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A NEW TEST FOR NORMALITY 

by 

Richard L. Roller 

December, 1971 

This paper presents a new test for normality 

which is based on a complete characterization of the 

normal distribution. Motivation for the test is 

given in terms of a proof of this characterization. 

The test is derived and evaluated by computer-simulated 

sampling from alternative distributions. The empirical 

powers of the test generated from such samplings 

are tabled and compared to nine commonly used tests. 

Evaluation of the proposed test is discussed and 

further avenues of investigation are suggested. 



CHAPTER I 

INTRODUCTION 

Any student who has had an introductory course 

in statistics can cite many of the properties of the 

normal distribution, such as the fact that the mean, 

median, and mode are coincidental and the distribution 

is symmetric about its mean, and the fact that a graph 

of the distribution resembles a bell. In such a course, 

much time is spent on properties of the normal and 

applications to random variables in the physical world 

which closely approximate the normal. Oftentimes, 

students, as well as experimenters, are interested 

in testing hypotheses or setting confidence intervals 

under the assumption that the population being sampled 

is normal. Thus, it is quite reasonable to investi­

gate that assumption, and to try to find some criteria 

for determining whether or not a given population is 

normally distributed. 

Fortunately there are many random variables in 

the physical world which closely approximate the normal 

distribution. Heights and weights of individuals, gas 

mileages of automobiles, and intelligence-quotients 



are a few diverse examples of the many real-world 

variables which can be approximated by the normal 

distribution. 
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Another reason for the importance of the normal 

distribution is that it is the building block from 

which many useful sampling distributions are formed. 

Examples of these distributions are the Chi-square 

with n degrees of freedom [x 2 (n)], "Student's" t 

with n degrees of freedom [t(n)], Snedecor's F with 

n, m degrees of freedom [F(n,m)], the gamma distri­

butions [f(n,m)], and the family of beta distributions 

[S (n,m)]. 

The preceding discussion suggests that the 

normal distribution is quite important in sampling 

theory and that we would benefit greatly if we had 

some way to test a distribution for normality. In 

Chapter II, various tests are examined that have been 

proposed for normality. In Chapter III, the normal 

density is characterized as the only density for 

which the sample mean and variance are independent 

under random sampling. This characterization is used 

to derive a new test for normality in Chapter IV. 

The power of the new test is derived in Chapter v,and 

in Chapter VI, the proposed test is compared with nine 

standard tests. The remaining chapters are devoted to 

analyzing weaknesses of the test and proposing avenues 

of improving the test. 



CHAPTER II 

PRESENT TESTS FOR NORMALITY 

The need for determining normality has given 

rise to many tests. A comprehensive comparison and 

evaluation of the most widely used of these tests 

was given by Shapiro and Wilk. [2] This study pro-

vides a basis for comparison of the normality test 

proposed in this paper with existing tests. Following 

is the list of the tests compared, their code names, 

and a description of each test. 

Shapiro and Wilk (W). 

w = 

where [n/2] = greatest integer in n/2 and 

a ·+i = coefficients tabulated by Shapiro and Wilk. n-1 



Standard Third Moment (lbi'). 

n 

✓bl = ✓n L (Yi -Y) 3 / 

i=l 

Standard Fourth Moment (b 2 ). 

Kolmogorov-Smirnov (KS). 

3/2 

KS= max li/n - F(Y.) I, i = 1,2, ... ,n 
.l 

4 

where Fis the hypothesized normal cumulative distribution 

function. 

Cramer-Von Mises (CM). 

CM= nf ~Fn(Y) - F(Y)] 2 df(Y) 

0 

where F is the empirical distribution function. 
n 

Weighted Cramer-Von Mises (WCM). 

2 dF(Y) 
- F(Y)] F(Y) [1-F(Y)] 



Durbin's Modified KS (D). 

D = max [ i -. n 
l 

t gj] , i=l,2, •.. ,n 

j=l 

where g. = (n+2-j)(c~ - c~ 1 ), J'=l,2, ... ,n, 
J J J-

< c* obtained by ordering n 

= 1 - u n 
and 

Chi-squared (Equiprobable Cells) (cs) . 

k cs= n - n 

i=l 

5 

where k=number of cells and ci= number of observations 

per cell. 

David et al (U). 

(Yn-Y1)/[ 

n r/2 u = ✓ (n-1) L (Yi -Y) 2 

i=l 

where Y1 < y2 < < y . 
n 
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The results of the Shapiro-Wilk-Chen article 

showed that the W statistic displayed consistently more 

sensitivity than did any other test. The distance 

tests (KS, CM, WCM, and D) proved to be typically 

very insensitive, while the U statistic proved quite 

powerful against short-tailed symmetric distributions 

but had no sensitivity to asymmetry. A combination 

of ✓b 1 and b 2 was found to have good power but even 

this combination was dominated by W. 

The results were simulated on a high speed 

computer, and twelve families of alternative dis­

tributions were sampled, with sample sizes ranging 

from ten to fifty. Some of the results will be pre­

sented later for comparison. 



CHAPTER III 

CHARACTERIZING THE NORMAL DENSITY 

It has long been known that the normal dis­

tribution is characterized by the fact that the 

sample mean and sample variance are statistically 

independent. Hence it would seem reasonable to base 

a test for normality on this fact. Furthermore, a 

test based on this complete characterization would 

intuitively seem to be quite powerful. None of 

the nine tests considered in the article, or for 

that matter any test known to this writer, has used 

this characterization. Following is a proof of this 

characterization. [1:362-364] 

Theorem. X and S 2 are independent if and only 

if the x. are normally and identically distributed 
l 

random variables with meanµ and variance cr 2
, where 

Proof. Suppose that we have a population with 

finite meanµ and variance cr 2 and characteristic 
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function ¢(t). The joint characteristic function for 

the sample mean and variance taken from a random 

sample of size n is given by 

00 00 

¢12 (t1 ,t 2 ) = f
00 

•• f_
00 

exp(it1X + it2s2
) dFn. 

