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Abstract

Many biological systems form structured swarms, for instance in locusts,
whose swarms are known as hopper bands. There is growing interest in
applying mathematical models to understand the emergence and dynamics
of these biological and social systems. Wemodel the locusts of a hopper band
as point particles interacting through repulsive and attractive social "forces"
on a one dimensional periodic domain. The primary goal of this work is
to modify this well studied modelling framework to be more biological by
restricting repulsion to act locally between near neighbors, while attraction
acts globally between all individuals. This is a biologically motivated
assumption because repulsion in swarms is mainly a collision avoidance
mechanism. We construct a discrete and continuum model in the limit
of infinite individuals. Using an energy formulation of both discrete and
continuum models, we find energy minimizing equilibrium configurations
that are either constant density or clumped. Then, we perform a stability
analysis of these swarm configurations to find transitions of stability and
hysteresis. We show that with local repulsion and global attraction the
constant density equilibrium has a bifurcation to instability for both the total
mass of the swarm and the attraction strength of individuals.
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Chapter 1

Introduction

A swarm is a group of biological individuals that have emergent collective
behaviors usually using simple interaction rules. Locusts, for example,
organize themselves into planar fronts when food is abundant and into
foraging columns when food is sparse to make consumption of resources
most efficient. We are interested in the transition from homogeneous states
to columnar states in these locusts; in other words, states in which the
locusts are evenly spaced to states in which some are clumped together.
This transition corresponds to the emergence of foraging columns in locust
hopper bands.

In the case of collective motion, the interactions between individuals in
the swarm can be modelled as "social forces" of attraction and repulsion.
Because swarming individuals tend to have a strongly aligned direction of
motion, we can reduce the problem to one dimension in which we consider
the particles interacting perpendicular to the average direction of motion
of the swarm. We treat social forces that are pairwise and additive such
that the velocity of a particle is proportional to the sum of its interaction
force with every other particle. Because locusts are large and experience
strong drag forces relative to their weight, a first order model where force is
proportional to velocity is justifiable.

Often, edge effects in swarms on an infinite line are ignored and we will
do the same. To appropriately account for this, we assume the individuals in
our model lie on a periodic boundary such that, as the swarm size becomes
large, we can approximate well the behavior of swarms on an infinite line
without edge effects. As is common in physics, we use an energy formulation
of this problem to evaluate the stability of the evenly spaced configuration of
particles. Because of the periodic boundary conditions, we are able to find



2 Introduction

an analytical expression for the eigenvalues determining stability. Previous
work detailed by Barth (2019), works through a numerical stability analysis of
this model on periodic domain. Quentin shows where the model transitions
from even spacing to clumped spacing between particles.

The discrete formulation of our swarming model has a continuum
analogue that can be found by considering the limit of infinite number of
individuals. As the number of individuals approaches infinity, an evenly
spaced configuration of particles becomes a constant density solution to an
energy functional. We use a framework developed by Bernoff and Topaz
(2011) for transitioning from discrete to continuum formulations of the
model and conduct a stability analysis on the resulting energy functional
using calculus of variations. However, in biology, repulsion operates as a
collision avoidance mechanism. For this reason, we later adapt our model
such that only an individual’s nearest neighbors interact repulsively while all
particles interact attractively. With a continuum model of nearest neighbor
repulsion, we test the stability of the constant density solution as the total
mass of the swarm increases. Burger et al. (2014) investigate the properties
of a continuum swarming model with local repulsion and so our analysis is
inspired by and compared to their own.

We analyze the stability of both discrete and continuum models with
two different repulsive potential energy functions, one Morse repulsion
that acts globally between all individuals and a power-law with general
exponent that is restricted to repel locally. Previous work on continuum
swarming models shows that, with global repulsion, the stability of the
constant density solution is independent of total mass. There are empirical
reasons to believe that this is nonbiological. As the total mass of the swarm
increases, the support of the swarm should increase to keep the density
constant becoming unstable after some threshold of density is crossed. In
locusts, higher densities are associated with the formation of columnar
structures that we are modelling as clumping in one dimension.



