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- ABSTRACT .

*The wall jet flow driven by a pressure gradient near channel exit at Reynolds Number
ranging from the order of 10 to 100, emerging from a two-dimensional channel is
“examined theoretically in this study. Poiseuille flow conditions are assumed to prevail far -
- upstream from the exit. The problem is solved using the method of matched asymptotic - -
- expansions. -The small parameter involved in the expansions is the inverse Reynolds
number. The flow and pressure fields are obtained as composite expansions by matching
. the flow in the boundary-layer region near the free surface flow in the outer layer region .

near the stationary plate and the flow.in the core reglon The fluid is assumed to be
| NewToman and it is found that the jet contracts downstream from the channel exit. The
. influence of inertia on the shape of free surface is emphasized and the boundary layer
/ structure near the freesuri'ace is explefed. To leading order, the problem is ‘similzir tothe
eése of the free jetv(Tillett‘ 1968) with different boundary conditions. A similarity solution
iean be carijied out using a similarity function which is then determined by solving a
beundary-value problem, where the equation is integrated subject to the boundary
conditions and a guessed value of the slope at the origin. The slope is adjusted until
reasonable matching is achieved between the solution and the asymptotic condition far
from the free surface. The level of contraction is essentially-independent of inertia, but
the contraction moves further downstream with increasing Reynolds number. The present
work provides the correct conditions near exit, which are required to determine the jet
structure further downstream. If the jet becomes thin far downstream, a boundary layer
: formulatlon can be used with the presently predicted boundary conditions for steady and

p0531bly transient flows.

KEYWORDS

‘Matched asymptotic analysis, free surface wall jet, channel exit, large Reynolds number.
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CHAPTER1

1. INTRODUCTION

The objectlve of th1s study is to examine the 1nﬂuence of dnvmg pressure on the two
d1mensronal steady lamlnar jet of an lncompre551ble fluid near the channel exrt The basw
ﬂow conﬁguratlon is, 111ustrated schematlcally in figure 1.1. It shows that 2 pressure
drlven wall Jet emerges out of the channel and with a contractmg free surface outside the
channel downstream The flow near the channel exit is closely examlned and the
1nﬂuence of mema is emphasmed The asymptotlc development of the flow field is taken
m terms of the inverse Reynolds number, which is assumed to be rangmg from the order
of 10 to 100 The Jet is assumed to be subject to a constant pressure gradlent far
upstream The effect of this pressure gradient on the emerging jet, however, will diminish
with dlstance as viscous effects become dominant over inertia as a result of the wall
resistance. In this case, the contracting jet begins to expand (swell) with distance

downstream from channel exit.

Fixed wall

Fluid

Free Surface

Fixed wall

Figure 1.1: Schematic illustration of the basic flow configuration.



1.1 Related flow problems

The literature abounds w1th promlnent works on free jet, wall Jet impinging jet and
grav1ty driven Jet All these problems dlsplay an important common behaviour that of
boundary layer flow. It is therefore helpful to briefly describe next the concept of
boundary layers. The boundary layer equations are perhaps one of the most important
advances in fluid dynamics. Using an order of magnitude anaiysis the well—known
governlng Nav1er—-Stokes equatlons of v1scous fluid ﬂow can be greatly s1mp11ﬁed within
the boundary layer Notably, the characteristic of the partlal dlfferentlal equatlons (PDE)
becomes ‘parabohc, rather than the elliptical form of the full Navier-Stokes equations.
, Thie greatly simplifies the solution of the equations. By making the boundary layer
approximation, the flow is divided into an inviscid portion and the boundary layer, which
is "go'verned by a PDE. The continuity and Navier-Stokes equations for a two-

dimensional steady incompressible flow in indicial form are given by

’

vig=0 , (L)
where i and j represents the components in x and y axis, p is the density, p is the pressure
and v is the kinematic viscosity of the fluid at the point. For a sufficiently high Reynolds
number, there are now two regions of interest. One is the region close to the surface
where the viscosity is important and this is known as the boundary layer, and an outer
reglon where the inviscid flow is unaffected by viscosity. Since the boundary layer is

generally very th1n the followmg approx1mat10ns apply

@«@andﬁ’_«?_‘j D ST oo (14

Applying the approximation (1.3) and (1.4) into equation (1.2) it is found that



—=~0orp~px) (1.5)
The pressure gradient in x direction can be computed from the Bernoulli’s equation
which is,-

dp dU _ /
£ U— / ‘ (1.6
PV (L6)

Note that, U is the free stream velocity. Finally using (1.3) and (1.4) it can be written that,
o*u 6%

6x2 —_—< ay_ Now the two boundary layer equations are written using (1 1) and (1. 2)
B Vg ‘ (1.7a)
0x Oy :

u du .dU 62u
u—+v—=U—

+V—s- 1.7b

& oy A& gy (-7
The above equations (1.7a) and (1 7b) are the famous boundary-layer equations for a flat
plate derived by Prandtl. For a ﬂat plate (figure 1 2) the boundary conditions are the

following:

At y = 0(wall): u=v=0 (noslip)

~_ (1.8)
Aty=05(x): u=U(x)

where 6(x) is the boundary layer thickness. The next step is to find the similarity solution
for the boundary layer equations. A similarity solution is a form of solution in which at
least one co-ordinate lacks a distinguished origin; more physically, it describes a flow
which 'looks the same' either at all times, or at all length scales. For the laminar flow on
the plate, the boundary layer equations (1.7a) and (1.7b) can be solved exactly for u and
v. Using co-ordinate transformation, Blasius showed that, the dimensionless velocity

profile WU is a function of n:



u A 1/2 L . - .
—=f'(n) -‘n=y(—) AT R e (19)
Substituting '(1.9) into (1.7) the nonlinear PDE problem is reduced to' third-order
nonlinear ODE forf ¢ =~ T E AT it s
| ,,. - ¥ e e S PR
freff’=0 e V S a0)
with the boundary conditions
A0 RO=F(0)0

, BT
Asn—ooo - f(0) o1 , :

Boundary laycr

Figure 1.2: Schematic diagram of flat plate boundary'la'yer.



‘The current problem is closely related to wall jet (Glauert 1956). The relation between
the two problems can be understood from figure 1.3. The current problem is 1ncluded for
reference in figure 1.3a. The typical configuration of the more general wall jet is shown
in figure 1.3b, where the flow in far field is shown with the fictitious virtual origin
(Schlichting 1999). Figure 1.3¢ shows the analogy between the current problem and the
wall jet. The no slip boundary condition on the wall outside the channel is the same for
‘both wall jet and the current problem. The difference between the two problems is in the
type of the second boundary condition far from the wall. In the case of the wall jet, the
velocity of the fluid becomes zero, while in case of the current problem there is the
presence of the free surface on which there is a nonzero velocity of the fluid or slip
condition. Note, however the similarity in velocity profiles in the two cases. Desplte the
difference in boundary conditions far from the wall, the two velocity profiles display a
maximum and decrease with distance. Inc1dentally, the boundary layer methodology
described above can be applied to .wrall jet to aleertain'extent. In case of a wall jet, two
similarity exponents, giving the variation with distance of the maximum velocity and the
jet width, have tofbe determined, and one relatjon between them is obtained from the
boundary layer equations themselves, and the second relation depends on an eigenvalue,

which for laminar flow is satisfactorily solved (Glauert 1956):
f"+f"+af2=0 . - (1.12)

where a = (2b- -1)/(2-b) is the eigenvalue and b is the similarity exponent related to jet
thrckness The value of b for plane wall jet was found to be 3/4. The velocity distribution
applies for both radlal and plane wall Jets The current problem deals with the free surface

wall jet and does ~not appear to have received attention previously.



Fixed wall

Fluid @
/ ~ Free Surface

_Fixed wall

| — . .

" Nozzle (b)
Nozzle
()
" Free Surface - Classical Wall Jet

\ " Wall Jet

Fi'gure‘ 1.3: Schematic illustration of (a) basic flow éonﬁguratidn; (b) classical wall

jef '(Glauéft 1956), (c) similarity between current problem and classical wall jet flow



"The current work is based on the earlier methodology developed by Tillett (1968) who
obtained the shape of the free surface and velocity profile for moderately inertial laminar
free Jet flow near the channel ex1t More detalls on Tillett’s work will be given later.
Morc recently, Dumargue & Phrhppe (1991) used a snmlar method and emphasrzed the
1nterplay between the effects of gravity and inertia on the free surface shape and the
velomty profile Watson (1964) carried out the analysis for lammar and turbulent _]ets
1mp1ng1ng on a ﬂat surface and showed that there exists a 31m11ar1ty solutlon far
downstream Wthh w1ll be dlscussed later WllSOIl (1986) carrled out a local srmllarlty
transformatron for the ax1symmetnc viscous- grav1ty jet of the ‘boundary layer type ﬂow‘ ,

close to the free surface

Watson (1964) analyzed another related problem of the radial spread of a liquid jet over a
horizontal plate in which he focuses on the hydraulic jump. When a smooth jet of water
falls vertically from a tap on to a horizontal plane, such as the bottom of an empty sink,
the water spreads out 1n a thin layer untll a sudden increase of depth occurs. ThlS is a
hydrauhc jump. There is a formation of thm layer 1nsrde the jump and boundary-layer
theory is applied in order to discuss the motron Reynolds no. is assumed to be large and
no account is taken of the structure of the hydraullc jump, or surface tension effects. For
large values of the radial distance 1, a similarity solution of the, lammar boundary-layer
,equatlons is sought Later, the experrmental tests of Watson s model did not give results
satlsfactonly Liu & Lienhard (1993) showed that the shape of the c1rcular Jump is
dommated by surface tension. However, con51denng the fact that, the current analysrs is
based on high Reynolds no. ﬂow, surface tension is neglected but the free surface shape
can still be predicted correctly using the methodology g1ven by Tlllett(l968) whlch w1ll

be discussed later. |

1.2 Motivation

Real ﬂulds (hqurds and gases 1ncluded) movmg along sohd boundary w111 incur a shear
stress on that boundary As the ﬂurd emerges from a tube or a channel 1t is subjected to

an abrupt change in the shear stress 1 e there isa change in stress ﬁ'om a non-zero value



(u% ) to a-zero value which causes a singularity to form. This stress singularity
constitutes the major difficulty Iin.any theoretical analysis. However, the computational
method which seemed to have prevailed over theoretical analysis fails in the case of
singularity. The reason. of the failure is that, in case of the computational method, the
entire flow domain- including the singularity and its immediate  vicinity must be
- considered (discretized) and cannot be avoided. The crucial sector to the rest of the flow
domain is the singularity region, which is difficult to handle numerically if a satisfactory
level of accuracy is sought; In this situation, the asymptotic approach proposed lends
itself efficiently as a viable alternative. Perhaps more importantly, asymptotics tend to
provide deeper insight on the flow structure near the singularity. The analysis is similar to
entry flows where two distinct regions can be identified, an inviscid region and a

developing boundary layer that emanates from the entrance point.
For the current ﬁée }surfacevkv'alljet problem at large Reynolds number i.e. low viscosity,
the upstream diffusion of .vorticity(-—g—u-] ,'which is related to shear stress, is small. The

voﬁicity géﬁerated at the leading édge vwhkere thé’ Stress, smgulanty 6cbms ’diffuses
depthwise and is convected downstream, ultimately invading the entire flow field. In the
inviscid core region, velocity changes occur primarily through conservation of mass. A
similar situation occurs for a wall jet at large Reynolds number. For entry flow, the
entrance length corresponds to a stress relaxat’ikon length, and the inviscid core is replaced
with a viscous core in which elongation is small as }1 result of small axial velocity and
stress  gradients. For the current problem, velocity gradients in the core region occur
primarily because of jet contraction (or expansion depending on the Reynolds fnumber) |
through conservation of mass. ‘At the exit of the channel, the shear stress: drops :
discontinuously to zero on the free surface. The effect of this drop diffuses toward the
wall of the jet both inside (upstream) and outside (downstream) the channel. However,
outside the channel, the diffusion is much more signiﬁczint and is convected downstream,
“eventually reaching the wall. The original Poiseuille flow gradually acquires a boundary

layer character.  For a stationary wall, Watson’s (1964) similarity solution applies far



* downstream where the flow is ‘entirely of the boundary layer type and the viscous

relaxation length depends on the driving pressure gradient.

