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ABSTRACT 

 

FULL INTERPRETABLE MACHINE LEARNING METHOD 

WITH IN-LINE COORDINATES 

 

by 

 

Justin Phan 

 

November 2021 

 

This thesis explores a new approach for machine learning classification task in 2-

dimensional space (2-D ML) with In-line Coordinates. This is a full machine learning 

approach that does not require to deal with n-dimensional data in n-dimensional space.  

In-line coordinates method allows discovering n-D patterns in 2-D space without loss of 

n-D information using graph representation of n-D data in 2-D. Specifically, this thesis 

shows that it can be done with In-line Based Coordinates in different modifications, 

which are defined, including static and dynamic ones. Some classification and regression 

algorithms based on these In-line Coordinates were explored. Two successful cases 

studies based on benchmark datasets (Wisconsin Breast Cancer dataset and Page Block 

Classification dataset) demonstrated the feasibility of the approach.  This approach helps 

to consolidate further a whole new area of full 2-D machine learning with a respective 

methodology. In-line coordinates method has advantages to actively include the end-users 

into the discovering of models and their justification. Another advantage is providing 

interpretable ML models. 
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CHAPTER I 

 

INTRODUCTION 

 

 

Interpretable Machine Learning (ML) is a major focus in Machine Learning 

domain these days [1, 2]. The approaches range from explaining black box models to 

building explainable models from scratch. One of the attractive options is building 

machine learning models using visual means. However, it is challenging, because data in 

machine learning are multidimensional, which we cannot represent graphically in 2-D 

coordinates. So, tools are needed which will allow to do this efficiently. Traditional 

methods which convert n-D data to two dimensions are lossy, not preserving all 

multidimensional information . In contrast representation of n-D data using General Line 

Coordinates (GLC) is lossless [3]. This visual representation opened the opportunity to 

do full multidimensional machine learning in two dimensions without loss of information. 

The advantage of this approach is two-fold. In simple situations, it can discover the 

pattern visually just by observing these data visualized in GLC. In more complex 

situations, which are common in ML, it can discover patterns in 2-D representations 

using new 2-D ML methods. It is growing into a whole new field of machine learning. 

This thesis is in this realm with the focus on a specific type of General Line Coordinates 

that is the In-line Coordinates [3]. This thesis is going to explain In-line Coordinates in 

chapter II.  
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In the series of prior work at CWU [4, 2, 5, 6, 7, 8] the feasibility of full 2-D ML 

with different types of General Line Coordinates (Shifted Paired Coordinates, Elliptic 

Paired Coordinates, CPC-R and GLC-L) were demonstrated. The works in this realm can 

traced to [9] for Parallel Coordinates and [10] for 2-D modeling of non-image data. Often 

2-D studies in ML cover only simple 2-dimensional examples to illustrate ML algorithms 

visually. Next, visual analytics studies have been very active in exploring Parallel 

Coordinates for tasks related to clustering [11], but much fewer for supervised learning, 

which is the focus of our study. The works in this area include [12, 13, 14]. 

It was suggested in [2] to consolidate all such studies within a general concept, 

which can be called a full 2D ML methodology. Traditionally 2D studies in machine 

learning were considered as just auxiliary exploratory data/model visualization with loss 

of n-D information mostly afterwards or before the actual machine learning. It was 

assumed that in 2-D it is losing n-D information, and it needs full n-dimensional analysis 

in n-D space to construct ML models. The full 2-D ML methodology shows that it's not 

necessary. This methodology goes beyond visual knowledge discovery, which is 

advocated in [3]. It expands the studies from visual discovery by a human supported by 

ML methods, to a full scope of machine learning methods, for discovering full patterns 

analytically in 2-D.  
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Section II defines main concepts of In-line coordinates. Section III presents Box 

Classification (BC) algorithm, Linear Classification and Regression algorithm. Section 

IV covers the case study with a benchmark Wisconsin Breast Cancer (WBC) data from 

UCI ML repository [15] that demonstrates the feasibility of the approach. WBC data has 

699 cases with 16 cases missing at least one attribute value. At this moment, cases with 

missing attributes are removed manually to test the efficiency of BC algorithm. A proper 

case consist of nine attributes. There are 444 benign cases and 239 malignant cases in 

WBC dataset. Section V presents results of the Page Block Classification (PBC) using 

BC algorithm and compares its results with other algorithms. Section VI presents the 

conclusions. 
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CHAPTER II 

 

DEFINITION: IN-LINE BASED COORDINATES SYSTEM  

 

To find the best possible visual representation of n-D data, this thesis attempts 

several mappings of coordinates to visual representations using different order of 

coordinates. The General Line Coordinates defined in [3] allow drawing n coordinates 

axes in 2-D in a variety of ways: curved, parallel, unparalleled, collocated, disconnected, 

etc. GLCs include In-line Coordinates (ILC) shown in Fig. 1, which are similar to 

Parallel Coordinates, except that the axes x1,x2,…xn are horizontal, not vertical. All 

coordinates are collocated on the same line and might overlap. A sequence of directed 

curves or polylines satisfies the requirement of lossless representation of n-D point in 2-

D. The curves/polylines of different heights and shapes can show additional information 

[3] such as the distance between adjacent attributes values, |xi - xi+1| like it is done in Fig. 

1 below. In-line Coordinates require the same number of nodes and links as Parallel 

Coordinates, which makes the scope of applicability of these methods similar.   

 

 

Fig. 1. Two 5-D points of two classes in 

In-line Coordinates. 

 

X1      X2                X3          X4       X5  
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The links between the nodes are directed edges, but arrowheads can be omitted 

when the direction follows the order of coordinates. To observe better the difference 

between n-D points of different classes, it can draw n-D points of one class above the 

coordinate line and n-D points of another class below (see Fig. 1). Tree location modes of 

ILC is considered: 

  (L1) Sequential ILC with coordinates located one after another (Fig. 1).  

  (L2) Collocated ILC with coordinates drawn at the same location with full 

overlap (Fig. 2a). 

         (L3) Generic ILC where some coordinates can be sequential, collocated, 

overlapping, or disjoined (Fig. 2b).  

(L4) Dynamic ILC with coordinated located dynamically as it is explained later. 

 
(a) Collocated ILC. 

 
(b) Generic ILC. 

Fig. 2. Options to locate coordinates in 

In-line Coordinates. 

 

In L3, a given n-D point c can be collapsed to a single 2-D point on ILC by 

selecting a specific ILC overlap [3]. It is a useful visual property when n-D point c is a 

center point of the class and other n-D points of this class are concentrated next to it. 

Reordering coordinates X1-Xn is another option, to make the patterns of interest more 

visible.  

X1 X2 X3 X4 

X1            X2              X3                  X4 
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There are several options to construct links that connect points xi on coordinates 

Xi by assigning meaning to their characteristics such as its width and height to convey 

additional information. See an example in Fig. 3a for a 7-D point with values of x3 and x4 

encoded as the height and the width of the line that connects (x1,x2), and values of x6 and 

x7 the height and width of the line that connects (x2,x5). Here, only three coordinates x1, x2 

and x5 are directly encoded in the base line of ILC making it shorter. Fig. 3b and Fig. 4 

show other options. Fig. 3b uses the lengths of sides of the line that connects points x1 

and x2 to encode values of x3 and x4, instead of using its width and height. Similarly, 

lengths of sides of the line that connects points x2 and x5 encode values of x6 and x7. The 

main goal of In-line Coordinates is supporting discovering n-D pattern and rules with 

highest possible values of precision and recall. Fig. 3 shows alternative designs of In-line 

Coordinates.  

 

 

(a) x3,x4,x6 and x7 encoded by the height and width 

of the link lines that connect (x1,x2) and (x2,x5).   

(b) x3,x4,x6 and x7 encoded by of length of sides of 

the link lines that connect (x1,x2) and (x2,x5).   

Fig. 3. 7-D point x = (x1,x2,x3,x4,x5,x6,x7) = (1,2,3,5,3,4,2) in two ILBCs. 

 

 

 These visual representations are not a pure ILC representation with a single 

baseline anymore but rather ILC based on it, therefore it is called In-Line Based 

Coordinates (ILBC) [2] which is presented below.  

x1=1 x2=2 X1 X2 

x3=3 

x4=5 

X5 x5=3 

x6=4 

x7=2 

x1=1 x2=2 X1 X2 

x3=3 x4=5 

X5 x5=3 

x6=4 
x7=2 
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Fig. 4a simplifies Fig. 3b, by making sides vertical, and Fig. 4b simplifies this 

figure further by removing vertical lines, which go down to the baseline and keeping only 

solid lines.  

  
(a) Vertical simplification of Fig. 3b.  (b) Minimized representation.  

Fig. 4. 7-D point x = (a,b,c,d,e,f,g) = (1,2,3,5,3,4,2) in ILC2 with vertical sides. 

 

Also, a more generic simplified notation is used in this figure with attributes 

named from a to g, because any of the coordinates {xi} can be assigned to be on the 

baseline or on link lines and in any order. This figure allows a full restoration of all seven 

values and requires for them only four nodes and three edges, while Parallel Coordinates 

require seven nodes and six edges.  

The visual representation in Fig. 4 with vertical sides can be interpreted as 

follows. All vertical values a-g are located on respective coordinates A-G, which are 

vertically collocated on what is commonly known as Cartesian y-coordinate, while the 

ILC baseline occupies the Cartesian x-coordinate. Thus, ILBC in Fig. 4 is a combination 

of two ILCs – horizontal and vertical. It will denote such coordinates ILC2.  

Next, ILC2 compares with Shifted Paired Coordinates (SPC) [3] on the same 7-D 

point shown in Fig. 5. In Fig. 5a SPC d, e, f, and g are also vertical, but start at the origins 

of individual horizontal coordinates, which are paired. SPC also requires 4 nodes and 3 

a=1 b=2 

d=3 

e=5 

c=3 

f=4 

g=2 

a=1 b=2 

d=3 

e=5 

c=3 

f=4 

g=2 
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edges that are longer than in ILBC in Fig. 4b. In ILC and ILBC above, the location of all 

coordinates on the horizontal baseline is fixed with their values located on this baseline.  

 
(a)  

 
 

                        (b)                (c) 

Fig. 5. (a) 7-D point x = (a,b,c,d,e,f,g) = (1,2,3,5,3,4,2) in SPC, (b) in ILBC partial 

dynamic,  (c) in fully dynamic. 
 

It is called a static mapping [3]. In the dynamic mapping of the given n-D point 

x, the location of the next value xi+1 in its 2-D graph x* depends on the location and value 

of prior xi. It is a common concept for all General Line Coordinates [3], not only ILC and 

ILBC. 

Fig. 5b shows the same 7-D point. Here the coordinate B starts at point a=2 of 

coordinate A with value b=2 located at distance two from point a=1. Respectively 

coordinate C starts at point b=2 with point c=3 located at the distance 3 from b=2. The 

respective vertical coordinates d, e, f, and g start at the origin of the horizontal baseline. 

Thus, all of them are collocated and static. As horizontal coordinates are dynamic, but 

 

a=1 b=2 

d=3 

e=5 

c=3 

f=4 

g=2 

a=1 b=2 

d=3 

e=5 

c=3 

f=4 

g=2 
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vertical are static, therefore, ILBC is called partial dynamic ILC2. Fig. 5c shows a full 

dynamic ILC2 where vertical coordinates are dynamic in the same ways as horizontal 

coordinates, where the location of e, f and g points depends on the location of their prior 

points.   

Figs. 6 and 7 show WBC data of two classes ILC where vertical coordinates are 

collocated and horizontal are static. Figs. 6a and 7a are example of one case from WBC 

dataset for Figs. 6b and 7b. Drawing classes “mirrored” in Fig. 6 allows to compare and 

see the difference and similarities of patterns of two classes without their occlusion. Fig. 

7 shows much better separation of WBC classes in fully dynamic ILC2. 

  

(a)  

 

(b) 

Fig. 6. (a) Example coordinates. (b) Wisconsin Breast Cancer dataset of two classes 

“mirrored” in partial dynamic ILBC. 
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(a)  

 

(b)  

Fig. 7. (a) Example coordinates.  

(b) Wisconsin Breast Cancer dataset in fully dynamic ILC2. 
 

 

 

The general formula to locate pairs (xi, xj) in partial dynamic IL2 is given by 

mapping L as follows: 

L(xi, xj) = (x1+x3+…+ xi, xj). 

Respectively the general formula to locate pairs (xi, xj) in fully dynamic ILBC is 

given by mapping L as follows: 

L(xi, xj) = (x1+x3+…+ xi, x2+x4+…+ xj). 

