Full Interpretable Machine Learning Method with In-line Coordinates

Hoang Phan
Central Washington University, phanho@cwu.edu

Follow this and additional works at: https://digitalcommons.cwu.edu/etd
Part of the Data Science Commons, and the Education Commons

Recommended Citation

Phan, Hoang, "Full Interpretable Machine Learning Method with In-line Coordinates" (2021). All Master's Theses. 1650.
https://digitalcommons.cwu.edu/etd/1650

This Thesis is brought to you for free and open access by the Master's Theses at ScholarWorks@CWU. It has been accepted for inclusion in All Master's Theses by an authorized administrator of ScholarWorks@CWU. For more information, please contact scholarworks@cwu.edu.

FULL INTERPRETABLE MACHINE LEARNING METHOD WITH IN-LINE COORDINATES

A Thesis
Presented to
The Graduate Faculty
Central Washington University

In Partial Fulfillment of the
Requirements for the Degree
Master of Science
Computational Science

> by
> Justin Phan

November 2021

CENTRAL WASHINGTON UNIVERSITY

Graduate Studies

We hereby approve the thesis of

Justin Phan

Candidate for the degree of Master of Science

APPROVED FOR THE GRADUATE FACULTY

Dr. Boris Kovalerchuk

Dr. Razvan Andonie

Dr. Szilard Vajda

Dean of Graduate Studies

ABSTRACT
 FULL INTERPRETABLE MACHINE LEARNING METHOD
 WITH IN-LINE COORDINATES

by

Justin Phan

November 2021

This thesis explores a new approach for machine learning classification task in 2dimensional space (2-D ML) with In-line Coordinates. This is a full machine learning approach that does not require to deal with n-dimensional data in n-dimensional space. In-line coordinates method allows discovering n-D patterns in 2-D space without loss of n-D information using graph representation of n-D data in 2-D. Specifically, this thesis shows that it can be done with In-line Based Coordinates in different modifications, which are defined, including static and dynamic ones. Some classification and regression algorithms based on these In-line Coordinates were explored. Two successful cases studies based on benchmark datasets (Wisconsin Breast Cancer dataset and Page Block Classification dataset) demonstrated the feasibility of the approach. This approach helps to consolidate further a whole new area of full 2-D machine learning with a respective methodology. In-line coordinates method has advantages to actively include the end-users into the discovering of models and their justification. Another advantage is providing interpretable ML models.

Keywords- interpretable machine learning, classification, regression, visual knowledge discovery.

ACKNOWLEDGMENTS

I would like to express my deepest thanks of gratitude to Dr. Boris Kovalerchuk for supporting me with this project. I am sincerely grateful for his patient and willingness to answer all my questions that I struggled with despite his busy schedule. Because of this thesis work, I know that I will have a very strong tool for my future. I would also like to thank Dr. Razvan Andonie and Dr. Szilard Vajda for teaching me new things about Machine Learning Algorithms. A Multithreading lesson which I learned from the Operating System class with Dr. Szilard Vajda proves to be very useful in Machine Learning field. Finally, I would like to thank my classmates and family for supporting and motivating me throughout the last two years.

Sincerely
Justin Phan

TABLE OF CONTENTS

Chapter Page
I INTRODUCTION 1
II DEFINITION: IN-LINE BASED COORDINATES SYSTEM 4
III CLASSIFICATION AND REGRESSION ALGORITHM
WITH IN-LINE COORDINATES 12
Box Classification Algorithm 12
Linear Classification and Regression Algorithm 16
IV CASE STUDY FOR BOX CLASSIFICATION ALGORITHM
IN PARTIAL DYNAMIC ILC2 18
Model Evaluation with Worst-Case K-fold Validation Approach 26
V EXPERIMENTAL RESULTS AND COMPARISON
WITH PUBLISHED RESULTS 29
Box Classification Algorithm with Wisconsin Breast Cancer Dataset with Stratified 10-Fold Cross Validation 29
Box Classification Algorithm with Page Block Classification Dataset with Stratified 10-Fold Cross Validation 32
Comparison Results between Box Classification Algorithm with Published Results and Tanagra Decision Tree 40
VI CONCLUSIONS 43
REFERENCE CITED 45
APPENDIX 47

LIST OF TABLES

Table Page

1 Discovered boxes ILC2. ... 19
2 Rules R1-R13 with precision P=100\%. .. 20
3 Rules after joining.. 27
4 Precision and recall of rule $\mathrm{R}_{1,3}$ for all data ... 30
5 Hyper-parameters of the rectangles B_{1} and B_{3} used in rule $R_{1,3} \ldots \ldots30$
6 Number of cases that satisfy rule $\mathrm{R}_{1,3}$ (green rule) with boxes B_{1} and B_{3} (BC algorithm, WBC data) in stratified 10 -fold cross validation.31
$7 \quad$ Precision and recall of rule $\mathrm{R}_{1,3}$ for stratified 10 -fold cross validation 31
$8 \quad$ Precision and recall of rule $\mathrm{R}_{2,4}$ for all data. 32
9 Hyper-parameters of the rectangles B_{2} and B_{4} used in rule $R_{2,4}$. 32
10 Number of cases that satisfy rule $\mathrm{R}_{2,4}$ (red rule) with boxes B_{2} and B_{4} (BC algorithm, WBC data) in stratified 10 -fold cross validation. 32
11 Precision and recall rule $\mathrm{R}_{2,4}$ for stratified 10-fold cross validation. 33
12 Weighted precisions for all classes with DT for PBC dataset 36
13 Hyper-parameters of the rectangles $\mathrm{B}_{1-}-\mathrm{B}_{11}$ (BC algorithm, PBC dataset)of $1^{\text {st }}$ fold in stratified 10 -fold cross validation.38
14 Rules $\mathrm{R}_{1}-\mathrm{R}_{6}\left(\mathrm{BC}\right.$ algorithm, PBC dataset) using boxes $\mathrm{B}_{1}-\mathrm{B}_{11}$ 38
15 Number of cases that satisfy rules $\mathrm{R}_{1}-\mathrm{R}_{6}$ (BC algorithm, PBC dataset) of $1^{\text {st }}$ fold in stratified 10 -fold cross validation 39

LIST OF TABLES (CONTINUED)

Table Page
16 Precision and recall that satisfy rules $\mathrm{R}_{1}-\mathrm{R}_{6}$ (BC algorithm, PBC dataset) of $1^{\text {st }}$ fold in stratified 10 -fold cross validation. 39
17 Weighted precision for all classes of BC algorithm for PBC dataset of $1^{\text {st }}$ fold in stratified 10 -fold cross validation. 41
18
Average precision for stratified 10 -fold cross validation of BC algorithm for PBC dataset. 41
19
Published results for PBC dataset 41
20 Weighted precision for all classes with Decision Tree ID3 for PBC dataset for a single $81 \%: 9 \%: 10 \%$ training: validation: test split. 42
21 Hyper-parameters of the rectangles $\mathrm{B}_{1}-\mathrm{B} 9$ (BC algorithm, PBC dataset) of $2^{\text {nd }}$ fold in stratified 10 -fold cross validation 47
22 Rules $\mathrm{R}_{1}-\mathrm{R}_{6}$ using boxes $\mathrm{B}_{1}-\mathrm{B}_{9}$ (BC algorithm, PBC dataset) of $2^{\text {nd }}$ fold in stratified 10 -fold cross validation. 47
23 Number of cases that satisfy rules $\mathrm{R}_{1}-\mathrm{R}_{6}$ (BC algorithm, PBC dataset) of $2^{\text {nd }}$ fold in stratified 10 -fold cross validation 47
24 Precision and recall that satisfy rules $\mathrm{R}_{1}-\mathrm{R}_{6}$ (BC algorithm, PBC dataset) of $2^{\text {nd }}$ fold in stratified 10 -fold cross validation. 47
25 Weighted precision for all classes of BC algorithm for PBC dataset of $2^{\text {nd }}$ fold in stratified 10 -fold cross validation 48
2627Number of cases that satisfy rules $\mathrm{R}_{1}-\mathrm{R}_{6}$ (BC algorithm, PBC dataset)of $3^{\text {rd }}$ fold in stratified 10 -fold cross validation49

LIST OF TABLES (CONTINUED)

Table
Page
29 Precision and recall that satisfy rules $\mathrm{R}_{1}-\mathrm{R}_{6}$ (BC algorithm, PBC dataset) of $3^{\text {rd }}$ fold in stratified 10 -fold cross validation49

30 Weighted precision for all classes of BC algorithm for PBC dataset of $3^{\text {rd }}$ fold in stratified 10 -fold cross validation

31 Hyper-parameters of the rectangles $\mathrm{B}_{1}-\mathrm{B}_{9}$ (BC algorithm, PBC dataset) of $4^{\text {th }}$ fold in stratified 10 -fold cross validation.

32 Rules $\mathrm{R}_{1}-\mathrm{R}_{6}$ using boxes $\mathrm{B}_{1}-\mathrm{B}_{9}$ (BC algorithm, PBC dataset) of $4^{\text {th }}$ fold in stratified 10 -fold cross validation.51

33 Number of cases that satisfy rules $\mathrm{R}_{1}-\mathrm{R}_{6}$ (BC algorithm, PBC dataset) of $4^{\text {th }}$ fold in stratified 10 -fold cross validation.51

34 Precision and recall that satisfy rules $\mathrm{R}_{1}-\mathrm{R}_{6}$ (BC algorithm, PBC dataset) of $4^{\text {th }}$ fold in stratified 10 -fold cross validation

35 Weighted precision for all classes of BC algorithm for PBC dataset of $4^{\text {th }}$ fold in stratified 10 -fold cross validation.52

36 Hyper-parameters of the rectangles $\mathrm{B}_{1}-\mathrm{B}_{9}$ (BC algorithm, PBC dataset) of $5^{\text {th }}$ fold in stratified 10 -fold cross validation.53

37 Rules $\mathrm{R}_{1}-\mathrm{R}_{6}$ using boxes $\mathrm{B}_{1}-\mathrm{B}_{9}$ (BC algorithm, PBC dataset) of $5^{\text {th }}$ fold in stratified 10 -fold cross validation.53

38 Number of cases that satisfy rules $\mathrm{R}_{1}-\mathrm{R}_{6}$ (BC algorithm, PBC dataset) of $5^{\text {th }}$ fold in stratified 10 -fold cross validation.53

39 Precision and recall that satisfy rules $\mathrm{R}_{1}-\mathrm{R}_{6}$ (BC algorithm, PBC dataset) of $5^{\text {th }}$ fold in stratified 10 -fold cross validation53

40 Weighted precision for all classes of BC algorithm for PBC dataset
of $5^{\text {th }}$ fold in stratified 10 -fold cross validation. 54

41 Hyper-parameters of the rectangles $\mathrm{B}_{1}-\mathrm{B}_{11}$ (BC algorithm, PBC dataset) of $6^{\text {th }}$ fold in stratified 10 -fold cross validation.

LIST OF TABLES (CONTINUED)

Table Page
42 Rules $\mathrm{R}_{1}-\mathrm{R}_{6}$ using boxes $\mathrm{B}_{1}-\mathrm{B}_{11}$ (BC algorithm, PBC dataset) of $6^{\text {th }}$ fold in stratified 10-fold cross validation. ... 55

43 Number of cases that satisfy rules $\mathrm{R}_{1}-\mathrm{R}_{6}$ (BC algorithm, PBC dataset) of $6^{\text {th }}$ fold in stratified 10 -fold cross validation55

44 Precision and recall that satisfy rules $\mathrm{R}_{1}-\mathrm{R}_{6}$ (BC algorithm, PBC dataset) of $6^{\text {th }}$ fold in stratified 10 -fold cross validation

45 Weighted precision for all classes of BC algorithm for PBC dataset of $6^{\text {th }}$ fold in stratified 10 -fold cross validation.

46 Hyper-parameters of the rectangles $\mathrm{B}_{1-}-\mathrm{B}_{11}$ (BC algorithm, PBC dataset) of $7^{\text {th }}$ fold in stratified 10 -fold cross validation.57

47 Rules $\mathrm{R}_{1}-\mathrm{R}_{6}$ using boxes $\mathrm{B}_{1}-\mathrm{B}_{11}$ (BC algorithm, PBC dataset) of $7^{\text {th }}$ fold in stratified 10-fold cross validation. .. 57

48 Number of cases that satisfy rules $\mathrm{R}_{1}-\mathrm{R}_{6}$ (BC algorithm, PBC dataset) of $7^{\text {th }}$ fold in stratified 10 -fold cross validation57

49 Precision and recall that satisfy rules $\mathrm{R}_{1}-\mathrm{R}_{6}$ (BC algorithm, PBC dataset) of $7^{\text {th }}$ fold in stratified 10 -fold cross validation57

50 Weighted precision for all classes of BC algorithm for PBC dataset
of $7^{\text {th }}$ fold in stratified 10 -fold cross validation. 58

51 Hyper-parameters of the rectangles $\mathrm{B}_{1}-\mathrm{B}_{11}$ (BC algorithm, PBC dataset) of $8^{\text {th }}$ fold in stratified 10 -fold cross validation.59

52 Rules $\mathrm{R}_{1}-\mathrm{R}_{6}$ using boxes $\mathrm{B}_{1}-\mathrm{B}_{11}$ (BC algorithm, PBC dataset)
of $8^{\text {th }}$ fold in stratified 10 -fold cross validation. 59

53 Number of cases that satisfy rules $\mathrm{R}_{1}-\mathrm{R}_{6}$ (BC algorithm, PBC dataset) of $8^{\text {th }}$ fold in stratified 10 -fold cross validation.

LIST OF TABLES (CONTINUED)

Table
54 Precision and recall that satisfy rules $\mathrm{R}_{1}-\mathrm{R}_{6}$ (BC algorithm, PBC dataset) of $8^{\text {th }}$ fold in stratified 10 -fold cross validation

55 Weighted precision for all classes of BC algorithm for PBC dataset of $8^{\text {th }}$ fold in stratified 10 -fold cross validation.60

56 Hyper-parameters of the rectangles $\mathrm{B}_{1}-\mathrm{B}_{9}$ (BC algorithm, PBC dataset) of $9^{\text {th }}$ fold in stratified 10 -fold cross validation.

57 Rules $\mathrm{R}_{1}-\mathrm{R}_{6}$ using boxes $\mathrm{B}_{1}-\mathrm{B}_{9}$ (BC algorithm, PBC dataset) of $9^{\text {th }}$ fold in stratified 10 -fold cross validation.61

58 Number of cases that satisfy rules $\mathrm{R}_{1}-\mathrm{R}_{6}$ (BC algorithm, PBC dataset) of $9^{\text {th }}$ fold in stratified 10 -fold cross validation61

59 Precision and recall that satisfy rules $\mathrm{R}_{1}-\mathrm{R}_{6}$ (BC algorithm, PBC dataset) of $9^{\text {th }}$ fold in stratified 10 -fold cross validation

60 Weighted precision for all classes of BC algorithm for PBC dataset of $9^{\text {th }}$ fold in stratified 10 -fold cross validation.62

61 Hyper-parameters of the rectangles $\mathrm{B}_{1}-\mathrm{B}_{9}$ (BC algorithm, PBC dataset) of $10^{\text {th }}$ fold in stratified 10 -fold cross validation.63

62 Rules $\mathrm{R}_{1}-\mathrm{R}_{6}$ using boxes $\mathrm{B}_{1}-\mathrm{B}_{9}$ (BC algorithm, PBC dataset) of $10^{\text {th }}$ fold in stratified 10 -fold cross validation.63

63 Number of cases that satisfy rules $\mathrm{R}_{1}-\mathrm{R}_{6}$ (BC algorithm, PBC dataset) of $10^{\text {th }}$ fold in stratified 10 -fold cross validation63

64 Precision and recall that satisfy rules $\mathrm{R}_{1}-\mathrm{R}_{6}$ (BC algorithm, PBC dataset) of $10^{\text {th }}$ fold in stratified 10 -fold cross validation

65 Weighted precision for all classes of BC algorithm for PBC dataset of $10^{\text {th }}$ fold in stratified 10 -fold cross validation.

LIST OF FIGURES

Figure Page
1 Two 5-D points of two classes in In-line Coordinates 4
2 Options to locate coordinates in In-line Coordinates 5
3 7-D point $\mathbf{x}=\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}, x_{6}, x_{7}\right)=(1,2,3,5,3,4,2)$ in two ILBCs 6
$4 \quad$ 7-D point $\mathrm{x}=(a, b, c, d, e, f, g)=(1,2,3,5,3,4,2)$in ILC2 with vertical sides.7
5 7-D point $\mathbf{x}=(a, b, c, d, \mathrm{e}, f, g)=(1,2,3,5,3,4,2)$ in SPC 8
6 Wisconsin Breast Cancer dataset of two classes "mirrored" in partial dynamic ILBC 9
7 Wisconsin Breast Cancer dataset in fully dynamic ILC2 10
8 Examples of boxes discovered in Wisconsin Breast Cancer dataset 14
9 Classification and regression with projection line at different angles in full dynamic ILP2. 18
Boxes B_{1} and B_{2} 23
11 Boxes B_{3} and B_{4} 23
12 Boxes B_{5} and B_{6} 24
13 Boxes B_{7} and B_{8} 24
14 Boxes B9 and B10 24
15 Boxes B_{11} and B_{12} 25
16 Box B13 25
17 Example coordinates for Figs.10-16 25
18 Classification process 38

CHAPTER I

INTRODUCTION

Interpretable Machine Learning (ML) is a major focus in Machine Learning domain these days [1, 2]. The approaches range from explaining black box models to building explainable models from scratch. One of the attractive options is building machine learning models using visual means. However, it is challenging, because data in machine learning are multidimensional, which we cannot represent graphically in 2-D coordinates. So, tools are needed which will allow to do this efficiently. Traditional methods which convert n-D data to two dimensions are lossy, not preserving all multidimensional information. In contrast representation of n-D data using General Line Coordinates (GLC) is lossless [3]. This visual representation opened the opportunity to do full multidimensional machine learning in two dimensions without loss of information. The advantage of this approach is two-fold. In simple situations, it can discover the pattern visually just by observing these data visualized in GLC. In more complex situations, which are common in ML, it can discover patterns in 2-D representations using new 2-D ML methods. It is growing into a whole new field of machine learning. This thesis is in this realm with the focus on a specific type of General Line Coordinates that is the In-line Coordinates [3]. This thesis is going to explain In-line Coordinates in chapter II.

In the series of prior work at CWU $[4,2,5,6,7,8]$ the feasibility of full 2-D ML with different types of General Line Coordinates (Shifted Paired Coordinates, Elliptic Paired Coordinates, CPC-R and GLC-L) were demonstrated. The works in this realm can traced to [9] for Parallel Coordinates and [10] for 2-D modeling of non-image data. Often 2-D studies in ML cover only simple 2-dimensional examples to illustrate ML algorithms visually. Next, visual analytics studies have been very active in exploring Parallel Coordinates for tasks related to clustering [11], but much fewer for supervised learning, which is the focus of our study. The works in this area include [12, 13, 14].

It was suggested in [2] to consolidate all such studies within a general concept, which can be called a full 2D ML methodology. Traditionally 2D studies in machine learning were considered as just auxiliary exploratory data/model visualization with loss of n-D information mostly afterwards or before the actual machine learning. It was assumed that in 2-D it is losing n-D information, and it needs full n -dimensional analysis in n-D space to construct ML models. The full 2-D ML methodology shows that it's not necessary. This methodology goes beyond visual knowledge discovery, which is advocated in [3]. It expands the studies from visual discovery by a human supported by ML methods, to a full scope of machine learning methods, for discovering full patterns analytically in 2-D.

Section II defines main concepts of In-line coordinates. Section III presents Box Classification (BC) algorithm, Linear Classification and Regression algorithm. Section IV covers the case study with a benchmark Wisconsin Breast Cancer (WBC) data from UCI ML repository [15] that demonstrates the feasibility of the approach. WBC data has 699 cases with 16 cases missing at least one attribute value. At this moment, cases with missing attributes are removed manually to test the efficiency of BC algorithm. A proper case consist of nine attributes. There are 444 benign cases and 239 malignant cases in WBC dataset. Section V presents results of the Page Block Classification (PBC) using BC algorithm and compares its results with other algorithms. Section VI presents the conclusions.

CHAPTER II

DEFINITION: IN-LINE BASED COORDINATES SYSTEM

To find the best possible visual representation of n-D data, this thesis attempts several mappings of coordinates to visual representations using different order of coordinates. The General Line Coordinates defined in [3] allow drawing n coordinates axes in 2-D in a variety of ways: curved, parallel, unparalleled, collocated, disconnected, etc. GLCs include In-line Coordinates (ILC) shown in Fig. 1, which are similar to Parallel Coordinates, except that the axes $x_{1}, x_{2}, \ldots x_{n}$ are horizontal, not vertical. All coordinates are collocated on the same line and might overlap. A sequence of directed curves or polylines satisfies the requirement of lossless representation of n-D point in 2D. The curves/polylines of different heights and shapes can show additional information [3] such as the distance between adjacent attributes values, $\left|x_{i}-x_{i+1}\right|$ like it is done in Fig. 1 below. In-line Coordinates require the same number of nodes and links as Parallel Coordinates, which makes the scope of applicability of these methods similar.

Fig. 1. Two 5-D points of two classes in In-line Coordinates.

The links between the nodes are directed edges, but arrowheads can be omitted when the direction follows the order of coordinates. To observe better the difference between n-D points of different classes, it can draw n-D points of one class above the coordinate line and n-D points of another class below (see Fig. 1). Tree location modes of ILC is considered:
(L1) Sequential ILC with coordinates located one after another (Fig. 1).
(L2) Collocated ILC with coordinates drawn at the same location with full overlap (Fig. 2a).
(L3) Generic ILC where some coordinates can be sequential, collocated, overlapping, or disjoined (Fig. 2b).
(L4) Dynamic ILC with coordinated located dynamically as it is explained later.

