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ABSTRACT

The wall jet flow driven by a pressure gradient near channel exit at Reynolds Number 

ranging from the order of 10 to 100, emerging from a two-dimensional channel is 

examined theoretically in this study. Poiseuille flow conditions are assumed to prevail far 

upstream from the exit. The problem is solved using the method of matched asymptotic 

expansions. The small parameter involved in the expansions is the inverse Reynolds 

number. The flow and pressure fields are obtained as composite expansions by matching 

the flow in the boundary-layer region near the free surface, flow in the outer layer region 

near the stationary plate, and the flow in the core region. The fluid is assumed to be 

Newtonian and it is found that the jet contracts downstream from the channel exit. The 

influence of inertia on the shape of free surface is emphasized and the boundary layer 

structure near the free surface is explored. To leading order, the problem is similar to the 

case of the free jet (Tillett 1968) with different boundary conditions. A similarity solution 

can be carried out using a similarity function which is then determined by solving a 

boundary-value problem, where the equation is integrated subject to the boundary 

conditions and a guessed value of the slope at the origin. The slope is adjusted until 

reasonable matching is achieved between the solution and the asymptotic condition far 

from the free surface. The level of contraction is essentially independent of inertia, but 

the contraction moves further downstream with increasing Reynolds number. The present 

work provides the correct conditions near exit, which are required to determine the jet 

structure further downstream. If the jet becomes thin far downstream, a boundary layer 

formulation can be used with the presently predicted boundary conditions for steady and 

possibly transient flows.
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CHAPTER 1

1. INTRODUCTION

The objective of this study is to examine the influence of driving pressure on the two 

dimensional steady laminar jet of an incompressible fluid near the channel exit. The basic 

flow configuration is illustrated schematically in figure 1.1. It shows that a pressure 

driven wall jet emerges out of the channel and with a contracting free surface outside the 

channel downstream. The flow near the channel exit is closely examined, and the 

influence of inertia is emphasized. The asymptotic development of the flow field is taken 

in terms of the inverse Reynolds number, which is assumed to be ranging from the order 

of 10 to 100. The jet is assumed to be subject to a constant pressure gradient far 

upstream. The effect of this pressure gradient on the emerging jet, however, will diminish 

with distance as viscous effects become dominant over inertia as a result of the wall 

resistance. In this case, the contracting jet begins to expand (swell) with distance 

downstream from channel exit.

Fixed wall

Figure 1.1: Schematic illustration of the basic flow configuration.
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1.1 Related flow problems

The literature abounds with prominent works on free jet, wall jet, impinging jet and 

gravity driven jet. All these problems display an important common behaviour that of 

boundary layer flow. It is therefore helpful to briefly describe next the concept of 

boundary layers. The boundary layer equations are perhaps one of the most important 

advances in fluid dynamics. Using an order of magnitude analysis, the well-known 

governing Navier-Stokes equations of viscous fluid flow can be greatly simplified within 

the boundary layer. Notably, the characteristic of the partial differential equations (PDE) 

becomes parabolic, rather than the elliptical form of the full Navier-Stokes equations. 

This greatly simplifies the solution of the equations. By making the boundary layer 

approximation, the flow is divided into an inviscid portion and the boundary layer, which 

is governed by a PDE. The continuity and Navier-Stokes equations for a two- 

dimensional steady incompressible flow in indicial form are given by

( 1.1)

YjVi,j = “  p Pi +'Y • ■: <L2>

where i and j represents the components in x and y axis, p is the density, p is the pressure 

and v is the kinematic viscosity of the fluid at the point. For a sufficiently high Reynolds 

number, there are now two regions of interest. One is the region close to the surface 

where the viscosity is important and this is known as the boundary layer, and an outer 

region where the inviscid flow is unaffected by viscosity. Since the boundary layer is 

generally very thin the following approximations apply:

v « u . (1.3)

d u . d v L . d v d v  —  «  —  and -— «c —  
dx dy dx. dy

(1.4)

Applying the approximation (1.3) and (1.4) into equation (1.2) it is found that

r
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ry,
5 - « 0 o r p « p ( x ) (1.5)
By

The pressure gradient in x direction can be computed from the Bernoulli’s equation

which is,

dx dx
(1-6)

Note that, U is the free stream velocity. Finally using (1.3) and (1.4) it can be written that,

«£ —-!r. Now the two boundary layer equations are written using (1.1) and (1.2):
dxz dyL

du dv _ o  
dx dy

(1.7a)

da. TTdU cPuu— + v— = U — + v—-  
dx dy dx cy

(1.7b)

The above equations (1.7a) and (1.7b) are the famous boundary-layer equations for a flat 

plate derived by Prandtl. For a flat plate (figure 1.2) the boundary conditions are the 

following:

At y = 0(wall): u = v = 0 (no slip)

At y = 8(x): u = U(x)
( 1.8)

where 5(x) is the boundary layer thickness. The next step is to find the similarity solution 

for the boundary layer equations. A similarity solution is a form of solution in which at 

least one co-ordinate lacks a distinguished origin; more physically, it describes a flow 

which 'looks the same' either at all times, or at all length scales. For the laminar flow on 

the plate, the boundary layer equations (1.7a) and (1.7b) can be solved exactly for u and 

v. Using co-ordinate transformation, Blasius showed that, the dimensionless velocity 

profile u/U is a function oft):
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-  = f'(îl) 
U

îl=y u \ 1/2

\  vx
(1.9)

Substituting (1.9) into (1.7) the nonlinear PDE problem is reduced to third-order 

nonlinear ODE for f

r  + l f f "  = 0 (1.10)
2

with the boundary conditions

At rj=0: f(0)=f'(0)=0

A sr)—>oo: f'(oo)—>1
(1.11)

Figure 1.2: Schematic diagram of flat plate boundary layer.
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The current problem is closely related to wall jet (Glauert 1956). The relation between 

the two problems can be understood from figure 1.3. The current problem is included for 

reference in figure 1.3a. The typical configuration of the more general wall jet is shown 

in figure 1.3b, where the flow in far field is shown with the fictitious virtual origin 

(Schlichting 1999). Figure 1.3c shows the analogy between the current problem and the 

wall jet. The no slip boundary condition on the wall outside the channel is the same for 

both wall jet and the current problem. The difference between the two problems is in the 

type of the second boundary condition far from the wall. In the case of the wall jet, the 

velocity of the fluid becomes zero, while in case of the current problem there is the 

presence of the free surface on which there is a nonzero velocity of the fluid or slip 

condition. Note, however, the similarity in velocity profiles in the two cases. Despite the 

difference in boundary conditions far from the wall, the two velocity profiles display a 

maximum and decrease with distance. Incidentally, the boundary layer methodology 

described above can be applied to wall jet to a certain extent. In case of a wall jet, two 

similarity exponents, giving the variation with distance of the maximum velocity and the 

jet width, have to be determined, and one relation between them is obtained from the 

boundary layer equations themselves, and the second relation depends on an eigenvalue, 

which for laminar flow is satisfactorily solved (Glauert 1956):

r  + ff" + a f '2 =0

where a = (2b-l)/(2-b)

(1.12)

is the eigenvalue and b is the similarity exponent related to jet 

thickness. The value of b for plane wall jet was found to be 3/4. The velocity distribution 

applies for both radial and plane wall jets. The current problem deals with the free surface 

wall jet and does not appear to have received attention previously.
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Fixed wall

(a)

(b)

Figure 1.3: Schematic illustration of (a) basic flow configuration, (b) classical wall 

jet (Glauert 1956), (c) similarity between current problem and classical wall jet flow
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The current work is based on the earlier methodology developed by Tillett (1968) who 

obtained the shape of the free surface and velocity profile for moderately inertial laminar 

free jet flow near the channel exit. More details on Tillett’s work will be given later. 

More recently, Dumargue & Philippe (1991) used a similar method and emphasized the 

interplay between the effects of gravity and inertia on the free surface shape and the 

velocity profile. Watson (1964) carried out the analysis for laminar and turbulent jets 

impinging on a flat surface and showed that there exists a similarity solution far 

downstream which will be discussed later. Wilson (1986) carried out a local similarity 

transformation for the axisymmetric viscous-gravity jet of the boundary layer type flow 

close to the free surface.

Watson (1964) analyzed another related problem of the radial spread of a liquid jet over a 

horizontal plate in which he focuses on the hydraulic jump. When a smooth jet of water 

falls vertically from a tap on to a horizontal plane, such as the bottom of an empty sink, 

the water spreads out in a thin layer until a sudden increase of depth occurs. This is a 

hydraulic jump. There is a formation of thin layer inside the jump and boundary-layer 

theory is applied in order to discuss the motion. Reynolds no. is assumed to be large and 

no account is taken of the structure of the hydraulic jump, or surface tension effects. For 

large values of the radial distance r, a similarity solution of the laminar boundary-layer 

equations is sought. Later, the experimental tests of Watson’s model did not give results 

satisfactorily. Liu & Lienhard (1993) showed that the shape of the circular jump is 

dominated by surface tension. However, considering the fact that, the current analysis is 

based on high Reynolds no. flow, surface tension is neglected but the free surface shape 

can still be predicted correctly using the methodology given by Tillett(1968) which will 

be discussed later.

1.2 Motivation

Real fluids (liquids and gases included) moving along solid boundary will incur a shear 

stress on that boundary. As the fluid emerges from a tube or a channel it is subjected to 

an abrupt change in the shear stress i.e. there is a change in stress from a non-zero value
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(ja---- ) to a zero value which causes a singularity to form. This stress singularity
dy

constitutes the major difficulty in any theoretical analysis. However, the computational 

method which seemed to have prevailed over theoretical analysis fails in the case of 

singularity. The reason of the failure is that, in case of the computational method, the 

entire flow domain including the singularity and its immediate vicinity must be 

considered (discretized) and cannot be avoided. The crucial sector to the rest of the flow 

domain is the singularity region, which is difficult to handle numerically if a satisfactory 

level of accuracy is sought. In this situation, the asymptotic approach proposed lends 

itself efficiently as a viable alternative. Perhaps more importantly, asymptotics tend to 

provide deeper insight on the flow structure near the singularity. The analysis is similar to 

entry flows where two distinct regions can be identified, an inviscid region and a 

developing boundary layer that emanates from the entrance point.

For the current free surface wall jet problem at large Reynolds number i.e. low viscosity,

( du
the upstream diffusion of vorticity-----

l  dy
, which is related to shear stress, is small. The

vorticity generated at the leading edge where the stress singularity occurs diffuses 

depthwise and is convected downstream, ultimately invading the entire flow field. In the 

inviscid core region, velocity changes occur primarily through conservation of mass. A 

similar situation occurs for a wall jet at large Reynolds number. For entry flow, the 

entrance length corresponds to a stress relaxation length, and the inviscid core is replaced 

with a viscous core in which elongation is small as a result of small axial velocity and 

stress gradients. For the current problem, velocity gradients in the core region occur 

primarily because of jet contraction (or expansion depending on the Reynolds number) 

through conservation of mass. At the exit of the channel, the shear stress drops 

discontinuously to zero on the free surface. The effect of this drop diffuses toward the 

wall of the jet both inside (upstream) and outside (downstream) the channel. However, 

outside the channel, the diffusion is much more significant and is convected downstream, 

eventually reaching the wall. The original Poiseuille flow gradually acquires a boundary 

layer character. For a stationary wall, Watson’s (1964) similarity solution applies far



downstream where the flow is entirely of the boundary layer type and the viscous 

relaxation length depends on the driving pressure gradient.