Example: In Fig. 7a, the red point value (5,1) presents x1 and x2. x3s, x4s, x5s, x6s, 
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x7s, x8s, x9s, and x10s are the representation of x3, x4, x5, x6, x7, x8, x9, and x10 in this partially 

dynamic In-line coordinates.  The yellow point value (6,2) presents 𝑥3𝑠 and 𝑥4𝑠 because 

the position of 𝑥3𝑠  depends on where 𝑥1 is. This means that to retrieve the true value of x3, 

value of 𝑥3𝑠 is subtracted to the value of x1. Therefore, 𝑥3 = 𝑥3𝑠 − 𝑥1 = 6 − 5 = 1. This 

process repeats for all the remain points where 𝑥5, 𝑥7, 𝑥9 depend on 𝑥3𝑠, 𝑥5𝑠, 𝑥7𝑠, 

respectively. This process also repeats for all the even attribute such as  𝑥4, 𝑥6, 𝑥8 depend 

on 𝑥2, 𝑥4𝑠, 𝑥6𝑠, respectively. With that, the drawn 𝑥 values are 𝑥 =

(5,1,6,2,8,3,11,4,12,5), and the true 𝑥 values are 𝑥 = (5,1,1,1,2,1,3,1,1,1).  

Next, weighted dynamic ILBC is introduced with is given by mapping Lw as 

follows: 

Lw(xi, xj) = (w1x1+ w3x3+…+ wixi, w2x2+ w4x4+…+ wjxj). 

where W={wi} is a set of weights assigned to coordinates. 

Example: Euclidian between two points can be used as W. 

 

  



 

12 

 

CHAPTER III 

 

CLASSIFICATION AND REGRESSION ALGORITHMS WITH IN-LINE 

COORDINATES 

 

 

Box Classification Algorithm 

 

In the published paper [2], Dr. Boris Kovalerchuk and Hoang Phan introduced BC 

algorithm. The main idea of the BC algorithm is finding a good box with high purity and 

a large number of cases, and record this box, then remove all cases, which are in this box, 

and repeat the process of finding other good boxes in remaining cases and continue this 

process until all cases of all classes will be in one of the good boxes. This process is 

interactive and partially automated. Automation includes computing parameters of the 

candidates for the good boxes.  

The BC algorithm operates on n-D data visualized in ILBC in the following major 

steps.  

 

Step 1: Search/discover “good” boxes Bi in these visualizations that cover dataset 

cases as pure as possible. Good box’ criterion is usually decided by number of cases that 

it covers and its purity. For instance, the exhausted grid search is used to discover boxes 

with WBC dataset. With WBC dataset, a “good” box is discovered when it covers at least 

more than 10% cases of the remaining data. The search of boxes and rules is a sequential 

hierarchical process for each class. If there are multiple “good” boxes, then these “good” 
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boxes ranking is based on its purity. Purity of the box is the number of cases of each class 

in the box the ratio of the cases of the dominant class to the number of cases of all other 

classes in the box. Here it is assumed that the graph x* of n-D point x crosses box B. In 

the rule below, it will be denoted x B for short. This definition leads to simpler 

interpretation of rules based on such boxes, rather than an alternative definition which 

requires that only an edge to graph x* crosses the box Bi. 

Step 2: Form basic BC rules with the discovered boxes:  

Ri: if x Bi  x Class Ci. 

For WBC dataset, there are 13 rules as presented in table 2.  

(3.1) 

The general format of the rules is:  

Ri: if x Bi & x (Bm  Bp …Bt)  x Class Ci. 

 

(3.2) 

 Here Bi is a current “good” box, and other boxes are prior “good” boxes with 

cases from these boxes removed before Bi is searched. Bm, Bp, and Bt are other boxes. 

Step 3: Test BC rules on independent data. 

Step 4: Pruning a set of discovered rules to decrease overfitting. 

The output of Iterative Visual Logical Classifier algorithm results in series of 

rectangular areas. Fig. 8a shows one case and Fig. 8b shows more cases from WBC 

visualized by the IVLC algorithm.  
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(a)  

 

 
(b)  

 

 

Fig. 8. (a) Example coordinates.  

(b) Examples of boxes discovered in Wisconsin Breast Cancer dataset. 
 

The main steps of discovering boxes are: 

Step 1.1. Create a grid in the ILC area. Each cell of the grid is a box. With WBC dataset 

box size is increased vertically and then horizontally after the full grids is search for each 

box size.  

Step 1.2. If the number of boxes (grid cells) and the number of n-D points is relatively 

small compute purity of each box. For a large number of boxes and n-D points use 

optimization and heuristic algorithms such as genetics algorithms.  

Step 1.3. For each class create a list of boxes where this class dominates. All boxes in this 

list must cover more cases than the desired percentage of the remaining cases. For 

instance, WBC dataset boxes must cover more than 10% cases of the remaining data. 
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Step 1.4. For a given class pick up a box with highest ranking. Box ranking is based on 

its purity. Highest ranking box is used to classify the remaining cases which have not 

been classified.  

The main steps of forming basic BC rules with the discovered boxes: 

Step 2.1. Create a classification rule with highest ranking box accordance with (3.1).  

Example: for WBC dataset, there are 382 green cases and no red cases that crosses box 

B1 (Fig. 10). Therefore, rule R1 is created as follow, 

R1: xB1  x G (Benign, 382 cases).    (3.1.1) 

More boxes and rules are identified later in table 1. 

Step 2.2. Exclude all cases that are in these boxes. 

Step 2.3. Conduct step 1.1 to step 2.2 for all remaining cases.  

The pruning step is to deal with many “mini” boxes that contain fewer than a 

certain percentage of the total original dataset with low level of generalization to avoid 

overfitting and data memorization. With Wisconsin Breast Cancer dataset, it was decided 

intuitively that if a box classified fewer than 17 cases of the total number of cases which 

is 683 then it is very likely that this box is overfitting the data. This problem is also 

known for decision trees. Without control the depth of decision tree and the number of 

cases in each terminal node would lead to many terminal nodes with only few cases in 

each of them. The pruning of decision trees removes overfitting but decreases the 

accuracy of classification. 

Example: box B5 classified only 14 red cases (about 2.05% of 683 cases). This is 

too few cases, so box B5 is likely overfitted WBC data. 
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The step 4 of the BC algorithm employs a version of this pruning approach which: 

(a) associates “mini” boxes with the larger boxes interactively or (b) refuses to predict 

cases that belong to “mini” boxes. The association (a) is conducted as follows. Consider 

two boxes B1 and B2 for class C1 the visualization allows to see their mutual location and 

to create a joint rule based on them. If boxes are adjacent a single bigger box B1,2 is 

produced from them. If the boxes are not adjacent that a new rule is formed: 

If x B1 or x B2 then x  C1 

The general for of a new rule is,  

If x B1  B2 then x  C1 

The interactivity of the BC algorithm has an advantage of allowing the end-users 

to observe “mini” boxes and decide to follow (a) or (b), 

R1: xB1  x G (Benign, 382 cases). 
 

Linear Classification and Regression Algorithm. 

Design of rules based on boxes have limitations. One of them is locality of each 

box, i.e., the box covers only cases that are in this box. Typically, several boxes are 

needed to cover all data, while a single linear classifier can cover all data if data are 

linearly separable. The goal of this section is proposing an analog of linear classifier in 

ILC. Fig. 9 illustrates the proposed approach. First, a black line is built which is used to 

project all cases of both classes to this line. If the projected endpoints of cases of one 

class C mostly concentrate on the one side of the discrimination blue line, then a linear 

discrimination model M is discovered where T is threshold on the black line shown with 

the blue discrimination line: 
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M(x) > T  x C (3.3) 

Another more common linear discrimination model for two classes C and Q is: 

M(x) > T  x C else x Q (3.4) 

 

The model (3.3) only covers n-D points x where M(x) > T. This is the situation in 

Fig. 11 for red class above the blue line. This means that if a single model (3.4) cannot be 

built, several models like (3.3) need to be built that may require different black lines, 

where endpoints are projected as shown in Fig. 9b. Moreover, it can relax a requirement 

that only endpoints are projected. It can project some intermediate nodes xk and xu of 

graph of x* for k <n and u <n, where n is the dimension of n-D point x getting models 

like, 

M(xk) > T  x C. (3.5) 

M1(xk) > Tk & M2(xu) > Tu  x C. (3.6) 

Those intermediate points can be found by the BC algorithm presented above. 

Below an ILC classification and regression algorithms are presented. Figs. 9a and 9b look 

different because the black lines are drawn differently, which allow to optimize the 

prediction parameters and accuracy. The endpoints of the black lines are chosen so that a 

higher precision accuracy can be obtained.  
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(a)                                                                         (b) 

Fig. 9. Linear Classification and Regression algorithm with projection line at 

different angles in full dynamic ILP2. 
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CHAPTER IV 

 

CASE STUDY FOR BOX CLASSIFICATION ALGORITHM IN PARTIAL 

DYNAMIC ILC2. 

 

This section presents the results of the computational experiment for discovering 

classification rules for WBC data encoded in partial dynamic ILC2 using the BC 

algorithm.  The discovered 13 pure boxes are presented in table 1. These rules can be 

simplified and pruned interactively. With WBC dataset, exhaustive grid search is used to 

discover the hyper-parameters in table 1 (column 2 and 5). Exhaustive grid search can be 

used with WBC dataset because WBC dataset has a low-resolution attribute with only ten 

values in each attribute. With higher dimension and high-resolution dataset, exhausted 

grid search will take much greater computational time because there will be much more 

cells in the grid.  We avoided such computations by proposing a heuristic algorithm that 

is described in section V. The boxes cover all WBC cases. Values x1, x2, y1, y2 identify 

left, right, bottom, and top corners of the box within ILC2 display.  

 
Table 1. Discovered boxes ILC2. 

Box x1, x2, y1, y2 Cases Box x1, x2, y1, y2 Cases 

B1 15,20.5,1,1.5 382 B2 23.5,39.5,8.5,10 166 

B3 1,3.5,0.5,2 28 B4 20,22.5,6,6.5 26 

B5 9.5,10,5,6.5 14 B6 16,21,0.5,2 18 

B7 17.5,18.5,3,3.5 23 B8 14.5,17,2.5,3 7 

B9 28.5,29,2.5,3.5 4 B10 17.5,18.5,3,3.5 10 

B11 14.5,15,5.5,6 4 B12 26.5,27,7,7.5 1 

B13 28,28.5,0.5,9.5 10    
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Table 2 presents the rules constructed from these boxes in the hierarchical process 

of the BC algorithm that was described above. The benign class is denoted as B and is 

drawn as green with letter G used to identify this class in table 2. Respectively, the class 

malignant is denoted by M and R (red) for short. These rules are created using the same 

concept describe in example (3.1.1). 

 
Table 2. Rules R1-R13 with precision P=100%.  

Benign, B (green, G) class rules.   

R1:  x B1 x G (382 cases) 

R3:  x B3 x G (28 cases) 

R6:  x B6  & x B2B4B5 x G (18 cases) 

R8:  x B8  & x B2B4B5B7B10B13 x G (7 cases) 

R9:  x B9  & x B2B4B5B7B10B13 x G (4 cases) 

R11: x B11 & x B2B4B5  x G (4 cases) 

R12: x B12 & x B2B4B5B7B10  x G (1 case) 

Malignant, M (red, R) class rules. 

R2:  x B2 x R (166 cases) 

R4:  x B4 x R (26 cases) 

R5:  x B5 & x B1B3 x R (14 cases) 

R7:  x B7 & x B1B3B6 x R (13 cases) 

R10: x B10 & x B3B6B8B9 x R (10 cases) 

R13: x B13 & x B1B3B6B8B9B11B12 x R (10 cases) 

 

The boxes and rules in tables 1 and 2 cover all 444 B cases and 239 M. Boxes B1-

B4 and respective rules R1-R4) cover most of the cases (602 cases) with 100% precision 

without any misclassified cases. This means that 88.14% of all cases are classified by 

simplest single box rules without any other boxes involved. The other rules involve 

“negated” boxes requiring that the case does not belong to these boxes to satisfy the rule. 

Some rules in table 2 such as rule R8 have simplified forms too with reduced “negated” 

boxes, because all cases of some boxes are covered by other boxes in these rules.  

Table 2 shows that class G has more rules/boxes with smaller coverage (four rules 

that cover from one to seven cases with total 16 cases covered by these rules). Boxes can 

be called “mini” boxes. In contrast, class R has no rules and boxes with such small 
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coverage. Its four rules with smaller coverage include from 10 to 14 cases with 47 total 

cases. It means a better generalization for R class, than for G class, in these rules. When 

rules are analyzed with large coverage, the situation is the opposite. 

The first three G rules cover 428 cases (96.4% of G cases), while the first two R 

rules (rules R2 and R4) cover 192 cases, 80.3% of R cases). Next, the rules that cover a 

small number of cases are more complex. They include two to seven “negated” boxes. 

This is rather a memorization of cases, than their generalization.  

Such complex rules are needed for a small number of cases. Domain experts 

correctly captured/engineered a few critical attributes. This can indicate superior human 

abilities to generate informative features manually. While, deep learning algorithms can 

automatically discover informative features, often it is challenging to interpret and 

explain them. 

