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ABSTRACT 

EVALUATING THE UTILITY OF BEAVER REINTRODUCTION PROGRAMS FOR 

ENHANCING HABIT AT FOR RAINBOW TROUT AND STEELHEAD 

by 

Jonathan Rodger Hegna 

August 2013 

Beaver reintroduction programs are increasingly being viewed as a way to 

enhance salmonid habitat and production. However, the actual effectiveness of using 

beavers as a habitat enhancement tool for ESA listed steelhead Oncorhynchus mykiss 

populations is unknown. We examined the type of habitat, at both the microhabitat and 

mesohabitat levels, preferred by steelhead in three small streams in the upper Yakima 

Basin, WA through standard snorkel surveys and habitat measurements. Our results 

suggest that steelhead in small streams strongly prefer (relative to availability) 

microhabitats that have deeper water(> 30 cm), slow stream velocities(< 0 .05 mis), and 

complex cover types. Habitat partitioning among the size-classes (small< 50 mm, 

medium 50-90 mm, large> 90 mm total length, TL) principally operated around water 

depth and to a lesser extent around stream velocity, with larger steelhead (> 90 mm TL) 

occupying slower and deeper water than smaller steelhead (< 90 mm TL). Mesohabitat 

analyses indicate that all size-classes of steelhead avoid riffles and strongly prefer pool 

habitat, while only large steelhead (> 90 mm TL) strongly prefer beaver pond habitat and 

small steelhead (< 50 mm TL) prefer glides. Consequently, in small streams the creation 

of deep pool habitat, either through artificial means or through beaver reintroduction 

111 



programs, will be beneficial for increasing the amount of highly preferred habitat for 

steelhead populations. 
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CHAPTER I 

INTRODUCTION 

Steelhead Ecology 

1 

Steelhead Oncorhynchus mykiss (anadromous rainbow trout) is an important salmonid 

species throughout the Pacific Northwest for commercial and recreational fishing. This species 

displays two different life-history strategies that includes a resident type (i.e., rainbow trout) and 

an anadromous type (i.e., steelhead). Steelhead generally reside in freshwater for 2-3 years and 

typically occupy riffles and feed on a variety of drifting and benthic aquatic invertebrates ( e.g., 

dipterans, daphniids, mayflies, stoneflies, beetle larvae, aquatic worms, amphipods) (Bisson et al. 

1988; Scott and Gill 2008; Wydoski and Whitney 2003). Steelhead may also eat smaller fish and 

fish eggs. After undergoing smoltification and migrating to the ocean, the more abundant supply 

of food in the ocean allows steelhead to substantially increase their growth. In the ocean, 

steelhead may spend 1-3 years feeding upon a variety of crustaceans ( e.g., amphipods ), 

polychaetes, squid, herring, mackerel, and other fish (Atcheson et al. 2012; Light 1985; Wydoski 

and Whitney 2003). Upon returning from the ocean, steelhead can weigh between 2.2-4.5 

kilograms and can be 45-63 centimeters in length (Wydoski and Whitney 2003). The most 

common life history pattern for steelhead in Washington is 2 years in freshwater and 2 years in 

the ocean (Conely et al. 2009; Scott and Gill 2008; Wydoski and Whitney 2003). 

Steelhead stocks are designated as winter-run or summer-run based on the timing of 

return to freshwater and sexual maturity (Conely et al. 2009; Scott and Gill 2008). Winter-run 

steelhead enter freshwater between November and May, are sexually mature, and usually spawn 

between mid-April and mid-May. Summer-run steelhead enter freshwater between April and 

October, take several months to sexually mature, and generally spawn between March and May. 



In western Washington both life history types exist, while in the interior Columbia River Basin 

only the summer-run life history type exists. 

2 

Currently, 11 distinct population segments (DPS) of steelhead are listed as threatened and 

1 population is listed as endangered under the Endangered Species Act (Conely et al. 2009; ESA 

1973). Habitat degradation from agricultural development, hydroelectric dams, habitat 

fragmentation, and continued development along rivers and streams has been largely responsible 

for population declines of steelhead in the Pacific Northwest (Scott and Gill 2008; Williams et al. 

1991 ). The steelhead population residing in the upper Yakima Basin in Washington State where 

this study took place is currently listed as threatened as part of the Middle-Columbia DPS and 

has a mixed population of anadrornous steelhead and resident rainbow trout (Conely et al. 2009; 

Scott and Gill 2008). Consequently, federal regulations require the improvement of stream 

habitat and increased numbers of steelhead for delisting to occur. Hereafter, we will refer to 

individuals from this mixed population as steelhead. 

Beaver Ecology 

The Eurasian beaver (Castor fiber) and the North American beaver (Castor canadensis) 

are both semi-aquatic herbivores (Collen and Gibson 2000). Beavers live in small family units 

or colonies that generally consist of two parents, the young of the year, and the yearlings (Collen 

and Gibson 2000; Muller-Schwarze and Sun 2003). A beaver colony may build one or more 

lodges and may or may not actually build a darn (Collen and Gibson 2000; Muller-Schwarze and 

Sun 2003; Naiman et al. 1988; Rosell et al. 2005). In general, beavers tend to colonize small, 

low-gradient, first- to fourth-order streams (Collen and Gibson 2000; Muller-Schwarze and Sun 

2003; Rosell et al. 2005). Alternatively, beavers can also colonize lakes and large streams. In 

order to survive the long winter months, a food cache is constructed to supply the colony with 
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food throughout the winter (Collen and Gibson 2000; Mi.iller-Schwarze and Sun 2003). The diet 

of a beaver varies considerably among the seasons. In the fall and winter, beavers typically tend 

to eat more woody vegetation, while in the spring and summer they eat more herbaceous 

vegetation (Collen and Gibson 2000; Muller-Schwarze and Sun 2003; Rosell et al. 2005). 

Consequently, tree-cutting activity is usually highest in the fall when beavers are preparing for 

winter. 

Relatively deep, lentic ponds are required by beavers for a number of important reasons 

(Collen and Gibson 2000; Muller-Schwarze and Sun 2003; Naiman et al. 1988; Rosell et al. 

2005). Firstly, deep water is needed to keep the entrance to the lodge underwater for protective 

purposes. A deep pond also allows the floating of cut logs, which can be cumbersome for 

beavers to move. The quiet, slow-moving waters of a deep pond are also ideal for building a 

food cache. The water must be slow enough to prevent the food cache from drifting away, and 

the pond must be deep enough to allow the wood to sink to the bottom. A deep pond also 

prevents the water from freezing completely through, which allows a beaver colony to access its 

food cache during winter. Lastly, a deep pond allows a beaver to swiftly escape from predators. 

To this effect beavers will relentlessly build dams to get the water levels that they desire. 

Interestingly, the North American beaver has been found to have a much greater dam-building 

propensity than the Eurasian beaver (Muller-Schwarze and Sun 2003). 

Stream Habitat 

The quality of stream habitat is one of the strongest factors that directly determines the 

number of salmon and trout that a stream can produce (Cramer and Ackerman 2009, 2009b; 

Williams et al. 1991 ). Stream habitat is composed of a myriad of intrinsic factors that include 
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stream depth, velocity, substrate, cover, woody debris, temperature, and water-quality measures. 