Free surface and interfacial flows are generally complicated because of the unknown 

position of the surface or interface. The presence of the stress singularity adds complexity 

to the problem and solution. In the literature, both analytical and computational solution 

methodologies have been pursued. Although numerical methods seem to have prevailed 

over analytical approaches for most flow problems, this is not the case for flows with 

singularity. A combination of analytical and numerical treatments has also been proposed 

(Shi, Breuer & Durst 2004). As mentioned earlier, in a computational approach, the entire 

flow domain must be discretized, including the singularity and its surrounding region, 

both upstream and downstream from the exit. Higher accuracy is achieved through mesh 

refinement, which captures more effectively the singularity but leads simultaneously to 

the presence of stronger flow gradients that are difficult to handle numerically (Pasquali 

& Scriven 2002). In order to circumvent the difficulty with the unknown free surface, 

Tsukiji & Takahashi (1987) wrote the flow equations in a curvilinear coordinate system 

related to the network comprising the streamlines and their orthogonal trajectories. 

Although this approach simplifies the implementation of the boundary conditions, it 

complicates the flow equations.

9

1.3 Asymptotic analysis: A historical perspective

Asymptotic analyses tend to avoid the singularity by identifying two distinct flow 

regions: a boundary layer region near the free surface, extending but not including the 

singular point, and a core region where the flow remains close to fully developed. The 

inclusion of the singularity is not essential in this case given the similarity character of 

the flow in the boundary layer region. Note again that the boundary layer region extends 

both upstream and downstream from the singularity. However, although the flow does 

not remain fully developed as it approaches the exit, the thickness of the boundary layer 

upstream of the exit is generally small at high Reynolds number, and is often ignored. For 

the current problem, a third layer arises near the wall. Asymptotic analysis has been
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successfully adopted for flows in the visco-capillary range (Goren & Wronski 1966, 

Ruschak & Scriven 1977, Higgins 1982). Goren & Wronski presents two theoretical 

approaches for the shape of a jet of Newtonian liquid issuing from a capillary needle into 

air. One approach is a perturbation analysis about the final state of the jet and other is 

boundary layer analysis near the point of jet formation. Ruschak & Scriven (1977) used 

the similar analysis in case of a developing laminar flow in a liquid film issuing from a 

full slot and descending along a vertical wall and obtained the location free boundary and 

the curved meniscus profile. Higgins (1982) analyzed the downstream development of 

film flow on a moving substrate using the asymptotic analysis. More closely to the 

present problem, asymptotic analysis has been adopted in the visco-inertial range (Tillett 

1968, Philippe & Dumargue 1991). In this regard, however, little focus has been on jet 

flow taking inertia into account. Tillett (1968) analyzed the moderately inertial laminar 

free jet flow near the channel exit using the method of matched asymptotic expansions. 

Tillett was able to obtain the asymptotic contraction ratio of the jet far downstream using 

an integral analysis. The results were in good agreement with the experimental results 

found by Middleman & Gavis (1961). Consequently, the method of matched asymptotic 

analysis proved to be a very successful tool in examining the flow structure of the jet near 

the channel exit. Miyake, Mukai & Iemoto (1979) carried out a similar analysis on a 

vertical jet of inviscid fluid taking into account gravity effect. They considered far 

downstream flow regions to match with ‘near-exit’ flow and thus extended the validity of 

the methodology described by Tillett (1968) to the far downstream region from the exit. 

Asymptotic analyses have also been successfully implemented for non-Newtonian flows. 

See, for instance, the work of Denier & Dabrowski (2004) on boundary layer flow, and 

the work of Zhao & Khayat (2007) for the spreading of a liquid jet.

Tillett considered a jet of liquid, open to atmosphere, which emerges from a two- 

dimensional channel in which there is Poiseuille flow far upstream. The method of 

matched asymptotic expansion (Van Dyke 1964) is used to investigate the problem and 

the small parameter involved in this expansion is the inverse Reynolds no which is based 

on the channel width. It is assumed in his paper that, in the asymptotic expansion to the 

lowest order the flow has the Poiseuille profile. Then he considered how the flow is



modified when the fluid leaves the end o f the channel in the form of a jet. Surface tension

is ignored in his work. Inside the channel the wall stress is p — . As the fluid detaches
dz

itself from the wall o f the channel, the removal of the wall stress causes a boundary layer 

to form at the free surface. In this layer the parabolic velocity profile of the Poiseuille 

flow adjusts itself so as to satisfy the condition of zero stress at the free surface. It is 

assumed in his work that Poiseuille flow everywhere is the proper inviscid limit. 

According to this assumption, the flow in the interior of the jet is unaffected to lowest 

order, although it is expected that the boundary layer will induce perturbations to it, and 

also to the flow upstream in the channel. Consider figure 1.4a for Tillett’s problem. The 

solution is developed in powers of e, where e is an inverse Reynolds number, both in the 

'inner' (boundary-layer) region and in the 'outer' region of the core; the two expansions 

are matched by standard procedures. The regions of interests are shown in figure 1.4b

11
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Figure 1.4: Schematic diagram of (a) laminar two dimensional free jet and 

| (b) region of interest in Tillett’s work on laminar free jet.
• i
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To analyze the problem, the x-axis is taken along the lower edge of the channel, and the 

z-axis across the channel width. If a is the width of the channel, the stream function of 

the basic Poiseuille flow is

= ÀÎ72 - 1 — )Ÿ0 = A(z (1.13)

3u s 2
where A = — mean = constant. The inverse Reynolds number is defined as s* = v / Aa , 

a

where v is the kinematic viscosity.

The non -dimensional variables are introduced by measuring lengths with respect to a, 

velocities with respect to Aa, stream function with respect to Aa2 and pressure with 

respect to pA a , p being the density. Therefore (1.13) becomes,

2 9 3
V o  =  z  - f z (1.14)

Another coordinate of interest is the transverse coordinate measured from the free 

surface, which is given by

y = z-C (x) (1.15)

The Navier-Stokes equations for steady laminar flow are, in non-dimensional forms are,

VzVxZ VxVzZ “  Px +  (Vxxz +  Vzzz )

—VzVxX + VxVxZ = —Pz _  (Vxxx Vxzz)

(1.16)

(1.17)

In Tillett’s work, the problem was solved for large Reynolds number, assuming, 

nevertheless that the flow remains laminar. For x > 0 the boundary conditions that can be 

applied on the lower free surface z = Ç(x) are, the kinematic and dynamic boundary 

conditions. Kinematic boundary conditions means that the free surface itself is the stream
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line and dynamic boundary condition means that on the free surface the traction force is 

zero. These conditions can be written as following

v = 0 : (1.18)

t=CT-n=0

• -^X = °XXn X ■*'t^EZn Z =  ®

and

CTZXn x  "h ̂ zz ^ z  — ®

( i .19)

-C  1where nv = , and n , = ........... For a Newtonian fluid, total stress is denoted as
x 2

ojj = -p8jj + ijj where t is the shear stress tensor. The dynamic boundary condition then 

reduces to

P + ¿ [2 V x z  + C(Vzz “  Vxx )] = 0

p i “ Vzz*^Vxx) = ®Ke . .

The other conditions to be satisfied are,

(1.19a)

(1.19b)

\|/= — on z = -  (1.20)
6 2

\|/z =  0on  z = 0,l (1.21)

\|/ -» z2 - j z 3 as x -» oo (1.22)

It should be noted that z is considered in the range of 0 < z < —; the flow for — < z < 1 is 

obtained from symmetry considerations.
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The boundary layer or inner layer near the free surface is defined as the region where 

significant deviation occurs from Poiseuille flow. In order to solve the problem in the 

inner layer, the equations (1.16) and (1.17), and conditions (1.18) and (1.19) are rescaled 

using the following transformation:

x=%  and z = y + £(x), v

where y = erj, and £ = Re-a  is the small parameter in the problem. Tillett determined a to 

be equal to 1/3 by balancing inertial and viscous terms in the inner layer. In essence, this 

transformation “magnifies” the inner layer. In order to match with the outer Poiseuille 

flow, \jz~y2 as ri -> oo , leading to the following expansion for \|/:

v f e r i )= e2̂  fe n )+ £ 3v̂ 3 fe n )+• (1.23)

A similarity solution is carried out for ¥2 and ¥3; which are written here as

>P2 fe ri)  = 52/3f2(e)and>P3fen) = ̂ f3(8) (1-24)

where, 0 = r|^'1/3 is the similarity variable used by Goren & Wronski (1966) in his 

solution and by Goldstein (1930). The equation and boundary Conditions for f2(0) and 

fs(0) are respectively

f 2 + | f 2f 2 - | f 2 2 =0,

where f2(0) = ^ (0 ) = 0, and f2(0) ~ 02 as 0 -» oo and
(1.25)

f3 '+ |f2 f3 -f2 f3+ f2 f3 =0,

where f3 (0) = f3(0) = 0, and f3(0 )— 203 as 0->oo

where the third boundary condition for both f2(0) and f3(0) are found from matching with 

the core region, which will be discussed later. The boundary conditions at 0 = 0  reflect 

the no-penetration and slip condition at the free surface. Tillett found that the surface 

speed to the order of e2 is



u (x ,y  = 0) = ex1/3f^(0)=2.5572ex1/3, (1.26)

which confirms the result obtained by Goren & Wronski (1966, equation (28)) to within 

the 2% accuracy of his calculations. Goren & Wronski (1966) considered the 

development of such a boundary layer when the basic flow is a simple shear flow and he 

assumed that the boundary layer does not affect the core flow. However, Tillett did not 

make this assumption and said that the boundary layer may interact with the core flow. 

To analyze the flow in the outer region i.e. away from the ‘inner’ boundary-layer region 

near z = 0, stream function v|/ and pressure p are represented by an outer expansion,

\|^ x Jz )= \i^ (x ,z )+ s ^ (x ,z )+ -»  (1.27a)

p(x,z) = p0(x,z) + ep1(x,z) + --- (1.27b)

Here \(/o is just the basic Poiseuille flow. For n = 1,2 and 3 the equations for \|/n(x,z) are, 

from (1.16) and (1.17),

16

VOzVnxz -  VOzzVnx =  —n nx 

“ YO zM W  = “ n nz

-3
where, IIn(x ,z)=p(x,z)+4s x . Eliminating I ln from (1.28) gives

(1.28)

V2Vnx - uzzz \|/nx =0, where 
VOz

+ d2
dz2

(1.29)

Note that, v = - \ |/nx. From the unique solution of (1.29) for n = 1 and 2 i.e. Vi(x, z) = 

V2(x, z) =0, along with the matching between core and inner region, it was found that 

\|/i(x, z) = \|/2(x, z) = 0 everywhere. For n =3, a non homogeneous boundary condition is 

obtained from matching, which is v3 (x,z -» 0) = -2 . Then, applying the method of

separation of variable (see Appendix B) in (1.29) for x < 0, the solution is written as,
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v3(x < 0,z) = - \ |/3x(x < 0,z) = - £  A nePflXw n (z)
n=l

(1.30a)

The coefficients An are obtained by matching the flow at the channel exit. Now, the shape 

functions wn are governed by the following eigenvalue problem where pn are the 

eigenvalues.