A necessary and sufficient condition that X and S 2 

be independent is that the joint characteristic 

function factors into the product of the marginal 

characteristic functions or 

Taking partials of the above equation with respect 

to t 2 we get 

Note that 

t =O 
2 

( 3 .1) 



Therefore, 

Therefore, we may write (3.1) as 

Now consider 

= i J ... JS 2 
exp ( 0) dF n 

= i(n-l)cr 2 

n 

dF n 

9 
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Substituting this into (3.1) gives 

i(n-l)cr 2 

n 

Taking the partial of the joint characteristic function 

with respect to t
2 

yields 

and since S 2 = 1/nEX. 2 
- x 2 

l 

the above equation becomes 

At t 2=o this reduces to 

= _!_ ( (n-l)Ex. 2 
- EE x.x,) , 

n2 l i~j l J 



Now, since the Xi are mutually independent, 

dF n 

11 

- n (n-1) [ J- · -J X exp ( i :l X) dF n] 
2 J 

= i (n/) { f x'exp ( i :l x) dF 1 [ ~ (:1)] n-l 

-[ J X exp { i 
tl 

X) dF 1 ] 
2 [~(:l)] n-2} n 

t 

a¢ ( :1) [ ~(:1) r-2 {- a2¢( 1) 

= i (n-1) ¢(:1) n1
2 

+ n 

a ( :
1

) 3C1) 

Hence, (3.1) becomes 

i (n-1) 
n 

= i(n-l)o 2 
n 

2 

2} 

] 
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tl 

Letting t = n' and rearranging, we have 

-qi(t) ¢"(t) + [¢' {t)] 2 = [¢(t)] 2 cr 2 
• 

But this may be written as 

Integrating with respect tot yields 

But ¢ ( 0) = J exp ( i · 0 • x) dF l = 1 and 

¢' (0) = iµ f exp(i·0•x) dF 1 = iµ, 

which gives c1 = iµ. 

Hence, 

d 
dt log¢{t) = -cr 2 t + iµ, 

and integrating again with respect tot yields 

log¢(t) = 

But log¢(0) = log(l) = 0, which says c2 = 0, and we 
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finally have 

cp ( t) = exp ( i µ t - cr; t 
2 

) , 

which is the unique characteristic function of the 

univariate normal among all distributions with finite 

variances. 



CHAPTER IV 

DERIVING A NEW TEST FOR NORMALITY 

Because of the characterization of the normal 

just proved, the problem of testing for normality is 

reduced to testing for independence of X and S 2
• 

Consider the following scheme: take a random 

sample of size 4n from some distribution which we 

wish to test for normality. Pair the observations 

two at a time, forming 2n pairs. Find the sample 

mean, X., and the sample variance S. 2
, for each of 

l l 

the pairs, and then compute the median (M
1

) of 

The test statistic Tis computed by counting the 

number of pairs whose mean lies above M1 and whose 

variance is below M2 . (See Figure 4.1) 

52 

Above M2 Below M2 

Above M1 Nll Nl2 = T 

X 

Below Ml N21 N22 

FIGURE 4.1 
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Assuming independence of the two categorized variables, 

the expected values of the cell entries are given by 

N. N . 
e .. = 

J.J 

J.. • J 
N 

i,j = 1,2. 

Clearly e .. depends only on the marginal frequencies 
J. J 

and the sample size. These marginal totals are all 

fixed and equal ton since with 2n values of X and 

S 2
, there will always be n values of each above and 

below their respective medians. Figure 4.2 shows 

the completed 2x2 table of expected values assuming 

independence of X and S 2
, and hence normality of the 

underlying distribution. 

52 

Above M2 Below M2 

Above M1 n/2 n/2 

X 

Below Ml n/2 n/2 

n 

n 

n n 2n 

FIGURE 4.2 
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Since the marginals are fixed, only one of 

the cell entries in the observed data table may vary 

independently. Let that random variable be T, the 

observed number of (X, S 2 ) pairs that fall in the 

"above M1 , below M2 " cell. Then under fixed marginals 

the distribution of Tis the complete distribution of 

the table. The probability distribution of T under 

normality can be derived in the following manner. 

A random sample is taken without replacement from 

2n pairs of (X, S 2
) 's, n of which have X's above M1 

and n of which have X's below M1 . Let A(t) be the 

event that exactly t of the (X, S 2 ) pairs with X 

above M1 have corresponding S 2 below M2 • Then the 

probability that T=t is given by the ratio of the 

number of possible outcomes in A(t) to the total 

number of possible outcomes. The number of possible 

outcomes in A(t) is given by 

The total number of possible outcomes is given 

by , hence, ( 2nn) 
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P[T=t] = 

= [n ! ] 4 

[t!] 2 f (n-t) !] 2 (2n) ! 

It is clearly seen that the probability dis­

tribution of T follows the hypergeometric distribu­

tion, and hence appropriate critical regions can be 

determined from the hypergeometric distribution. For 

example, with 4n=8 observations, there are only 

4 X's and 4 S 2 's, and T may take only the values 

0, 1, and 2. The probability distribution of Tis 

t 0 1 2 

P [T=t] .167 .666 .16 7 

Note that P[T=t] is symmetric about the value 1, which 

is the expected value of T under independence. Thus, 

if we reject when T = 0 or 2, we have a test of size .334. 

This is much too large for practical use, and this 

necessitates the use of a randomized test. To achieve 

a two-tailed test of size .05 we would have to adopt 

the following rule: If T = 0 or 2 reject the hypothesis 
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of independence (and thus normality) with probability 

.15. Thus if T = 0 or 2, a random integer between 

one and 100 could be selected, and if it fell between 

one and fifteen, the hypothesis would be rejected; 

otherwise, it would be accepted. 

Following are the distributions of the test 

statistic T = N12 for varying sample sizes; also 

included are appropriate randomized critical regions for 

the test statistic. The tables are interpreted as 

follows. Suppose a random sample of size 8 has been 

taken and a 5% test is desired. Then a value of 

T = 0 or 2 would give rise to rejecting the null 

hypothesis with probability .15. If T happened to 

equal one then no rejection could be made. 