This multitude of factors directly determines the carrying capacity of a stream for salmonids. 

Stream habitat use is best analyzed at more than one spatial scale to allow for a more 

thorough understanding of a species' biological requirements (Frissell et al. 1986). The 

mesohabitat scale divides the habitat within a stream reach into discrete habitat or channel units 

(Cramer and Ackerman 2009; Frissell et al. 1986; Hankin and Reeves 1988; Hawkins et al. 

1993). Different mesohabitat units like riffles, glides, and pools are differentiated based on 

differences in stream velocity, depth, slope, and bed topography (Frissell et al. 1986). On a 

smaller spatial scale, microhabitat analyses involve recording the depth, velocity, cover, and 

substrate that a specific fish is using at a specific point within a habitat unit. Examining both of 

these habitat levels provides the most effective information for determining which factors 

influence fish (Holecek et al. 2009; Muhlfeld et al. 2001 ). 

Steelhead and Beaver Reintroduction Programs 

Due to many years of over-exploitation, many beaver populations were exterminated in 

North America and Europe (Collen and Gibson 2000; Miiller-Schwarze and Sun 2003; Naiman 

et al. 1988; Rosell et al. 2005). Today beavers are slowly recolonizing their past range both 

naturally and with the help of reintroduction programs (Collen and Gibson 2000; Halley and 

Rosell 2003; Macdonald et al. 1995; Macdonald et al. 2000; McKinstry and Anderson 2002; 

Muller-Schwarze and Sun 2003; Pollock et al. 2003; Pollock et al. 2004; South et al. 2000). One 

analysis estimates that prior to the arrival of Europeans an estimated 25 million beaver dams 

crossed rivers and restricted flow in North America (Pollock et al. 2003). In pristine areas, the 

number of beaver dams ranges from 7.5 to more than 74 per kilometer (Warren 1932; Scheffer 

193 8). Thus, the impact of reintroducing beavers on the hydrology and habitat of streams could 



5 

be considerable on the landscape level. Nevertheless, beaver reintroduction programs can be 

controversial due to the potential or perceived negative impacts of beavers on road infrastructure, 

farmland, private property, habitat, and fish production (Collen and Gibson 2000; Kemp et al. 

2012). 

Beaver (Castor canadensis) reintroduction programs have recently been proposed and are 

underway in several different locations in Washington State for the purpose of enhancing stream 

habitat for salmonids. Beavers are considered ecosystem engineers and are valued for their 

ability to increase the amount of stream habitat, stabilize stream flow, decrease stream incision, 

increase riparian habitat, store water, increase fish production, and create heterogeneity in the 

environment through their dam building activities (Kemp et al. 2012; Muller-Schwarze and Sun 

2003; Pollock et al. 2007; Pollock et al. 2003; Pollock et al. 2004; Rosell et al. 2005). Beavers 

can have both positive and negative impacts on stream temperature and water quality that are 

largely dependent upon location (Collen and Gibson 2000; Kemp et al. 2012; Rosell et al. 2005). 

In the interior Columbia River Basin beaver dams have been found to greatly accelerate stream 

restoration through the rapid aggradation of sediment, which can reconnect an incised channel 

with the surrounding flood plain and increase riparian vegetation (Pollock et al. 2007). 

However, beaver reintroduction programs are controversial, and there are genuine knowledge 

gaps about their ability to enhance habitat for rainbow trout and steelhead (Collen and Gibson 

2000; Kemp et al. 2012; Rosell et al. 2005). 

Most research to date on beaver-fish interactions has focused primarily on coho salmon 

( Oncorhynchus kisutch), brook trout (Salvelinus fontinalis), and Atlantic salmon (Salmo salar) 

(Kemp et al. 2012). A number of previous studies suggest that coho salmon greatly benefit from 

beaver pond habitat (Beechie et al. 1994; Bisson et al. 1988; Bramblett et al. 2002; Bustard and 
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Narver 1975a, 1975b; Dolloff 1987; Everest et al. 1986; Leidholt-Bruner et al. 1992; Murphy et 

al. 1989; Nickelson et al. 1992; Pollock et al. 2004; Sanner 1987; Swales and Levings 1989). 

The National Oceanic and Atmospheric Administration determined that coho salmon production 

in the Stillaguamish Watershed in Washington is greatly limited by the amount of beaver pond 

habitat (Pollock et al. 2004). Researchers in New Brunswick found that juvenile Atlantic salmon 

living in beaver pond habitat exhibited higher growth rates and were healthier than those living 

in non-beaver pond habitat (Sigourney et al. 2006). Similarly, several studies show that brook 

trout populations benefit from beaver pond habitat (Allen 1956; Huey and Wolfrum 1956; 

Johnson et al. 1992; Rupp 1955). The main benefits cited by these studies were increased 

growth of fish and production of stream invertebrates. 

Research on the use of beaver ponds by steelhead and rainbow trout is very limited 

(Kemp et al. 2012). Gard (1961) conducted primitive research that suggested that "trout" in 

beaver ponds were about five times as large as fish residing in other stream habitats. Although 

no species-specific analyses were conducted, this study did demonstrate that rainbow trout have 

the ability to use beaver ponds. Conversely, researchers examining a large fifth-order stream in 

Oregon over four years found that steelhead greatly avoided beaver pond habitat (Everest et al. 

1986). In the upper Yakima Basin, however, beavers are being reintroduced primarily into 

smaller-order streams with drastically different habitat conditions that may greatly influence 

habitat use by steelhead (Cramer and Ackerman 2009, 2009b; Hartman 1965; Harvey and 

Nakamoto 1996). 

The controversy surrounding beaver reintroduction programs, the economic importance 

of productive fisheries, and the need to improve habitat for steelhead populations under the ESA 

were the motivating factors to study microhabitat and mesohabitat use and preference by 



steelhead in the upper Yakima Basin (ESA 1973 ). Quantitatively evaluating habitat factors that 

are essential to steelhead populations will be paramount for the effective conservation and 

management of the species. We specifically set out to assess three different objectives in small 

streams within the upper Yakima Basin: ( 1) determine the level of use of and preference for 

important microhabitat features in the environment, (2) evaluate the level of use of and 

preference for mesohabitats with an emphasis on beaver pond habitat, and (3) assess differences 

in habitat use and preference among size-classes of steelhead to investigate habitat partitioning. 
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Abstract 

Beaver reintroduction programs are increasingly being viewed as a way to 

enhance salmonid habitat and production. However, the actual effectiveness of using 

beavers as a habitat enhancement tool for ESA listed steelhead Oncorhynchus mykiss 

populations is unknown. We examined the type of habitat, at both the micro habitat and 

mesohabitat levels, preferred by steelhead in three small streams in the upper Yakima 

Basin, WA through standard snorkel surveys and habitat measurements. Our results 

suggest that steelhead in small streams strongly prefer (relative to availability) 

microhabitats that have deeper water(> 30 cm), slow stream velocities(< 0 .05 m/s), and 

complex cover types. Habitat partitioning among the size-classes (small< 50 mm, 

medium 50-90 mm, large> 90 mm total length, TL) principally operated around water 

depth and to a lesser extent around stream velocity, with larger steelhead (> 90 mm TL) 

occupying slower and deeper water than smaller steelhead (< 90 mm TL). Mesohabitat 

analyses indicate that all size-classes of steelhead generally avoid riffles and prefer pool 

habitat, while only large steelhead (> 90 mm TL) strongly prefer beaver pond habitat and 

small steelhead (< 50 mm TL) prefer glides. Consequently, in small streams the creation 

of deep pool habitat, either through artificial means or through beaver reintroduction 

programs, will be beneficial for increasing the amount of highly preferred habitat for 

steelhead populations. 



