarship@Western. For more information, please contact wlswadmin@uwo.ca.

https://ir.lib.uwo.ca/
https://ir.lib.uwo.ca/digitizedtheses
https://ir.lib.uwo.ca/disc
https://ir.lib.uwo.ca/digitizedtheses?utm_source=ir.lib.uwo.ca%2Fdigitizedtheses%2F3493&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ir.lib.uwo.ca/digitizedtheses/3493?utm_source=ir.lib.uwo.ca%2Fdigitizedtheses%2F3493&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:wlswadmin@uwo.ca

RECORDING AND EVALUATING INDUSTRY
BLACK BOX COVERAGE MEASURES

(Spine Title: Recording and Evaluating Industry Black Box Coverage)

(Thesis Format: Monograph)
\by

Tatiana Tokareva

■ v .

Graduate Program in Computer Science

Submitted in partial fulfillment
of the requirements for the degree of

Master of Science^

School of Graduate and Postdoctoral Studies
The University of Western Ontario

London, Ontario
December, 2011

© Tatiana Tokareva 2011

THE UNIVERSITY OF WESTERN ONTARIO
SCHOOL OF GRADUATE AND POSTDOCTORAL STUDIES

CERTIFICATE OF EXAMINATION

Supervisor Examiners

James H. Andrews Ian McLeod

Supervisory Committee

Michael Bauer

Steven Beauchemin

A
The thesis by .

Tatiana Tokareva
entitled

R E C O R D IN G AN D EVALU ATIN G IN D U STRY B L A C K B O X
C O V E R A G E M EASURES

is accepted in partial fulfillment of the
requirements for the degree of

Master of Science

Chair of Thesis Examining Board

n

Date

Abstract

\
\

Software testing is an indispensable part of software development process. The main

goal of a test engineer is to choose a subset of test cases which reveal most of the

faults in a program. Coverage measure could be used to evaluate how good the

selected subset of test cases is. Test case coverage for a program was traditionally

calculated from the white box (internal structure) perspective. However, test cases

are usually constructed to test particular functionality of a program, therefore having

a technique to calculate coverage from the functionality (black box) perspective will

be beneficial for a test engineer. In this thesis we discuss a methodology of recording

and evaluating the black box coverage for a program. We also implement a black

box coverage calculation tool and perform experiments with it using three subject

programs. We then collect and analyze experimental data and show the relationship

between the two types of coverage and the fault-finding ability of a test suite.

K eyw ords: Software Testing, Black Box Testing, Equivalence Partitioning, Bound­

ary Value Analysis, Coverage Criteria, Statistical Analysis

m

It would not have been possible to write this thesis without the guidance and support

o f my supervisor Dr. Jamie Andrews. His ideas, enthusiasm, inspiration and ability

to explain things clearly and simply have been invaluable to me.

I would like to acknowledge the financial, academic and technical support of the

University of Western Ontario and the Department of Computer Science, and its

friendly faculty and staff.

I also would like to thank my husband Alexander for his continued support, patience

and understanding, as well as all my family in Russia.. . ^

IV

Table of Contents
Y

Certificate of Examination ii

Table of Contents v

List of Tables ix

List of Figures x

1 Introduction ' 1

1.1 Software Testing i . .\ . . . i . . ! 1

1.2 Coverage Criteria 3

1.2.1 White Box Coverage . ̂ 1 3

1.2.2 Black Box Coverage 1 5
\

1.2.2.1 Equivalence Partitioning ! 6

1.2.2.2 Boundary Value Analysis 6

1.3 Test Case Effectiveness ‘ . 7

1.4 Thesis Focus . 8

1.5 Thesis Organization............. I . ! 1 ! 9

v

2 Related W ork 10

2.1 White Box Coverage 10

2.2 Black Box Coverage 13

2.2.1 Black Box Testing Techniques in Research 14

2.2.2 Black Box Testing Techniques in Industry 16

2.2.3 Terminology U p d a te ... 17
\ ' "

2.3 Empirical Studies of Test Effectiveness... s 20

2.3.1 . Mutation ... 22

3 Black Box Coverage Calculation Method 24

3.1 Overview. 24

3.2 Functional Test Specification ... 26

3.3 Log File Format v .) 30

3.4 FTS Coverage ToolV......................... 33

3.4.1 Overview 33

3.4.2 Output Format .. ! 34

3.4.3 FTS Coverage Calculation . 37

3.4.3.1 Simple Existence Coverage... 37

3.4.3.2 Multiplicity Coverage ... 41

3.4.3.3 Boundary Value C overage... 42

3.4.4 Architecture 43

3.4.5 Design and Im plem entation.. 44

vi

3.4.5.1 Package ca .u w o .csd .fts .m o d e l.sp e c ifica tio n . .

3.4.5.2 P ack a g eca .u w o .csd .fts .m od e l.log

3.4.5.3 Package ca .u w o .csd .fts .m o d e l.p a rse r

3.4.5.4 Package ca .u w o .c s d .fts .m o d e l.c o v e ra g e

3.4.5.5 Package c a .u w o .c s d .ft s .m o d e l .r e p o r te r

4 Experiments
\

4.1 M otivation..
i

4.2 Subject Program s..

4.2.1 Subject Program f l e x ...

4.2.2 Subject Program concordance ...

4.2.3 Subject Program yamm

4.3 Evaluating Black Box Coverage Calculation M e th o d

4.4 Comparison of Black Box and White Box Coverage M etrics................

4.4.1 Experiment D e s ig n

4.4.2 Experimental Results..

4.5 The Relationship Among Size, Coverage and Effectiveness

4.5.1 Mutant Generation..

4.5.2 Data C ollection

4.5.3 Experimental Results ...

4.5.3.1 Visualizations...

4.5.3.2 Data Analysis . ..

vii

46

46

47

48

48

53

53

54

55

56

56

57

61

61

62

68
69

70

71

72

77

4.5.4 Discussion 82

5 Conclusion 84

5.1 C on clu sion .. 84

5.2 Future Work .. 86

V ita 91

vin

List of Tables

4.2 Black box and white box coverage measurements for subject programs 60

4.3 Goodness of fit of black box vs. white box relationship, measured by R2 68

4.4 Goodness of fit of models of effectiveness, measured by adjusted R2 . 79

4.5 Coefficients for the linear model Eff = BO + Bl*log(size) + B2*black­
box + B3*white- box. 80

\

List of Figures

2.1 Adequacy criteria structure by Zhu et al................... \ 12

2.2 Structure of coverage elements by Andrews et al.................................. ... 19

3.1 XSD schema 28

3.2 Sample Functional Test Specification 30

3.3 Format of log files 31

3.4 Sample log file 33

3.5 Sample FTS Tool output 35

3.6 Calculation of simple existence components coverage 37

3.7 Calculation of simple existence input variables coverage 39

3.8 Calculation of simple existence value sets coverage....................... 40

3.9 Calculation of components multiplicity coverage.......................... 42

3.10 Calculation of components multiplicity boundary value coverage . : : 43

3.11 FTS Tool components 44

3.12 Package organization of FTS T o o l 45

3.13 Class diagram of c a .u w o .c s d .ft s .s p e c if ic a t io n package 50

x

3.14 Class diagram o f c a .u w o .c s d .fts .lo g package 51

3.15 Class diagram of ca.uwo. c sd . f t s . reporter package......................... 52

4.1 FTS specification for yamm... 59

4.2 Scatterplot of black box and white box measures for f l e x 63

4.3 Scatterplot of black box and white box measures for concordance . . 63

4.4 Scatterplot of black box and white box measures for yamm.................... 64
\

\

4.5 Scatterplot of black box and white box measures for yamm test suites . 66

4.6 Scatterplot of black box and white box measures for concordance test
suites.. 66

4.7 Scatterplot of black box and white box measures for f l e x test suites . 67

4.8 Boxplot of the effectiveness and size for concordance test suites . . . 73

4.9 The relationship between size and effectiveness....................................... 73
' x

4.10 The relationship between size and black box coverage.......................... 74
\

4.11 The relationship between size and white box coverage 74

4.12 The relationship between black box coverage and effectiveness for
concordance .. 75

4.13 The relationship between black box coverage and effectiveness for f l e x 75

4.14 The relationship between black box coverage and effectiveness for dis­
crete black box data set ... 76

4.15 The relationship between black box and white box coverage for discrete
black box data set .. 76

4.16 The relationship between black box coverage and size for discrete black
box data s e t 77

xi

4.17 Predicted vs. actual Effectiveness for concordance using the model Eff
= BO + BM og(size) + B2*black- box + B3*white- b o x 81

4.18 Predicted vs. actual Effectiveness for f l e x using the model Eff = BO
+ Bl*log(size) + B2*black- box + B3*white- b o x 81

;

v

xu

1

Introduction ■

The software development process is a set of activities performed by engineers, man­

agers and testers resulting in the creation of a software product. It usually involves

requirements gathering, design, implementation, testing and maintenance activities.

Nowadays software systems are becoming more large and complex, with greater risks

and costs of a failure. Just imagine, a $2 billion mission to Mars failing because of

one software defect. Therefore the importance of thorough software testing, which

can help to prevent and eliminate these failures, cannot be underestimated. In this

thesis we propose an improvement to the software testing activity. We will discuss

the problem of selecting test cases which can detect errors efficiently, and propose a

methodology of evaluating the thoroughness of a test suite.

1.1 Software Testing

Software testing is an indispensable part of software development process, which

ensures quality and reliability of software under test (SUT), and verifies that SUT

2
meets specified requirements.

There exist many software testing methodologies, which differ by testing objectives

and could produce different results. These methodologies can be distinguished by the

level o f granularity of software components, by the stage in the software development

process during which testing is performed, by testing goals and the qualification of

a tester. Unit testing is usually performed by a developer at the coding stage of

a project and ensures correct work of individual units of source code, the smallest

testable parts of the software system. The goal of integration testing is to ensure that

separate modules of an application work correctly as a group, while system testing

is performed on a complete integrated system to verify its functionality. Acceptance

testing is usually done by the customer after all development and testing has been

performed internally, to evaluate the compliance with the requirements of a finished

product. Finally, regression testing is done during the maintenance stage, in order to

verify that all defects have been fixed, and no new problems have been introduced as

part of the maintenance process.

V
Construction of test cases at any of the described levels is usually based on one of the

two fundamental approaches: white box and black box, which differ by the knowledge

that a tester has about the software under test. In the black box methodology testing

is based on the requirements and specification, while in the white box methodology

testing is based on the knowledge about the code, internal structure, paths and im­

plementation of the software under test. In this thesis we are particularly interested

in comparing the effectiveness of these two testing approaches.

3
1.2 Coverage Criteria

In order to guarantee that a program works correctly, a test engineer needs to execute

it with all possible input data combinations and test all logical paths which exist in

the program. However even for a system of a small size the number of test cases

which cover all input data combinations is infeasible. Therefore, the key issue of

testing process is, as defined by Myers [24]: “What subset of all possible test cases

has the highest probability of detecting the most errors” . \

A single execution of a program with the predefined set of environmental conditions

and input variables is called a test case. The effectiveness of a test case is the prob­

ability of detecting the errors in a program. In order to evaluate how effective the

selected subset of test cases is, the use of coverage criteria is essential. Coverage is

a measure of what portion of the subject program has been tested, and depending

on the testing methodology it could include different coverage elements. Coverage
■ ' ' ‘ N

criteria can be used by test engineers in different ways [5]. One way is to have a

particular coverage level as a goal during the generation of test'cases. Another way

is to measure the coverage of the test suite generated manually or by other external

mechanisms. In this thesis we concentrate on the second approach.

1.2.1 W hite Box Coverage

In white box testing (also called glass box, clear box or structural testing), the goal is

to create test cases which cover particular lines of code, internal structures, decisions,

etc. The most basic white box coverage criterion is statement coverage, in which

each executed line of code is considered as a separate coverage element. A statement

4
is considered to be covered if there exists at least one test case which causes this

statement to be executed. Other more sophisticated white box coverage criteria refer

to blocks of statements, decisions, conditions within the decision, and paths. Usage

o f a white box coverage measure is based on the assumption that a test case is more

thorough if it causes more elements of a program to be executed.

White box testing has been studied thoroughly in the software testing research field

and used extensively by industry practitioners. In the software development industry

white box testing is usually applied at the unit testing and integration levels.

' I .. ' ̂ V

One of the advantages of white box coverage is that it is relatively straightforward

to measure. For example, measurement of a statement coverage of a program can

be done in the following steps. First, at the compilation stage when the source code

is translated into the executable object code, special instructions are added to the

executable file. These instructions are used to collect the information about executed

lines of code in a separate file, when test cases are run against the program. This

file could later be used by the coverage calculation tool to produce a coverage report

in which each line from the source code is assigned the number of times which it

has been executed. There exist various tools to measure statement coverage, block

coverage, branch and path coverage for different programming languages; the most

popular of them are gcov for C /C + + [17], Cobertura [11] and Jtest [21] for Java.

On the other hand, white box testing has several disadvantages and limitations. First,

some defects depend on the environment rather than the code: e.g., running a program

in two different browsers might produce a different result: a web page could be

displayed correctly in the Firefox browser and be messed up in the Internet Explorer.

Second, test case maintenance is required in case of changes in the implementation,

because we need to make sure that after changes in the source code the same coverage

5
level is still achieved by test cases. Finally, it is not possible to cover all executions

of loops by test cases. If a test case forces a loop in the source code to be executed

three times, we cannot guarantee that the program will produce a correct result on

the input which causes a loop to be executed 10 times. Therefore it is important

to take into account both measures, black box and white box, as black box looks at

the testing from the user’s perspective and could reveal faults which could not be

found by a test suite with a high white box coverage. However, estimating the black

box coverage is less evident, and there do not exist any techniques to estimate it.

Therefore, white box testing method alone cannot be used as a guarantee of software

quality: it should be supported by functional test cases.