(  o 2 ^
< ( z ) +  | 5 + ---- - j

V z - z r j
wn(z )= 0  w.n(0) =

/ A
Wn =0,

VA/
(1.30b)

Then, using (1.30b) and (1.28) the expressions for pressure inside and outside the channel 

are obtained as

p3(x < 0 ,z )  = - 4 x - 2 £ ^ e PnX{ z - z 2 W n (z )-[ l-2 z ]w n(z)j.
n=l Pn 1 ’

(1.31)

and

p3(x > 0 ,z )  = - 2 ^ ^ ae PnX{ z - z 2 W n (z )-[ l-2 z ]w n(z)J 
n=l Pn 1 -

(1.32)

The jet profile or free surface height was sought by Tillett by matching the inner and out 

solutions (1.23) and (1.27), respectively. As mentioned earlier, matching àlso allows to 

obtain the third boundary condition for f2(0) and f3(0), which actually are the matching 

"conditions for *F2 and ̂ 3 .  In order to match, the following matching rule o f Van Dyke 

(1964) was adopted:

EnHm V =HmEnV O-33)

Here, En is the core-expansion operator, which truncates immediately after the term of 

order sn where the expansion is expressed in terms of core variables. Hm is the 

corresponding inner-expansion operator. Applying n = 0, and m = 2 in (1.33) gives



H2E0v|/ = s2r|2 = y2 and
(1-34)

E0H2v  = E0(s2vF2) = y2

which leads to the matching condition for 'P2 ~ 0  . Similarly the next matching

condition for ¥ 3 is found by applying m = n = 3 in (1.33) which is ^ 3  ~202. The 

expansion for free surface height is given as,

Ç(x) = £h0(x) + E2h i(x )+ ... (1.35)

Now, considering m = 2 and n = 1 in (1.33) gives h0 (x )= cx1/3 and n = m = 3 gives

h1( x ) = ^ B 3x2/3. The value of the constants c = 0.70798 and B3 = -2.08913 are found,

respectively, from the numerical integration of (1.25) for fî(0) and f3(0). Finally the free 

surface height is obtained as

Ç(x) = 0.70798ex1/3 + 1.04457s2x2/3 + 0 (s3) (1.36)

* 'v
Finally, the composite flow is obtained from the solutions in the inner and core regions, 

using Van Dyke’s rule of composite solution defined by In this

case, the composite streamwise velocity is given by

C2u = ex1/3f2(0) + s2x2/3f}(0) -  2e2B3zx2/3 + 0(e3) (1.37)

It should be noted that the boundary-layer solution derived in Tillett’s paper breaks down 

at large distances downstream, when the boundary-layer thickness is no longer small 

compared to the width of the channel.



19

1.4 Practical relevance

Although most jet flows in reality are related to the free surface jet flow of Tillett, the 

applications related to the present wall jet problem in this thesis cannot be under 

estimated. Thus, laminar free surface wall jet flows can be found in particle removal, 

cooling, and coating processes. Hence, wall jet flow occurs as impinging jet at an angle 

which is widely used in mechanical manufacturing to remove particles and water droplets 

from work pieces. Obtaining the best particle removal efficiency has received much 

attention in the past. The current analysis in this thesis can be used to obtain the pressure 

and stress distribution on the plate. The mechanism of particle removal is shown in figure 

1.5. The three parameters (see figure 1.6) influencing the particle removal efficiency is 

the pressure of the impinging jet, the impinging distance and the impinging angle (Zhang 

et al 2002). In some applications, the impinging angle can be small. In this case, the flow 

on the left hand-side of figure (1.7) resembles the flow on the right-hand side of figure 

(1.7), which is the current configuration examined in this thesis, as shown in figure 1.1. 

If, on the other hand, the impinging angle is large, then the current formulation must be 

modified, but becomes much more complicated since the Poiseuille profile is not the 

actual profile in the core region in this case. Thus, for small impinging angle, we can 

simplify this problem as in figure (1.7), by assuming a wall at the exit and make it 

coherent to the current analysis which will allow the determination of the correct free

surface and pressure distribution on the plate to predict the efficiency of the particle
\

removal from the surface. The case of large impinging angle can be tackled in the future.
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Figure 1.5: Schematic of particle removal setup (Zhang et al 2002).

Figure 1.6: The parameters affecting the particle removal efficiency (Zhang et al

2002).

Figure 1.7: Modification of problem of particle removal at an angle to free surface

wall jet.
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Another application of wall jet that has recently gained attention is in the cooling process 

when a fluid is driven or pushed over a stationary surface. This is illustrated here in the 

cooling of laptop processors (see figure 1.8). The laminar wall jet makes the air sucked 

inside the notebook conveyed by fans on the bottom of the base i.e. the part that rests on 

the legs. The air then escapes from the notebook through the ventilation grills, located on 

the opposite side of the base than the input (http://news, cnet. com.

http://www.notebooklist.net/asus-lenovo-and-more/acer-travelmate-8000-timeline- 

laminar-wall-jet.html). The theory developed in the thesis can also be extended to 

thermal problems, although it currently deals only with an isothermal problem.

Figure 1.8: Application of wall jet in laptop cooling (http://news.cnet.com).

Another application of the current formulation is with respect to the coating process. 

Rotary machines include, but are not limited to, gas turbines and steam turbines. The 

moving part of the turbine is called the rotor while the nonmoving parts i.e. housings, 

castings etc. are called the stator. Gas or steam leakage, either out of the gas or steam 

path or into the gas or steam path, from an area of higher pressure to an area of lower 

pressure, is generally undesirable. In this case, coating is required to provide non-uniform 

rotor-stator clearance during assembly and operation. The use of spray coating to achieve 

non-uniform seal clearances in turbomachinary has been patented in by Tumquist et al 

(2007). The current work in this thesis may be regarded as an alternative to spray coating

http://news,_cnet._com
http://www.notebooklist.net/asus-lenovo-and-more/acer-travelmate-8000-timeline-laminar-wall-jet.html
http://www.notebooklist.net/asus-lenovo-and-more/acer-travelmate-8000-timeline-laminar-wall-jet.html
http://news.cnet.com
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in turbomachines. The current work predicts the shape of the emerging jet as it flows on 

the flat solid plate (substrate). After an initial stage of contraction near the channel exit, 

the Newtonian film begins to swell and develop a non uniform free surface shape due to 

weakening o f inertia and dominance of viscous dissipation (plate resistance). The current 

analysis shows how to control the free surface shape by changing the fluid and flow 

parameters to achieve the desired non uniform coating thickness. Therefore, it can be 

conjectured that, the current analysis can be a successful application to control the 

coating thickness and provide the desired non-uniform clearance in turbomachinaries.

Another application involves the manipulation of gas and liquid fluids within networks of 

microchannels, which is crucial in the design and fabrication of microfluidic devices for 

applications in microreactors, and chemical and biological sensing (Zhao et al 2001). 

Liquid flow inside microchannels is laminar, meaning that multiple liquid streams can 

flow side-by-side without turbulent mixing. Figure 1.9 shows the flow of silane solution 

into an ambient solvent. The present thesis can help predict the shape of the interface and 

flow of the emerging jet if  the solvent viscosity is negligible compared to that of the 

silane solution.
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Figure 1.9: Schematic illustrations of multistream laminar flows (A to D) and the 

corresponding images of aqueous flow inside channels (E to H) (Zhao et al 2001).
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CHAPTER 2

2. GENERAL PROBLEM AND BOUNDARY LAYER FLOW
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2.1 Governing equations and boundary conditions

Consider the two-dimensional flow of an incompressible fluid of density p and viscosity 

p, emerging from a channel of width D. The flow configuration is schematically depicted 

in figure 2.1 in the (X, Z) plane. The X axis is taken along the lower wall and the Z axis 

is chosen in the transverse direction across the channel. The channel exit coincides with 

X = 0. The flow is induced by a pressure gradient, dP/dX, inside the channel. The stream 

function of the basic Poiseuille flow is obtained from

'P = 1 dP 
2pdX

f 2 \
- — D—
3 2

6V
D2

f 7’}  7
- — D—

, 3 2
(2.1)

where v  = — —- ^ d 2 is the mean velocity due to the pressure gradient inside the 
12p dX

channel. In this case, V is assumed to be always positive and will be used as the velocity 

scale. In other words, the pressure gradient is assumed to be always present and negative. 

Non-dimensional variables are introduced by measuring lengths with respect to D, 

stream function with respect to VD, and pressure with respect to pV . In this case, 

dimensionless group emerges in the problem, namely, the Reynolds number, Re. Thus,

Re = —— (2.2)
v

where v is the kinematic viscosity. Now, (2.1) will turn out to be the leading order 

solution in the outer region, and is conveniently introduced here as

\[/q =3z2 -2 z 3 (2.3)

\



In this study, Re is assumed to be moderately large. The non-dimensional conservation 

o f momentum equation for the laminar steady flow takes the following form

VzVxZ — VxM*ZZ = _Px "'"^^'(Vxxz "*■ Vzzz) (2.4a)

“ M̂ zĤ XX “̂ V x ^ X Z  =  —Pz _  (M^xxx Y x z z ) (2.4b )

For x > 0, the kinematic and dynamic boundary conditions at the free surface, z = Ç (x), 

are

y  = 0 (2.5a)

P + ̂ [ 2^ xz + C (V zZ- ¥ xx)] = 0 (2-5b)

P C ' - ^ ( 2VxzC - V zz + ¥ xx) = 0 (2-5c)

24
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Figure 2.1. Schematic illustration of the planar jet flow. The jet is pressure driven 

out of the channel. Note that the all notations are dimensional.



A prime denotes total differentiation. Inside the channel (x < 0), the following conditions 

must be satisfied, namely,

\|/z = 0and \|/x ==0at2Fl (2.6a)

\)/z = 0 at z=0 (2.6b)

v|/ -> 3z2 -  2z3 as x ->• -oo (2.6c)

The flow is supposed to have the basic Poiseuille profile (2.3) to lowest order and is 

modified when the fluid leaves the channel in the form of the wall jet. Quoting 

Tillett(1968), “when the fluid detaches itself from the wall o f the channel, the removal of 

the wall stress causes a boundary layer to form in a region near the free surface. In this 

region, the parabolic velocity profile adjusts itself so as to satisfy the condition of zero 

traction at the free surface. In the inviscid limit, this condition would not be imposed 

since there is no (viscous) mechanism for the stress singularity to diffuse, and all the 

conditions o f the problem would be satisfied by postulating that the parabolic profile 

continues unchanged in the jet region. However, no uniqueness theorem exists for this 

inviscid problem, and it is conceivable that other solutions might exist.” Nevertheless, it
'•v

is assumed in this paper that the fully developed Poiseuille flow is everywhere the proper 

inviscid limit. “With this assumption, the flow in the core o f the jet is, to lowest order, 

not affected by the flow in the boundary layer region” near the free surface although the 

boundary layer is expected to induce perturbations to the basic Poiseuille flow, when 

higher order terms are included, both for the flow upstream and downstream from the 

channel exit. This assumption is similar to the one made by Smith (1979) for the tube 

flow with severe constriction, where the flow field in the core region, to leading order, 

satisfy the inviscid equations o f motion.

Figure 2.2 illustrates schematically the different flow regions for the free surface wall jet. 

In each region, different physical mechanisms dominate the flow with corresponding 

characteristic length scales. In particular, for the flow outside the channel, the region 

close to the free surface, the inner region, is shear dominated and the flow is o f the

26



boundary layer type. In the region between the interface and the wall, the core region,

both shear ( — ) and elongation ( — ) prevail as a result of the predominance of the
8z ox

Poiseuille character of the flow and the contracting jet. The core region also extends 

upstream from the exit. At the channel exit, x = 0, the shear stress undergoes a step 

change from a non-zero value(of dimensionless value 6- 12z) at the lower wall, z = 0, to 

zero at the free surface, z = ¿¡(x). The effect o f this drop diffuses upstream inside the 

channel (x < 0) over a distance xo where fully developed Poiseuille flow is recovered, 

and downstream (x > 0) toward the wall over a distance xm, at which point the flow is

entirely o f the boundary layer type. The current study focuses on the flow outside the 

channel where the similarity solution in the inner region is matched onto the core 

solution. This latter in turn is matched onto the core solution in the core region inside the 

channel at the channel exit. Another layer also exists close to the upper wall which is 

denoted as the outer layer as shown in figure which will be discussed in section 2.3.It is 

important to observe that no matching is required for the similarity solution at x = 0, and 

the flow singularity at the origin is entirely avoided in the solution process. This 

constitutes a major advantage o f the current formulation compared to alternative solution 

methods.
"v

The problem is now examined by considering separately the flow near the free surface 

(inner region), the flow in the core region and the flow near the upper wall i.e. outer 

region. The composite flow is obtained upon matching the solutions at the interface 

between the two regions. Part of the formulation in each layer is similar to the free jet 

formulation carried out by Tillett (1968).