(b) Generic ILC.

Fig. 2. Options to locate coordinates in In-line Coordinates.

In L3, a given n-D point \mathbf{c} can be collapsed to a single 2-D point on ILC by selecting a specific ILC overlap [3]. It is a useful visual property when $n-D$ point \mathbf{c} is a center point of the class and other n-D points of this class are concentrated next to it. Reordering coordinates $\mathrm{X}_{1}-\mathrm{X}_{\mathrm{n}}$ is another option, to make the patterns of interest more visible.

There are several options to construct links that connect points x_{i} on coordinates X_{i} by assigning meaning to their characteristics such as its width and height to convey additional information. See an example in Fig. 3a for a 7-D point with values of x_{3} and x_{4} encoded as the height and the width of the line that connects (x_{1}, x_{2}), and values of x_{6} and x_{7} the height and width of the line that connects $\left(x_{2}, x_{5}\right)$. Here, only three coordinates x_{1}, x_{2} and x_{5} are directly encoded in the base line of ILC making it shorter. Fig. 3b and Fig. 4 show other options. Fig. 3b uses the lengths of sides of the line that connects points x_{1} and x_{2} to encode values of x_{3} and x_{4}, instead of using its width and height. Similarly, lengths of sides of the line that connects points x_{2} and x_{5} encode values of x_{6} and x_{7}. The main goal of In-line Coordinates is supporting discovering n-D pattern and rules with highest possible values of precision and recall. Fig. 3 shows alternative designs of In-line Coordinates.

(a) x_{3}, x_{4}, x_{6} and x_{7} encoded by the height and width of the link lines that connect (x_{1}, x_{2}) and (x_{2}, x_{5}).
(b) x_{3}, x_{4}, x_{6} and x_{7} encoded by of length of sides of the link lines that connect $\left(x_{1}, x_{2}\right)$ and $\left(x_{2}, x_{5}\right)$.
Fig. 3. 7-D point $\mathbf{x}=\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}, x_{6}, x_{7}\right)=(1,2,3,5,3,4,2)$ in two ILBCs.

These visual representations are not a pure ILC representation with a single baseline anymore but rather ILC based on it, therefore it is called In-Line Based Coordinates (ILBC) [2] which is presented below.

Fig. 4a simplifies Fig. 3b, by making sides vertical, and Fig. 4b simplifies this figure further by removing vertical lines, which go down to the baseline and keeping only solid lines.

(a) Vertical simplification of Fig. 3b.

(b) Minimized representation.

Fig. 4. 7-D point $\mathbf{x}=(a, b, c, d, \mathrm{e}, f, g)=(1,2,3,5,3,4,2)$ in ILC2 with vertical sides.
Also, a more generic simplified notation is used in this figure with attributes named from a to g, because any of the coordinates $\left\{x_{i}\right\}$ can be assigned to be on the baseline or on link lines and in any order. This figure allows a full restoration of all seven values and requires for them only four nodes and three edges, while Parallel Coordinates require seven nodes and six edges.

The visual representation in Fig. 4 with vertical sides can be interpreted as follows. All vertical values $a-g$ are located on respective coordinates A-G, which are vertically collocated on what is commonly known as Cartesian y-coordinate, while the ILC baseline occupies the Cartesian x-coordinate. Thus, ILBC in Fig. 4 is a combination of two ILCs - horizontal and vertical. It will denote such coordinates ILC2.

Next, ILC2 compares with Shifted Paired Coordinates (SPC) [3] on the same 7-D point shown in Fig. 5. In Fig. 5a SPC d, e, f, and g are also vertical, but start at the origins of individual horizontal coordinates, which are paired. SPC also requires 4 nodes and 3
edges that are longer than in ILBC in Fig. 4b. In ILC and ILBC above, the location of all coordinates on the horizontal baseline is fixed with their values located on this baseline.

Fig. 5. (a) 7-D point $\mathbf{x}=(a, b, c, d, \mathrm{e}, f, g)=(1,2,3,5,3,4,2)$ in SPC, (b) in ILBC partial dynamic, (c) in fully dynamic.

It is called a static mapping [3]. In the dynamic mapping of the given n-D point \mathbf{x}, the location of the next value x_{i+1} in its 2-D graph \mathbf{x}^{*} depends on the location and value of prior x_{i}. It is a common concept for all General Line Coordinates [3], not only ILC and ILBC.

Fig. 5b shows the same 7-D point. Here the coordinate B starts at point $a=2$ of coordinate A with value $b=2$ located at distance two from point $a=1$. Respectively coordinate C starts at point $\mathrm{b}=2$ with point $c=3$ located at the distance 3 from $b=2$. The respective vertical coordinates d, e, f, and g start at the origin of the horizontal baseline. Thus, all of them are collocated and static. As horizontal coordinates are dynamic, but
vertical are static, therefore, ILBC is called partial dynamic ILC2. Fig. 5c shows a full dynamic ILC2 where vertical coordinates are dynamic in the same ways as horizontal coordinates, where the location of e, f and g points depends on the location of their prior points.

Figs. 6 and 7 show WBC data of two classes ILC where vertical coordinates are collocated and horizontal are static. Figs. 6a and 7a are example of one case from WBC dataset for Figs. 6b and 7b. Drawing classes "mirrored" in Fig. 6 allows to compare and see the difference and similarities of patterns of two classes without their occlusion. Fig. 7 shows much better separation of WBC classes in fully dynamic ILC2.

(b)

Fig. 6. (a) Example coordinates. (b) Wisconsin Breast Cancer dataset of two classes "mirrored" in partial dynamic ILBC.

Fig. 7. (a) Example coordinates.
(b) Wisconsin Breast Cancer dataset in fully dynamic ILC2.

The general formula to locate pairs $\left(x_{i}, x_{j}\right)$ in partial dynamic IL2 is given by mapping L as follows:

$$
L\left(x_{i}, x_{j}\right)=\left(x_{l}+x_{3}+\ldots+x_{i}, x_{j}\right) .
$$

Respectively the general formula to locate pairs $\left(x_{i}, x_{j}\right)$ in fully dynamic ILBC is given by mapping L as follows:

$$
L\left(x_{i}, x_{j}\right)=\left(x_{1}+x_{3}+\ldots+x_{i}, x_{2}+x_{4}+\ldots+x_{j}\right) .
$$

Example: In Fig. 7a, the red point value $(5,1)$ presents x_{1} and $x_{2} . x_{3 s}, x_{4 s}, x_{5 s}, x_{6 s}$,
$x_{7 s}, x_{8 s}, x_{9 s}$, and $x_{10 s}$ are the representation of $x_{3}, x_{4}, x_{5}, x_{6}, x_{7}, x_{8}, x_{9}$, and x_{10} in this partially dynamic In-line coordinates. The yellow point value $(6,2)$ presents $x_{3 s}$ and $x_{4 s}$ because the position of $x_{3 s}$ depends on where x_{1} is. This means that to retrieve the true value of x_{3}, value of $x_{3 s}$ is subtracted to the value of x_{1}. Therefore, $x_{3}=x_{3 s}-x_{1}=6-5=1$. This process repeats for all the remain points where x_{5}, x_{7}, x_{9} depend on $x_{3 s}, x_{5 s}, x_{7 s}$, respectively. This process also repeats for all the even attribute such as x_{4}, x_{6}, x_{8} depend on $x_{2}, x_{4 s}, x_{6 s}$, respectively. With that, the drawn x values are $x=$ $(5,1,6,2,8,3,11,4,12,5)$, and the true x values are $x=(5,1,1,1,2,1,3,1,1,1)$.

Next, weighted dynamic ILBC is introduced with is given by mapping L_{w} as follows:
$L_{w}\left(x_{i}, x_{j}\right)=\left(w_{1} x_{1}+w_{3} x_{3}+\ldots+w_{i} x_{i}, w_{2} x_{2}+w_{4} x_{4}+\ldots+w_{j} x_{j}\right)$.
where $\mathrm{W}=\left\{w_{i}\right\}$ is a set of weights assigned to coordinates.
Example: Euclidian between two points can be used as W.

CHAPTER III

CLASSIFICATION AND REGRESSION ALGORITHMS WITH IN-LINE COORDINATES

Box Classification Algorithm

In the published paper [2], Dr. Boris Kovalerchuk and Hoang Phan introduced BC algorithm. The main idea of the BC algorithm is finding a good box with high purity and a large number of cases, and record this box, then remove all cases, which are in this box, and repeat the process of finding other good boxes in remaining cases and continue this process until all cases of all classes will be in one of the good boxes. This process is interactive and partially automated. Automation includes computing parameters of the candidates for the good boxes.

The BC algorithm operates on n-D data visualized in ILBC in the following major steps.

Step 1: Search/discover "good" boxes B_{i} in these visualizations that cover dataset cases as pure as possible. Good box' criterion is usually decided by number of cases that it covers and its purity. For instance, the exhausted grid search is used to discover boxes with WBC dataset. With WBC dataset, a "good" box is discovered when it covers at least more than 10% cases of the remaining data. The search of boxes and rules is a sequential hierarchical process for each class. If there are multiple "good" boxes, then these "good"
boxes ranking is based on its purity. Purity of the box is the number of cases of each class in the box the ratio of the cases of the dominant class to the number of cases of all other classes in the box. Here it is assumed that the graph \mathbf{x}^{*} of n-D point \mathbf{x} crosses box B. In the rule below, it will be denoted $\mathbf{x} \in \mathrm{B}$ for short. This definition leads to simpler interpretation of rules based on such boxes, rather than an alternative definition which requires that only an edge to graph \mathbf{x}^{*} crosses the box B_{i}.

Step 2: Form basic BC rules with the discovered boxes:

$$
\begin{equation*}
\mathrm{R}_{\mathrm{i}}: \text { if } \mathbf{x} \in \mathrm{B}_{\mathrm{i}} \Rightarrow \mathbf{x} \in \text { Class } \mathrm{C}_{\mathrm{i}} . \tag{3.1}
\end{equation*}
$$

For WBC dataset, there are 13 rules as presented in table 2.
The general format of the rules is:

$$
\begin{equation*}
\mathrm{R}_{\mathrm{i}}: \text { if } \mathbf{x} \in \mathrm{B}_{\mathrm{i}} \& \mathbf{x} \notin\left(\mathrm{~B}_{\mathrm{m}} \cup \mathrm{~B}_{\mathrm{p}} \cup \ldots \cup \mathrm{~B}_{\mathrm{t}}\right) \Rightarrow \mathbf{x} \in \text { Class } \mathrm{C}_{\mathrm{i}} . \tag{3.2}
\end{equation*}
$$

Here B_{i} is a current "good" box, and other boxes are prior "good" boxes with cases from these boxes removed before B_{i} is searched. B_{m}, B_{p}, and B_{t} are other boxes.

Step 3: Test BC rules on independent data.
Step 4: Pruning a set of discovered rules to decrease overfitting.
The output of Iterative Visual Logical Classifier algorithm results in series of rectangular areas. Fig. 8a shows one case and Fig. 8b shows more cases from WBC visualized by the IVLC algorithm.

Fig. 8. (a) Example coordinates.
(b) Examples of boxes discovered in Wisconsin Breast Cancer dataset.

The main steps of discovering boxes are:
Step 1.1. Create a grid in the ILC area. Each cell of the grid is a box. With WBC dataset box size is increased vertically and then horizontally after the full grids is search for each box size.

Step 1.2. If the number of boxes (grid cells) and the number of n - D points is relatively small compute purity of each box. For a large number of boxes and n-D points use optimization and heuristic algorithms such as genetics algorithms.

Step 1.3. For each class create a list of boxes where this class dominates. All boxes in this list must cover more cases than the desired percentage of the remaining cases. For instance, WBC dataset boxes must cover more than 10% cases of the remaining data.

Step 1.4. For a given class pick up a box with highest ranking. Box ranking is based on its purity. Highest ranking box is used to classify the remaining cases which have not been classified.

The main steps of forming basic BC rules with the discovered boxes:
Step 2.1. Create a classification rule with highest ranking box accordance with (3.1).
Example: for WBC dataset, there are 382 green cases and no red cases that crosses box B_{1} (Fig. 10). Therefore, rule R_{1} is created as follow,

$$
\begin{equation*}
\mathrm{R}_{1}: \mathbf{x} \in \mathrm{B}_{1} \Rightarrow \mathbf{x} \in \mathrm{G} \text { (Benign, } 382 \text { cases). } \tag{3.1.1}
\end{equation*}
$$

More boxes and rules are identified later in table 1.
Step 2.2. Exclude all cases that are in these boxes.
Step 2.3. Conduct step 1.1 to step 2.2 for all remaining cases.
The pruning step is to deal with many "mini" boxes that contain fewer than a certain percentage of the total original dataset with low level of generalization to avoid overfitting and data memorization. With Wisconsin Breast Cancer dataset, it was decided intuitively that if a box classified fewer than 17 cases of the total number of cases which is 683 then it is very likely that this box is overfitting the data. This problem is also known for decision trees. Without control the depth of decision tree and the number of cases in each terminal node would lead to many terminal nodes with only few cases in each of them. The pruning of decision trees removes overfitting but decreases the accuracy of classification.

Example: box B5 classified only 14 red cases (about 2.05% of 683 cases). This is too few cases, so box B_{5} is likely overfitted WBC data.

The step 4 of the BC algorithm employs a version of this pruning approach which: (a) associates "mini" boxes with the larger boxes interactively or (b) refuses to predict cases that belong to "mini" boxes. The association (a) is conducted as follows. Consider two boxes B_{1} and B_{2} for class C_{1} the visualization allows to see their mutual location and to create a joint rule based on them. If boxes are adjacent a single bigger box $B_{1,2}$ is produced from them. If the boxes are not adjacent that a new rule is formed:

$$
\text { If } \mathbf{x} \in \mathrm{B}_{1} \text { or } \mathbf{x} \in \mathrm{B}_{2} \text { then } \mathbf{x} \in \mathrm{C}_{1}
$$

The general for of a new rule is,

$$
\text { If } \mathbf{x} \in \mathrm{B}_{1} \cup \mathrm{~B}_{2} \text { then } \mathbf{x} \in \mathrm{C}_{1}
$$

The interactivity of the BC algorithm has an advantage of allowing the end-users to observe "mini" boxes and decide to follow (a) or (b),

$$
\mathrm{R}_{1}: \mathbf{x} \in \mathrm{B}_{1} \Rightarrow \mathbf{x} \in \mathrm{G} \text { (Benign, } 382 \text { cases). }
$$

Linear Classification and Regression Algorithm.

Design of rules based on boxes have limitations. One of them is locality of each box, i.e., the box covers only cases that are in this box. Typically, several boxes are needed to cover all data, while a single linear classifier can cover all data if data are linearly separable. The goal of this section is proposing an analog of linear classifier in ILC. Fig. 9 illustrates the proposed approach. First, a black line is built which is used to project all cases of both classes to this line. If the projected endpoints of cases of one class C mostly concentrate on the one side of the discrimination blue line, then a linear discrimination model M is discovered where T is threshold on the black line shown with the blue discrimination line:

$$
\begin{equation*}
M(\mathbf{x})>T \Rightarrow \mathbf{x} \in C \tag{3.3}
\end{equation*}
$$

Another more common linear discrimination model for two classes C and Q is:

$$
\begin{equation*}
M(\mathbf{x})>T \Rightarrow \mathbf{x} \in C \text { else } \mathbf{x} \in Q \tag{3.4}
\end{equation*}
$$

The model (3.3) only covers n-D points \mathbf{x} where $M(\mathbf{x})>$ T. This is the situation in Fig. 11 for red class above the blue line. This means that if a single model (3.4) cannot be built, several models like (3.3) need to be built that may require different black lines, where endpoints are projected as shown in Fig. 9b. Moreover, it can relax a requirement that only endpoints are projected. It can project some intermediate nodes \boldsymbol{x}_{k} and \boldsymbol{x}_{u} of graph of \mathbf{x}^{*} for $k<n$ and $u<n$, where n is the dimension of n-D point \mathbf{x} getting models like,

$$
\begin{gather*}
M\left(\mathbf{x}_{k}\right)>T \Rightarrow \mathbf{x} \in C . \tag{3.5}\\
M_{l}\left(\mathbf{x}_{k}\right)>T_{k} \& M_{2}\left(\mathbf{x}_{u}\right)>T_{u} \Rightarrow \mathbf{x} \in C . \tag{3.6}
\end{gather*}
$$

Those intermediate points can be found by the BC algorithm presented above. Below an ILC classification and regression algorithms are presented. Figs. 9a and 9b look different because the black lines are drawn differently, which allow to optimize the prediction parameters and accuracy. The endpoints of the black lines are chosen so that a higher precision accuracy can be obtained.

Fig. 9. Linear Classification and Regression algorithm with projection line at different angles in full dynamic ILP2.

CHAPTER IV

CASE STUDY FOR BOX CLASSIFICATION ALGORITHM IN PARTIAL DYNAMIC ILC2.

This section presents the results of the computational experiment for discovering classification rules for WBC data encoded in partial dynamic ILC2 using the BC algorithm. The discovered 13 pure boxes are presented in table 1 . These rules can be simplified and pruned interactively. With WBC dataset, exhaustive grid search is used to discover the hyper-parameters in table 1 (column 2 and 5). Exhaustive grid search can be used with WBC dataset because WBC dataset has a low-resolution attribute with only ten values in each attribute. With higher dimension and high-resolution dataset, exhausted grid search will take much greater computational time because there will be much more cells in the grid. We avoided such computations by proposing a heuristic algorithm that is described in section V . The boxes cover all WBC cases. Values $x_{1}, x_{2}, y_{1}, y_{2}$ identify left, right, bottom, and top corners of the box within ILC2 display.
Table 1. Discovered boxes ILC2.

Box	$\mathrm{x}_{1}, \mathrm{x}_{2}, \mathrm{y}_{1}, \mathrm{y}_{2}$	Cases	Box	$\mathrm{x}_{1}, \mathrm{x}_{2}, \mathrm{y}_{1}, \mathrm{y}_{2}$	Cases
B_{1}	$15,20.5,1,1.5$	382	$\mathrm{~B}_{2}$	$23.5,39.5,8.5,10$	166
$\mathrm{~B}_{3}$	$1,3.5,0.5,2$	28	$\mathrm{~B}_{4}$	$20,22.5,6,6.5$	26
$\mathrm{~B}_{5}$	$9.5,10,5,6.5$	14	$\mathrm{~B}_{6}$	$16,21,0.5,2$	18
$\mathrm{~B}_{7}$	$17.5,18.5,3,3.5$	23	$\mathrm{~B}_{8}$	$14.5,17,2.5,3$	7
$\mathrm{~B}_{9}$	$28.5,29,2.5,3.5$	4	$\mathrm{~B}_{10}$	$17.5,18.5,3,3.5$	10
$\mathrm{~B}_{11}$	$14.5,15,5.5,6$	4	$\mathrm{~B}_{12}$	$26.5,27,7,7.5$	1
$\mathrm{~B}_{13}$	$28,28.5,0.5,9.5$	10			

Table 2 presents the rules constructed from these boxes in the hierarchical process of the BC algorithm that was described above. The benign class is denoted as B and is drawn as green with letter G used to identify this class in table 2. Respectively, the class malignant is denoted by M and R (red) for short. These rules are created using the same concept describe in example (3.1.1).

Table 2. Rules $\mathrm{R}_{1}-\mathrm{R}_{13}$ with precision $\mathrm{P}=100 \%$.

The boxes and rules in tables 1 and 2 cover all 444 B cases and 239 M . Boxes B_{1-} B_{4} and respective rules $\mathrm{R}_{1}-\mathrm{R}_{4}$) cover most of the cases (602 cases) with 100% precision without any misclassified cases. This means that 88.14% of all cases are classified by simplest single box rules without any other boxes involved. The other rules involve "negated" boxes requiring that the case does not belong to these boxes to satisfy the rule. Some rules in table 2 such as rule R_{8} have simplified forms too with reduced "negated" boxes, because all cases of some boxes are covered by other boxes in these rules.

Table 2 shows that class G has more rules/boxes with smaller coverage (four rules that cover from one to seven cases with total 16 cases covered by these rules). Boxes can be called "mini" boxes. In contrast, class R has no rules and boxes with such small
coverage. Its four rules with smaller coverage include from 10 to 14 cases with 47 total cases. It means a better generalization for R class, than for G class, in these rules. When rules are analyzed with large coverage, the situation is the opposite.

The first three G rules cover 428 cases (96.4% of G cases), while the first two R rules (rules R_{2} and R_{4}) cover 192 cases, 80.3% of R cases). Next, the rules that cover a small number of cases are more complex. They include two to seven "negated" boxes. This is rather a memorization of cases, than their generalization.

Such complex rules are needed for a small number of cases. Domain experts correctly captured/engineered a few critical attributes. This can indicate superior human abilities to generate informative features manually. While, deep learning algorithms can automatically discover informative features, often it is challenging to interpret and explain them.

A comparable Decision Tree (DT) built on the 90% of the same data is $\% 97.40$ accurate too but has multiple terminal nodes with few cases in each of them as presented in the appendix B. It is rather overfitting and data memorization. This tree has a total of 35 nodes, 29 terminal nodes with 10 of these terminal nodes contain seven or fewer cases [16]. In contrast the BC algorithm produced 13 boxes/rules, and only four of them contain seven or fewer cases on all WBC data.

Figs. 10-16 illustrate all boxes showing the cases, which cross these boxes. In addition, Figs. 12-16 show also the cases of other colors, which are removed before discovering a given box by requiring not to belong to a set of prior boxes, listed in the rules in table 2.