1.2.2 Black Box Coverage

In the black box testing technique (also called functional testing) test cases are built

solely based on the external information about the prograhi: specification, require­

ments and design documents. The goal of the black box testing ikto verify correctness

o f the program from the user’s perspective. This type of testing is usually applied

at higher levels, such as integration, system and acceptance testing, but can also be

used as a basis for unit testing.

We have found out that the view on the black box testing methodology in industry

and in most research works in this field differs significantly. The majority of the

research work which falls into the category of black box techniques concentrates on

the generation of test cases from formal specifications or UML diagrams.

In contrast, in industry formal specification of the SUT is available very rarely, there­

fore major text books written by industry experts place an emphasis on the techniques

6
for constructing test cases manually or semi-automatically based on the informal

specification and requirements. Myers [24], Copeland [12] and other authors consider

equivalence partitioning and boundary-value analysis to be the two most basic black

box testing techniques, and in this thesis we use these, techniques to derive black box

coverage elements for the SUT.

1.2.2.1 Equivalence Partitioning
\

. . . . \

The equivalence partitioning is the most basic black box testing method. According

to this method, all possible input values are divided among equivalence classes. Each

equivalence class involves input variables which are treated in a same way by a pro­

gram, i.e. if one test case in an equivalence class causes a program to fail, all other

test cases in this equivalence class are likely to cause a program to fail, and vice versa.

Based on this assumption, a tester could execute a program with only one test case

from each equivalence class in order to ensure that a program works correctly. This

method allows a great reduction in the number of test cases. \

1.2 .2.2 Boundary Value Analysis

The equivalence partitioning method is often complimented by the boundary value

analysis method, which is the selection of test cases that explore boundary conditions

on edges of equivalence classes. It is mostly suitable in case the input is a range

o f numeric values, either integer or real numbers. This analysis is essential because

boundary conditions are places where many of programming errors are made. For

example, a programmer could mix up “greater than” with “greater than or equal to”

in a conditional expression which will result in an invalid behavior only at the edge

7
of an equivalence class.

Black box testing also has several disadvantages. First, program specification is not

always available, which interferes with the good test case design. Second, a thorough

black box test suite can leave some paths in the program unexamined. Hence, white

box and black box testing strategies should be used in conjunction.

1.3 Test Case Effectiveness

The ultimate goal of a test engineer is to create test cases which are the most efficient

in finding defects in a program. We are interested in comparing the effectiveness of a

test case with its black box and white box coverage metrics. Effectiveness of a test case

is the probability of finding a defect in a program. One of the methods of evaluation of

the test case effectiveness is through mutation. Mutation is a mechanism of modifying

the original source code of a program in small ways. These small mutations usually

reflect typical programming errors - wrong operator, value assignment, missing or

extra statement. Effectiveness of a test case can be evaluated as the percentage of

mutants detected.

It has been shown by Andrews et al. [6] that automatically generated faults can

be representative of real faults, therefore the use of mutation in our experiments is

considered to be a good way to evaluate the effectiveness of test cases.

8
1.4 Thesis Focus

Since it is a well-established practice in industry to create test cases which cover

particular functionality of SUT rather than particular lines of code, having a technique

to evaluate the thoroughness of a test suite from the black box perspective could be

advantageous for test engineers. It will allow them to get a high-level view on test

suites that they are developing and see if any critical functionality is not covered.

Figuring out the relationship between black box and white box coverage measures

is critical to software testing research because it will allow software testers to better

evaluate a test suite and construct test suites which will be able to find software

failures more effectively.

In this thesis we explore a method to evaluate the thoroughness of a test suite from

the black box perspective using equivalence partitioning and boundary value analysis

techniques - the two most basic test case construction techniques used by industry
N

practitioners. The evaluation method is based on the three main components: Func­

tional Test Specification (FTS), which defines equivalence classes for each input and

output variable, as well as multiplicities of components; Log Files, which are produced

during the execution of a subject program, and FTS Tool, which matches elements

from Log Files with elements from the FTS, and estimates the percentage of elements

covered.

We also study the following questions: Does achievement of high black box coverage

contribute to the thoroughness of a test suite, and Is it possible to use the black box

coverage measure as a predictor of a test case effectiveness? In order to answer these

questions we compare black box and white box coverage measures of test cases and

randomly generated test suites, and study the relationship between the black box

coverage, white box coverage, test suite size and fault-finding ability of a test suite.

Our experiments have shown that the black box coverage has a statistically significant

impact on the effectiveness of a test suite, but it is smaller than the impact of the

white box coverage and size of a test suite. We have also found that there exists

an exponential relationship between the black box and white box coverage measures,

and a test case with low black box coverage is likely to be more effective than the

test case with low white box coverage.
\

1.5 Thesis Organization

Chapter 1 contains an introduction to the topic and relevant background information.

We will give an overview of some important concepts as well as related work that

has been done studying white box and black box testing approaches in Chapter 2.

We will talk about the method of calculating black box coverage, as well as the

Functional Test Specification design and the implementation of the black box coverage

calculation tool in Chapter 3. In Chapter 4, we will describe subject programs which

have been selected for our experiments, as well as design and implementation of

the experiments. We will also analyze experimental data, illustrate experimental

results and draw conclusions in Chapter 4. In Chapter 5, we will present suggested

improvements and future work which could be done in this area.

9

Related Work

In this chapter we give an overview of some important concepts of white box and black

box testing techniques and test adequacy criteria, and discuss experiments which have

been conducted in order to evaluate these techniques.

; , . •, \ ,
\

2.1 W hite Box Coverage

The terms white box and black box have been used for a long time in industry and

were first defined by Myers in his classic book [24]. He also defined and explained

the terms statement, decision, condition, decision-condition and multiple condition

coverage.

According to Myers, 100% statement coverage on code is achieved if for every state­

ment in the code there is at least one test case which executes that statement. A

more advanced coverage criterion is the decision coverage which looks at the condi­

11
tional expressions in the i f , do, while, etc. statements. 100% decision coverage on

code is achieved if for every decision in the code there is at least one test case which

causes this decision to be true and at least one test case which causes this decision to

be false. Condition coverage is an even more strong criterion, as it considers simple

conditions within a decision, which do not contain any logical operators. In order

to achieve 100% condition coverage we need to ensure that for every condition in

each decision in the code there is at least one test case which causes this condition

to be evaluated to true and at least one test case which causes this condition to be

false. Decision-condition and multiple condition coverage types are more advanced

extensions of these basic techniques.

Zhu et al. [31] have created a thorough classification of the existing black box and

white box test adequacy criteria based on the research papers in the software testing

area. First, the authors define the term test adequacy criteria as:

• a stopping rule which determines when enough testing has been performed (e.g.

in statement testing, a test set is considered adequate if i^ causes the execution

of every statement in the program);

• a measurement of a test quality (e.g. percent of statements executed), which is

similar to the term coverage criterion.

The classification of test adequacy criteria is based on the testing approach, and is

summarized in Figure 2.1. The following categories are identified:

• structural testing, in which coverage elements are based on the structure of the

program or the specification;

12
F igure 2.1 Adequacy criteria structure by Zhu et al.

! : . ;X
• fault-based testing, in which an adequacy criterion is based on the fault-finding

ability of test suites;

• error-based testing, which uses domain analysis as a foundation.

The program-based and specification-based coverage criteria are distinguished within

the structural testing category. Program-based criteria correspond to the white box

coverage criteria and are divided into the control-flow and data-flow. Control-flow

adequacy criteria are defined based on the flow graph model of a program - a graph

in which nodes correspond to the linear sequences of statements, edges correspond to

control statements or conditions, and each execution of the SUT corresponds to one

path in the graph. Based on this notation, the 100% statement coverage criterion can

13
be achieved if for every node in the flow graph there exists at least one path which

covers it. Correspondingly, 100% branch coverage (also called all-edges coverage) is

achieved if all edges of the flow graph are covered. Other control-flow criteria include

path coverage and multiple condition coverage.

In the data-flow-based test adequacy criteria analysis focuses on the occurrences of

variables within the program, and each occurrence is classified as a definition or a

use. All definitions, all uses, and definition-use coverage criteria are among the basic

criteria which are based on the data-flow analysis. Most of these coverage types are

too strong to be used in practice to measure adequacy because the actual number of

coverage elements could be unlimited.

In our experiments we use statement coverage, as it is the most basic adequacy

criterion, it has been studied thoroughly and there exist a lot of tools to measure it.

(Measuring other more strong adequacy criteria can be challenging because of the

lack of tool support.) Specifically, we use the gcov tool, [17] to measure statement

coverage of C and C + + programs, and Cobertura [11] for Javavsubject programs.

2.2 Black Box Coverage

As discussed in the In troduction section, the view on the black box testing method­

ology in industry differs from most research work in this field. In this section we first

explain which black box techniques are being developed and studied in the research

community, and then focus on the industry perspective on the black box testing.

14
2.2.1 Black Box Testing Techniques in Research

Test case generation from formal specifications is a well-developed topic in the re­

search on black box software testing techniques. According to Zhu et al. [31], there

exist two major approaches to structural specification-based testing: model-based

specifications, such as Z notations, UML, VDM Specification Language [20] and RSL

[18] specifications; and property-oriented specifications, such as axiomatic or algebraic

specifications. \

Generation of test cases based on the formal Z notation specification is one of the well-

explored and well-studied techniques. The Z notation language defines components

o f the system and specifies constraints among them. It was originally proposed by

Abrial, Schuman and Meyer [3] and was later used by many researchers to formally

define software specification and requirements. Amla and Ammann [4] have developed

a method to convert a formal Z specification into a specification in the TSL language

[9], from which test cases could be extracted. Stocks and Carrington [28] have used

Z specification to build a specification-based testing framework) in which generation
\

of test cases could be automated.

Another well-known approach explores generation of test cases based on the Unified

Modeling Language (UML) diagrams. UML is a modeling language and a set of

graphic notations to create visual models of object-oriented software systems, devel­

oped and maintained by the Object Management Group. There exist many UML

diagram types, which could describe both structural and behavioral aspects of a sys­

tem. Various UML diagrams have been utilized by software testing researchers to

generate test cases. Prasanna and Chandran [27] have developed an algorithm for

automatic test case generation using UML object diagrams based on a genetic al­

15
gorithm. Mingsong et al. [23] have proposed a method to automatically generate

test cases for UML activity diagrams by comparing execution traces of randomly

generated test cases with the UML activity diagrams. Abdurazik and Offutt [2] are

using UML collaboration diagrams for static checking and test case generation, which

allows for both static and dynamic testing.

There exist a number of research papers which use black box techniques similar to

the ones utilized in industry. One of the research papers by Balcer and Ostrand [26]

describes a method for generating test cases from a functional specification based on

a category-partition method. Within the bounds of this method a tester identifies

functional units in SUT, and for each unit defines parameters and its characteristics,

as well as objects in the environment which could affect execution of the SUT. Each

category is then divided into partitions - different states of a parameter/environment

object which could produce different results during execution. This method is similar

to the equivalence partitioning black box technique. Information about partitions is
\

written in a certain format called a Test Specification Language (TSL), which is later

used by the TSL Tool to produce textual descriptions of test cases.

The second paper by these authors [9] describes improvements to TSL - a more

advanced way to define a program’s inputs, environment conditions, outputs that it

produces, and external changes in the environment. It also introduces an improved

version of the TSL Tool which could generate not only a textual description of test

cases, but also an executable script for running them and verifying the program’s

output. At the time of publishing this paper, TSL has been used to test commercial

software in the production environment.

The idea of input space partitioning is not unique to the software testing industry, and

has different applications in the research papers. For example, Amla and Ammann

16
[4] have applied category partitioning to Z specifications for test case generation, and

the TSL specification language is based on the equivalence partitioning of inputs.

However, these techniques are usually used as a supplement for the automated test

case generation methods. In this thesis we’re interested in exploring the equivalence

partitioning and boundary value analysis techniques from the industry perspective

and apply these approaches to measure the thoroughness of any test case.

2.2.2 Black Box Testing Techniques in Industry

The majority of software testing text books written by industry experts for test

engineers and for students in software testing courses, describe techniques which are

used to construct test cases without a formal specification. Myers [24] was one of the

first authors to define fundamental black box testing techniques, such as equivalence

partitioning, boundary-value analysis, cause-effect graphing and error guessing.

He defines a test case design by equivalence partitioning as a tvro-step process: first,

a tester needs to identify the equivalence classes for each of the inputs, and after that

define test cases. He gives guidelines for a tester on the construction of equivalence

classes, but mentions that it is very subjective, and two testers analyzing the program

could come up with different lists of equivalence classes. According to Myers, in order

to identify test cases based on equivalence classes, a tester first should cover all valid

equivalence classes by test cases, and after that for each invalid equivalence class write

a test case in which only one input variable belongs to the invalid equivalence class,

and all other variables belong to valid equivalence classes. Usage of only one invalid

input variable is essential because if we try to use several invalid values in one test

case, an input check on one invalid variable could mask other erroneous-input checks.

17
Myers [24] defines boundary-value analysis as a selection of test cases which explore

situations on and around the edges of equivalence classes. If an input variable specifies

a range of numbers, he suggests to write test cases which use both ends of the range

as well as values slightly beyond the ends. In addition, he suggests to create test cases

which cover boundaries of output variables. Finally, if an input or output variable is

an ordered set, attention should be focused on the first and last elements from the

set.

\

Cause-effect graphing is another technique defined by Myers [24], which explores

combinations of input variables. In this technique, cause is an input variable or a

single equivalence class of an input variable, and effect is an output variable or a

system transformation. First, a graph which links causes and effects is constructed

and annotated with system constraints. Second, the graph is converted into a decision

table, where each column represents one test case.