' 27
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outer and core regions. All notations are dimensionless.

inner,
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To examine the boundary layer structure near the free surface, let y = z —<^(x). If  we use

the regular perturbation analysis to solve for 2.4, the higher order terms in the momentum 

equation will vanish. To solve this problem we take a small parameter e to magnify the 

region close to the free surface and change the scaling in the transverse direction by 

writing y= eq. It is to be noted that s = Re"“ and a  is to be determined. As a result we will 

be able to use regular perturbation expansion to solve the momentum equation in the new 

coordinate system and the higher order terms in the momentum equation will not vanish. 

Anticipating that the height C, o f the free surface is o f the same order o f magnitude as the 

boundary layer thickness, one can write £(x) = eh(x), and henceforth work with h. It is not 

necessary to assume that h(x) = 0(1) as s —> 0; examination of (2.14) below shows that 

the inner expansion developed in this section holds provided only that h = o(s_1), i.e. C, 

tends to 0 with s. In the matching process, in chapter 4, it will be shown that h = 0(1). 

Following Tillett (1968), the following change o f coordinates is introduced, namely,

x = ^ ,  z = e ( r |+ h )  (2.7)

2.2 The flow in the inner layer close to the free surface

Now, from (2.4a) and (2.4b), it is concluded that

1-1
“ V^Vqq =~£2 (p^ -h 'p T1) + e^a  V qqq

- + l ) ,  , ' 2 , v
—h Vqq —̂ hxi/^yrj+h j

" V q V ^  +  V$V$q + h V q  +  V (V q V ! jq  -  V $ V q q ) =  “ Pq

- 8^“ ' ( v $ q q - h t y q q q ) - ^ a ^ A _ h. s f
8t] ¥■

(2.8a)

(2.8b)
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Note that £ and x are distinguished only in differentiation. The aim is to find a solution of 

these equations in the form of an “inner expansion” in £. In order to match this to the 

outer Poiseuille flow, it is necessary to have \|/ ~ y2 as r\ —> oo in the inner region, to 

lowest order in e; so \|/ must be o f order e2. In order to determine the value o f a, it is 

required that the convective and viscous terms balance in equations (2.8a) and (2.8b). 

This is achieved upon taking a  = 1/3. The components u, the streamwise velocity, and w, 

the transverse velocity, are now expressed in terms of the stream function as

U = Vz = “ Vt1 8 1
(2.9a)

w = - y x +h (2.9b)

From (2.9a), it is obvious that u is o f order s. Considering the fact that u in the inner

region must match the velocity in the outer region: U —> 6z—6z^, it is also inferred that 

u must be o f order e inside the inner region. The order of w can be found using the 

continuity equation when written in terms of inner variables, or

suç -  eh'u^ + = 0 (2.10)

Thus, w is o f order e2. The momentum conservation equations can be re-written as

= - e 2 (P^“ h 'Pî1) + £2VT1T1Tl 

” h xi/ryrj “ 2h\|/^TjT| H-h+8
(2.11a)

- V t, +  VçVl -T,  +  h > i  +  h ' -  Vç Vr , n  )  =  - P u

4[ 5 , ,  d
(2.11b)

hVt/W |)  8 \ &  hd% dr| ¥

The boundary conditions on the free surface rj = 0 are obtained from (2.5a)-(2.5c) to read

v|/ = 0 (2.12a)



e(h'P + Y n i i ) - £‘
f  rs
— - h ' —

an ^  + 2hf (v  ̂ n -  h V  T|r| ) =  0

p + £’ V)/ =  0

The inner expansion for y  begins with a term in e2. This is assumed, until 

evidence to the contrary. Thus, the expansion proceeds in powers o f £ so that

v f e r j )= s 2'f/2 ( ^ Tl)+s3vi/3 f e rl ) + -

Similarly, h is expanded as

h (^ ) = £ -1; (4 )  = h0 © + E h 1© + -

From (2.11)-(2.14), it is concluded that p is o f order e4. Thus,

pf eTi ) = (^.■n)+e5P5

The velocity components are expanded as

u ( ^ n ) = c U 1(t,ri)+ E 2U 2 ( ^ r l ) + - -

w f e  n ) = e2w 2 n ) + e3w 3 n ) +• ■ ■

In this case, Ui = U2 = and W2 =  + h 'o ^ ,  etc.

(2.12b)

(2.12c) 

there is

(2.13)

(2.14)

(2.15)

(2.16) 

(2.17)
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To leading order, the momentum equation, (2.11a) reads

* 2 i, * 2Çt, - * 2^21,1, = * 2t,t,t, (2-18)

The corresponding boundary conditions are obtained from (2.12a) and (2.12b), namely 

^ 2 (^ 0 )  = T 2l1T1̂ ,0 )  = 0 (2.19)

To complete the problem for ¥2, another boundary condition is required. This is the 

matching condition, which will be obtained in chapter 4, namely

xïi2(£>Tl) ->'3ri^ a s r |—»00 (2.20)

Equation (2.18) and conditions (2.19) and (2.20) are similar to the case o f a Newtonian 

jet (Tillett 1968). A similarity solution can be carried out for which is written here as

2.2.1 F low  in  the inner region to o ^ s  2 j

' r 2 ( | , r 1) = ^ /3f2 (0) (2.21)

where 0 = r|£*l/3 is the similarity variable. The equation for f2(0) is given by

\
3 if-2 1 '2f i  f i - 0  (2.22)

subject to the following boundary conditions from (2.19) and (2.20):

f2(0) = f^(0) = 0 (2.23a)

f2(0)~302 as0-»oo (2.23b)

An equation similar to (2.22) was investigated by Goldstein (1966) and revisited by 

Tillett (1968). For large 0, an asymptotic solution is possible to obtain, subject to 

condition (2.23b), namely
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f2(e->°o)=3(0+c1)2+O exp (  2  o n  
- - 0 3

l  3
(2.24)

where Ci is a constant determined from the numerical integration. The detail o f the 

asymptotic solution of fà is in the appendix A. Problem (2.22)-(2.23) is solved as an 

initial-value problem, where equation (2.22) is integrated subject to conditions (2.23a) 

and a guessed value of the slope at the origin. The slope is adjusted until reasonable 

matching is achieved between the solution and the asymptotic form (2.23b) at large 0, or,

more precisely, between and 6. The integration is carried out over the domain [Q O j,

where 0^ is a relatively large value of 0 where matching is secured to within an imposed

tolerance. The value o f ci is then determined upon matching the numerical solution and 

its asymptotic counterpart (2.24).

Figure 2.3 displays the dependence o f  {2, fV and f2" on 0. In this figure the curve o f fz 

represents the behaviour o f the similarity function with respect to the similarity variable

1 /30. Note that, to this order, u  = O f particular interest is the slope at the origin

f2 (0) which is directly related to the velocity at the free surface. From the figure it is seen 

that fz adjusts itself to behave linearly at shorter distance from origin, while the slope of 

f z "  increases linearly very close to origin and then attains a constant value which satisfies

the boundary condition f2 ,( 0 -» oo) ~ 6 .  For the purpose of the discussion here, it is

convenient to observe that the initial slope is given approximately by f^ O )—h5.3and

the value o f Ci is approximately equal to 0.5. We can conclude from figure 2.3 that the 

velocity near the free surface increases linearly with height and further downstream the 

shear stress at the free surface attains a constant value.
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9

Figure 2.3. Variation of the similarity function f2 with 6.

V
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To the next order in e, (2.1 la) gives
c

'i'2n'i'34n+'I'3,'i'2Çn-'1'25'i'3^ -'J ,2nn'1'35 = 'ï,3^n (z25>

subject to the boundary conditions from (2.12a) and (2.12b), namely

T 3(Ç,0) = ¥ 3^ (Ç ,0 ) = 0 (2.26a)

The matching condition from chapter 4 is

^ ( ^ t j ) — 2rj3 as r j—»00 (2.26b)

which completes the problem for ¥3. Now a linear equation is obtained for ¥3, with 

variable coefficient, admitting a similarity solution o f the form (Tillett 1968)

T'3(ç,T1) = Çf3 (e) (2.27)

Substitution o f expression (2.27) into equation (2.25) yields the following differential 

equations for f3 v

3 f f + 2 f y 3 - 3 f ^ + 3 f & = 0  /  (2-28)

subject to the following boundary conditions:

f3 (0) = f3 (0) = 0 (2.29a)

The third boundary condition is obtained from (2.26b):

f3 (0 )— 203 as 0 -> o o  (2.29b)

2.2.2 F low  in the inner region to  o  (s3 j
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An asymptotic solution similar to but more complicated than the case of free jet flow 

(Tillett 1968) is possible. Thus,

f3 (0 —> oo)= - 2 1̂ (0+ q  )3 -1 J + c2 (0+ Cj) + O j êxp | - 203 j (2.30)

The numerical integration of equation (2.28) gives the value C2. The solution procedure is 

similar to before, except that both problems (2.22)-(2.24) and (2.28)-(2.30) are solved as
t

a coupled system. Figure 2.4 shows the f3 profile. In this case, f3 and f3 are both

negative, pointing to a higher order weakening effect on the flow near the free surface. 

This is seen upon taking the velocity to third order and using expressions (2.16), (2.21) 

and (2.27), namely

u(x,e) = sx1/3f^(0) + s2x2/3fj(0) (2.31)

It is deduced from the figure 2.4 that, f3(0) = -5.20. Thus, the free surface velocity 

diminishes upon adding the higher order term following

u(x,z = ^) = 5.3ex1/3-5 .2e2x2/3 (2.32)
■ 'v

Note that the depthwise velocity component at the free surface will become available 

once the free surface height is determined. Figure 2.5 illustrates the dependence of free 

surface velocity on inertia. It displays the u(x,z = £) profiles for s = 0.1, 0.2, 0.3. Both

the figure and equation (2.32) suggest that u(x,z = £) increases monotonically with x.

The apparent decrease of the surface velocity with increasing inertia observed in the 

figure is due to the non-dimensionalization process used. A more suitable scaling for the 

velocity can be used to reflect the real behaviour. This is reported in figure 2.6, where the 

Re u (x, z = £) profiles (instead of the u profiles) are shown.



u(
x,

z=
g

Figure 2.4. Variation of the similarity function f3 with 0

x

Figure 2.5: Dependence of the nondimensional streamwise velocity at the free 

surface, u(x, z = Q, on inertia for different £ .
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x

Figure 2.6 : Dependence of the nondimensional streamwise velocity at the free 

surface, Reu(x, z = Q, on inertia for different £.

X
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2.2.3 Boundary layer growth

Although the free surface height is not available until matching is carried out, the 

boundary layer thickness, 0(x), or thickness o f the inner region (refer to figure 2.2), can 

be determined at this stage. Expression (2.31) and the asymptotic forms (2.24) and (2.30) 

allow the determination of 5(x) and its explicit dependence on e. On the other hand, it is 

helpful to first estimate the boundary layer thickness using dimensional arguments, and 

the length and velocity scales introduced in section 2.1. In this case, the boundary layer 

thickness may be expressed in terms o f a dimensionless transverse diffusion time, t, as

Some important observations can be deduced from the expression above. As expected, 

the boundary layer thickness grows with position and diminishes with inertia. In

8 ~ —  , and the velocity at the surface may be expressed in terms o f the(  t Y/2

(2.33)

X (of —  . In fact, the viscous relaxation length, x ^ ,  can be estimated upon setting(  x Y /4

8(x00 ) = 1 in expression (2.33), leading to

(2.34)



The relaxation length is simply proportional to Re. Note that the (dimensional) Poiseuille 

shear stresses at the lower wall, - 6V/D from (2.1), is proportional to the corresponding 

driving velocity, and the resulting jump takes a length to diffuse that is also proportional 

to V. Interestingly, the actual (dimensional) relaxation length behaves like D . 