Example: In Fig. 10, 382 green cases is classified with box B_{1}.
The BC algorithm removed theses 382 green cases before the next search. Because BC algorithm is sequential hierarchical process, it searches for each box in the sequential order such as B_{1}, then B_{2} and then B_{3} and so on. This means that after box B_{1}, there will be 62 green cases remaining out of 444 total green cases for the next search. Because of the small number of cases left, there is a good chance that a rule for them can be overfitting. Therefore, it will be beneficial to analyze the number of green cases classified without removing cases of the prior boxes to get another rule with higher coverage. The BC algorithm precision can be different depending on hierarchical order. The BC algorithm hierarchical order can be changed depend on how boxes' criteria is decided by user.

Figs. 10-11 represent situations when boxes are discovered without preconditions on other boxes. These pictures show boxes $\mathrm{B}_{1}, \mathrm{~B}_{2}, \mathrm{~B}_{3}$, and B_{4} with only cases that cross them. Figs. 12-16 represent situations with boxes discovered with a precondition that cases that cross prior boxes. In Fig. 17, this graph shows the data of the patient \#1000025 on fully dynamic In-line Coordinates. The X -coordinate represents the value of x_{1}, x_{4}, x_{7}, and x_{10}. The y-coordinate represents the value of $x_{2}, x_{3}, x_{5}, x_{6}, x_{8}$, and x_{9}. All attribute of patient \#100025 is demonstrated in Fig. 17, such as $x_{1}=5, x_{2}=1, x_{3}=1, x_{4}=1, x_{5}=2, x_{6}=1$, $x_{7}=3, x_{8}=1, x_{9}=1$, and $x_{10}=1$. All patients in WBC dataset are represented in this manner.

In these figures for each box $\mathrm{B} i$, the first picture shows only cases which cross box B_{i} after removing cases from $\mathrm{B}_{1}-\mathrm{B}_{4}$ and the second picture also shows cases from the opposite class that cross B_{i} without removing cases that cross prior boxes. For example,

Fig. 12 first shows 14 red cases that cross box B_{5} and then it shows both read and green cases without removing 382 cases that cross box B_{1} and 28 cases that cross box B_{3}. For box B_{6} the first picture shows 18 green cases, and the second picture shows both green and red cases without removing red cases from boxes B_{2} and B_{4}.

Box $\mathrm{B}_{1}: 382$ green cases.

Box $B_{2}: 166$ red cases.

Fig. 10. Boxes B_{1} and B_{2}.

Box B3: 28 green cases.
Box B4: 26 red cases.
Fig. 11. Boxes B_{3} and B_{4}.

Fig. 12. Boxes B_{5} and B_{6}.

Fig. 13. Boxes B_{7} and B_{8}.

Box B9: 4 green cases.
Box $\mathrm{B}_{10} 7$ green cases.
Fig. 14. Boxes B_{9} and B_{10}.

Fig. 15. Boxes B_{11} and B_{12}.

Box $\mathrm{B}_{13}: 10$ red cases.
Fig. 16. Box B_{13}.

Fig. 17. Example coordinates for Figs.10-16.

Pruning. Boxes B_{9}, B_{11} with four green cases each and box B_{12} with one green case can be used to prune the set of rules by creating modified rules,

$$
\begin{aligned}
& \text { R9m: } \mathbf{x} \in \mathrm{B}_{9} \Rightarrow \mathbf{x} \in \mathrm{R} \text { (47 red /4 green). } \\
& \mathrm{R}_{11 \mathrm{M}:} \mathbf{x} \in \mathrm{B}_{11} \Rightarrow \underset{25}{\boldsymbol{x} \in \mathrm{R} \text { (28 red /4 green). }}
\end{aligned}
$$

$$
\mathrm{R}_{12 \mathrm{M}}: \mathbf{x} \in \mathrm{B}_{12} \Rightarrow \mathbf{x} \in \mathrm{R} \text { (52 red /1 green). }
$$

Here $\mathbf{x} \in \mathrm{B}_{i}$ means that polyline for n-D point \mathbf{x} crosses the box B_{i}.
These rules have a low error rate. Currently, the pruning process is interactive, therefore the end-users can explore them and accept if the error rate is tolerable.

Joining rules. The next task is decreasing the number of rules, that is demonstrated on 13 rules shown above. The proposed approach joins rules by combining them including the use of else condition. In contrast with the pruning, this process does not introduce any error. The result is shown in table 3 .

The steps of the Rule Joining (RJ) algorithm are:

Step 1: Combine rules with a single rectangle of a given class.

Example: $\mathrm{R}_{1,3}: \mathbf{x} \in \mathrm{B}_{1} \cup \mathrm{~B}_{3} \Rightarrow \mathbf{x} \in \mathrm{G}(410$ cases $)$.

Step 2: Find rules in the opposite class that are conditioned by rectangles used in Step 1.

Example: Rule 5 is created after BC algorithm have removed 602 samples (410 green cases and 192 red cases) from boxes $\mathrm{B}_{1}, \mathrm{~B}_{2}, \mathrm{~B}_{3}$, and B_{4}. Without removing these 602 samples, some green samples crossing through box B_{5}. Therefore, rule R_{5} is conditioned by $\mathbf{x} \notin \mathrm{B}_{1} \cup \mathrm{~B}_{3}$.

Step 3: Combine rules from Steps 1 and 2.

Example: $\mathrm{R}_{1,3,5:} \mathbf{x} \in \mathrm{B}_{1} \cup \mathrm{~B}_{3} \Rightarrow \mathbf{x} \in \mathrm{G}$ (else $\mathbf{x} \in \mathrm{B}_{5} \Rightarrow \mathrm{x} \in \mathrm{R}$) (428 cases).

Here rule R5 covers only 14 cases that can be viewed as a potential overfitting,
while rule $\mathrm{R}_{1,3,5}$ covers 428 cases. The else condition makes R_{5} a part of the larger rule.

Table 3. Rules after joining.

The analysis of rules in table 3 shows that seven rules $\mathrm{R}_{1,3,5}, \mathrm{R}_{8,9}, \mathrm{R}_{11,12}, \mathrm{R}_{2,4,6,8}, \mathrm{R}_{7}$, R_{10}, and R_{13} are equivalent to 13 original rules. Here rules $R_{8,9}, R_{11,12}, R_{10}$, and R_{13} cover 10 or fewer cases with total 36 cases (16 green and 20 red). Excluding these rules and, respectively refusing to classify cases that satisfy them will eliminate potential overfitting.

Model Evaluation with Worst-case K Fold Validation Approach.

k-fold cross validation. So far, the case study was conducted on the whole WBC dataset. What will be the accuracy of the BC algorithm in k -fold cross validation (k-fold cross validation) on these data? This question can be answer in a non-traditional way. It is an attempt to find the worst and best-case estimates for stratified 10 -fold cross validation as follows. The formal concept of worst-case cross validation estimate, based on the Shannon function, was introduced in [17]. The motivation of getting the worst-case estimates is coming from the fact that k -fold cross validation only tests a small fraction of splits of data into training and validation sets, giving potentially an inflated average estimate, which can be misleading to life-critical applications such as cancer diagnostics.

First, consider a validation fold, which includes all 16 cases that are in "mini" boxes $\mathrm{R}_{8}-\mathrm{R}_{9}$ and $\mathrm{R}_{11}-\mathrm{R}_{12}$. These cases are likely overfitted and not generalized well by rules. Therefore, they are good candidates for the worst fold for the BC algorithm. The training data in the remaining 9 folds do not contain these cases. Thus, these "mini" boxes will not be discovered by the BC algorithm because all their cases are not in the training data. Assume that this algorithm discovered all other boxes on training data that contain 90% of all WBC with a rule,

$$
\mathrm{R}_{12 \mathrm{M}}: \mathbf{x} \in \mathrm{B}_{12} \Rightarrow \mathbf{x} \in \mathrm{R} \text { (52 red /1 green). }
$$

How will the BC algorithm classify cases from these "mini" boxes? There are two options: (1) refusal and (2) make an error by using modified rules like $\mathrm{R}_{12 \mathrm{M}}$ because $\mathrm{R}_{12 \mathrm{~m}}$ misclassify these cases. In stratified 10 -fold cross validation, a training-validation split of cases: 615 - 68. In the worst validation fold 16 cases are misclassified with 76.47% accuracy. All other folds do not have any misclassified cases (100\% accuracy), because it is assumed that all other boxes are discovered. The average accuracy in all 10 folds will be average of 76.47% and 100% taken nine times -97.65%. If BC algorithm refuses to classify these 16 cases, then the precision will be 100%. Both situations (1) and (2) can be considered as the best-case estimates.

Next, it was relaxed the assumption that all non-mini boxes B_{i} are discovered fully. Assume that smaller boxes $\mathrm{B}_{i^{\circ}}$ are discovered, which do not include all 52 remaining cases in the worst fold. Then the accuracy in the worst fold will be 0% with 100% accuracy in all 9 other folds with the average accuracy of 90%. This is a worst-case estimate. The average estimate will be found between the best and worst estimates.

A more detailed analysis is also possible, which involves visual analysis with possible zooming. Let us consider the largest box B_{1} with 382 green cases. In stratified 10 -fold cross validation, only 38 cases from this box are left for the validation fold. Fig. 10 shows the location of this box. The visual analysis allows us to identify and count lines which are at the edge of the box. If that number is fewer than 38 cases, then misclassifying 38 cases is impossible, when B_{1} is learned with a subset of data.

CHAPTER V

ANALYSIS EXPERIMENTAL RESULTS AND COMPARISON WITH PUBLISHED RESULTS BOX CLASSIFICATION ALGORITHM.

5.1. Box Classification Algorithm for Wisconsin Breast Cancer Dataset with Stratified 10-Fold Cross Validation.

WBC dataset was described in chapter one and all discovered WBC rules were presented above in tables 2-3.This section analyzes rules $\mathrm{R}_{1,3}$ and $\mathrm{R}_{2,4}$ discovered by BC algorithm which classify above 88% of WBC dataset. To get the even number of coordinates, attribute nine was used twice. Table 4 presents results of BC algorithm on WBC data for rule $\mathrm{R}_{1,3}$ that predicts green class based on all 444 green (benign) and 239 red (malignant) of WBC data. Table 5 presents hyper-parameters of $\mathrm{R}_{1,3}$. WBC rule $\mathrm{R}_{1,3}$ is:

$$
\mathrm{R}_{1,3}: \mathbf{x} \in \mathrm{B}_{1} \cup \mathrm{~B}_{3} \Rightarrow \mathbf{x} \in \mathrm{G} \text { (Benign). }
$$

Table 4. Precision and recall of rule $\mathrm{R}_{1,3}$ for all data.

Table 4. Precision and recall of rule $\mathrm{R}_{1,3}$ for all data.		
WBC dataset	Rule precision (\%)	Rule recall (\%)
683 cases	100	92.34

Table 5. Hyper-parameters of the rectangles B_{1} and B_{3} used in rule $R_{1,3}$.

Type of data used	Hyper-parameters for B_{1}	Hyper-parameters for B_{3}
Full dataset	$\mathrm{x}_{1}=15, \mathrm{x}_{2}=20.5, \mathrm{y}_{1}=1, \mathrm{y}_{2}=1.5$	$\mathrm{x}_{1}=1, \mathrm{x}_{2}=3.5, \mathrm{y}_{1}=0.5, \mathrm{y}_{2}=2$

Table 6. Number of cases that satisfy rule $\mathrm{R}_{1,3}$ (green rule) with boxes B_{1} and $\mathrm{B}_{3}(\mathrm{BC}$ algorithm, WBC data) in stratified 10 -fold cross validation.

$90 \%: 10 \%$ stratified random folds	Red cases correctly classified by rule R_{2}	Green cases misclassified as red by rule R_{2}		
	Training	Validation	Training	Validation
1	374	44	3	2
2	375	40	1	0
3	373	42	1	0
4	373	42	1	0
5	375	40	1	0
6	374	41	1	0
7	373	42	1	0
8	375	40	1	0
9	371	44	1	0
10	373	42	1	0
Mode	373	42	1	0

Tables 6-7 present results of stratified 10-fold cross validation of BC algorithm on
WBC data for rule $\mathrm{R}_{1,3}$ that predicts green class. Table 7 also presents the hyper-
parameters that was used for each fold. Each fold contains 400 green (benign) cases and
215 red (malignant) cases from the total 444 and 239 cases, respectively.

Table 7. Precision and recall of rule $\mathrm{R}_{1,3}$ for stratified 10-fold cross validation.

$\begin{gathered} \hline 90 \%: 10 \% \\ \text { random } \\ \text { stratified } \\ \text { folds } \end{gathered}$	Rule precision		Rule recall		Hyper-parameters	
	Training (\%)	Validation (\%)	Training (\%)	Validation (\%)	Hyper-parameters for B_{1}	Hyper-parameters for B_{3}
1	99.20	95.65	93.5	100	$\begin{gathered} \mathrm{x}_{1}=15, \mathrm{x}_{2}=20.8, \\ \mathrm{y}_{1}=1, \mathrm{y}_{2}=1.7 \end{gathered}$	$\begin{gathered} x_{1}=1, x_{2}=3.5, \\ y_{1}=0.7, y_{2}=2.8 \\ \hline \end{gathered}$
2	99.73	100	93.75	90.91	$\begin{gathered} \mathrm{x}_{1}=15, \mathrm{x}_{2}=20.8, \\ \mathrm{y}_{1}=1, \mathrm{y}_{2}=1.7 \end{gathered}$	$\begin{gathered} x_{1}=1, x_{2}=3.5, \\ y_{1}=0.7, y_{2}=2.8 \end{gathered}$
3	99.73	100	93.25	95.45	$\begin{gathered} \mathrm{x}_{1}=15, \mathrm{x}_{2}=20.8, \\ \mathrm{y}_{1}=1, \mathrm{y}_{2}=1.7 \end{gathered}$	$\begin{gathered} \mathrm{x}_{1}=1, \mathrm{x}_{2}=3.5, \\ \mathrm{y}_{1}=0.7, \mathrm{y}_{2}=2.8 \end{gathered}$
4	99.73	100	93.25	95.45	$\begin{gathered} \mathrm{x}_{1}=15, \mathrm{x}_{2}=20.8, \\ \mathrm{y}_{1}=1, \mathrm{y}_{2}=1.7 \end{gathered}$	$\begin{gathered} x_{1}=1, x_{2}=3.5, \\ y_{1}=0.7, y_{2}=2.8 \end{gathered}$
5	99.73	100	93.75	90.91	$\begin{gathered} \mathrm{x}_{1}=15, \mathrm{x}_{2}=20.8, \\ \mathrm{y}_{1}=1, \mathrm{y}_{2}=1.7 \end{gathered}$	$\begin{gathered} x_{1}=1, x_{2}=3.5, \\ y_{1}=0.7, y_{2}=2.8 \end{gathered}$
6	99.73	100	93.25	91.11	$\begin{gathered} \mathrm{x}_{1}=15, \mathrm{x}_{2}=20.8, \\ \mathrm{y}_{1}=1, \mathrm{y}_{2}=1.7 \end{gathered}$	$\begin{gathered} x_{1}=1, x_{2}=3.5, \\ y_{1}=0.7, y_{2}=2.8 \end{gathered}$
7	99.73	100	93.25	95.45	$\begin{gathered} \mathrm{x}_{1}=15, \mathrm{x}_{2}=20.8, \\ \mathrm{y}_{1}=1, \mathrm{y}_{2}=1.7 \end{gathered}$	$\begin{gathered} x_{1}=1, x_{2}=3.5, \\ y_{1}=0.7, y_{2}=2.8 \end{gathered}$
8	99.73	100	93.75	90.91	$\begin{gathered} \mathrm{x}_{1}=15, \mathrm{x}_{2}=20.8, \\ \mathrm{y}_{1}=1, \mathrm{y}_{2}=1.7 \end{gathered}$	$\begin{gathered} \mathrm{x}_{1}=1, x_{2}=3.5, \\ \mathrm{y}_{1}=0.7, \mathrm{y}_{2}=2.8 \end{gathered}$
9	99.73	100	92.75	100	$\begin{gathered} \mathrm{x}_{1}=15, \mathrm{x}_{2}=20.8, \\ \mathrm{y}_{1}=1, \mathrm{y}_{2}=1.7 \end{gathered}$	$\begin{gathered} \mathrm{x}_{1}=1, x_{2}=3.5, \\ \mathrm{y}_{1}=0.7, \mathrm{y}_{2}=2.8 \end{gathered}$
10	99.73	100	93.25	95.45	$\begin{gathered} \mathrm{x}_{1}=15, \mathrm{x}_{2}=20.8, \\ \mathrm{y}_{1}=1, \mathrm{y}_{2}=1.7 \end{gathered}$	$\begin{gathered} x_{1}=1, x_{2}=3.5, \\ y_{1}=0.7, y_{2}=2.8 \end{gathered}$
Average	99.67	99.57	93.38	94.56		

Tables 8-9 presents results and hyper-parameters of BC algorithm on WBC data for rule $\mathrm{R}_{2,4}$ that predicts red class based on all WBC data without splitting to training and validation subsets. This WBC rule $\mathrm{R}_{2,4}$ is:

$$
\mathrm{R}_{2,4}: \mathbf{x} \in \mathrm{B}_{2} \cup \mathrm{~B}_{4} \Rightarrow \mathbf{x} \in \mathrm{R} \text { (Malignant). }
$$

Table 8. Precision and recall of rule $\mathrm{R}_{2,4}$ for all data.

WBC dataset	Rule precision (\%)	Rule recall (\%)
683 cases	100	80.33

Table 9. Hyper-parameters of the rectangles B_{2} and B_{4} used in rule $\mathrm{R}_{2,4}$.

Table 9. Hyper-parameters of the rectangles B_{2} and B_{4} used in rule $\mathrm{R}_{2.4}$.							
Type of data used	Hyper-parameters for B_{2}	Hyper-parameters for B_{4}					
Full dataset	$\mathrm{x}_{1}=23.5, \mathrm{x}_{2}=39.5, \mathrm{y}_{1}=8.5, \mathrm{y}_{2}=10$	$\mathrm{x}_{1}=20, \mathrm{x}_{2}=22.5, \mathrm{y}_{1}=6, \mathrm{y}_{2}=6.5$					

Tables 10 and 11 present results of stratified 10 -fold cross validation with hyperparameters for each fold of BC algorithm on WBC data for rule $\mathrm{R}_{2,4}$ that predicts red class.

Table 10. Number of cases that satisfy rule $R_{2,4}$ (red rule) with boxes B_{2} and B_{4} (BC algorithm, WBC data) in stratified 10 -fold cross validation.

$90 \%: 10 \%$ stratified random folds	Red cases correctly classified by rule R_{2}		Green cases misclassified as red by rule R_{2}	
	Training	Validation	Training	Validation
1	191	21	8	0
2	192	20	9	0
3	194	18	9	0
4	192	20	9	0
5	192	20	8	1
6	192	20	8	1
7	189	24	8	1
8	190	22	8	1
9	193	19	8	1
10	193	20	7	2
Mode	192	20	8	1

$90 \%: 10 \%$random stratifiedfolds	Rule precision		Rule recall		Hyper-parameters for B_{2}	Hyper-parameters for B_{4}
	Training (\%)	Validation (\%)	Training (\%)	Validation (\%)		
1	95.98	100	88.84	87.5	$\begin{gathered} x_{1}=23, x_{2}=39.5, \\ y_{1}=8, y_{2}=10 \end{gathered}$	$\begin{gathered} \mathrm{x}_{1}=16, \mathrm{x}_{2}=22.5, \\ \mathrm{y}_{1}=6, \mathrm{y}_{2}=6.5 \end{gathered}$
2	95.52	100	89.30	83.33	$\begin{gathered} \mathrm{x}_{1}=23, \mathrm{x}_{2}=39.5, \\ \mathrm{y}_{1}=8, \mathrm{y}_{2}=10 \end{gathered}$	$\begin{gathered} \mathrm{x}_{1}=16, \mathrm{x}_{2}=22.5, \\ \mathrm{y}_{1}=6, \mathrm{y}_{2}=6.5 \end{gathered}$
3	95.57	100	90.23	75.00	$\begin{gathered} \mathrm{x}_{1}=23, \mathrm{x}_{2}=39.5, \\ \mathrm{y}_{1}=8, \mathrm{y}_{2}=10 \end{gathered}$	$\begin{gathered} \mathrm{x}_{1}=16, \mathrm{x}_{2}=22.5, \\ \mathrm{y}_{1}=6, \mathrm{y}_{2}=6.5 \end{gathered}$
4	95.52	100	89.30	83.33	$\begin{gathered} \mathrm{x}_{1}=23, \mathrm{x}_{2}=39.5, \\ \mathrm{y}_{1}=8, \mathrm{y}_{2}=10 \end{gathered}$	$\begin{gathered} \mathrm{x}_{1}=16, \mathrm{x}_{2}=22.5, \\ \mathrm{y}_{1}=6, \mathrm{y}_{2}=6.5 \end{gathered}$
5	96.00	95.24	89.30	83.33	$\begin{gathered} \mathrm{x}_{1}=23, \mathrm{x}_{2}=39.5, \\ \mathrm{y}_{1}=8, \mathrm{y}_{2}=10 \end{gathered}$	$\begin{gathered} \mathrm{x}_{1}=16, \mathrm{x}_{2}=22.5, \\ \mathrm{y}_{1}=6, \mathrm{y}_{2}=6.5 \end{gathered}$
6	96.00	95.24	89.30	83.33	$\begin{gathered} \mathrm{x}_{1}=23, \mathrm{x}_{2}=39.5, \\ \mathrm{y}_{1}=8, \mathrm{y}_{2}=10 \end{gathered}$	$\begin{gathered} \mathrm{x}_{1}=16, \mathrm{x}_{2}=22.5, \\ \mathrm{y}_{1}=6, \mathrm{y}_{2}=6.5 \end{gathered}$
7	95.94	96	87.91	100	$\begin{gathered} \mathrm{x}_{1}=23, \mathrm{x}_{2}=39.5, \\ \mathrm{y}_{1}=8, \mathrm{y}_{2}=10 \end{gathered}$	$\begin{gathered} \mathrm{x}_{1}=16, \mathrm{x}_{2}=22.5, \\ \mathrm{y}_{1}=6, \mathrm{y}_{2}=6.5 \end{gathered}$
8	95.96	95.65	88.37	91.66	$\begin{gathered} \mathrm{x}_{1}=23, \mathrm{x}_{2}=39.5, \\ \mathrm{y}_{1}=8, \mathrm{y}_{2}=10 \end{gathered}$	$\begin{gathered} \mathrm{x}_{1}=16, \mathrm{x}_{2}=22.5, \\ \mathrm{y}_{1}=6, \mathrm{y}_{2}=6.5 \end{gathered}$
9	96.02	95	89.76	79.17	$\begin{gathered} \mathrm{x}_{1}=23, \mathrm{x}_{2}=39.5, \\ \mathrm{y}_{1}=8, \mathrm{y}_{2}=10 \end{gathered}$	$\begin{gathered} \mathrm{x}_{1}=16, \mathrm{x}_{2}=22.5, \\ \mathrm{y}_{1}=6, \mathrm{y}_{2}=6.5 \end{gathered}$
10	96.50	90.91	89.76	83.33	$\begin{gathered} \mathrm{x}_{1}=23, \mathrm{x}_{2}=39.5, \\ \mathrm{y}_{1}=8, \mathrm{y}_{2}=10 \end{gathered}$	$\begin{gathered} \mathrm{x}_{1}=16, \mathrm{x}_{2}=22.5, \\ \mathrm{y}_{1}=6, \mathrm{y}_{2}=6.5 \end{gathered}$
Average	95.90	96.80	89.21	85.00		

5.2. Box Classification Algorithm for Page Block Classification Dataset with Stratified

10-Fold Cross Validation.