Chapter 2

Discrete Formulation

2.1 Equations of motion

Consider # point particles interacting via a "social force" function, @(A),
of attraction and repulsion terms in one dimension. The position of each
particle, G8 , changes according to a first order equation ofmotion proportional
to the sum of all the interaction forces

3G8

3C
=

#∑
9=1
9≠8

<@(G8 − G 9), < =
"

#
, (2.1)

where " is the total mass of all the particles in the system and < is a
"social mass". The social mass ensures that the strength of the superposition
of forces remains bounded as # → ∞. If the force, @(A), is an integrable
function thenwe can rewrite the equations ofmotion as the negative gradient
of a pairwise potential energy of each interaction. The pairwise potential
energy is given by

&(A) = −
∫

@(A) 3A. (2.2)

Under this assumption, the equations of motion can be rewritten to be

3G8

3C
= −<

#∑
9=1
9≠8

%&

%G8
(G8 − G 9). (2.3)
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In Chapter 4, we discuss in more detail the particular potential energy
functions chosen for our numerical analyses but for now suppose that the
potential energy &(A) is even and !-periodic such that &(−A) = &(A) and
&(A + !) = &(A), where ! is the length of the periodic interval.

2.2 Energy and Lattice stability

The total energy of the system is the superposition of all pairwise interactions
excluding self-interaction,

�(®G) = 1
2

#∑
8=1

#∑
9=1
9≠8

<2&̃(G8 − G 9). (2.4)

In the case of an evenly spaced equilibrium configuration, we can define the
spacing between particles to be Δ = !

# , such that agents have equilibrium
position G∗

8
= 8Δ for 8 ∈ {1, 2, 3, ..., #}. We use the Taylor expansion of the

energy to determine stability information of the equilibrium ®G∗ such that
®G = ®G∗ + ®� where ®� is a vector of perturbations to each of the agent’s position.
The Taylor expansion is

�(®G) ≈ �(®G∗) + ®�)∇�(®G∗) + 1
2
®�)H®� (2.5)

≈ �(®G∗) +
#∑
9=1

%�(®G∗)
%G 9

�9 +
1
2

#∑
8=1

#∑
9=1

%2�(®G∗)
%G 9%G8

�9�8 , (2.6)

where the Hessian matrix is defined by

H8 9 ≡
%2�(®G∗)
%G 9%G8

.

By the second partial derivative test, the eigenvalues of the Hessian matrix
at equilibrium determine the linear stability of the system. If the set
of eigenvalues are positive definite, the equilibrium is stable and it is
unstable otherwise. To gain some intuition, note that by the definition of an
equilibrium point, %�

%G 9
= 0 for all 9 ∈ {1, 2, 3, ..., #} and we can rearrange

Equation 2.6 to find an expression for the change in energy caused by the
perturbation

�(®G) − �(®G∗) ≈ 1
2
®�)H®�. (2.7)
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If the energy increases for any possible perturbation, this is an indication
that the point is a stable minimum. Suppose the perturbation is the :th
eigenvector ®E(:) of H with corresponding eigenvalue �(:), then the change in
energy of the system is

�(®G) − �(®G∗) ≈ 1
2�
(:) |®E(:) |2. (2.8)

If the set of eigenvalues is positive definite, then the change in energy
following any arbitrary perturbation is positive because any arbitrary vector
can be expressed in terms of the eigenbasis of the Hessian. If there is even
one negative eigenvalue then there exists a perturbation that can lower
the energy further by moving away from equilibrium suggesting that the
equilibrium is an unstable maximum.

2.3 Analysis of Hessian

The Hessian is a matrix of second derivatives of our total energy function.
To arrive at an analytical expression for the eigenvalues of our Hessian, we
need to derive it in terms of a pairwise interaction potential energy function.
We will begin by computing its first derivative:

%�

%G:
=

%

%G:

1
2

#∑
8=1

#∑
9=1
9≠8

<&̃(G8 − G 9),

=
<

2

#∑
8=1

#∑
9=1
9≠8

%

%G:
&̃(G8 − G 9),

=
<

2

#∑
8=1

#∑
9=1
9≠8

[
%&̃

%G:
�8: −

%&̃

%G:
� 9:

]
,

=
<

2

[ #∑
9=1
9≠:

%&̃(G: − G 9)
%G:

−
#∑
8=1
8≠:

%&̃(G8 − G:)
%G:

]
.