The author also points out that the most effective way pf testing is by using all

strategies together, because each of them targets a particular \type of defects. Our

approach is based on the equivalence partitioning and boundary value analysis tech­

niques; however, incorporating cause-effect graphing technique might be beneficial

and is considered to be one of the future work directions.

2.2.3 Terminology Update

As it was pointed out earlier, equivalence partitioning is one of the most fundamental

black box testing techniques, which was created more than, thirty years ago. It was

originally applied to small utility programs with text-only Unix-like command line

interfaces, where main sources of input were command line parameters and text files.

18
Both Myers [24] and Balcer et al. [9] use relatively small programs with no more

than ten parameters as examples, and there was no need to develop a more advanced

classification of input variable types.

Nowadays software systems have become much more advanced; they could include

separate modules and components, each of which could consist of multiple GUI forms,

and use numerous sources of inputs such as files, databases, network connections, etc.

However, modern software testing text books [12] are still using the same terminology
\

and apply it to small sample programs. x

Therefore there was a need to refine the equivalence partitioning approach and update

terminology. Andrews [7] has proposed an equivalence partitioning scheme which

takes into account the complexity of software systems and for each input variable

defines in which software component it appears, what source of input was used and

what input event has caused this input variable to be processed by the SUT. The

same approach is applied to the output variables. The graphical representation of the

revised equivalence partitioning on inputs and outputs is presented in Figure 2.2.

A software component is an individual module of a single system, a software package

or a web service which provides a set of related functions. For example, in a client-

server system a client and a server could be considered as two separate software

components. A source of input is anything external to the SUT, provided by the

user and which could influence the behavior of the SUT. Sample sources of input

are command line parameters, standard input, files, and the graphical user interface

(GUI). Correspondingly, an output destination is something created or modified as

a result of the execution of the SUT, such as standard output, error logs, the GUI,

and output files. An input event is any event which involves any of the SUT’s input

sources. It could be a menu selection, button press, command typed by the user,

19
F igure 2.2 Structure of coverage elements by Andrews et al.

program launch, etc. Accordingly, an output event is an event of producing output

by the SUT, which involves one output destination. Examples of output events are

messages presented to the user, data written to a file or a database, or messages sent.

Input and output variables are the most basic input and output elements in the

equivalence partitioning method; they are usually strings, numbers or boolean values.

Examples of input variables are user name, port number, side length, month number,

day number, and column width. Each input and output variable could be broken down

to value sets, which can be considered as value-level equivalence classes. Value sets

of input variables, in contrast with output variables, could be invalid, which means

20
that when a system receives such input, it is supposed to give an error message or

indicate in some other way that this input variable is invalid.

We suggest that the proposed breakdown of SUT into components, input sources

and input events, which does not require a formal specification, is a natural way of

defining equivalence classes and using it as a basis for test case construction by a

tester. ■ • ■

In this thesis we use the breakdown of software components described above in order

to specify equivalence classes for input and output variables of the SUT. We also

propose an improvement to this approach.

2.3 Empirical Studies of Test Effectiveness

There exist various testing techniques and coverage metrics of test suites, but as the

ultimate goal of a testing process is to find faults in a program, the main concern of

a test engineer is “how achieving high coverage contributes to the test case effective­

ness” . Multiple studies have been performed which support the correlation between

various white box coverage criteria and test suite effectiveness.

Frankl and Weiss [15] have performed an experiment in which they have compared

the effectiveness of the dataflow-based all-uses and controlflow-based all-edges test

adequacy criteria for small Pascal programs with existing faults. They have mea­

sured the percentage of executable edges and definition-use pairs for each test suite,

and counted how many program faults were revealed by this test suite. The results

o f the experiments have shown that the fault-finding ability of a test suite is posi­

tively correlated with both all-uses and all-edges adequacy criteria only for half of the

21
subject programs.

A similar experiment was performed by Hutchins et al. [19] in which they have used

moderate-size C programs with seeded faults, and a different experimental setup.

They have found out that test sets which achieve coverage levels of 90% or more have

much higher effectiveness than randomly chosen test sets of the same size. Frankl and

Iakounenko [16] have studied the relationship between the effectiveness of randomly

generated test suites, dataflow-based definition-use and controlflow-based decision
\

test adequacy criteria, and have observed a similar pattern. Faulty versions of a

real-world C program for antenna configuration were used in this experiment.

In a more recent study Andrews et al. [25] have studied the relationship between

effectiveness, white box statement coverage and the size of a test suite. They have

prepared a much larger set of faulty versions of subject programs generated auto­

matically through mutation, which allowed them to prove statistical significance of

results and also made experiments reproducible. The experiments indicate that both

size and coverage influence test suite effectiveness; however, the ̂ relationship between

these three variables is not linear. Instead, a linear relationship among variables

log (size), coverage and effectiveness was observed for all subject programs. Within

the bounds of this thesis we perform experiments which build on this work, and de­

termine if adding the black box coverage to the model could make it more accurate,

and if a nonlinear relationship among the black box coverage, size and effectiveness

o f a test suite still holds.

Another goal of this thesis is to compare the white box and black box coverage of

test suites and individual test cases. While there do not exist any studies directly

comparing the black box coverage with white box coverage of a test suite, a recent

publication by Yu et al. [30] studies the white-box coverage of a test suite which was

22
generated from the functional black box specification, and therefore achieves 100%

black box coverage. Path coverage was selected as a white box coverage measure, as

it is the strongest criterion. The study has revealed that a specification-based test

suite may not take into account all implementation details, so the comparison was

made using only “spec-related paths” . The study showed that a spec-based test suite

covers about 97% of spec-related paths in the code, which is a very high number.

2.3.1 Mutation

Experimental results of running test cases on the SUT are usually used as an empirical

assessment of a test case effectiveness. However, there are several problems connected

to the design of experiments. First, a researcher needs to have a correct version

of a program as well as several faulty versions, where each version contains only

one fault. Finding and preparing such faulty versions is very difficult and time-

consuming. Second, the number of faulty versions might not be enough in order

to achieve statistical significance in the experiment. Therefore,Snany researchers are

creating faulty versions of subject programs by introducing faults either automatically

or by hand. Preparing the necessary number of faulty versions with hand-seeded faults

could also take a long time, so it is more efficient to automate this process. In order

to produce automatically-generated faulty versions, the original source code of the

program is automatically modified in small ways to produce a program mutant. These

small modifications are called mutation operators, and reflect typical programming

errors: wrong operator in the logical condition, incorrect value assignment, missing

statement, etc.

DeMillo et al. [13] have originally proposed an idea of using mutants to measure test

23
case adequacy, and have implemented a prototype mutation system for the FOR­

TRAN language. This idea was later explored by DeMillo in collaboration with

Offutt [14]. Andrews et al. [6] have performed experiments in order to identify if

mutation is an appropriate tool for the empirical evaluation of testing techniques.

They have compared the ability of test suites to detect real, hand-seeded and au­

tomatically generated faults, and have found out that mutants can provide a good

indication of the fault detection ability of a test suite, when using carefully selected

mutation operators and after removing equivalent mutants [6]. Therefore mutants
\

are representative of the real-world faults, and can be used to assess the effectiveness

of test cases.

\

24

Chapter 3

Black Box Coverage Calculation

Method

In this chapter, we go into detail about the design and implementation of the black box
, "x

coverage calculation approach. We describe three main components of this approach:

Functional Test Specification or FTS, log files, and FTS Coverage Calculation Tool
\

or FTS Tool We also write about the architecture of the FTS Tool, describe some

important classes and methods, and give details of the algorithms for calculating the

coverage of a test suite based on the log files and FTS.

3.1 Overview

As mentioned in the Related Work section, black box testing techniques, which are

widely used in the software development industry, are not studied thoroughly in the

software testing research field. Moreover, there does not exist a tool to measure the

25
coverage of a test suite from the black box perspective. Therefore the main motivation

of this thesis is to develop an approach to measure industry black box coverage based

on the industry equivalence partitioning and boundary value analysis methods.

The first part of this approach is the construction of the Functional Test Specification

for the SUT, which defines equivalence classes of input and output variables, as well as

higher-level elements of the software system to which these variables belong. In order

to determine which elements from the FTS have been used in a particular test case,

we require that the SUT produces log files in a particular format during execution.

Log files will contain information about values of input and output variables which

have been used in a particular test case, as well as events, sources of input and

components of the SUT, in which these variables appeared. This information will

allow us to calculate the ratio of the number of tested elements to the total number

of elements for each element type. As we are also interested in determining the

number of repetitions of each element from the FTS, we’re going to organize logs in

such a way that we will be able to determine how many times a particular element

appeared within the parent element. Finally, the FTS Tool will^perform matching of

the FTS with the log files and calculate the following coverage types:

• Simple existence coverage, according to which an element is considered to be

covered if it appears in the log file at least once.

• Multiplicity coverage, which takes into account the number of repetitions of each

element from the FTS.

• Boundary value coverage, which is calculated for each equivalence class consist­

ing of the range of numeric values, and checks if boundary values appear in the

: log file.

26
A detailed description of how the coverage measures are collected is given in Section

314.3. . ■ ' ’ '

3.2 Functional Test Specification

Functional Test Specification is a way to capture the result of applying the equiva­

lence partitioning method to input and output variables of the software system^ As

mentioned in the Related Work section (see Section 2.2.3), modern software systems

are very complex and can consist of many components with multiple GUI forms and

sources of input. Therefore it is not enough to specify only input and output variables

of the system. Instead, we’re going to use the breakdown of the software system into

elements proposed by Andrews [7].

In our coverage calculation approach we would like to consider not only the appear­

ance of particular system elements, but also the number of repetitions of elements of

a particular type. For example, if a utility requires only one input file, the tester will

likely create at least one test case with one file given as input, one test case with no

files given, and possibly one test case with two or more files given. One possibility of

tracking the number of repetitions would be to create an additional artificial input

variable which would represent the number of repetitions of a particular element.

However, another more consistent approach is to specify a Multiplicity property for

each of the elements for which it is necessary. The multiplicity property could be

applied to any of the coverage elements except value sets, and could be broken down

into valid and invalid value sets, just as any other input variable. In the previous

example, the valid multiplicity of the “input file” element will be,“ l ” , and two invalid

multiplicities will be “0” and “2” . If a tester is specifying a multiplicity property

27
for a particular coverage element, this implies that he believes that in order for this

element to be tested thoroughly, for each multiplicity value set there should be at

least one test case with the corresponding number of elements of this type.

After a tester has analyzed a program’s structure, its input and output variables, and

possible breakdown into value sets, he should store this information in some conve­

nient form. One of the most popular formats for storing information in a structured

form is the Extensible Markup Language (XML) [10]. We therefore chose XML for
. \

the representation of the FTS. It is a textual data format which allows users tov rep­

resent structured information using their own custom markup scheme. We wrote an

XML schema which corresponds to the FTS. An XML schema is a set of restrictions

which are assigned to a particular XML file, and can be used to verify the validity of

XML. A visual representation of this schema is shown in UML format in Figure 3.1.

SoftwareDesc is the root element, which can contain one or more ComponentType

elements. Each ComponentType element can include zero Qr one Multiplicity ele­

ments, and zero or more InputSourceType and OutputDestii^ationType elements.

A Multiplicity element specifies the number of repetitions of the parent compo­

nent; it consists of one or more ValueSetType elements and can be a child element of

any other element except itself and ValueSetType. Each InputSourceType element

can contain zero or more InputEventType elements, which in turn can contain zero

or more InputVarType elements. Each of the ComponentType, InputSourceType,

InputEventType and Input VarType elements must have a “name” attribute to spec­

ify a unique component name, which is used while matching specification with logs.

InputVarType must contain at least one ValueSetType element, which represents an

equivalence class for this variable. ValueSetType does not have to have a unique

name and can be uniquely identified by its set of values. An optional description

28
F igure 3.1 XSD schema

child element can be used to write a comment or description. ValueSetType also

has an optional type attribute, which can be assigned one of two values: “valid” or

“invalid” . If this attribute is not specified, it is assumed by default that the value set

is valid. Valid value set contains input values which are expected by a program as

valid inputs and make the program operate in a normal mode. In contrast, invalid

value set contains values which will cause error handling in the program or will make

the program indicate to the user that such input will not be handled correctly.

29
We have designed three options to specify the contents of a particular value set, which

can be used individually or in conjunction:

• A single value or a collection of separate values can be specified using one or

more value elements. In this case a value set will be considered tested if any

value from the list appears in the logs.

• If a value set consists of a range of numeric values, instead of writing a list of
■ ’ , \

all possible values, a range can be specified in min and max child elements. It

is allowed to specify both integer and float numbers, but the min value should

always be smaller than the max value. If the range does not have a lower or an

upper bound, the “unlimited” keyword can be used instead of a number. How­

ever, setting both min and max values to “unlimited” is prohibited. Specifying

a range of values allows us to perform boundary value analysis in addition to

the equivalence partitioning.

' N

• A regular expression can be used to specify the set of values in the regexp child
\

element. Perl-compliant regular expression syntax must be used.

Correspondingly, OutputDestinationType contains at most one Multiplicity el­

ement and zero or more OutputEventType elements. OutputEventType consists of

at most one Multiplicity element and of one or more OutputVarType elements.

OutputVarType consists of zero or one Multiplicity elements as well as one or more

ValueSetType elements, which are similar to those used in the InputVarType, but

can only contain valid value sets.

Figure 3.2 shows an excerpt from the FTS specification for the mastermind game

server, one of the subject programs which will be described in detail in Section 4.2.3.