For x  > x K, the boundary layer contains the entire jet width and the nature of the flow 

depends on the fully developed flow in the channel.

For a more accurate estimate o f 8, consider first the variation of the velocity profiles 

with respect to height, rj, at different x position and £ which are displayed in figure 2.7. 

The figure shows the gradual flattening of the velocity profile near the free surface as 

inertia decreases. The boundary layer height coincides with the level at which the 

asymptotic and inner velocity profiles begin to merge, as demonstrated in the figure. The 

influence o f inertia on the boundary layer thickness is illustrated in figure 2.8. The 

dependence o f S(x) on s is shown in this figure. The boundary layer thickness typically 

grows with position x. Eventually, the inner region continues to grow with position as the 

film contracts, at which point the boundary layer prevails over the entire film width.

40
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Figure 2.7: Dependence of the streamwise asymptotic (dashed lines), numerical 

(solid lines) velocity profiles for £=0.1,0.2,0.3, on height n, at x= l, 2 ,3
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Figure 2.8: The influence of inertia on the boundary layer thickness

\

,
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2.3 Flow in the outer layer close to the wall

To examine the boundary layer structure near the upper layer, let y = 1 - z. In this case, 

the scaling in the transverse direction is changed by writing y = yr|, where y = Re'p is the 

small parameter in the problem and p is to be determined. Following Tillett (1968), the 

following change o f coordinates is introduced, namely,

x = 4, z = 1 — yr| (2.35)

The aim is to find a solution of the transformed equations o f (2.4) in the form of an 

“outer expansion” in y. In order to match this to the core Poiseuille flow, it is necessary 

to have y  ~ 1 as t| —> oo in the outer region, to lowest order in y. Therefore, y  must be of 

order 1. Similarly to jet flow (Tillett 1968), the value of P is determined by requiring that 

the convective and viscous terms balance. ,

( \  \  f l  )--1  -+1
¥ tî t1- V ^ t1ti = -Y 2P ^ - Y ^  V w i - Y ^  V ££r| > (2.36a)

' l  ) f i  '--1  ±+l ' x
= Pti -  Y^P (2.36b)

In this case, p = 1, and y = s3 . The components u, the streamwise velocity, and w, the 

transverse velocity, are now expressed in terms o f the stream function as

u = y z = - - y 11 (2.37a)
Y

w = - y x = -y^ (2.37b)

From (2.37a), it is obvious that u is o f order 1/y. Considering the fact that u in the outer

region must match the velocity in the core region: u  —> 6 z —6z^, it is also inferred that 

u  must be o f order 1/y inside the outer region. The order o f w can be found using the 

continuity equation when written in terms of inner variables, or



Y.uç -  = 0 (2.38)

Thus, w is of order 1. The momentum conservation equations (2.36) are re-written as

-VçVîiri '= ~ y \  -  Vt,tiri “  Y ^ r , »  (2-39a)

VtjVçç -  = Pti -  “ yV ^ -  (2.39b)

The boundary conditions on the upper flat plate r\ = 0 are obtained from (2.6a) to read 

= 0 and \|/ (^,t) = 0) = 1 (2.40a)

\ | / ( ^ - > - ° ° , T i )  = 3 (l-y ri)2 -2 ( l -y r i )3. (2.40b)

The expansion proceeds in powers of y so that

\J/ ( ^ r i ) = ^ 0( ^ r i)+y4/1(^ ri)+ y 2xF 2 (^ r l)+ '"  (2.41)

From (2.39), it is concluded that p is of order 1. Thus,
; X

p ( |,^ )= P 0(%>r1)+YP1(£,Ti)+V2P 2 (4 ,r |)+ -  (2.42)

The velocity components are expanded as

u ( ^ r l)=Y_1U_1(^ ri)+ U 0(^ri)+YU1(^ ri)+ ..v  (2.43)

w(£,r|) = 1% (^ r i ) + Y ^ f e r l)+ Y2^ ( ^ r l)+- ‘ ‘ (2.44)

In this case, U-j = - vFon, Uo = - 'Fin , Ui = - ^  and Wo = -'Foç , etc.

To leading order i.e. y°, the equation for 'Fo and corresponding boundary conditions read

'*, o,,>?oçn - ' i , 05 'P onn= -'i'o,1w  (2-45a>

44



= % - ' * ' o ^ n  (2-45b)

subject to 

' F o n M  = 0) = 0

(2.40)

The last condition is established from matching between the outer and core layers. 

Clearly, vF0( ^ 'n ) = l  is the solution to (2.39a). In this case, (2.39b) gives the result

and from matching, one arrives at lfo(£l>'n )= 0 . To 0 (y) , the problem

is governed by

Pm -  ^I5nn = 0 (2'41)

subject to

'F1t,($ ,ti = 0) = 0. 'F i(£ fr |= 0 ) = 0  (2.42a)

^ 1( ^ - ^ - ^ T i ) = xF1(£9r i-^ o o )= 0  (2.42b)

The solution of this problem is vI^(S>T])=Q Although to this order, the

flow velocity does not deviate from the Poiseuille flow, there is deviation in the case of 

the pressure. Indeed, the pressure to this order must match with the pressure in the core 

layer which, from section 6, gives

1*1 ( ^ )  = P 3 ( x , z = l )  (2.43)

The explicit form of pg (x ,z) is given by (3.23) and (3.24) for x < 0 and x > 0, 

respectively. Next, to 0 ^y2j ,  one has a similar problem, namely

45



^ n = ° >  P2T,-^2§nT,=° (2AA)

^ 2U.n = 0) = T 2l,U,tl = 0) = q (2.45a)

^2 (4 ->  -°°,^ l ) = ^2 ->  °°) = “ 3112 (2.45b)

The last condition is arrived at, once again, from matching between the outer and core

layers. In this case, at this order, the solution reads: T 2 (^,r() = -3r|2 and

Thus, to this order there is no deviation from the fully developed

profile for the velocity. In contrast, the pressure continues to depart but remains constant 

across the outer layer.

2.4 Conclusion

The inner and outer regions were analyzed in this chapter. The aim of the inner region 

was to find the solution of the equations of motion in the form of an “inner expansion” in 

s. The higher order solution was pursued in the inner region in order to achieve the free 

surface velocity and boundary layer thickness. Similarly, the aim of the analysis of the 

outer region was to find a solution of the equations of motion in the form of an “outer 

expansion” in y. However, to the order of analysis, the outer solution did not provide any 

significant difference other than the fully developed flow. \

46



47

CHAPTER 3

3. FLOW IN THE CORE REGIONS

3.1 Core region flow inside and outside the channel

Core region is comprised of the region inside the channel upstream from the exit (x < 0) 

and the region between the inner layer and the outer layer in the downstream (x > 0). 

Ultimately, the flows inside and outside the channel must match at the channel exit (x = 

0). However, this matching is only required between the two core regions. The reason is 

that, according to the boundary layer character of the inner regions (inside and outside 

the channel), similarity solutions can be sought separately. The presence o f the 

singularity at the origin (x = 0, z = 0) prohibits any matching, but can be totally avoided 

in the current formulation. In this case, the inner solution inside the channel (x < 0) is not 

required for the determination o f the flow outside the channel, and therefore will not be 

discussed any further.

In the core region (refer to figure 2.2), which is far from the region near z = 0, equations 

(2.4) must be solved, and are conveniently rewritten here as

M̂ z'Kxz VxM ẑz ~~ P x + 8 (Vxxz Vzzz) (3.1a)

~~Ĥ zM̂xx ~*~N̂ xVxz ~~Vz  —8 (Vxxx Vxzz) (3.1b)

In this case, \j/and p are represented by the following core expansions:

\ | / ( x , z )  =  \| /0 ( x , z ) +  e\ | /1 ( x , z )  + --- (3.2a)

p(x,z)  = p0 (x,z) + £pj(x,z) + --- (3.2b)
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2 3Here, recall that v|/q = 3z -  2z is just the basic Poiseuille flow stream function given

in (2.3); Ym (m > 0) are higher order terms that denote the deviation from the basic flow 

due to its interaction with the inner and core layer.

The character o f the basic flow is similar to that arising for the laminar flow of a free jet 

(Tillett 1968) and channel or tube flow with constriction (Smith 1976a,b,1979) at high 

Reynolds number. In those cases, as well, the fully developed (Poiseuille) profile is the 

flow to leading order. Smith examined the flow for fine, moderate (Smith 1976a,b) and 

severe (Smith 1979) constrictions. The severity of the constriction is reflected in the 

characteristic slope of the obstacle, which is of 0 (R e '1/3) and 0(R e'1/6) for fine and 

moderate constrictions, respectively. Here Re is Smith’s Reynolds number based on the 

tube diameter and the maximum velocity. In these situations, there occurs virtually no 

nonlinear upstream influence of the obstacle, and the core flow is just an inviscid 

rotational perturbation o f the basic Poiseuille flow. As it turns out, this is also the 

situation in the current problem, where the contraction of the flow constitutes a fine to 

moderate constriction. The core motion outside the inner and outer layers is of the 

inviscid elliptic, but linear, kind.

In contrast, in a severe constriction, where the obstacle slope is of 0(1), there is 

significant upstream influence on the core flow. As mentioned earlier, this level of 

constriction severity does not correspond to the current problem. Note that the flow field 

expansion takes the same form regardless o f the constriction level o f severity. Thus, 

Smith’s (1979) expansion (2.1) for the flow with severe constriction is the same as the 

current expansion (3.2) above. However, in contrast to (3.2), Smith’s leading order terms 

in (2.1) do not exactly correspond to fully developed flow, but still satisfy the inviscid 

equations o f motion. Free-streamline theory was adopted by Smith, which is believed to 

yield the proper inviscid limiting form of the Navier-Stokes equations (Smith 1979). 

According to Tillett (1968), “since the governing equations are elliptic (in x), this 

deviation will extend also to the region x < 0 in the channel.” In other words, the 

upstream region recognizes the presence o f the singularity and free surface.
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Based on these assumptions, upon inserting expressions (3.2) into equations (3.1), a 

hierarchy o f equations is obtained to each order. To leading order the resulting equations 

for m = 0 lead to po(x, z) = 0. For m = 1, one has

V 0z V ix z “ V 0z z V lx -= “ Plx (3.3a)

VOzVlxx-  Plz (3.3b)

Upon eliminating pi from (3.3a) and (3.3b), the following equation is obtained for vpi:

V2v|/ix VQzz7:
VOz

¥ i x = ° (3.4)

q Z  q Z

where V2 = — =-+•—r- . Noting that = -\|/lx , the following boundary-value problem
8k1 dzz

in the ranges -oo < x < oo and 0 < z < 1 is concluded:

V 2W ] + — — — w j  = 0 (3.5)
Z -  7T

w K(x,l) = 0,

w1(x,0) = 0 for x < 0, ^

W i ( x , z - > 0) = -A,1(x) for x  > 0,

Wj bounded as |x |-> oo.

The matching condition obtained in Chapter 4 gives Xi(x) = 0. In this case, the (unique) 

solution to the boundary-value problem (3.5) is wi(x, z) = 0 for any x and z. 