Introduction 

The quality of stream habitat is one of the strongest factors that directly 

determines the number of salmon and trout that a stream can produce (Cramer and 

Ackerman 2009, 2009b; Williams et al. 1991 ). Stream habitat is composed of a myriad 

of intrinsic factors, such as stream depth, velocity, substrate, cover, woody debris, 

temperature, and water-quality measures. This multitude of factors directly determines 

the carrying capacity of a stream for salmonids. 
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Stream habitat use i~ best analyzed at more than one spatial scale to allow for a 

thorough understanding of a species' biological requirements (Frissell et al. 1986). The 

mesohabitat scale divides the habitat within a stream reach into discrete habitat or 

channel units (Cramer and Ackerman 2009; Frissell et al. 1986; Hankin and Reeves 1988; 

Hawkins et al. 1993). Different mesohabitat units like riffles, glides, and pools are 

differentiated based on differences in stream velocity, depth, slope, and bed topography 

(Frissell et al. 1986). On a smaller spatial scale, microhabitat analyses involve recording 

the depth, velocity, cover, and substrate that a specific fish is using at a specific point 

within a habitat unit. Examining both of these habitat levels provides the most effective 

information for determining which factors influence fish (Holecek et al. 2009; Muhlfeld 

et al. 2001 ). 

Steelhead Oncorhynchus mykiss (anadromous rainbow trout) is an important 

salmonid species throughout the Pacific Northwest for commercial and recreational 

fishing. This species displays two different life-history strategies that include a resident 
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type (i.e., rainbow trout) and an anadromous type (i.e., steelhead). Currently, 11 distinct 

population segments (DPS) of steelhead are listed as threatened and one population is 

listed as endangered under the Endangered Species Act (Conely et al. 2009; ESA 1973). 

Habitat degradation from agricultural development, hydroelectric dams, habitat 

fragmentation, and continued development along rivers and streams has been largely 

responsible for population declines of steelhead in the Pacific Northwest (Scott and Gill 

2008; Williams et al. 1991 ). The steelhead population residing in the upper Yakima 

Basin in Washington State where this study took place is currently listed as threatened as 

part of the Middle-Columbia DPS and has a complicated mixed population of 

anadromous steelhead and resident rainbow trout (Conely et al. 2009; Scott and Gill 

2008). Consequently, federal regulations require the improvement of stream habitat and 

increased numbers of steelhead for delisting to occur. Hereafter, we will refer to 

individuals from this mixed population as steelhead. 

Beaver (Castor canadensis) reintroduction programs have recently been proposed 

and are underway in several different locations in Washington State for the purpose of 

enhancing stream habitat for salmonids. Beavers are considered ecosystem engineers and 

are valued for their ability to increase the amount of stream habitat, stabilize stream flow, 

decrease stream incision, increase riparian habitat, store water, increase fish production, 

and create heterogeneity in the environment through their dam building activities (Kemp 

et al. 2012; Muller-Schwarze and Sun 2003; Pollock et al. 2007; Pollock et al. 2003; 

Pollock et al. 2004; Rosell et al. 2005). Beavers can have both positive and negative 

impacts on stream temperature and water quality that are largely dependent upon location 
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(Collen and Gibson 2000; Kemp et al. 2012; Rosell et al. 2005). In the interior Columbia 

River Basin beaver dams have been found to greatly accelerate stream restoration through 

the rapid aggradation of sediment, which can reconnect an incised channel with the 

surrounding flood plain and increase riparian vegetation (Pollock et al. 2007). However, 

beaver reintroduction programs are controversial, and there are genuine knowledge gaps 

about their ability to enhance habitat for rainbow trout and steelhead (Collen and Gibson 

2000; Kemp et al. 2012; Rosell et al. 2005). 

Most research to date on beaver-fish interactions has focused primarily on coho 

salmon (Oncorhynchus kisutch), brook trout (Salvelinusfontinalis), and Atlantic salmon 

(Salmo salar) (Kemp et al. 2012). A number of previous studies suggest that coho 

salmon greatly benefit from beaver pond habitat (Beechie et al. 1994; Bisson et al. 1988; 

Bramblett et al. 2002; Bustard and Narver 1975a, 1975b; Dolloff 1987; Everest et al. 

1986; Leidholt-Bruner et al. 1992; Murphy et al. 1989; Nickelson et al. 1992; Pollock et 

al. 2004; Sanner 1987; Swales and Levings 1989). The National Oceanic and 

Atmospheric Administration determined that coho salmon production in the 

Stillaguamish Watershed in Washington is greatly limited by the amount of beaver pond 

habitat (Pollock et al. 2004). Researchers in New Brunswick found that juvenile Atlantic 

salmon living in beaver pond habitat exhibited higher growth rates and were healthier 

than those living in non-beaver pond habitat (Sigourney et al. 2006). Similarly, several 

studies show that brook trout populations benefit from beaver pond habitat (Allen 1956; 

Huey and Wolfrum 1956; Johnson et al. 1992; Rupp 1955). The main benefits cited by 

these studies were increased growth of fish and production of stream invertebrates. 
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Research on the use of beaver ponds by rainbow trout and steelhead is very 

limited (Kemp et al. 2012). Gard (1961) conducted primitive research that suggested that 

"trout" in beaver ponds were about five times as large as fish residing in other stream 

habitats. Although no species-specific analyses were done, this study did demonstrate 

that rainbow trout have the ability to use beaver ponds. Conversely, researchers 

examining a large fifth-order stream in Oregon over four years found that steelhead 

greatly avoided beaver pond habitat (Everest et al. 1986). In the upper Yakima Basin, 

however, beavers are being reintroduced primarily into smaller-order streams with 

drastically different habitat conditions that may greatly influence habitat use by steelhead 

(Cramer and Ackerman 2009, 2009b; Hartman 1965; Harvey and Nakamoto 1996). 

The controversy surrounding beaver reintroduction programs, the economic 

importance of productive fisheries, and the need to improve habitat for steelhead 

populations under the ESA were the motivating factors to study microhabitat and 

mesohabitat use and preference by steelhead in the upper Yakima Basin (ESA 1973). 