30
Figure 3.2 Sample Functional Test Specification

<Component name="Server">
cinputSource name="CommandLine">

<InputEvent name="ServerInitialized">
<InputVar name="PortNumber">

'

<Multiplicity>
<ValueSet type="invalid">

<value>0</value>
</ValueSet>
<ValueSet type="valid">

<value>l</value>

■ -• '■>

</ValueSet>
</Multiplicity>
<ValueSet type=,,invalid,l>

<min>0</min>
<max>1023</max>

</ValueSet>
<ValueSet type="valid">

<min>1024</min>

\
\

<max>65535</max>
</ValueSet>

</InputVar>
</InputEvent>
<InputEvent name="GameInitialized"/>

</InputSource>
</Component>

'n

\

According to the specification, exactly one port number value should be specified in

the command line in order to initialize the server. Port numbers from 0 to 1023 are

considered to be invalid, and numbers from 1024 to 65535 - valid.

3.3 Log File Format

After constructing the program’s FTS specification, we need to determine which of

the specified coverage elements have been tested during the execution of the SUT, i.e.

31
F igure 3.3 Format of log files

Component <ComponentType> <componentName>
InputSource <componentName> <InputSourceType> <inputSourceName>
InputEvent <componentName> <inputSourceName> <InputEventType>

<InputVarNamel>=<inputVarValuel> ... <InputVarNameN>=<inputVarValueN>
OutputDestination <componentName> <OutputDestinationType>

<outputDestinationName>
OutputEvent <componentName> <outputDestinationName> <OutputEventType>

<OutputVarNamel>=<outputVarValuei> ... <OutputVarNameN>=<outputVarValueN>

\
which components were used, what events occurred during execution, what variable

values were set, and what output was produced by the program. Depending on the

program type, structure and functionality, we could extract this information from the

execution logs, standard output, database transactions, or GUI components. As we

would like our approach to be applicable to a wide range of programs implemented in

any programming language, we can not use any existing standard logging mechanism

in order to collect this information automatically. Therefore instrumentation of the

SUT, which will produce log files in the appropriate format, is required as part of our

approach. V

Instrumentation could be done either by a tester or a developer, as it involves simple

operations of writing necessary information into the file, and does not require special

knowledge either about the system’s internal structure, or about the programming

language used. A separate file with the unique name will be created during each

execution of the program, so that one test case will correspond to one log file. A log

file will consist of separate lines; each of these lines will contain information about a

particular coverage element, and will be written to the file when the corresponding

event happens during the program’s execution. The format of log lines is presented

in Figure 3.3.

32
We have defined five different types of log lines, and each of them starts with a keyword

which identifies the type of the coverage element from the specification. The first line

starts with the Component keyword, followed by the name of the ComponentType from

the specification and a unique component name, which will be used as a reference

when defining other elements. The second line starts with the InputSource keyword,

followed by a unique name of the component to which it belongs, the name of the

InputSourceType from the specification, and a unique name. The third line starts

with the InputEvent keyword and defines an input event for a particular component

and input source. It does not have a unique name because it is not referenced further

in other types of log lines. It also defines tuples of input variable names which have

been used in this input event together with their values, where zero, one or more input

variables of the same type could be specified in the same line. Output destinations

and output events are defined similarly to input sources and input events.

Some string values of input variables can contain whitespaces, e.g. an input variable

for a user name “John Smith” . In our logging format a"whitespace is used as a

separator, and a tester needs to take this into account while constructing logs: before

writing a value into a log file he should check if it contains whitespaces, and put it

into double quotes if necessary.

Figure 3.4 shows a sample of three log files for a mastermind game server which

correspond to three test cases:

• A server was launched with a valid port number 65535, and a new game was

initialized.

• A port number has not been provided. , ;

• An invalid port number 80 was used.

33
F igure 3.4 Sample log file

testcasel.txt:
Component Server server
InputSource server CommandLine cl
InputEvent server cl Serverlnitialized PortNumber=65535
InputEvent server cl GameInitialized

testcase2.txt:
Component Server server
InputSource server CommandLine cl
InputEvent server cl Serverlnitialized

testcase3.txt:
Component Server server
InputSource server CommandLine cl .
InputEvent server cl Serverlnitialized PortNumber=80

3.4 FTS Coverage Tool

3.4.1 Overview

We have developed a Java utility program which matches coverage elements from the

FTS with the coverage elements which appear in the log files, and produces a coverage

report. It is called FTS Coverage Tool and was developed in the Java Development

Kit (JDK) vl.6.17. It is compatible with all versions of JDK 1.6 and can run on any

operating system with the Java Runtime Environment (JRE) installed.

Compiled Java class files are packaged into an archive f t s . ja r which can be executed

by the Java application launcher. The required parameter for the FTS Tool is the

path to the FTS specification file, which should be passed after a keyword -xmlspec.

The second required parameter is the path to the location of log files, which could

be specified in two ways. A tester could provide a list of log file names separated by

34
a whitespace and preceded by the keyword - f i l e l i s t . Another option is to specify

a directory name in which log files are stored, by using the keyword d ir . Options

- f i l e l i s t and -d ir cannot be used together. By default, FTS Tool calculates cover­

age for each type of coverage element and prints it in human-readable form. Specifying

an optional parameter - l i s t c e makes the tool printing the list of coverage elements,

one coverage element per line, with the indication if this element was covered or not.

For example, if we launch the program with the following parameters:

, \
java - ja r f t s . j a r -xmlspec . ./mastermind/mastermind.xml

- f i l e l i s t . ./m a sterm in d /log s /testca se l.tx t

FTS Tool will produce the default coverage report for each type of coverage element

for only one test case t e s t c a s e l .t x t using the mastermind.xml specification file.

3.4.2 Output Format

; _ , ■ \ ' '

The coverage report produced by the FTS Tool can have two different formats. The

sample of the report file with the default output is presented in Figure 3.5.

The report is broken down into four parts. The first part contains coverage values

for three main types of coverage: simple existence, multiplicity and boundary value

coverage. The ratio of the number of covered elements to all elements of this type

as well as a percentage value are given. A breakdown into valid and invalid coverage

elements is performed for the multiplicity coverage. The second section presents a

detailed report on each type of simple existence coverage elements: components, input

sources, input events, etc. The third section contains a list of element IDs which have

not been covered during testing. This list includes all types of coverage elements -

35
F igure 3.5 Sample FTS Tool output

----- Total coverage -----
Simple existence coverage: 32/79 = 40.51'/,
Total multiplicity coverage: 6/12 = 50.00'/,
Valid multiplicity coverage: 6/11 = 54.55'/,
Invalid multiplicity coverage: 0/1 = 0.00'/,
Boundary value coverage: 0/12 = 0.00'/,

-— — Detailed simple existence coverage --—
Components existence coverage: 1/1 = 100.00'/,
Input sources existence coverage: 2/2 = 100.00'/,
Input events existence coverage: 4/7 = 57.14'/,
Input vars existence coverage: 8/11 = 72.737,
Input value sets existence coverage: 11/49 = 22.45'/,
Valid value sets existence coverage: 11/28 = 39.29'/,
Invalid value sets existence coverage: 0/21 = 0.00'/,
Output destinations existence coverage: 2/2 = 100.00'/,
Output events existence coverage: 2/4 = 50.00'/,
Output variables existence coverage: 1/1 = 100.00'/,
Output value sets existence coverage: 1/2 = 50.00'/,

----- Missing coverage elements -----
OutputEvent Concordance.StdOut.OutOfMemoryMsgPrinted
Valid ValueSet Concordance.InputFile.FileLoaded.Property: ’Empty file’
InputEventMultiplicity Concordance. CommandLine. HelpOption multiplicity
Max Boundary OutputValueSet Concordance.FileSystem.OutputFileCreated

.WordsCount: ’Integers’

’ 1;

— :---Not matched variables -— -
InputVar InputFileName=invalid.txt

simple existence, boundary value and multiplicity, and in order to distinguish different

elements, a unique identifier (ID) is constructed for each element. The ID includes

not only the element name, but also names of its ancestor elements. For example, a

unique ID for a ValueSetType element is constructed in the following way:

<ComponentType>.<InputSourceType>.<InputEventType>.<InputVarType>:

[<description>|<value>|<regular expression I from <min> to <max>]

36
As ValueSetType does not have a unique name assigned to it, its description from

the FTS will be displayed. If the description was not specified, either a value, a range

of values or a regular expression will be displayed, depending on the method which

was used to construct this ValueSet in the FTS. In case of multiplicity value sets, we

need to specify both the unique ID of the element to which this multiplicity property

belongs, and an identifier of a multiplicity value set. For example, the multiplicity

value set for an input variable can be specified in the following way:

\\
InputVarMultiplicity <ComponentType>.<InputSourceType>.<InputEventType>

.<InputVarType> multiplicity <ValueSetUniqueID> .

When printing out information about the boundaries, we need to specify a type of

boundary (minimum or maximum), value set type and a unique ID of this value set:

[Min|Max] Boundary [InputValueSetIOutputValueSetIMultiplicityValueSet]

<ValueSetUniqueID> ^

The final section of the report displays coverage elements from the log file which did

not match any value sets from the specification. This section helps to troubleshoot

any problems, such as an error in the logging or in the specification. For example,

if a particular value appears in the list of not matched values, but instead should

belong to some value set, a tester might have to review the specification, and make a

modification to the description of this value set.

37
Figure 3.6 Calculation of simple existence components coverage

for each ComponentType c from spec do
for each TestCase tc from logs do

N <- number of components of type c in tc
if (N > 0) then c.tested <- true

3.4.3 FTS Coverage Calculation
■ ■ ' ' " ■ ■ ■ ’ ■ .. : \

The main functionality of the FTS Tool is the calculation of a test suite’s cover­

age, which is based on the comparison of the specification with the log files.. FTS

Tool’s functionality includes calculation of three types of coverage: simple existence,

multiplicity and boundary coverage.

3.4 .3.1 Sim ple E xistence Coverage

Simple existence coverage is calculated for each type of coverage elements defined in

the XML specification (see Section 3.2), and the general rule is to consider a coverage

element to be tested if it appears in the log file at least once. For example, in order

to calculate coverage of software components, for each component type defined in the

specification, we need to execute the following: for each test case (or each log file) we

count the number of components of this type which appear in a particular test case,

and mark this component type as “tested” if the number is greater than zero. After

examining each component type from the specification, we can count the number of

tested components, divide it by the total number of components and present to the

user in a specified format. Pseudo code of the simple existence components coverage

calculation algorithm is shown in Figure 3.6.

38
The rule described above is applied to most of the coverage elements; however, the

coverage of input variables and value sets has additional constraints, and is calculated

in a different way. Specifically, we consider an input variable from the log file to

contribute to the coverage only in the following cases:

• All values in the corresponding input event from the log file are from valid value

sets, and multiplicity of all input variables in this input event is valid.

• One value in the corresponding input event from the log file is from an invalid

value set, and multiplicity of all input variables in this input event is valid.

• All values in this input event are from valid value sets, and multiplicity of one

input variable is invalid.

A good test case design assumes that each invalid condition is tested in a separate

test case: if we run a program with several invalid conditions at once, we will not be

able to determine which invalid condition has caused error-handling in the program.

Therefore, we consider input variables to be tested if they appear in an input event

which corresponds to a valid test case, where either all variables have valid values

and multiplicities or only one variable has invalid value or multiplicity. For example,

if a program takes as input a day number (1-31) and a month number (1-12), then

providing an invalid day and a valid month will be considered as a valid test case,

and will be counted towards the total coverage. An input with two valid day values

and one valid month value will have an invalid multiplicity of a day variable, and will

also be counted towards the total coverage. However, providing an invalid day and

invalid month values will not be considered as a valid test case.

As shown in Figure 3.7, in order to check for these constraints, while iterating through

all input events of a particular type, we execute the following steps:

39
Figure 3.7 Calculation of simple existence input variables coverage

For each ComponentType ct from spec do
For each InputSourceType ist from ct do

For each InputEventType iet from ist do
For each InputVarType ivt from iet do

For each InputEvent ie- of type iet from logs:
nl <- number of invalid input variables in ie
n2 <- number of invalid multiplicities of input variables in ie
If (ni + n2 < 2)

N <- number of input variables of type ivt in input event ie
If (.N > 0) then ivt. tested <- true \ 1 2 3

1. Calculate n l - the number of input variables which have invalid values in this

input event.

2. Calculate n2 - the number of input variables which have invalid multiplicity. In

order to check if any input variables in this input event have invalid multiplicity,

we need to iterate through all input variable types, which are defined in the

specification for an input event of this type, count the number of input variables,

and compare it with the multiplicity value sets, if there are any. If the number

matches an invalid multiplicity value set, we consider this input variable to have

an invalid multiplicity.

3. If n l + n2 is less than two (it covers situations when both values are zero or

only one of the values is one), we proceed further to calculate simple existence

coverage of the corresponding input variable type.

We consider input variables to be covered if they appear in a valid test case. However,

in order to check for particular values of input variables, we need to apply a more

strict rule. If a test case contains an invalid value or invalid multiplicity, it causes the

40
Figure 3.8 Calculation of simple existence value sets coverage

For each ComponentType ct from spec do
For each InputSourceType ist from ct do

For each InputEventType iet from st do
For each InputVarType ivt from iet do

For each valid ValueSetType vvst from ivt do
For each InputEvent ie of type iet from logs:

nl <- number of invalid input variables in ie
n2 <- number of invalid multiplicities of input variables in ie
If (nl == 0 and n2 == 0)

For each InputVar iv from ie \
If (.vvst.matchdv.value) = true) then

vvst.tested <- true

For each invalid ValueSetType ivst from ivt :
For each InputEvent ie of type iet from logs:

nl <- number of invalid input variables in ie
n2 <- number of invalid multiplicities of input variables in ie
If (nl == 1 and n2 == 0)

For each InputVar iv from ie
If (ivst.matchdv.value)) then

ivst.tested <- true

■ A • ■ •

program to execute error-handling code for the invalid value, while the functionality

which involves other valid values is not executed. Therefore, for a test case which

contains an invalid value or multiplicity, we can only say that the value set which

corresponds to the invalid value was tested. In order to cover other valid value sets,

we need to execute a test case where all values are valid. Therefore, we apply the

following coverage calculation rule:

• A valid value set is considered to be covered if all values in the corresponding

input event are from valid value sets and multiplicity of all input variables is

valid.