Free surface and 1nterfa01al ﬂows are generally comphcated because of the unknown
posrtlon of the surface or 1nterface The presence of the stress singularity adds complex1ty
to the problem and solutlon In the llterature, both analytrcal and computatwnal solutlon
‘ -methodologles have been pursued Although numencal methods seem to have prevalled
.over analytical approaches for most ﬂow problems th1s is not the case for ﬂows with
smgularlty A combination of analyt1ca1 and numerlcal treatments has also been proposed
(Shr, Breuer & Durst 2004) As mentioned earher, ina computatlonal approach, the entire
ﬂow domam must be discretized, 1nclud1ng the s1ngular1ty and its surroundlng region,
both upstream and downstream from the exit. ngher accuracy is achreved through mesh
_ reﬁnement which captures more effectrvely the smgulanty but leads srmultaneously to
the presence of stronger flow gradrents that are drfﬁcult to handle numencally (Pasquah
& Scnven 2002) In order to circumvent the dlfﬁculty thh the unknown free surface,
Tsukl_]l & Takahashr (1987) wrote the ﬂow equations 1n a curv1hnear coordlnate system
related to the network comprlslng the streamhnes and thelr orthogonal traJectorres
Although thls approach s1mphﬁes the 1mplementat10n of the boundary cond1t1ons it

eomplrcates the ﬂow equations.

™~

1.3 Asymptotic analysis: A historical perspective -

Asymptot1c analyses tend to avoid the singularity by identifying two 'distinct flow
regions: a boundary layer reglon near the free surface, extendlng but not including the
singular point, and a core region where the flow remains close to fully developed The
1nclus10n of the singularity is not essential in this case given the similarity character of
'_the flow in the boundary layer region. Note again that the boundary layer‘region extends
both upstream and downstream from the singularity. However, although the ﬂowi does
not remain fully developed as it :approaches the exit, the thickness of th_e boundary‘la‘yer
 upstream of the exit is generally_ small at high Reynolds number, and is often ‘ignored.‘ For

the current problem, a third layer arises near the wall. Asymptotic analysis has been
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' successfully adopted for flows in the Visco-capillary range (Goren & Wronski 1966,
f' l{uschak & Scriven 1977,: Higginé 1982). Goren & Wronski presents two theoretical
. approaches for the shape of a jet of Newtonian liquid issuing from a capillary needle into

‘ alr One approach is a perturbation analysxs about the final state of the jet and other is:

, boundary layer analys1s near the po1nt of Jet formation. Ruschak & Sonven (1977) used
" the similar analys1s in case of a developlng laminar flow in a liquid film i 1ssu1ng from a.

full slot and descendmg along a vert1cal wall and obtained the location free boundary and |
'the curved memscus proﬁle nggms (1982) analyzed the downstream development of »
| film ﬂow on a movmg substrate using the asymptotlc analysis. More closely to the
'{ ‘present problem asymptotlc analysis has been adopted in the visco-inertial range (Tlllett
1968, Phlhppe & Dumargue 1991). In this regard, however, little focus has been on jet |
" flow taking inertia into account. Tillett (1'968)'analyzed the moderately inertial laminar

 free jet flow near the channel exit using the method of matched aeymptolic expansions.
~ Tillett was able to obtain the asymptotic contraction ratio of the jet far downstream using
an integral analysis. The results were in good agreement with the experimental results
found by Middleman & Gavis (1961). Consequently, the method of matched asymptotic
analysis proved to be a very successful tool in examining the flow structure of the jet near
the channel exit. Miyake, Mukai & Iemoto (1979) carried out a similar analysis on a
vertical jet of inviscid fluid taking into account gravity el‘fee‘t. They considered far
downstream flow regions to match with ‘near-exit’ flow and thus extended the validity of
the methodology described by Tillett (1968) to the far downstream region from the exit.
Asymptotic analyses have also been successfully implemented for non-Newtonian flows.
See, for instance, the work of Denier & Dabrowski (2004) on boundary layer ﬂow, and
the work of Zhao & Khayat (2007) for the spreading of a liquid jet. |

Tillett considered a jet of liquid, open to atmosphere,l which emerges from a two-
dimensional channel in which there is Poiseuille flow far upstream. The method of
matched asymptotic expansion (Van Dyke 1964) is used to investigate the problem and\
the small parameter involved in this expansion is the inverse Reynolds no which is based
on the channel width. It is assumed in his paper that, in the asymptotic expansion to the

lowest order the flow has the Poiseuille profile. Then he considered how the flow is
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modified when the fluid leaves the end of the channel in the form of a jet. Surface tension
is ignored in his work. Inside the channel the wall stress is u%. As vt’he fluid detaches

itself from the wall of the channel, the removal of the wall stress causes a boundary layer
to form at the free surface. In this: layer the pa:iraboli'c‘ velocity profile of the Poiseuille
flow adjusts itself so as to satisfy the condition of zero stress at the free surface. It is
assumed in his work that Poiseuille flow everywhere is the proper inviscid limit.
According to this assumption, the flow in the interior of the jet is unaffected to lowest
order, although it is expected that the boundary layer will induce perturbations to it, and
also to the flow upstream in the channel. Consider figure 1.4a for Tillett’s problem. The
solution is developed in powers of &, where ¢ is an inverse Reynolds number, both in the
'inner' (boundary-layer) region and in the 'outer' region of the coré; the two expansions

are matched by standard procedures. The regions of interests are shown in figure 1.4b
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Figure 1.4: Schematic diagram of (a) laminar two dimensional free jet and

(b) region of interest in Tillett’s work on laminar free jet.
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To analyze the problem, the x-axis is taken along the lower edge of the channel, and the

z-axis across the channel width. If a is the width of the channel, the stream function of

the basic Poiseuille flow is
~ ) 5
Vo =A(Z —'3*?) ,, 1.13)

>Umean
a

where A = = constant. The inverse Reynolds number is defined as e+ =v/ Aaz;

where v is the kinematic viscosity.

The non —dimensional variables are introduced by measuring lengths with respect to a,

velocities with respect to Aa, stream function with respect to 4a’ and pressure with

respect to pd’a’, p being the density. Therefore (1.13) becomes,
_.2_2.3

Yo=2 =32 (1.14)

Anothei' coordinate of interest is the transverse coordinate measured from the free

surface, which is given by
y=z-t | (1.15)

The Navier-Stokes equations for steady laminar flow are, in non-dimensional forms are,

| 1
VoW ~VxWzz =P+ o (Wi + Vzzz) (1.16)

L (oo +Vnzz) | (117

“WzWxx + VxVxz =Pz —-I-(—
()

‘In Tillett’s work, the 'prleém was solved for large Reynolds number, assuming,
nevertheless that the flow remains laminar. For x > 0 the boundary conditions that can be
applied on the lower free surface z = {(x) are, the kinematic and dynamic boundary

- conditions. Kinematic boundary conditions means that the free surface itself is the stream
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line 4nd dynamic bbimdéry condition me_émS that on the free :Surfa_ce‘the' tfactidn force is

z¢ro. (Thes_e conditions can“be writtéri as fdliowing

\VI’:=0 S IR (1.18)
1=6-1=0

Iy =OxxNy +0y; , =0 i A
and o ‘ (1;19)

- t, =040, +0,,n,=0
’

_=5 dn, = 1
NZIE R e

where n, =

. For a Newtonian fluid, total stress is denoted as

o} = "P5ij + Tjj where T is the shear stress tensor. The dynamic boundary condition then

r'éduces‘to |
Pt 2¥i +C' (W~ ¥xx)] =0 . : (1.19a)
PL — 2o 2Vl ~Wzz + Y ) =0 (1.19b)
The other conditions to be satisfied are, :
1 1 |
- = (1.20
y=con z= (1.20)
y,=0on z=0,1 .21
y > z2? —%23 as X = o o : (1.22)

It should be noted that z is considered in the range of 0<z S-;-; the flow for %5 z<lis

obtained from symmetry considerations.
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The boundary layer or inner layer near the free surface is defined as the region where
significant deviation occurs from Poiseuille flow. In order to solve the problem in the
inner layer, the equations (1‘.165 and (1.17), and conditions (1.18) and (1.19) are rescaled

using the following transformation: - -
Xéﬁandfz#ynﬂ;'(x)_,ﬁ._ S .

~ where y en, and e= Re is the small parameter in the problem Tillett determmed o to
be equal to 1/3 by balancmg 1nert1a1 and viscous terms 1n the inner layer. In essence, th1s
transformation ¢ magmﬁes” the inner layer. In order to match with the outer Poiseuille

flow, \11~y2 as n » « , leading to the followmg expansion for y:

w(En) =T, (En)+W3(E )+ (1.23)

A similarity solution is carried out for ¥, and ¥3; which are written here as -

¥ (§ ‘1) §2/3f2(9) and‘l’s(&,n) £f3(6) (1.24)

where 0 = r|§ 0] is the srmllanty variable used by Goren & Wronski (1966) in - his
solution and by Goldstein (1930). The equation and boundary “tonditions for f»(0) and
f3(0) are respectively
2 1
5+ =ff5 —=f3 =0,
F+3hfi—3h \

where f2(0) f2(0) o “and £,(8) ~ 6% as 8 — 0 and |
(1.25)

£+ %fzfé’ —£565 + £5f3 =0,

~where £3(0)=£}(0) = O,Vanhd f3(6) ~ -26° .as B0

where the thlrd boundary condltlon for both f2(9) and f3(9) are found from matchlng with
the core region, which will be discussed later. The boundary condrtlons at 6=0 reflect
the no-penetratlon and shp condrtlon at the free surface Tlllett found that the surface

speed to the order of % is -
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.fu'(x,;,=b)=gxl/3fé' (0):2‘55728X1/3’- S | e

" which confirms the result obtained by Goren & Wronski (1966, equation (28)) to within -~

‘the 2% accuracy of his calculations. Goren & Wronski (1966) considered the
development of such a boundary layer when the basic flow is a simple shear ﬂow and he
assumed that the boundary layer does not affect the core flow. However, Tillett did not

- make this assumption and said that the boundary layer may interact with the core flow.