Because the summations are independent of one another, we can use that
&̃′(A) is an odd function and −&̃′(−A) = &̃(A) to reindex the problem such
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that 8 → 9. Then,

%�

%G:
=
<

2

[ #∑
9=1
9≠:

%&̃(G: − G 9)
%G:

+
#∑
9=1
9≠:

%&̃(G: − G 9)
%G:

]

= <

#∑
9=1
9≠:

%&̃(G: − G 9)
%G:

. (2.9)

Notice that Equation 2.9 shows that our equations of motion define a
dynamical system flowing along the negative gradient of the total energy.
Now, we can compute the Hessian as follows:

H8: =
%

%G8

%�

%G:
,

= <
%

%G8

#∑
9=1
9≠:

&̃′(G: − G 9),

= <

#∑
9=1
9≠:

&̃′′(G: − G 9)
%

%G8

[
G: − G 9

]
,

= <

#∑
9=1
9≠:

&̃′′(G: − G 9)
[
�:8 − � 98

]
,

= <

[
�:8

#∑
9=1
9≠:

&̃′′(G: − G 9)
]
− <&̃′′(G: − G8).

This can be rewritten such that one term is a constant that defines the values
of the matrix along the diagonal and the other is matrix of off-diagonal terms.
Evaluated at equilibrium with positions G∗

8
= 8Δ, the Hessian becomes

H8 9 = <�8 9

#∑
:=1
:≠9

&̃′′
(
Δ(9 − :)

)
− <(1 − �8 9)&̃′′

(
Δ(9 − 8)

)
. (2.10)
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So, we define

% ≡
#−1∑
:=1

&̃′′ (:Δ) , (8 9 ≡ −&̃′′
(
Δ(8 − 9)

)
,

such that,
H8 9 = �8 9% + (1 − �8 9)(8 9 .

The Hessian is symmetric and circulant because of the symmetry of second
derivatives and the periodicity of the problem. The diagonal matrix % is
trivially circulant and (8 9 is circulant because &̃′′(A) is an even and periodic
function. The advantage of working with a circulant matrix is that the
eigenvalues can be found regardless of eigenvectors.

2.4 On circulant matrices

A circulant matrix is defined as a square # × # matrix that is fully specified
by the first row vector, ®ℎ, where each subsequent row is a cyclic permutation
of this vector. Colloquially, this means that every row is the same except
every element is shifted to the right by one. Consider a circulant matrix H,

H =



ℎ1 ℎ2 ℎ3 · · · ℎ#
ℎ# ℎ1 ℎ2 · · · ℎ#−1
ℎ#−1 ℎ# ℎ1 · · · ℎ#−2
...

...
...

. . .
...

ℎ2 ℎ3 ℎ4 · · · ℎ1


.

The first eigenvector and eigenvalue pair, ®E(1) and �(1), are attainable by
inspection. Suppose ®E(1) is an # × 1 vector of one’s such that,

H®E(1) =


ℎ1 ℎ2 ℎ3 · · · ℎ#
ℎ# ℎ1 ℎ2 · · · ℎ#−1
...

...
...

. . .
...

ℎ2 ℎ3 ℎ4 · · · ℎ1



1
1
...

1


= (ℎ1+· · ·+ℎ# )®E(1) = �(1)®E(1). (2.11)

So, we know �(1) = (ℎ1 + ℎ2 + · · · + ℎ# ). All the eigenvectors are expressible
in terms of roots of unity. The # th root of unity is defined by $# = 4

2�8
#

which creates a periodic set of complex numbers that yield 1 when raised to



8 Discrete Formulation

the power # . The exponents of $# are periodic such that $ 9+#
#

= $
9

#
. So,

the :th eigenvector is given by,

®E(:) =



$:
#

$2:
#

$3:
#
...

$#:
#


.