8 observations: 

t 0 1 2 

P[T=t] .167 .666 .167 

a =.001 .3% .3% 

a = .01 3% 3% 

a = .02 6% 6% 

a = .05 15% 15% 

a = .10 30% 30% 
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12 observations: 

t 0 1 2 3 

P[T=t] .050 . 450 .450 .050 

a =.001 1% 1% 

a = .01 10% 10% 

a = .02 20% 20% 

a = .05 50% 50% 

a = .10 all all 

16 observations: 

t 0 1 2 3 4 

P [T=t] .014 .229 .514 .229 .014 

a =.001 3.6% 3.6% 

a = .01 36% 36% 

a = .02 72% 72% 

a = .05 all 4% 4% all 

a = .10 all 16% 16% all 

20 observations: 

t 0 1 2 3 4 5 

P [T=t] .004 .099 .397 • 39 7 .099 .004 

a =.001 12.5% 12.5% 

a = .01 all 1% 1% all 

a = .02 all 6% 6% all 

a = .05 all 21% 21% all 

a = . 10 all 46% 46% all 
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40 observations: 

t 0 1 2 3 4 5 6 7 8 9 10 

P[T=t] .000 .000 .011 .078 .239 .344 .239 .078 .011 .000 .000 

a =.001 all all 4.5% 4.5% all all 

Cl, = .01 all all 46% 46% all all 

Cl, = .02 all all 91% 91% all all 

Cl, = .OS all all all 18% 18% all all all 

Cl, = .10 all all all 50% 50% all all all 



CHAPTER V 

EMPIRICAL POWER STUDIES 

The worth of a test is determined predominantly 

by its power, the power function being defined as the 

probability of rejecting the null hypothesis. The 

null hypothesis for the test given here is that the 

underlying distribution is normal. Since all sampling 

was to be done from distributions simulated on a 

Spectra 70/45, using Fortran IV subroutines, a program 

was written to check the random number generator. 

2,500 samples of varying sizes were taken from a 

normal distribution with mean zero and variance 

one. In order for the random number generator to 

do a good job, the simulated values and the theoret­

ical values should be quite close. Following is a 

list of tables comparing the simulated and the 

theoretical distributions of the test statistic 

for varying sample sizes. All tables are based 

on 2,500 observations. 
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n=8 

t 0 1 2 

P [T=t] .16 7 .666 .16 7 

P[T=t] X 2,500 417.5 1665 417.5 

Empirical 428 1665 407 

n=l2 

t 0 1 2 3 

P [T=t] .050 . 450 • 450 .050 

P [T=t] X 2,500 125 1125 1125 125 

Empirical 122 1114 1145 119 

n=l6 

t 0 1 2 3 4 

P [T=t] .014 .229 .514 .229 . 014 

P[T=t] X 2,500 35 572.5 1285 t>72.5 35 

Empirical 26 572 1305 562 35 

The above empirical results are remarkably 

close to the theoretical, indicating that both the 

random number generator and the program were performing 



flawlessly. The next step was to simulate densities 

other than the normal and sample from them. 

Programs were written to generate various 

alternative distributions, sample from them, and 
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apply the proposed test to those samples. The results 

were tabulated and recorded in the following tables. 

The entries in the bodies of the tables are the power 

of the test when sampling from the specified dis­

tribution, and the a's are the significance levels. 

All powers were determined from 1000 observations 

for each sample size and distribution. 

X 2 
( 1) 

Chi-square with one degree of freedom 

~ .001 .01 .02 .05 .10 

8 .002 .020 .039 .099 .19 7 

12 .005 .046 .093 .232 . 46 3 

16 .012 .123 .246 .363 . 430 

20 .032 .264 .292 .373 .509 

40 .401 .567 .747 . 815 . 872 
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x2 
( 2 > 

Chi-square with two degrees of freedom 

~ .001 .01 .02 .05 .10 

8 .002 .016 .032 .080 .160 

12 .003 .032 .063 .159 .317 

16 .007 .069 .138 .215 .284 

20 .015 .126 .151 .226 .351 

40 .137 .271 • 415 .511 .631 

X z ( 4) 

Chi-square with four degrees of freedom 

~ .001 .01 .02 .05 .10 

8 .001 .013 .025 .064 .127 

12 .002 .020 .040 .101 .201 

16 .004 .038 .076 .128 .195 

20 .006 .052 .073 .134 .236 

40 .029 .168 .204 .234 .279 
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x2 <10) 

Chi-square with ten degrees of freedom 

~ .001 .01 .02 .05 .10 

8 .001 .011 .022 .056 .111 

12 .001 .015 .029 .073 .145 

16 .002 .021 .042 .079 .137 

20 .003 .025 .039 .082 .16 3 

40 .015 .041 .068 .122 .206 

Cauchy 

~ .001 .01 .02 .05 .10 

8 .001 .012 .024 .060 .120 

12 .001 .013 .026 .064 .128 

16 .001 .013 .026 .056 .112 

20 .003 .027 .039 .073 .131 

40 .005 .025 .046 .088 .155 



~ 
8 

12 

16 

20 

40 

~ 
8 

12 

16 

20 

40 

U(0,1) 

Uniform on interval (0,1) 

.001 

.001 

.001 

.001 

.001 

.001 

.001 

.001 

.001 

.001 

.001 

.001 

.01 .02 

.011 .021 

.012 .025 

.013 .026 

.014 .027 

.014 .028 

2 

I ui (0,1) 

i=l 

The sum of two U(O,l)'s 

.01 .02 

.011 .021 

.010 .019 

.010 .019 

.011 .021 

.011 .022 

.OS 

.052 

.062 

.065 

.066 

.063 

.05 

.053 

.047 

• 0 46 

.052 

.058 

26 

.10 

.104 

.124 

.114 

.132 

.119 

.10 

.106 

.094 

.102 

.103 

.119 



Mixed Normal 

~ .001 .01 .02 .05 .10 

8 .001 .011 .023 .057 .114 

12 .002 .018 .034 .086 .172 

16 .003 .027 .054 .094 .152 

20 .004 .038 .053 .097 .170 

40 .010 .034 .061 .111 .192 

Values of the mixed normal random variable X 

were computed as follows. A random variable Y was 

taken from a normal distribution with mean zero and 

variance one. If Y were greater than zero then X 

was taken from a normal with mean five and variance 

one, and if Y were less than zero then X was taken 

from a normal with mean minus five and variance one. 