To énalyze the ’ﬂov‘.v 1n the buter regidn' i.e. away from the ‘inner’ boundary-layer regibh .

near z = 0, stream function y and pressure p are represented by an outer expansion,
- w(x2)=yp(x.2)+ay (x2)+ - (1.272)
p(x,z):,‘po (x,z)+spyl(x,z)+---‘ “ o (1.270)

Here v is just the basic Poiseuille flow. For n = 1, 2 and 3 the equations for yy(x,z) are,
from (1.16) and (1.17), '

II’Oz‘l’.nxz - ‘VOzz\l’nx = "pr o

v | : (1.28)
“YWozWnxx =_‘,"an \ ~
| Where, IT,(x, 2) %p(x,z) + 48?’)( . Eliminatihg IT, from (1 28) gives
Vz\llnx - “:I?m Yok =0, where |
| , | (1.29)
e 0 0
an? o

~ Note thaf, v =4\[lnx. From the unique solution of (1.29) for n = 1 and 2 i.e. vi(x, z) = B
- va(x,.z) =0, along with the matching between core and inner region, it was found that
(X, ) = y(x, z) = 0 everywhere. For n =3, a non homogeneous boundary condition is

~ obtained from matching, which is v3(x,z - 0)=-2. Then, applying the method of

separation of variable (see Appendix B) in (1.29) for x < 0, fhe solution is written as,
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v3(x <0,z) = —\y3x(x <0,z) = 2 ApePriw (z) (1.302)
) .n=1

The coefficients A, are obtained by matching the flow at the channel exit. Now, the shape
functions ‘W, are governed by the following eigenvalue problem where B, are the

ei gen_yalues.
W, (z)+(Bn +— 22)wn(z) 0 w# (O) =W, (%j =0, '(’1‘.'30b)

Then, using (1.30b) and (1.28) the expressions for pressure inside and outside the channel

are obtained as

p3(x<0 z)——4x ZDZI-B-n—ean {[z ’z’j|Wn(Z) [1- 22]wn(z)} 5  o | (12'31).
p3(x>0,2)= —2% Ap -Bnx {I:Z ~ 22‘]w;1(z)—|i1 —ZZ]WQN(»Z)}, | : (1.32)

n—an

The jet pfoﬁle or free silr’facke height was sought by Tillett by matching .thé inner and out
solutions (1.23) and (1.27), respectively. As mentioned earlier, matching also allows to

obtain the third boundary condition for £5(6) and f3(0), which actually are the matching

““conditions for W, and 3. In order to match, the following matching rule of Van Dyke

(1964) was adopted:
EnHmw oy [ ¢ )

Here, E, is the core-expansion operator, which truncates immediately after the term of
order € where the expansion is expressed in terms of core variables. Hy is the

corresponding inner-expansion operator. Applying n = 0, and m =2 in (1.33) gives
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HoEqy = 82n2 = y2 and
© (139
EoHpy = Eg(e?¥2) =y* |

whlch leads to the matching condltlon for ‘Pz ~0%. Similarly the next matching

: condltlon for ‘I’3 is found by applylng m=n= 3 in (1 33) whlch is ‘I’3 ~202. The |

expansmn for free surface helght is givenas, .-
L(x)=ghg(x)+&2hy (x)+ 3%

Now, con‘sid‘erihgl m = 2 andn=1in (1.('33)‘ gives ho.(x)_=‘c.x1/ 3 émd n =‘m‘ = 3 gives
/ B3x2/ 3. The value of the constants ¢ = 0.70798 and B; = -2.08913 are found,

respectlvely, from the numencal 1ntegrat1on of (l 25) for fz(O) and f3(9) Flnally the free
surface helght is obtamed as ‘

g(x) 0707988X1/3+10445782 2’3‘+0(g3) R R A (1.36)

Finally, the"composite flow is obtained from the solutions in the inner and core regions,

usmg Van Dyke’s rule of comp051te solutlon defined by Cn_(En +Hh _EnH1) In this

case, the composite streamwise velomty is given by
Cyu = ex!385(0) + £2x2/3£5(0) — 26?B;3, ,x*3 + O(1) (1.37)

It should be noted that the boundary-layer solution derived in Tillett’s paper breaks down
at large distances downstream, when the boundary-layer thickness is no longer small

compared to the width of the channel.
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1.4 Practical relevance

Although most jet flows in reality are related to the ﬁ‘ee surface je%t flow of Tillett, the
épplications related to the | present wall jet problem in this thesis cannot be under
estimated. Thus, laminar free surface wall jet ﬂoWs can be found in particle removal,
cooling, and coating processes. Hence, wall jet flow occurs as impinging jet at an angle
- which is widely used in mechanical manufacturing to remove particles and water droplets
from work pleces Obtammg the best partlcle removal efficiency has recelved much
attention in the past. The current analy31s in this thesxs can be used to obtam the pressure
and stress distribution on the plate. The mechanism of particle removal is shown in figure
1.5. The three parameters (see figure 1.6) influencing the particle removal efficiency is
the pressure of the impinging jet, fhe’kimpinging distance and the impinging angle (Zhang
et al 2002). In some applications, the impi_hging angle can be small. In this case, the flow |
on the left hand-side of figure (1.7) feséxﬁbles the flow on the right-hand side of figure
(1.7), which is the current configuration examine& in this thesis, as shown in figure 1.1.
If, on the other hand, the impinging angle is large, then the current formulation must be
modified, but becomes much more compliéatgd,since the Poiseuille profile is not the
actual profile in the core region in this case. Thus, for small impinging angle, we can
simplify this problem as in figure (1.7), by assuming a wall at the exit and make it
cohérent to the current analySiS :Which .willfallow the detbermination'of the correct free
surface and pressure distribution on the 'ﬁlate. to predict the efficiency of \the particle

removal from the surface. The case of large impinging angle can be tackled in the future.
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Figure 1.5: Schematic of particle removal setup (Zhang et al 2002).

Figure 1.6: The parameters affecting the particle removal efficiency (Zhang et al
2002).

Figure 1.7: Modification of problem of particle removal at an angle to free surface

wall jet.
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Another application of wall jet that has recently gained attention is in the cooling process
when a fluid is driven or pushed over a stationary surface. This is illustrated here in the
cooling of laptop processors (see figure 1.8). The laminar wall jet makes the air sucked
inside the notebook conveyed by fans on the bottom of the base i.e. the part that rests on
the legs. The air then escapes from the notebook through the ventilation grills, located on
the opposite side of the base than the input (http://news,cnet.com.
http://www.notebooklist.net/asus-lenovo-and-more/acer-travelmate-8000-timeline-

laminar-wall-jet.ntml). The theory developed in the thesis can also be extended to

thermal problems, although it currently deals only with an isothermal problem.

Figure 1.8: Application ofwall jet in laptop cooling (http://news.cnet.com).

Another application of the current formulation is with respect to the coating process.
Rotary machines include, but are not limited to, gas turbines and steam turbines. The
moving part of the turbine is called the rotor while the nonmoving parts i.e. housings,
castings etc. are called the stator. Gas or steam leakage, either out of the gas or steam
path or into the gas or steam path, from an area of higher pressure to an area of lower
pressure, is generally undesirable. In this case, coating is required to provide non-uniform
rotor-stator clearance during assembly and operation. The use of spray coating to achieve
non-uniform seal clearances in turbomachinary has been patented in by Tumquist et al

(2007). The current work in this thesis may be regarded as an alternative to spray coating


http://news,_cnet._com
http://www.notebooklist.net/asus-lenovo-and-more/acer-travelmate-8000-timeline-laminar-wall-jet.html
http://www.notebooklist.net/asus-lenovo-and-more/acer-travelmate-8000-timeline-laminar-wall-jet.html
http://news.cnet.com
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in turbomachines. The current work predicts the shape of the emerging jet as it flows on
the flat solid plate (substrate). After an initial stage of contraction near the channel exit,
the Newtonian film begins to swell and develop a non uniform free surface shape due to
weakening of inertia and dominance of viscous dissipation (plate resistance). The current
analysis shows how to control the free surface shape by changing the fluid and flow
parameters to achieve the desired non uniform coating thickness. Therefore, it can be
conjectured that, the current analysis can be a successful application to control the

coating thickness and provide the desired non-uniform clearance in turbomachinaries.

Another application involves the manipulation of gas and liquid fluids within networks of
microchannels, which is crucial in the design and fabrication of microfluidic devices for
applications in microreactors, and chemical and biological sensing (Zhao et al 2001).
Liquid flow inside microchannels is laminar, meaning that multiple liquid streams can
flow side-by-side without turbulent mixing. Figure 1.9 shows the flow of silane solution
into an ambient solvent. The present thesis can help predict the shape of the interface and
flow of the emerging jet if the solvent viscosity is negligible compared to that of the

silane solution.

Sitarte solution-
Solvent
Siten® solution
In
Solvent-
: : r ~
Sitene solution
Silane solution
.
"4j. I
Solviq_m I tT Solvent
) Silane solution
D
Silane solution Solvant
Solvent- II—L I I L
Silantysolution 2“'“

Figure 1.9: Schematic illustrations of multistream laminar flows (A to D) and the

corresponding images of aqueous flow inside channels (E to H) (Zhao et al 2001).
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CHAPTER2

2. GENERAL PROBLEM AND BOUNDARY LAYER FLOW
- 2.1 Governing equations ahd boundary conditions o

) Consider the two-dim‘ensional flow Qf an incpmpressible fluid of density p and viscosity
| p,, efnéfging from a ch'annelkdf width D The flow coiiﬁguration is schematically depicted
* in figure 2.1 in the (X, Z) plane; The X axis is takén along the lower wall and the Z axis

is chosen in the transverse direction across the channel. The channel exit coincides with
"X = 0. The flow is induced by a pressure gradient, dP/dX, inside the channel. The stredrh ‘

function of the basic Poiseuille flow is obtained from

3 2 vl 73 2 |
g Lap(Z 72 ev(z} | 2? )
opdx| 3 2 p2| 3 2 '
where V = -1 4 D? is the mean velocity due to the pressure gradient inside the

12p dX
channel. In this case, V is assumed to be always positive and will be used as the velocity
scale. In other words, the pressure gradient is assumed to be alWEys present and negative.

Non-dimensio_nal variables are introduced by measuring lengths with respect to D,
 stream function with respect to VD, and pressure with respect to pV> In this case,

dimensionless group emerges in the problem, namely, the Reynolds number, Re. Thus,
Re=— : - 2.2)

where v is the kinematic viscosity. Now, (2.1) will turn out to be the leading order

- solution in the outer region, and is conveniently introduced here as

yo =322 =22 @3
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In this study, Re is assumed to be moderately large. The non-dimensional conservation

of momentum equation for the laminar steady flow takes the following form

YWz ~VYxWzz =Px + EC‘(\Vxxz + \szz) ' (2.4a)

“YzWxx _""‘Vx\l’xz:_Pz"i';(‘l’xxx""l’xzz) : - (2.4b)

For x > 0, the kinematic and dynamic boundary conditions at the free surface, z=¢(x),

are
v=0 ‘_ ; f ‘Hlf  B L (2.52)
1 , | | |
P+ = 2Wa2 + €' (W~ ¥xx )] = 0 (2.5b)
R IR |
s —R—e(2wxzc Wz +VWxx)=0 | . | (2.5¢)
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Stationary Plate
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>
- >
- Stationary Plate 0

- Figure 2.1. Schematic illustration of the planar jet flow. The jet is pressure driven

out of the channel. Note that the all notations are dimensional.
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A prime denotes total differentiation. Inside the channel (x < 0), the following conditions

must be satisfied, namely,

v, =0andyy =0atz=l- . -~ . e SRRt (2.62)
g =0 at z=0 T 2]
\|I—)3Z 22 as X = — ‘ _Y _ o o - .‘ (26c)

The flow is supposed to have the basic Poiseuille profile (2.3) to lowest order and is
modified when the fluid leaves the channel in the form of the wall jet. Quoting
Tillett(1968), “when the fluid detaches itself from the wall of the channel, the removal of
the wall stress causes a boundary layer to form in a region near the free surface. In this
region, the parabolic velocity profile adjusts itself so as to satisfy the condition of zero
traction at the free surface. In the inviscid limit, this condition would not be imposed
since there is no (viscous) mechanism for the stress singularity to diffuse, and all the
conditions of the problem would be satisfied by postulating that the parabolic profile
continues unchanged in the jet region. However, no uniqueness theorem exists for this
inviscid problem, and it is conceivable that other solutions might exist.” Nevertheless, it
is assumed in this paper that the fully developed Poiseuille ﬂow is everywhere the proper
inviscid limit. “With this assumptlon the flow in the core of the Jet is, to lowest order

not affected by the flow in the boundary layer regron near the free surface although the
boundary layer is expected to induce perturbations to the basic Poiseuille flow, when
higher order terms are 1nc1uded, both for the flow upstream and downstream from the
channel ekit. This assumption is sirnilar to the one made by Smith (1979) for the tube
flow with severe constriction, where the flow field in the core region, to leading order,

satisfy the inviscid equations of motion.