PBC dataset [15] has 5473 cases with 10 attributes each. There are 4913 cases from class Text (class C_{1}), 329 cases from class Horizontal Line (class C_{2}), 28 cases from class Graphic (class C_{3}), 88 cases from class Vertical Line (class C_{4}) and 115 cases from class Picture (class C_{5}). This dataset is heavily imbalanced in the number of cases of classes that range from 28 to 4913 cases.

5.2.1. Divide and Conquer Algorithm for Imbalanced PBC Data.

To classify these imbalanced data, the divide and conquer approach is used with the BC algorithm with three steps.

Step 1: Class $\mathrm{C}_{2}-\mathrm{C}_{5}$ is combined into class C_{2345}. Classify cases between class C_{1} and class C_{2345}. This task is less imbalanced with 4913 cases in C_{1} and 560 cases in C_{2345} than the task with 5 classes $\mathrm{C}_{1}-\mathrm{C}_{5}$.

Step 2: Classify cases between class C_{2} and class C_{345} that combines classes $\mathrm{C}_{3}-\mathrm{C}_{5}$ which is also less imbalanced: 329 cases in C_{2} vs 231 cases in C_{345}.

Step 3: Classify 231 cases in joint class C_{345} among three classes $\mathrm{C}_{3}, \mathrm{C}_{4}$ and C_{5}.
5.2.2. DT Guided (DTG) Algorithm for High-Resolution Dataset PBC Data.

PBC is a high-resolution dataset where each attribute has a large number of values, e.g., some attributes have 5 digits in each value. In contrast, in WBC data, each value consists of a single digit where the exhaustive grid search needs to run only on 1000 boxes. The exhaustive grid search in PBC data requires to run on a grid that is several orders of magnitude larger. So, the run time need to be decreased. In [6] a random selection of grid cells (boxes) was used to decrease search time. Here DT is used as a guide for finding promising boxes. The steps of the DT Guided (DTG) algorithm are as follows.

Step 1: Build a DT on the same data.
Step 2: Select high purity DT branches, where a single class highly dominates.
Step 3: Built boxes based on those branches (one or more boxes from the branch).
Step 4: Search for better boxes in the vicinity of boxes derived from the DT step (3).

The link between branches of the DT and the boxes is shown in [16]. Each branch of DT is a source of several boxes because boxes are two-dimensional, while each DT branch can have many attributes.

The current implementation of step 3 starts from nodes of the branch that are close to the root of the DT because they typically cover more cases than the nodes which are closer to the terminal node. As an illustration consider the following branch of the DT for the 4 -D point $\mathbf{x}=\left(x_{1}, x_{2}, x_{3}, x_{4}\right)$ with all $x_{\mathrm{i}} \in[0,10]$,

$$
\text { If }\left(x_{1}>5 \& x_{3}>6\right) \&\left(x_{2}<3 \& x_{4}<7\right) \text { then } \mathbf{x} \in \text { class } 1 .
$$

Then box B_{1} from $\left(x_{1}>5 \& x_{3}>6\right)$ and box B_{2} from $\left(x_{2}<3 \& x_{4}<7\right)$ are created. Respectively B_{1} is defined by conditions $10 \geq x_{1}>5,10 \geq x_{3}>6$. For shorter notation below it writes only $\left(x_{1}>5 \& x_{3}>6\right)$ assuming that the other limit is a knows constant.

5.2.3. BC Algorithm as a Generalization of Decision Tree Algorithm.

DT and rules based on boxes serve the same goal of providing interpretable and easily visualizable models. The major limitation of models constructed by the DT algorithms is the need to select a start attribute manually (tree root). This narrows the class of models that can be discovered. It led to development of Random Forests (RFs) algorithms, where multiple DTs are combined by voting. RFs fundamentally expanded the class of models but with the cost of losing interpretability. The BC algorithm covers a wider class of models than DTs because they to do not require a root attribute. This is an advantage for the BC algorithm over the DTs.

5.2.4. ILC Box Visualization as a Richer Visualization of Decision Tree.

The description of a DT as sequences of boxes is not only an alternative way to describe DT but also an alternative to visualize it in ILC as boxes. What is the advantage of this visualization of DT relative to traditional visualization of decision trees? A DT allows tracing each n-D point in the tree, but it does not visualize and distinct those n-D points in the tree. The box visualization allows it in ILC. It shows all cases that go through the boxes and fully represents the DT. It makes this visualization richer and more informative. ILC allows distinguishing DT branches by using distinct colors when all branches are visualized together or by showing each branch in the separate ILC.

5.2.5. BC Algorithm to Decrease Overfitting.

Table 12. Weighted precision for all classes with DT for PBC dataset.

Class	Weight (\%)	Precision (\%)	Classified cases	Weighted precision (\%)
	Training			
Class 1	89.14	98.05	3950	87.41
Class 2	7.15	74.76	317	5.35
Class 3	0.00	0.00	0	0.00
Class 4	1.62	90.28	72	1.47
Class 5	2.08	46.74	92	0.97
All	100.00		4431	95.19
	Validation			
Class 1	58.10	97.56	287	56.68
Class 2	7.89	58.97	39	4.66
Class 3	0.00	0.00	0	0.00
Class 4	31.17	5.19	154	1.62
Class 5	2.83	21.43	14	0.61
All	100.00\%		494	63.56
	Testing			
Class 1	87.77	98.75	481	86.68
Class 2	7.85	72.09	43	5.66
Class 3	0.00	0.00	0	0.00
Class 4	1.64	77.78	9	1.28
Class 5	2.74	60.00	15	1.64
All	100.00		548	95.26

Ideally the DT model will have a high accuracy without overfitting. In this situation, the box visualization provides a richer visualization of this DT. Much more often a DT model is not perfect but has insufficient accuracy and significant overfitting. Multiple DT branches may have terminal nodes which include just few cases rather memorizing data than learning the patterns. DT's weighted precision in table 12 demonstrates highly insufficient accuracy because there is no case from class 3 which is correctly classified.

Pruning is a common way to decrease overfitting of decision trees but at the price of decreasing accuracy. The BC algorithm allows getting higher accuracy without pruning because it is not limited by the tree structure.
5.2.6 Stratified10-Fold Cross Validation Experiment.

For stratified 10 -fold cross validation, PBC dataset is split into $90 \%: 10 \%$ where 90% used for into training and validation set and 10% for independent testing. Training and validation set was then split to 90% training set and 10% validation set.

Tables 13 to 17 present the result of BC algorithm $l^{\text {st }}$ fold in stratified 10 -fold cross validation. Results for folds 2-10 are presented in appendix from table 21 to table 65.

Table 13 presents hyper-parameters of rectangles derived from the DT for this fold and table 14 presents rules based on these rectangles. This DT was build using respective 90% of training and validation set designated for this fold.

Table 13. Hyper-parameters of the rectangles $\mathrm{B}_{1}-\mathrm{B}_{11}$ (BC algorithm, PBC dataset) of $1^{\text {st }}$ fold in stratified 10 -fold cross

Box	Hyper-parameters	Box	Hyper-parameters
B_{1}	$X_{6}<0.0011 \& 0.0015 \leq X_{0}<0.0214$	B_{2}	$0.1550 \leq X_{4}<0.9394 \& 0.0065<X_{0} \leq 0.107$
$\mathrm{~B}_{3}$	$0.7525 \leq \mathrm{X}_{5}<1$	$\mathrm{~B}_{4}$	$0.0750 \leq \mathrm{X} 3<1 \& 0.0001 \leq \mathrm{X} 6<1$
$\mathrm{~B}_{5}$	$0 \leq \mathrm{X} 3<0.0005$	$\mathrm{~B}_{6}$	$0.3730 \leq \mathrm{X}_{4}<1 \& 0.0115 \leq \mathrm{X}_{3}<0.537$
$\mathrm{~B}_{7}$	$0 \leq \mathrm{X}_{4}<0.12$	$\mathrm{~B}_{8}$	$0<\mathrm{X}_{3} \leq 0.0005$
$\mathrm{~B}_{9}$	$0<\mathrm{X}_{3} \leq 0.0005$	$\mathrm{~B}_{10}$	$0 \leq \mathrm{X}_{4} \leq 0.2944$
$\mathrm{~B}_{11}$	$0.006 \leq \mathrm{X}_{2} \leq 0.6058$		

Table 14. Rules $\mathrm{R}_{1}-\mathrm{R}_{6}\left(\mathrm{BC}\right.$ algorithm, PBC dataset) using boxes $\mathrm{B}_{1}-\mathrm{B}_{11}$.

Class C_{1} rule	$\mathrm{R}_{1}: \mathbf{x} \in \mathrm{B}_{1} \cup \mathrm{~B}_{2} \cup \mathrm{~B}_{3} \Rightarrow \mathbf{x} \in$ Class C_{1}
Class $C_{2,3,4,5}$ rule	$\mathrm{R}_{2}: \mathbf{x} \in \mathrm{B}_{4} \cup \mathrm{~B}_{5} \cup \mathrm{~B}_{6} \cup \mathrm{~B}_{7} \& \mathbf{x} \notin \mathrm{~B}_{1} \cup \mathrm{~B}_{2} \cup \mathrm{~B}_{3} \Rightarrow \mathbf{x} \in$ Class $\mathrm{C}_{2,3,4,5}$
Class C_{2} rule	$\mathrm{R}_{3}: \mathbf{x} \in \mathrm{B}_{8} \Rightarrow \mathbf{x} \in{\text { Class } \mathrm{C}_{2}}$
Class C_{4} rule	$\mathrm{R}_{4}: \mathbf{x} \in \mathrm{B}_{9} \& \mathbf{x} \notin \mathrm{~B}_{8} \Rightarrow \mathbf{x} \in$ Class C_{4}
Class C_{5} rule	$\mathrm{R}_{5}: \mathbf{x} \in \mathrm{B}_{10} \& \mathbf{x} \notin \mathrm{~B}_{8} \cup \mathrm{~B}_{9} \Rightarrow \mathbf{x} \in{\text { Class } \mathrm{C}_{5}}$
Class C_{3} rule	$\mathrm{R}_{6}: \mathbf{x} \in \mathrm{B}_{11} \& \mathbf{x} \notin \mathrm{~B}_{8} \cup \mathrm{~B}_{9} \cup \mathrm{~B}_{10} \Rightarrow \mathbf{x} \in$ Class C_{3}

The process of classification using these rules is hierarchical like in the DTs. Case \mathbf{x} is classified between class C_{1} and a joined class $\mathrm{C}_{2,3,4,5}$ and then if \mathbf{x} is in $\mathrm{C}_{2,3,4,5}$ then \mathbf{x} is classified to classes $\mathrm{C}_{2}-\mathrm{C}_{5}$. See Fig. 18.

Fig. 18. Classification process.
Table 15 shows the number of cases that were predicted for training, validation, and testing sets rules in table 14 . The notation $\mathrm{C}_{i}=>\mathrm{C}_{i}$ indicates situations when cases of class C_{i} were predicted correctly as cases of class C_{i}, e.g., $\mathrm{C}_{2345}=>\mathrm{C}_{2345}$ means that cases of the joint class C_{2345} were predicted correctly as cases of this joint class. The notation $\mathrm{C}_{i}=>\mathrm{C}_{j}$ when $i \neq j$ indicates situations when cases of class C_{i} were predicted incorrectly as cases of class C_{j}.

Table 16 shows precision and recall percentages of all rules $\mathrm{R}_{1}-\mathrm{R}_{6}$ on training, validation, and testing sets.

Table 15. Number of cases that satisfy rules $\mathrm{R}_{1}-\mathrm{R}_{6}$ (BC algorithm, PBC dataset) of $1^{\text {st }}$ fold in stratified 10 -fold cross validation.

$\begin{gathered} \text { Rule } \\ \mathrm{R}_{1} \end{gathered}$	Training		Validation		Testing	
	$\mathrm{C}_{1} \Rightarrow>\mathrm{C}_{1}$	$\mathrm{C}_{2345} \Rightarrow>\mathrm{C}_{1}$	$\mathrm{C}_{1} \Rightarrow \mathrm{C}_{1}$	$\mathrm{C}_{2345} \Rightarrow>\mathrm{C}_{1}$	$\mathrm{C}_{1} \Rightarrow>\mathrm{C}_{1}$	$\mathrm{C}_{2345} \Rightarrow>\mathrm{C}_{1}$
	3782	55	420	5	445	5
R_{2}	$\mathrm{C}_{2345}=>\mathrm{C}_{2345}$	$\mathrm{C}_{1}=>\mathrm{C}_{2345}$	$\mathrm{C}_{2345}=>\mathrm{C}_{2345}$	$\mathrm{C}_{1}=>\mathrm{C}_{2345}$	$\mathrm{C}_{2345}=>\mathrm{C}_{2345}$	$\mathrm{C}_{1}=>\mathrm{C}_{2345}$
	359	35	42	4	48	9
R_{3}	$\mathrm{C}_{2}=>\mathrm{C}_{2}$	$\mathrm{C}_{345}=>\mathrm{C}_{2}$	$\mathrm{C}_{2}=>\mathrm{C}_{2}$	$\mathrm{C}_{345}=>\mathrm{C}_{2}$	$\mathrm{C}_{2}=>\mathrm{C}_{2}$	$\mathrm{C}_{345}=>\mathrm{C}_{2}$
	251	2	28	0	32	3
R_{4}	$\mathrm{C}_{4} \Rightarrow>\mathrm{C}_{4}$	$\mathrm{C}_{235}=>\mathrm{C}_{4}$	$\mathrm{C}_{4}=>\mathrm{C}_{4}$	$\mathrm{C}_{235}=>\mathrm{C}_{4}$	$\mathrm{C}_{4} \Rightarrow \mathrm{C}_{4}$	$\mathrm{C}_{235}=>\mathrm{C}_{4}$
	66	6	7	0	7	1
R_{5}	$\mathrm{C}_{5}=>\mathrm{C}_{5}$	$\mathrm{C}_{234}=>\mathrm{C}_{5}$	$\mathrm{C}_{5}=>\mathrm{C}_{5}$	$\mathrm{C}_{234}=>\mathrm{C}_{5}$	$\mathrm{C}_{5} \Rightarrow \mathrm{C}_{5}$	$\mathrm{C}_{234}=>\mathrm{C}_{5}$
	83	8	11	1	12	0
R_{6}	$\mathrm{C}_{3} \Rightarrow{ }^{\text {c }}$ C	$\mathrm{C}_{245}=>\mathrm{C}_{3}$	$\mathrm{C}_{3}=>\mathrm{C}_{3}$	$\mathrm{C}_{245}=>\mathrm{C}_{3}$	$\mathrm{C}_{3}=>\mathrm{C}_{3}$	$\mathrm{C}_{245}=>\mathrm{C}_{3}$
	22	2	3	1	3	0

Table 16. Precision and recall that satisfy rules $\mathrm{R}_{1}-\mathrm{R}_{6}$ (BC algorithm, PBC dataset) of $1^{\text {st }}$ fold in stratified 10 -fold cross validation.

Rule	Training		Validation		Testing	
	Precision (\%)	Recall (\%)	Precision (\%)	Recall (\%)	Precision (\%)	Recall (\%)
R_{1}	98.57	95.03	98.82	95.02	98.89	90.63
R_{2}	91.12	79.60	91.30	80.77	84.21	84.21
R_{3}	99.21	94.36	100.00	93.33	91.43	96.97
R_{4}	91.67	92.96	100.00	87.50	87.50	77.78
R_{5}	91.21	90.22	91.67	100.00	100.00	100.00
R_{6}	91.67	100.00	75.00	100.00	100.00	100.00

The rules $R_{1}-R_{6}$ do not cover the same number of cases, therefore the balancing of their contribution to the total precision of requires using the weighted precision that will account this difference.

Example: Consider rule R_{a} that predicted 100 cases, which include 90 correctly classified and 10 misclassified cases ($P_{a}=90 \%$ precision). Another rule R_{b} classified 200 cases, which include 160 cases correctly and 40 incorrectly classified ($P_{2}=80 \%$ precision). Here $T_{\mathrm{a}}=100$ and $T_{\mathrm{b}}=200, W_{\mathrm{a}}=T_{\mathrm{a}} /\left(T_{\mathrm{a}}+T_{\mathrm{b}}\right) \approx 0.33$ and $W_{\mathrm{b}}=T_{\mathrm{b}} /\left(T_{\mathrm{a}}+T_{\mathrm{b}}\right) \approx 0.67$ and the weighted precision $P=0.33 * 90 \%+0.67 * 80 \%=83.33 \%$. Table 17 uses this concept of weighted precision P that is the weighted sum of precisions of all rules $\mathrm{R}_{1}-\mathrm{R}_{k}$:

$$
\begin{equation*}
P=W_{1} P_{1}+W_{2} P_{2}+\cdots+W_{k} P_{k} \tag{5.1}
\end{equation*}
$$

where the weight W_{i} of each rule R_{i} is computed as follows:

$$
\begin{equation*}
W_{i}=\frac{T_{i}}{\left(T_{1}+T_{2} \ldots T_{i}\right)} . \tag{5.2}
\end{equation*}
$$

where T_{i} is the total number of cases which are correctly classified by rule R_{i}.
The process of rule generation in the BC algorithm for PBC data is based on formulas (5.1) and (5.2) for terminal level rules $\mathrm{R}_{1}, \mathrm{R}_{3}, \mathrm{R}_{4}, \mathrm{R}_{5}$, and R_{6} which predict actual classes $\mathrm{C}_{1}, \mathrm{C}_{2}, \mathrm{C}_{4}, \mathrm{C}_{5}$, and C_{3}, respectively. The rule R_{2} that is an intermediate rule, which predicts a joined class $\mathrm{C}_{2,3,4,5}$ is excluded.

The main steps to calculated weighted precision for PBC dataset is shown below.

Step 1: Calculate weighted precision of the terminal level rules $\mathrm{R}_{1}, \mathrm{R}_{3}, \mathrm{R}_{4}, \mathrm{R}_{5}$, and R_{6} that predict actual classes $\mathrm{C}_{1}, \mathrm{C}_{2}, \mathrm{C}_{4}, \mathrm{C}_{5}$, and C_{3}, respectively.

Step 2: Calculate weighted precision of $\mathrm{R}_{1}, \mathrm{R}_{3}, \mathrm{R}_{4}, \mathrm{R}_{5}$, and R_{6}.

Step 3: Sum up the weighted precisions from Step 2.

The results for $1^{\text {st }}$ fold in stratified 10 -fold cross validation are presented in table 17, where the weighted precision of all rules is 98.29% for the training set, 98.53% for the validation set, and 98.23% for the testing set.

Table 17. Weighted precision for all classes of BC algorithm for PBC dataset of $1^{\text {st }}$ fold in stratified 10 -fold cross

Rule	Weight (\%)	Precision (\%)	Classified cases	Weighted precision (\%)
	Training			
R_{1}	89.71	98.57	3837	88.43
R_{3}	5.92	99.21	253	5.87
R_{4}	1.68	91.67	72	1.54
R_{5}	2.13	91.21	91	1.94
R_{6}	0.56	91.67	24	0.51
All	100.00		4277	98.29
	Validation			
R_{1}	89.29	98.82\%	425	88.24
R_{3}	5.88	100.00\%	28	5.88
R_{4}	1.47	100.00\%	7	1.47
R_{5}	2.52	91.67\%	12	2.31
R_{6}	0.84	75.00\%	4	0.63
All	100.00		476	98.53
	Testing			
R_{1}	88.58	98.89	450	87.60
R_{3}	6.89	91.43	35	6.30
R_{4}	1.57	87.50	8	1.38
R_{5}	2.36	100.00	12	2.36
R_{6}	0.59	100.00	3	0.59
All	100.00		508	98.23

5.3. Comparison Results between Box Classification Algorithm with Published Results

and Tanagra Decision Tree.