This distribution was included to check the test's 

sensitivity to symmetric distributions which are 

definitely non-normal. 
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CHAPTER VI 

COMPARATIVE ANALYSIS OF THE TESTS 

Following is an excerpt from the tables com­

piled in the article by Shapiro, Wilk, and Chen. 

[2: 1354-1356] The complete tables will not be 

given as only parts of them are useful for compar­

ison. In the article the sample sizes used were 

10, 15, 20, 35, and 50, while in finding powers for 

this new test samples of sizes 8, 12, 16, 20, and 40 

were used. Many comparisons cannot be made as the 

sample size for this new test must be some multiple 

of four. In Table 6.1, n=l5 for the nine standard 

tests and n=l6 for the proposed test, while in 

Table 6.2, n=20 for all tests. All tabled values 

taken from Shapiro, Wilk, and Chen were arrived at 

empirically with a 10% level of significance and 

200 observations each. In the tables,* represents 

the test considered in this paper. 



Alternative 
Distribution 

U(0,l) 

Cauchy 

X 2 (1) 

x2 (2) 

X 2 ( 4) 

x2(10) 

Al tern a ti ve 
Distribution 

U ( 0, 1) 

Cauchy 

x2 (1) 

X 2 
( 2) 

X 2 
( 4) 

x 2 (10) 

w 

. 2 8 

.81 

.94 

. 82 

. 43 

.30 

w 

. 39 

.92 

.99 

• 89 

.65 

.40 

TABLE 6.1 

10% Powers for n=l5 

KS CM WCM 

.02 .22 .11 .08 .08 

. 76 .82 .47 .46 • 9 8 

. 89 .55 .51 .41 .48 

.71 .38 .30 .24 .26 

.50 .27 .22 .16 .16 

. 35 .15 .18 .13 .11 

TABLE 6.2 

10% Powers for n=20 

KS CM WCM 

.00 .38 .19 .19 .19 

. 82 . 88 .65 .71 .99 

.92 .64 .58 .62 .72 

.82 .44 .37 .33 .41 

.64 . 35 .26 .21 .23 

.35 .25 .19 .15 .16 

29 

D cs u * 

.17 .17 . 34 .12 

. 84 • 46 . 46 .11 

.83 • 9 4 .15 .43 

. 39 .43 .18 .28 

.16 .23 .09 .20 

.14 .11 .08 .14 

D cs u * 

.19 .18 .53 .13 

• 91 .54 .72 .13 

.93 .97 .19 .51 

.56 .43 .12 . 35 

.25 .20 .13 .24 

.10 .14 .12 .16 
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Tables 6.1 and 6.2 show that the proposed test 

is not as sensitive as the other tests on symmetric 

distributions such as U(0,1) and the Cauchy distribu­

tion. When the alternative distribution is asymmetric, 

as is a Chi-square, then the proposed test is consider­

ably more powerful. When sampling from a x2 (1), the 

proposed test beats only U, but as the degrees of 

freedom increase the power of the proposed test 

decreases slower than that of the others, so that 

when sampling from a x2 (10), the proposed test is 

seen to meet or beat CM, WCM, D, CS, and u. 

No comparisons could be made with respect to 

the sum of two uniforms or the mixed normal since 

the article quoted [2] did not include these as 

alternative distributions. The sum of two uniforms 

is included because this distribution approaches 

normality rapidly. It is evident from the tables 

in Chapter V that the test had poor power when 

sampling from this distribution, but that was to 

be expected and in fact confirms the rapidity of 

convergence to the normal. The mixed normal was 

included since it was symmetric about its mean, 

though clearly non-normal. Although the test did 

not show too much sensitivity to the mixed normal, 



the results do indicate that symmetry need not dic­

tate "poor power". 
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The test proposed herein is desirable from an 

experimenter's point of view as it is easy to compute 

the test statistic. The means are midway between the 

two observations, while the variance of any pair is 

one half the squared difference. Finding the medians 

of such a limited number of means and variances is 

quite easy and can be done by inspection. Tables for 

critical regions are readily available in any book 

that has tables for the hypergeometric distribution. 

Another desirable property that the test seems 

to have is unbiasedness. This means that the power 

of the test is at least as large as the a-level. 

That is, the probability of correctly rejecting is 

at least as large as the probability of incorrectly 

rejecting. The only exception seen to this appeared 

when sampling from the sum of two uniforms; however, 

the powers were so close to the a's that the discrep­

ancy was probably due to sampling error. 

Probably the most exciting thing about this 

test is that it is new and so intuitively satisfying. 

Basing a test on a complete characterization should 

result in a good test. The results, however, were 



disappointing, so an investigation was begun to dis­

cern why the powers were not higher. This is the 

subject of the remaining chapters. 
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CHAPTER VII 

A DISTRIBUTION FREE EXPRESSION FOR Px,s2 

The basic question is: If the sample mean and 

variance are not statistically independent, then how 

are they related in some specified distribution? 

Linear relation, being calculable by means of a 

correlation coefficient, is the obvious start. The 

usual procedure for calculating the correlation 

coefficient between the sample mean and variance is 

to work with the specified density and perform all 

the integrations and changes of variables necessary. 

This is a laborious and time-consuming task. What 

is needed is a formula which can be used for any 

density, continuous or discrete. Fortunately, it 

is possible to formulate such an expression for 

Px,s 2 entirely in terms of the central moments of 

the underlying density. In the pages ahead, that 

expression is generated and the results applied to 

eight distributions, four discrete and four con­

tinuous. It is hoped that the coming discussion will 

give some insight into the behavior of the proposed 

test when sampling from various alternative distributions. 



In the proof of the theorem to come the fol­

lowing lemma will be used. Note that all indices 

of summation run from one ton in this proof, and 

therefore the limits will be left out. 

n 

I 
i=l 

Lemma. 