Consequently, and since \|/i(x -> - co, z) = 0, then \|/i(x, z) and pi(x, z) must vanish 

everywhere.

For m = 2, following the similar procedure, W2 vanishes and consequently \|/2(x z) and 

P2(x, z) also vanishes everywhere. More explicitly,

Vi(x, z) = v|/2 (x, z) = Pi(x, z) = p2 (x, z) = 0 (3.7)

To next order, m = 3, equations (2.4) lead to
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V.0zV3xz -V0zzV3x = "P3x ~ 12 (3-8a)

H,0z'l/3xx = P3z (3.8b)

Upon eliminating p3 from (3.8a) and (3.8b), the following equation is obtained for \j/3:

v 2V3x
VOz

¥3x = ° (3.9)

Noting again that w 3 = -i| /3x, and using expression (2.3) the following boundary value 

problem in the ranges -oo < x < qo and 0 < z < 1 is concluded:

V2w 3 + — ——̂-w 3 =0  (3.10a)
z -  z2

w 3 (x,l) = °,

w3(x,0) = 0 for x< 0 ,
, ' (3.10b)

W3 (x ,z —>0) = -2  for x> 0 ,
w 3 bounded as |x| ->  oo.

The condition w 3 (x > 0,z -> 0) = -2  is obtained from matching (see Chapter 4). The

solution o f problem (3.10) does not vanish given the non-homogeneity o f the boundary 

conditions. So far, the formulation in this section has been common to both the regions 

inside and outside the channel. Although the flow fields in these two regions will have to 

match at the channel exit (x=0), they can be conveniently examined separately.

3.2 Flow in the core region inside the channel

Consider now the core flow in the region inside the channel (x < 0). In this case, using a 

separation o f variable argument (details in Appendix), the solution of problem (3.10) may 

be written as (Tillett 1968):

W3(x < 0 ,z) = -\|/3x(x < 0 ,z) = - £  AnePnXVn (z) (3.11)
n=l
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The shape functions Vn are governed by the following eigenvalue problem:

f
p?+

2 ^ 

z - z  2 y
Vn = 0 Vn (0) = Vn (l) = 0, (3.12)

An additional boundary condition was required to solve for (3.12) which is \^(0)=1.

This value is by itself immaterial (as long as it is not zero), and gives the same 

eigenvalues. However, it will influence the magnitude o f the eigenvector. The problem 

(3.12) was solved using Matlab’s ODE45 subroutine. However the boundary conditions 

cannot be applied at z = 0 and 1 due to the presence of singularity. The eigenvalue was 

adjusted until the solution converged between the boundary conditions i.e. 0 and 1. The 

following table shows the eigenvalues that were found for different modes.

n Pn

i 5.18

2 ■ 8.64

3 11.94

4 15.19

5 18.40

6 21.59

7 24.77

8 27.95

Table : Eigenvalues (pn) for different modes

The equation representing the relation between n and pn can approximately be written as

Pn = .0233n3 -  0.354n2 + 4.823n + 0.232

Figure 3.1(a) depicts the plot of Vn versus z for mode n = 1, 2, 3 and 4. Figure 3.1(b) 

shows that the Eigen values pn increases essentially linearly with n.
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The stream function inside the channel is obtained by integrating expression (3.11) 

subject to the boundary condition > -o q z )= 0 . This boundary conditions reflects

the idea that the core flow far upstream is only basic Poiseuille flow to the leading order. 

This will lead to

00 A
v)/(x < 0,z) = 3z2 - 2 z 3 + —ae^nXVn (z) ‘ (3.13)

n=l Pn

Finally, the coefficients An are obtained by matching the flow at the channel exit, and 

will therefore be determined once the outer flow is considered for x > 0. Figure 3.2 

depicts the upstream distance xp versus e at which the Poiseuille flow is recovered at 

different level o f z. At first (3.13) is used to find the streamwise velocity u. Then the

< 10- 6 . It can be predicted from the

figure that in the upstream for higher inertia fully developed flow is recovered near to 

exit while for lower inertia the fully developed flow is recovered further from exit. An 

interesting result can be inferred from the figure that, when the core has reached fully 

developed flow, it means that the flow at the upper and lower plate region has already 

reached the fully developed flow.

distance xp is found when abs
u - u fully developed

Ufully developed
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x

Figure 3.1. Shape function V„ versus z for mode n = 0,1,2,3 and 4 shown in (a) 

and eigenvalues p„ versus n is shown in (b).



Figure 3.2. Influence of upstream distance xp on inertia for different height.
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3.3 Flow in the core layer outside the channel

Downstream from the channel exit, the solution of problem (3.10) is given as

w 3(x > 0 ,z )  = -\i/3X( x > 0 3z) = -2V0(z) + 2 ]A ne“PnXy n (z) (3.14)
n=l

where V o(z) satisfies the following equation and boundary conditions:

V0" + — ^ - V 0 = 0 V0 (0) = 1, V0 (1) = 0 (3.15)
z -  z

As mentioned earlier, the coefficients An are obtained by matching W3 at x = 0. In this 

case, equating (3.11) to (3.14) at x = 0, leads to

V o (z )= Z A nVn (z) (3.16)
n=l ■■ ■• .

which is a spectral representation of Vo(z) in terms o f the orthogonal functions Vn(z). It 

follows from (3.16), given the orthogonality of the shape functions Vn, that

J o V o tz R C ^ d z

JoVn(z)<k
(3.17)

Finally, the stream function is determined upon integrating (3.14) and matching with 

(3.13) at x = 0 to give

v|/(x > 0,z) = 3z2 -  2z3 + s3

Another variable o f vital interest, the pressure, will be discussed next.

w A
2xV0(z)+

n=l Pn
(3.18)



3.4 Pressure in the core region and elsewhere

The overall flow inside and outside the channel in the core region can now be examined 

to provide insight on the flow transition as the fluid nears the channel exit. The pressure 

inside the channel is determined by integrating equation (3.8b) subject to appropriate 

boundary conditions, which are obtained as follows. First, recall from section 3 that the 

pressure in the inner region outside the channel (x > 0), was shown to be 0(e4). 

Consequently, upon matching the pressures in the core and inner regions for x > 0, it is 

not difficult to deduce that the pressure in the core region outside the channel vanishes at 

the interface between the core and inner regions, or

p3(x > 0,z -» 0) = 0 (3.19)

Thus, at the channel exit, this gives P 3 (x = 0 ,z —> 0)= 0  . Now, upon evaluating (2.3) 

and (3.11) at z = 0, equation (3.8a) reduces to

P3x (x < 0,z —» 0) = -12 (3.20)

Integrating (3.20) subject to p 3 (0 ,z —> 0 )= 0  gives

p3 (x < 0 , z 0) = -12x (3.21)

Upon inserting expressions (2.3) and (3.11) into (3.8b), and using (3.12), the expression 

for the transverse pressure gradient inside the channel becomes:

56

r - . 00 ° ° A / r  \
p3z (x < 0,z) = [6z -  6z2] 2  A Vn = - 2  [6z -  6z2 j  v ;  +12Vn} (3.22)

n=l n=l Pn

which is integrated subject to condition (3.21), leading finally to

P3 (x < 0 ,z )  = - 1 2 x - f ) ^ p“x { 6 z - 6 z 2 V n -[6 -1 2 z ]V nj. 
n=l Pn

(3.23)
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Figure 3.3. Pressure distribution at different height.



Although Poiseuille conditions are theoretically recovered in the limit x - oo, 

calculations based on expression (3.23) indicate that these conditions prevail essentially 

for x < - 3, corresponding to a distance approximately equal to three channel widths. This 

issue will be examined shortly once the pressure outside the channel is determined. This 

is done upon inserting expressions (2.3) and (3.14) into (3.8b), and using (3.12). In this 

case, an expression similar to (3.22) is obtained for x > 0, which is integrated and 

matched with (3.23) at x = 0 to give

6 z - 6 z 2 ] v ^ - [ 6 - 1 2 z ] V n j .  (3 .24)
n=l Kn

The pressure perturbation at a given height in the core region inside and outside the 

channel is thus given by expressions (3.23) and (3.24), respectively. Incidentally, these 

expressions are directly involved throughout both the inner and core regions as

83p3(x,z) turns out to be equal to the composite pressure (see Chapter 4). In other

words, the pressure everywhere is readily available and is given by p(x ,z) ~  s3p3 (x ,z ) .

Figure 3.3 illustrates the pressure distribution at different level of z. The pressure 

decreases monotonically with x and in fact, the pressure remains unaltered by the jet 

contraction.

3.5 Conclusion

Core region comprises of the region inside the channel upstream from the exit (x < 0) and 

the region between the inner layer and the outer layer in the downstream (x > 0) region. 

After matching these two regions at the channel exit, it is concluded that the core flow 

deviates from the fully developed Poiseuille flow. The overall flow inside and outside the 

channel was examined and it is found that the Poiseuille flow is recovered in the 

upstream to a distance approximately equal to three channel widths.
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CHAPTER 4

4. JET PROFILE AND COMPOSITE FLOWS

This section is introduced in order to find out the way how the flow behaves outside the 

channel. To do this, matching at the interface of the inner and core region is necessary. 

As there is another region near the upper wall outside the channel, matching is also 

required between the outer and the core region. However, it is found that, there is no 

contribution other than the Poiseuille flow from the matching between the outer and core 

region and thus it will not be discussed in this section. On the other hand by matching 

between inner and core will give the free surface height.

4.1 Matching at the inner and core interface

The matching rule employed by Van Dyke (1964) is adopted here, namely

EnHmv  = HmEn\|/ (4.1)

where m and n are integers. Here, En is the core-expansion operator, which truncates 

immediately after the term of order sn where the expansion is expressed in terms of core 

variables. Hm is the corresponding inner-expansion operator. For successful application 

o f the matching rule (4.1), the stretching transformation between the inner and outer 

variables must be in the canonical form y = er\. In this case, the core expansion must be 

written in terms of y, not z; otherwise (4.1) can be satisfied only approximately. It is 

required that the two expressions in (4.1) be exactly the same, for all m and n.

Different levels of matching (depending on m and n) are needed to obtain the boundary 

conditions for the inner and core solutions, and consequently to determine the free 

surface height to each order in e . The reader is referred to Tillett (1968) for a similar 

development of the matching process. Initially matching process is implemented to 

leading order, that is to 0 (e), for the surface height. The details will show later that the

matching rule for m = 2 and n = 0 leads to ^  ~ 3 q  for large r\, and, consequently to
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(2.20). As to the core solution in chapter 3, the matching with the inner solution for m = 2 

and n = 1 leads to i|/j(x,0) = y lx (x,0) = 0 . These homogeneous conditions in turn lead

to the vanishing o f vpi everywhere or \|/i(x, y) = 0. The surface height exhibits the same 

dependence on x as the case o f free jet with q  = 0.71 (Tillett 1968), indicating that a free

jet contracts 40% more than a wall jet. Finally, the matching for m = n =  2 leads to \|/2(x,

y) = 0. The vanishing o f Yi(x, z) and v)/2(x, z) means that, to this order, there is no 

interaction between the inner layer and the core flow. Similar process will be followed

for 0 ^ e2j .

Recall from (2.3) that, to leading order, the stream function in the outer region is

2 3\(/q =  3z -  2z , which can be expressed in terms o f y = z - Ç and h.