Table 18. Average precision for stratified 10 -fold cross validation of BC algorithm for PBC dataset.

Fold's number	Weighted precision (\%) for testing data
$1^{\text {st }}$ old	98.23
$2^{\text {nd }}$ fold	96.65
$3^{\text {rd }}$ fold	98.62
$4^{\text {th }}$ fold	97.16
$5^{\text {th }}$ fold	97.84
$6^{\text {th }}$ fold	97.64
$7^{\text {th }}$ fold	96.36
$8^{\text {th }}$ fold	96.18
$9^{\text {th }}$ fold	97.16
$10^{\text {th }}$ fold	97.11
Average	97.30

Table 19. Comparisons with published results for PBC dataset.

Algorithm	Precision (\%) on training data	Precision (\%) on validation data	Precision (\%) on test data	Classes with 0\% precision (completely misclassified)
K-nearest Neighbor with a single 80\%:20\% training- validation split [18]	Not reported	93.51	Precision \% on validation data	Not reported
C4-5 Decision Tree with 10-fold cross validation 90\%:10\% training-validation split [19]	Not reported	$96.95^{* *}$	Not reported	Not reported
C4-5 Decision Tree with 100\% training data	96.02	N/A	N/A	Class 3
ID3 Decision Tree with a single 81\%:9\%:10\% split	95.19	63.56	95.26	Class 3
Block Classification with 10-fold cross validation 81\%:9\%:10\%	98.26	96.34^{*}	97.30^{*}	No such classes

[^0]Table 20. Weighted precision for all classes with Decision Tree ID3 for PBC dataset for a single $81 \%: 9 \%: 10 \%$

Class	Weight (\%)	Precision (\%)	Classified cases	Weighted precision (\%)
	Training			
Class 1	89.14	98.05	3950	87.41
Class 2	7.15	74.76	317	5.35
Class 3	0.00	0.00	0	0.00
Class 4	1.62	90.28	72	1.47
Class 5	2.08	46.74	92	0.97
All	100.00		4431	95.19
	Validation			
Class 1	58.10	97.56	287	56.68
Class 2	7.89	58.97	39	4.66
Class 3	0.00	0.00	0	0.00
Class 4	31.17	5.19	154	1.62
Class 5	2.83	21.43	14	0.61
All	100.00		494	63.56
	Testing			
Class 1	87.77	98.75	481	86.68
Class 2	7.85	72.09	43	5.66
Class 3	0.00	0.00	0	0.00
Class 4	1.64	77.78	9	1.28
Class 5	2.74	60.00	15	1.64
All	100.00		548	95.26

Table 18 shows that average precision of BC algorithm 10-fold cross validation for PBC dataset is 97.30%. Table 20 is produced as followed. Out of all data, 90% were selected randomly for training and validation and 10% for testing. Then the first 90% of data was split in 90:10 ratio for training and validation data. The precision of all classes in training is 95.19% and 95.26% in testing. Table 20 shows that precision of DT for PBC dataset is 95.26% which is slightly lower BC algorithm. In table 20, it can also be seen that the disadvantage of using DT for PBC dataset such that DT cannot classify any cases from class 3. With BC algorithm for PBC dataset, it was classified that all 5 classes with precision higher than 90% compared to DT algorithm where class $2,3,4$, and 5 have precision lower than 80%. BC algorithm with In-line Coordinates also allows us to show how high dimensional dataset like PBC can be visualized on Cartesian coordinates compared to non-visualization method of DT.

The comparison of our results with published results is difficult because the authors use different splits of data. Table 19 presents results of comparisons with clearly stated what is the difference in conducted experiments. These differences are discussed in detail below. The KNN result is obtained with 80:20 split. With the KNN method, the precision is 93.51% which is lower than our BC algorithm at 97.30%. However, this lower precision is to be expected because normally it is expected to have higher precision with 90:10 split compared to 80:20 split. The C4-5 DT precision is obtained with 90:10 split in 10-fold cross validation. Therefore, C4-5 DT result would give us a better comparison with BC algorithm because PBC dataset is split in the same ratio. With BC algorithm precision is slightly higher at 97.30% compared to C4-5 DT precision at 96.95%. Table 19 also presents C4-5 DT precision with all 100% of PBC data used as training data, ID3 DT with a single $81 \%: 9 \%: 10 \%$ split of PBC data, and Block Classification with 10 -fold cross validation $81 \%: 9 \%: 10 \%$ of PBC data. Both C4-5 DT and ID3 DT did not correctly classify any cases from class 3, led insufficient accuracy/ precision. The BC algorithm classified all classes with higher precision on independent test data. Furthermore, BC algorithm with In-line coordinate can visualization of PBC dataset allowing the end-user easier and faster understanding data.

CHAPTER VI

CONCLUSIONS

With In-line Coordinates data visualization, this thesis has shown the power of interpretable data classification techniques that are implemented in automatic and interactive modes with WBC dataset, and in the interactive mode with PBC dataset. The proposed BC algorithm allowed to successfully classify WBC and PBC datasets.

It was observed that BC algorithm worked well with lower feature resolution and lesser for a higher resolution and larger dataset. Higher dimension of features makes finding the best order of coordinates difficult because this process require a great amount of time. This led to further development of BC algorithm with using a Decision Tree for guidance. It allowed finding an efficient order of coordinates and a set of boxes in a practical run time. In the future, BC algorithm can be further improved by automating the process of deciding order of coordinates. BC algorithm can also be improved by multithreading exhausted grid search with computers that have more than four cores.

With In-line Based Coordinates, it was demonstrated that the power of visualization can reduce the overgeneralization of hyper-parameters produced by the guiding DT algorithm. The BC algorithm showed that it is possible to achieve better results compared to both published results of KNN and C4-5 DT algorithm. In comparison with the DT, the BC algorithm did not miss any class on highly imbalanced PBC dataset.

REFERENCES CITED

[1] Z. C. Lipton, "The mythos of model interpretability," Communications of the ACM, vol. 61, no. 10, pp. 36-43, 2018.
[2] B. Kovalerchuk and H. Phan, "Full interpretable machine learning in 2D with inline coordinates," 2021 25th International Conference Information Visualization (IV), 2021.
[3] A. Katsenou, "Kovalerchuk, B. Visual Knowledge Discovery and Machine Learning (1st edition)," Perception, vol. 47, no. 12, 2018.
[4] D. Dovhalets, B. Kovalerchuk, S. Vajda, and R. Andonie, "Deep learning of 2-D images representing N-D data in general line coordinates," International Symposium on Affective Science and Engineering, vol. ISASE2018, pp. 1-6, 2018.
[5] B. Kovalerchuk, B. Agarwal, and D. C. Kall, "Solving non-image learning problems by mapping to images," 2020 24th International Conference Information Visualization (IV), 2020.
[6] B. Kovalerchuk and A. Gharawi, "Decreasing occlusion and increasing explanation in interactive visual knowledge discovery," Human Interface and the Management of Information. Interaction, Visualization, and Analytics, S. Yakamoto and H. Mori, Eds. pp. 505-526, 2018.
[7] R. McDonald and B. Kovalerchuk, "Lossless visual knowledge discovery in high dimensional data with elliptic paired coordinates," 2020 24th International Conference Information Visualization (IV), pp. 286-291, 2020.
[8] C. Rudin, "Stop explaining black box machine learning models for high stakes decisions and use interpretable models instead," Nature Machine Intelligence, vol. 1, no. 5, pp. 206-215, 2019.
[9] A. Inselberg, "Visual data mining with parallel coordinates." Computational Statistics 13.1, 1998.
[10] B. Kovalerchuk, "Enhancement of cross validation using hybrid visual and analytical means with Shannon function." In Beyond Traditional Probabilistic Data Processing Techniques: Interval, Fuzzy etc. Methods and Their Applications, O. Kosheleva, S. P. Shary, G. Xiang and R Zapatrin, Eds. pp. 517-543. Springer, 2020.
[11] J. Sansen, G. Richer, T. Jourde, F. Lalanne, D. Auber and R. Bourqui, "Visual exploration of large multidimensional data using parallel coordinates on big data infrastructure." In Informatics, vol. 4, no. 3, p. 21. Multidisciplinary Digital Publishing Institute, 2017.
[12] V. Estivill-Castro, E. Gilmore, and R. Hexel. "Constructing interpretable decision trees using parallel coordinates." International Conference on Artificial Intelligence and Soft Computing. Springer, Cham, 2020.
[13] G.K. Tam, V. Kothari, and M. Chen, "An analysis of machine-and human-analytics in classification." IEEE Transactions on Visualization and Computer Graphics, 23(1), pp.71-80. 2016
[14] Y. Xu, W. Hong, N. Chen, X. Li, W. Liu, and T. Zhang, "Parallel filter: a visual classifier based on parallel coordinates and multivariate data analysis."
In International Conference on Intelligent Computing, pp. 1172-1183. Springer, Berlin, Heidelberg, 2007.
[15] D. Dua and C. Graff, "UCI Machine Learning Repository. Irvine, CA: University of California, School of Information and Computer Science." http://archive. ics. uci. edu/ml (2010).
[16] B. Kovalerchuk and D. Hayes, "Discovering Interpretable Machine Learning Models in Parallel Coordinates." arXiv preprint arXiv:2106.07474, 2021.
[17] D. Zaky and P.H. Gunawan, "Computational Parallel of K-Nearest Neighbor on Page Blocks Classification Dataset." In 2020 8th International Conference on Information and Communication Technology (ICoICT), pp. 1-4. IEEE, 2020.
[18] S. Eschrich, N. V. Chawla, and L. O. Hall. "Generalization Methods in Bioinformatics." In BIOKDD, vol. 2, pp. 25-32. 2002.

APPENDIX

A.1. BC algorithm for PBC dataset of $2^{\text {nd }}$ fold in stratified 10 -fold cross validation.

Table 21. Hyper-parameters of the rectangles $B_{1}-B_{9}\left(B C\right.$ algorithm, $P B C$ dataset) of $2^{\text {nd }}$ fold in stratified 10 -fold cross validation.

Box	Hyper-parameters	Box	Hyper-parameters
B_{1}	$0 \leq X_{0}<0.0005 \& 0.0015 \leq X_{5}<0.0165$	B_{2}	$0.0002 \leq X_{9}<1$
B_{3}	$0.0015 \leq X_{0}<0.101 \& 0.4505 \leq X_{5}<1$	B_{4}	$0.0001 \leq X_{6}<0.11 \& 0.47 \leq X_{5}<1$
B_{5}	$0 \leq X_{4}<0.154 \& 0.0015 \leq X_{0}<1$	B_{6}	$0.0125<\mathrm{X}_{3} \leq 1$
B_{7}	$0<X_{3} \leq 0.0005$	B_{8}	$0 \leq \mathrm{X}_{4} \leq 0.2944$
B_{9}	$0.006 \leq X_{2} \leq 0.6058$		

Table 22. Rules $R_{1}-R_{6}$ using boxes $B_{1}-B_{9}$ (BC algorithm, PBC dataset) of $2^{\text {nd }}$ fold in stratified 10 -fold cross validation.

Class C_{1} rule	$\mathrm{R}_{1}: \mathbf{x} \in \mathrm{B}_{1} \cup \mathrm{~B}_{2} \cup \mathrm{~B}_{3} \Rightarrow \mathbf{x} \in{\text { Class } \mathrm{C}_{1}}^{\text {Class } C_{2,3,4,5} \text { rule }}$
Rlass C_{2} rule	$\mathrm{R}_{2} \in \mathrm{~B}_{4} \cup \mathrm{~B}_{5} \& \mathbf{x} \notin \mathrm{~B}_{1} \cup \mathrm{~B}_{2} \cup \mathrm{~B}_{3} \Rightarrow \mathbf{x} \in$ Class $\mathrm{C}_{23,4,5}$
Class C_{4} rule	$\mathrm{R}_{3}: \mathbf{x} \in \mathrm{B}_{6} \Rightarrow \mathbf{x} \in{\text { Class } \mathrm{C}_{2}}^{\text {Class } C_{5} \text { rule }}$
$\mathrm{R}_{4}: \mathbf{x} \in \mathrm{B}_{7} \& \mathbf{x} \notin \mathrm{~B}_{6} \Rightarrow \mathbf{x} \in$ Class C_{4}	
Class C_{3} rule	$\mathrm{R}_{5}: \mathbf{x} \in \mathrm{B}_{8} \& \mathbf{x} \notin \mathrm{~B}_{6} \cup \mathrm{~B}_{7} \Rightarrow \mathbf{x} \in$ Class C_{5}

Table 23. Number of cases that satisfy rules $\mathrm{R}_{1}-\mathrm{R}_{6}$ (BC algorithm, PBC dataset) of $2^{\text {nd }}$ fold in stratified 10 -fold cross validation.

Rule	Training		Validation		Testing	
R_{1}	$\mathrm{C}_{1}=>\mathrm{C}_{1}$	$\mathrm{C}_{2345} \Rightarrow>\mathrm{C}_{1}$	$\mathrm{C}_{1}=>\mathrm{C}_{1}$	$\mathrm{C}_{2345}=>\mathrm{C}_{1}$	$\mathrm{C}_{1}=>\mathrm{C}_{1}$	$\mathrm{C}_{2345}=>\mathrm{C}_{1}$
	3887	146	432	22	466	13
R_{2}	$\mathrm{C}_{2345}=>\mathrm{C}_{2345}$	$\mathrm{C}_{1} \Rightarrow>\mathrm{C}_{2345}$	$\mathrm{C}_{2345}=>\mathrm{C}_{2345}$	$\mathrm{C}_{1}=>\mathrm{C}_{2345}$	$\mathrm{C}_{2345}=>\mathrm{C}_{2345}$	$\mathrm{C}_{1}=>\mathrm{C}_{2345}$
	405	23	44	5	50	11
R_{3}	$\mathrm{C}_{2}=>\mathrm{C}_{2}$	$\mathrm{C}_{345}=>\mathrm{C}_{2}$	$\mathrm{C}_{2}=>\mathrm{C}_{2}$	$\mathrm{C}_{345}=>\mathrm{C}_{2}$	$\mathrm{C}_{2}=>\mathrm{C}_{2}$	$\mathrm{C}_{345}=>\mathrm{C}_{2}$
	249	2	30	0	32	3
R_{4}	$\mathrm{C}_{4}=>\mathrm{C}_{4}$	$\mathrm{C}_{235}=>\mathrm{C}_{4}$	$\mathrm{C}_{4}=>\mathrm{C}_{4}$	$\mathrm{C}_{235}=>\mathrm{C}_{4}$	$\mathrm{C}_{4}=>\mathrm{C}_{4}$	$\mathrm{C}_{235}=>\mathrm{C}_{4}$
	65	6	7	0	7	1
R_{5}	$\mathrm{C}_{5}=>\mathrm{C}_{5}$	$\mathrm{C}_{234}=>\mathrm{C}_{5}$	$\mathrm{C}_{5}=>\mathrm{C}_{5}$	$\mathrm{C}_{234}=>\mathrm{C}_{5}$	$\mathrm{C}_{5}=>\mathrm{C}_{5}$	$\mathrm{C}_{234}=>\mathrm{C}_{5}$
	83	10	11	2	12	1
R_{6}	$\mathrm{C}_{3}=>\mathrm{C}_{3}$	$\mathrm{C}_{245}=>\mathrm{C}_{3}$	$\mathrm{C}_{3}=>\mathrm{C}_{3}$	$\mathrm{C}_{245}=>\mathrm{C}_{3}$	$\mathrm{C}_{3}=>\mathrm{C}_{3}$	$\mathrm{C}_{245}=>\mathrm{C}_{3}$
	22	1	3	2	3	0

Table 24. Precision and recall that satisfy rules $R_{1}-R_{6}$ ($B C$ algorithm, $P B C$ dataset) of $2^{\text {nd }}$ fold in stratified 10 -fold cross validation.

Rule	Training		Validation		Testing	
	Precision (\%)	Recall (\%)	Precision (\%)	Recall (\%)	Precision (\%)	Recall (\%)
R_{1}	96.38	97.66	95.15	97.74	97.29	94.91
R_{2}	94.63	89.80	89.80	84.62	81.97	87.72
R_{3}	99.20	93.61	100.00	100.00	91.43	96.97
R_{4}	91.55	91.55	100.00	87.50	87.50	77.78
R_{5}	89.25	90.22	84.62	100.00	92.31	100.00
R_{6}	95.65	100.00	60.00	100.00	100.00	100.00

Table 25. Weighted precision for all classes of BC algorithm for PBC dataset of $2^{\text {nd }}$ fold in stratified 10 -fold cross validation.

Rule	Weight (\%)	Precision (\%)	Classified cases	Weighted precision (\%)
	Training			
R_{1}	90.20	96.38	4033	86.94
R_{3}	5.61	99.20	251	5.57
R_{4}	1.59	91.55	71	1.45
R_{5}	2.08	89.25	93	1.86
R_{6}	0.51	95.65	23	0.49
All	100.00		4471	96.31
	Validation			
R_{1}	89.19	95.15	454	84.87
R_{3}	5.89	100.00	30	5.89
R_{4}	1.38	100.00	7	1.38
R_{5}	2.55	84.62	13	2.16
R_{6}	0.98	60.00	5	0.59
All	100.00		509	94.89
	Testing			
R_{1}	89.03	97.29	479	86.62
R_{3}	6.51	91.43	35	5.95
R_{4}	1.49	87.50	8	1.30
R_{5}	2.42	92.31	13	2.23
R_{6}	0.56	100.00	3	0.56
All	100.00		538	96.65

A.2. BC algorithm for PBC dataset of $3^{\text {rd }}$ fold in stratified 10 -fold cross validation.

Table 26. Hyper-parameters of the rectangles $\mathrm{B}_{1}-\mathrm{B}_{11}$ (BC algorithm, PBC dataset) of $3^{\text {rd }}$ fold in stratified 10 -fold cross

Box	Hyper-parameters	Box	Hyper-parameters
B_{1}	$0.003 \leq \mathrm{X}_{0}<0.0330 \& 0.0021 \leq \mathrm{X}_{9}<1$	$\mathrm{~B}_{2}$	$0 \leq \mathrm{X}_{1}<0.023 \& 0.0005 \leq \mathrm{X}_{3}<0.0025$
$\mathrm{~B}_{3}$	$0.63 \leq \mathrm{X}_{5}<1 \& 0.0001 \leq \mathrm{X}_{7}<1$	$\mathrm{~B}_{4}$	$0 \leq \mathrm{X}_{6}<0.002 \& 0 \leq \mathrm{X}_{1}<0.0230$
$\mathrm{~B}_{5}$	$0 \leq \mathrm{X}_{3}<1 \& 0.0015 \leq \mathrm{X}_{0}<1$	$\mathrm{~B}_{6}$	$0.4755 \leq \mathrm{X}_{4}<1$
$\mathrm{~B}_{7}$	$0 \leq \mathrm{X}_{4}<0.4755 \& 0.0012 \leq \mathrm{X}_{7}<1$	$\mathrm{~B}_{8}$	$0.0125<\mathrm{X}_{3} \leq 1$
$\mathrm{~B}_{9}$	$0<\mathrm{X}_{1} \leq 0.0045$	$\mathrm{~B}_{10}$	$0 \leq \mathrm{X}_{4} \leq 0.2944$
$\mathrm{~B}_{11}$	$0.006 \leq \mathrm{X}_{2} \leq 0.6058$		

Table 27. Rules $R_{1}-R_{6}$ (BC algorithm, PBC dataset) of $3^{\text {rd }}$ fold in stratified 10 -fold cross validation using boxes

$\mathrm{B}_{1}-\mathrm{B}_{11}$	
Class C_{1} rule	$\mathrm{R}_{1}: \mathbf{x} \in \mathrm{B}_{1} \cup \mathrm{~B}_{2} \cup \mathrm{~B}_{3} \cup \mathrm{~B}_{4} \cup \mathrm{~B}_{5} \Rightarrow \mathbf{x} \in$ Class $^{2} \mathrm{C}_{1}$
Class $C_{2,3,4,5}$ rule	$\mathrm{R}_{2}: \mathbf{x} \in \mathrm{B}_{6} \cup \mathrm{~B}_{7} \& \mathbf{x} \notin \mathrm{~B}_{1} \cup \mathrm{~B}_{2} \cup \mathrm{~B}_{3} \cup \mathrm{~B}_{4} \cup \mathrm{~B}_{5} \Rightarrow \mathbf{x} \in$ Class $\mathrm{C}_{2,3,4,5}$
Class C_{2} rule	$\mathrm{R}_{3}: \mathbf{x} \in \mathrm{B}_{8} \Rightarrow \mathbf{x} \in$ Class $^{2} \mathrm{C}_{2}$
Class C_{4} rule	$\mathrm{R}_{4}: \mathbf{x} \in \mathrm{B}_{9} \& \mathbf{x} \notin \mathrm{~B}_{8} \Rightarrow \mathbf{x} \in$ Class C_{4}
Class C_{5} rule	$\mathrm{R}_{5}: \mathbf{x} \in \mathrm{B}_{10} \& \mathbf{x} \notin \mathrm{~B}_{8} \cup \mathrm{~B}_{9} \Rightarrow \mathbf{x} \in$ Class C_{5}
Class C_{3} rule	$\mathrm{R}_{6}: \mathbf{x} \in \mathrm{B}_{11} \& \mathbf{x} \notin \mathrm{~B}_{8} \cup \mathrm{~B}_{9} \cup \mathrm{~B}_{10} \Rightarrow \mathbf{x} \in{\text { Class } \mathrm{C}_{3}}^{4}$

Table 28. Number of cases that satisfy rules $\mathrm{R}_{1}-\mathrm{R}_{6}$ (BC algorithm, PBC dataset) of $3^{\text {rd }}$ fold in stratified 10 -fold cross validation.