Quantitatively evaluating habitat factors that are essential to steelhead populations will be 

paramount for the effective conservation and management of the species. We 

specifically set out to assess three different objectives in small streams within the upper 

Yakima Basin: ( 1) determine the level of use of and preference for important 

microhabitat features in the environment, (2) evaluate the level of use of and preference 

for mesohabitats with an emphasis on beaver pond habitat, and (3) assess differences in 

habitat use and preference among size-classes of steelhead to investigate habitat 

partitioning. 
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Methods 

Study sites 

We chose three small streams north of the town of Cle Elum, Washington within 

the upper Yakima Basin to examine microhabitat and mesohabitat availability, use, and 

preference by steelhead (Figure 1). Jack Creek, Jungle Creek, and Iron Creek were 

specifically selected because they are all recognized as critical habitat areas for steelhead 

under the Yakima Basin Steelhead Recovery Plan (Conely et al. 2009). The upper 

Yakima Basin is located along the eastern slopes of the Cascade Mountain Range and is 

characterized by warm, dry summers, with extreme low flows occurring between August 

and September. Two of the streams, Jack Creek and Jungle Creek, are small second- to 

third-order tributaries along the North Fork of the Teanaway River. The third stream, 

Iron Creek, is a second- to third-order tributary of Swauk Creek. Beavers were 

reintroduced to Jack Creek in 2009 but not into the other streams. The beaver population 

has greatly expanded since reintroduction and has built numerous dams along the stream. 

a. o-1km 

Figure 1. Map of stream field sites along the North Fork Teanaway River (a) and 
Swauk Creek (b) in the Upper Yakima Basin of central Washington. 



Beavers were not present at Iron Creek or Jungle Creek. Steelhead were the dominant 

fish species observed within each stream. Cutthroat trout were also observed, but were 

much less abundant. Several species of sculpin ( Cottus spp.) were also observed to be 

abundant throughout all the streams. In Jack Creek, brook trout (Salvelinus fontinalis) 

were observed and were largely isolated to deep pools and beaver ponds. 

Microhabitat and mesohabitat use and availability 
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We quantified habitat use and availability through the use of spatially-stratified 

transects. Each designated stream field site was segmented into appropriate stream 

reaches. At each stream reach, a starting point for a transect was determined randomly, 

except for two transects at Jack Creek where non-random starting points were chosen in 

order to obtain enough data on beaver pond habitat. In general, at least 300 meters of 

stream habitat were needed to obtain adequate data on the use of mesohabitats. We used 

four 75-meter transects at Jungle Creek, three 100-meter transects at Iron Creek, and four 

200-meter transects at Jack Creek. The longer transects at Jack Creek were needed to 

sample enough beaver ponds. Transects were separated by a minimum of 300 meters. 

We used snorkel surveys along each stream transect between August and 

September of 2012 to quantify microhabitat and mesohabitat use (O'Neal 2007). The 

summer low-flow period is when stream habitat is at its lowest supply, and it is 

considered the most limiting time period for steelhead in terms of stream carrying 

capacity (Cramer and Ackerman 2009, 2009b). The snorkel surveys involved one diver 

that slowly snorkeled up the stream transect and used a waterproof diving notebook to 

record microhabitat and mesohabitat data on all fish observed between 1000 and 1730 
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hours. Fish were classified into a size-class with the aid of a ruler. The three designated 

size-classes were small(< 50 mm total length, TL), medium (50 - 90 mm TL), and large 

(> 90 mm TL). Steelhead and cutthroat trout can be hard to distinguish when they are 

less than 90 mm (TL). Therefore, it is possible that our visual counts of steelhead ( < 90 

mm TL) may have included some cutthroat trout. 

Stream depth and focal depth were measured directly by the diver with the use of 

a ruler. Focal depth refers to the actual vertical position of a fish in the water column. 

To determine focal velocity we marked the location of each fish with a readily 

identifiable marker, recorded the focal depth of each fish, and then measured the exact 

focal velocity used by each fish with a flow meter (Geopacks: Advanced FlowMeter) 

after the snorkel survey was complete. Substrate was visually classified into five 

different categories using a modified Wentworth scale: sand-silt(< 0.5 cm), gravel (0.5 

cm - 7.5 cm), cobble (7.5 cm - 30 cm), boulder(> 30 cm), and bedrock. Eight different 

microhabitat cover categories were used: woody debris, cobble, boulder, overhanging 

vegetation, roots, undercuts, underwater algae / vegetation, and turbulence. Cover had to 

be within 40 cm of a fish to be considered "used." 

We determined microhabitat availability for each stream transect. A random 

starting location at the beginning of each transect was chosen. At pre-specified intervals, 

three equidistant points perpendicular to the stream transect were measured for the same 

microhabitat characteristics as previously described (i.e., depth, velocity, cover, and 

substrate). Velocity was measured in the water column at approximately half the total 

stream depth to mimic the height in the water column that steelhead often use (Bugert et 
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al. 1991; Johnson and Johnson 1981; Johnson and Ringler 1980). During the stream 

surveys, if water depth and velocity were too low to allow for the effective use of the 

flow meter, we used manual object displacement to estimate stream velocity. At Iron and 

Jungle Creeks we used 3-m intervals, while at Jack Creek we used 5-m intervals because 

the transects were longer. Thus, the relative frequency of occurrence of different types of 

microhabitat (i.e., availability) could be determined for microhabitat preference analyses. 

Mesohabitat data were also collected to characterize each mesohabitat unit ( e.g., 

riffle, glide, pool, beaver pond) surveyed along each transect and to quantify mesohabitat 

availability. We took depth and velocity measurements haphazardly every 1-2 meters 

down the active channel. A minimum of three measurements was required to 

characterize a habitat unit. In pools and beaver ponds, the maximum depth was measured 

and used as the major descriptor (Cramer and Ackerman 2009, 2009b). The length and 

average wetted width of each habitat unit was directly measured. Width measurements 

were taken at least every three meters, with a minimum of three required. Surface area 

and, thus, the availability of mesohabitat could then be estimated for mesohabitat 

preference analyses. Fish density was estimated by dividing the total number of 

steelhead observed within a habitat unit by the surface area of the habitat unit. We 

quantified habitat complexity through the use of a categorical scale that ranged from 1 

(lowest complexity) to 4 (highest complexity), based on the number of different types of 

habitat available in a habitat unit (Table 1; modified from Holecek et al. 2009). The 



Table 1. Rating scale for evaluating the structural complexity of 
mesohabitat units. Structural cover types include woody debris, boulder, 
cobble, undercuts, roots, underwater algae / vegetation, and overhanging 
vegetation. -Modified from Ho'lecek et al. (2009). 

Complexity Rating Description 
Rating 

1 The lowest complexity. Habitat unit generally contains only 
one dominant, homogeneous, structural cover type. 

2 Low complexity. Habitat unit contains no more than two 
dominant, structural cover types. 

3 Moderate complexity. Habitat unit contains up to three 
different dominant, structural cover types. 

4 Highest complexity. Three or more complex structural cover 
types are abundantly available in the habitat unit. Snorkeler 
generally has difficulty maneuvering around the habitat unit 
because of the high complexity. 
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Table 2. Rating scale for evaluating the amount of cover that woody debris provides fish within 
mesohabitat units. 
Woody Debris Rating Description 

Rating 

1 Woody debris is absent to minimal, structural complexity is lacking. 

2 

3 

4 

Woody debris provides cover for 10-20 % of the habitat unit. 