Vo =3(y + sh)2 - 2 ( y  + eh)3 (4.2)

Consider first m = 2 and n = 0. Applying Eo on (4.2) gives

EoV = 3y2 - 2 y 3 - (4.3)

As this expression must be in inner variables when the operator H2 is applied, EoV is

2 2 3 3rewritten in the form: Eq\|/= 38 r| -2 e  rj .Therefore,

H2E0v|/=3e2ri2 =3y2 (4.4)

To leading order, the inner expansion for the stream function is obtained from (2.13) as 

\)/  =  s2vF2 • Thus H2V =  e2^ 2  a°d  therefore,

E0H2V = E0 (e2'P2). (4.5)
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This leads to vI^ ~ 3 rj2 for large rj, which is condition (2.20) or equivalently (2.23b).

Recall that this condition led to the determination o f f2. Consequently, from (2.13), (2.21) 

and (2.24), at large 0

H2y  = e2^ 2 = z2Z=2l\  = e2^2/33(0 + c j)2

= £2£2/33 (r)^-1/3 + c, )2 .
(4.6)

When (4.6) is expressed in terms of outer variables, it becomes:

H2y  = 3|y  + e q x ^ 3j = 3  y2 + 2yec1x1/3 + s2 |c ix 1/3j (4.7)

leading to

E0H2v|/=3y2, (4.8)

which matches with (4.4). And again similarly, taking n = 0 and m = 3, leads to

H3Eo\ |/= 3s2r)2 -  2e3r|3 ^ (4.9)

Now, must match with EyHjij/ and therefore applying H3 operator on the core

expression of y ,
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H3y  =82T 2 +83'F3=82^2/3f2 +63̂ f3(0)

= S2^m 3 (0 + Cj f  + 83̂ - 2 [(9 + Cj )3 - 1] + c2 (0 + Cl)]

=  82^2 /33 ( ^ - 1/3 +  c1)2 +  83^ -2  (n ^ -1/3 + Cl)3 - l  + c 2 ( ^ - 1/3 + Cl)

= 3£V /3(r1V 2/3 + 2T1r 1/3c1 + c12)

+ 83̂ [-2 (t1V 1 +3n2r 2/3Ci +3t1̂ -1/3c12 + Ci3 - 1) + c2ri^_1/3 + c2Cj

=  3 8 V  +  682T1C1̂ 1/3 + 382e /3C12

+ s3^|*-2ri3^ 1 -  6ri2£, 2/3ĉ  -  6r(£, 1/3Cj2 -  2 q 3 + 2 + c2r|£ 1/3 +

=  3 y 2. +  6 y 8 C ^ 1/3 +  382i;2/3Cl2 -  2 y 3 -  6 8y2$1/3Cl -  6e2y $ 1/3c12$ 2/3 

-  2 s 3^c13 +  2 s3£, +  c2e2y^ 2/3 +  c ^ e 3^,

(4.10)

which leads to,

EoH3V|/ = 3 /  -  2 /  =  e2>P2 + 83T 3. (4.11)

Now, (4.11), upon matching withH3E0v|/, leads to ~ —2r(3 , and consequently to 

condition (2.29b). v

Next, (4.1) is considered with m = 2 and n = 1. Recall that, the core expansion is 

\|/(x ,z) =  \|/q(x ,z )+ EVj/j(x,z)H— , where V o = 3 (y + eh )2 -  2 (y + eh )3, therefore, in 

this case, from (3.2a), (2.4a), (2.7) and (2.14),

E1i}/=3y2 - 2 y 3 +6yh()S-6y2h{)e+ev|/1(x ,y + £ h ) (4.12)

Expanding about y, (eh = 0)

/ j \2
V i(x ,y  + eh) = V i(x,y) + 8h\)/ly(x,y) + ̂ y - y lyy(x,y) (4.12a)
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Now, expanding about y = 0

y2\|/!(x,y + sh) = ^ (x .0 )  + yv)/ly(x,0) + - y  YlyyC*’0) + 

+ £h\|/ly (x, 0) + ehyi|/lyy (x, 0) + .....
/ j \2

+ ̂ - ¥ l y y ( x , 0 )  + ......

As a result, (4.12) reduces to

Ei\|/ = 3y2 -  2y3 + 6yh0£ -  6y2h0£ + e\\ii(x,Q)

+eyviy(x,0) + s y  Yiyy(x>0) 

+£2hv|/ly (x, 0) + £2hy\|ilyy (x, 0).

(4.12b)

(4.12c)

In terms of inner variable, y = er|,

Epi/ = 3£2r|2 -  2e3ti3 + 6£2r|h0 -  6£3ri2h 0
3 2

+ evi/1(x,0) + £2ri\(;ly(x,0) + - ^ - y lyy(x,0) (4.12d)

<y *5 v
+ £ hvyly(x,0) + £ r)hvj/lyy(x,0).

Therefore, applying H2 operator,

I^ E ^  = EXf/̂ XjO) + 3e2ti2 + 6£2tih0 + s2r|\i/ly(x,0) + £2hv|/iy(x,0)

or, (4.13)

H 2Ep|/= exjî X jO) + 3y2 + 6£yh0 + y£\(/ly (x,0) + £2hv|/ly(x,0)

On the other hand, applying E1H2 on the inner expansion (2.13) and using (4.7) give
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H2V = £2'P2 =E252/3f2 = 625M 3(e + C1)2

= ^ 2'33(11r 1,3+ o1)2 =3£242/3(n2r 2/3+ 2 ^ - 1/3c1+c12) (414a)

= 3 e V  + 6e2r|c£1/3 + Zz2^ m c f  

= 3y2 + 6yec^1/3 + 3s2£2/3C!2

which leads to upon applying the operator Ei,

EjH2v(/ = 3y2 + 6yecix1/3. (4.14b)

Comparing (4.13) and (4.14b) leads to \|/i(x, 0) = 0. This leads in turn to the 

homogeneous boundary condition ^ ( x )  = - y lx (x,0) = 0 for problem (3.4). Since \|/i(x,

y) = 0 everywhere is a solution for this problem (see chapter 3), one concludes that 

\|/jy (x ,0)=0, which also satisfies matching. The remaining terms in (4.13) and (4.14b) 

then yield the result ho(x) = cix1/3. In this case, the free surface height is given by

l
¿¡(x) = CiX3s + o |e 2j (4.15)

The vanishing of yi(x, z) means that, to the order 8, there is no interaction between the 

boundary layer and the core flow. The next step is to determine \|/2(x, z) and hi(x) by 

considering an analogous matching process to the above, using m = n = 2. Now applying 

E2 on the outer expansion gives,

E2'l' = 3y2 - 2 y 3 +6yeh0 - 6 y 2eh0 + 6ye2h1 :

-  6y2e2hi + 3s2h02 -  6ye2ho2 + + e2\|/2 (x , 0).

To apply H2, the equation has to be written in terms of inner variable, y = sr|, which 

results in,

H2E2vi/ = 3 ^  + 2sh0y) + e2 1\|/2 (x ,0) + 3ho].

\



65

and

H2\|/ = 3^y + ecix1/3 j =3 y2 + 2ÿecjx1/3

Therefore,

E2H2x|/ = 3 ̂ y2 + 2 q  syx1/3 + s2c2x2/3 j . (4.17)

This yields the fact that \|/2(x, 0) = 0 in the core expansion, concluding that \|/2(x, z) = 0 

everywhere, reflecting the absence o f interaction between the boundary layer and the core 

flow also to order e . The next step is to determine hi(x) and \|/3(x, 0). Upon using 

expressions (2.13), (2.21) and (2.27), for n = m = 3, one obtains

E3H3m/ = 3y2 -  2y3 + sycjx173 [6 -  6y]

2 2/3 +e x |^3c2 -  6c2y + c2y + s3x|^c2c1 -  2^c3 -  l j
(4.18)

Applying H3E3 to the outer expansion (3.2a) gives in turn:

H3E3v1/ = 3y2 - 2 y 3 
+eyh0 [6 -  6y] 

2+8

4*8*

3hjj + 6yh! -  6yhg

6h0hi -  2ho + \|/3 (x,0)

(4.19)

Upon matching, the height o f the free surface to the next order is determined, namely

hj = ^ - x 2/3 (4.20)

Also, the boundary condition, which is required to complete the set o f boundary 

conditions in (3.10b), is obtained. Thus,

v|i3 (x,0) = 2x. (4.21)
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Condition (4.21) yields X3 (x) = -2 in (3.10b). Therefore, for the first time, a non-trivial 

outer problem is reached.

4.2 Free surface wall jet profiles

It can be concluded that the outer flow up to order e3, remains the same as the Newtonian 

flow. However, the important result reached here from the matching process is that the 

height of the free surface is given by

Ç(x) = ec1x1/3+82£Lx2/3 (4.22)

Figure 4.1 displays the dependence of free surface height on inertia. The surface profiles 

suggest a significant thickening of the film when inertia increases. It is evident from the 

expression of the free surface height (4.22), that its slope is singular at x = 0. For the

surface to exhibit maximum, dÇ(x)
dx

= 0, resulting in xm = -
/  - \33cj

sc2
In this case, ci and

C2 are constants and equal to 0.495, and -3 respectively. Therefore the surface exhibits a

maximum at a location given by x = .495 From (4.22) it is found that, close to the
8

channel exit the theory is valid in the streamwise direction at a distance which is equal to 

one channel width. Again, far downstream the theory is valid in the streamwise direction 

at a distance which is of the same order of the Reynolds number. Figure 4.2 depicts the 

variation of surface curvature with inclination, <|>, for s = 0.1, 0.2, 0.3. It shows that the 

curvature increases with <(>, reaching a maximum at an inclination, and decreasing rapidly

as <f> —>> 90° . Figure 4.3 displays the asymptotic and numerical streamwise velocity 

profile based on the inner layer solution (2.31), along with the free surface height. Note 

that the difference between figure 2.7 and figure 4.3 is that, the free surface height was 

not yet obtained in figure 6, and this latter was drawn in the (q, x) plane.
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Figure 4.2. Variation of curvature vs. inclination (|> along the free surface for e =0.1,

0.2,0.3



x
Figure 4.3: The asymptotic (solid lines) and numerical (dashed lines) streamwise 
velocity profiles for (a) e = 0.1, (b) £ =0.2 and (c) £ =0.3. Note : u and x are drawn 
on the same scale. The vertical dashed line is the origin of u at each position.
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4.3 The composite flow

The objective of this section is to find out the composite velocity profile (streamwise and 

transverse) and pressure profile outside the channel. Following Van Dyke (1964), the 

composite expansion operator is defined by

Cn s ( E n +H n - E nHn ) (4.34)

This expression provides a uniform approximation to order sn over the whole width o f the 

jet.

To obtain C3\|/ the followings are needed namely,

E3\j/ = 3^y2 + 2 y s |h 0 + sl^ + £2h2 j + £2 |hjj + 2sh0h1 jj

-2^y3 + 3s2y |ho+ 2shoh! j + 3y2£ |h 0 + ehi + s2h2 j + £3h o | (4.35)

+£3vi/3 (x ,y ),

HgV]/ = £2x2 3̂f2 (0) + £2xf3 (0), (4.36)

and

- E 3H3i|/ = —3^y2 + 2y£(ho + £hi) + £2 |ho  +2ahohi jj 

+2^y3 + 3a2yho + 3£y2h0 + £3hj)j 

- £ 3v|/3 ( x , ° ) .

Adding (4.35) and (4.37) it is found that,

E 3\|/-E 3H3\|/ = 6yE3h2

-2 |382y(2£h0h1)+3y2£^ehi+e2h2jj

+£3\|/3(x ,y ) -£ 3\|/3(x,0).