$\begin{gathered} \hline \text { Rule } \\ \mathrm{R}_{1} \end{gathered}$	Training		Validation		Testing	
	$\mathrm{C}_{1} \Rightarrow \mathrm{C}_{1}$	$\mathrm{C}_{2345} \Rightarrow{ }^{\text {c }} \mathrm{C}_{1}$	$\mathrm{C}_{1} \Rightarrow \mathrm{C}_{1}$	$\mathrm{C}_{2345} \Rightarrow \mathrm{C}_{1}$	$\mathrm{C}_{1} \Rightarrow \mathrm{C}_{1}$	$\mathrm{C}_{2345} \Rightarrow{ }^{\text {c }} \mathrm{C}_{1}$
	3851	37	419	5	447	2
R_{2}	$\mathrm{C}_{2345}=>\mathrm{C}_{2345}$	$\mathrm{C}_{1}=>\mathrm{C}_{2345}$	$\mathrm{C}_{2345}=>\mathrm{C}_{2345}$	$\mathrm{C}_{1}=>\mathrm{C}_{2345}$	$\mathrm{C}_{2345}=>\mathrm{C}_{2345}$	$\mathrm{C}_{1}=>\mathrm{C}_{2345}$
	373	57	46	8	53	13
R_{3}	$\mathrm{C}_{2}=>\mathrm{C}_{2}$	$\mathrm{C}_{345}=>\mathrm{C}_{2}$	$\mathrm{C}_{2}=>\mathrm{C}_{2}$	$\mathrm{C}_{345}=>\mathrm{C}_{2}$	$\mathrm{C}_{2}=>\mathrm{C}_{2}$	$\mathrm{C}_{345}=>\mathrm{C}_{2}$
	251	1	28	0	32	3
R_{4}	$\mathrm{C}_{4} \Rightarrow>\mathrm{C}_{4}$	$\mathrm{C}_{235}=>\mathrm{C}_{4}$	$\mathrm{C}_{4} \Rightarrow>\mathrm{C}_{4}$	$\mathrm{C}_{235}=>\mathrm{C}_{4}$	$\mathrm{C}_{4} \Rightarrow>\mathrm{C}_{4}$	$\mathrm{C}_{235}=>\mathrm{C}_{4}$
	64	4	8	1	7	1
R_{5}	$\mathrm{C}_{5} \Rightarrow \mathrm{C}_{5}$	$\mathrm{C}_{234}=>\mathrm{C}_{5}$	$\mathrm{C}_{5} \Rightarrow>\mathrm{C}_{5}$	$\mathrm{C}_{234}=>\mathrm{C}_{5}$	$\mathrm{C}_{5}=>\mathrm{C}_{5}$	$\mathrm{C}_{234}=>\mathrm{C}_{5}$
	83	11	11	1	12	1
R_{6}	$\mathrm{C}_{3}=>\mathrm{C}_{3}$	$\mathrm{C}_{245}=>\mathrm{C}_{3}$	$\mathrm{C}_{3}=>\mathrm{C}_{3}$	$\mathrm{C}_{245}=>\mathrm{C}_{3}$	$\mathrm{C}_{3}=>\mathrm{C}_{3}$	$\mathrm{C}_{245}=>\mathrm{C}_{3}$
	22	2	3	1	3	0

Table 29. Precision and recall that satisfy rules $\mathrm{R}_{1}-\mathrm{R}_{6}$ (BC algorithm, PBC dataset) of $3^{\text {rd }}$ fold in stratified 10 -fold cross validation.

Rule	Training		Validation		Testing	
	Precision (\%)	Recall (\%)	Precision (\%)	Recall (\%)	Precision (\%)	Recall (\%)
R_{1}	99.05	96.76	98.82	94.80	99.55	91.04
R_{2}	86.74	82.71	85.19	88.46	80.30	92.98
R_{3}	99.60	94.36	100.00	93.33	91.43	96.97
R_{4}	94.12	90.14	88.89	100.00	87.50	77.78
R_{5}	88.30	90.22	91.67	100.00	92.31	100.00
R_{6}	91.67	100.00	75.00	100.00	100.00	100.00

Table 30. Weighted precision for all classes of BC algorithm for PBC dataset of $3^{\text {rd }}$ fold in stratified 10 -fold cross validation.

Rule	Weight (\%)	Precision (\%)	Classified cases	Weighted precision (\%)
	Training			
R_{1}	89.88	99.05	3888	89.02
R_{3}	5.83	99.60	252	5.80
R_{4}	1.57	94.12	68	1.48
R_{5}	2.17	88.30	94	1.92
R_{6}	0.55	91.67	24	0.51
All	100.00		4326	98.73
	Validation			
R_{1}	88.89	98.82	424	87.84
R_{3}	5.87	100.00	28	5.87
R_{4}	1.89	88.89	9	1.68
R_{5}	2.52	91.67	12	2.31
R_{6}	0.84	75.00	4	0.63
All	100.00		477	98.32
	Testing			
R_{1}	88.39	99.55	449	87.99
R_{3}	6.89	91.43	35	6.30
R_{4}	1.57	87.50	8	1.38
R_{5}	2.56	92.31	13	2.36
R_{6}	0.59	100.00	3	0.59
All	100.00		508	98.62

A.3. BC algorithm for PBC dataset of $4^{\text {th }}$ fold in stratified 10 -fold cross validation.

Table 31. Hyper-parameters of the rectangles $B_{1}-B_{9}$ (BC algorithm, PBC dataset) of $4^{\text {th }}$ fold in stratified 10 -fold cross validation.

Box	Hyper-parameters	Box	Hyper-parameters
B_{1}	$0 \leq \mathrm{X}_{6}<0.002 \& 0 \leq \mathrm{X}_{1}<0.0230$	$\mathrm{~B}_{2}$	$0 \leq \mathrm{X}_{6}<0.0005 \& 0.0030 \leq \mathrm{X}_{0}<0.0165$
$\mathrm{~B}_{3}$	$0.0005 \leq \mathrm{X}_{6}<1 \& 0.0015 \leq \mathrm{X}_{0}<1$	$\mathrm{~B}_{4}$	$0.63 \leq \mathrm{X}_{5}<1 \& 0.0001 \leq \mathrm{X}_{7}<1$
$\mathrm{~B}_{5}$	$0 \leq \mathrm{X}_{6}<0.0005 \& 0 \leq \mathrm{X}_{3}<0.0045$	$\mathrm{~B}_{6}$	$0.0125<\mathrm{X}_{3} \leq 1$
$\mathrm{~B}_{7}$	$0<\mathrm{X}_{1} \leq 0.0045$	$\mathrm{~B}_{8}$	$0 \leq \mathrm{X}_{4} \leq 0.2944$
$\mathrm{~B}_{9}$	$0.0041 \leq \mathrm{X}_{2} \leq 0.6058$		

Table 32. Rules $\mathrm{R}_{1}-\mathrm{R}_{6}$ (BC algorithm, PBC dataset) of $4^{\text {th }}$ fold in stratified 10-fold cross validation using boxes

Class C_{1} rule	$\mathrm{R}_{1}: \mathbf{x} \in \mathrm{B}_{1} \cup \mathrm{~B}_{2} \cup \mathrm{~B}_{3} \Rightarrow \mathbf{x} \mathrm{~B}_{9}$.
Class $C_{2,3,4,5}$ rule	$\mathrm{R}_{2}: \mathbf{x} \in \mathrm{B}_{4} \cup \mathrm{~B}_{5} \& \mathbf{x} \notin \mathrm{~B}_{1} \cup \mathrm{~B}_{2} \cup \mathrm{~B}_{3} \Rightarrow \mathbf{x} \in$ Class $\mathrm{C}_{2,3,4,5}$
Class C_{2} rule	$\mathrm{R}_{3}: \mathbf{x} \in \mathrm{B}_{6} \Rightarrow \mathbf{x} \in{\text { Class } \mathrm{C}_{2}}$
Class C_{4} rule	$\mathrm{R}_{4}: \mathbf{x} \in \mathrm{B}_{7} \& \mathbf{x} \notin \mathrm{~B}_{6} \Rightarrow \mathbf{x} \in$ Class C_{4}
Class C_{5} rule	$\mathrm{R}_{5}: \mathbf{x} \in \mathrm{B}_{8} \& \mathbf{x} \notin \mathrm{~B}_{6} \cup \mathrm{~B}_{7} \Rightarrow \mathbf{x} \in$ Class C_{5}
Class C_{3} rule	$\mathrm{R}_{6}: \mathbf{x} \in \mathrm{B}_{9} \& \mathbf{x} \notin \mathrm{~B}_{6} \cup \mathrm{~B}_{7} \cup \mathrm{~B}_{8} \Rightarrow \mathbf{x} \in$ Class C_{3}

Table 33. Number of cases that satisfy rules $\mathrm{R}_{1}-\mathrm{R}_{6}$ (BC algorithm, PBC dataset) of $4^{\text {th }}$ fold in stratified 10 -fold cross validation.

Rule	Training		Validation		Testing	
R_{1}	$\mathrm{C}_{1} \Rightarrow \mathrm{C}_{1}$	$\mathrm{C}_{2345}=>\mathrm{C}_{1}$	$\mathrm{C}_{1} \Rightarrow \mathrm{C}_{1}$	$\mathrm{C}_{2345}=>\mathrm{C}_{1}$	$\mathrm{C}_{1} \Rightarrow>\mathrm{C}_{1}$	$\mathrm{C}_{2345}=>\mathrm{C}_{1}$
	3868	84	421	9	460	10
R_{2}	$\mathrm{C}_{2345}=>\mathrm{C}_{2345}$	$\mathrm{C}_{1}=>\mathrm{C}_{2345}$	$\mathrm{C}_{2345}=>\mathrm{C}_{2345}$	$\mathrm{C}_{1}=>\mathrm{C}_{2345}$	$\mathrm{C}_{2345}=>\mathrm{C}_{2345}$	$\mathrm{C}_{1}=>\mathrm{C}_{2345}$
	373	12	42	1	51	6
R_{3}	$\mathrm{C}_{2}=>\mathrm{C}_{2}$	$\mathrm{C}_{345}=>\mathrm{C}_{2}$	$\mathrm{C}_{2}=>\mathrm{C}_{2}$	$\mathrm{C}_{345}=>\mathrm{C}_{2}$	$\mathrm{C}_{2}=>\mathrm{C}_{2}$	$\mathrm{C}_{345}=>\mathrm{C}_{2}$
	249	1	30	0	32	3
R4	$\mathrm{C}_{4} \Rightarrow>\mathrm{C}_{4}$	$\mathrm{C}_{235}=>\mathrm{C}_{4}$	$\mathrm{C}_{4}=>\mathrm{C}_{4}$	$\mathrm{C}_{235}=>\mathrm{C}_{4}$	$\mathrm{C}_{4}=>\mathrm{C}_{4}$	$\mathrm{C}_{235}=>\mathrm{C}_{4}$
	64	5	8	0	7	1
R_{5}	$\mathrm{C}_{5}=>\mathrm{C}_{5}$	$\mathrm{C}_{234}=>\mathrm{C}_{5}$	$\mathrm{C}_{5}=>\mathrm{C}_{5}$	$\mathrm{C}_{234}=>\mathrm{C}_{5}$	$\mathrm{C}_{5}=>\mathrm{C}_{5}$	$\mathrm{C}_{234}=>\mathrm{C}_{5}$
	84	12	11	0	12	1
R_{6}	$\mathrm{C}_{3}=>\mathrm{C}_{3}$	$\mathrm{C}_{245}=>\mathrm{C}_{3}$	$\mathrm{C}_{3}=>\mathrm{C}_{3}$	$\mathrm{C}_{245}=>\mathrm{C}_{3}$	$\mathrm{C}_{3}=>\mathrm{C}_{3}$	$\mathrm{C}_{245}=>\mathrm{C}_{3}$
	22	3	3	0	3	0

Table 34. Precision and recall that satisfy rules $R_{1}-R_{6}$ (BC algorithm, PBC dataset) of $4^{\text {th }}$ fold in stratified 10-fold cross validation.

Rule	Training		Validation		Testing	
	Precision (\%)	Recall (\%)	Precision (\%)	Recall (\%)	Precision (\%)	Recall (\%)
R_{1}	97.87	97.19	97.91	95.25	97.87	93.69
R_{2}	96.88	82.71	97.67	80.77	89.47	89.47
R_{3}	99.60	93.61	100.00	100.00	91.43	96.97
R_{4}	92.75	90.14	100.00	100.00	87.50	77.78
R_{5}	87.50	91.30	100.00	100.00	92.31	100.00
R_{6}	88.00	100.00	100.00	100.00	100.00	100.00

Table 35. Weighted precision for all classes of BC algorithm for PBC dataset of $4^{\text {th }}$ fold in stratified 10 -fold cross validation.

Rule	Weight (\%)	Precision (\%)	Classified cases	Weighted precision (\%)
	Training			
R_{1}	89.98	97.87	3952	88.07
R_{3}	5.69	99.60	250	5.67
R_{4}	1.57	92.75	69	1.46
R_{5}	2.19	87.50	96	1.91
R_{6}	0.57	88.00	25	0.50
All	100.00		4392	97.61
	Validation			
R_{1}	89.21	97.91	430	87.34
R_{3}	6.22	100.00	30	6.22
R_{4}	1.66	100.00	8	1.66
R_{5}	2.28	100.00	11	2.28
R_{6}	0.62	100.00	3	0.62
All	100.00		482	98.13
	Testing			
R_{1}	88.85	97.87	470	86.96
R_{3}	6.62	91.43	35	6.05
R_{4}	1.51	87.50	8	1.32
R_{5}	2.46	92.31	13	2.27
R_{6}	0.57	100.00	3	0.57
All	100.00		529	97.16

A.4. BC algorithm for PBC dataset of $5^{\text {th }}$ fold in stratified 10 -fold cross validation.

Table 36. Hyper-parameters of the rectangles $B_{1}-B_{9}$ (BC algorithm, PBC dataset) of $5^{\text {th }}$ fold in stratified 10 -fold cross validation.

Box	Hyper-parameters	Box	Hyper-parameters
B_{1}	$0.0030 \leq \mathrm{X}_{0}<0.0330 \& 0.0021 \leq \mathrm{X}_{9}<0.905$	$\mathrm{~B}_{2}$	$0.5260<\mathrm{X}_{5} \leq 1 \& 0 \leq \mathrm{X}_{9}<0.0021$
$\mathrm{~B}_{3}$	$0.0005<\mathrm{X}_{6} \leq 1 \& 0.0015<\mathrm{X}_{5} \leq 1$	$\mathrm{~B}_{4}$	$0.0005 \leq \mathrm{X}_{6}<1 \& 0.0015 \leq \mathrm{X}_{5}<1$
$\mathrm{~B}_{5}$	$0 \leq \mathrm{X} 4<0.12$	$\mathrm{~B}_{6}$	$0.0125<\mathrm{X}_{3} \leq 1$
$\mathrm{~B}_{7}$	$0<\mathrm{X}_{1} \leq 0.0045$	$\mathrm{~B}_{8}$	$0 \leq \mathrm{X}_{4} \leq 0.2944$
$\mathrm{~B}_{9}$	$0.0041 \leq \mathrm{X}_{2} \leq 0.6058$		

Table 37. Rules $\mathrm{R}_{1}-\mathrm{R}_{6}$ (BC algorithm, PBC dataset) of $5^{\text {th }}$ fold in stratified 10-fold cross validation using boxes

Class C_{1} rule	$\mathrm{R}_{1}: \mathbf{x} \in \mathrm{B}_{1} \cup \mathrm{~B}_{2} \Rightarrow \mathbf{x} \in$ Class $_{1}-\mathrm{B}_{9}$.
Class $C_{2,3,4,5}$ rule	$\mathrm{R}_{2}: \mathbf{x} \in \mathrm{B}_{3} \cup \mathrm{~B}_{4} \cup \mathrm{~B}_{5} \& \mathbf{x} \notin \mathrm{~B}_{1} \cup \mathrm{~B}_{2} \Rightarrow \mathbf{x} \in$ Class $\mathrm{C}_{2,3,4,5}$
Class C_{2} rule	$\mathrm{R}_{3}: \mathbf{x} \in \mathrm{B}_{6} \Rightarrow \mathbf{x} \in{\text { Class } \mathrm{C}_{2}}$
Class C_{4} rule	$\mathrm{R}_{4}: \mathbf{x} \in \mathrm{B}_{7} \& \mathbf{x} \notin \mathrm{~B}_{6} \Rightarrow \mathbf{x} \in$ Class C_{4}
Class C_{5} rule	$\mathrm{R}_{5}: \mathbf{x} \in \mathrm{B}_{8} \& \mathbf{x} \notin \mathrm{~B}_{6} \cup \mathrm{~B}_{7} \Rightarrow \mathbf{x} \in$ Class C_{5}
Class C_{3} rule	$\mathrm{R}_{6}: \mathbf{x} \in \mathrm{B}_{9} \& \mathbf{x} \notin \mathrm{~B}_{6} \cup \mathrm{~B}_{7} \cup \mathrm{~B}_{8} \Rightarrow \mathbf{x} \in$ Class C_{3}

Table 38. Number of cases that satisfy rules $\mathrm{R}_{1}-\mathrm{R}_{6}$ (BC algorithm, PBC dataset) of $5^{\text {th }}$ fold in stratified 10 -fold cross validation.

$\begin{gathered} \text { Rule } \\ \mathrm{R}_{1} \end{gathered}$	Training		Validation		Testing	
	$\mathrm{C}_{1} \Rightarrow \mathrm{C}_{1}$	$\mathrm{C}_{2345}=>\mathrm{C}_{1}$	$\mathrm{C}_{1}=>\mathrm{C}_{1}$	$\mathrm{C}_{2345}=>\mathrm{C}_{1}$	$\mathrm{C}_{1} \Rightarrow \mathrm{C}_{1}$	$\mathrm{C}_{2345}=>\mathrm{C}_{1}$
	3956	55	425	10	445	6
R_{2}	$\mathrm{C}_{2345}=>\mathrm{C}_{2345}$	$\mathrm{C}_{1}=>\mathrm{C}_{2345}$	$\mathrm{C}_{2345}=>\mathrm{C}_{2345}$	$\mathrm{C}_{1}=>\mathrm{C}_{2345}$	$\mathrm{C}_{2345}=>\mathrm{C}_{2345}$	$\mathrm{C}_{1}=>\mathrm{C}_{2345}$
	379	15	49	2	53	3
R_{3}	$\mathrm{C}_{2}=>\mathrm{C}_{2}$	$\mathrm{C}_{345}=>\mathrm{C}_{2}$	$\mathrm{C}_{2}=>\mathrm{C}_{2}$	$\mathrm{C}_{345}=>\mathrm{C}_{2}$	$\mathrm{C}_{2}=>\mathrm{C}_{2}$	$\mathrm{C}_{345}=>\mathrm{C}_{2}$
	249	1	30	0	32	3
R4	$\mathrm{C}_{4} \Rightarrow{ }^{\text {c }}$ C 4	$\mathrm{C}_{235}=>\mathrm{C}_{4}$	$\mathrm{C}_{4} \Rightarrow>\mathrm{C}_{4}$	$\mathrm{C}_{235}=>\mathrm{C}_{4}$	$\mathrm{C}_{4}=>\mathrm{C}_{4}$	$\mathrm{C}_{235}=\mathrm{C}_{4}$
	65	4	8	0	7	1
R_{5}	$\mathrm{C}_{5}=>\mathrm{C}_{5}$	$\mathrm{C}_{234}=>\mathrm{C}_{5}$	$\mathrm{C}_{5}=>\mathrm{C}_{5}$	$\mathrm{C}_{234}=>\mathrm{C}_{5}$	$\mathrm{C}_{5}=>\mathrm{C}_{5}$	$\mathrm{C}_{234}=>\mathrm{C}_{5}$
	83	10	11	2	12	1
R_{6}	$\mathrm{C}_{3}=>\mathrm{C}_{3}$	$\mathrm{C}_{245}=>\mathrm{C}_{3}$	$\mathrm{C}_{3}=>\mathrm{C}_{3}$	$\mathrm{C}_{245}=>\mathrm{C}_{3}$	$\mathrm{C}_{3}=>\mathrm{C}_{3}$	$\mathrm{C}_{245}=>\mathrm{C}_{3}$
	22	1	3	2	3	0

Table 39. Precision and recall that satisfy rules $\mathrm{R}_{1}-\mathrm{R}_{6}$ (BC algorithm, PBC dataset) of $5^{\text {th }}$ fold in stratified 10 -fold cross validation.

Rule	Training		Validation		Testing	
	Precision (\%)	Recall (\%)	Precision (\%)	Recall (\%)	Precision (\%)	Recall (\%)
R_{1}	98.63	99.40	97.70	96.15	98.67	90.63
R_{2}	96.19	84.04	96.08	94.23	94.64	92.98
R_{3}	99.60	93.61	100.00	100.00	91.43	96.97
R_{4}	94.20	91.55	100.00	100.00	87.50	77.78
R_{5}	89.25	90.22	84.62	100.00	92.31	100.00
R_{6}	95.65	100.00	60.00	100.00	100.00	100.00

Table 40. Weighted precision for all classes of BC algorithm for PBC dataset of $5^{\text {th }}$ fold in stratified 10 -fold cross validation.

Rule	Weight (\%)	Precision (\%)	Classified cases	Weighted precision (\%)
	Training			
R_{1}	90.22	98.63	4011	88.98
R_{3}	5.62	99.60	250	5.60
R_{4}	1.55	94.20	69	1.46
R_{5}	2.09	89.25	93	1.87
R_{6}	0.52	95.65	23	0.49
All	100.00		4446	98.40
	Validation			
R_{1}	88.59	97.70	435	86.56
R_{3}	6.11	100.00	30	6.11
R_{4}	1.63	100.00	8	1.63
R_{5}	2.65	84.62	13	2.24
R_{6}	1.02	60.00	5	0.61
All	100.00		491	97.15
	Testing			
R_{1}	88.43	98.67	451	87.25
R_{3}	6.86	91.43	35	6.27
R_{4}	1.57	87.50	8	1.37
R_{5}	2.55	92.31	13	2.35
R_{6}	0.59	100.00	3	0.59
All	100.00		510	97.84

A.5. BC algorithm for PBC dataset of $6^{\text {th }}$ fold in stratified 10 -fold cross validation.