A comparable Decision Tree (DT) built on the 90% of the same data is %97.40 

accurate too but has multiple terminal nodes with few cases in each of them as presented 

in the appendix B. It is rather overfitting and data memorization. This tree has a total of 

35 nodes, 29 terminal nodes with 10 of these terminal nodes contain seven or fewer cases 

[16]. In contrast the BC algorithm produced 13 boxes/rules, and only four of them 

contain seven or fewer cases on all WBC data.  

Figs. 10-16 illustrate all boxes showing the cases, which cross these boxes. In 

addition, Figs. 12-16 show also the cases of other colors, which are removed before 

discovering a given box by requiring not to belong to a set of prior boxes, listed in the 

rules in table 2.  
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Example: In Fig. 10, 382 green cases is classified with box B1.  

The BC algorithm removed theses 382 green cases before the next search. Because 

BC algorithm is sequential hierarchical process, it searches for each box in the sequential 

order such as B1, then B2 and then B3 and so on. This means that after box B1, there will 

be 62 green cases remaining out of 444 total green cases for the next search. Because of 

the small number of cases left, there is a good chance that a rule for them can be 

overfitting.  Therefore, it will be beneficial to analyze the number of green cases 

classified without removing cases of the prior boxes to get another rule with higher 

coverage. The BC algorithm precision can be different depending on hierarchical order. 

The BC algorithm hierarchical order can be changed depend on how boxes’ criteria is 

decided by user.  

 

Figs. 10-11 represent situations when boxes are discovered without preconditions 

on other boxes. These pictures show boxes B1, B2, B3, and B4 with only cases that cross 

them. Figs. 12-16 represent situations with boxes discovered with a precondition that 

cases that cross prior boxes. In Fig. 17, this graph shows the data of the patient #1000025 

on fully dynamic In-line Coordinates. The X-coordinate represents the value of x1, x4, x7, 

and x10. The y-coordinate represents the value of x2, x3, x5, x6, x8, and x9. All attribute of 

patient #100025 is demonstrated in Fig. 17, such as x1=5, x2=1, x3=1, x4=1, x5=2, x6=1, 

x7=3, x8=1, x9=1, and x10=1. All patients in WBC dataset are represented in this manner.  

In these figures for each box Bi, the first picture shows only cases which cross box 

Bi after removing cases from B1-B4 and the second picture also shows cases from the 

opposite class that cross Bi without removing cases that cross prior boxes. For example, 
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Fig. 12 first shows 14 red cases that cross box B5 and then it shows both read and green 

cases without removing 382 cases that cross box B1 and 28 cases that cross box B3. For 

box B6 the first picture shows 18 green cases, and the second picture shows both green 

and red cases without removing red cases from boxes B2 and B4. 

 

Box B1: 382 green cases. 

 

Box B2: 166 red cases. 

Fig. 10. Boxes B1 and B2. 
 

 
Box B3: 28 green cases. 

 
Box B4: 26 red cases. 

Fig. 11. Boxes B3 and B4. 
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Box B5: 14 red cases.  

 

 
Box B6: 18 green cases. 

Fig. 12. Boxes B5 and B6. 
 

 

 
Box B7: 23 red cases. 

 

 
Box B8: 7 green cases. 

Fig. 13. Boxes B7 and B8. 
 

 

 

 

 
 

 

 

 
 

Box B9: 4 green cases. 

 

 
Box B10: 7 green cases. 

Fig. 14. Boxes B9 and B10. 
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Box B11: 4 green cases. 

 
 

 
Box B12: 7 green cases. 

Fig. 15. Boxes B11 and B12. 
 

 

Box B13: 10 red cases. 

 

 

Fig. 16. Box B13. 

 

 
Fig. 17. Example coordinates for Figs.10-16.  

 

 

Pruning. Boxes B9, B11 with four green cases each and box B12 with one green 

case can be used to prune the set of rules by creating modified rules, 

R9M: xB9  x R (47 red /4 green). 

R11M: xB11  x R (28 red /4 green). 
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R12M: xB12  x R (52 red /1 green). 

Here xBi means that polyline for n-D point x crosses the box Bi. 
 

These rules have a low error rate. Currently, the pruning process is interactive, 

therefore the end-users can explore them and accept if the error rate is tolerable.  

Joining rules. The next task is decreasing the number of rules, that is demonstrated 

on 13 rules shown above. The proposed approach joins rules by combining them 

including the use of else condition. In contrast with the pruning, this process does not 

introduce any error. The result is shown in table 3.  

The steps of the Rule Joining (RJ) algorithm are: 

Step 1: Combine rules with a single rectangle of a given class.  

Example: R1,3: x B1  B3  x G (410 cases). 

Step 2: Find rules in the opposite class that are conditioned by rectangles used in 

Step 1.  

Example: Rule 5 is created after BC algorithm have removed 602 samples (410 

green cases and 192 red cases) from boxes B1, B2, B3, and B4. Without removing these 

602 samples, some green samples crossing through box B5. Therefore, rule R5 is 

conditioned by xB1  B3.  

Step 3: Combine rules from Steps 1 and 2.  

Example: R1,3,5: x B1  B3  x G (else xB5  xR) (428 cases). 

Here rule R5 covers only 14 cases that can be viewed as a potential overfitting, 
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while rule R1,3,5 covers 428 cases. The else condition makes R5 a part of the larger rule.  

 
Table 3. Rules after joining. 

Expanded benign (green, G) class rules. 

R1,3: x B1B3 x G (410 cases) 

R1,3,5: x B1B3 x G (else x B5 x R) (424 cases) 

R8,9: x B8B9 & x B2B4B5B7 x G (11 cases) 

R11,12: x B11B12 & xB2B4B5 x G (5 cases) 

Expanded malignant (red, R) class rules. 

R2,4: x B2B4 x R (192 cases)  

R2,4,6: x B2B4 x R (else x B6 x G) (210 cases) 

R7: x B7 & x B3B6 x R (13 cases) 

R2,4,8: xB2B4 x R (else x B8 & x B5B7 x G) (199 cases) 

R2,4,6,8: x B2B4 x R (else x B6B8 & x B5B7 x G) (217 cases) 

R10: x B10 & x B3B6B8B9 x R (10 cases) 

R13: x B13 & x B1B3B6B8B9B11B12 x R (10 cases) 

 

The analysis of rules in table 3 shows that seven rules R1,3,5, R8,9, R11,12, R2,4,6,8, R7, 

R10, and R13 are equivalent to 13 original rules. Here rules R8,9, R11,12, R10, and R13 cover 

10 or fewer cases with total 36 cases (16 green and 20 red). Excluding these rules and, 

respectively refusing to classify cases that satisfy them will eliminate potential 

overfitting.  

Model Evaluation with Worst-case K Fold Validation Approach. 

 

k-fold cross validation. So far, the case study was conducted on the whole WBC 

dataset. What will be the accuracy of the BC algorithm in k-fold cross validation (k-fold 

cross validation) on these data? This question can be answer in a non-traditional way. It is 

an attempt to find the worst and best-case estimates for stratified 10-fold cross validation 

as follows. The formal concept of worst-case cross validation estimate, based on the 

Shannon function, was introduced in [17]. The motivation of getting the worst-case 

estimates is coming from the fact that k-fold cross validation only tests a small fraction of 

splits of data into training and validation sets, giving potentially an inflated average 

estimate, which can be misleading to life-critical applications such as cancer diagnostics.  
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First, consider a validation fold, which includes all 16 cases that are in “mini” 

boxes R8-R9 and R11-R12. These cases are likely overfitted and not generalized well by 

rules. Therefore, they are good candidates for the worst fold for the BC algorithm.  The 

training data in the remaining 9 folds do not contain these cases. Thus, these “mini” 

boxes will not be discovered by the BC algorithm because all their cases are not in the 

training data. Assume that this algorithm discovered all other boxes on training data that 

contain 90% of all WBC with a rule,   

R12M: xB12  x R (52 red /1 green). 

How will the BC algorithm classify cases from these “mini” boxes? There are two 

options: (1) refusal and (2) make an error by using modified rules like R12M because R12M 

misclassify these cases. In stratified 10-fold cross validation, a training-validation split of 

cases: 615 – 68. In the worst validation fold 16 cases are misclassified with 76.47% 

accuracy. All other folds do not have any misclassified cases (100% accuracy), because it 

is assumed that all other boxes are discovered. The average accuracy in all 10 folds will 

be average of 76.47% and 100% taken nine times – 97.65%. If BC algorithm refuses to 

classify these 16 cases, then the precision will be 100%. Both situations (1) and (2) can 

be considered as the best-case estimates.  

Next, it was relaxed the assumption that all non-mini boxes Bi are discovered fully.  

Assume that smaller boxes Bi` are discovered, which do not include all 52 remaining 

cases in the worst fold. Then the accuracy in the worst fold will be 0% with 100% 

accuracy in all 9 other folds with the average accuracy of 90%. This is a worst-case 

estimate. The average estimate will be found between the best and worst estimates.  
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A more detailed analysis is also possible, which involves visual analysis with 

possible zooming. Let us consider the largest box B1 with 382 green cases. In stratified 

10-fold cross validation, only 38 cases from this box are left for the validation fold. Fig. 

10 shows the location of this box. The visual analysis allows us to identify and count 

lines which are at the edge of the box. If that number is fewer than 38 cases, then 

misclassifying 38 cases is impossible, when B1 is learned with a subset of data. 
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CHAPTER V 

 

ANALYSIS EXPERIMENTAL RESULTS AND COMPARISON WITH PUBLISHED 

RESULTS BOX CLASSIFICATION ALGORITHM. 

 

5.1. Box Classification Algorithm for Wisconsin Breast Cancer Dataset with Stratified 

10-Fold Cross Validation. 

 

WBC dataset was described in chapter one and all discovered WBC rules were 

presented above in tables 2-3.This section analyzes rules R1,3 and R2,4 discovered by BC 

algorithm which classify above 88% of WBC dataset. To get the even number of 

coordinates, attribute nine was used twice. Table 4 presents results of BC algorithm on 

WBC data for rule R1,3 that predicts green class based on all 444 green (benign) and 239 

red (malignant) of WBC data. Table 5 presents hyper-parameters of R1,3. WBC rule R1,3 

is: 

R1,3: x B1  B3  x G (Benign). 

Table 4. Precision and recall of rule R1,3 for all data. 

WBC dataset Rule precision (%) Rule recall (%) 

683 cases 100 92.34 

 
Table 5. Hyper-parameters of the rectangles B1 and B3 used in rule R1,3. 

Type of data used Hyper-parameters for B1 Hyper-parameters for B3 

Full dataset x1= 15, x2=20.5, y1=1, y2=1.5 x1=1, x2=3.5, y1=0.5, y2=2 

 

  



 

31 

 

Table 6. Number of cases that satisfy rule R1,3 (green rule) with boxes B1 and B3(BC algorithm, WBC data) in 

stratified 10-fold cross validation. 

90%:10% 

stratified 

random folds 

Red cases correctly classified by rule R2 Green cases misclassified as red by rule R2 

Training Validation Training Validation 

1 374 44 3 2 

2 375 40 1 0 

3 373 42 1 0 

4 373 42 1 0 

5 375 40 1 0 

6 374 41 1 0 

7 373 42 1 0 

8 375 40 1 0 

9 371 44 1 0 

10 373 42 1 0 

Mode 373 42 1 0 

 

Tables 6-7 present results of stratified 10-fold cross validation of BC algorithm on 

WBC data for rule R1,3 that predicts green class. Table 7 also presents the hyper-

parameters that was used for each fold. Each fold contains 400 green (benign) cases and 

215 red (malignant) cases from the total 444 and 239 cases, respectively. 

 

 

Table 7. Precision and recall of rule R1,3 for stratified 10-fold cross validation. 