(4.37)

(4.38)
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Therefore, combining (4.36) and (4.38) C3\(/ is obtained as following

C3\(/= H3\|/+ E3\|/-  E3H3\)/= S2x2/3f2 (0) + £3xf3 (0)

+6ye3li2 -  2 | 6e3yhohi + 3y2s |shi + e2h2 j j 

+s3vi/3(x ,y)-£3v|/3 (x ,0)

= s2x2/3f2 + £3xf3 + e3\|/3 (x, y) -  e3\|/3 (x ,0)+ 6ze3li2 [conversion to z]

-2
2 A

6s3zh0h1+ 3 ( z - s h 0) e2 (h1+£h2)

= £2x2/3f2 + £3 [xf3 + v|/3 (x, z) + 6zh2 -  V)/3 (x, 0)] 

6£3zh0hi +3fi2 [z2 -2£zh0 j(h ! +£h2)

= £2 [x 2/3f2 - 6 A j

+£3 j^xf3 +\(/3 (x ,z )-\|/3  (x ,0) + 6zh2 - 6 z 2h2

(4.39)

or

C3\|/= £ 2X2/3[f2 - Z 2C2]

+£3 jx f3 +v|/3( x ,z ) -2 x  + ^ 6 z -6 z 2 h2j
(4.40)

Therefore the streamwise velocity expression becomes

C3u  = £x1/3f2' + £2x2/3f3 -  12£2zh1 + £3v|/3z (x> z) -  s V 3z (x, 0) 

+6£3h2 -12£3zh2.
(4.41)

Although the value of I12 is required if  the streamwise velocity is to be evaluated to 

0 (e3) , this accuracy is not indispensible(absolutely necessary) when the flow variables 

are determined. This is the case, for instance, for the following expressions for the 

streamwise velocity component:
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C2u(x,z) = sx1/3f2f + s2x2/3f3' -  12szzhj + O ^ )

= ex^3f2 (0) + s2x2/3 [f3(0) — 2ze2] + 0(s3) ash^-^-x273
(4.42)

The transverse velocity component can now be obtained from (4.40) using the method

below. Note that, 0 = r|^  1/3 = ——h x 1/J. As f  = f  (0) = f(^ ,r |), therefore,
vs )

fr. \ -1/3

^x — %^x + f^Ox — ^  + r̂̂ Hx — + ^x^B^ri

= f

= - f ’

- ^ - 4,3+ % r 1/3) = - f [ V 3
( z  V 
- - h + h '^ _1/3

3 ) l 3 U  ) )

^ _1e + h ^ _1/3 — (0 + Cl) + 8h^ -1/3 f ’.

(4.43)

Using (4.43) in (4.40)

2 2 —1/3 [" n 2 11 , „2v2/3= 8 JX  \ f 2 :“ z c2 J
2 2 -1/3 [\. 2 11 „2„2/3.

= 6 3 X [f2--Z  C2 - 8  X

3

2 2 -1/3 r r. 2 1 f ' f 1 ,
= 3 I / 2

— z c2
r M ? ’

I x ^ 3
3

f  z N
- - h 0

ve J
+ h 'x “ 1/3

1/3 - — x_1/3zf3 
3 3

= - | x  2/3zf2 + £2 ~ x  1/3[f2 - z 2c2] + f i  | x  2/3£2h0 - e 2hox1/3
3

- ^ x ~ 1/3z f;

(4.45)

= — — x~2/3Zf2 + —— x- l/3 
3 3

2f2 - z f 3 - 2 z 2c2]

c 2\|/x(x,z) = - | x  2/3z f2 + y X  1/3 2 f 2 - z f 3 - 2 z 2c2 ]  +  0(s (4.46)

As, z = e(0x1/3 + h) = e (0x1/3 + h0) + e\  = e (0 + Cj) x1/3 + e\ , therefore,
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0 2 A  6 8 10

Figure 4.4: Variation of streamwise velocity (a), pressure (b) and transverse velocity 

(c) profiles with position for z  = 0.1. Note: streamwise velocity, pressure and 

transverse velocity are drawn on same scale. The vertical dashed line is the origin at 

each position.
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Figure 4.5: Variation of streamwise velocity (a), and transverse velocity (b) profiles 

with position for e = 0.2. Note : streamwise velocity and transverse velocity are 

drawn on same scale. The vertical dashed line is the origin at each position.
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Figure 4.6: Variation ot streamwise velocity (a), and transverse velocity (b) profiles 

with position for £ = 0.3. Note : streamwise velocity and transverse velocity are

)



C2w (x,z) = - y X " 1/3 ^2f2 - (0  + C i)fi] + o (83) (4.47)
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These expressions dictate how the velocity profile changes over the width of the jet up to 

the second order. The non-zero contribution of pressure enters only to third order, namely

C3p(x,z) = £3p3(x,z) + o (e4), (4.48)

where p3(x, z) is given by (3.24). The flow field (velocity and pressure) at different 

positions between the free surface and the centerline is shown in figure 4.4, 4.5 and 4.6, 

for e = 0.1, 0.2 and 0.3. The u profiles in figure 4.4a, 4.5a and 4.6a indicate that flow 

behaves close to frilly developed at the channel exit and further downstream, the u profile 

exhibits a change in concavity. There is a strong deviation from the Poiseuille behaviour 

in the inner region. Figure 4.3c, 4.4b and 4.5b confirms that the transverse component of 

the flow is essentially absent except very close to the free surface as w gradually 

diminishes with x after a jump at the channel exit. The velocity reflects the strong 

presence of both shear and elongation in the flow. Near the channel exit, elongation is 

clearly dominant at the free surface where most of the dissipation rate is concentrated. 

Further downstream, most of the dissipation occurs ■ above the free surface. 

Simultaneously, the pressure profiles in figure 4.4b suggest the existence of strong 

pressure variation near the channel exit. The pressure tends to decay to zero over a 

relatively short distance from channel exit, typically on the order of less than one channel 

width.

4.4 Conclusion

In order to find out how the flow behaves outside the channel, matching was performed 

at the interface of the inner and core region. Van Dyke’s (1964) matching rule was 

applied to obtain the boundary condition for the inner region and finally the free surface 

height was achieved. Again, composite matching rule was applied to find out the 

composite velocity profile (streamwise and transverse) and pressure profile outside the 

channel.
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5.1 Conclusion

The two-dimensional wall jet flow of a Newtonian fluid emerging from a channel is 

examined theoretically in this study. Following Tillett (1968) and other existing 

asymptotic analyses in the literature for laminar free surface flows, the method of 

matched asymptotic expansions is used to examine the free surface wall jet at high 

Reynolds number. For a recent perspective on asymptotic analyses, their applications and 

historic development, the reader is referred to the book by Sobey (2005) on interactive 

boundary layer and triple-deck theory. Similarly to all boundary layer analyses, where the 

solution is not valid within a small distance from inception such as very near a leading 

edge or a stagnation point (for an impinging jet), the analysis precludes the flow at the 

channel exit. However, the distance in question is small, on the order of the (local) 

boundary layer thickness. Consequently, the boundary layer approach turns out to be 

successful in capturing the flow nature near inception. The solution is developed in 

powers of e, where s3 is the inverse Reynolds number. Special emphasis is placed on the 

effect of inertia on the shape of the free surface and the profiles of the velocity and 

pressure close to the exit.

The boundary layer structure near the free surface was examined in detail. The viscous 

relaxation length for diffusion of stress singularity was found, as expected, to increase 

with inertia, with a corresponding thinning in the boundary layer. The monotonically 

decreasing pressure profile typically predicted for a free jet (Tillett 1968) was also 

predicted for the free surface wall jet. Finally, the significance of the current study and 

the advantages of the proposed formulation cannot be overstated. In typical jet flow 

calculations in the literature, fully developed conditions are assumed at inception. The 

present work provides the correct conditions near exit, which are required to determine 

the jet structure further downstream.
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5.2 Future work

If the jet becomes thin far downstream, a boundary layer formulation can be used with 

the presently predicted boundary conditions for steady and possibly transient flows 

(Khayat & Welke 2001, Muhammad & Khayat 2004). Note that the thin film 

approximation is not valid close to the exit; combined near and far field analyses must be 

used. This restriction applies even for thin jet emerging from channels and tubes. The 

current analysis can also be extended for particle removal from the work piece at higher 

impinging angle where the flow can be analyzed for complicated Poiseuille flow.
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APPENDIX A

Asymptotic solution of f2 (6 )

In this appendix, we follow Tillett’s (1968) approach to determine the asymptotic 

solution.

From the equation o f £¿(0) in (2.22),

*2 + 3*2$ - f 22 = 0 
3 2

(A l)

where the boundary conditions are,

f2 (0 )= Ç (0 )= 0  (A2)

Setting t = 0 + c, where c is arbitrary, and

f2(t) = a t2 + g(t) (A3)

A

where a  is a constant. The function at satisfies (A l) but not the boundary condition.

From (A3),

f2' = 2 a t + g', f /  = 2 a  + g", f /  = g" (A4)

Substituting (A4) into (A 1) we get

t r + f  a t  V  -  | a tg ' + | a g + f ggff -  y 2 = °  (a s )

Omitting the quadratic terms from (A5) we get,

gm + | a t V - | a t g '  + | a g  = 0 (A6)

Two solutions o f (A5) are g = t and g = t2. To find a third, Tillett set g(t) = th(t). 

Therefore,
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g'-= h + th', g" = 2h' + th", g'" = 3h" + th'"

Substituting (A7) into (A6) we get the following,

hw + S r ' + i a t 2
3

h" = 0

__i 2 O
Let, P(t) = 3t 1 + —a tz and h" = f . Therefore (A8) can be written as,

f ' + P (t)f = 0

e 6 P(,)d' f  + P (t)efiP(,)d,f  = 0

A eiop,t)dt = eiopWd'  A j  P(t)dt = p(t)efcP<,)d,[From Leibniz theorem]

Substituting (A ll)  in (A 10) we achieve the following,

/¿P(.)dtf , + £ e(Jp(,)dt = 
dt

d_
dt

■t

= 0

eKP(0d,f  = constant 

f  = C e ^ P(,)d,= h -

Then,

J p ( t ) d t = |a t 3

Therefore the general solution o f (A6) becomes,

g(t) = At2 +B t + Ce 9at J ^ L . +O( r 6) )  = 0
U a 2t6 J

(A7)

(A8)

(A9)

(A10)

(A ll)

(A 12)

(A 13) 

(A 14)



Taking A= B= 0, we get the asymptotic solution,

f2( t ) ~ a t 2
- V

+ Ce 9 81

4 a 2t6
(A 15)
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APPENDIX B

Method of separation of variables to obtain W3

The following is a boundary value problem (3.10) that ranges in -00 < x < 00 and 

0 < z <  1:

V 2W3 +  —y W 3 = 0 ,  ( B l )
z -  zz

The boundary conditions are,

w 3 (x ,1) = °, 

w 3 (x ,0 ) = 0

w 3 bounded as |x| —> 00.

for x < 0.

Let the solution is w 3 (x, z) = -F(x)V (z) (B2)

The reason is w n (x, z) = -vj/ux

Therefore w3x =  —F V  w3xx =  —F 'V

And w3z = -F V  w 3zz = -FV"

Therefore from (Bl)

z - z

F' V* 2
F + V ~  z —z2

(B3)

Therefore we form two ODE

F " -  A.F = 0 (B4)
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V '+ v
\

z - z 2 y
=  0 (B5)

Now equation (B4) is an eigenvalue problem.
i

If  i  > o , the characteristic equation is P  -  X = 0 

It has real and unequal roots. T  = ±Vx

For this linear ordinary differential equation with constant coefficients the solution is 

sought as,

F(x) = A e^ x + B e"^x

To keep the solution bounded set B = 0 and thus we obtain, F (x)=A e^x = AePnX taking 

^ = Pn2

For n number o f values of ). there are corresponding solution of F and V. Therefore 

from equation (B2),

CO CO

w 3(x,z) = -F(x)V (z) = - £ F n (x)Vn(z) = - £ A nePnXVn(z)
n=l n=l

(B6)
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