Figure 2.2 illustrates schematically the different flow regions for the free surface wall jet.
In each region, different physical mechanisms dominate the flow with corresponding
characteristic length scales. In particular, for the flow outside the channel, the region

close to the free surface, the inner‘region, is shear dominated and the flow is of the

-



a
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‘boundary layer type. In the region between the interface and the wall, the core region,

both shear (-g—‘—l-) and elongation (-Z—l—l-) prevail as a result of the predominance of the
o z X , o .

Poiseuille character of the flow and the contracting jet'.V The core region also extends
upstream from the exit. At the channel exit, x = 0, the shear stress undergoes a step
change from a non-zero value(of dimensionless value 6- 12z) at the lower Wall;’—z =0,t0

zero at the free surface, z = ((x). The effect of this drop diffuses upstream inside the

“channel (x < 0) over a distance xo where fully developed Poiseuille flow is recovered,

and downstream (x > 0) toward the wall over a distance x,,, at which point the flow is

entirely of the boundary layer type. The current study focuses on the flow outside the
channel where the similarity solution in the inner region is matched onto the core

solution. This latter in turn is matched onto the core solution in the core region inside the

~ channel at the channel exit. Another layer also exists close to the upper wall which is

denoted as the outer layer as shown in figure which will be discussed in section 2.3.1t is
important to observe that no matching is required for the similarity solution at x = 0, and
the flow singularity at the origin is entirely avoided in the solution process. This
constitutes a major advantage of the current formulation compared to alternative solution

methods.

.

~ The problem is now examined by considering separately the flow near the free surface

(inner region), the flow in the core region and the flow near the upper wall i.e. outer
region. The composite flow is obtained upon matching the solutions at the interface

between the two regions. Part of the formulation in each layer is similar to the free jet

 formulation carried out by Tillett (1968).
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Outer Layer
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Flgure 2 2. Schematic illustration of the computational domain, including the inner,

outer and core regions. All notations are dimensionless.
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2.2 The flow in the inner layer close to the free surface

To e};amine fhe bound‘arykléyer struc_fﬁré near the frﬂeek surface, let y=Z—l;(X) If we usé
the regular pérturbation analysis to §olv¢ for 2.4, the higher order terms 1n the momentum
equation will vanish. To solve this problem we take a small parameter ¢ to ‘magniﬁfy the
region Qlosg to the free surface :apd change the scaling in the transverse direction by
writing y= en. It is to be noted that & = Re"’«.l and a is to be determined. As a result we will
be able to use regular perturbation expansion to solve the momentum eqﬁation in the new
coordinate system and the higher order terms in the momentum equation will not vanish.
Anticiﬁating that the height € of the free surface is of the sarhe order of magnitude as the
boundary layer thickness, one can write {(x) = eh(x), and henceforth work with h. It is not
necessary to assume that h(x) = O(1) as ¢ — 0; examination of (2.14) below shows that
the inner expansion developed in this section holds provided only that h = o(e™), ie. ¢
tends to 0 with &. In the matching process, in chapter 4, it will be shown that h = O(1).
FOliowing Tille_tt (1968), tiié following éhange of coordinateé is introducéd, namély, '

x=f = z=e(n+h) R @7

Now, from (2.4a) and (2.4b), it is concluded that

. 1 : : ! e ’
211
STTREN ) \
YnWen — VeV =—¢ (Pe —b'pp )+6'* ynmm
: : . (2.8a)

—+

1 |
” !, 2 )
et ("’&&n ~h'Yn = 2hyg +h° ‘me) ,

—

| . " ‘27 ' ’ . -
~YnWeg +VeWeq +h'yy +h (‘Vn,“’cin_k _‘Vé"’nn) =~Pn

), - 2w 2]

o  on

(2.8b)
Wenn ~h Wy
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Note that £ and x are distinguished only in differentiation. The aim is to find a solution of
these equations in the form }Of an “inner expansion” in &. In order to match this to the
outer Poiéeuille flow, it is necessary to have y ~ y* as | — oo in the inner region, to
lowest order in €; so y must be of order £°. In order to determine the value of a, it is
required that the convective and viScQus terms balance in equations (2.8a) and (2.8b).
This is achieved upon taking o = 1/3. The components u, the streamwise velocity, and w,
the transverse velocity, are now expressed in terms of the stream function as

u=y; = —l—\pn " | (2.9a)

W=-yx=-yethiyy (2.9b)

From (2.9a), it is obvious that u is of order &. Considering the fact that u in the inner

region must match the velocity in the outer region: U —)62—622 , it is also inferred that
u must be of order ¢ inside the inner region. The order of w can be found using the
continuity equation when written in terms of inner variables, or

gug —ehu, +wy =0 . (2.10)

Thus, w is of order £2. The momentum conservation equations can be re-written as

\

YA 2
YnWen —VeWm =—¢ (pi"hpn)"'a Ynm '(2 11a)
‘ A dla
4 PRy 2 =
e (“’%&n —h"yy = 2h'ygy +h ‘Vrmn)

i

" 2 ' -
“YnWer + Vewey +hWh +1'(VnVen —Vevng )= Py

| 3 (2.11b)
'—82 (\ll ~h'y )—84 ﬁ—h’-—a—— y
&nm mm 6t on

The boundary conditions on the free surface 1= 0 are obtained from (2.5a)-(2.5c¢) to read

y=0 : . (2.12&)
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: 2
e ’ ' 3 a I‘a : ' [Z _
e(h'p+yyy)-¢ [(&--haj y+2h (\ygm—h\ynn):l-o , (2.12b)
2(2 h’ [ Oy 8 i =0 (2.12¢)
p+e” (2yen ~hynn )| So-h' o] v = ~

The inner expansion for y begins with a term in &% This is assumed, until there is

evidence to the contrary. Thus, the expansion proceeds in powers of ¢ so that

WE=PHEn e | @)
Similarly, b is expanded as

h(g) =716 (E) =ho (&) +ehy (E) +-- 2.14)
Erp@(?.il 1 )‘-('2.1'4'), if,is con‘cludedvt‘ha‘ti) i of order a“ Thus,

p(Em)=s"By (&) +eBs(Em)+ | 215)

The velocity components are expanded as

u(n)=eU; (1) +e?Up () +- | CAT)

- w(en) =Wy (En)+e Wy (Em)+ B @17

~In this case, U} = W2y, Uz = W3, and W = W2 + h'g'¥s,, efc.
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2.2.1 Flow in the inher region to 0‘ (g 2 )

To leading order, the momentum equatien, (2.11a) ;ea_ds :

¥on¥atq =¥ 2V 2y =Wornn USRI - ' SR e
’:l;he conesponding boundary eohdifions are obtained from (2.12a) end (2. iZb), narhely G
\‘1212(5,0’) =".‘I’2n.11(§,0’)»='.0 ) | | - | B V \ (219)
To eofn.l)lete-the I;r_oblem ‘for ;I’z, another bohndary condition is required. This is ;he
metchihg eohdition,‘v;/:hieh will be obtained in chapter 4, namely

Wo(E,m) - 302 asn"—?oo o , | 2.20)
Equatlon 2. 18) and cond1t1ons (2 19) and (2 20) are similar to the case of a Newtoman

Jet (Tlllett 1968) A SImllarlty solutlon can be carried out for ‘Pg, which is written here as

»‘I’z(i,ﬂ) &mf (9) e e e i v 2.21)

-3

where 6 = 11& is the SImllanty variable. The equation for fz(O) is given by

\

seaf-—f=0 e
) s‘ubjeet tey‘.the' f“ollowihglhoen_dary conditions from 2.19) and @20 o
HO=BO®=0 e o (2239)
£,(6) ~ 30 as0—>w (2.23b)

An equation similar to (2.22) was investigated by Goldstein (1966) and revisited by
Tillett (1968). For large 0, an asymptotic solution is possible to obtain, subject to |
condition (2.23b), namely



33

| 50 —>0) =3(8+¢; )2 + O[exp(—_‘—:sz—e3 ﬂ | (2.24)

where c; is a constant determined from the numerical integration. The detail of the
asymptotic solution of f; is in the appendixl A. Problem (2.22)-(2.23) is solved as an
initial-value problem, where equation (2.22) is integrated subject to conditions (2.23a)
and a guessed value of the slope at the origin. The slope is adjusted until reasonable

matching is achieved between the solution and the asymptotic form (2.23b) at 'large 9, or,

more precisely, between £ and 6. The integration is carried out over the domain [0,9oo ,

where O_ is a relatively large value of 6 where matching is secured to within an imposed

tolerance. The value of ¢, is then determined uﬁon matching the numerical solution and

its asymptotic counterpart (2.24).

Figure 2.3 displays the dependénce bf f;, £’ and £;," on 6. In this figure the curve of f,

represents the behaviour of the similarity function with respect to the similarity variable

6. Note that, to this order, u =ex/ 3f§_. Of particular interest is the slope at the origin™ -

£,'(0) which is directly related to the velocity at the free surface. From the figure it is seen
 that ;' adjusts itself to behave linearly at shorter distance from origin, while the slope of

f;" increases linearly very close to origin and then attains a constant value which satisfies

the boundary condition f2" (6—>x)~6. For the purpose of the discussion here, it is

convenient to observe that the initial slope is given approximately by f;'z (0)~+5.3and

~ the value of ¢, is approximately equal to 0.5. We can conclude from figure 2.3 that the
. velocity near the free surface increases linearly with height and further downstream the

shear stress at the free surface attains a constant value.



350

300 -

250

200 -

150
100

50

i

-
-_----""

----------------------------------------------------------------------------------------------

* Figure 2.3. Variation of the similarity function f, with 6.

.

34



35

2.2.2 ‘Flow in the ipner region to o (53 )

To the next order in ¢, (2.11a) gives

¥on¥3en (+ ¥3n¥2en _“\112‘3\}}3“ “¥ann¥3e =Yannn (2.25)
: subjgct to the boundary ‘c_o,lzlditions/ ﬁom Q. 12a) and (2.12b), namely
P30 = Tang GO =0 R (2.263)

The matching condition from chapter 4 is

Y ED~27  as n—m | | (2.26b)

which' completes the problem for ¥'3. Now.a linear equation is obtained for ¥, with

variable coefﬁcienf, admitting a similarity solution of the form (Tillett 1968)
viEm=8f(0) - | 2.27)

Substitution of expression (2.27) into equation (2.25) yields the following differential

“equations for f3 ' | ~
3f§+2f2f§—3f£fé+3f§f3=‘0i - o o | o (i».zs)
subjeéf to the followmg bqundary condi’tions:
fé(’o')=fs”(0)=yo - . S - 299
The tﬁifd box-lin_dary condltlonlsobtamed frbm (2.26b): ‘. |

£(0)~—20° as 650 (2.29b)
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An asymptotic solution similar to but more complicated than the case of free jet flow
(Tillett 1968) is possible. Thus, Sy

f3(9—->oo)=—2[(6+c1)3_1]+<:2(9+cl)+0|:exp(—2e3)] - , (2.30)

The numerical integration of equation (2.28) gives the value ¢, The solution procedure is
- similar to before, except that both pfoblems (2.22)-(2.24) and (2.28)-(2.30) are solved as
a coupled system. Figure 2.4 shows the f3 profile. In this case, f3 and f:'), are both

negative, pointing to a higher order weakening effect on the flow near the free surface.
This is seen upon taking the velocity to third order and using expressions (2.16), (2.21)
and (2.27), namely

u(x,G):axmf' (0)+¢ 25234 (6) , (2.31)

It is deduced from the figure 2.4 that, f; (0)=—5.20. Thus, the free surface velocity
diminishes upon adding the higher order term following |

w(xz=t)= 5 3613 - 5282 23T e

Note that the depthwise velocity component at the free surface will become available
once the free surface height is determined. Figure 2.5 illustrates the ‘dependence of free

surface velocity on inertia. It dlsplays the u(x z=() profiles for €=0.1, 0.2, 0.3. Both
the figure and equatlon (2 32) suggest that u(x,z= C) increases monotonically with x.