90%:10% 

random 

stratified 

folds 

Rule precision Rule recall Hyper-parameters 

Training (%) Validation (%) Training (%) Validation (%) Hyper-parameters 

for B1 

Hyper-parameters 

for B3 

1 99.20 95.65 93.5  100  x1= 15, x2=20.8, 

y1=1, y2=1.7 

x1=1, x2=3.5, 

y1=0.7, y2=2.8 

2 99.73 100 93.75  90.91  x1= 15, x2=20.8, 

y1=1, y2=1.7 

x1=1, x2=3.5, 

y1=0.7, y2=2.8 

3 99.73 100 93.25  95.45  x1= 15, x2=20.8, 

y1=1, y2=1.7 

x1=1, x2=3.5, 

y1=0.7, y2=2.8 

4 99.73 100 93.25  95.45  x1= 15, x2=20.8, 

y1=1, y2=1.7 

x1=1, x2=3.5, 

y1=0.7, y2=2.8 

5 99.73 100 93.75  90.91  x1= 15, x2=20.8, 

y1=1, y2=1.7 

x1=1, x2=3.5, 

y1=0.7, y2=2.8 

6 99.73 100 93.25  91.11  x1= 15, x2=20.8, 

y1=1, y2=1.7 

x1=1, x2=3.5, 

y1=0.7, y2=2.8 

7 99.73 100 93.25  95.45  x1= 15, x2=20.8, 

y1=1, y2=1.7 

x1=1, x2=3.5, 

y1=0.7, y2=2.8 

8 99.73 100 93.75  90.91  x1= 15, x2=20.8, 

y1=1, y2=1.7 

x1=1, x2=3.5, 

y1=0.7, y2=2.8 

9 99.73 100 92.75  100  x1= 15, x2=20.8, 

y1=1, y2=1.7 

x1=1, x2=3.5, 

y1=0.7, y2=2.8 

10 99.73 100 93.25  95.45  x1= 15, x2=20.8, 

y1=1, y2=1.7 

x1=1, x2=3.5, 

y1=0.7, y2=2.8 

Average 99.67 99.57 93.38 94.56   
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Tables 8-9 presents results and hyper-parameters of BC algorithm on WBC data 

for rule R2,4 that predicts red class based on all WBC data without splitting to training and 

validation subsets. This WBC rule R2,4 is: 

R2,4: xB2 B4  xR (Malignant). 

Table 8. Precision and recall of rule R2,4 for all data. 

WBC dataset Rule precision (%) Rule recall (%) 

683 cases 100 80.33 

 
Table 9. Hyper-parameters of the rectangles B2 and B4 used in rule R2,4. 

Type of data used Hyper-parameters for B2 Hyper-parameters for B4 

Full dataset x1= 23.5, x2=39.5, y1=8.5, y2=10 x1=20, x2=22.5, y1=6, y2=6.5 

 

Tables 10 and 11 present results of stratified 10-fold cross validation with hyper-

parameters for each fold of BC algorithm on WBC data for rule R2,4 that predicts red 

class. 

Table 10. Number of cases that satisfy rule R2,4 (red rule) with boxes B2 and B4 (BC algorithm, WBC data) 

in stratified 10-fold cross validation. 

90%:10% stratified 

random folds  

 Red cases correctly classified by rule R2 Green cases misclassified as 

red by rule R2 

Training Validation Training  Validation 

1 191 21 8 0 

2 192 20 9 0 

3 194 18 9 0 

4 192 20 9 0 

5 192 20 8 1 

6 192 20 8 1 

7 189 24 8 1 

8 190 22 8 1 

9 193 19 8 1 

10 193 20 7 2 

Mode 192 20 8 1 
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Table 11. Precision and recall rule R2,4 for stratified 10-fold cross validation. 

90%:10% 

random stratified 

folds 

Rule precision Rule recall Hyper-parameters for 

B2 

 

Hyper-parameters 

for B4 

 
Training (%) Validation (%) Training (%) Validation (%) 

1 95.98 100 88.84 87.5 x1= 23, x2=39.5, 

y1=8, y2=10 

x1=16, x2=22.5, 

y1=6, y2=6.5 

2 95.52 100 89.30 83.33 x1= 23, x2=39.5, 

y1=8, y2=10 

x1=16, x2=22.5, 

y1=6, y2=6.5 

3 95.57 100 90.23 75.00 x1= 23, x2=39.5, 

y1=8, y2=10 

x1=16, x2=22.5, 

y1=6, y2=6.5 

4 95.52 100 89.30 83.33 x1= 23, x2=39.5, 

y1=8, y2=10 

x1=16, x2=22.5, 

y1=6, y2=6.5 

5 96.00 95.24 89.30 83.33 x1= 23, x2=39.5, 

y1=8, y2=10 

x1=16, x2=22.5, 

y1=6, y2=6.5 

6 96.00 95.24 89.30 83.33 x1= 23, x2=39.5, 

y1=8, y2=10 

x1=16, x2=22.5, 

y1=6, y2=6.5 

7 95.94 96 87.91 100 x1= 23, x2=39.5, 

y1=8, y2=10 

x1=16, x2=22.5, 

y1=6, y2=6.5 

8 95.96 95.65 88.37 91.66 x1= 23, x2=39.5, 

y1=8, y2=10 

x1=16, x2=22.5, 

y1=6, y2=6.5 

9 96.02 95 89.76 79.17 x1= 23, x2=39.5, 

y1=8, y2=10 

x1=16, x2=22.5, 

y1=6, y2=6.5 

10 96.50 90.91 89.76 83.33 x1= 23, x2=39.5, 

y1=8, y2=10 

x1=16, x2=22.5, 

y1=6, y2=6.5 

Average 95.90 96.80 89.21 85.00   

 
 

 

5.2. Box Classification Algorithm for Page Block Classification Dataset with Stratified 

10-Fold Cross Validation. 

 

PBC dataset [15] has 5473 cases with 10 attributes each. There are 4913 cases 

from class Text (class C1), 329 cases from class Horizontal Line (class C2), 28 cases from 

class Graphic (class C3), 88 cases from class Vertical Line (class C4) and 115 cases from 

class Picture (class C5). This dataset is heavily imbalanced in the number of cases of 

classes that range from 28 to 4913 cases.  

  

5.2.1. Divide and Conquer Algorithm for Imbalanced PBC Data.  

 

To classify these imbalanced data, the divide and conquer approach is used with 

the BC algorithm with three steps.  
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Step 1: Class C2-C5 is combined into class C2345. Classify cases between class C1 and 

class C2345. This task is less imbalanced with 4913 cases in C1 and 560 cases in C2345 than 

the task with 5 classes C1-C5. 

Step 2: Classify cases between class C2 and class C345 that combines classes C3-C5 which 

is also less imbalanced: 329 cases in C2 vs 231 cases in C345.  

Step 3: Classify 231 cases in joint class C345 among three classes C3, C4 and C5.  

 

5.2.2. DT Guided (DTG) Algorithm for High-Resolution Dataset PBC Data. 
 

 

PBC is a high-resolution dataset where each attribute has a large number of 

values, e.g., some attributes have 5 digits in each value. In contrast, in WBC data, each 

value consists of a single digit where the exhaustive grid search needs to run only on 

1000 boxes. The exhaustive grid search in PBC data requires to run on a grid that is 

several orders of magnitude larger. So, the run time need to be decreased. In [6] a random 

selection of grid cells (boxes) was used to decrease search time. Here DT is used as a 

guide for finding promising boxes. The steps of the DT Guided (DTG) algorithm are as 

follows.  

Step 1: Build a DT on the same data. 

Step 2: Select high purity DT branches, where a single class highly dominates. 

Step 3: Built boxes based on those branches (one or more boxes from the branch). 

Step 4: Search for better boxes in the vicinity of boxes derived from the DT step (3).  
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The link between branches of the DT and the boxes is shown in [16]. Each branch 

of DT is a source of several boxes because boxes are two-dimensional, while each DT 

branch can have many attributes. 

The current implementation of step 3 starts from nodes of the branch that are close 

to the root of the DT because they typically cover more cases than the nodes which are 

closer to the terminal node. As an illustration consider the following branch of the DT for 

the 4-D point x= (x1,x2,x3,x4) with all xi[0,10], 

If (x1 > 5 & x3 > 6) & (x2 < 3 & x4 < 7) then x class 1. 

 

Then box B1 from (x1 > 5 & x3 > 6) and box B2 from (x2 < 3 & x4 < 7) are created.  

Respectively B1 is defined by conditions 10 x1 >5, 10  x3 > 6. For shorter notation 

below it writes only (x1>5 & x3>6) assuming that the other limit is a knows constant. 

 

5.2.3. BC Algorithm as a Generalization of Decision Tree Algorithm. 
 

 

DT and rules based on boxes serve the same goal of providing interpretable and 

easily visualizable models. The major limitation of models constructed by the DT 

algorithms is the need to select a start attribute manually (tree root). This narrows the 

class of models that can be discovered. It led to development of Random Forests (RFs) 

algorithms, where multiple DTs are combined by voting. RFs fundamentally expanded 

the class of models but with the cost of losing interpretability. The BC algorithm covers a 

wider class of models than DTs because they to do not require a root attribute. This is an 

advantage for the BC algorithm over the DTs. 
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5.2.4. ILC Box Visualization as a Richer Visualization of Decision Tree. 
 

 

The description of a DT as sequences of boxes is not only an alternative way to 

describe DT but also an alternative to visualize it in ILC as boxes. What is the advantage 

of this visualization of DT relative to traditional visualization of decision trees? A DT 

allows tracing each n-D point in the tree, but it does not visualize and distinct those n-D 

points in the tree. The box visualization allows it in ILC. It shows all cases that go 

through the boxes and fully represents the DT. It makes this visualization richer and more 

informative. ILC allows distinguishing DT branches by using distinct colors when all 

branches are visualized together or by showing each branch in the separate ILC.  

 

5.2.5. BC Algorithm to Decrease Overfitting. 
 

 
Table 12. Weighted precision for all classes with DT for PBC dataset. 

Class Weight (%)  Precision (%)  Classified cases  Weighted precision (%)  

  Training 

Class 1 89.14 98.05 3950 87.41 

Class 2 7.15 74.76 317 5.35 

Class 3 0.00 0.00 0 0.00 

Class 4 1.62 90.28 72 1.47 

Class 5 2.08 46.74 92 0.97 

All 100.00   4431 95.19 

  Validation 

Class 1 58.10 97.56 287 56.68 

Class 2 7.89 58.97 39 4.66 

Class 3 0.00 0.00 0 0.00 

Class 4 31.17 5.19 154 1.62 

Class 5 2.83 21.43 14 0.61 

All 100.00%   494 63.56 

  Testing 

Class 1 87.77 98.75 481 86.68 

Class 2 7.85 72.09 43 5.66 

Class 3 0.00 0.00 0 0.00 

Class 4 1.64 77.78 9 1.28 

Class 5 2.74 60.00 15 1.64 

All 100.00   548 95.26 
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Ideally the DT model will have a high accuracy without overfitting. In this 

situation, the box visualization provides a richer visualization of this DT. Much more 

often a DT model is not perfect but has insufficient accuracy and significant overfitting. 

Multiple DT branches may have terminal nodes which include just few cases rather 

memorizing data than learning the patterns. DT’s weighted precision in table 12 

demonstrates highly insufficient accuracy because there is no case from class 3 which is 

correctly classified. 

Pruning is a common way to decrease overfitting of decision trees but at the price 

of decreasing accuracy. The BC algorithm allows getting higher accuracy without 

pruning because it is not limited by the tree structure. 

5.2.6 Stratified10-Fold Cross Validation Experiment. 
 

 

For stratified 10-fold cross validation, PBC dataset is split into 90%:10% where 

90% used for into training and validation set and 10% for independent testing. Training 

and validation set was then split to 90% training set and 10% validation set.  

Tables 13 to 17 present the result of BC algorithm 1st fold in stratified 10-fold 

cross validation. Results for folds 2-10 are presented in appendix from table 21 to table 

65.  

Table 13 presents hyper-parameters of rectangles derived from the DT for this 

fold and table 14 presents rules based on these rectangles. This DT was build using 

respective 90% of training and validation set designated for this fold.  
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Table 13. Hyper-parameters of the rectangles B1-B11 (BC algorithm, PBC dataset) of 1st fold in stratified 10-fold cross 

validation. 

Box Hyper-parameters Box Hyper-parameters 

B1 X6 < 0.0011 & 0.0015 ≤ X0 < 0.0214 B2 0.1550 ≤ X4 < 0.9394 & 0.0065 < X0 ≤ 0.107 

B3 0.7525 ≤ X5 < 1 B4 0.0750 ≤ X3 < 1 & 0.0001 ≤ X6 < 1 

B5 0 ≤ X3 < 0.0005 B6 0.3730 ≤ X4 < 1 & 0.0115 ≤ X3< 0.537 

B7 0 ≤ X4 < 0.12 B8 0 < X3 ≤ 0.0005 

B9 0 < X3 ≤ 0.0005 B10 0 ≤ X4 ≤ 0.2944 

B11 0.006 ≤ X2 ≤ 0.6058   

 
Table 14. Rules R1-R6 (BC algorithm, PBC dataset) using boxes B1-B11. 

Class C1 rule R1: x B1B2B3 x Class C1  

Class C2,3,4,5 rule R2: x B4B5B6B7 & x B1B2B3 x Class C2,3,4,5  

Class C2 rule R3: x B8 x Class C2  

Class C4 rule R4: x B9 & x B8 x Class C4 

Class C5 rule R5: x B10 & x B8B9 x Class C5  

Class C3 rule R6: xB11 & x B8B9B10 x Class C3 

 

The process of classification using these rules is hierarchical like in the DTs. Case 

x is classified between class C1 and a joined class C2,3,4,5 and then if x is in C2,3,4,5 then x 

is classified to classes C2-C5. See Fig. 18. 