Table 41. Hyper-parameters of the rectangles $B_{1}-B_{11}$ ($B C$ algorithm, PBC dataset) of $6^{\text {th }}$ fold in stratified 10 -fold cross

Box	Hyper-parameters	Box	Hyper-parameters
B_{1}	$0.0030 \leq \mathrm{X}_{0}<0.0330 \& 0.0012 \leq \mathrm{X}_{7}<0.905$	$\mathrm{~B}_{2}$	$0.0015 \leq \mathrm{X}_{4}<1 \& 0.0030 \leq \mathrm{X}_{5}<1$
$\mathrm{~B}_{3}$	$0.0015 \leq \mathrm{X}_{3}<0.101$	$\mathrm{~B}_{4}$	$0 \leq \mathrm{X}_{6}<0.0005 \& 0.101 \leq \mathrm{X}_{3}<1$
$\mathrm{~B}_{5}$	$0 \leq \mathrm{X}_{6}<0.0005$	$\mathrm{~B}_{6}$	$0.0105 \leq \mathrm{X}_{3}<1$
$\mathrm{~B}_{7}$	$0.63 \leq \mathrm{X}_{5}<1 \& 0.0015 \leq \mathrm{X}_{7}<0.905$	$\mathrm{~B}_{8}$	$0.0125<\mathrm{X}_{3} \leq 1$
$\mathrm{~B}_{9}$	$0<\mathrm{X}_{1} \leq 0.0045$	$\mathrm{~B}_{10}$	$0 \leq \mathrm{X}_{4} \leq 0.2944$
$\mathrm{~B}_{11}$	$0.006 \leq \mathrm{X}_{2} \leq 0.6058$		

Table 42. Rules $R_{1}-R_{6}$ (BC algorithm, PBC dataset) of $6^{\text {th }}$ fold in stratified 10 -fold cross validation using boxes $\mathrm{B}_{1}-\mathrm{B}_{11}$.

Class C_{1} rule	$\mathrm{R}_{1}: \mathbf{x} \in \mathrm{B}_{1} \cup \mathrm{~B}_{2} \cup \mathrm{~B}_{3} \Rightarrow \mathbf{x} \in$ Class C_{1}
Class $C_{2,3,4,5}$ rule	$\mathrm{R}_{2}: \mathbf{x} \in \mathrm{B}_{4} \cup \mathrm{~B}_{5} \cup \mathrm{~B}_{6} \cup \mathrm{~B}_{7} \& \mathbf{x} \notin \mathrm{~B}_{1} \cup \mathrm{~B}_{2} \cup \mathrm{~B}_{3} \Rightarrow \mathbf{x} \in$ Class $\mathrm{C}_{2,3,4,5}$
Class C_{2} rule	$\mathrm{R}_{3}: \mathbf{x} \in \mathrm{B}_{8} \Rightarrow \mathbf{x} \in{\text { Class } \mathrm{C}_{2}}$
Class C_{4} rule	$\mathrm{R}_{4}: \mathbf{x} \in \mathrm{B}_{9} \& \mathbf{x} \notin \mathrm{~B}_{8} \Rightarrow \mathbf{x} \in$ Class C_{4}
Class C_{5} rule	$\mathrm{R}_{5}: \mathbf{x} \in \mathrm{B}_{10} \& \mathbf{x} \notin \mathrm{~B}_{8} \cup \mathrm{~B}_{9} \Rightarrow \mathbf{x} \in$ Class C_{5}
Class C_{3} rule	$\mathrm{R}_{6}: \mathbf{x} \in \mathrm{B}_{11} \& \mathbf{x} \notin \mathrm{~B}_{8} \cup \mathrm{~B}_{9} \cup \mathrm{~B}_{10} \Rightarrow \mathbf{x} \in$ Class C_{3}

Table 43. Number of cases that satisfy rules $\mathrm{R}_{1}-\mathrm{R}_{6}$ (BC algorithm, PBC dataset) of $6^{\text {th }}$ fold in stratified 10 -fold cross validation.

$\begin{gathered} \hline \text { Rule } \\ \mathrm{R}_{1} \\ \hline \end{gathered}$	Training		Validation		Testing	
	$\mathrm{C}_{1} \Rightarrow \mathrm{C}_{1}$	$\mathrm{C}_{2345}=>\mathrm{C}_{1}$	$\mathrm{C}_{1} \Rightarrow \mathrm{C}_{1}$	$\mathrm{C}_{2345}=>\mathrm{C}_{1}$	$\mathrm{C}_{1} \Rightarrow \mathrm{C}_{1}$	$\mathrm{C}_{2345} \Rightarrow \mathrm{C}_{1}$
	3887	45	435	10	442	7
R_{2}	$\mathrm{C}_{2345}=>\mathrm{C}_{2345}$	$\mathrm{C}_{1}=>\mathrm{C}_{2345}$	$\mathrm{C}_{2345}=>\mathrm{C}_{2345}$	$\mathrm{C}_{1}=>\mathrm{C}_{2345}$	$\mathrm{C}_{2345}=>\mathrm{C}_{2345}$	$\mathrm{C}_{1}=>\mathrm{C}_{2345}$
	379	10	46	3	50	5
R_{3}	$\mathrm{C}_{2}=>\mathrm{C}_{2}$	$\mathrm{C}_{345}=>\mathrm{C}_{2}$	$\mathrm{C}_{2}=>\mathrm{C}_{2}$	$\mathrm{C}_{345}=>\mathrm{C}_{2}$	$\mathrm{C}_{2}=>\mathrm{C}_{2}$	$\mathrm{C}_{345}=>\mathrm{C}_{2}$
	251	3	28	0	32	3
R_{4}	$\mathrm{C}_{4}=>\mathrm{C}_{4}$	$\mathrm{C}_{235}=>\mathrm{C}_{4}$	$\mathrm{C}_{4}=>\mathrm{C}_{4}$	$\mathrm{C}_{235}=>\mathrm{C}_{4}$	$\mathrm{C}_{4} \Rightarrow{ }^{\text {c }}$ C	$\mathrm{C}_{235}=>\mathrm{C}_{4}$
	65	4	8	0	7	1
R_{5}	$\mathrm{C}_{5}=>\mathrm{C}_{5}$	$\mathrm{C}_{234}=>\mathrm{C}_{5}$	$\mathrm{C}_{5}=>\mathrm{C}_{5}$	$\mathrm{C}_{234}=>\mathrm{C}_{5}$	$\mathrm{C}_{5}=>\mathrm{C}_{5}$	$\mathrm{C}_{234}=>\mathrm{C}_{5}$
	83	10	11	2	12	1
R_{6}	$\mathrm{C}_{3}=>\mathrm{C}_{3}$	$\mathrm{C}_{245}=>\mathrm{C}_{3}$	$\mathrm{C}_{3}=>\mathrm{C}_{3}$	$\mathrm{C}_{245}=>\mathrm{C}_{3}$	$\mathrm{C}_{3}=>\mathrm{C}_{3}$	$\mathrm{C}_{245}=>\mathrm{C}_{3}$
	22	1	3	2	3	0

Table 44. Precision and recall that satisfy rules $R_{1}-R_{6}$ (BC algorithm, PBC dataset) of $6^{\text {th }}$ fold in stratified 10 -fold cross validation.

Rule	Training		Validation		Testing	
	Precision (\%)	Recall (\%)	Precision (\%)	Recall (\%)	Precision (\%)	Recall (\%)
R_{1}	98.86	97.66	97.75	98.42	98.44	90.02
R_{2}	97.43	84.04	93.88	88.46	90.91	87.72
R_{3}	98.82	94.36	100.00	93.33	91.43	96.97
R_{4}	94.20	91.55	100.00	100.00	87.50	77.78
R_{5}	89.25	90.22	84.62	100.00	92.31	100.00
R_{6}	95.65	100.00	60.00	100.00	100.00	100.00

Table 45. Weighted precision for all classes of BC algorithm for PBC dataset of $6^{\text {th }}$ fold in stratified 10 -fold cross validation.

Rule	Weight (\%)	Precision (\%)	Classified cases	Weighted precision (\%)
	Training			
R_{1}	89.96	98.86	3932	88.93
R_{3}	5.81	98.82	254	5.74
R_{4}	1.58	94.20	69	1.49
R_{5}	2.13	89.25	93	1.90
R_{6}	0.53	95.65	23	0.50
All	100.00		4371	98.56
	Validation			
R_{1}	89.18	97.75	445	87.17
R_{3}	5.61	100.00	28	5.61
R_{4}	1.60	100.00	8	1.60
R_{5}	2.61	84.62	13	2.20
R_{6}	1.00	60.00	5	0.60
All	100.00		499	97.19
	Testing			
R_{1}	88.39	98.44	449	87.01
R_{3}	6.89	91.43	35	6.30
R_{4}	1.57	87.50	8	1.38
R_{5}	2.56	92.31	13	2.36
R_{6}	0.59	100.00	3	0.59
All	100.00		508	97.64

A.6. BC algorithm for PBC dataset of $7^{\text {th }}$ fold in stratified 10 -fold cross validation.

Table 46. Hyper-parameters of the rectangles $\mathrm{B}_{1}-\mathrm{B}_{11}$ (BC algorithm, PBC dataset) of $7^{\text {th }}$ fold in stratified 10 -fold cross

Box	Hyper-parameters	Box	Hyper-parameters
B_{1}	$0.0021 \leq \mathrm{X}_{9}<1 \& 0.0030 \leq \mathrm{X}_{0}<0.0315$	$\mathrm{~B}_{2}$	$0 \leq \mathrm{X}_{9}<0.0021 \& 0.7065 \leq \mathrm{X}_{5}<1$
$\mathrm{~B}_{3}$	$0.0015 \leq \mathrm{X}_{4}<0.7155$	$\mathrm{~B}_{4}$	$0 \leq \mathrm{X}_{7}<0.0012 \& 0 \leq \mathrm{X}_{0}<0.0030$
$\mathrm{~B}_{5}$	$0.0315 \leq \mathrm{X}_{0}<1$	$\mathrm{~B}_{6}$	$0.0105 \leq \mathrm{X}_{0}<1 \& 0.7155 \leq \mathrm{X}_{4}<0.905$
$\mathrm{~B}_{7}$	$0.0005 \leq \mathrm{X}_{5}<0.4955$	$\mathrm{~B}_{8}$	$0.0125<\mathrm{X}_{3} \leq 1$
$\mathrm{~B}_{9}$	$0<\mathrm{X}_{1} \leq 0.0045$	$\mathrm{~B}_{10}$	$0 \leq \mathrm{X}_{4} \leq 0.2944$
$\mathrm{~B}_{11}$	$0.0041 \leq \mathrm{X}_{2} \leq 0.6058$		

Table 47. Rules $\mathrm{R}_{1}-\mathrm{R}_{6}$ (BC algorithm, PBC dataset) of $7^{\text {th }}$ fold in stratified 10 -fold cross validation using boxes

Class C_{1} rule	$\mathrm{R}_{1}: \mathbf{x} \in \mathrm{B}_{1} \cup \mathrm{~B}_{2} \cup \mathrm{~B}_{3} \Rightarrow \mathbf{x} \in$ Class $_{1}-\mathrm{B}_{1}$.
Class $C_{2,3,4,5}$ rule	$\mathrm{R}_{2}: \mathbf{x} \in \mathrm{B}_{4} \cup \mathrm{~B}_{5} \cup \mathrm{~B}_{6} \cup \mathrm{~B}_{7} \& \mathbf{x} \notin \mathrm{~B}_{1} \cup \mathrm{~B}_{2} \cup \mathrm{~B}_{3} \Rightarrow \mathbf{x} \in$ Class $\mathrm{C}_{2,3,4,5}$
Class C_{2} rule	$\mathrm{R}_{3}: \mathbf{x} \in \mathrm{B}_{8} \Rightarrow \mathbf{x} \in$ Class 2
Class C_{4} rule	$\mathrm{R}_{4}: \mathbf{x} \in \mathrm{B}_{9} \& \mathbf{x} \notin \mathrm{~B}_{8} \Rightarrow \mathbf{x} \in$ Class C_{4}
Class C_{5} rule	$\mathrm{R}_{5}: \mathbf{x} \in \mathrm{B}_{10} \& \mathbf{x} \notin \mathrm{~B}_{8} \cup \mathrm{~B}_{9} \Rightarrow \mathbf{x} \in$ Class C_{5}
Class C_{3} rule	$\mathrm{R}_{6}: \mathbf{x} \in \mathrm{B}_{11} \& \mathbf{x} \notin \mathrm{~B}_{8} \cup \mathrm{~B}_{9} \cup \mathrm{~B}_{10} \Rightarrow \mathbf{x} \in$ Class C_{3}

Table 48. Number of cases that satisfy rules $\mathrm{R}_{1}-\mathrm{R}_{6}$ (BC algorithm, PBC dataset) of $7^{\text {th }}$ fold in stratified 10 -fold cross validation.

Rule R_{1}	Training		Validation		Testing	
	$\mathrm{C}_{1} \Rightarrow \mathrm{C}_{1}$	$\mathrm{C}_{2345}=>\mathrm{C}_{1}$	$\mathrm{C}_{1} \Rightarrow>\mathrm{C}_{1}$	$\mathrm{C}_{2345}=>\mathrm{C}_{1}$	$\mathrm{C}_{1} \Rightarrow \mathrm{C}_{1}$	$\mathrm{C}_{2345}=>\mathrm{C}_{1}$
	3855	40	440	12	475	15
R_{2}	$\mathrm{C}_{2345} \Rightarrow \mathrm{C}_{2345}$	$\mathrm{C}_{1} \Rightarrow \mathrm{C}_{2345}$	$\mathrm{C}_{2345}=>\mathrm{C}_{2345}$	$\mathrm{C}_{1}=>\mathrm{C}_{2345}$	$\mathrm{C}_{2345}=>\mathrm{C}_{2345}$	$\mathrm{C}_{1} \Rightarrow \mathrm{C}_{2345}$
	379	11	42	3	53	5
R_{3}	$\mathrm{C}_{2} \Rightarrow \mathrm{C}_{2}$	$\mathrm{C}_{345}=>\mathrm{C}_{2}$	$\mathrm{C}_{2}=>\mathrm{C}_{2}$	$\mathrm{C}_{345}=>\mathrm{C}_{2}$	$\mathrm{C}_{2}=>\mathrm{C}_{2}$	$\mathrm{C}_{345}=>\mathrm{C}_{2}$
	250	1	29	2	32	3
R_{4}	$\mathrm{C}_{4}=>\mathrm{C}_{4}$	$\mathrm{C}_{235}=>\mathrm{C}_{4}$	$\mathrm{C}_{4} \Rightarrow>\mathrm{C}_{4}$	$\mathrm{C}_{235}=>\mathrm{C}_{4}$	$\mathrm{C}_{4}=>\mathrm{C}_{4}$	$\mathrm{C}_{235}=>\mathrm{C}_{4}$
	65	5	8	1	7	1
R_{5}	$\mathrm{C}_{5} \Rightarrow{ }^{\text {c }}$ 5	$\mathrm{C}_{234}=>\mathrm{C}_{5}$	$\mathrm{C}_{5} \Rightarrow \mathrm{C}_{5}$	$\mathrm{C}_{234}=>\mathrm{C}_{5}$	$\mathrm{C}_{5}=>\mathrm{C}_{5}$	$\mathrm{C}_{234}=>\mathrm{C}_{5}$
	83	10	11	2	12	1
R_{6}	$\mathrm{C}_{3} \Rightarrow>\mathrm{C}_{3}$	$\mathrm{C}_{245}=>\mathrm{C}_{3}$	$\mathrm{C}_{3} \Rightarrow>\mathrm{C}_{3}$	$\mathrm{C}_{245}=>\mathrm{C}_{3}$	$\mathrm{C}_{3}=>\mathrm{C}_{3}$	$\mathrm{C}_{245}=>\mathrm{C}_{3}$
	22	2	3	2	3	0

Table 49. Precision and recall that satisfy rules $R_{1}-R_{6}\left(B C\right.$ algorithm, PBC dataset) of $7^{\text {th }}$ fold in stratified 10 -fold cross validation.

Rule	Training		Validation		Testing	
	Precision (\%)	Recall (\%)	Precision (\%)	Recall (\%)	Precision (\%)	Recall (\%)
R_{1}	98.97	96.86	97.35	99.55	96.94	96.74
R_{2}	97.18	84.04	93.33	80.77	91.38	92.98
R_{3}	99.60	93.98	93.55	96.67	91.43	96.97
R_{4}	92.86	91.55	88.89	100.00	87.50	77.78
R_{5}	89.25	90.22	84.62	100.00	92.31	100.00
R_{6}	91.67	100.00	60.00	100.00	100.00	100.00

Table 50. Weighted precision for all classes of BC algorithm for PBC dataset of $7^{\text {th }}$ fold in stratified 10 -fold cross validation.

Rule	Weight (\%)	Precision (\%)	Classified cases	Weighted precision (\%)
	Training			
R_{1}	89.89	98.97	3895	88.97
R_{3}	5.79	99.60	251	5.77
R_{4}	1.62	92.86	70	1.50
R_{5}	2.15	89.25	93	1.92
R_{6}	0.55	91.67	24	0.51
All	100.00		4333	98.66
	Validation			
R_{1}	88.63	97.35	452	86.27
R_{3}	6.08	93.55	31	5.69
R_{4}	1.76	88.89	9	1.57
R_{5}	2.55	84.62	13	2.16
R_{6}	0.98	60.00	5	0.59
All	100.00		510	96.27
	Testing			
R_{1}	89.25	96.94	490	86.52
R_{3}	6.38	91.43	35	5.83
R_{4}	1.46	87.50	8	1.28
R_{5}	2.37	92.31	13	2.19
R_{6}	0.55	100.00	3	0.55
All	100.00		549	96.36

A.7. BC algorithm for PBC dataset of $8^{\text {th }}$ fold in stratified 10 -fold cross validation.

Table 51. Hyper-parameters of the rectangles $B_{1}-B_{11}$ (BC algorithm, PBC dataset) of $8^{\text {th }}$ fold in stratified 10 -fold cross

Box	Hyper-parameters	Box	Hyper-parameters
B_{1}	$0.0021 \leq \mathrm{X}_{9}<1 \& 0.0030 \leq \mathrm{X}_{0}<0.0315$	$\mathrm{~B}_{2}$	$0 \leq \mathrm{X}_{9}<0.0021 \& 0.7065 \leq \mathrm{X}_{5}<1$
$\mathrm{~B}_{3}$	$0.0015 \leq \mathrm{X}_{4}<0.7155$	$\mathrm{~B}_{4}$	$0 \leq \mathrm{X}_{7}<0.0012 \& 0 \leq \mathrm{X}_{0}<0.0030$
$\mathrm{~B}_{5}$	$0.0315 \leq \mathrm{X}_{0}<1$	$\mathrm{~B}_{6}$	$0.0105 \leq \mathrm{X}_{0}<1 \& 0.7155 \leq \mathrm{X}_{4}<0.905$
$\mathrm{~B}_{7}$	$0.0005 \leq \mathrm{X}_{5}<0.4955$	$\mathrm{~B}_{8}$	$0.0125<\mathrm{X}_{3} \leq 1$
$\mathrm{~B}_{9}$	$0<\mathrm{X}_{1} \leq 0.0045$	$\mathrm{~B}_{10}$	$0 \leq \mathrm{X}_{4} \leq 0.2944$
$\mathrm{~B}_{11}$	$0.0041 \leq \mathrm{X}_{2} \leq 0.6058$		

Table 52. Rules $\mathrm{R}_{1}-\mathrm{R}_{6}$ (BC algorithm, PBC dataset) of $8^{\text {th }}$ fold in stratified 10 -fold cross validation using boxes $\mathrm{B}_{1}-\mathrm{B}_{11}$.

Class C_{1} rule	$\mathrm{R}_{1}: \mathbf{x} \in \mathrm{B}_{1} \cup \mathrm{~B}_{2} \cup \mathrm{~B}_{3} \Rightarrow \mathbf{x} \in$ Class C_{1}
Class $C_{2,3,4,}$ rule	$\mathrm{R}_{2}: \mathbf{x} \in \mathrm{B}_{4} \cup \mathrm{~B}_{5} \cup \mathrm{~B}_{6} \cup \mathrm{~B}_{7} \& \mathbf{x} \notin \mathrm{~B}_{1} \cup \mathrm{~B}_{2} \cup \mathrm{~B}_{3} \Rightarrow \mathbf{x} \in$ Class $\mathrm{C}_{2,3,4,5}$
Class C_{2} rule	$\mathrm{R}_{3}: \mathbf{x} \in \mathrm{B}_{8} \Rightarrow \mathbf{x} \in{\text { Class } \mathrm{C}_{2}}^{\text {Class } C_{4} \text { rule }}$
Rlass C_{5} rule	$\mathrm{R}_{4}: \mathbf{x} \in \mathrm{B}_{9} \& \mathbf{x} \notin \mathrm{~B}_{8} \Rightarrow \mathbf{x} \in$ Class C_{4}
Class C_{3} rule	$\mathrm{R}_{5}: \mathbf{x} \in \mathrm{B}_{10} \& \mathbf{x} \notin \mathrm{~B}_{8} \cup \mathrm{~B}_{9} \Rightarrow \mathbf{x} \in{\text { Class } \mathrm{C}_{5}}$

Table 53. Number of cases that satisfy rules $R_{1}-R_{6}$ (BC algorithm, PBC dataset) of $8^{\text {th }}$ fold in stratified 10 -fold cross validation.