(X.-X) 2 

l 

Proof. 

n 

= I 
i=l 

(X.-µ)2 -
l 

E(X.-X) 2 = E[(X.-µ) - (X-µ)] 2 

l l 

(X.-µ) (X.-µ) 
l J 

= E (X. -µ) 2 - 2E (X. -µ) (X-µ) + E (X-µ) 2 

l l 

Now consider 

E(X.-µ) (X-µ) = EX.X - EX.µ - EµX + I:µ 2 

l l l 

= nX 2 - µnX - µnX + nµ 2 

= n(X-µ) 2 

= E(X-µ) 2 
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Therefore, 

E(X,-X) 2 = E(X.-µ) 2 - 2E(X-µ) 2 + E(X-µ) 2 
l l 

= E(X.-µ) 2 - E(X-µ) 2 
l 

= E(X.-µ) 2 - E(X.-µ)(X-µ) 
l l 

= E(Xi-µ) - (X-µ) E(X.-µ) 
l 

E(X.-µ) 2 1 E (X. -µ) = - -(EX .-nµ) 
l n J l 

E(Xi-µ)2 1 E(X.-µ) = - -(E{X.-µ)] 
n J l 

E(X.-µ) 2 1 
E E (X. -µ) (X .-µ) • = - -

l n j i l J 
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Theorem. Let x1 , •.. ,Xn be independent and identically 

distributed random variables. Letµ= E(X), 

the correlation between X and S 2 , is given by 

cr 4 (n-3)) 
n-1 



Proof. 

0- 2 x,s 

= E{XS 2
] - µ0 2 

= E[Exi. _l (E(x.-x)2)] - µ02 
n n-1 1 

Application of the preceding lemma yields 
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0- 2 = E[EXi • _l_ ( E(X.-µ) 2 - .!_EE (X.-µ)(X.-µ))] - µ0 2 
x,s n n-1 1 n . . 1 J 

J l 

= 

- .!_ {Ex. (X. -µ) 2 

n l l 
+ 2 EE X.(X.-µ)(X.-µ) 

i;tj l l J 

+ E E X. (X .-µ) 2 + EEE X
1
. (XJ.-µ) (Xk-µ)} ] - µ0 2 

i;tj l J i;tj 
j;tk 
i;tk 
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EE E[X. 2 -X.µ] E[X.-µ] 
ifj l l J 

+EE E[X.] E[(X.-µ) 2
] + EEE E[X

1
.] E[XJ.-µ] E[Xk-µ1]- µ0 2

• 
ifj l J ifj 

jfk 
ifk 

Note that twice the double sum and the triple sum equal 

zero since E[X.-µ] = EfX.] - µ = µ-µ = 0. Hence we have 
l l 

0 -
1
--[ EEfX1. 

3 
-X,S 2 = n(n-1) 

- l {EE[X. 3 
- 2X. 2 µ + X.µ 2

] + n l l l 

Now consider E[X. 3 - 2X. 2 µ + X.µ 2 ]. 
l l l 

E E 
ifj 
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Hence E[X. 3 - 2X. 2µ + X.µ 2 ] µ + µ0 2 
1 1 1 = 3 • 

Using this information the equation becomes 
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Therefore, 

_l E E ( X . - µ ) ( X . - µ )} 
n j i l J 

= E[ l { E(X.-µ) 2 E(X.-µ) 2 - ~ E(X.-µ) 2 EE (XJ.-µ) (Xk-µ) 
(n-l)2 1 J n 1 k j 

= 

+ 1 
n2 

1 

(n-1) 2 
E [ E ( Xl. - µ ) 4 + E E ( X . - µ ) ( X . - µ ) 

i;;tj l J 

- ~ EEE (X. -µ) 2 (X .-µ) (Xk-µ) 
n kji l J 

+ 1 
n2 

EEEE (X
1
. -µ) (XJ.-µ) (Xk-µ) (X

1
. -µ)] - cr 4 

lkji 
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= l [ EE [ X
1
• - ).1] 4 + E E E [ X . - ).1] 2 E [ X . - ).1] 2 

(n-1) 2 ifj l J 

- -
n E E E[X.-µ] 3 E[X.-µ] 

ifj l J 

+EE E[X.-µ] 2 E[X.-µ] 2 + EEE E[X.-µ] 2E[X.-µ] E[Xk-µ]} 
ifj l J ifj l J 

jfk 
ifk 

+ L{EE[X.-).1] 4 + 4 
2 l n 

E E E[X.-µ] 3 E[X.-µ] 
ifj l J 

+ 3 EE E[X.-µ] 2 E[X.-µ] 2 

ifj l J 

+EE EE E[X
1
.-µ] E[XJ.-µ] E[Xk-µ] E[X

1
-µ]}] - o 4 

ifj jfk 
kfl ifk 
ifl jfl 

In this form, many of the above terms are easily 

recognized to be equal to zero, and the expression 

becomes 



2 
0 8 2 = 1 

(n-1) 2 

which reduces to 

cr 4 (n-3) 
n(n-1) 

- cr 4 , 
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Therefore, collecting all this information, we find 

cr 4 (n-3)) 
n(n-1) 

cr 4 (n-3)) µ -4 n-1 

( 7. 1) 
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When X and S 2 are independent, which occurs if 

and only if all the Xi are normal, then Px,s 2 = 0. 

Hence, non-zero values of Px,s 2 are an indication of 

non-normality. Unfortunately, however, the converse 

is not true. A correlation of zero does not imply 

independence, as correlation measures only the extent 

of linear relationship among the variables. But 

because non-_zero correlations imply dependence, and 

hence non-normality, it seems reasonable to use the 

correlation coefficient between the sample mean and 

variance as an index of non-normality. In the 

expression derived for Px,s2, the numerator is µ 3 , 

the third moment about the mean, which is a measure 

of skewness. For any symmetric distribution µ
3 

will 

equal zero, so for symmetric distributions Px,s 2 

will be zero, although symmetry does not imply 

normality. This does not seem too large a con-

cession, though, for Px,s 2 may still be used as an 

index of non-normality for asymmetric distributions. 
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(7.1) can be written in a form which will lend 

itself well to the derivations to come. 