 

 
Fig. 18. Classification process. 

 

Table 15 shows the number of cases that were predicted for training, validation, 

and testing sets rules in table 14. The notation Ci=>Ci indicates situations when cases of 

class Ci were predicted correctly as cases of class Ci, e.g., C2345=>C2345 means that cases 

of the joint class C2345 were predicted correctly as cases of this joint class. The notation 

Ci=> Cj when i≠j indicates situations when cases of class Ci were predicted incorrectly as 

cases of class Cj.  

 

C1 vs. C2,3,4,5

C1 C2,3,4,5

C2 C3 C4 C5
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Table 16 shows precision and recall percentages of all rules R1-R6 on training, 

validation, and testing sets.  

 
Table 15. Number of cases that satisfy rules R1-R6 (BC algorithm, PBC dataset) of 1st fold in stratified 10-fold cross validation. 

Rule Training Validation Testing 

R1 
C1=> C1 C2345=> C1 C1=> C1 C2345=> C1 C1=> C1 C2345=> C1 

3782 55 420 5 445 5 

R2 
C2345=> C2345 C1=> C2345 C2345=> C2345 C1=> C2345 C2345=> C2345 C1=> C2345 

359 35 42 4 48 9 

R3 
C2=> C2 C345=> C2 C2=> C2 C345=> C2 C2=> C2 C345=> C2 

251 2 28 0 32 3 

R4 
C4=> C4 C235=> C4 C4=> C4 C235=> C4 C4=> C4 C235=> C4 

66 6 7 0 7 1 

R5 
C5=> C5 C234=> C5 C5=> C5 C234=> C5 C5=> C5 C234=> C5 

83 8 11 1 12 0 

R6 
C3=> C3 C245=> C3 C3=> C3 C245=> C3 C3=> C3 C245=> C3 

22 2 3 1 3 0 

 

 
 

The rules R1-R6 do not cover the same number of cases, therefore the balancing of 

their contribution to the total precision of requires using the weighted precision that will 

account this difference.  

Example: Consider rule Ra that predicted 100 cases, which include 90 correctly 

classified and 10 misclassified cases (Pa=90% precision). Another rule Rb classified 200 

cases, which include 160 cases correctly and 40 incorrectly classified (P2=80% 

precision). Here Ta=100 and Tb=200, Wa=Ta/(Ta+Tb)0.33 and Wb=Tb/(Ta+Tb)0.67 and 

the weighted precision 𝑃 = 0.33 ∗ 90% + 0.67 ∗ 80% = 83.33%. Table 17 uses this 

concept of weighted precision P that is the weighted sum of precisions of all rules R1-Rk:  

Table 16. Precision and recall that satisfy rules R1-R6 (BC algorithm, PBC dataset) of 1st fold in stratified 10-fold cross validation. 

Rule  
Training Validation Testing 

Precision (%) Recall (%) Precision (%) Recall (%) Precision (%) Recall (%) 

R1 98.57 95.03 98.82 95.02 98.89 90.63 

R2  91.12 79.60 91.30 80.77 84.21 84.21 

R3 99.21 94.36 100.00 93.33 91.43 96.97 

R4 91.67 92.96 100.00 87.50 87.50 77.78 

R5 91.21 90.22 91.67 100.00 100.00 100.00 

R6 91.67 100.00 75.00 100.00 100.00 100.00 



 

40 

 

𝑃 = 𝑊1𝑃1 + 𝑊2𝑃2 + ⋯ + 𝑊𝑘𝑃𝑘. (5.1) 

where the weight Wi of each rule Ri is computed as follows:  

𝑊𝑖 =
𝑇𝑖

(𝑇1 + 𝑇2 … . . 𝑇𝑖)
. 

(5.2) 

where Ti is the total number of cases which are correctly classified by rule Ri.  

The process of rule generation in the BC algorithm for PBC data is based on 

formulas (5.1) and (5.2) for terminal level rules R1, R3, R4, R5, and R6 which predict 

actual classes C1, C2, C4, C5, and C3, respectively. The rule R2 that is an intermediate rule, 

which predicts a joined class C2,3,4,5 is excluded.  

The main steps to calculated weighted precision for PBC dataset is shown below. 

Step 1: Calculate weighted precision of the terminal level rules R1, R3, R4, R5, and R6 that 

predict actual classes C1, C2, C4, C5, and C3, respectively. 

Step 2: Calculate weighted precision of R1, R3, R4, R5, and R6. 

Step 3: Sum up the weighted precisions from Step 2. 

The results for 1st fold in stratified 10-fold cross validation are presented in table 

17, where the weighted precision of all rules is 98.29% for the training set, 98.53% for 

the validation set, and 98.23% for the testing set.  
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Table 17. Weighted precision for all classes of BC algorithm for PBC dataset of 1st fold in stratified 10-fold cross 

validation. 

Rule Weight (%)  Precision (%)  Classified cases  Weighted precision (%)  

  Training 

R1 89.71 98.57 3837 88.43 

R3 5.92 99.21 253 5.87 

R4 1.68 91.67 72 1.54 

R5 2.13 91.21 91 1.94 

R6 0.56 91.67 24 0.51 

All 100.00  4277 98.29 

  Validation 

R1 89.29 98.82% 425 88.24 

R3 5.88 100.00% 28 5.88 

R4 1.47 100.00% 7 1.47 

R5 2.52 91.67% 12 2.31 

R6 0.84 75.00% 4 0.63 

All 100.00  476 98.53 

  Testing 

R1 88.58 98.89 450 87.60 

R3 6.89 91.43 35 6.30 

R4 1.57 87.50 8 1.38 

R5 2.36 100.00 12 2.36 

R6 0.59 100.00 3 0.59 

All 100.00  508 98.23 

 

5.3. Comparison Results between Box Classification Algorithm with Published Results 

and Tanagra Decision Tree. 

Table 18. Average precision for stratified 10-fold cross validation of BC algorithm for PBC dataset. 

Fold’s number Weighted precision (%) for testing data 

1st fold 98.23 

2nd fold 96.65 

3rd fold 98.62 

4th fold 97.16 

5th fold 97.84 

6th fold 97.64 

7th fold 96.36 

8th fold 96.18 

9th fold 97.16 

10th fold 97.11 

Average 97.30 

 

 Table 19. Comparisons with published results for PBC dataset.   

Algorithm Precision (%) 

on training 

data 

Precision (%) 

on validation 

data 

Precision (%) 

on test data 

Classes with 

0% precision 

(completely 

misclassified)  

K-nearest Neighbor with a single 80%:20% training-

validation split [18] 

Not reported 93.51 Precision % 

on validation 

data 

Not reported 

C4-5 Decision Tree with 10-fold cross validation 90%:10% 

training-validation split [19] 

Not reported 96.95** Not reported Not reported 

C4-5 Decision Tree with 100% training data  96.02 N/A N/A Class 3  

ID3 Decision Tree with a single 81%:9%:10% split  95.19 63.56 95.26 Class 3  

Block Classification with 10-fold cross validation 

81%:9%:10% 

98.26 96.34* 97.30* No such 

classes   

*average **presumed average. 
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Table 20. Weighted precision for all classes with Decision Tree ID3 for PBC dataset for a single 81%:9%:10% 

training: validation: test split. 

Class Weight (%)  Precision (%)  Classified cases  Weighted precision (%)  

  Training 

Class 1 89.14 98.05 3950 87.41 

Class 2 7.15 74.76 317 5.35 

Class 3 0.00 0.00 0 0.00 

Class 4 1.62 90.28 72 1.47 

Class 5 2.08 46.74 92 0.97 

All 100.00   4431 95.19 

  Validation 

Class 1 58.10 97.56 287 56.68 

Class 2 7.89 58.97 39 4.66 

Class 3 0.00 0.00 0 0.00 

Class 4 31.17 5.19 154 1.62 

Class 5 2.83 21.43 14 0.61 

All 100.00   494 63.56 

  Testing 

Class 1 87.77 98.75 481 86.68 

Class 2 7.85 72.09 43 5.66 

Class 3 0.00 0.00 0 0.00 

Class 4 1.64 77.78 9 1.28 

Class 5 2.74 60.00 15 1.64 

All 100.00   548 95.26 

 

Table 18 shows that average precision of BC algorithm 10-fold cross validation 

for PBC dataset is 97.30%. Table 20 is produced as followed. Out of all data, 90% were 

selected randomly for training and validation and 10% for testing. Then the first 90% of 

data was split in 90:10 ratio for training and validation data. The precision of all classes 

in training is 95.19% and 95.26% in testing. Table 20 shows that precision of DT for 

PBC dataset is 95.26% which is slightly lower BC algorithm. In table 20, it can also be 

seen that the disadvantage of using DT for PBC dataset such that DT cannot classify any 

cases from class 3. With BC algorithm for PBC dataset, it was classified that all 5 classes 

with precision higher than 90% compared to DT algorithm where class 2,3,4, and 5 have 

precision lower than 80%. BC algorithm with In-line Coordinates also allows us to show 

how high dimensional dataset like PBC can be visualized on Cartesian coordinates 

compared to non-visualization method of DT.  
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The comparison of our results with published results is difficult because the 

authors use different splits of data. Table 19 presents results of comparisons with clearly 

stated what is the difference in conducted experiments. These differences are discussed in 

detail below. The KNN result is obtained with 80:20 split. With the KNN method, the 

precision is 93.51% which is lower than our BC algorithm at 97.30%. However, this 

lower precision is to be expected because normally it is expected to have higher precision 

with 90:10 split compared to 80:20 split. The C4-5 DT precision is obtained with 90:10 

split in 10-fold cross validation . Therefore, C4-5 DT result would give us a better 

comparison with BC algorithm because PBC dataset is split in the same ratio. With BC 

algorithm precision is slightly higher at 97.30% compared to C4-5 DT precision at 

96.95%. Table 19 also presents C4-5 DT precision with all 100% of PBC data used as 

training data, ID3 DT with a single 81%:9%:10% split of PBC data, and Block 

Classification with 10-fold cross validation 81%:9%:10% of PBC data. Both C4-5 DT 

and ID3 DT did not correctly classify any cases from class 3, led insufficient accuracy/ 

precision. The BC algorithm classified all classes with higher precision on independent 

test data. Furthermore, BC algorithm with In-line coordinate can visualization of PBC 

dataset allowing the end-user easier and faster understanding data.  
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CHAPTER VI 

 

CONCLUSIONS 

 

 

With In-line Coordinates data visualization, this thesis has shown the power of 

interpretable data classification techniques that are implemented in automatic and 

interactive modes with WBC dataset, and in the interactive mode with PBC dataset. The 

proposed BC algorithm allowed to successfully classify WBC and PBC datasets.  

It was observed that BC algorithm worked well with lower feature resolution and 

lesser for a higher resolution and larger dataset. Higher dimension of features makes 

finding the best order of coordinates difficult because this process require a great amount 

of time. This led to further development of BC algorithm with using a Decision Tree for 

guidance. It allowed finding an efficient order of coordinates and a set of boxes in a 

practical run time. In the future, BC algorithm can be further improved by automating the 

process of deciding order of coordinates. BC algorithm can also be improved by 

multithreading exhausted grid search with computers that have more than four cores.  

With In-line Based Coordinates, it was demonstrated that the power of 

visualization can reduce the overgeneralization of hyper-parameters produced by the 

guiding DT algorithm.  The BC algorithm showed that it is possible to achieve better 

results compared to both published results of KNN and C4-5 DT algorithm. In 

comparison with the DT, the BC algorithm did not miss any class on highly imbalanced 

PBC dataset.  
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APPENDIX  
 

A.1. BC algorithm for PBC dataset of 2nd fold in stratified 10-fold cross validation. 
 

Table 21. Hyper-parameters of the rectangles B1-B9 (BC algorithm, PBC dataset) of 2nd fold in stratified 10-fold cross 
validation. 

Box Hyper-parameters Box Hyper-parameters 

B1 0 ≤ X0 < 0.0005 & 0.0015 ≤ X5 < 0.0165 B2 0.0002 ≤ X9 < 1 

B3 0.0015 ≤ X0 < 0.101 & 0.4505 ≤ X5 < 1 B4 0.0001 ≤ X6 < 0.11 & 0.47 ≤ X5 < 1 

B5 0 ≤ X4 < 0.154 & 0.0015 ≤ X0 < 1 B6 0. 0125 < X3 ≤ 1 

B7 0 < X3 ≤ 0.0005 B8 0 ≤ X4 ≤ 0.2944 

B9 0.006 ≤ X2 ≤ 0.6058   

 

Table 22. Rules R1-R6 using boxes B1-B9 (BC algorithm, PBC dataset) of 2nd fold in stratified 10-fold cross validation. 