41
• An invalid value set is considered to be covered if all other values in the cor­

responding input event except the current one are from valid value sets and

multiplicity of all input variables is valid.

In order to check for these constraints, we calculate the number of invalid input

variables and the number of invalid multiplicities of input variables, similarly to the

input variables coverage calculation. As shown in Figure 3.8, we process valid and

invalid value set types separately. For valid value set types, we check that there are

no invalid variables and invalid multiplicities in the current input event; for invalid

value set types, we check that there is exactly one invalid value set and no invalid

multiplicities.

3.4.3.2 Multiplicity Coverage

Multiplicity is an optional property in the FTS specification, and is usually specified

only for a small number of coverage elements, so there is no need to report on the

multiplicity for each type of elements. Instead, the report presents total multiplicity

coverage for all elements, as well as separate coverage values for valid and invalid

multiplicity value sets. In order to calculate multiplicity coverage, for each multiplicity

value set from the specification, we assign a flag which indicates if this value set

appeared in the logs. We then iterate through all multiplicity value sets and count

the number of tested valid and invalid multiplicities. Finally, we incorporate this

information into the report.

As shown in Figure 3.9, in order to check multiplicity of element e from the spec­

ification, for each element of type e.parent from logs, we will count the number of

elements of type e which appear in the log lines with e.parent, and compare this

42
F igure 3.9 Calculation of components multiplicity coverage

For each ComponentType c from spec do
For each TestCase tc from logs do

N <- number of components of type c in tc
For each multiplicity value set m s of c do

If (.mvs.match(N) = true) then
m s . tested <- true * 1 2 3

number with each of the multiplicity value sets for e defined in the specification. We

will mark multiplicity value set as “tested” if it matches the number of elements of

type e.

3.4 .3.3 B oun dary Value Coverage

Boundary value coverage is calculated for value sets which are defined as ranges of

numbers. Input and output value sets as well as multiplicity value sets are taken into

account. As with multiplicity coverage, it is not necessary to report on the boundary

value coverage for each element from the specification; instead, the report contains

a total coverage value and a list of not covered boundaries. Calculation of boundary

value coverage consists of the following steps:

1. Calculate the total number of boundaries which appear in the specification.

2. Calculate the number of boundary values which appear in the log files.

3. Calculate coverage by dividing the number of covered boundaries by the total

number. . ■

43
Figure 3.10 Calculation of components multiplicity boundary value coverage

For each ComponentType c from spec do
For each TestCase tc from logs do

N <- number of components of type c in tc
For each multiplicity value set rrivs of c do

If (mvs.min != null) then mvs.numBoundaries++
If (mvs.max != null) then mvs.numBoundaries++
If (mvs.numBoundaries > 0) then

If mvs.min = N then mvs.isMinTested <- true
If mvs.max = N then mvs.isMaxTested <- true \

In order to calculate the total number of boundaries, we iterate through all value

sets which have ranges of numeric values; we add 2 to the total if both min and

max values are defined, and add 1 if only one boundary is defined (and the other

one is set to “unlimited”). Then, for each value set with the boundary, we check if

min and max values appear in the log file at least once. For example, as shown in

Figure 3.10, in order to check the boundary value coverage for component multiplicity

value sets, after calculating the number of components of a particular type in a test

case, we compare this number with min and max values for each multiplicity value set

which is defined as a range of values, and set appropriate values to isMinTested and

isMaxTested boolean variables.

3.4.4 Architecture

A high-level organization of the FTS Tool utility is presented in Figure 3.11. The

program takes as input FTS specification, log files and a report formatting option,

and produces a coverage report as a result of its execution. It consists of 4 main

components: log parser, specification parser, coverage calculator and reporter. The

44
F igure 3.11 FTS Tool components

specification parser takes as input an XML file and unmarshalls it into the Java object

representation of the FTS. Similarly, the log parser takes as input the location of the

log files, and produces the Java object representation of elements which appear in the

logs. The coverage calculator iterates through every element from the specification

and matches it with elements from log files. As a result, it assigns a “tested” flag to
\

each coverage element from the specification depending on its appearance in the logs.
V

Finally, the reporter component processes all FTS objects, analyzes tested elements,

and assembles this information into a report, whose format depends on the option

specified by the user.

3.4.5 Design and Implementation

We have carefully designed the FTS Tool in such a way that any modifications and

additional functionality could be implemented easily. We use a Unified Modeling

Language (UML) package diagram to illustrate package organization of the FTS Tool

in Figure 3.12.

45
Figure 3.12 Package organization of FTS Tool

ca.uwo.csd.fts

As shown in Figure 3.12, FTS Tool consists of 11 packages. The ca .u w o .csd .fts

package contains the main method in the CoverageRunner class which is being called

when the program is launched. The package ca .u w o.csd .fts .m odel contains two

nested packages: s p e c if ica t io n and log , which represent the mapping of specifica­

tion and log elements into Java classes. Classes LogParser and S pecif icationPaxser

from the c a . uwo. c sd . f t s . parser package are responsible for producing log and spec­

ification instances correspondingly. The FTSCoverage class from the

c a . uwo. c sd . f t s . coverage package performs the actual comparison of logs and spec­

ification objects. The ca .u w o .csd .fts .re p o rte r package contains multiple imple­

mentations of the Reporter interface which are used to assemble different types of cov­

erage information into a report. Finally, the c a .u w o .c s d .ft s .u t il package consists

of miscellaneous utility methods. Later in this chapter we explain technical details

about the most important packages - ca.uwo.csd.fts.model,

ca.uwo.csd.fts.coverage and ca.uwo.csd.fts.reporter. ^

3.4.5.1 Package ca.uwo.csd.fts.model.specification

The package ca.uwo.csd.fts.model.specification consists of schema-derived

classes which represent specification elements. These classes were generated automat­

ically based on the FTS XSD schema (see Section 3.2) using the Java Architecture for

XML Binding (JAXB) library. A UML class diagram for this package is presented in

Figure 3.13 and corresponds to the XSD schema by its structure. Generated classes

preserve all attributes and relationships between elements from the XSD schema. In

addition, each class has a boolean field isTested which is used during the coverage

calculation. The ValueSetType class has three more additional fields (isMinTested,

isMaxTested and numBoundaries), which are used in theNboundary value coverage

calculation. \

3.4.5.2 Package ca.uwo.csd.fts.model.log

The package ca.uwo.csd.fts.model.log contains Java classes which represent the

structure of log files. A UML class diagram for this package is shown in Figure

3.14. The Log class is at the top of the hierarchy and represents information about

the collection, of test cases. It contains a list of TestCase objects, each of which

has a unique name (canonical file name of the corresponding log file) and a list of

Component objects. The structure of the Component class is similar to the structure

of the Component Type class from the FTS. Instead of the Multiplicity property, each

46

47
class has a method which returns the number of child elements of a particular type,

and this number is used to identify which Multiplicity value sets have been tested.

InputVar and Out put Var classes contain name and value fields, which are used to

identify to which ValueSetType they belong.

3.4.5.3 Package ca.uwo.csd.fts.model.parser

The package ca.uwo.csd.fts.model.parser contains two classes for parsing XML

specification and log files correspondingly. The SpecificationParser class unmar­

shalls Java objects using the JAXB library unmarshal method, and returns an in­

stance of SystemDescType class, the root specification element.

The LogParser implements the functionality of parsing log files and producing in­

stances of the ca.uwo.csd.fts.model.log package classes. In contrast with the

Specif icationParser, the implementation is more complex, because log files have
■ X

a custom structure and can not be parsed automatically with the help of an exter-

nal tool. The parser reads log files line by, line and creates corresponding objects.

LogParser also checks log files for validity. First, each line should start with an ap­

propriate keyword, which identifies the type of element. Second, each element which

is referenced in the log file, must be defined earlier in the same file. For example,

input source cannot be defined before the component to which it belongs. LogParser

should also take into account the fact that if a value of input or output variable con­

tains whitespaces, it is surrounded by double-quotes, and any double-quote should be

preceded by the backslash.

48
3.4.5.4 Package ca.uwo.csd.fts.model.coverage

The package ca.uwo.csd.fts.model.coverage contains class FTSCoverage which

is responsible for the coverage calculation. FTSCoverage class iterates through the

ca.uwo.csd.fts.model.specification and for each object checks if the element of

this type appeared in the ca.uwo.csd.fts.model.log structure. Coverage calcula­

tion for each component type is performed according to the algorithm described in

Section 3.4.3. v
\

3.4.5.5 Package ca.uwo.csd.fts.model.reporter

The package ca.uwo.csd.fts.model.reporter contains classes for producing the

coverage report. UML class diagram for this package is shown in Figure 3.15. The

final report, which contains coverage information about all component types, can

be broken down into smalTparts, each representing a particular coverage aspect.

Similarly, we have decided to break down the functionality of producing the report.

This will allow us to easily modify any existing part of the report, or add a new

section to it. We have created the Reporter interface with the report method,

which is implemented by all of the reporter classes. In order to produce a report,

the Report Factory class creates instances of the Reporter interface, and then the

CoverageRunner calls the report method on all reporter instances.

Classes SimpleExistenceReporter, MultiplicityReporter and BoundaryReporter

calculate the total coverage of the corresponding types, while other classes, such as

ComponentsReporter, InputSourcesReporter and others, print coverage of par­

ticular element types. These classes use similar algorithm - iterate through ev­

ery FTS object, count the number of tested elements and divide it by the total

49
number of elements of the specified type. These classes are inherited from the

abstract class Reporterlmpl, which implements the Reporter interface. Classes

SimpleExistenceM issingReporter, M ultip licityM issingR eporter and

BoundaryMissingReporter are used to produce the second section of the report,

where missing coverage elements are printed. NotMatchedVarsReporter is a sepa­

rate type of a reporter, because its report method has an additional Log parameter.

In contrast with the coverage calculation, this class iterates through the instances of

the logs, and checks, if every input and output variable value was assigned to a par­

ticular value set from the specification. If it finds a value which does not match any

o f the value sets from the specification, this value is included in the report. Classes

SimpleExistenceCEReporter, M ultiplicityCEReporter and BoundaryCEReporter

are used when the - l i s t c e report format option is specified by the user, and the list

of unique identifiers of each coverage element should be printed. ReportW riter is a

helper class, which implements the w rite method, and is responsible for creating a

new report file with the unique name in the reports folder.
' n

\

50

F igure 3.13 Class diagram of c a .u w o .c s d .ft s .s p e c if ic a t io n package

51

F igure 3.14 Class diagram of c a .u w o .c s d .fts .lo g package

52

F igure 3.15 Class diagram of ca .u w o .csd .fts .re p o rte r package

Chapter 4

In this chapter, we describe subject programs which were selected for the experiments,

and evaluate how the black box coverage calculation method was applied to them.

We then describe the preparation and execution of the experiments, analyze the data

and illustrate the relationships with plots. Finally, we draw conclusions based on the

analysis. ^

4.1 Motivation

In order to evaluate the black box calculation approach, we apply it to several subject

programs. We design and implement several experiments which aim to answer the

following research questions:

• How easy is it to apply the black box coverage calculation approach to subject

programs of different sizes and programming languages?

54
Table 4.1 Characteristics of subject programs

Program Language Number of test cases SLOC Classes Functions
f l e x c 567 10,421 N /A 162
concordance C + + 372 1,034 5 39
yamm Java 238 780 13 48

• What is the relationship between the black box and white box coverage mea­

sures?

\

• What is the relationship between the black box, white box, test suite size and

effectiveness? Is it consistent with the experimental results in [25]?

• Is the black box coverage a good predictor of test case effectiveness?

4.2 Subject Programs

In order to test our approach on programs of various sizes, functionality and program­

ming languages, we have selected the following subject programs for our experiments:

f le x , concordance and yamm. Characteristics of these programs can be found in Table

4.1. The size of programs was estimated using the SLOC (lines of code not counting

comments or whitespace) metric, which was calculated by the LLOC tool [22]. f le x

is a C program with the biggest size and the largest test case pool; concordance

is a medium-size utility C + + program; and yamm is a Java GUI-based client-server

program.

55
4.2.1 Subject Program flex

The subject program f le x (fast lexical analyzer generator) is a free implementation

of the original Unix le x program, which generates programs that perform pattern­

matching on text. The program takes as input a text file which consists of three

sections: definitions, rules and code. After processing an input file f l e x generates

a C source code file “lex.yy.c” which implements the yy lexO function. The rules

section specifies pairs of regular expressions and C code, such that when the “lex.yy.c”\\

file is compiled and run on some input, it analyzes input text, and executes the

corresponding C code each time it finds a text which matches a regular expression

defined in the rules. The definitions section of an input file can be used to ease the

construction of rules by assigning custom names to regular expressions used in the

rules section. The last optional section of the input file contains custom C code which

is copied to “lex.yy.c” without any modifications.

In our experiments we use the version of f l e x which was obtained from the Software-

artifact Infrastructure Repository (SIR) at the University of Nebraska-

Lincoln. The package contains several sequential previously released versions of the

program, and we use the latest version v5 for our experiments. The SIR researchers

have used the informal documentation to create a specification in the TSL language

[9]. After applying a TSL generator to it they have obtained textual descriptions of

test cases in the form of TSL test frames, and assigned a line in a “universe” format

to each test frame. The package which was obtained from SIR contained 6 TSL test

frames with “universe lines” assigned to them; in order to get an automated shell

script which could execute all test cases, we ran a JavaMTS tool (also obtained from

SIR) with a “universe” file, which produced an automated test suite consisting of 567

test cases.