Consider µ 3 = E[X-µ] 3 

In a like manner, it can be shown that 

Therefore, an alternative expression for Px,s2 is 

given by 

( 7. 2) 



CHAPTER VIII 

Px,s 2 FOR VARIOUS ASYMMETRIC DISTRIBUTIONS 

In this chapter several asymmetric distribu­

tions, both discrete and continuous, are considered 

and formulas for Px,s 2 are derived for each using 

(7.2). E[X], E[X 2 ], cr 2 , E[X 3 ], and E[X 4 ] are cal­

culated for each distribution either by means of 

the moment-generating-function or the factorial­

moment-generating-function, and the results are 

used to form an expression for Px,s 2 in that dis-

tribution. Not all the algebra involved is in­

cluded, as it is lengthy, but for the first dis­

tribution considered, the steps involved are out­

lined and much of the work is shown. 

On some of the distributions, comments are 

made, and on all of them a table of values for Px,s 2 

is constructed for varying sample sizes and selected 

values of the parameters involved. These tables 

are complete enough to give a good idea as to the 

behavior of Px,s 2 • However, with the formulas 

derived, any entry not in the table can be quickly 

generated. 



The density of a Chi-square distribution with 

k degrees of freedom, x2 (k), is 

k-2 
-2-

X e 

= 0 

X 

2 
if x>O 

otherwise, 

and its moment-generating-function is given by 

-k 

MX(t) = (1-2t)
2 

E[Xr], for any distribution, can be found by differ­

entiating the moment-generating-function r times 

with respect tot and evaluating the result at t=O. 

For a x2 (k) it can be shown that 

r 

E[Xr] = TT [k + 2 (i-1)]. 

i=l 

Evaluating this we find 

E[X] = k 

E[X 2
] = k(k+2) 

45 
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E[X 3 ] = k(k+2) (k+4) 

E[X 4 ] = k(k+2) (k+4) (k+6). 

Substituting this information into (7.2) yields 

k (k+2) (k+4) - 3k (k) (k+2) + 2k 3 

p X, S 2 = --.----_-_-_-_-_--:_-_-_-_-_-_-_-'-_-_-_-'_-_-'-:_-_-_--'-_-_-_-_--:_-_-'_'-_....:.._-'_-_--:_-_-=--_-_-_-_ ...... _-_-_-_-_-_-_-_-_--:_-_-_-_-_-_--:_-_-_-_---

2k [ k(k+2) (k+4) (k+6)-4k(k+2) (k+4)+6k 2 (k) (k+2)-3k 4 -
4k:~r))] 

8k = --------------

) 2k2 [ 12k + 48 -
4
k~~~J)] 

= 4 

J6 (k+ 4 ) _ 2k(n-3) 
n-1 

4 =--------
j 4(nk + 6n - 6) 

n-1 

2 = -----

+ nk 
n-1 
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Hence, we have a formula for Px,s 2 when sampling from 

a x2 (k). Note that the correlation is a function of 

both degrees of freedom and sample size as might have 

been expected. 

Table of Px,s2 for a x2(k) 

~ 8 12 16 20 40 00 

1 .748 .751 .752 .753 . 755 .756 

2 .695 .6~9 .701 .703 .705 .707 

4 .615 .621 .624 .626 .629 .632 

10 .479 . 486 • 490 • 49 2 . 496 .500 

30 .315 .321 .324 .326 .330 .333 

120 .167 .171 .173 .174 .176 .178 

The tabled values are seen to decrease as the 

degrees of freedom increase, which is reasonable when 

the graph of x2 (k) is considered for varying values 

of k. The graph more closely resembles a normal dis­

tribution ask increases although the distribution 

never becomes symmetric about its mean. p x,s2 is 

seen to increase with sample size but the increments 

are negligible. 
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Consider now the exponential distribution with 

parameter A>O, whose density is 

-x = Ae if x>O 

= 0 otherwise. 

The moment-generating-function for the exponential 

is given by 

Performing the necessary differentiation, we find 

E[X) 1 = X 

E[X2] 2 = 
A2 

2 1 
ox = 

A2 

E [X 3] 6 = 
A3 

E [Xti] 24 = 
A ti 



Making use of this information in (7.2) yields 

2 

2n 
+ n-1 

As might be expected, Px,s 2 does not depend on A 

since it is only a constant multiplier in the den­

sity. Note that this result is the same as that 

found for a x2 (2), as it should be, since they have 

the same density. Following is the table of values 

for Px,s2• 

n 8 12 16 20 40 
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00 

A>0 .695 .699 .701 .703 .705 .707 

The third continuous distribution to be con­

sidered is the gamma with parameters A>0 and 0>0, 

f(A,0). Its density takes the form 

Ae x0-l 
if x>0 

r < e) 

= 0 otherwise. 



The moment-generating-function for a f(A,0) is given 

by 

Performing the necessary differentiation we find 

E (X] 0 = I 

= 0 (0+1) 

cr 2 8 = X A2 

E [X 3 ] = 0 (0+1) (0+2) 

A3 

E [X 4 ] = 0 (0+1) (0+2) (0+3) 

A4 

Substituting into (7.2) we find 

2 

+ 20n 
n-1 
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This result is very similar to that found for the 

exponential. In fact, for 0=1, they are the same. 

It is easily demonstrated that for f(A,1), the den­

sity reduces to that of an exponential. Again, 

Px,s2 is found to be independent of the parameter A, 

which is reasonable after considering the density. 

Table of Px,s2 for a f(A,0) 

~ 8 12 16 20 40 
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00 

1/4 .780 .782 .783 .783 .784 . 785 

1/2 .748 .751 .752 .753 .755 .756 

1 .695 .699 .701 .703 .705 .707 

2 .615 .621 .624 .626 .629 .632 

3 .558 .565 .568 .570 .574 .577 

10 .372 .379 .383 . 385 .388 .392 

100 .131 .134 .135 .136 .138 .139 

The final continuous distribution to be con­

sidered is the beta with parameters m>-1 and 0>0, 

S(m,0). The density of a S(m,e) is given by 

= 0 

m -ex 
X e 

r (m+l) 
if x>O 

otherwise. 