Class C1 rule R1: x B1B2B3 x Class C1 

Class C2,3,4,5 rule R2: x B4B5 & x B1B2B3 x Class C2,3,4,5 

Class C2 rule R3: x B6 x Class C2 

Class C4 rule R4: x B7 & x B6 x Class C4 

Class C5 rule R5: x B8 & x B6B7 x Class C5  

Class C3 rule R6: x B9 & x B6B7B8 x Class C3 

 

Table 23. Number of cases that satisfy rules R1-R6 (BC algorithm, PBC dataset) of 2nd fold in stratified 10-fold cross validation. 

Rule Training Validation Testing 

R1 
C1=> C1 C2345=> C1 C1=> C1 C2345=> C1 C1=> C1 C2345=> C1 

3887 146 432 22 466 13 

R2 
C2345=> C2345 C1=> C2345 C2345=> C2345 C1=> C2345 C2345=> C2345 C1=> C2345 

405 23 44 5 50 11 

R3 
C2=> C2 C345=> C2 C2=> C2 C345=> C2 C2=> C2 C345=> C2 

249 2 30 0 32 3 

R4 
C4=> C4 C235=> C4 C4=> C4 C235=> C4 C4=> C4 C235=> C4 

65 6 7 0 7 1 

R5 
C5=> C5 C234=> C5 C5=> C5 C234=> C5 C5=> C5 C234=> C5 

83 10 11 2 12 1 

R6 
C3=> C3 C245=> C3 C3=> C3 C245=> C3 C3=> C3 C245=> C3 

22 1 3 2 3 0 

 

 

  

Table 24. Precision and recall that satisfy rules R1-R6 (BC algorithm, PBC dataset) of 2nd fold in stratified 10-fold cross validation. 

Rule  
Training Validation Testing 

Precision (%) Recall (%) Precision (%) Recall (%) Precision (%) Recall (%) 

R1 96.38 97.66 95.15 97.74 97.29 94.91 

R2  94.63 89.80 89.80 84.62 81.97 87.72 

R3 99.20 93.61 100.00 100.00 91.43 96.97 

R4 91.55 91.55 100.00 87.50 87.50 77.78 

R5 89.25 90.22 84.62 100.00 92.31 100.00 

R6 95.65 100.00 60.00 100.00 100.00 100.00 
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Table 25. Weighted precision for all classes of BC algorithm for PBC dataset of 2nd fold in stratified 10-fold cross validation. 

Rule Weight (%) Precision (%)  Classified cases  Weighted precision (%) 

  Training 

R1 90.20  96.38  4033 86.94  

R3 5.61  99.20  251 5.57  

R4 1.59  91.55  71 1.45  

R5 2.08  89.25  93 1.86  

R6 0.51  95.65  23 0.49  

All 100.00   4471 96.31  

  Validation 

R1 89.19  95.15  454 84.87  

R3 5.89  100.00  30 5.89  

R4 1.38  100.00  7 1.38  

R5 2.55  84.62  13 2.16  

R6 0.98  60.00  5 0.59  

All 100.00   509 94.89  

  Testing 

R1 89.03  97.29  479 86.62  

R3 6.51  91.43  35 5.95  

R4 1.49  87.50  8 1.30  

R5 2.42  92.31  13 2.23  

R6 0.56  100.00  3 0.56  

All 100.00   538 96.65  
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A.2. BC algorithm for PBC dataset of 3rd fold in stratified 10-fold cross validation. 
 

Table 26. Hyper-parameters of the rectangles B1-B11 (BC algorithm, PBC dataset) of 3rd fold in stratified 10-fold cross 

validation. 

Box Hyper-parameters Box Hyper-parameters 

B1 0 .003 ≤ X0 < 0.0330 & 0.0021 ≤ X9 < 1 B2 0 ≤ X1 < 0.023 & 0.0005 ≤ X3 < 0.0025 

B3 0.63 ≤ X5 < 1 & 0.0001 ≤ X7 < 1 B4 0 ≤ X6 < 0.002 & 0 ≤ X1 < 0.0230 

B5 0 ≤ X3 < 1 & 0.0015 ≤ X0 < 1 B6 0.4755 ≤ X4 < 1 

B7 0 ≤ X4 < 0.4755 & 0.0012 ≤ X7 < 1 B8 0. 0125 < X3 ≤ 1 

B9 0 < X1 ≤ 0.0045 B10 0 ≤ X4 ≤ 0.2944 

B11 0.006 ≤ X2 ≤ 0.6058   

 

Table 27. Rules R1-R6 (BC algorithm, PBC dataset) of 3rd fold in stratified 10-fold cross validation using boxes 

B1-B11. 

Class C1 rule R1: x B1B2B3B4B5 x Class C1  

Class C2,3,4,5 rule R2: x B6B7 & x B1B2B3B4B5 x Class C2,3,4,5  

Class C2 rule R3: x B8 x Class C2  

Class C4 rule R4: x B9 & x B8 x Class C4 

Class C5 rule R5: x B10 & x B8B9 x Class C5  

Class C3 rule R6: x B11 & x B8B9B10 x Class C3 

 

Table 28. Number of cases that satisfy rules R1-R6 (BC algorithm, PBC dataset) of 3rd fold in stratified 10-fold cross validation. 

Rule Training Validation Testing 

R1 
C1=> C1 C2345=> C1 C1=> C1 C2345=> C1 C1=> C1 C2345=> C1 

3851 37 419 5 447 2 

R2 
C2345=> C2345 C1=> C2345 C2345=> C2345 C1=> C2345 C2345=> C2345 C1=> C2345 

373 57 46 8 53 13 

R3 
C2=> C2 C345=> C2 C2=> C2 C345=> C2 C2=> C2 C345=> C2 

251 1 28 0 32 3 

R4 
C4=> C4 C235=> C4 C4=> C4 C235=> C4 C4=> C4 C235=> C4 

64 4 8 1 7 1 

R5 
C5=> C5 C234=> C5 C5=> C5 C234=> C5 C5=> C5 C234=> C5 

83 11 11 1 12 1 

R6 
C3=> C3 C245=> C3 C3=> C3 C245=> C3 C3=> C3 C245=> C3 

22 2 3 1 3 0 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 29. Precision and recall that satisfy rules R1-R6 (BC algorithm, PBC dataset) of 3rd fold in stratified 10-fold cross validation. 

Rule  
Training Validation Testing 

Precision (%) Recall (%) Precision (%) Recall (%) Precision (%) Recall (%) 

R1 99.05  96.76  98.82  94.80  99.55  91.04  

R2  86.74  82.71  85.19  88.46  80.30  92.98  

R3 99.60  94.36  100.00  93.33  91.43  96.97  

R4 94.12  90.14  88.89  100.00  87.50  77.78  

R5 88.30  90.22  91.67  100.00  92.31  100.00  

R6 91.67  100.00  75.00  100.00  100.00  100.00  
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Table 30. Weighted precision for all classes of BC algorithm for PBC dataset of 3rd fold in stratified 10-fold cross validation. 

Rule Weight (%) Precision (%)  Classified cases  Weighted precision (%) 

  Training 

R1 89.88  99.05  3888 89.02  

R3 5.83  99.60  252 5.80  

R4 1.57  94.12  68 1.48  

R5 2.17  88.30  94 1.92  

R6 0.55  91.67  24 0.51  

All 100.00   4326 98.73  

  Validation 

R1 88.89  98.82  424 87.84  

R3 5.87  100.00  28 5.87  

R4 1.89  88.89  9 1.68  

R5 2.52  91.67  12 2.31  

R6 0.84  75.00  4 0.63  

All 100.00   477 98.32  

  Testing 

R1 88.39  99.55  449 87.99  

R3 6.89  91.43  35 6.30  

R4 1.57  87.50  8 1.38  

R5 2.56  92.31  13 2.36  

R6 0.59  100.00  3 0.59  

All 100.00   508 98.62  
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A.3. BC algorithm for PBC dataset of 4th fold in stratified 10-fold cross validation. 
 

Table 31. Hyper-parameters of the rectangles B1-B9 (BC algorithm, PBC dataset) of 4th fold in stratified 10-fold cross 

validation. 

Box Hyper-parameters Box Hyper-parameters 

B1 0 ≤ X6 < 0.002 & 0 ≤ X1 < 0.0230 B2 0 ≤ X6 < 0.0005 & 0.0030 ≤ X0 < 0.0165 

B3 0.0005 ≤ X6 < 1 & 0.0015 ≤ X0 < 1 B4 0.63 ≤ X5 < 1 & 0.0001 ≤ X7 < 1 

B5 0 ≤ X6 < 0.0005 & 0 ≤ X3 < 0.0045 B6 0. 0125 < X3 ≤ 1 

B7 0 < X1 ≤ 0.0045 B8 0 ≤ X4 ≤ 0.2944 

B9 0.0041 ≤ X2 ≤ 0.6058   

 
Table 32. Rules R1-R6 (BC algorithm, PBC dataset) of 4th fold in stratified 10-fold cross validation using boxes 

B1-B9. 

Class C1 rule R1: x B1B2B3 x Class C1 

Class C2,3,4,5 rule R2: x B4B5 & x B1B2B3 x Class C2,3,4,5  

Class C2 rule R3: x B6 x Class C2  

Class C4 rule R4: x B7 & x B6 x Class C4 

Class C5 rule R5: x B8 & x B6B7 x Class C5  

Class C3 rule R6: x B9 & x B6B7B8 x Class C3 

 
Table 33. Number of cases that satisfy rules R1-R6 (BC algorithm, PBC dataset) of 4th fold in stratified 10-fold cross validation. 

Rule Training Validation Testing 

R1 
C1=> C1 C2345=> C1 C1=> C1 C2345=> C1 C1=> C1 C2345=> C1 

3868 84 421 9 460 10 

R2 
C2345=> C2345 C1=> C2345 C2345=> C2345 C1=> C2345 C2345=> C2345 C1=> C2345 

373 12 42 1 51 6 

R3 
C2=> C2 C345=> C2 C2=> C2 C345=> C2 C2=> C2 C345=> C2 

249 1 30 0 32 3 

R4 
C4=> C4 C235=> C4 C4=> C4 C235=> C4 C4=> C4 C235=> C4 

64 5 8 0 7 1 

R5 
C5=> C5 C234=> C5 C5=> C5 C234=> C5 C5=> C5 C234=> C5 

84 12 11 0 12 1 

R6 
C3=> C3 C245=> C3 C3=> C3 C245=> C3 C3=> C3 C245=> C3 

22 3 3 0 3 0 

 

 

 

  

Table 34. Precision and recall that satisfy rules R1-R6 (BC algorithm, PBC dataset) of 4th fold in stratified 10-fold cross validation. 

Rule  
Training Validation Testing 

Precision (%) Recall (%) Precision (%) Recall (%) Precision (%) Recall (%) 

R1 97.87   97.19   97.91   95.25   97.87   93.69   

R2  96.88   82.71   97.67   80.77   89.47   89.47   

R3 99.60   93.61   100.00   100.00   91.43   96.97   

R4 92.75   90.14   100.00   100.00   87.50   77.78   

R5 87.50   91.30   100.00   100.00   92.31   100.00   

R6 88.00   100.00   100.00   100.00   100.00   100.00   
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Table 35. Weighted precision for all classes of BC algorithm for PBC dataset of 4th fold in stratified 10-fold cross validation. 

Rule Weight (%) Precision (%) Classified cases  Weighted precision (%) 

  Training 

R1 89.98   97.87   3952 88.07   

R3 5.69   99.60   250 5.67   

R4 1.57   92.75   69 1.46   

R5 2.19   87.50   96 1.91   

R6 0.57   88.00   25 0.50   

All 100.00    4392 97.61   

  Validation 

R1 89.21   97.91   430 87.34   

R3 6.22   100.00   30 6.22   

R4 1.66   100.00   8 1.66   

R5 2.28   100.00   11 2.28   

R6 0.62   100.00   3 0.62   

All 100.00    482 98.13   

  Testing 

R1 88.85   97.87   470 86.96   

R3 6.62   91.43   35 6.05   

R4 1.51   87.50   8 1.32   

R5 2.46   92.31   13 2.27   

R6 0.57   100.00   3 0.57   

All 100.00    529 97.16   
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A.4. BC algorithm for PBC dataset of 5th fold in stratified 10-fold cross validation. 
 

Table 36. Hyper-parameters of the rectangles B1-B9 (BC algorithm, PBC dataset) of 5th fold in stratified 10-fold cross 

validation. 

Box Hyper-parameters Box Hyper-parameters 

B1 0.0030 ≤ X0 < 0.0330 & 0.0021 ≤ X9 < 0.905 B2 0.5260 < X5 ≤ 1 & 0 ≤ X9 < 0.0021 

B3 0.0005 < X6 ≤ 1 & 0.0015 < X5 ≤ 1 B4 0.0005 ≤ X6< 1 & 0.0015 ≤ X5< 1 

B5 0 ≤ X4 < 0.12 B6 0. 0125 < X3 ≤ 1 

B7 0 < X1 ≤ 0.0045 B8 0 ≤ X4 ≤ 0.2944 

B9 0.0041 ≤ X2 ≤ 0.6058   

 
Table 37. Rules R1-R6 (BC algorithm, PBC dataset) of 5th fold in stratified 10-fold cross validation using boxes 

B1-B9. 