Woody debris provides noticeable complexity and cover for 
20-50 % of the habitat unit. 

Woody debris is abundant, making snorkeling difficult. Woody debris 
provides cover for more than 50 % of the habitat unit. 



availability of woody debris cover was evaluated with a rating scale that estimated the 

amount of surface area within a habitat unit that had woody debris cover (Table 2). 

Data analysis 
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To determine mesohabitat and microhabitat preference, we employed G-tests that 

compared the observed level of habitat use with an expected level based on habitat 

availability (Holecek et al. 2009; Muhlfeld et al. 2001 ). Each stream was evaluated both 

separately by fish size-class and with all size-classes combined. If a G-test was 

significant, we used Jacobs electivity index (D) to evaluate the degree of preference 

(Jacobs 1974): 

D = (r - p) / (r + p- 2rp), 

where r represents the proportion of fish using a particular habitat category and p is the 

proportion of that habitat category available in the environment. The electivity index 

ranges from -1 ( complete avoidance) to I ( complete preference); a value of 0 represents 

use in proportion to availability (i.e., neutral use). In Jack Creek only three of the four 

transects were used to assess microhabitat preference because wildfires in the summer of 

2012 prevented us from accessing the site. By the time the area had been re-opened, 

beavers had built several new dams that drastically changed the availability of habitat 

along the transect. 

We examined differences in fish density (all size-classes combined and large fish) 

among mesohabitat types with Welch's ANOV A. ANOVA was used to examine 

differences in the use of stream depth among the size-classes, while Welch's ANOV A 

was used to assess differences in the use of stream velocity among the size-classes. We 
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also compared the mean depth and velocity used by each size-class against the respective 

stream means with T-tests. The Kruskal-Wallis Test was used to evaluate physical 

differences in habitat complexity and woody debris among mesohabitat types. 

Differences in depth and velocity among mesohabitat units were evaluated with Welch's 

ANOVA. The Pearson's chi-square test was used to examine direct associations between 

fish size-class and the usage of mesohabitat types. Jack Creek was evaluated separately 

because it contained beaver ponds, while Jungle Creek and Iron Creek were evaluated 

together. Odds ratios were then used to quantify effect size and significance. 

We used multiple regression to examine which mesohabitat factors were 

associated with fish density. Fish density was the response variable, while the predictor 

variables used in the model were velocity, depth, surface area, and woody debris rating of 

the habitat unit. Variance inflation factors were used as indicators for problems with 

multicollinearity in the analysis. 

We used Tukey's post-hoc test to evaluate the results of all AN OVA tests, while 

the Games-Howell post-hoc test was used to evaluate the results of all Welch's AN OVA 

tests. Leven's test was used to test for unequal variance among groups. We used Mann

Whitney tests to evaluate the results from all Kruskal-Wallis tests conducted. The 

Bonferroni correction was applied to all applicable tests to control for multiple 

comparisons and to lower the risk of type I error. We used Mini tab to perform all 

ANOVA, Kruskal-Wallis, and T-tests analyses; SPSS for Welch's ANOVA and 

Pearson's chi-square tests; Excel for all G-tests; and MedCalc statistical software to 

calculate odds ratios. 
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Results 

Micro habitat 

During the summer of 2012, we took observations on 781 steelhead in three 

streams. Sample sizes varied among streams and size-classes: 193 small, 160 medium, 

and 123 large individuals were observed in Jack Creek; 53 small, 37 medium, and 27 

large individuals were observed in Jungle Creek; and 77 small, 72 medium, and 43 large 

individuals were observed in Iron Creek. 

All three size-classes of steelhead showed distinct preferences for certain stream 

depths (Table 3; Figure 2). Furthermore, each size-class used deeper water than the 

respective stream means (all T-tests, P < 0.001). In all streams, Jacob's electivity index 

indicated that small individuals most strongly preferred water depths between 10 cm and 

30 cm and generally avoided water deeper than 30 cm. Medium-sized individuals 

genera II y had a weak to neutral preference for stream depths between 10 cm and 15 cm, 

while they generally had a strong preference for stream depths greater than 15 cm. Large 

individuals showed a progressively stronger preference for stream depths greater than 20 

cm. All three size-classes strongly avoided shallow water less than 11 cm deep. Direct 

comparisons among the size-classes showed significant size-related differences in depth 

use (Jack Creek, ANOVA: F2,474 = 191.66, P< 0.001; Jungle Creek, ANOVA: F2, 112 = 

51.45, P < 0.001; Iron Creek, AN OVA: F2, 189 = 26.35, P < 0.001). Large steelhead 

occupied significantly deeper water than small steelhead (Tukey post-hoc tests, P < 

0.001). 
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Table 3. G-test results comparing the observed level of stream depth and 
focal velocity use with the expected level of use based on habitat 
availability for steelhead Oncorhynchus mykiss by size-class (small, 
medium, large) for Jack, Jungle, and Iron Creeks in central Washington 
during August-September 2012. 

Depth Use Velocity Use 

G d.f. p G d.f. p 

Jack Creek 
Small 154.99 7 <0.001 108.89 5 <0.001 

Medium 152.32 7 <0.001 103.98 5 <0.001 
Large 237.4 7 <0.001 111.53 5 <0.001 

Iron Creek 
Small 113.66 6 <0.001 43.45 5 <0.001 

Medium 147.82 6 <0.001 25.44 5 <0.001 
Large 151.66 6 <0.001 67.4 5 <0.001 

Jungle Creek 
Small 48.9 6 <0.001 52.04 5 <0.001 

Medium 75.62 6 <0.001 25.98 5 <0.001 
Large 64.17 6 <0.001 41.39 5 <0.001 

Each size-class of steelhead also showed distinct preferences for certain focal 

velocities (Table 3; Figure 3). All size-classes used stream velocities lower than the 

respective stream means (all T-tests, P < 0.001). Jacob's electivity index indicated that 

all size-classes in Jack and Iron Creeks along with medium and large fish in Jungle Creek 

strongly preferred water velocities less than 0.02 mis; small individuals in Jungle Creek 

preferred velocities between 0.02 and 0.05 mis. Stream velocities greater than 0.10 mis 

were strongly avoided by all size-classes in all three streams. Direct comparisons among 

the size-classes showed some significant size-related differences in the use of stream 

velocity (Jack Creek, Welch's AN OVA: W2, 474 = 2.42, P = 0.09; Jungle Creek, Welch's 

ANOVA: W2, 112 = 14.59, P < 0.001; Iron Creek, Welch's ANOVA: W2, 189 = 
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Figure 2. Water depth preference values (Jacob's electivity 
index) for each size-class (small, medium, large) of steelhead 
Oncorhynchus mykiss in Jack, Iron, and Jungle Creeks in central 
Washington during August-September 2012. 
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for each size-class (small, medium, large) of steelhead Oncorhynchus 
mykiss in Jack, Iron, and Jungle Creeks in central Washington during 
August-September 2012. 
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4.64, P = 0.011). In Iron and Jungle Creeks large steelhead used slower stream velocities 

than small and medium rainbow trout (Games-Howell post-hoc tests: Iron Creek, P = 

0.056, P = 0.016; Jungle Creek, P < 0.001, P = 0.037). In Jack Creek no significant 

differences were observed (Games-Howell post-hoc tests, P > 0.073). 