Its moment-generating-function is given by 

= ( 1 _ ! ) - (m+ 1) 
e where t<e. 

Performing the necessary differentiation yields 

E[X] 

cr 2 
X 

= 

m+l 
= -e-

= (m+l) (m+2) 
02 

m+l 
02 

E [X 3 ] = (m+l) (m+2) (m+3) 
e 3 

E[X4] = (m+l) (m+2) (m+3) (m+4) 
84 

Substitution of this information into (7.2) gives 

2 

2n (m+l) 
n-1 
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Again, the similarities between this and the preceding 

results are striking. These formulas substantiate the 
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facts that S(r-1, 0) = f (A,r) and also that 

r-2 1 2 S ( - 2- , 2 ) = X (r). 

Table of Px,s2 for S(m,0) 

I~ 8 12 16 20 40 00 

-.5 .748 .751 .752 . 753 .755 .756 

0 .695 .699 .701 .703 .705 .707 

1 .615 .621 .624 .626 .629 .632 

2 .558 .565 .568 .570 .574 .577 

5 • 450 .457 .461 . 46 3 • 46 7 .471 

10 .358 .365 . 36 8 . 370 .374 .378 

100 .130 .133 .134 .135 .137 .139 

The first discrete distribution considered is 

a binomial with parameters m=l,2, •.. and 0~p~l, B(m,p). 

The probability distribution function for a B(m,p) is 

x m-x p q , x = 0,1,2, ..• ,m where q=l-p 

= 0 otherwise. 



Its moment-generating-function is given by 

t m = (q + pe ) . 

Performing the necessary differentiation, we find 

E[X] = mp 

0 2 = mpq 
X 

E[X 3
] =mp+ 3m(m-l)p 2 + m(m-1) (m-2)p 3 

54 

E[X'+] =mp+ 7m(m-l)p 2 + 6m(m-l)p 3 + m(m-1) (m-2) (m-3)p'+. 

Making use of this information in (7.2) produces 

the equation 

q-p 

)1 - 6pq + 2mpqn~l 
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Tables of Px,s 2 for a B(m,p) 

m=4 

i~ 8 12 16 20 40 00 

.00 1.00 1.00 1.00 1.00 1.00 1.00 

.10 . 706 .717 .722 .725 .731 .736 

.30 .310 .319 .323 .326 .331 .336 

.so .000 .000 .000 .000 .000 .000 

. 70 -.310 -.319 -.323 -.326 -.331 -.336 

.90 -.706 -.717 -.722 -.725 -.731 -.736 

1.00 -1. 00 -1.00 -1. 00 -1.00 -1.00 -1.00 

m=lO 

·~ 8 12 16 20 40 00 

.00 1.00 1.00 1.00 1.00 1.00 1.00 

.10 .504 .514 .519 .521 .527 .532 

.30 .188 .19 2 .195 .196 .199 .202 

.so .ooo .000 .000 .000 .000 .000 

. 70 -.188 -.192 -.195 -.196 -.199 -.202 

.90 -.504 -.514 -.519 -.521 -.527 -.532 

1.00 -1.00 -1. 00 -1.00 -1.00 -1.00 -1.00 
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m=30 

~ 8 12 16 20 40 00 

.oo 1.00 1.00 1.00 1.00 1.00 1.00 

.10 .311 .317 .321 .323 .327 .330 

• 30 .106 .109 .110 .111 .112 .114 

.50 .000 .000 .000 .000 .000 .000 

.70 - .106 -.109 -.110 -.111 -.112 -.114 

.90 -.311 -.317 -.321 -.323 -.327 -.330 

1.00 -LOO -1. 00 -1.00 -1.00 -1.00 -1.00 

The tables show that as m increases Px,s 2 

approaches zero except at the extremes where p = .00 

or p = 1.0. Px,s 2 approaches zero even more rapidly 

asp goes to .5 for any m, which might be expected 

since a B(m, .5) is symmetric about its mean, and its 

graph closely approximates the normal N(.5m, .25m). 

Closely related to the binomial is the negative 

binomial with parameters m = 1,2, •.. and 02p21, 

NB(m,p), whose density is given by 

= 0 

m X 
p q if X = 0,1, ... where q=l-p 

otherwise. 



The moment-generating-function for a NB(m,p) is 

given by 
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Performing the necessary differentiation reveals that 

E(X] 

E[X 2 ] 

cr 2 
X 

= mq + m(m+l)q 
p p2 

E[X3] = ~ + 3m(m+l)q 2 + m(m+l) (m+2)q 3 

p p2 p3 

E[X'+] = mq + 7m(m+l)q 2 + 6m(m+l) (m+2)q 3 + m(m+l) (m+2) (m+3)qi+ 

p p2 

Upon substituting this information into (7.2) we have 

l+q 

Jp
2 + 6q + 2mq n 

n-1 
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Tables of Psc, 8 2 for a NB (m,p) 

m=l 

;'Z 8 12 16 20 40 00 

. 1 .695 .700 .702 .703 .705 .708 

. 3 .700 .705 .707 . 70 8 .710 .713 

. 5 . 716 .720 .722 .723 .725 .728 

• 7 .754 .758 .760 .761 .763 .765 

• 9 • 859 .862 . 86 3 . 864 .866 .867 

1.0 1.00 1.00 1.00 1.00 1.00 1.00 

m=2 

~ 8 12 16 20 40 00 

.1 .616 .622 .625 .626 .630 .633 

.3 .621 .627 .630 .632 .635 .638 

. 5 .638 .644 .646 .648 .651 .655 

• 7 .679 .685 .688 .690 .693 .696 

. 9 . 805 . 810 . 812 . 813 . 815 .818 

1.0 1.00 1.00 1.00 1.00 1.00 1.00 



59 

m=l0 

I~ 8 12 16 20 40 00 

. 1 .373 .380 .383 . 385 . 389 .393 

. 3 .377 .384 .388 .390 .394 . 39 8 

• 5 .392 . 399 . 402 . 404 . 40 8 .412 

. 7 . 430 .437 . 441 .443 .447 .452 

. 9 .572 . 5 80 .584 .587 .591 .596 

1.0 1.00 1.00 1.00 1.00 1.00 1.00 

The next discrete distribution to be considered 

is the Poisson with parameter A>0, P(A). Following 

is the probability distribution for a P(A): 

X -A 
A e 

x! X = 0,1,2, ... 