Class C1 rule R1: x B1B2 x Class C1 

Class C2,3,4,5 rule R2: x B3B4B5 & x B1B2 x Class C2,3,4,5  

Class C2 rule R3: x B6 x Class C2  

Class C4 rule R4: x B7 & x B6 x Class C4 

Class C5 rule R5: x B8 & x B6B7 x Class C5  

Class C3 rule R6: x B9 & x B6B7B8 x Class C3 

 
Table 38. Number of cases that satisfy rules R1-R6 (BC algorithm, PBC dataset) of 5th fold in stratified 10-fold cross validation. 

Rule Training Validation Testing 

R1 
C1=> C1 C2345=> C1 C1=> C1 C2345=> C1 C1=> C1 C2345=> C1 

3956 55 425 10 445 6 

R2 
C2345=> C2345 C1=> C2345 C2345=> C2345 C1=> C2345 C2345=> C2345 C1=> C2345 

379 15 49 2 53 3 

R3 
C2=> C2 C345=> C2 C2=> C2 C345=> C2 C2=> C2 C345=> C2 

249 1 30 0 32 3 

R4 
C4=> C4 C235=> C4 C4=> C4 C235=> C4 C4=> C4 C235=> C4 

65 4 8 0 7 1 

R5 
C5=> C5 C234=> C5 C5=> C5 C234=> C5 C5=> C5 C234=> C5 

83 10 11 2 12 1 

R6 
C3=> C3 C245=> C3 C3=> C3 C245=> C3 C3=> C3 C245=> C3 

22 1 3 2 3 0 

 

 

  

Table 39. Precision and recall that satisfy rules R1-R6 (BC algorithm, PBC dataset) of 5th fold in stratified 10-fold cross validation. 

Rule  
Training Validation Testing 

Precision (%) Recall (%) Precision (%) Recall (%) Precision (%) Recall (%) 

R1 98.63   99.40   97.70   96.15   98.67   90.63   

R2  96.19   84.04   96.08   94.23   94.64   92.98   

R3 99.60   93.61   100.00   100.00   91.43   96.97   

R4 94.20   91.55   100.00   100.00   87.50   77.78   

R5 89.25   90.22   84.62   100.00   92.31   100.00   

R6 95.65   100.00   60.00   100.00   100.00   100.00   
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Table 40. Weighted precision for all classes of BC algorithm for PBC dataset of 5th fold in stratified 10-fold cross validation. 

Rule Weight (%) Precision (%) Classified cases  Weighted precision (%) 

  Training 

R1 90.22   98.63   4011 88.98   

R3 5.62   99.60   250 5.60   

R4 1.55   94.20   69 1.46   

R5 2.09   89.25   93 1.87   

R6 0.52   95.65   23 0.49   

All 100.00    4446 98.40   

  Validation 

R1 88.59   97.70   435 86.56   

R3 6.11   100.00   30 6.11   

R4 1.63   100.00   8 1.63   

R5 2.65   84.62   13 2.24   

R6 1.02   60.00   5 0.61   

All 100.00    491 97.15   

  Testing 

R1 88.43   98.67   451 87.25   

R3 6.86   91.43   35 6.27   

R4 1.57   87.50   8 1.37   

R5 2.55   92.31   13 2.35   

R6 0.59   100.00   3 0.59   

All 100.00    510 97.84   
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A.5. BC algorithm for PBC dataset of 6th fold in stratified 10-fold cross validation. 
 

Table 41. Hyper-parameters of the rectangles B1-B11 (BC algorithm, PBC dataset) of 6th fold in stratified 10-fold cross 

validation. 

Box Hyper-parameters Box Hyper-parameters 

B1 0.0030 ≤ X0 < 0.0330 & 0.0012 ≤ X7 < 0.905 B2 0.0015 ≤ X4< 1 & 0.0030 ≤ X5 < 1 

B3 0.0015 ≤ X3 < 0.101 B4 0 ≤ X6 < 0.0005 & 0.101 ≤ X3 < 1 

B5 0 ≤ X6 < 0.0005 B6 0.0105 ≤ X3 < 1 

B7 0.63 ≤ X5 < 1 & 0.0015 ≤ X7 < 0.905 B8 0. 0125 < X3 ≤ 1 

B9 0 < X1 ≤ 0.0045 B10 0 ≤ X4 ≤ 0.2944 

B11 0.006 ≤ X2 ≤ 0.6058   

 
Table 42. Rules R1-R6 (BC algorithm, PBC dataset) of 6th fold in stratified 10-fold cross validation using boxes 

B1-B11. 

Class C1 rule R1: x B1B2B3 x Class C1 

Class C2,3,4,5 rule R2: x B4B5B6B7 & x B1B2B3 x Class C2,3,4,5  

Class C2 rule R3: x B8 x Class C2  

Class C4 rule R4: x B9 & x B8 x Class C4 

Class C5 rule R5: x B10 & x B8B9 x Class C5  

Class C3 rule R6: x B11 & x B8B9B10 x Class C3 

 
Table 43. Number of cases that satisfy rules R1-R6 (BC algorithm, PBC dataset) of 6th fold in stratified 10-fold cross validation. 

Rule Training Validation Testing 

R1 
C1=> C1 C2345=> C1 C1=> C1 C2345=> C1 C1=> C1 C2345=> C1 

3887 45 435 10 442 7 

R2 
C2345=> C2345 C1=> C2345 C2345=> C2345 C1=> C2345 C2345=> C2345 C1=> C2345 

379 10 46 3 50 5 

R3 
C2=> C2 C345=> C2 C2=> C2 C345=> C2 C2=> C2 C345=> C2 

251 3 28 0 32 3 

R4 
C4=> C4 C235=> C4 C4=> C4 C235=> C4 C4=> C4 C235=> C4 

65 4 8 0 7 1 

R5 
C5=> C5 C234=> C5 C5=> C5 C234=> C5 C5=> C5 C234=> C5 

83 10 11 2 12 1 

R6 
C3=> C3 C245=> C3 C3=> C3 C245=> C3 C3=> C3 C245=> C3 

22 1 3 2 3 0 

 

 

  

Table 44. Precision and recall that satisfy rules R1-R6 (BC algorithm, PBC dataset) of 6th fold in stratified 10-fold cross validation. 

Rule  
Training Validation Testing 

Precision (%) Recall (%) Precision (%) Recall (%) Precision (%) Recall (%) 

R1 98.86   97.66   97.75   98.42   98.44   90.02   

R2  97.43   84.04   93.88   88.46   90.91   87.72   

R3 98.82   94.36   100.00   93.33   91.43   96.97   

R4 94.20   91.55   100.00   100.00   87.50   77.78   

R5 89.25   90.22   84.62   100.00   92.31   100.00   

R6 95.65   100.00   60.00   100.00   100.00   100.00   
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Table 45. Weighted precision for all classes of BC algorithm for PBC dataset of 6th fold in stratified 10-fold cross validation. 

Rule Weight (%)  Precision (%)  Classified cases  Weighted precision (%)  

  Training 

R1 89.96   98.86   3932 88.93   

R3 5.81   98.82   254 5.74   

R4 1.58   94.20   69 1.49   

R5 2.13   89.25   93 1.90   

R6 0.53   95.65   23 0.50   

All 100.00    4371 98.56   

  Validation 

R1 89.18   97.75   445 87.17   

R3 5.61   100.00   28 5.61   

R4 1.60   100.00   8 1.60   

R5 2.61   84.62   13 2.20   

R6 1.00   60.00   5 0.60   

All 100.00    499 97.19   

  Testing 

R1 88.39   98.44   449 87.01   

R3 6.89   91.43   35 6.30   

R4 1.57   87.50   8 1.38   

R5 2.56   92.31   13 2.36   

R6 0.59   100.00   3 0.59   

All 100.00    508 97.64   
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A.6. BC algorithm for PBC dataset of 7th fold in stratified 10-fold cross validation. 

Table 46. Hyper-parameters of the rectangles B1-B11 (BC algorithm, PBC dataset) of 7th fold in stratified 10-fold cross 

validation. 

Box Hyper-parameters Box Hyper-parameters 

B1 0.0021 ≤ X9 < 1 & 0.0030 ≤ X0 < 0.0315 B2 0 ≤ X9 < 0.0021 & 0.7065 ≤ X5 < 1 

B3 0.0015 ≤ X4 < 0.7155  B4 0 ≤ X7 < 0.0012 & 0 ≤ X0 < 0.0030 

B5 0.0315 ≤ X0 < 1  B6 0.0105 ≤ X0 <1 & 0.7155 ≤ X4 < 0.905 

B7 0.0005 ≤ X5 < 0.4955  B8 0. 0125 < X3 ≤ 1 

B9 0 < X1 ≤ 0.0045 B10 0 ≤ X4 ≤ 0.2944 

B11 0.0041 ≤ X2 ≤ 0.6058   

 
Table 47. Rules R1-R6 (BC algorithm, PBC dataset) of 7th fold in stratified 10-fold cross validation using boxes 

B1-B11. 

Class C1 rule R1: x B1B2B3 x Class C1  

Class C2,3,4,5 rule R2: x B4B5B6B7 & x B1B2B3 x Class C2,3,4,5  

Class C2 rule R3: x B8 x Class C2  

Class C4 rule R4: x B9 & x B8 x Class C4 

Class C5 rule R5: x B10 & x B8B9 x Class C5  

Class C3 rule R6: x B11 & x B8B9B10 x Class C3 

 
Table 48. Number of cases that satisfy rules R1-R6 (BC algorithm, PBC dataset) of 7th fold in stratified 10-fold cross validation. 

Rule Training Validation Testing 

R1 
C1=> C1 C2345=> C1 C1=> C1 C2345=> C1 C1=> C1 C2345=> C1 

3855 40 440 12 475 15 

R2 
C2345=> C2345 C1=> C2345 C2345=> C2345 C1=> C2345 C2345=> C2345 C1=> C2345 

379 11 42 3 53 5 

R3 
C2=> C2 C345=> C2 C2=> C2 C345=> C2 C2=> C2 C345=> C2 

250 1 29 2 32 3 

R4 
C4=> C4 C235=> C4 C4=> C4 C235=> C4 C4=> C4 C235=> C4 

65 5 8 1 7 1 

R5 
C5=> C5 C234=> C5 C5=> C5 C234=> C5 C5=> C5 C234=> C5 

83 10 11 2 12 1 

R6 
C3=> C3 C245=> C3 C3=> C3 C245=> C3 C3=> C3 C245=> C3 

22 2 3 2 3 0 

 

 

  

Table 49. Precision and recall that satisfy rules R1-R6 (BC algorithm, PBC dataset) of 7th fold in stratified 10-fold cross validation. 

Rule  
Training Validation Testing 

Precision (%) Recall (%) Precision (%) Recall (%) Precision (%) Recall (%) 

R1 98.97   96.86   97.35   99.55   96.94   96.74   

R2  97.18   84.04   93.33   80.77   91.38   92.98   

R3 99.60   93.98   93.55   96.67   91.43   96.97   

R4 92.86   91.55   88.89   100.00   87.50   77.78   

R5 89.25   90.22   84.62   100.00   92.31   100.00   

R6 91.67   100.00   60.00   100.00   100.00   100.00   
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Table 50. Weighted precision for all classes of BC algorithm for PBC dataset of 7th fold in stratified 10-fold cross validation. 

Rule Weight (%)  Precision (%)  Classified cases  Weighted precision (%)  

  Training 

R1 89.89   98.97   3895 88.97   

R3 5.79   99.60   251 5.77   

R4 1.62   92.86   70 1.50   

R5 2.15   89.25   93 1.92   

R6 0.55   91.67   24 0.51   

All 100.00    4333 98.66   

  Validation 

R1 88.63   97.35   452 86.27   

R3 6.08   93.55   31 5.69   

R4 1.76   88.89   9 1.57   

R5 2.55   84.62   13 2.16   

R6 0.98   60.00   5 0.59   

All 100.00    510 96.27   

  Testing 

R1 89.25   96.94   490 86.52   

R3 6.38   91.43   35 5.83   

R4 1.46   87.50   8 1.28   

R5 2.37   92.31   13 2.19   

R6 0.55   100.00   3 0.55   

All 100.00    549 96.36   
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A.7. BC algorithm for PBC dataset of 8th fold in stratified 10-fold cross validation. 
 

Table 51. Hyper-parameters of the rectangles B1-B11 (BC algorithm, PBC dataset) of 8th fold in stratified 10-fold cross 

validation. 