56
4.2.2 Subject Program concordance

The subject program concordance is a C + + utility program which makes word

indices of documents. It was introduced as a subject program for the first time by

Andrews et al. and is described in [25]. This program takes as input a text file

“filename” and creates two output files with the information about concordances.

The output file “filename.wds” contains a list of all words used in the input file. It

also specifies the length of each word, number of times it appeared in the input file,

and locations where it appeared. Location can be counted by a page, line or stanza,

and can be specified using options p, 1 or s. The output file “filename.abc” contains

a list of characters from the input file, the number of appearances and the overall

percentage of uses for each character. In our experiments, we use the pool of 372 test

cases created for the study in [25].

4.2.3 Subject Program yamm \

The subject program yamm (Yet Another Mastermind) is a version of a famous mas­

termind game written in Java. It is a multi-player version of a game with a GUI

implemented using the Java AWT library. This program consists of two components:

server and client. In order to play the game, the server should be launched first, with

the port number and the mode of generating game combinations specified. Then one

or more clients can connect to the server, using the server address and port number,

and specifying the user name. When the connection is established, a GUI is shown to

the user, where he can select colours by clicking on circles, and submit his guess. The

guess is evaluated by the server, and the response is sent back, which tells the user

how close he is to the winning combination. The first player who guesses correctly

57
within 12 attempts, wins the game.

This program was written by Laurent Cavallin and Corentin Massot and can be found

on various open source repositories in the Internet. The version which is being used

is a beta release 0.10beta2. Test cases for this subject program have been created

by 22 students in the class of Computer Science 4472 at UWO in 2009. The Abbot

automated testing package [1] was used in test cases to access and manipulate GUI

components of yamm. These test suites formed a test pool with the total of 256 test

cases.

4.3 Evaluating Black Box Coverage Calculation

Method

In order to evaluate the black box coverage calculation method, we have executed the

following steps for each of the subject programs: ^

• Analyze the informal specification and perform equivalence partitioning on in­

puts and outputs.

• Assemble equivalence classes into an FTS XML specification. .

• Instrument the source code so that logs will be written in the specified format.

• Create a bash shell script which will execute all test cases automatically.

• Execute the script and collect log files.

• Run FTS Tool with the FTS specification and log files in order to obtain the

coverage report.

58
We were able to successfully apply the black box coverage calculation to all subject

programs. However, flex appeared to be the most difficult program to create an

FTS specification for, primarily because of the large number of switch options which

could be specified as input for flex and affect the generation of the “lex.yy.c” file.

According to the informal program specification, it is not enough to test each switch

individually; instead, there is a need to run the program with certain combinations of

switches and also check that invalid combinations are tested as well. Therefore there

is a need to take into account valid and invalid combinations of value sets, which is\
not supported by the current implementation of the FTS Tool. This limitation of

our approach is discussed in the next chapter. Figure 4.1 shows an extract from the

FTS specification for the yamm subject program. It presents the FTS specification

in a plain text format, omitting closing tags, angle brackets and Multiplicity and

ValueSet elements. As an example, ValueSet elements for the PortNumber input

variable have been included.

Instrumenting; the flex source code also appeared to be mbre difficult than instru­

menting the two other programs. It was required by the specificatW that the contents

of rules and definitions sections of the input file are captured. However, it was not

possible to capture these values in the logical flow of the program which was imple­

mented in a state machine fashion, where each character of an input file was processed

individually. As a result, we had to add code which would parse the input file, extract

the necessary information and write it into the log file.

After running all available test cases and obtaining execution logs, we have calculated

the black box coverage for each of the subject programs. Table 4.2 provides coverage

values for each of the subject programs displayed both as a ratio of the number of

covered elements to the total number of elements, and as a percentage. As shown in

59
Figure 4.1 FTS specification for yamm
SystemDesc ■

Component name=Server
InputSource name=CommandLine

InputEvent name=ServerInitialized
InputVar name=PortNumber

Valid ValueSet From 1024 to 65535
Invalid ValueSet Negative numbers
Invalid ValueSet From 0 to 1023
Invalid ValueSet From 65536 to unlimited
Invalid ValueSet Number in incorrect format

InputVar name=GameMode
InputSource name=StdInput

InputEvent name=GameInitialized
InputVar name=ColoursSpecified
InputVar name=PegColour

InputSource name=ComboGenerator
InputEvent name=GameInitialized

OutputDestination name=ClientConnection
OutputEvent name=UserWon

OutputVar naime=NumberOfGuesses
OutputEvent name=GameFinished

OutputVar name=Result
OutputEvent name=Gue s sEvaluat ed

OutputVar name=NumberOfRedLines
OutputVar name=NumberOfWhiteLines

Component name=Client
InputSource name=ServerMessage

InputEvent name=NewGameMe s sageRe c e ived
InputEvent name=GameOverMessageReceived
InputEvent name=ConnectionSucceededMessageReceived
InputEvent name=ConnectionFailedMessageReceived

InputSource name=CommandLine
InputEvent name=ClientInitialized

InputVar name=PortNumber
InputVar name=UserName
InputVar name=ServerName

InputSource name=MastermindGUI
InputEvent name=UserGuess

InputVar name=ColoursSelected
InputEvent name=GameStopped
InputEvent name=ClickOnPeg

InputVar name=PegNumber
InputVar name=NumberOfClicks

60
Table 4.2 Black box and white box coverage measurements for subject programs

Coverage elements f le x concordance yamm
Simple existence 125/139 = 89.93% 74/79 = 93.67% 100/106 = 94.34%
Valid value sets 59/66 28/28 35/38
Invalid value sets 12/14 17/21 11/14
Output value sets 12/17 2/2 15/15
.MultipL. value sets 50/72 12/12 19/23
Boundary value sets 3/48 5/12 13/32
Total black box 178/259 = 68.73% 91/103 = 88.35% 132/161 = 81.99%
Total white box 80.73% 100% 91.76%

\

the table, the yamm subject program has the highest simple existence coverage, while

concordance has the highest total coverage. All three programs have low boundary

value coverage, but as concordance has the smallest number of boundary values in

the specification, its total coverage is the largest among the three programs. Low

boundary value and invalid value sets coverage can be explained by the fact that

boundary and incorrect conditions are usually taken into account after all valid test
'n

cases have been explored, and very often these conditions are forgotten. As we can

see from Table 4.2, the total number of coverage elements appears to be greater

than 100 for all subject programs, however, it still provides less granularity than the

white box statement coverage in which the number of coverage elements equals to the

number of executable lines of code. We can also see from Table 4.2 that f l e x has

the smallest white box coverage value among the three programs, while concordance

has the highest coverage value of 100%.

4.4 Comparison of Black Box and W hite Box Cov­

erage Metrics

61

The first set of experiments which we execute aims to compare the white box coverage

of each single test case with its black box coverage.

4.4.1 Experiment Design \

In the first step of the experiment we obtain the white box coverage using the gcov

utility for f l e x and concordance, and the Cobertura utility for yamm. The basic prin­

ciples of statement coverage calculation utilities is described in Section 1.2.1. The first

step is to compile the original source code of each subject program using two special

GCC options - fp r o f i le -a r c s -fte s t -co v e ra g e or instrument Java bytecode with

Cobertura after compiling yamm source code. After execution of each test case we

generate a coverage report, save it and clear the coverage file for future use. As the

statement coverage report is generated in the format specific to the coverage calcu­

lation tool, the next step is to transform a report generated for each test case into a

plain text file which contains only numbers of lines executed by a particular test case.

In case of a Cobertura report, each line contains a class name and a line number.

Finally, we calculate the white box statement coverage by dividing the number of

unique lines in each file by the total number of coverable source lines.

The second step is to collect the black box coverage information using the FTS Tool.

We run the FTS Tool for each individual log file with the - l i s t c e option, which

produces a report file with the list of unique identifiers of covered elements. As

we can see from Table 4.2, none of the test suites for subject programs achieve 100%

62
black box coverage, and only concordance achieves 100% white box coverage. For the

comparison purposes, we calculate the relative coverage values, where the maximum

coverage achieved by the whole test pool will be considered as a 100%. Finally, we

assemble percentage values for each of test cases into a single text file and analyze

them.

In order to see if combining individual test cases into test suites will have an effect on

the relationships which we study, we generate test suites of various sizes from 2 to 50,
\

with 100 test cases in each test suite, resulting in 4900 test suites in total. For each

test suite, we choose test cases randomly using a permutation tool, and store test

case numbers in a text file corresponding to this test suite. As we have information

about black box and white box elements covered by each test case, we are able to

calculate the coverage of each test suite without actually running test cases or running

the FTS Tool on the log files. Instead, we compute the union of the collections of

coverage elements of individual test cases which comprise this test suite, and divide

the number of distinct elements in the set by the total number of coverage elements.
\ '

4.4.2 Experimental Results

Figure 4.2 shows the scatterplot of the total black box and white box statement

coverage measures for individual test cases of f le x . As we can see from the figure,

the majority of the test cases are grouped together and have a positive correlation

between the two coverage measures. The white box coverage measure is greater than

the black box measure for all test cases in this group. There is also a small number of

outliers for which the black box coverage is greater than the white box coverage, and

the white box coverage is smaller than the average white box coverage. These outliers

63

Figure 4.2 Scatterplot of black box and white box measures for flex
100 f 1--------------------------------------- R

Flex Individual TestCases +

80

60

20 A

+ + -f*H- + +

20 40 60
WhiteBox

80
M

100

F igure 4.3 Scatterplot of black box and white box measures for concordance

64
Figure 4.4 Scatterplot of black box and white box measures for yamm

100 F

&■ 8ra
CD

60

40

20

1--------------- ;------------- 1------------------- 1 i i----------- u
Yamm Individual TestCases +

-------------------r

b++A++ +
*

v
++

*+

++
+

. i + +++ ++
+ + + + ■*+# * ++ *

I ++ +4f +
iyfc-f ++++-# 4*.
P +
+a_______________ i___________ ____ 1_______________ 1_______________ I_______________ £

20 40 60
White Box

80 100

represent erroneous test cases which test invalid inputs to the program. For these test

cases, only the error-handling lines of code are executed. The number of the error­

handling lines is small compared to the total size of the program, making the white

box coverage smaller. However, the black box coverage is relatively high because the

erroneous inputs correspond to particular value sets from the specification.

Figure 4.3 shows a scatterplot of the black box and white box coverage measures for

the concordance subject program. We can divide the points into several groups of

test cases: the biggest group represents correct executions with high coverage; the

group in the bottom left has lower coverage and represents invalid test cases which

caused the program to do error-handling; the small group in the middle represents

invalid inputs which have forced the program to execute part of its functionality (e.g.

parsing an input file), and then terminate with an error message.

Figure 4.4 shows a scatterplot for the yamm program. In this scatterplot, the number of

65
erroneous test cases with small coverage values is rather large. This can be explained

by the fact that the majority of test cases from the test pool examine erroneous

conditions, while the number of valid test scenarios is small. As we can see from the

figure, there is a group of points in the center with a wide range of white box values

but almost the same black box value. These points correspond to test case scenarios

in which both the client and server were launched and the connection between then

was established, but the game did not finish correctly.

The scatterplots for individual test cases show that on average the black box coverage

is smaller than the white box coverage and has less variability of values: for f l e x and

concordance the majority of test cases have a black box value in the range from 20%

to 40%, while white box changes from 0% to 80%. We also notice that the black box

coverage value does not directly correspond to the number of executed lines of code.

Consider two test cases: the first one tests an erroneous condition, which causes the

program to execute only the error-handling code; while the other test case tests a valid

input to the program, which causes the program to execute its main functionality.

These two test cases have similar black box coverage values but \;he first one has low
\

white box coverage, and the second one - high white box coverage.

We also analyze the relationship between black box and white box coverage measure­

ments for the pool of randomly generated test suites of sizes from 2 to 50, containing

4900 test suites in total. Figures 4.5, 4.6 and 4.7 show scatterplots of the total black

box and white box statement coverage measures for the yamm, concordance and f le x

subject programs respectively. In these plots, each point corresponds to one test suite

from the pool of test suites of sizes from 2 to 50. As we can see from these figures, all

f l e x test suites are grouped together, while the concordance and yamm plots have

a group of outliers with smaller coverage values. This can be explained by the fact

66

Figure 4.5 Scatterplot of black box and white box measures for yamm test suites

0 u--------------------------i_______________ i_______________ i_______________ i_______________ t
0 .20 40 60 80 100

White Box

F igure 4.6 Scatterplot of black box and white box measures for concordance test
suites v

Concordance

White Box

67
Figure 4.7 Scatterplot of black box and white box measures for flex test suites

Flex

White Box

that in the scatterplots with black box and white box values for individual test cases,

the number of outliers with smaller black box and white box values is considerably

smaller for f l e x in comparison with concordance and yamm. Correspondingly, when

several test cases with low coverage values are grouped togetherMnto a test suite, the

coverage value of a test suite is also likely to be low.

We can notice that the relationship between the black box and white box coverage

measures is not linear in these scatterplots. In order to get a deeper understanding

of the relationship, we fit several linear models into the data using the R statistical

package and try to determine which model is the most accurate. Linear regression is

the process of finding values for the coefficients of a linear model which best fit the

actual data. We can evaluate how well a model fits the actual data by calculating

the coefficient of determination R2. An R2 ranges from 0 to 1, where the value of 1

indicates that the regression model perfectly fits the data.

Table 4.3 Goodness of fit of black box vs. white box relationship, measured by R2
Linear m odel R 2

f le x concordance yamm
black_box = white-box 0.7899 0.4997 0.7289
black_box = log(white_box) 0.7725 0.241 0.4518
log(black-box) = white-box 0.8156 0.6122 0.831
log (black_box) = log (white-box) 0.8084 0.3393 0.5961

Table 4.3 shows R2 values for four linear regression models of black box and white
\ .

box coverage measures. The R2 values are very close to each other for f le x , while the

values for concordance and yamm clearly show that the model of the form white-box

= BO + B1 Hog (black-box) is the most accurate model.