The apparent decrease of the surface VClOClty with increasing inertia observed in the
figure is due to the non-dimensionalization process used. A more suitable scaling for the
velocity canbe used to reflect the real behaviour. This is reported in figure 2.6, where the

Reu(x,z =) profiles (instead of the u profiles) are shown.
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2.2.3 Boundary layer growth

Although the free surface helght is not available until matchlng is camed out the
boundary layer thickness, 8(x) or thlckness of the inner region (refer to ﬁgure 2. 2) can
be determined at thls stage. Express1on (2.31) and the asymptotic forms (2. 24) and (2 30)
allow the determmatlon of 8(x) and its exphc1t dependence on &. On the other hand it is
helpful to first estimate the boundary layer thickness using dimensional arguments, and
the length and velocity scales introduced in section 2.1. In this case, the boundary layer
thjckness may be} _expressed in terms of a dimensionless transverse diffusion time, t, as

172 |
S~ (R_] , and the velocity at the surface may be expressed in terms of the
' . e ) .

corresponding axial convection length as u(x,z=¢)~ % Eliminating t, and noting from

(2.32) that u(x,z = (;) ~ 5.3ex3 to leading order, yield the following estimate:

S(x)~ & 3 __1 (*x\)l./;. T AR e
(x)~ =x" =—=| = ~ | (2.33)

Some important observations can be deduced from the expression above. As expected,

the boundary layer thickness grows with position and diminishes with inertia. In

1/3
comparison with gravity driven jet flow (Wilson 1985), & behaves like (ix—) - instead
~ e

1/4 ]
of [-I:—j . In fact, the viscous relaxation length, X, can be estimated upon setting
e

) (xw) = 1 in expression (2.33), leading to

3/2
Xe = % =5.32Re (2.34)
€ .
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The relaxation length is simply proportional to Re. Note that the (dimensional) Poiseuille
shear stresses at the lower wall, - 6V/D from (2.1), is proportional to the corresponding
driving velocity, and the resulting jump takes a length to diffuse that is also proportional
to V. Interestingly, the actual (dimensional) relaxation length behaves like D2

Forx >Xx_, the boundary layer contains the entire jet width and the nature of the flow

depends on the fully developed flow in the channel.

For a more ‘accurate estimate of “8, consider first the variation of the velocity profiles
with respect to height, 1, at different x positioﬁ and ¢ which are displayed in figure 2.7.
The figure shows the gradual flattening of the velocity profile near the free surface as
inertia decreases. The boundéry layér' heighf coinéides with "the level at whiéh the
asymptotic and inner velocity profiles begin to merge, as demonstrated in the figure. The
influence of inertia on the boundary layer thiékness is illustrated in figure 2.8. The
depéﬁdence of 8(x) on ¢ is shown in this figure. The boundary layér thickness typically |
grows with position x. Eventually, the inner region contipues to grow with position as the

film contracts, at which point the boundary layer pfevails over the entire film width.
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2.3 Flow in the outer layer close to the wall

To examine the boﬁndary layer structure near the upper layer, let y =1 -z In this case,
the scahng in the transverse direction is changed by writing y = yn, where y = Re™ is the
small parameter in the problem and B is to be determined. Following Tillett (1968) the

following change of coordinates is introduced, namely,
x=§ z=1-y1q (2.35)

The aim is to find a solution of the transformed equations of (2.4) in the form of an
@ “outer expansion” in Y. In order to match this to the core Poiseuille flow, it is necessary
to have y ~ 1 as 1 — o in the outer region, to lowest order in"y. lTherefore, \j must be of
order 1. Similarly to jet flow (Tillett 1968),‘the value of B is determined by requiring that .

the convective and viscous terms balance. .

), )
v \i’n\l’én—‘ll&_,\lfqn?—?ng'—y P Vann =Y P | Yeens ' (2.36a)
OIS
P B Ve (2.36b)

‘*’n‘*’é& “’é‘“&n Py =¥ Ve =7

\
In this case, =1, and y= ¢3. The components u, the streamwise velocity, and w, the

transverse velocity, are now expressed in terms of the stream function as

u=y, = —?\pn ' _ . » ‘ ) (2.373)

W=y =y o - (2.37b)

From (2 37a) it is obv1ous that u is of order 1/y Cons1der1ng the fact that u in the outer

vreglon must match the velocity in the core reglon u —)62 622 it is also 1nferred that
u must be of order 1/7" inside the outer region. The order of w can be found using the

continuity equation when written in terms of inner variables, or
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yg-wp=0 R | (2.38)
Thus, w is of order 1. The momentum conservation equations (2.36) are re-written as ‘
VWi = WeWnn ==Y P = Vnnn ~ 1 Vegn, | (2.39)
UnVee = VeVen =Py~ Venn TV Ve | | (2.39b)
The boundary conditions on the upper flat platé 1 = 0 are obtained from (2.6a) to read
W -0 and \p(&,n=d)=1 . | o » (2.402)
L 2 3 '

v(E > —om)=3(1-m)" -2(1-)". (2.406)
The expahsion proceeds in powers of y so that
W(EN)=F(EM)+1H (EN)+YE (E M)+ | (2.41)
" From (2.39), it is concluded that pis of order 1. Thus,
. o, ' :) . . B B H ) .

p(&M) =Py (&) +1R (EM) +Y B (&) +-- | (242)
The velocity components are expanded as

: - _1 ' SRR , R T T -

u@En) =y UL En)+ GG+ En)+- . @4)
w(Em)=Wo(&m)+TW(EN)+Y Ro(Em)+-- (2.44)
In’ this case, U-; =- \Pon, Up=- q’ln ,Up=- T2T] and Wy = —‘I’og , etc.
" To Ieading order i.e. v0, thé'equatibn for \I}o and cdrre;sponding boundary conditions read

\POT]\P 0&n —\Pog\l’ 0nn = —\I’IOI'[T]T]’ ’ . ' (2453)



45

¥ o 0zt — ¥ 0¥ 0z = Pon — ¥oznn o (2.45b)
subject to o

¥on (&m=0)=0 |

‘I’q(én%o)=‘VI"0(€--?~5°,11‘)=‘P<;2§,111—>°9)=1‘ o (240)

The last condition is established from matching between the outer and core layers.

Clearly, ‘Po(Cj,n)=1 is the solution to (2.39a). In this case, (2.39b) gives the result

B (E_,h)=P0 (&), and from matching, one arrives at Po(c";n)=0. To q'Y), the problem

is gbvéméd by

Tlmm =0, Pln -"Plénn =0 : (2.41)
subject to .
¥ (&n=0)=0 H@En=0=0 . (420)

‘Y (& —>—,oo,11) =¥ (E_,n ——>oo)=0; (2.42b)

The solution of this problem is ‘I’l(?.‘,n) =Q, Pl(E,n) =R(&). Although to this order, the

flow velocity does not deviate from the Poiseuille flow, there is deviation in the case of
the pressure. Indeed, the pressure to this order must match with the pressure in the core

layer which, from section 6, gives
R()=ps(xz=1) S (2.43)

The explicit form of p3(%,2) is given by (3.23) and (3.24) for x < 0 and x > 0,

respectively. Next, to O (72) , one has a similar problem, namely
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Wormn =0, Poy = ¥en =0 . (2.44)
| ‘1’2(§,H=0)‘=‘1’2q(§,n=0)é9 - (2.452)
¥y(E>—om)=¥y(En>@)=3n7 (2.45b)

- The last condition is arrived at, once again, from matching between the outer and core

*layers. In this »case,~at:this 'order,» the solution' reads: ¥, (&m )=—3r|2 and

' 'Pz(E,Tl) —P2(§) Thus to thls order there is no dev1at10n from the fully developed

proﬁle for the velocrty In contrast the pressure contmues to depart but remams constant

, across the outer layer
2.4 Conclusion

The 1nner and outer reglons were analyzed in thls chapter The aim of the 1nner reglon
’ was to ﬁnd the solution of the equatlons of motion in the form of an “inner expansmn in
& The hlgher order solution was pursued in the inner region in order to achieve the free
. surface velocity and boundary layer thickness. Similarly, the aim of the analysis of the

outer reglon was to ﬁnd a solutlon of the equatlons of motlon in the form of an outer
i expanswn invy. However to the order of analysis, the outer solution did not provide any

_si gnrﬁcant difference other than the fully developed flow. N
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CHAPTER3

3. FLOW IN THE CORE REGIONS
3,1,Coi‘e region ﬂow inside 'and‘outsi‘de the cliannel -

Core fegion is comprised of the region inside the channel upstream from the exit (x < 0)
and the region between the inner layer and the outer layer in the downstream (x > 0).3 
Ultimately, the flows inside and outside the chanhel‘must match at the channel exit (x =
0). However, this matching is only required between the ﬁo core regions. The reasoﬁ is
that, according to'the boundary layer character of the inner regions (inside and outside
the channel), 'similarity solutions can be' sought separately. The presence of the
sin'ghlarity at the origin (x = 0, z = 0) prohibits any matching, but can be totally avoided
in the current formulation. In this case, the inner solution inside the channel (x < 0) is not
requifed for the determination of the flow outside the channel, and therefore will not be

discussed any further.

; In the core region (refer to figure 2.2), which is far from the reg10n near z =0, equatlons

Q. 4) must be solved, and are convemently rewritten here as
W Vxz ~WxWzz =Px +€ (\l/xxz +\szz) o ' o8 (3.1a)

Y Wx + Wl =Pz —€ (Woox +Wzz) | ~ (3.1b)
In this case, y and p are represented by,'the following core expansions:
v(x.z)=vo(x.z)+eyi(x2)+-- L B2

p('x,z’)‘=éo(xﬁz)+8p1(xez):%"' " o .
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Here recall that \yo 3z ~22%3s just the bas1c Poiseuille ﬂow stream function glven

in (2 3); \ym (m > 0) are hlgher order terms that denote the deviation from the basic flow

due to its interaction with the inner and core layer.

The character of the basic flow is similar to that arising for the laminar flow of a free jet
(Tillett 1968) and channel or tube flow with constriction (Smith 1976a,b,1979) at high
Reynolds number. In those cases, as well, the fully developed (Poiseuille) proﬁle is the
flow to leadrng order. Smith exammed the flow for fine, moderate (Smith 1976a,b) and

severe (Smith 1979) constrictions. The severity of the constriction is reflected in the

characteristic slope of the ol)stacle, which is of ORe™?) and O(Re™®) for fine and

moderate constrictions, respectively. Here Re is Smith’s Reynolds number based on the

tube diameter and the maximum veloclty In these s1tuat1ons, there occurs virtually no

nonlinear upstream influence of the obstacle and the core ﬂow is just an inviscid

rotational perturbation of the basic Poiseuille flow. As it turns out, this is also the
situation in the current problem, where the contraction of the flow constitutes a fine to
moderate constriction. The core motion outside the inner and outer layers is of the

inviscid elliptic, but linear, kind.