Rule	Training		Validation		Testing	
	$\mathrm{C}_{1} \Rightarrow \mathrm{C}_{1}$	$\mathrm{C}_{2345}=>\mathrm{C}_{1}$	$\mathrm{C}_{1}=>\mathrm{C}_{1}$	$\mathrm{C}_{2345}=>\mathrm{C}_{1}$	$\mathrm{C}_{1} \Rightarrow \mathrm{C}_{1}$	$\mathrm{C}_{2345} \Rightarrow \mathrm{C}_{1}$
	3855	40	440	12	475	15
R_{2}	$\mathrm{C}_{2345}=>\mathrm{C}_{2345}$	$\mathrm{C}_{1}=>\mathrm{C}_{2345}$	$\mathrm{C}_{2345}=>\mathrm{C}_{2345}$	$\mathrm{C}_{1}=>\mathrm{C}_{2345}$	$\mathrm{C}_{2345}=>\mathrm{C}_{2345}$	$\mathrm{C}_{1}=>\mathrm{C}_{2345}$
	379	11	42	3	53	5
R_{3}	$\mathrm{C}_{2}=>\mathrm{C}_{2}$	$\mathrm{C}_{345}=>\mathrm{C}_{2}$	$\mathrm{C}_{2}=>\mathrm{C}_{2}$	$\mathrm{C}_{345}=>\mathrm{C}_{2}$	$\mathrm{C}_{2}=>\mathrm{C}_{2}$	$\mathrm{C}_{345}=>\mathrm{C}_{2}$
	250	2	29	1	32	3
R_{4}	$\mathrm{C}_{4}=>\mathrm{C}_{4}$	$\mathrm{C}_{235}=>\mathrm{C}_{4}$	$\mathrm{C}_{4}=>\mathrm{C}_{4}$	$\mathrm{C}_{235}=>\mathrm{C}_{4}$	$\mathrm{C}_{4}=>\mathrm{C}_{4}$	$\mathrm{C}_{235}=>\mathrm{C}_{4}$
	250	2	29	1	32	3
R_{5}	$\mathrm{C}_{5}=>\mathrm{C}_{5}$	$\mathrm{C}_{234}=>\mathrm{C}_{5}$	$\mathrm{C}_{5} \Rightarrow \mathrm{C}_{5}$	$\mathrm{C}_{234}=>\mathrm{C}_{5}$	$\mathrm{C}_{5}=>\mathrm{C}_{5}$	$\mathrm{C}_{234}=>\mathrm{C}_{5}$
	83	8	11	4	12	1
R_{6}	$\mathrm{C}_{3}=>\mathrm{C}_{3}$	$\mathrm{C}_{245}=>\mathrm{C}_{3}$	$\mathrm{C}_{3}=>\mathrm{C}_{3}$	$\mathrm{C}_{245}=>\mathrm{C}_{3}$	$\mathrm{C}_{3}=>\mathrm{C}_{3}$	$\mathrm{C}_{245}=>\mathrm{C}_{3}$
	22	3	3	1	3	0

Table 54. Precision and recall that satisfy rules $R_{1}-R_{6}$ (BC algorithm, PBC dataset) of $8^{\text {th }}$ fold in stratified 10 -fold cross validation.

Rule	Training		Validation		Testing	
	Precision (\%)	Recall (\%)	Precision (\%)	Recall (\%)	Precision (\%)	Recall (\%)
R_{1}	98.97	96.86	97.35	99.55	96.94	96.74
R_{2}	97.18	84.04	93.33	80.77	91.38	92.98
R_{3}	99.21	93.98	96.67	96.67	91.43	96.97
R_{4}	92.75	90.14	90.00	112.50	87.50	77.78
R_{5}	91.21	90.22	73.33	100.00	92.31	100.00
R_{6}	88.00	100.00	75.00	100.00	100.00	100.00

Table 55. Weighted precision for all classes of BC algorithm for PBC dataset of $8^{\text {th }}$ fold in stratified 10 -fold cross validation.

Rule	Weight (\%)	Precision (\%)	Classified cases	Weighted precision (\%)
	Training			
R_{1}	86.27	98.97	3895	85.38
R_{3}	5.58	99.21	252	5.54
R_{4}	5.58	99.21	252	5.54
R_{5}	2.02	91.21	91	1.84
R_{6}	0.55	88.00	25	0.49
All	100.00		4515	98.78
	Validation			
R_{1}	85.12	97.35	452	82.86
R_{3}	5.65	96.67	30	5.46
R_{4}	5.65	96.67	30	5.46
R_{5}	2.82	73.33	15	2.07
R_{6}	0.75	75.00	4	0.56
All	100.00		531	96.42
	Testing			
R_{1}	85.07	96.94	490	82.47
R_{3}	6.08	91.43	35	5.56
R_{4}	6.08	91.43	35	5.56
R_{5}	2.26	92.31	13	2.08
R_{6}	0.52	100.00	3	0.52
All	100.00		576	96.18

A.8. BC algorithm for PBC dataset of $9^{\text {th }}$ fold in stratified 10 -fold cross validation.

Table 56. Hyper-parameters of the rectangles $\mathrm{B}_{1}-\mathrm{B}_{9}$ (BC algorithm, PBC dataset) of $9^{\text {th }}$ fold in stratified 10 -fold cross

Box	Hyper-parameters	Box	Hyper-parameters
B_{1}	$0.0005 \leq \mathrm{X}_{0}<0.0310 \& 0.0001 \leq \mathrm{X}_{6}<0.905$	$\mathrm{~B}_{2}$	$0 \leq \mathrm{X}_{9}<0.0060 \& 0.7065 \leq \mathrm{X}_{5}<1$
$\mathrm{~B}_{3}$	$0.0015 \leq \mathrm{X}_{4}<0.7155$	$\mathrm{~B}_{4}$	$0.0105 \leq \mathrm{X}_{0}<1 \& 0.7155 \leq \mathrm{X}_{3}<0.905$
$\mathrm{~B}_{5}$	$0 \leq \mathrm{X}_{7}<0.0012 \& 0 \leq \mathrm{X}_{0}<0.0030$	$\mathrm{~B}_{6}$	$0.0125<\mathrm{X}_{3} \leq 1$
$\mathrm{~B}_{7}$	$0<\mathrm{X}_{1} \leq 0.0045$	$\mathrm{~B}_{8}$	$0 \leq \mathrm{X}_{4} \leq 0.2944$
$\mathrm{~B}_{9}$	$0.0041 \leq \mathrm{X}_{2} \leq 0.6058$		

Table 57. Rules $\mathrm{R}_{1}-\mathrm{R}_{6}$ (BC algorithm, PBC dataset) of $9^{\text {th }}$ fold in stratified 10-fold cross validation using boxes

Class C_{1} rule	$\mathrm{R}_{1}: \mathbf{x} \in \mathrm{B}_{1} \cup \mathrm{~B}_{2} \cup \mathrm{~B}_{3} \Rightarrow \mathbf{x} \in \mathrm{~B}_{1}-\mathrm{B}_{9}$.
Class C_{1}	
Class $C_{2,3,4,5}$ rule rule	$\mathrm{R}_{2}: \mathbf{x} \in \mathrm{B}_{4} \cup \mathrm{~B}_{5} \& \mathbf{x} \notin \mathrm{~B}_{1} \cup \mathrm{~B}_{2} \cup \mathrm{~B}_{3} \Rightarrow \mathbf{x} \in$ Class $\mathrm{C}_{2,3,4,5}$
Class C_{4} rule	$\mathrm{R}_{3}: \mathbf{x} \in \mathrm{B}_{6} \Rightarrow \mathbf{x} \in{\text { Class } \mathrm{C}_{2}}^{\text {Class } C_{5} \text { rule }}$
$\mathrm{R}_{4}: \mathbf{x} \in \mathrm{B}_{7} \& \mathbf{x} \notin \mathrm{~B}_{6} \Rightarrow \mathbf{x} \in$ Class C_{4}	
Class C_{3} rule	$\mathrm{R}_{5}: \mathbf{x} \in \mathrm{B}_{8} \& \mathbf{x} \notin \mathrm{~B}_{6} \cup \mathrm{~B}_{7} \Rightarrow \mathbf{x} \in$ Class C_{5}

Table 58. Number of cases that satisfy rules $\mathrm{R}_{1}-\mathrm{R}_{6}$ (BC algorithm, PBC dataset) of $9^{\text {th }}$ fold in stratified 10 -fold cross validation.

$\begin{gathered} \hline \text { Rule } \\ \mathrm{R}_{1} \\ \hline \end{gathered}$	Training		Validation		Testing	
	$\mathrm{C}_{1} \Rightarrow \mathrm{C}_{1}$	$\mathrm{C}_{2345}=>\mathrm{C}_{1}$	$\mathrm{C}_{1} \Rightarrow \mathrm{C}_{1}$	$\mathrm{C}_{2345}=>\mathrm{C}_{1}$	$\mathrm{C}_{1} \Rightarrow \mathrm{C}_{1}$	$\mathrm{C}_{2345} \Rightarrow \mathrm{C}_{1}$
	3880	35	445	35	460	10
R_{2}	$\mathrm{C}_{2345}=>\mathrm{C}_{2345}$	$\mathrm{C}_{1} \Rightarrow \mathrm{C}_{2345}$	$\mathrm{C}_{2345}=>\mathrm{C}_{2345}$	$\mathrm{C}_{1}=>\mathrm{C}_{2345}$	$\mathrm{C}_{2345}=>\mathrm{C}_{2345}$	$\mathrm{C}_{1} \Rightarrow>\mathrm{C}_{2345}$
	388	9	44	3	48	3
R_{3}	$\mathrm{C}_{2}=>\mathrm{C}_{2}$	$\mathrm{C}_{345}=>\mathrm{C}_{2}$	$\mathrm{C}_{2}=>\mathrm{C}_{2}$	$\mathrm{C}_{345}=>\mathrm{C}_{2}$	$\mathrm{C}_{2}=>\mathrm{C}_{2}$	$\mathrm{C}_{345}=>\mathrm{C}_{2}$
	249	2	30	1	32	3
R_{4}	$\mathrm{C}_{4} \Rightarrow \mathrm{C}_{4}$	$\mathrm{C}_{235}=>\mathrm{C}_{4}$	$\mathrm{C}_{4}=>\mathrm{C}_{4}$	$\mathrm{C}_{235}=>\mathrm{C}_{4}$	$\mathrm{C}_{4} \Rightarrow>\mathrm{C}_{4}$	$\mathrm{C}_{235}=>\mathrm{C}_{4}$
	65	4	8	2	7	1
R_{5}	$\mathrm{C}_{5} \Rightarrow>\mathrm{C}_{5}$	$\mathrm{C}_{234}=>\mathrm{C}_{5}$	$\mathrm{C}_{5} \Rightarrow \mathrm{C}_{5}$	$\mathrm{C}_{234}=>\mathrm{C}_{5}$	$\mathrm{C}_{5} \Rightarrow \mathrm{C}_{5}$	$\mathrm{C}_{234}=>\mathrm{C}_{5}$
	84	10	10	2	12	1
R_{6}	$\mathrm{C}_{3} \Rightarrow>\mathrm{C}_{3}$	$\mathrm{C}_{245}=>\mathrm{C}_{3}$	$\mathrm{C}_{3}=>\mathrm{C}_{3}$	$\mathrm{C}_{245}=>\mathrm{C}_{3}$	$\mathrm{C}_{3} \Rightarrow \mathrm{C}_{3}$	$\mathrm{C}_{245}=>\mathrm{C}_{3}$
	22	4	3	0	3	0

Table 59. Precision and recall that satisfy rules $R_{1}-R_{6}$ (BC algorithm, PBC dataset) of $9^{\text {th }}$ fold in stratified 10 -fold cross validation.

Rule	Training		Validation		Testing	
	Precision (\%)	Recall (\%)	Precision (\%)	Recall (\%)	Precision (\%)	Recall (\%)
R_{1}	99.11	97.49	92.71	100.68	97.87	93.69
R_{2}	97.73	86.03	93.62	84.62	94.12	84.21
R_{3}	99.20	93.61	96.77	100.00	91.43	96.97
R_{4}	94.20	91.55	80.00	100.00	87.50	77.78
R_{5}	89.36	91.30	83.33	90.91	92.31	100.00
R_{6}	84.62	100.00	100.00	100.00	100.00	100.00

Table 60. Weighted precision for all classes of BC algorithm for PBC dataset of $9^{\text {th }}$ fold in stratified 10 -fold cross validation.

Rule	Weight (\%)	Precision (\%)	Classified cases	Weighted precision (\%)
	Training			
R_{1}	89.90	99.11	3915	89.09
R_{3}	5.76	99.20	251	5.72
R_{4}	1.58	94.20	69	1.49
R_{5}	2.16	89.36	94	1.93
R_{6}	0.60	84.62	26	0.51
All	100.00		4355	98.74
	Validation			
R_{1}	89.55	92.71	480	83.02
R_{3}	5.78	96.77	31	5.60
R_{4}	1.87	80.00	10	1.49
R_{5}	2.24	83.33	12	1.87
R_{6}	0.56	100.00	3	0.56
All	100.00		536	92.54
	Testing			
R_{1}	88.85	97.87	470	86.96
R_{3}	6.62	91.43	35	6.05
R4	1.51	87.50	8	1.32
R_{5}	2.46	92.31	13	2.27
R_{6}	0.57	100.00	3	0.57
All	100.00		529	97.16

A.9. BC algorithm for PBC dataset of $10^{\text {th }}$ fold in stratified 10 -fold cross validation.

Table 61. Hyper-parameters of the rectangles $\mathrm{B}_{1}-\mathrm{B}_{9}$ (BC algorithm, PBC dataset) of $10^{\text {th }}$ fold in stratified 10 -fold cross

Box	Hyper-parameters	Box	Hyper-parameters
B_{1}	$0.0015 \leq \mathrm{X}_{0}<0.0180 \& 0 \leq \mathrm{X}_{6}<0.0005$	$\mathrm{~B}_{2}$	$0.0015 \leq \mathrm{X}_{4}<0.4545$
$\mathrm{~B}_{3}$	$0.0005 \leq \mathrm{X}_{3}<0.0805 \& 0 \leq \mathrm{X}_{7}<0.0012$	$\mathrm{~B}_{4}$	$0.0315 \leq \mathrm{X}_{6}<1 \& 0 \leq \mathrm{X}_{0}<0.0030$
$\mathrm{~B}_{5}$	$0.0315 \leq \mathrm{X}_{9}<1$	$\mathrm{~B}_{6}$	$0.0125<\mathrm{X}_{3} \leq 1$
$\mathrm{~B}_{7}$	$0<\mathrm{X}_{1} \leq 0.0045$	$\mathrm{~B}_{8}$	$0 \leq \mathrm{X}_{4} \leq 0.2944$
$\mathrm{~B}_{9}$	$0.0041 \leq \mathrm{X}_{2} \leq 0.6058$		

Table 62. Rules $R_{1}-R_{6}$ (BC algorithm, PBC dataset) of $10^{\text {th }}$ fold in stratified 10 -fold cross validation using boxes

Class C_{1} rule	$\mathrm{R}_{1}: \mathbf{x} \in \mathrm{B}_{1} \cup \mathrm{~B}_{2} \Rightarrow \mathbf{x} \in$ Class $_{1}-\mathrm{B}_{1}$.
Class $C_{2,3,4,5}$ rule	$\mathrm{R}_{2}: \mathbf{x} \in \mathrm{B}_{3} \cup \mathrm{~B}_{4} \cup \mathrm{~B}_{5} \& \mathbf{x} \notin \mathrm{~B}_{1} \cup \mathrm{~B}_{2} \Rightarrow \mathbf{x} \in$ Class $\mathrm{C}_{2,3,4,5}$
Class C_{2} rule	$\mathrm{R}_{3}: \mathbf{x} \in \mathrm{B}_{6} \Rightarrow \mathbf{x} \in{\text { Class } \mathrm{C}_{2}}^{\text {Class } C_{4} \text { rule }}$
Class C_{5} rule	$\mathrm{R}_{4}: \mathbf{x} \in \mathrm{B}_{7} \& \mathbf{x} \notin \mathrm{~B}_{6} \Rightarrow \mathbf{x} \in{\text { Class } \mathrm{C}_{4}}$
Class C_{3} rule	$\mathrm{R}_{5}: \mathbf{x} \in \mathrm{B}_{8} \& \mathbf{x} \notin \mathrm{~B}_{6} \cup \mathrm{~B}_{7} \Rightarrow \mathbf{x} \in$ Class C_{5}

Table 63. Number of cases that satisfy rules $\mathrm{R}_{1}-\mathrm{R}_{6}$ (BC algorithm, PBC dataset) of $10^{\text {th }}$ fold in stratified 10 -fold cross validation.

Rule	Training		Validation		Testing	
R_{1}	$\mathrm{C}_{1} \Rightarrow \mathrm{C}_{1}$	$\mathrm{C}_{2345}=>\mathrm{C}_{1}$	$\mathrm{C}_{1}=>\mathrm{C}_{1}$	$\mathrm{C}_{2345}=>\mathrm{C}_{1}$	$\mathrm{C}_{1} \Rightarrow \mathrm{C}_{1}$	$\mathrm{C}_{2345}=>\mathrm{C}_{1}$
	3879	40	447	30	450	10
R_{2}	$\mathrm{C}_{2345}=>\mathrm{C}_{2345}$	$\mathrm{C}_{1}=>\mathrm{C}_{2345}$	$\mathrm{C}_{2345}=>\mathrm{C}_{2345}$	$\mathrm{C}_{1}=>\mathrm{C}_{2345}$	$\mathrm{C}_{2345}=>\mathrm{C}_{2345}$	$\mathrm{C}_{1}=>\mathrm{C}_{2345}$
	388	9	44	3	48	3
R_{3}	$\mathrm{C}_{2}=>\mathrm{C}_{2}$	$\mathrm{C}_{345}=>\mathrm{C}_{2}$	$\mathrm{C}_{2}=>\mathrm{C}_{2}$	$\mathrm{C}_{345}=>\mathrm{C}_{2}$	$\mathrm{C}_{2}=>\mathrm{C}_{2}$	$\mathrm{C}_{345}=>\mathrm{C}_{2}$
	250	2	29	1	32	3
R_{4}	$\mathrm{C}_{4} \Rightarrow{ }^{\text {C }}$	$\mathrm{C}_{235}=>\mathrm{C}_{4}$	$\mathrm{C}_{4}=>\mathrm{C}_{4}$	$\mathrm{C}_{235}=>\mathrm{C}_{4}$	$\mathrm{C}_{4}=>\mathrm{C}_{4}$	$\mathrm{C}_{235}=>\mathrm{C}_{4}$
	64	4	9	2	7	1
R_{5}	$\mathrm{C}_{5}=>\mathrm{C}_{5}$	$\mathrm{C}_{234}=>\mathrm{C}_{5}$	$\mathrm{C}_{5}=>\mathrm{C}_{5}$	$\mathrm{C}_{234}=>\mathrm{C}_{5}$	$\mathrm{C}_{5}=>\mathrm{C}_{5}$	$\mathrm{C}_{234}=>\mathrm{C}_{5}$
	85	11	9	1	12	1
R_{6}	$\mathrm{C}_{3}=>\mathrm{C}_{3}$	$\mathrm{C}_{245}=>\mathrm{C}_{3}$	$\mathrm{C}_{3}=>\mathrm{C}_{3}$	$\mathrm{C}_{245}=>\mathrm{C}_{3}$	$\mathrm{C}_{3}=>\mathrm{C}_{3}$	$\mathrm{C}_{245}=>\mathrm{C}_{3}$
	22	4	3	0	3	0

Table 64. Precision and recall that satisfy rules $R_{1}-R_{6}$ (BC algorithm, PBC dataset) of $10^{\text {th }}$ fold in stratified 10 -fold cross validation.

Rule	Training		Validation		Testing	
	Precision (\%)	Recall (\%)	Precision (\%)	Recall (\%)	Precision (\%)	Recall (\%)
R_{1}	98.98	97.46	93.71	101.13	97.83	91.65
R_{2}	97.73	86.03	93.62	84.62	94.12	84.21
R_{3}	99.21	93.98	96.67	96.67	91.43	96.97
R_{4}	94.12	90.14	81.82	112.50	87.50	77.78
R_{5}	88.54	92.39	90.00	81.82	92.31	100.00
R_{6}	84.62	100.00	100.00	100.00	100.00	100.00

Table 65. Weighted precision for all classes of BC algorithm for PBC dataset of $10^{\text {th }}$ fold in stratified 10 -fold cross validation.

Rule	Weight (\%)	Precision (\%)	Classified cases	Weighted precision (\%)
	Training			
R_{1}	89.86	98.98	3919	88.95
R_{3}	5.78	99.21	252	5.73
R_{4}	1.56	94.12	68	1.47
R_{5}	2.20	88.54	96	1.95
R_{6}	0.60	84.62	26	0.50
All	100.00		4361	98.60
	Validation			
R_{1}	89.83	93.71	477	84.18
R_{3}	5.65	96.67	30	5.46
R_{4}	2.07	81.82	11	1.69
R_{5}	1.88	90.00	10	1.69
R_{6}	0.56	100.00	3	0.56
All	100.00		531	93.60
	Testing			
R_{1}	88.63	97.83	460	86.71
R_{3}	6.74	91.43	35	6.17
R_{4}	1.54	87.50	8	1.35
R_{5}	2.50	92.31	13	2.31
R_{6}	0.58	100.00	3	0.58
All	100.00		519	97.11

[^0]: *average $* *$ presumed average.