= 0 otherwise. 

The factorial-moment-generating-function for a P(A) 

is given by 

l/Jx (t) 
A ( t-1) = e • 
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The factorial-moment-generating-function is related 

to the moment-generating-function in the following way: 

The necessary differentiation yields 

E[X] = :\ 

Substituting into (7.2) produces the following result: 

1 

+ 2:\...E:_ 
n-1 
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Table of Px, S 2 for a P (A) 

~ 8 12 16 20 40 00 

.25 . 79 8 • 804 . 808 • 809 • 813 . 816 

• 5 .683 .692 .696 .698 .703 .707 

1 .552 .561 .565 .567 .572 .577 

2 .424 .432 .436 .438 .443 .447 

3 .357 .364 . 36 8 .370 .374 .378 

5 .284 .290 .293 .295 .298 .302 

10 .205 .209 .212 .213 .216 .218 

The fourth discrete distribution investigated 

is the geometric with parameter 0~p~l, G(p), whose 

density is given by 

x-1 = pq if X = 1,2, ... 

= 0 otherwise. 

where q=l-p 

The factorial-moment-generating-function for the 

geometric is defined to be 

-1 
iµX(t) = pt(l-qt) • 



After differentiating and substituting, we find 

E[X] 

E[X 2 ] 

(J 2 
X 

= 1 + q 
p 

Substituting this information into (7.2), we find 

l+q 

+ 8q + ~ n-1 
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Table of PX,S2 for a G (p) 

l~ 8 12 16 20 40 

.00 .695 .699 .701 .703 .705 

.10 .695 .700 .702 .703 .705 

. 30 .700 .705 .707 .708 .710 

.50 . 716 .720 .722 .723 .725 

.70 .754 .758 .759 .761 .763 

.90 .859 • 86 2 . 86 3 .864 . 866 

1.00 1.00 1.00 1.00 1.00 1.00 

The entries in the body of the above table 

are amazing, for no matter what the value of p, if 

n is at least eight, then Px,s 2 is at least .695, 

which certainly seems significantly non-zero. 

Upon comparing the values of Px,s 2 given in 

the preceding tables to the empirical powers found 

for a x2 (k), which are tabled in Chapter V, it can 

be seen that the values are not linearly related. 

There definitely is some degree of relationship, 

though, since both Px,s 2 and the powers increase 
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00 

.707 

.708 

.713 

.728 

.765 

.867 

1.00 

with larger samples and decrease with added degrees 

of freedom. This suggests that it might be possible 



to analyze the behavior of the power function by 

investigating the relation between X and 8 2 in a 

more sophisticated fashion. Regression analysis 

provides the answer. 

If X and S 2 are jointly continuous random 

variables, then the regression function is defined 

to be the expectation of 8 2
, given X, and is calcu­

lated by 

E [8 2
1 x=xJ =f 

-oo 

00 

8 2 f (X r 8 
2

) d8 2 • 

f (X) 
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For the above expression to be useful, the joint 

distribution of X and 8 2 is needed as well as the 

marginal density of x. In order to simplify calcu­

lations, only samples of size two will be considered. 

Letting y 1 and y 2 be a random sample from some 

specified distribution with density f(Y), the joint 

the joint distribution of X and 8 2 becomes 
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where J is the transformation Jacobian given by -1/./2'82". 

Using the above method, it is found that the regression 

of S 2 on X for a U(0,1) is given by 

E rs 2 ix = x:1 = 

2 -2 
3 X 

2 3 (l-x)2 

if 0 

if l 
2 < X < 1 . 

The graph of this regression equation is 

definitely not linear, and in fact has a cusp at 

X = 1 
2· (See Figure 8.1.) This fact, along with 

the poor powers found for the uniform, tends to con­

firm the fact that if the regression is definitely 

non-linear, then the power tends to be poor. 

E [s 2 Ix = x:1 

X 
0 1/2 1 

FIGURE 8.1 

It is easily seen from Figure 8.1 that no line can 

be a close approximation for the regression of S 2 

on X when sampling from a U(0,1). 

Performing the same calculations with a x2 (k) 

as the underlying distribution gives rise to the following: 



E rs 2 Jx = xJ = 
2 2x 

k+l. 

This function is also non-linear, but much closer 

to linearity, and the powers are correspondingly 

much higher than with the U(0,1). 

These same techniques could be applied to 

66 

other densities, but the calculation of the regression 

function is often non-trivial. The two densities 

explored have indeed suggested that an approximate 

indication of the power function can be obtained by 

considering the regression function. 



CHAPTER IX 

CONCLUDING REMARKS 

In the last few chapters, the behavior of the 

power function has been investigated in hopes of 

discerning why the powers of the proposed test were 

not higher. Consideration of the regression function 

has provided some insight into this. 

It is felt, however, that the proposed test 

is too weak against symmetric alternatives. Hence, 

it is appropriate to s~arch for alterations to this 

test that might yield improvements in power. A 

possible drawback of the test is the fact that by 

pairing the observations,the sample size is effectively 

reduced by a factor of two. A possible alternative 

would be to form all possible samples of size two 

from the original sample, thus giving ( ~)x values 

and (~)s 2 values for each sample of size n. This 

procedure would destroy the independence of X and 

S 2
, but a suitable test procedure could still be 

derived by studying the distribution of the test 

statistic under normality. 
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The author has investigated this procedure for 

a few alternative distributions and has found quite 

desirable powers. At this time, however, not enough 

research has been conducted for inclusion in this 

paper. 

Perhaps the test's power would be maximized 

by pairing then observations n/2 at a time. This 

procedure will yield the maximum number of "observations" 

on which to base the test statistic. For example, 

if n=lO, then 252 X values and 252 S 2 values will be 

generated. Another desirable property of this pro­

cedure is that the variances of X and S 2 will be 

greatly reduced. 
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