’In' contrast, in a severe constriction, where the obstacle ‘s10pe is of 0(1), there is
sighiﬁcant upstream influence on the core flow. As mentioned earlier, this level of
c_onstn'ction severi_ty does not correspond to the current problem. Note that the flow field
expansion takes the same form regardless of the constriction level of severity. Thus,
Smith’s (1979) expansion (2.1) for the flow with severe constriction is the same as the
current expansion (3.2) above. However, in contrast to (3.2), Smith’s leading order terms
in (2.1) do not exactly correspond to fully developed flow, but still satisfy the inviscid
equations of motion. Free-streamline theory was adopted by Smith, which is believed to
y1eld the proper inviscid limiting form of the Navier-Stokes equatlons (Smith 1979).
Accordmg to -Tillett (1968), “since the govemmg equatlons are elllptlc (m Xx), this
deviation will extend also to the region x < 0 in the channel.” In other words, the

upstream region recognizes the presence of the singularity and free surface.
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Based on these assumptions, upon inserting expressions (3.2) into equations (3.1), a
hierarchy of equatioris is obtained to each order. To leading order the resulting equations |

for m = 0 lead to po(X, z) = 0. For m = 1, one has

VorVixz ~Voz¥ix="Pix - - (3.3a)

“Yoz¥ixx = ~Piz (3.3b)

Upon eliminating p; from (3.3a) and (3.3b), the following equation is obtained for y: |

Viyix _“WOzzz vix=0 RN ¢ G4 -

' Yoz _ :

T 2 g2 |

where V2 ='¥+-a—2. Noting that w, = -y, , the following boundary-value problem
Z . |

in the ranges -0 <x < and 0 <z <1 is concluded:

Y

Viwy +—sw =0 | 35
z-z° |

wh(x,l)=0,

WI(X,O)=0 S for x<0,‘ ) 1(3.6)

wi(x,2>0)=-Ay(x) = - for x>0, ’

w;  bounded as [x| > . -

The matching’ condi'tiqn‘qbrtained in Chapter 4 gives Ll(x) = 0. In this case, the (unique)
solution to the boundary-value problem (3.5) is wi(x, z) = 0 for any x and z.
Consequently, and since yi(x — - 0, z) = 0, then y;(x, z) and pi(x, z) must vanish

everywhere.

For m = 2, following the similar procedure, w, vanishes and consequently y»(x z) and

p2(X, z) also vanishes everywhere. More explicitly,
WI(X, Z) =‘ W2(xa Z) = pl(X, Z) = pl(x’ Z) = 0 , (37)

~ To next order, m = 3, equations (2.4) lead to
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: ‘V.FOZ‘V.sz_ ~VYozz¥3x = ~P3x —12 SRR L (3.82)

VozV3xx = P3z- (3.8]))

Upon eliminating p3; from (3.8a) and (3.8b), the following equation is obtained for ys:

Zy=0 69

Vs —
g x.v Yoz

Notmg agam that w3 = ‘\I’3x , and usmg expressmn (2 3) the following boundary value

problem in the ranges -00 < X < oo and 0 <z=< 1 is concluded

Viws + f'z'w3 -0 - | (3.102)
W3(X,1)=O, .
w3(x,0)=0 - for  x<0,

3(x,0) , (3.10b)

W3(X,Z—)0)=;—2 for x>0,

w3  bounded as |x| - oo,

The condition w3 (x >0,z — 0)=-2 is obtained fromk'ryhat-ching (see Chapter 4). The
solution of problem (3.10) does not vanish given the non-homogeneity of the boundary
conditions. So far, the formulation in this section has been common to both the regions
inside and outside the channel. Although the flow fields in these two regions will have to

match at the channel exit (x=0), they can be conveniently examined separately.

3.2 Flow in the core region inside the channel

Consider now the core flow in the fegion inside the channel (x < '0)‘ In this case, using a
separatlon of vanable argument (detalls in Appendlx), the solution of problem (3.10) may
be wntten as (Tlllett 1968): | '

wi(x<0,2) =-y3,(x<0,2) ==Y ApePr*v (z) - (3.11)

n=1
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The shape functions V;, are governed by the following eigenvalue problem: .

(B“ )V =0 Vn(0)=Vn(l)=0, o ‘. .‘ (3.12)
772 o

An additional boundary condition was required to solve for (3.12) which is \{;(O) =].

Th1s value is by 1tse1f immaterial (as long as it is not zero), and gives the same
elgenvalues However it will-influence the magnitude of the eigenvector. The problem
(3 12) was solved using Matlab’s ODE45 subroutlne However the boundary conditions
cannot be apphed at z = 0 and 1 due to the presence of smgulanty The eigenvalue was
adjusted until the solution converged between the boundary conditions i.e. 0 and 1. The

followrng tabl_e shows the elgenvalues that were found for different modes.

Bn
518
864 .

1194
1519
18.40
21.59
24.77
27.95

0 N o N W R3S

Table : Eigenvalues (B,) for different modes
The equation representing the relation between n and B, can approximately be written as

By =.0233n> —0.354n + 4.823n + 0.232

Figure 3.1(a) depicts the plot of V, versus z for mode n = 1, 2, 3-and 4. Figure 3.1(b)

shows that the Eigen values Bnincreases essentially linearly with n.
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The stream function inside the channel is obtained by integrating expression (3.11)
| subject to the boundary condition 3 (x —)—oo,z)=0. This boundary conditions reflects

the idea that the core flow far upstream is only basic Poiseuille flow to the leading order.

This will lead to:

| o - |
(x<0,z)=3z2-223+¢> heB“xV “ (3.13)
L 40 o

n=1‘_n
Finally, the coefficients A are obtamed by matchmg the flow at the channel exit, and
will therefore be determmed once the outer ﬂow is considered for x > 0. Figure 3.2

deplcts the upstream distance Xp Versus € at which the Poiseuille flow is recovered at

different level of z. At first (3. 13) is used to find the streamw1se veloclty u. Then the

—-1u '
fully develop ed' <107%. It can be predicted from the

distance x, is found when abs|-
Ufully developed |

figure that in the upstream for higher inertia fully developed flow is recovered near to
exit while for lower inertia the fully developed flow is recovered further from exit. An
interesting res‘l’llt' can be inferred from the figure that, when the core has reached fully
developed flow, it means that the flow at the upper and lowerg)late region has already

reached the fully developed flow.
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3.3 Flow in the core layer outside the channel
Downstream from the channel exit, the solution of problem (3.10) is given as
w3 (X > 0,2) = —y3, (x> 0,2) = =2V (2) + 3 Ape P*V, (2) (319
A “~ ‘ .
where V(z) satisfies the following equation and boundary conditions:
2

V0+ —
7 - 72

Vom0 V()= Ve()=0 @1

As mentioned earlier, the coefficients A, are obtained by matching w3 at x = 0. In this

case, equating (3.11) to (3.14) at x = 0, leads to

Vo(z)=iAnvn(z) " B B @)
“ooon=l- S T o / ‘

which is a speét_ral representation of Vy(z) in terms of the orthogonal functions Vy(z). It
follows from (3.16), given the orthogonality of the shape functions Vy, that

@%@

n 3.17)
o "J.;V,f(z)dz

‘Finally, the stream function is determined upon integrating (3.14) and matching with

(3.13) at x =0 to give

y(x >0,2) =322 -22° + 83[2XV0(Z) + Zf‘ﬁe‘?n?‘vﬁ ('z) - G18) -

n=] 0

Another variable of vital ihtefeSt, the préssure, will be discussed next.
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3.4 Pressure in the core region and elsewhere

The overall flow inside and outside the channel in the core region can now be examined
to provide insight on the flow transition as the fluid nears the chanﬁel exit. The pressure
inside the channel is determined by integrating equation (3.8b) subject to appropriate
boundary conditions, which are obtained as follows. First, recall from section 3 that the
pressure in the inner region outside the channel (x > 0), was shown to be O(e*).
Consequently, upon matching the pressures in the core and i inner regions for x > 0, it is
not difficult to déduce that the pressure in the core regi\on” oi;téide the channel vanishes at

the interface between the core and inner regions, or

p3(x>0,z—>0)=0 ' (3.19)

Thus, at the channel exit, this gives p3(x=0,z—)0)=0 . Now, upon evaluating (2.3) |

and (3.11) at z =0, equation (3.8a) reduces to

P3x (x <0,z > '0) =-12 - ' _ (3.20)
Integrating (3.26) subject to p3 (0,Z-—>0)=0 gives
p3(x<0,z>0)=-12x | | Pt (3.21)

Upon inserting expressions (2.3) and (3.11) into (3.8b), and using (3.12), the expression

for the transverse pressure gradient inside the channel becomes:

3z (x <0,2) = 6262 JZIABBH Bn"V = Z_%B ﬁn"{[sz—szz}vg;lzvn} (3.22)

which is integrated subject to condition (3.21), leading finally to

p3(x<0,z)=-12x - Z nePnx {[62 —622}V,'1 -[6- 122]Vn}. ‘ (3.23)

nln



- Figure 3.3. Pressure distribution at different height_.
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-Although Poiseuille conditions are theoretically recovered in the limit x — - oo,
calculations based on expression (3.23) indicate that these conditions prevail essentially
- for x < - 3, corresponding to a distance approximately equal to three channel widths. This
issue w111 be examlned shortly once the pressure outside the channel is determlned Thrs
is done upon 1nsert1ng expressrons Q2. 3) and (3.14) into (3.8Db), and using (3.12). In th1s |
 case, an expression similar to (3 22) is obtained for x > 0, whlch is rntegrated and_' |
| matched with G. 23) atx=0to glve ) "

p3(x>0,2) = Z nePax {[62—‘622]Vn ~[6-122]V, |. (3.24)
o n=1 n : ) S T e T B
The preSSure perturbation at a given' helg'ht"ink the core region inside and outside the
channel is thus given by expressions (3.23) and (3.24), respectively. Incidentally, these

expressions are directly involved throughout both the inner and core regions as
- £p3 (x,z) turns out to be equal to the cornposite pressure (see Chapter 4). In other
 words, the pressure everywhere is readily available and is given by p(x z) ~83p3 (x z)

Figure 3.3 1llustrates the pressure dlstnbutlon at different level of z. The pressure
"decreases monotomcally wrth X and in fact the pressure remalns unaltered by the jet

contractron
-~ 3.5 Conclusion

'Core region compnses of the regxon ms1de the channel upstream from the exit (x < 0) and :
) the regron ‘between the i 1nner layer and the outer layer in the downstream (x > 0) region.
After matching these two reglons at the channel ex1t it'is concluded that the core flow
deviates from the fully developed Poiseuille flow. The overall flow inside and outside the .
) channel was examined and 1t is found . that the P01seu111e flow is recovered 1n the

upstream to a dlstance approxrmately _equal to three channel w1dths
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- CHAPTER 4

4. JET PROFILE AND COMPOSITE FLOWS

ThlS section is mtroduced in order to find out the way how the flow behaves out51de the
channel. To do thls, matching at the 1nterface of the i inner and core region is necessary
As there is another region near the upper wall outside the channel, matching is also
required between the outer and the core region. However, it is found that, there is no
contribution other than the Poiseuille flow from the matching between the outer and core
region and{ thus it will not be discussed in this section. On the other hand by matching

between inner andvcore will give the free surface height.