Box Hyper-parameters Box Hyper-parameters 

B1 0.0021 ≤ X9 < 1 & 0.0030 ≤ X0 < 0.0315 B2 0 ≤ X9 < 0.0021 & 0.7065 ≤ X5 < 1 

B3 0.0015 ≤ X4 < 0.7155  B4 0 ≤ X7 < 0.0012 & 0 ≤ X0 < 0.0030 

B5 0.0315 ≤ X0 < 1  B6 0.0105 ≤ X0 <1 & 0.7155 ≤ X4 < 0.905 

B7 0.0005 ≤ X5 < 0.4955  B8 0. 0125 < X3 ≤ 1 

B9 0 < X1 ≤ 0.0045 B10 0 ≤ X4 ≤ 0.2944 

B11 0.0041 ≤ X2 ≤ 0.6058   

 
Table 52. Rules R1-R6 (BC algorithm, PBC dataset) of 8th fold in stratified 10-fold cross validation using boxes 

B1-B11. 

Class C1 rule R1: x B1B2B3 x Class C1  

Class C2,3,4,5 rule R2: x B4B5B6B7 & x B1B2B3 x Class C2,3,4,5  

Class C2 rule R3: x B8 x Class C2  

Class C4 rule R4: x B9 & x B8 x Class C4 

Class C5 rule R5: x B10 & x B8B9x Class C5  

Class C3 rule R6: x B11 & x B8B9B10 x Class C3 

 
Table 53. Number of cases that satisfy rules R1-R6 (BC algorithm, PBC dataset) of 8th fold in stratified 10-fold cross validation. 

Rule Training Validation Testing 

R1 
C1=> C1 C2345=> C1 C1=> C1 C2345=> C1 C1=> C1 C2345=> C1 

3855 40 440 12 475 15 

R2 
C2345=> C2345 C1=> C2345 C2345=> C2345 C1=> C2345 C2345=> C2345 C1=> C2345 

379 11 42 3 53 5 

R3 
C2=> C2 C345=> C2 C2=> C2 C345=> C2 C2=> C2 C345=> C2 

250 2 29 1 32 3 

R4 
C4=> C4 C235=> C4 C4=> C4 C235=> C4 C4=> C4 C235=> C4 

250 2 29 1 32 3 

R5 
C5=> C5 C234=> C5 C5=> C5 C234=> C5 C5=> C5 C234=> C5 

83 8 11 4 12 1 

R6 
C3=> C3 C245=> C3 C3=> C3 C245=> C3 C3=> C3 C245=> C3 

22 3 3 1 3 0 

 

 

  

Table 54. Precision and recall that satisfy rules R1-R6 (BC algorithm, PBC dataset) of 8th fold in stratified 10-fold cross validation. 

Rule  
Training Validation Testing 

Precision (%) Recall (%) Precision (%) Recall (%) Precision (%) Recall (%) 

R1 98.97   96.86   97.35   99.55   96.94   96.74   

R2  97.18   84.04   93.33   80.77   91.38   92.98   

R3 99.21   93.98   96.67   96.67   91.43   96.97   

R4 92.75   90.14   90.00   112.50   87.50   77.78   

R5 91.21   90.22   73.33   100.00   92.31   100.00   

R6 88.00   100.00   75.00   100.00   100.00   100.00   
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Table 55. Weighted precision for all classes of BC algorithm for PBC dataset of 8th fold in stratified 10-fold cross validation. 

Rule Weight (%)  Precision (%)  Classified cases  Weighted precision (%)  

  Training 

R1 86.27   98.97   3895 85.38   

R3 5.58   99.21   252 5.54   

R4 5.58   99.21   252 5.54   

R5 2.02   91.21   91 1.84   

R6 0.55   88.00   25 0.49   

All 100.00    4515 98.78   

  Validation 

R1 85.12   97.35   452 82.86   

R3 5.65   96.67   30 5.46   

R4 5.65   96.67   30 5.46   

R5 2.82   73.33   15 2.07   

R6 0.75   75.00   4 0.56   

All 100.00    531 96.42   

  Testing 

R1 85.07   96.94   490 82.47   

R3 6.08   91.43   35 5.56   

R4 6.08   91.43   35 5.56   

R5 2.26   92.31   13 2.08   

R6 0.52   100.00   3 0.52   

All 100.00    576 96.18   
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A.8. BC algorithm for PBC dataset of 9th fold in stratified 10-fold cross validation. 
 

Table 56. Hyper-parameters of the rectangles B1-B9 (BC algorithm, PBC dataset) of 9th fold in stratified 10-fold cross 

validation. 

Box Hyper-parameters Box Hyper-parameters 

B1 0.0005 ≤ X0 < 0.0310 & 0.0001 ≤ X6 < 0.905 B2 0 ≤ X9< 0.0060 & 0.7065 ≤ X5< 1 

B3 0.0015 ≤ X4 < 0.7155  B4 0.0105 ≤ X0 < 1 & 0.7155 ≤ X3 < 0.905 

B5 0 ≤ X7 < 0.0012 & 0 ≤ X0 < 0.0030 B6 0. 0125 < X3 ≤ 1 

B7 0 < X1≤ 0.0045 B8 0 ≤ X4 ≤ 0.2944 

B9 0.0041 ≤ X2 ≤ 0.6058   

 
Table 57. Rules R1-R6 (BC algorithm, PBC dataset) of 9th fold in stratified 10-fold cross validation using boxes 

B1-B9. 

Class C1 rule R1: x B1B2B3 x Class C1 

Class C2,3,4,5 rule R2: x B4B5 & x B1B2B3 x Class C2,3,4,5  

Class C2 rule R3: x B6 x Class C2  

Class C4 rule R4: x B7 & x B6 x Class C4 

Class C5 rule R5: x B8 & x B6B7 x Class C5  

Class C3 rule R6: x B9 & x B6B7B8 xClass C3 

 
Table 58. Number of cases that satisfy rules R1-R6 (BC algorithm, PBC dataset) of 9th fold in stratified 10-fold cross validation. 

Rule Training Validation Testing 

R1 
C1=> C1 C2345=> C1 C1=> C1 C2345=> C1 C1=> C1 C2345=> C1 

3880 35 445 35 460 10 

R2 
C2345=> C2345 C1=> C2345 C2345=> C2345 C1=> C2345 C2345=> C2345 C1=> C2345 

388 9 44 3 48 3 

R3 
C2=> C2 C345=> C2 C2=> C2 C345=> C2 C2=> C2 C345=> C2 

249 2 30 1 32 3 

R4 
C4=> C4 C235=> C4 C4=> C4 C235=> C4 C4=> C4 C235=> C4 

65 4 8 2 7 1 

R5 
C5=> C5 C234=> C5 C5=> C5 C234=> C5 C5=> C5 C234=> C5 

84 10 10 2 12 1 

R6 
C3=> C3 C245=> C3 C3=> C3 C245=> C3 C3=> C3 C245=> C3 

22 4 3 0 3 0 

 

 

  

Table 59. Precision and recall that satisfy rules R1-R6 (BC algorithm, PBC dataset) of 9th fold in stratified 10-fold cross validation. 

Rule  
Training Validation Testing 

Precision (%) Recall (%) Precision (%) Recall (%) Precision (%) Recall (%) 

R1 99.11   97.49   92.71   100.68   97.87   93.69   

R2  97.73   86.03   93.62   84.62   94.12   84.21   

R3 99.20   93.61   96.77   100.00   91.43   96.97   

R4 94.20   91.55   80.00   100.00   87.50   77.78   

R5 89.36   91.30   83.33   90.91   92.31   100.00   

R6 84.62   100.00   100.00   100.00   100.00   100.00   
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Table 60. Weighted precision for all classes of BC algorithm for PBC dataset of 9th fold in stratified 10-fold cross validation. 

Rule Weight (%)  Precision (%)  Classified cases  Weighted precision (%)  

  Training 

R1 89.90   99.11   3915 89.09   

R3 5.76   99.20   251 5.72   

R4 1.58   94.20   69 1.49   

R5 2.16   89.36   94 1.93   

R6 0.60   84.62   26 0.51   

All 100.00    4355 98.74   

  Validation 

R1 89.55   92.71   480 83.02   

R3 5.78   96.77   31 5.60   

R4 1.87   80.00   10 1.49   

R5 2.24   83.33   12 1.87   

R6 0.56   100.00   3 0.56   

All 100.00    536 92.54   

  Testing 

R1 88.85   97.87   470 86.96   

R3 6.62   91.43   35 6.05   

R4 1.51   87.50   8 1.32   

R5 2.46   92.31   13 2.27   

R6 0.57   100.00   3 0.57   

All 100.00    529 97.16   
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A.9. BC algorithm for PBC dataset of 10th fold in stratified 10-fold cross validation. 

Table 61. Hyper-parameters of the rectangles B1-B9 (BC algorithm, PBC dataset) of 10th fold in stratified 10-fold cross 

validation. 

Box Hyper-parameters Box Hyper-parameters 

B1 0.0015 ≤ X0 < 0.0180 & 0 ≤ X6 < 0.0005 B2 0.0015 ≤ X4 < 0.4545  

B3 0.0005 ≤ X3 < 0.0805 & 0 ≤ X7 < 0.0012 B4 0.0315 ≤ X6 < 1 & 0 ≤ X0 < 0.0030 

B5 0.0315 ≤ X9 < 1 B6 0. 0125 < X3≤ 1 

B7 0 < X1 ≤ 0.0045 B8 0 ≤ X4 ≤ 0.2944 

B9 0.0041 ≤ X2 ≤ 0.6058   

 
Table 62. Rules R1-R6 (BC algorithm, PBC dataset) of 10th fold in stratified 10-fold cross validation using boxes 

B1-B9. 

Class C1 rule R1: x B1B2 x Class C1  

Class C2,3,4,5 rule R2: x B3B4B5 & x B1B2 x Class C2,3,4,5  

Class C2 rule R3: x B6 x Class C2  

Class C4 rule R4: x B7 & x B6 x Class C4 

Class C5 rule R5: x B8 & x B6B7 x Class C5  

Class C3 rule R6: x B9 & x B6B7B8 x Class C3 

 
Table 63. Number of cases that satisfy rules R1-R6 (BC algorithm, PBC dataset) of 10th fold in stratified 10-fold cross validation. 

Rule Training Validation Testing 

R1 
C1=> C1 C2345=> C1 C1=> C1 C2345=> C1 C1=> C1 C2345=> C1 

3879 40 447 30 450 10 

R2 
C2345=> C2345 C1=> C2345 C2345=> C2345 C1=> C2345 C2345=> C2345 C1=> C2345 

388 9 44 3 48 3 

R3 
C2=> C2 C345=> C2 C2=> C2 C345=> C2 C2=> C2 C345=> C2 

250 2 29 1 32 3 

R4 
C4=> C4 C235=> C4 C4=> C4 C235=> C4 C4=> C4 C235=> C4 

64 4 9 2 7 1 

R5 
C5=> C5 C234=> C5 C5=> C5 C234=> C5 C5=> C5 C234=> C5 

85 11 9 1 12 1 

R6 
C3=> C3 C245=> C3 C3=> C3 C245=> C3 C3=> C3 C245=> C3 

22 4 3 0 3 0 

 

 

  

Table 64. Precision and recall that satisfy rules R1-R6 (BC algorithm, PBC dataset) of 10th fold in stratified 10-fold cross 

validation. 

Rule  
Training Validation Testing 

Precision (%) Recall (%) Precision (%) Recall (%) Precision (%) Recall (%) 

R1 98.98   97.46   93.71   101.13   97.83   91.65   

R2  97.73   86.03   93.62   84.62   94.12   84.21   

R3 99.21   93.98   96.67   96.67   91.43   96.97   

R4 94.12   90.14   81.82   112.50   87.50   77.78   

R5 88.54   92.39   90.00   81.82   92.31   100.00   

R6 84.62   100.00   100.00   100.00   100.00   100.00   
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Table 65. Weighted precision for all classes of BC algorithm for PBC dataset of 10th fold in stratified 10-fold cross validation. 

Rule Weight (%)  Precision (%)  Classified cases  Weighted precision (%)  

  Training 

R1 89.86   98.98   3919 88.95   

R3 5.78   99.21   252 5.73   

R4 1.56   94.12   68 1.47   

R5 2.20   88.54   96 1.95   

R6 0.60   84.62   26 0.50   

All 100.00    4361 98.60   

  Validation 

R1 89.83   93.71   477 84.18   

R3 5.65   96.67   30 5.46   

R4 2.07   81.82   11 1.69   

R5 1.88   90.00   10 1.69   

R6 0.56   100.00   3 0.56   

All 100.00    531 93.60   

  Testing 

R1 88.63   97.83   460 86.71   

R3 6.74   91.43   35 6.17   

R4 1.54   87.50   8 1.35   

R5 2.50   92.31   13 2.31   

R6 0.58   100.00   3 0.58   

All 100.00    519 97.11   
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