We have noticed from the scatterplots for individual test cases that there exist a

lot of test cases with relatively low black box coverage which execute most of the

program’s code. When test cases are combined into test suites, we can see a large

number of test suites with low black box coverage and a relatively high white box

coverage. However, if we look at test suites with higher black box values, we can see

that when the black box coverage of a test suite increases, its white box coverage does

not change significantly.

4.5 The Relationship Among Size, Coverage and

Effectiveness

Andrews’ experiments [25] indicate that both size and coverage influence test suite

effectiveness, and a linear relationship among variables log (size), coverage and effec­

tiveness exists for studied programs. In this set of experiments we determine if adding

69
the black box coverage to the model makes it more accurate, and if a nonlinear re­

lationship among the black box coverage, size and effectiveness of a test suite still

holds.

We use two subject programs f le x and concordance for this experiment, as existing

test cases for yamm have limitations which make this program not suitable for the

experiments. Specifically, yamm test cases do not have a mechanism of checking if

a mutant was detected by a particular test case. The majority of yamm test cases\\
interact with the client GUI using the Abbot library, and do not have a mechanism

to check if all elements of GUI are in the correct state.

4.5.1 Mutant Generation

The first step of the experiment is the preparation of faulty versions of the original

programs. We reuse concordance mutants which were generated for studies in [25].

We generate mutants for f l e x using the mutant generator which is described in

[6], and which uses four types of mutant operators: “replace operator” , “replace

constant” , “negate decision” and “delete statement” . We apply mutant operators to

the lines of code which were covered by the test pool. We then identify equivalent

and non-equivalent mutants. In order to do this we first run test cases on the “gold”

version of the program (the original version with no known faults) and save that

program’s output, which will act as a test oracle. We then run all test cases on each

of the faulty versions, and consider a mutant to be equivalent if the output of all test

cases is the same. If any test case produces a different output while being executed

on the faulty version, this version is considered to be non-equivalent. The ratio of

non-equivalent to equivalent mutants appeared to be different for the two subject

70
programs: we have selected 135 non-equivalent mutants for concordance from the

pool of 200 mutants, and 125 non-equivalent mutants for f l e x from the pool of 1000

mutants. In this experiment, the mutant equivalence is approximated because we

are using only a subset of test cases from the infinite set of potential test cases, in

order to decide if a mutant is equivalent. We have prepared a set of shell scripts to

automate the execution of subject programs and collection of the experimental data

in order to make the experiments reproducible.

\. - . - . ■ . - , ■ \

4.5.2 Data Collection

The best way to measure how size, black box and white box coverage separately

influence the effectiveness is to consider low and high values of each factor: (low size,

high size), (low black box, high black box), (low white box, high white box). In order

to use this approach, we would have to construct test suites with all combinations of

factor levels, measure the effectiveness of each test suite, and then perform the 4-factor

2-level analysis of variance (ANOVA) to see which factors influence the effectiveness.
\

However, our initial analysis showed that all three factors - size, black box and white

box coverage, are positively correlated, and constructing a test suite with high black

box and white box coverage but small size is almost impossible. Instead we perform

the analysis of covariance (ANCOVA) which requires a continuous outcome variable,

at least one categorical factor variable and at least one continuous factor variable,

and combines features of simple linear regression with ANOVA.

Therefore we use a data set which consists of 100 random test suites of each size from

2 to 50, resulting in 4900 test suites. Generation of this set of test suites was described

in Section 4.4.1. For each test suite, we record the black box and white box coverage

71
as well as the effectiveness, which is calculated as a fraction of the number of mutants

killed by a particular test suite. In this data set, we have one continuous outcome

variable (effectiveness), two continuous factors (white box and black box coverage),

and one discrete factor (size).

As the way of generating test suites might affect the result, we also prepared a set

of test suites which achieve particular black box coverage thresholds, and generated

1000 test suites of each black box threshold value. We picked thresholds 50, 60, 70,

80, 85, 90, 91, 92 and 93 for concordance, and 50, 60, 70, 75, 80, 81 and 82 for f le x ,

as the maximum feasible coverage of the f l e x and concordance test pools is 82%

and 93% correspondingly. The earlier studies by Andrews et al. [8] have shown that

the effectiveness rises sharply as the 100% feasible white box coverage is approached.

In order to see if this pattern holds for the black box coverage, we made the threshold

black box coverage values more fine-grained as we approached the maximum feasible

coverage. We did not add any test cases to the existing test pools to achieve 100%

black box coverage, as we did not want to change the test pools that were supplied

with the subject programs. For each test suite, we record the whitel box coverage, test

suite size and effectiveness. In this case, a discrete factor is the black box threshold,

and two continuous variables are size and white box coverage.

4.5.3 Experimental Results

We visualize the experimental data with various plots, perform ANCOVA in order to

see which factors influence the effectiveness, and perform several linear regressions in

order to get a deeper understanding of the relationships among factors. We use the

R statistical package [29] for statistical analysis of data.

72
4.5.3.1 Visualizations

We first analyze test suites of fixed sizes from 2 to 50, and compare their effectiveness,

black box and white box coverage values with their sizes. Figure 4.8 shows how test

suite size influences the effectiveness, for the concordance subject program. This

figure shows a box and whisker plot with distributions of the effectiveness values for

each test suite size. As we can see from the figure, test suites of sizes from 2 to 6 have

several outliers, which have low effectiveness values. These outliers correspond to

test suites which consist of test cases with very low white box and black box coverage

measures. Effectiveness increases slowly for test suites of sizes from 7 to 30, and has

very similar distributions and mean values for test suites of sizes from 31 to 50.

Figures 4.9, 4.10 and 4.11 show how test suite size influences the effectiveness, white

box and black box coverage, for both subject programs. In all three figures, each

point represents the average value for 100 test suites of the given size. All three

figures show a positive correlation among the factors.

■' ' ' .̂.. V
Figures 4.12 and 4.13 show scatterplots of the black box coverage and test suite

effectiveness for the concordance and f l e x subject programs respectively. In these

plots, each point corresponds to one test suite from the pool of test suites of sizes from

2 to 50. These scatterplots show that increasing the black box coverage from 35% to

55% results in the significant increase of effectiveness for both subject programs, while

increasing the black box coverage from 70% to 90% does not result in the increased

effectiveness.

We also analyze the set of test suites which have fixed black box threshold values.

Figures 4.14, 4.15 and 4.16 show how black box coverage measure influences the

effectiveness, white box coverage and size, for both subject programs. In all three

73

F igure 4.8 Boxplot of the effectiveness and size for concordance test suites

Concordance

F igure 4.9 The relationship between size and effectiveness
Size vs. Effectiveness

74

F igure 4.10 The relationship between size and black box coverage

F igure 4.11 The relationship between size and white box coverage

75

F igure 4.12 The relationship between black box coverage and effectiveness for
concordance

Concordance

o o°

So 8 ©o
®°o° °o 0
o° o

o Ooo

I
100

Black Box

\

Figure 4.13 The relationship between black box coverage and effectiveness for f l e x

Flex

Black Box

76

F igure 4.14 The relationship between black box coverage and effectiveness for dis­
crete black box data set

Black Box vs. Effectiveness

F igure 4.15 The relationship between black box and white box coverage for discrete
black box data set n

Black Box vs. White Box

77
F igure 4.16 The relationship between black box coverage and size for discrete black
box data set ___

Black Box vs. Size

figures, each point represents the average value for 1000 test suites with the given

black box threshold value. The test suites with the smallest black box threshold

value of 50 have average sizes of 12 and 7 for f l e x and concordance correspondingly,\
compared to the lowest size of 2 test cases for the first data set. We can notice that

these figures exhibit relationships similar to the ones in the previous set of test suites,

as test suites which have larger black box threshold values also tend to contain a

larger number of test cases. However, due to the difference in the ranges of test suite

sizes, the relationships are not identical.

4.5.3.2 Data Analysis

Analysis of covariance (ANCOVA) in statistics is an approach which combines lin­

ear regression with the analysis of variance. We have performed ANCOVA on the

78
experimental data using the linear model Eff = BO + BM og(size) + B2*black-box

+ B3* white-box. We include the constant term BO (also called an intercept) into

the model as we only have data for positive values of size, and do not expect the

regression line to go through the origin.

The aov function provided by the R system produced a value of p for each factor

and all factor interactions1. A value of p below 0.05 indicates that the corresponding

null hypothesis is rejected, and the factor or interaction significantly influences the

outcome variable. The p values for both subject programs were always smaller than

0.0001 for the three factors and first order factor interactions, meaning that these

factors independently influence the effectiveness, but the significant interaction effect

exists between factors.

After ensuring that all factors significantly influence the outcome variable, we perform

regression analysis on the data in order to determine the relationship among variables.

We use R ’s linear regression function to fit various linear models to the experimental

data. First, we take the model suggested by Andrews in [25] and^add the black box

coverage factor to it. We then compare this model to 12 other models which we\
consider to be less accurate. These models consist of the combination of factors size,

log(size), black_box, log(black_box) and white_box. We use the adjusted R2 value

reported by the R ’s lm function as a measurement of how well the model fits the

data2. Adjusted R2 is a modification of the R2 value which adjusts for the number of

variables used in the model.

Table 4.4 shows adjusted R2 values for two sets of test suites for all 13 models and two

1The R ’s aov function works as a wrapper to the lm function (see below) to perform an analysis
of covariance by fitting an analysis of variance model for each value of discrete factor.

2The R ’s lm function is used to fit linear models.

79
T able 4.4 Goodness of fit of models of effectiveness, measured by adjusted R2

M o d e l o f E ffectiveness A dju sted R 2
Discrete size data set Discrete black box data set
f l e x concordance f l e x concordance

size 0.5375 0.4259 0.6706 0.5355
log(size) 0.7151 0.6009 0.7276 0.6187
black_box 0.7001 0.6977 0.6992 0.5947
log(black_box) 0.7437 0.7767 0.7161 0.631
white.box 0.9081 0.8395 0.8942 0.5663
black_box + white-box 0.9085 0.9098 0.8953 0.6261
log(size) + black_box 0.7819 0.7002 0.7295 0.6189
log (size) + white.box 0.9133 0.9079 0.8944 0.635
log(size) + b.b. + w.b 0.9149 0.912 0.9002 0.6353
log(size) + log(b.b.) + w.b 0.9136 0.9119 0.899 0.6441
size + black_box 0.7258 0.7154 0.7 0.6175
size + white-box 0.9087 0.8946 0.8943 0.604
size + b.b. + w.b 0.9096 0.9104 0.8967 0.6408

subject programs. We first analyze the data set of test suites with fixed sizes. The

adjusted R2 values indicate that of all three factors the white box factor influences the

effectiveness most of all, while size and black box measures add a |ittle more accuracy

to the model. The table shows that the model of the form Eff = BO + Bl*log(size)

+ B2*white-box + B3*black-box has the largest adjusted R2 value for both subject

programs and therefore is considered to be the most accurate model. We also notice

that the model of the form Eff = BO + Bl*log(black-box) is more accurate than the

model of the form Eff = BO + Bl*black-box, which is consistent with the shape of

the scatterplots in Figures 4.12 and 4.13.

In order to determine if a model which uses logarithmic size is more accurate than the

model which uses raw size, we compare various models with linear and logarithmic

size factors. We find that models of the form Eff — BO + Bl*log(size) + B2*white-box

and Eff = BO + BM og(size) + B2*white-box + B3*black-box are more accurate than

80
Table 4.5 Coefficients for the linear model Eff = BO + Bl*log(size) + B 2*black-box
+ B3*whiteJ)ox.

Subject Coefficient
BO B1 B2 B3

f l e x -5.01 1.61 -0.01 1.11
concordance -0.31 1.637 0.171 0.788

the similar models with linear size. This observation is consistent with the findings

of Andrews in [25]. However, the model of the form Eff = BO + Bl*log(size) +

B2*black-box is slightly less accurate that the corresponding model with linear size.

We can also see that log (size) and black-box add similar amount of accuracy to the

model, because the models of the form Eff = BO + Bl*log(size) + B2*white-box and

Eff = BO + Bl*black-box + B2*white-box have adjusted R2 values which are close to

each other. We can conclude from these observations that the log (size) and black-box

factors have similar effect on the outcome variable, and are highly correlated.

The output of R ’s anova function indicates that there exists a statistically significant

difference between the model Eff = BO + BM og(size) + B2*white-box + B3*black-box
\

and all other models, making it the best fitted function for the collected data (p value

of t test is less than 0.0001 for all pairs of models). Table 4.5 shows coefficients for

this model for the two subject programs. Figures 4.18 and 4.17 show graphs of actual

(Y-axis) vs. predicted (X-axis) values for the effectiveness model.

We have performed a similar analysis for the second set of test suites with fixed black

box threshold values. The adjusted R2 values for this data set are shown in Figure

4.4. The adjusted R2 values for the f l e x subject program are consistent with the

values for the first set of data: the white box factor influences the effectiveness most of

all; models with logarithmic size are more accurate than the models with linear size;

81

F igure 4.17 Predicted vs. actual Effectiveness for concordance using the model Eff
= BO + Bl*log(size) + B2*blacEbox + B3*white-box

Concordance

F igure 4.18 Predicted vs. actual Effectiveness for f l e x using the model Eff = BO +
Bl*log(size) + B2*black-box + B3*white-box v

Flex ; \

82
and the model of the form Eff — BO + Bl*log(size) + B2*white-box + B3*black-box

is considered to be the most accurate one.

In contrast, the adjusted R2 values for the concordance subject program are much

lower and change in the range from 0.53 to 0.64, which is considered to be low

accuracy. The low accuracy of the models explains inconsistency with the previously

observed patterns: the black box factor has slightly larger adjusted R2 value than the

white box factor, suggesting that the black box has more influence on the outcome

variable. Also, the model of the form Eff = BO + BM og(size) + B2*white.box +

B3*log(black-box) is considered to be the most accurate one, which is inconsistent

with the previous results.