4.1 Matching at the innei‘ and core interface -

The matching rule employed by Van Dyke (1964) is adopted here, namely |
EnHmy%HmEnw ’l : | ‘ | | 4.1)

where m and n are integers. Here, E, is the core-expansion operator, which truncates
immediately after the term of order €" where the expansion is expressed in terms of core
variables. Hp, is the corresponding inner-expansion operator. For successful application
of the matching rule (4.1), the stretching transformation between the inner and outer
variables must be in the canonical form y = ¢en. In this case, the core expansion must be
written in terms of y, not z; otherwise (4.1) can be satisfied only approximately. It is

required that the two expressions in (4.1) be exactly the same, for all m and n.

Different levels' of matching (depending on m and n) are needed to obtain the boundary
conditions for the inner and core solutions, and consequently to determine the free
surface height to each order in &. The reader is referred to Tillett (1968) for a similar
development of the matching process. Initially matching process is implemented to
leading order, ‘that is to O(e), for the surface height. The details will show later that the

matching rule for m = 2 and n = 0 leads to ¥, ~3n2 for large m, and, consequently to
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(2.20). As to the core solutlon in chapter 3, the matching w1th the i inner solutlon form= 2

and n=1 leads to vy, (x, 0) ‘I’lx(x 0) = 0 These homogeneous condltlons in turn lead

to the vamshmg of y1 everywhere or y1(x, y) = 0. The surface helght exhlblts the same

dependence on x as the case of free jet with ¢; = 0.71 (Tillett 1968), indicating that a free
jet contracts 40% more than a wall jet. Finally, the matching for m = n = 2 leads to Va(x,
y) = 0. The .va‘nishing of y1(x, z) and yo(x, z) means that, to this order, there is no

1nteractlon between the i inner layer and the core flow. Similar process will be followed

for o( )

Recall from (2.3) that, to leading order, the stream function in the outer region is

Yo = 322 - 273 , which can be expressed in terms of y =z - { and h
Yo "=3(y+eh)2 —2(y+z»;h)3 | 4.2)
Consider first m =2 and n = O.K'Applyin'g Eo on (4..2) gives :‘

| qu}=3y2 -2y’ N | 4.3)

As this expression must be in inner Variables when the operator H, 1s applied, Eoy is

rewritten in the form: Eqy = 38 28 > Therefore,

H,Egy =32 =3y Y

To leading order, the inner expansion for the stream function is obtained from (2.13) as

Y= SZ‘I’Z . Thus Hoy = 82‘I’2 and therefore,

EoHpy =Ey (82‘1’2)~ | (4.5)
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This leads to ‘5 '93712 for large m, which is condition (2.20) or equivalently (2.23b).

Recall that this condition led to the determination of f;. Consequently, from (2.13), (2.21)
and (2.24), at large 6 o |

Hay =&2¥, =¢%62°f, =e%*73(0+;)

' 2 (4.6)
_=82§2/33(n§51/3 +C1) .
When (4.6) is expressed in terms of duter variables, it becomes:
(o any 2 s, 2( 13\ RS

Hyy = 3(y+sc1x ) =3[ y® +2yecix” +¢€ (clx ) o FL 4.7)
leading to
Egy=3y°, 48)
which matches with (4.4). And again similarly, takingn=0and m =3, leads to -
H;Eqy =3 -2 = 4.9)

Now, HgFyw must match with Egbky and therefore applying H; operator on the core

expression of y, -
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H3\]f = 82?2 + 83‘P3 = 82§2/3f2 + 83§ f3 (9)

_ 82§2/33(9+cl)2 +83E,[—2|:(9+°1)3 —-1:|+ Cy (9+C1):|

= 32§2/,33(n§—~1/3+ cl) + 83§[—2|:(T]§-,—1/3 + cl) - I] +cy (n&'l/3 + cl)]
_ 32213 (1125“?7/3 Fome V3, 4 c12)
+ 83§|:_2(113‘§-1 + 3112§-2/3<:1 +31 &-1/3012 N 013 _1) rogm g3, 0201} (4.10)

+ 832_,[—-21135_'__,1 - 6112?;”,2/ 301 - 61]9;";1/ 3012 - 2013 +2+ czné"l/ 34 Czcl}
= 392 + 6ye Cl&_m +3c22/3 912 — 293 —6ay2el3c, - 662yEl/3c, 2623
- 283{;@13 + 25383 +’0282y§2/ 34 c2c183E_,,
which leads to,
EoHay =3y% - 2y° =629, +&3¥;. (4.11)
Now, (4.11), upon matching withH 3E0\|; , leads to ¥3 ~ -213, and consequently - to

condition (2.29b). | | | N

Next, (4.1) is considered with m = 2 and n = 1. Recall that, the core expansion is

\p(x,z) iWO(X,Z)+8W1 (X,Z) +:-5, where o =3(y+ s,h)2 -2(y+ 8h)3 ,therefore, in
this case, from (3.2a)7, (2.42), (2.7) and (2.14),

E1W=_3Y2f2f+6yh08—6>’2h08+8wl(x,Y+ah)'  e (412
Expanding abouty, (sh =0)

s:h)2
2

y1(%,y +&h) = yi(x,y) + ehypy (x,y) + Yiyy(X,Y) (4.122)
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Now, expanding abouty =0

. 2
vi(x, y+ gh) = wl(x,0)+ywly(x 0)+ \vlyy(x 0)+.....

o ah\yly(x 0)+ ahy\ulyy(x 0)+...... (4.12b)

v As a result, (4.12) reduces to

Eyy = 3y2 - 2y3 y+ 6yhge —- 6y2h08 + S‘l’l (x,O)
Feyyy (X, 0)+8y Y0 SR IR ST - (4120)

' +szhw1y(x,0)+a hywyy (x,0).
In terms of inner variable, y =en,

Ew = 3821]2 - 2831]3 + 6821‘]1'1 - 6s3n2h0
i 3‘12
i ewl(x 0)+e n%y(x 0) + ——Wy1yy(x,0) o (4.12d)

e +82h\|fly'(x,0)+8 nh\ylyy(x,O).
- Therefore, abplying H; operator, S DR

HyBpy = ey (x,0) + 36n? + 662 + ey (x,0) + £y (x,0)
. = o (4.13)
HaByy = oy (6,0 + 3y + 6e¥ho + yeyy (x,0) + by, (x,0) A8

On the othep hand, applying}ElH;o‘nvthe inner expansion (2.13) and using (4.7) give .
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Hyy =%, =e%%%f, =6%23(0+ ;)

2
- 82§2/33(n§"ll3 +°1) —3g2¢2/3 (nzg-m +2ng™ e, + clz)

(4.142)
— 36202 + 6e2nc el +36262/3¢,2
—3y2 4+ 6yecyel3 + 352623 2
which leads to upon applying the operator E;,
EHyy=3y*+6yecx. - (4.14b)

Comparmg 4. 13) and “. 14b) leads to vi(x, O) 0. This leads in turn to the
homogeneous boundary condltlon A (x) = -‘le(x 0) = 0 for problem (3 4) Since \|11(x,

y) = 0 everywhere is a solution for this problem (see chapter 3), one concludes that

\|11y(x,0) ), Whlch also satisfies matching. The remaining terms in (4 13) and (4.14b)

1/3

then yield the result ho(x) = c;x™. In this. case, the free surface hei ght is given by "

1 . N
((x)=emde+o(e?) (4.15)

The vanishing of yi(x, z) means that, to the order &, there is no interaction between the
boundary layer and the core flow. The next step is to determine y»(x, z) and h;(x) by
considering an‘analogousmatching process to the above, using m = n = 2. Now applying

E, on the outer expansion gives,

Eyy =3y?-2y> + 6yaho‘ —6yehy + 6ye2h;

- 6y282h1 + 382h02 - 6y82h02 + w + 82\|!2 (x,0).

To apply Ha, the equation has to be written in terms of inner variable,' y = €1, which

(4.16)

results in,

H,E,y = 3(y2 + 28h0y) +¢2 [\]/2 (x,0)+ 3h%].



65
and
T inL o ase]
H2\|1=3(y’+,8c1x ) =3 y2+2ysclx +& (clx ) .
Therefore,
EzH2¢?3(Y2 + 20,593 + 82012’,‘,2/3)" - | S (4.17)

This yiélds the fact' that y»(x, 0) = 0 in the core expansion, concluding that y,(x, z) = 0
everywhere, reflecting the absence of interaction between the boundary layer and the core
flow also to order €. The next step is to determine h;(x) and wys3(x, 0). Upon using

expressions (2.13), (2.21) and (2.27), for n = m = 3, one obtains

E3Hay =3y* - 2}’3 + eyepx [6-6y] |
o (4.18)

 4e2x23 [3012 - 6c%y + czy} + 83x[czcl - 2(0% - 1)] o
Applying H:E; to the outer expansion (3.2a) gives in turn:
HjE3y =3y2 - 2y° SRS SRR
+eyho[6 - 6] - |
(4.19)

+&2[ 303 + 6yh - éyhg}

43 [6h0h’1\ —2h3 + 3 (x,O):|.
Upon matching, the height of the free surface to the next order is determined, namely |

h=2x% o  (420)

Also, the boundary condition, which is required to complete the set of boundary

conditions in (3.10b), is obtained. Thus,

v3(x,0)=2x. | “21)
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Condition (4.21) yields A;(x) = -2 in (3.10b). Therefore, for the first time, a non-trivial |

outer problem is reached.

4.2 Free surface wall jet prOﬁles

It can be concluded that the outer flow up to order &, remains the same as the Newtonian
flow. However, the important result reached here from the matching process is that the

height of the free surface is given by -
E(x)=gcy Xl/3+82 62 x23 - .‘ - . 4.22)

Figure 4.1 displays the dependence of free surface height on inertia. _The surface profiles

suggest a significant thickening of the film when inertia increases. It is evident from the ‘

expressmn of the free surface helght 4. 22) that its slope 1s smgular at x = 0. For the

) 36,
dx

=0, resulting in x,, =—-| —
€Cy

3 ‘
surface to exhibit maximum, J In this case, ¢; and

Cy are constants and e'qual‘fo 0.495, and -3 ﬂrespe:‘ctively. Therefobre the surface exhibits a
: o 4957 S
maximum at a location given by x = [—] . From (4.22) it is-found that, close to the
. £ ; : o

channel exit ,the theory is valid in the streamwise direction at a distance which is equal to
one channel width. Again, far downstream the theory is valid in the streamWise difection
at a distance which is of the same order of the Reynolds number. Figure 4.2 aepicts the
~ variation of surface curvature with 1nc11nat10n ¢, for € = 0.1, 0.2, 0.3. It shows that the

curvature increases with ¢, reaching a maximum at an 1nchnat10n, and decreasmg rapidly

as ¢ - 90°. Flgure 4.3 displays the asymptotlc ‘and numerical ‘streamwlse velocity
profile based on the inner layer solution (2.'3 1), alcng with the free surface height. Note
that the difference between ﬁgure 2.7 and figure 4.3 is that, the free surface height was
- not yet obtained in figure 6, and this latter was drawn in the (1, X) plaue. |
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4.3 The composite flow

The objective of this section is to find out the composite velocity profile (streamwise and
tranéverse) and pressure profile outside the channel. Following Van Dyke (1964), the

composite expansion operator is defined by
Cp=(E, +Hy-E Hy) | | (4.34)

This expression provides a uniform approximation to order &" over the whole width of the

jet.
To obtain Csy the followings are néeded namely,

Ejy = 3(y2v + 2ys(h0 + ahl + 82h2) + g2 (h% + 2ehghy ))

—2(513 + 382y(h(2) +2ehghy ) + 3y28 (ho + 8h‘1 + 82h2 ) + a3hg) (4.35)
+83\|"3 (X, Y),
Hyy = ngglsfz (9) +83xf3 (9), ‘ (4.36)