In each stream, steelhead preferred distinct types of microhabitat cover (Jack 

Creek G = 1470, Iron Creek G = 418, Jungle Creek G = 509; all d.f. = 7, P < 0.001; 

Figure 4). Steelhead in all streams had a strong preference for woody debris, roots, 

undercuts, boulders, and underwater algae / vegetation. The magnitude of preference for 

cobble and overhanging vegetation ranged widely among streams. Water turbulence was 

strongly avoided in Jack and Jungle Creeks, but was used in a neutral fashion in Iron 

Creek. 

Substrate types were not used by steelhead in proportion to their availability (Jack 

Creek: G = 663, d.f.= 3, P < 0.001; Iron Creek: G = 63, d.f.= 3, P < 0.001; Jungle Creek: 

G = 63, d.f. = 4, P < 0.001; Figure 5). Steelhead had a strong preference for 

boulder substrate in all three streams. Cobble substrate was strongly preferred by fish in 

Jack and Iron Creeks, while it was used in proportion to its availability by fish in Jungle 

Creek. Sand and silt substrate was largely used in proportion to its availability in the 

environment at each stream. Steelhead appeared to strongly avoid gravel substrate in 

Jack Creek, but in Iron and Jungle Creeks gravel substrate was used in proportion to its 

availability. Jungle Creek was the only stream field site to possess bedrock as a dominant 

substrate feature, and fish appeared to have a strong preference for 



this substrate. Caution should be taken in interpreting these preference values, as 

velocity and depth can be correlated to substrate. 
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Figure 4. Micro habitat cover preference values (Jacob's electivity 
index) for steelhead Oncorhynchus mykiss in Jack, Iron, and Jungle 
Creeks in central Washington during August-September 2012. W= 
woody debris, Co= cobble, R = roots, U= undercuts, B= boulder, S= 
overhanging vegetation, T= turbulence, A= underwater algae / 
vegetation. 
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Figure 5. Substrate preference values (Jacob's electivity index) for 
steelhead Oncorhynchus myhss in Jack, Iron, and Jungle Creeks in 
central Washington dming August-September 2012. Bedrock was 
not present in Jack Creek or Iron Creek. 

Mesohabitat 
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We sampled 197 mesohabitat units from the study streams during the summer of 

2012. This included 82 riffles, 49 glides, 55 pools, and 11 beaver ponds. Beaver ponds 

occurred only in Jack Creek and were all smaller than 300 m2 in surface area. 

Mesohabitat units differed significantly in depth (Welch's ANOV A: W 3, 37.82 = 

111.16, P < 0.001), velocity (Welch's ANOVA: W3, 102.4 = 121.58, P < 0.001), habitat 

complexity (Kruskal-Wallis: H = 46, d.f. = 3, P < 0.001), and amount of woody debris 

(Kruskal-Wallis: H = 37, d.f. = 3, P < 0.001). Pool and beaver pond habitat units were 

significantly deeper than riffles and glides, as would be expected (Games-Howell post

hoc tests, P < 0.001; Figure 6). Pool and beaver pond habitat units had the slowest 

stream velocities, glides had intermediate velocities, and riffles had the fastest stream 
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velocities (Games-Howell post-hoc tests, P = 0.001; Figure 6). As stream depth 

increased, stream velocity significantly decreased (Pearson Correlation: r = -0.224, P < 

0.001; Figure 7). In general, higher stream velocities were seldom encountered at depths 

greater than 20 cm. Pool and beaver pond habitat units had a higher degree of habitat 

complexity than riffles or glides (Mann-Whitney post-hoc tests, P < 0.001) and contained 

more woody debris than riffles or glides (Mann-Whitney post-hoc tests, P = 0.001). 

Mesohabitat types were not used by any size-class of steelhead in proportion to 

their availability in all three streams (Table 4; Figure 8). Jacob's electivity index showed 

that riffle habitat was strongly avoided by all size-classes in each stream. However, 

preference values for glide habitat were variable among the size-classes and streams. 

Large fish tended to avoid glide habitat, while small and medium individuals had 

moderate to neutral preference values for glides. Pool habitat was strongly preferred by 

small and medium individuals in Jack Creek, by all size classes in 

Iron Creek, and by medium and large individuals in Jungle Creek. Beaver pond habitat 

in Jack Creek was strongly avoided by small individuals, moderately avoided by medium 

individuals, and strongly preferred by large individuals. 

Overall steelhead density (i.e., all size-classes) differed significantly among 

mesohabitat unit types (Welch's ANOVA: W3, 39.1 3 = 39.77, P < 0.001; Figure 9). 

Steelhead density was higher in pools than in riffles or glides (Games-Howell post-hoc 

tests, P < 0.001). Glides had a higher level of steelhead density than riffles 
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Figure 6. Mean velocity (a) and depth (b) characteristics of mesohabitat types 
(±SE) for Jack Creek (Ja), Jungle Creek (Ju), and Iron Creek (Ir) in central 
Washington during August-September 2012. Jack Creek was the only stream that 
had beaver ponds. 
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0.001). 

Table 4. G-test results comparing the observed level of mesohabitat use 
with the expected level of use based on mesohabitat availability for 
steelhead Oncorhynchus mykiss by size-class (small, medium, large) for 
Jack, Jungle, and Iron Creeks in central Washington during August
September 2012. 

Mesohabitat Use 
G d.f. p 

Jack Creek 
Small 78.68 3 < 0.001 

Medium 77.87 3 < 0.001 
Large 88.57 3 < 0.001 

Iron Creek 
Small 34.27 2 < 0.001 

Medium 31.8 2 < 0.001 
Large 66.12 2 < 0.001 

Jungle Creek 
Small 24.97 2 < 0.001 

Medium 25.92 2 < 0.001 
Large 46.12 2 < 0.001 
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(Games-Howell post-hoc test, P < 0.001). Beaver pond habitat had intermediate 

steelhead densities that were similar to both pool and glide habitat densities (Games

Howell post-hoc tests, P = 0.264, P = 0.48), but higher than riffle densities (Games

Howell post-hoc test, P = 0.008). The density of large fish was also significantly 

different among habitat types (Welch's ANOVA: W 3, 36.44 = 21.13, P < 0.001; Figure 9). 

Pool and beaver pond habitat types had similar densities oflarge fish (Games-Howell 

post-hoc test, P = 1.0) that were both substantially higher than the densities observed in 

riffles and glides (Games-Howell post-hoc tests, P < 0.001, P < 0.001, P = 0.001, P = 

0.003). 

Associations between mesohabitat unit type and steelhead size-class were 

quantified with Pearson's chi-square contingency table test. The Pearson's chi-square 

test for Jack Creek showed a significant association between size-class and habitat unit 

type (Lx2 = 95.98, d.f.= 6, P < 0.001; Table 5). Odds ratios suggest that large individuals 

were much more likely to use beaver ponds and less likely to use glides than were small 

or medium individuals. Pool habitat was more likely to be used by medium individuals 

than by large individuals. Use of riffle habitat was similar across the size-classes. 