A possible explanation of the low accuracy of these models is in the way of choosing

the threshold values while generating test suites. We have previously identified that

the relationship between the black box coverage and effectiveness is logarithmic, and

test cases with low black box coverage can ensure high levels of effectiveness. We have

selected black box threshold values starting from 50 (with the average test suite size

of 8 test cases), which is a relatively high coverage value. Increasing the black box

coverage from 50 to a maximum feasible value did not affect the test suite effectiveness

very much, which may result in the lower accuracy of the models.

4.5 .4 Discussion

It is considered a general rule in the software testing industry that a tester must take

into account both black box and white box approaches when constructing test cases.

Although our experiments have shown that there does exist a statistically significant

difference between the models of the forms Eff = BO + BM og(size) + B2*white-box

83
and E ff— BO + Bl*log(size) + B2*black-box + B3* white-box, the effect of adding the

black box factor to the model is relatively small (less than 0.01 difference in adjusted

R2). This difference does not have a large impact in practice. We have also found that

the white box coverage alone is better at predicting the effectiveness than the black

box coverage alone, while log(black_box) is better at predicting the effectiveness than

the raw black box coverage value when size is not taken into account. The logarithmic

relationship between the black box coverage and effectiveness means that a test case

with low black box coverage is likely to be more effective than a test case with low

white box coverage. However when we increase the black box coverage, after a certain

point the effectiveness does not increase very much.

Based on these findings, we suggest that a good testing strategy is first to use the

black box coverage approach to construct test cases, as this will ensure a high level

of effectiveness. After that it is useful to add the white box test cases to the test

suite to make sure that the high code coverage is achieved which in turn will lead to

the increased effectiveness. This property makes the black box approach suitable for

smoke tests and regression tests, in which a small amount of test \;ases must provide

a high level of confidence about the quality of the program.

We also suggest that the black box approach is more suitable at the early stages

of software development, before the final release of the product. A tester will use

test cases constructed using the black box approach to ensure that no functionality

is missing and all features are working as they are designed to. However, when all

functionality is implemented, it is more appropriate to run test cases which aim to

achieve high code coverage in order to find more bugs. Therefore both black box

and white box approaches are equally important, but should be used for different

purposes.

84

Chapter 5

\\

Conclusion

5.1 Conclusion

This thesis has presented a method to evaluate the thoroughness of a test suite from

the black box perspective. This method is based on the two mo&t widely used in­

dustry black box techniques: equivalence partitioning and boundary .value analysis.

The method consists of three main components: Functional Test Specification, which

defines equivalence classes for each input and output variable; log files, which are pro­

duced during the execution of a subject program, and the FTS Tool, which compares

elements from log files with elements from the FTS, and calculates the percentage of

elements covered. This thesis also presented the architecture and implementation of

the FTS Tool coverage calculation program. The design of the tool is scalable and

will allow easy addition of other coverage types to the report. Several experiments

have been conducted in order to evaluate the proposed method, as well as to study

the relationship among the black box and white box coverage measures, test suite

85
size and effectiveness, and see if the black box coverage can be a good predictor of

test suite effectiveness.

We have successfully applied the black box coverage calculation method to three

subject programs of different sizes implemented in different programming languages.

Experimental results indicate that the white box coverage is better at predicting the

effectiveness than the black box coverage. We suggest that the lower accuracy of the

black box factor in comparison with the white box factor can be due to the smaller

granularity of the black box specification - the number of black box coverage elements

is very small compared to the number of lines of code in the program. We have also

found that there exists an exponential relationship between the black box coverage

and effectiveness, which means that a test case with low black box coverage is likely

to be more effective than the test case with low white box coverage. However, when

we further increase the black box coverage the effectiveness increases only slightly.

We have also found that the model of the form log(size) + black_box + white-box

is the most accurate model based on the statistical adjusted fl2 parameter; however,

adding the black box coverage factor to the model of the form log(size) + white-box

does not significantly increase the accuracy of the model. V . ■

Our findings suggest that when constructing test cases, the black box testing approach

should be given the preference at the early stages, as the relatively low black box

coverage can provide high test suite effectiveness. After achieving a high level of

the specification coverage, it is appropriate to add the white box test cases to make

sure that high code coverage is achieved. This is consistent with the general testing

practices.

86
5.2 Future Work

Several improvements can be made to the coverage calculation program and exper­

iments. The current implementation of the FTS Tool does not take into account

combinations of values of different input variables. For example, if we want to test a

system which takes as input a date in the form of a day number and a month number,

then valid values for the month variable will be from 1 to 12, and valid values for

the day variable will be from 1 to 31. However, certain combinations of these valid

values, such as 2/30, 4/31 etc. are invalid. We would like to extend the XML specifi­

cation definition so that it will allow to specify combinations of value sets and indicate

whether they are valid or invalid, and also change the FTS Tool implementation so

that it will check if a certain combination of value sets was present in the logs.

One limitation of the current approach has been uncovered during the experiments

with the concordance subject program, concordance has two modes of operation:
'n

help printing mode, when the —help option is specified, and a regular mode in which

an “inputFileName” variable is required (which is captured in the FTS as an invalid

multiplicity of “0”). Both of these arguments belong to the input event “Options-

Specified” . So, when the following input event appears in the log file: “InputEvent

program commandLine OptionsSpecified Help=-help” , the multiplicity of the input-

FileName variable is considered to be invalid by the FTS Tool. According to the

value set coverage calculation algorithm, a value set can be considered tested if the

corresponding input event does not contain invalid variable values or multiplicities.

Therefore in this input event the value set “Help=-help” is not considered to be cov­

ered. We would like to incorporate into the FTS a way to specify the restriction that

certain input variables cannot be used together in one input event, which in turn will

be taken into account by the FTS Tool while calculating the coverage.

87

• Add more test cases to the existing pool of test cases for the two subject pro­

grams, so that the test pool will achieve 100% white box and 100% black box

coverage. In this case we will not need to scale the coverage values for the ex­

periments, which will potentially improve the accuracy of the linear regression

models of effectiveness.

• Test the black box coverage calculation approach on a wider range of subject

programs, including programs of larger sizes, programs with GUI and a more

diverse functionality. This will allow us to have a more advanced FTS speci­

fication, which will increase the number of coverage elements and improve the

accuracy of statistical analysis.

• Generate mutants for the yamm subject program and perform analysis similar

to the one described in Section 4.5.
'■s

• In Section 4.5.4 we suggest that the white box technique is more useful for

a complete program which does not change over time, while the black box

approach is useful during the implementation of the program. In order to test

this hypothesis we would like to perform analysis of several different versions of

the same program, containing different sets of features.

We also would like to incorporate the following improvements to the experiments:

88

References

[1] Abbot framework for automated testing of Java GUI components and pro­
grams. h ttp ://a b b o t .so u rce fo rg e .n e t /d o c /o v e rv ie w .sh tm l/. [Online. Ac­
cessed July 2011]. ,

[2] Aynur Abdurazik and Jeff Offutt. Using UML collaboration diagrams for static
checking and test generation. In Proceedings of the 3rd international conference
on The unified modeling language: advancing the standard, UML’OO, pages 383-
395, Berlin, Heidelberg, 2000. Springer-Verlag.

[3] Jean-Raymond Abrial, Stephen A Schuman, and Bertrand Meyer. A specification
language. In A . M. Macnaghten and R. M. McKeag, editors, On the Construction
of Programs, pages 343-410, New York, NY, USA, 1980. Cambridge University
Press. ■s

[4] N. Amla and P. Ammann. Using Z specifications in category partition testing. In
Proceedings o f the 7th Annual Conference on Computer Assurance, COMPASS
’92, pages 15-18, 1992.

[5] Paul Ammann and Jeff Offutt. Introduction to Software Testing. Cambridge
University Press, New York, NY, USA, 2008.

[6] J. H. Andrews, L. C. Briand, and Y. Labiche. Is mutation an appropriate tool
for testing experiments? In Proceedings of the 27th international conference
on Software engineering, ICSE ’05, pages 402-411, New York, NY, USA, 2005.
ACM.

[7] James H. Andrews. CS4472: “Specification, Testing and Quality Assurance”
Lecture Notes. http://w w w .csd.uw o.ca/courses/C S4472a/. [Online. Accessed
September 2009].

[8] James H. Andrews, Lionel C. Briand, Yvan Labiche, and Akbar Siami Namin.
Using mutation analysis for assessing and comparing testing coverage criteria.
IEEE Trans. Softw. Eng., 32:608-624, August 2006.

http://abbot.sourceforge.net/doc/overview.shtml/
http://www.csd.uwo.ca/courses/CS4472a/

89
[9] M. Balcer, W. Hasling, and T. Ostrand. Automatic generation of test scripts

from formal test specifications. In Proceedings of the ACM SIGSOFT ’89 third
symposium on Software testing, analysis, and verification, pages 210-218, New
York, NY, USA, 1989. ACM.

[10] Tim Bray, Jean Paoli, C. M. Sperberg-McQueen, Eve Maler, and Francois
Yergeau. Extensible Markup Language (XML) 1.0 (Fifth Edition), h ttp :
//www.w3.org/TR/REC-xml/. [Online. Accessed September 2011].

[11] Cobertura Project Homepage, h ttp ://c o b e r tu r a .s o u r c e fo r g e .n e t /. [Online.
Accessed July 2011].

[12] Lee Copeland. A Practitioner’s Guide to Software Test Design. Artech House,
Inc., Norwood, MA, USA, 2003. x

[13] Richard A. DeMillo, Richard J. Lipton, and Frederick G. Sayward. Hints on test
data selection: Help for the practicing programmer. Computer, 11:34-41, April
1978. .

[14] Richard A. DeMillo and A. Jefferson Offutt. Constraint-based automatic test
data generation. IEEE Trans. Softw. Eng., 17:900-910, September 1991.

[15] P. G. Frankl and S. N. Weiss. An experimental comparison of the effectiveness
of branch testing and data flow testing. IEEE Trans. Softw. Eng., 19:774-787,
August 1993.

[16] Phyllis G. Frankl and Oleg Iakounenko. Further empirical studies of test effec­
tiveness. SIGSOFT Softw. Eng. Notes, 23:153-162, November 1998.

[17] Gcov - a Test Coverage Program in: Using the GNU Compiler Collection
(GCC). h ttp ://g c c .g n u .o rg /o n lin e d o cs /g cc /G co v .h tm l/. [Online. Accessed
July 2011].

[18] The RAISE Language Group. The RAISE specification language. Prentice-Hall,
Inc., Upper Saddle River, NJ, USA, 1993.

[19] Monica Hutchins, Herb Foster, Tarak Goradia, and Thomas Ostrand. Experi­
ments of the effectiveness of dataflow- and controlflow-based test adequacy crite­
ria. In Proceedings o f the 16th international conference on Software engineering,
ICSE ’94, pages 191-200, Los Alamitos, CA, USA, 1994. IEEE Computer Society
Press.

[20] C B Jones. Systematic software development using VDM. Prentice Hall Interna­
tional (UK) Ltd., Hertfordshire, UK, UK, 1986.

[21] Jtest Project Homepage. http://www.pcLrasoft.com/jtest/. [Online. Accessed
July 2011],

http://www.w3.org/TR/REC-xml/
http://cobertura.sourceforge.net/
http://gcc.gnu.org/onlinedocs/gcc/Gcov.html/
http://www.pcLrasoft.com/jtest/

[22] LOCO - Collaborative Software Development Laboratory, h t t p : / / c s d l . i c s .
h a w a ii.ed u /P lon e /resea rch /lo cc /. [Online. Accessed October 2011].

[23] Chen Mingsong, Qiu Xiaokang, and Li Xuandong. Automatic test case gen­
eration for UML activity diagrams. In Proceedings o f the 2006 international
workshop on Automation of software test, AST ’06, pages 2-8, New York, NY,
USA, 2006. ACM.

[24] Gienford J. Myers. The Art o f Software Testing. John Wiley & Sons, Inc., New
York, NY, USA, 1979.

[25] Akbar Siami Namin and James H. Andrews. The influence of size and coverage on
test suite effectiveness. In Proceedings of the eighteenth international symposium
on Software testing and analysis, ISSTA ’09, pages 57-68, New York, NY, USA,
2009. ACM.

[26] T. J. Ostrand and M. J. Balcer. The category-partition method for specifying
and generating functional tests. Commun. ACM, 31:676-686, June 1988.

[27] Mahesh Shirole, Amit Suthar, and Rajeev Kumar. Generation of improved test
cases from UML state diagram using genetic algorithm. In Proceedings o f the
4th India Software Engineering Conference, ISEC ’ l l , pages 125-134, New York,
NY, USA, 2011. ACM.

[28] Phil Stocks and David Carrington. A framework for specification-based testing.
IEEE Trans. Softw. Eng., 22, November 1996.

[29] W. N. Venables, D. M. Smith, and The R Development Core Team. An intro­
duction to R. Technical report, R Development Core Team, June 2006.

[30] Y. T .‘Yu, Eric Y. K. Chan, and P.-L. Poon. On the coverage of program code by
specification-based tests. In Proceedings o f the 2009 NinthTntemational Confer­
ence on Quality Software, QSIC ’09, pages 41-50, Washington, DC, USA, 2009.
IEEE Computer Society.

[31] Hong Zhu, Patrick A. V. Hall, and John H. R. May. Software unit test coverage
and adequacy. ACM Comput. Surv., 29:366-427, December 1997.

http://csdl.ics

	RECORDING AND EVALUATING INDUSTRY BLACK BOX COVERAGE MEASURES
	Recommended Citation

	tmp.1642020695.pdf.E9QuD