~and
~E3H3y = -3()'2 +2ye(hg +shy ) + & (h% + 28110111))
+2(y3 +382yh% + 38y?h0 + s3h(3)) N 4.37)
| 3 ‘—83\|13‘(x,0). |
Adding (4.35) and (4.37) it is found that,
E3y-EsHay =6ye'hy
‘2(382,y(2ahoh1)+3y28(8h1 +82hz')) S @3

+ehy3(xy) -3 (x,0).
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Therefore, combihing (4.36) and (4.38) C;\y is obtained as following

Csy = H3\p+E3\V~E3H y =e’x>f (0)+83xf3 ©
~ +6yehy —2(68 hohy + +3y a(ehl +%h, ))
+e Ws(x}') 8W3(X0) -
=e2x23f, + &3xfy + &3y, (x,¥)-€y3(x,0)+62z¢°h, [conversion to z]
‘.—2[683.zh0h1‘-|-3(zh—gh0)2‘ &2 (hy reh)| (4.39)
= 82);2/3f2 +g3 [xf3 +y3 (x, z)+ 6zh, —vs ‘(x',VO)] | |
EE ';2[6a3zh0h1 +3¢2 (:2 ~2ezh ) (by +2hy )]
= g2 [)(2/3f2 _ 6_221_11] |

+&3 [xf3 +y3(x,2)—y3 (x,0)+6zh, - 6zzh2:l
or

Cay = 82 2/3[f2_zzcz]

Ty (440)
+€3 {xf3 +y3(x,2)—-2x +[6z -~ 6zz:lh2}

Therefore the streamwise velocity expression becomes

Cyu=ex3fy +e2x2/3fy ~126%zhy + £y, (%,2) 293, (x,0) (4.41)
+6¢°h, —12677h,. |

J .
Although the value of hz is requlred if the streamw1se velocity is to be evaluated to

o3 ) this accuracy is not indispensible(absolutely necessary) when the flow variables

‘are determined. This is the case, for instance, for the following expressions for the

streamwise velocity component:
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Cru(x,z =ax1/3f '+82x2/3f'—12szzh + 0(83)
2 1
(4.42)

= 8x1/3f' (0) +g2x2/3 [fé(@) - 2202] +0(%) as hﬁ%kzm

The transversé velocity componenf can now be obtained from (4.40) using the method

below. Note that, 0= nE_,_l/ 3 =(—Z- —h)x"’l/ 3, Asf=f (8)=1(&,m), therefore,
>

fy =fe&y +fqnx =T + fnx =8¢ + nxfeen

=fv(__2_a—4/3+nx§—1/3)____ft(%&%/3(_§_h)+hvg—l/3] ) ) | (443)

| ,=-f'Gé'lQ%h"&'l"”)=—(3—1§(9+ cl)+shig*1’3jf'.

Using (4.43) in (4.40)
Cz\vx“S § 1/3[f2, z2c2]+e2x2/3f2x+e3(f3 +xf3x+w3,;—2)
_22 1/3[f2 z2c2] 2,203¢ (1 —4/3(__ " ) 13
3 3 €
‘.—-z‘:—-X—y,3Zf3 b

et ) S

X235, 1 2 § ~1/3 [f2 2 02] +f) G_ X232, 8‘2}1-())(1/3) |

: | (4.45)
—S——X—I/'?'zf; |
£ 23 o E 113 ' 9,2
= 2x Pty + S (26, -2 -22%, |
| g 3 € i3 o2 EI
Covn (x,2) == 5x 2ty + x” 26, -ty -22%, |+0(e*)  (4.46)

As, z= s(6x1/3 +h) = e(9x1/3 +h0)+52h1 =g(0+ cl)x”3 +&%hy, therefore,
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each position.
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Cow(x,z) = -8—32-)("1/3 26, —(e+cl)r;}+ 6(83) | (4.47)

These expressions dictate how the velocity profile changes over the width of the jet up to

the second order. The non-zero contribution of pressure enters only to third order, namely
Csp(x,2) =a?p3 (x,z)+0(84), o ey . (448

where p3(5(, z) 1s given by (324) The flow field (velocity and pressure) at different
positions between the free surface and the.celnterline is shown in figure 4.4, 4.5 and 4.6,
for s = 0.1, 02 and 0.3.’ The. u proﬁles inef;l’gur'e 4;4a 4.5a and 4.6a indicate that flow
behaves close to fully developed at the channel exrt and ﬁlrther downstream the u profile
exhibits a change in concav1ty There isa strong dev1at10n from the Poiseuille behav1our
in the inner reglon Figure 4.3c, _4 4b and 4.5b conﬁrms that the transverse component of
the ﬂow is essentlally absent except very close to the free surface as W gradually
d1m1n1shes ‘with x after a Jump at the channel ex1t The veloc1ty reﬂects the strong
presence. of both shear and elongatlon in the ﬂow Near the channel exit, eIongatlon is
clearly domlnant at the free surface where most of the d15$1patlon rate 1s concentrated
Further downstream, most of the d1ss1pat10n oceurs - above the free surface
Slmultaneously,’_ the pressure proﬁles in figure 4.4b suggest the existence of strong
| pressure variation near the channel exit. The pressure tends to decay to zero over a
relatively short distance from channel exit, typically on the order of less than one channel
width, | - R

4.4 Conclusion =~

In order to find out how the ﬂow behaves outside the channel, matching was performed
~at the interface of the inner and: core region. Van Dyke’s (1964) matching rule was
applied to obtain the boundary condition for the inner region and finally the free surface
height was achieved. Again, composite matching rule was applied to; find out the

composite velocity. profile (streamwise and transverse) and pressure profile outside the

channel.
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- CHAPTERSS

5;1 Conclusion

The two-dimensional wall jét flow of a Newtonian fluid emerging from a channel is
_'exér'nine'd theofetiéally 1n this Study.: Féllowirig Tillﬂett" (1968) and other existihg
asymptotictanalyse's"'in &e ‘ litefafufe for laminar‘ free ;surface\ ﬂows,' the method of
mé.t'c‘:hedv aSymptotic' expdn'sions is used to exarhine ’thé;'frée bsu'ryf"ace: Wall jet at high
Reynolds number. For a recent perspective on asymptotic analyses, their applications and
historic development, the reader is referred to the book by Sobey (2005) on interactive
boundary layer and triple-deck theory. Similarly to all boundary layer analyses, where the
solution is not valid within a small distance from inception such as very near a leading
edge or a stagnation point (for an impinging jet), the analysis precludes the ﬂdw at the
channel exit. However, the distance in question is small, on the order of the (local)
boundary layer thickness. Consequently, the boundary layer approach turns out to be
successful in capturing the flow nature near inception. The solution is developed in
powers of &, where &’ is thé inverse Reynolds number. Special emphasis is placed on the
effect of inertia on the shape of the free surface and then pfoﬁles of the velocity and
pressure close to the exit.

The boundary layer structure near the free surface was examined in detail. The viscous
relaxation length for diffusion of stress singularity was found, as expected, to increase
with inertia, with a corresponding thinning in the boundary layer. The monotonicaily
decreasing pressure profile typically predicted for a free jet (Tillett 1968) was also
predicted for the free surface wall jet. Finally, the significance of the current study and
the advantagés of the proposed formulation cannot be overstated. In typical jet flow
calculations in the literature, fully developed conditions are assumed at inception. The :
present work prbvides the correct conditions near exit, which are required to determine

the jet structure further downstream.
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-5.2 Future work

If the jet becomes thin far downstream, a boundary layer formulation can be used with
the presently predlcted boundary condltlons for steady and possibly trans1ent flows
(Khayat & Welke 2001, Muhammad & Khayat 2004). Note that the th1n film
approx1mat10n is not valid close to the ex1t 'combined near and far field analyses must be
used. This restriction applies even for thin jet emerging from channels and tubes. The
current analysis can also be extended for particle removal from the work piece at higher

impinging angle where the flow can be analyzed for complicated Poiseuille flow.
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APPENDIX A

Asymptetic solution of f,(6)

In this appendix, we follow Tillett’s (1968) approach to determine the asymptotic

solution.

Frém the equation of f(0) in (2.22),

£ + %fsz —-;-ff =0 (A1)

Where the bbundax;y conditions are,
6O=BO=0 vy
Settingt =9 +_c, whcre c is arbitrary, and
fz(t)‘=at2+‘g(t.)’;.,& . « o | (A3) |

where a is a constant. The function ot® satisfies (A1) but not the ‘boundary condition.
From (A3), '

(Ad)

' fi’:iat-i—g', f2”=2(1,+g", fzngm
Substituting (A4) into (A1) we get
w20, 4 4 2 1o ~
+—otg"——atg' +—ag+—gg"——g'“ =0 AS
ghtyot’g —goigtrogtoge -8 | | (,,)
Orhitting the quadratic terms from (A5) we get,
w2 oo, 4 4
+—at’g’ ——atg' +—oag=0 A6
g ;g -~y oag ‘ B (A6)

TWO solutions of (A5) are g = tand g =2 ;To find a third, Tillett set g(t) = th(t).

Therefore,



g =h+th', g"=2h"+th", g” = 3h" + th”

Substituting (A7) into (A6) we get the following,

h’"+(3t‘1 +%at2)h” =0

Let, P(t) =3t + %ozt2 and h" =f . Therefore (A8) can be written as,
f'+P(t)f =0

_[OP(t)dt jOP(t)dt

'+ P()e f=0

d e_[(t)P(f)dt jOP(t)dt d fo (t)dt

dt [From Leibniz theorem]

jpayh P(t)e
Substituting (A11) in (A10) we achieve the following,

t t
ejoP(t)dt £y _;1_t ejO_P(t)dt

t ‘ \_ .
ii_l:eIOP(t)dtf:l -0
o dt

bmﬂ

=0

f constant

o Ce—jOP(t)dt —h
Then,
[P(tydt = 203
' 9
Therefore the géheral solution of (A6) becomes,

81
40(.2t6

2o |
g(t) At? +Bt+Ce 9 { +o(t )}

82

(A7)
A8)

(A9)
(A10)

(A11)

(A12)

(A13)

(Al4)



&3

Taking A= B= 0, we get the asymptotic solution,

2 3

——at : :

£,(t) ~ at? +Ce 9 { 821 6‘+...} | | (A15)
B o et o
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APPENDIX B

Method of separation of variables to obtain w3

The following is a .boundary value problem (3.10) that ranges in -0 < x < o0 and

0<z<I:

V2w3 + W3 =0, . (B1)

~ The boundary conditions are,

w3 (x,1)=0, |

w3 (x,0)=0 - for x<0,

w3  bounded as |x| —> o0,

Let the solution is w3(x,2z)= -F(x)V(z) ' - (B2)

The reason is Wy, (X, Z)=—Wnx

Therefore Wiy =—FV Wi =—F'V
And W3Z = —FV’ W3, =—FV" .

Therefore from (B1)

2
2

~-F'V-FV" - FV=0

P_Y_ 2., | O ®

Therefore we form two ODE

F'-AF =0 | (B4)
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Z—Z

V”+V(x+ 2 2):0 | (B5)
Now equation (B4) is an eigenvalue problem.
If > 0, the characteristic equation is 1“2 -A=0

It has real and unequal roots. I'=+/A )

-For this linear ordinary differential equation ‘withvvcbnstah't coefﬁciénts the solution is

sought as,
F(x)= Ae™x 4 Bex

To keep the solution bounded set B = 0 and thus we obtain, F(x) = AeVA% — AcPnx taking

A=PBy2

n

For n number of values of , there are corresponding solution of F and V.’ Therefore

from bequation (B2),

w3(x,z) =-F(x)V(z) = —i By (x)Va(2) = —i AgePn*v, (Z) (B6)

n=l n=1
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