The Pearson's chi-square test for Jungle Creek and Iron Creek combined also 

showed a significant association between mesohabitat unit type and steelhead size-class 

(Lx2 = 42.97, d.f.= 4, P < 0.001; Table 6). Based on odds ratios, large individuals were 

much more likely to use pool habitat than were small or medium individuals. Small and 

medium sized individuals used pool habitat at the same level. Conversely, small 
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during August-September 2012. Jack Creek was the only stream that 
had beaver ponds. 
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individuals were much more likely to use glide habitat than were the larger size-classes. 

Riffle habitat was used at a similar rate by all three size-classes. 

Table 5. Odds ratios for Pearson's chi-square test showing 
size-related differences in mesohabitat use by steelhead 
Oncorhynchus mykiss in Jack Creek in central Washington 
during August-September 2012. Size-classes are designated as 
S (< 50 mm), M (50 - 90 mm), and L (> 90 mm). Bonferroni-
correction was used to evaluate significance. 

Habitat Unit Odds Ratio CI9s z p 

Beaver Pond 

L>S 7.67 4.50 - 12.9 7.65 < 0.001 

L>M 5.01 2.90 - 8.20 6.08 < 0.001 

M=S 1.56 0.94 - 2.59 1.72 0.085 

Pool 

S=L 1.70 1.06 - 2.77 2.18 0.029 

M>L 2.15 1.31 - 3.54 3.03 0.002 

M=S 1.26 0.82 - 1.94 1.04 0.297 

Glide 

S>L 24.55 5.92 - 104.19 4.39 < 0.001 

M>L 15.09 3.54 - 64.59 3.67 < 0.001 

M=S 1.64 0.99 - 2.73 1.92 0.055 

Riffle 

S=L 4.61 1.03 - 20.95 2.01 0.046 

M=L 1.60 0.29 - 8.88 0.54 0.590 

M=S 2.90 0.93 - 9.09 1.83 0.067 
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Table 6. Odds ratios for Pearson's chi-square test showing size-
related differences in mesohabitat use by steelhead 
Oncorhynchus mykiss in Jungle Creek and Iron Creek in central 
Washington during August-September 2012. Size-classes are 
designated as S (< 50 mm), M (50 - 90 mm), and L (> 90 mm). 
The Bonferroni-correction was used to evaluate significance. 

Habitat Unit Odds Ratio CI9s z p 

Pool 

L>S 8.14 3.74 - 17.80 5.27 < 0.001 

L>M 4.09 1.83 - 9.09 3.45 < 0.001 

M=S 2.00 1.19-3.35 2.61 0.009 

Glide 

S>L 6.65 2.69 - 16.53 4.09 < 0.001 

M=L 2.25 0.85 - 5.95 1.64 0.102 

S>M 2.95 1.61 - 5.44 3.50 < 0.001 

Riffle 

S=L 4.30 1.24 - 14.98 2.29 0.022 

M=L 5.65 1.62 - 19.66 2.72 0.006 

M=S 1.31 0.68 - 2.54 0.81 0.420 

Multiple regression was used to further examine how stream velocity, depth, 

surface area, and woody debris influenced steelhead density ( all size classes) at the 

mesohabitat level (Table 7). Multicollinearity limited the number of important predictor 

variables that could be included in the overall model. The regression model is described 

by the following equation: 

Fish Density= 0.123 - 0.651 Velocity (m/s) + 0.668 Depth (m) - 0.004 Surface 

Area (m2
) + 0.090 Woody Debris Rating. 



Steelhead density decreased strongly with increased stream velocity, decreased slightly 

with increased surface area, and increased strongly with both water depth and woody 

debris cover (S = 0.24, R2 = 38.95%, PRESS= 12.21, R2(pred) = 32.44%). 

Table 7. Multiple regression coefficients table showing how 
velocity, depth, surface area, and woody debris are associated with 
steelhead Oncorhynchus mykiss density at the mesohabitat level in 
Jack, Iron, and Jungle Creeks in central Washington during August-

2 2 
September 2012 (S = 0.24, R = 38.95%, PRESS= 12.21, R (pred) = 
32.44%). 

Coefficients Table: 

Term Coef SE Coef T p VIF 

Constant 0.123 0.052 2.377 0.018 

Velocity (mis) -0.651 0.167 -3.899 < 0.001 1.41 

Depth (m) 0.668 0.002 4.242 < 0.001 1.99 

Surface Area (m2
) -0.004 0.001 -5.566 < 0.001 1.37 

Woody Debris 0.090 0.022 4.111 < 0.001 1.24 

Discussion 
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The use of different habitat characteristics by the different size-classes of 

steelhead suggests that they are partitioning microhabitat and mesohabitat. The strongest 

microhabitat partitioning appears to operate around stream depth and to a lesser extent 

around stream velocity, with larger steelhead (> 90 mm TL) occupying slower and deeper 

water than smaller steelhead (< 90 mm TL). In Jack Creek partitioning based on stream 

velocity was not observed likely because of the vast availability of slow water habitat 

(i.e., beaver ponds). Mesohabitat partitioning was evident in the higher preference for 
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glide habitat by small steelhead (< 50 mm TL) compared to large steelhead (> 90 mm 

TL). Also, smaller steelhead (< 90 mm TL) avoided beaver pond habitat, while larger 

steelhead (> 90 mm TL) highly preferred it. Pool habitat units were preferentially used 

by all size-classes, and it appears that within a pool habitat unit, smaller steelhead ( < 90 

mm TL) use shallower areas that have slightly higher stream velocities, while larger 

steelhead (> 90 mm TL) use deeper microhabitats with lower velocities. 

Size-based habitat partitioning has been documented in other steelhead and 

rainbow trout populations. Larger steelhead occupy areas with deeper and faster water 

than those used by smaller steelhead (Baltz et al. 1991; Everest and Chapman 1972; 

Moyle and Baltz 1985; Muhlfeld et al. 2001). Hirsch (1995) found that microhabitat was 

partitioned between fry and older individuals, with fry occupying shallow stream margins 

and backwaters, while older individuals occupied deeper and faster areas of the channel. 

Other researchers have noted that larger individuals move to deeper and slower water, 

while smaller subordinate individuals are forced to utilize shallower and faster water 

(Abbott et al. 1985; Bisson et al. 1988; Edmundson et al. 1968; Jenkins 1969; Keeley 

2001; Li and Brocks en 1977). Muhlfeld et al. (2001) found that all size-classes 

preferentially used pools, all size-classes avoided riffles, and glides were used neutrally 

by larger individuals and preferentially by smaller individuals. Differences in response 

by larger steelhead are probably a direct result of differences in stream morphology and 

habitat availability. Previous research suggests that the causative factors for habitat 

partitioning and niche compression are intraspecific competition for food and space, with 

larger more experienced individuals dominating smaller individuals for more 



advantageous stream positions (Abbott et al. 1985; Jenkins 1969; Keeley 2001; Li and 

Brocksen 1977). 
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The brook trout in Jack Creek were most commonly encountered in deep pools 

and beaver ponds (personal observation), and they may have influenced steelhead habitat 

use and preference (Cunjak and Green 1983; Larson and Moore 1985). Brook trout have 

been shown to be highly successful in beaver ponds (Allen 1956; Huey and Wolfrum 

1956; Johnson et al. 1992; Rupp 1955). Cunjack and Green (1983) found that brook trout 

prefer slow stream velocities and deep water, which are the environmental qualities that 

steelhead appear to prefer in Jack Creek, and suggested that interactive segregation 

between brook trout and rainbow trout was occurring at their study site in New 

Brunswick. In the southern Appalachian Mountains, researchers have suggested that 

rainbow trout are aggressively outcompeting the native brook trout, and restricting their 

distribution to headwater streams (Larson and Moore 1985). Thus, it is plausible that 

brook trout and steelhead maybe indirectly or directly competing for resources in Jack 

Creek. 

Differences in stream morphology between large and small streams may lead to a 

reversal in habitat usage and preference. The use of slow moving habitats like beaver 

ponds and pools that our study reports appears to directly contradict many previous 

studies that suggest that rainbow trout and steelhead prefer faster flowing habitats like 

riffles and glides (Allee 1974; Beecher et al. 1995; Bisson et al. 1988; Bovee et al. 1978; 

Cunjak and Green 1983; Everest and Chapman 1972; Everest et al. 1986; Pausch 1993; 

Hartman 1965; Muhlfeld et al. 2001; Scott and Gill 2008; Sheppard and Johnson 1985; 
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Wydoski and Whitney 2003). Everest et al (1986) in particular found that age-0 and age-

1 + steelhead substantially avoided beaver pond habitat over four years of study. The 

researchers also found that riffle habitat supported the largest overall populations of 

steelhead compared to other habitat types. Researchers from various studies have further 

pointed out that the diet and body morphology of steelhead have likely developed and 

adapted to better exploit higher velocity habitats like riffles (Allee 1974; Bisson et al. 

1988; Johnson 2007; Johnson and Ringler 1980). 

However, a majority of these studies were conducted on much larger streams that 

have drastically different habitat conditions than the three small streams we studied. In 

our streams, higher-velocity microhabitat was generally available only at shallower 

depths(< 20 cm; Figure 10) that are strongly avoided by larger steelhead (Beecher et al. 

1993; Bovee et al. 1978; Cramer and Ackerman 2009, 2009b). Furthermore, the riffle 

and glide mesohabitat units that we sampled generally did not provide the deeper water 

habitat that is preferred by larger steelhead (Figure 9). Therefore, during the summer 

months in small streams depth appears to be extremely limiting in a way that makes deep, 

low-velocity habitats like beaver ponds and pools the best available option, especially for 

larger steelhead. 

Additional evidence for this reversal of habitat preference and use in small 

streams can be found in several previous studies. In coastal streams in California 

steelhead preferentially used pools because riffles had shallow depths that rendered them 

unusable (Harvey and Nakamoto 1996). Heam and Kynard (1986) conducted a 

laboratory experiment that only used riffles that were 15 cm deep and found that 
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steelhead preferred pool habitat substantially more. Similarly, steelhead in an Oregon 

stream primarily used pool habitat in reaches where riffles did not provide adequate depth 

(Roper et al. 1994). Rainbow trout in a slightly larger stream in Montana preferentially 

used pool habitat, avoided riffles, and glides were used neutrally by larger individuals 

and preferentially by smaller individuals (Muhlfeld et al. 2001). The riffles in that stream 

averaged around 20 cm deep, which is probably why rainbow trout were not using them. 

Even in much larger streams, pool habitat can be a major limiting factor for age-1 + 

steelhead production (Everest et al. 1986). 

Beaver ponds are often criticized for creating poor habitat conditions that are not 

beneficial for salmonids (Collen and Gibson 2000; Kemp et al. 2012). In particular, they 

contain fine sediment that is sometimes viewed as poor quality habitat (Collen and 

Gibson 2000; Kemp et al. 2012). However, the results of our study and other research 

show that silt and sand substrates are not avoided (Muhlfeld et al. 2001 ). In addition, 

both pool and beaver pond habitat units provided more habitat complexity and woody 

debris than did riffles and glides. This complements the findings in this study that 

steelhead strongly preferred woody debris, roots, and undercuts, which are often 

dominant features in beaver ponds. Boulder and cobble substrates were also strongly 

preferred by steelhead. All of these preferred microhabitat features should be 

incorporated into any stream restoration work (Baltz et al. 1991; Cederholm et al. 1997; 

Cramer and Ackerman 2009; Muhlfeld et al. 2001; Roni and Quinn 2001; Shirvell 1990). 

The findings of our research have several important implications for stream 

restoration and management. Stream restoration for steelhead should incorporate the use 
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of complex cover types like woody debris, roots, undercuts, and overhanging vegetation. 

Cobble and boulder-sized substrate should also be used to provide high quality cover. 

The results from this study clearly show that maintaining an adequate supply of deep, 

pool habitat is paramount to steelhead populations. Our research also fills a knowledge 

gap about interactions between beaver pond habitat and steelhead. Specifically, our 

results show that beaver reintroduction programs in small streams have the potential to 

create deep, complex, pool habitat that will be highly preferred by steelhead populations. 

Our results in tandem with other research suggests that a decrease in the amount of pool 

habitat in small streams in central Washington will decrease the availability of preferred 

habitat and may result in a decrease in stream carrying capacity for steelhead, assuming 

stream habitat is a major limiting factor (Cramer and Ackerman 2009, 2009b ). With that 

said, riffle habitat should not be discounted in small streams, as it is essential to the 

production of aquatic invertebrates that are consumed by steelhead and other salmonids 

(Cramer and Ackerman 2009, 2009b; Hawkins et al. 1983; Waite and Carpenter 2000). 

Consequently, restoration efforts in small streams that focus on the creation of deep pool 

habitat, either through artificial means or through beaver reintroduction programs, will 

have the greatest effect upon increasing the amount of highly preferred stream habitat for 

larger resident rainbow trout and age-2 and age-3 steelhead. 

Beaver reintroduction programs should take into account several important 

considerations. All beaver ponds sampled as part of this study were less than 300 m2 in 

surface area, which means that the results from this study are only informative about 

smaller beaver ponds. Larger beaver ponds are likely to have different characteristics 
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that can drastically affect habitat use and preference. Beaver dams also have the potential 

to adversely affect the movement of anadromous fish (Gard 1961; Kemp et al. 2012; 

Mitchell and Cunjak 2007; Tambets et al. 2005; Taylor et al. 2010; Thorstad et al. 2007). 

As a result, beaver reintroduction programs are best suited for streams with strong spring 

and fall flows that will mitigate the potential for beaver dams to become serious 

migration barriers (Parker and R0nning 2007). Finally, beavers are well known to come 

into conflict with people (e.g., flooding land and roads) and should only be reintroduced 

back into areas where there is a low probability for conflict to occur (Kemp et al. 2012; 

Knudsen and Hale 1965; Macdonald et al. 2000; McKinstry and Anderson 2002). 
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