Now we will derive an expression for the eigenvalues of a general circulant
matrix. Consider a set of vectors defined by,

®H(:) = H®E(:) =


ℎ1 ℎ2 ℎ3 · · · ℎ#
ℎ# ℎ1 ℎ2 · · · ℎ#−1
...

...
...

. . .
...

ℎ2 ℎ3 ℎ4 · · · ℎ1



$:
#

$2:
#
...

$#:
#


=



∑#
9=1 ℎ 9$

9:

#∑#
9=1 ℎ(9−1)$

9:

#∑#
9=1 ℎ(9−2)$

9:

#
...∑#

9=1 ℎ(9−#+1)$
9:

#


.

To make things clearer, we will work with the ℓ th element of the vector ®H(:)
which is given by,

®H(:)
ℓ
=

#∑
9=1

ℎ(9−ℓ )$
9:

#
=

#∑
9=1

ℎ(9−ℓ )
(
$ℓ :# · $

(9−ℓ ):
#

)
= $ℓ :#

(
#∑
9=1

ℎ(9−ℓ )$
(9−ℓ ):
#

)
.

Because the indices are periodic and the sum independent of ℓ , we can
re-index ℓ out of the sum (9 − ℓ ) → 9 and the expression becomes,

®H(:)
ℓ
= $ℓ :#

(
#∑
9=1

ℎ 9$
9:

#

)
= ®E(:)

ℓ

(
#∑
9=1

ℎ 9$
9:

#

)
= ®E(:)

ℓ
�(:). (2.12)

Finally we see that,

�(:) =
#∑
9=1

ℎ 9$
9:

#
. (2.13)
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This result is significant because the eigenvalues are computable using the
Discrete Fourier Transform (DFT) matrix,

F =
[
®E(1) , ®E(2) , ®E(3) , · · · , ®E(#)

]
.

Multiplying a vector of first row elements, ®ℎ, by the DFT matrix we obtain a
vector of eigenvalue elements such that,

F®ℎ =



$11
#

$12
#

$13
#
· · · $1#

#

$21
#

$22
#

$23
#
· · · $2#

#

$31
#

$32
#

$33
#
· · · $3#

#
...

...
...

. . .
...

$#1
#

$#2
#

$#3
#
· · · $##

#





ℎ1
ℎ2
ℎ3
...

ℎ#


=



�(1)

�(2)

�(3)

...

�(#)


= ®�.

Much of this theory can be found in the work Karner et al. (2003).

2.5 Eigenvalues of Hessian matrix

Now knowing how to find the eigenvalues of a circulant matrix, we come
back to the Hessian defined in Equation 2.10. As a reminder, the Hessian is

H =



% −&̃′′
(
− Δ

)
−&̃′′

(
− 2Δ

)
· · · −&̃′′

(
(1 − #)Δ

)
−&̃′′

(
Δ

)
% −&̃′′

(
− Δ

)
· · · −&̃′′

(
(2 − #)Δ

)
−&̃′′

(
2Δ

)
−&̃′′

(
Δ

)
% · · · −&̃′′

(
(3 − #)Δ

)
...

...
...

. . .
...

−&̃′′
(
(# − 1)Δ

)
−&̃′′

(
(# − 2)Δ

)
−&̃′′

(
(# − 3)Δ

)
· · · %


.

Because &̃′′(A) is an even !-periodic function and the particles are evenly
distributed throughout the period at equilibrium, we know that &̃′′((9 −
#)Δ) = &̃′′(9Δ) = &̃′′(−9Δ) making it a circulant matrix. Now, we can use
the DFT and the first row of our Hessian to find its eigenvalues. To make
the eigenvalue calculation simpler, we must reindex the exponents of the
roots of unity. Because they are #-periodic, we can rewrite the DFT matrix
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such that,

F =



$00
#

$01
#

$02
#

· · · $0(#−1)
#

$10
#

$11
#

$12
#

· · · $1(#−1)
#

$20
#

$21
#

$22
#

· · · $2(#−1)
#

...
...

...
. . .

...

$(#−1)0
#

$(#−1)1
#

$(#−1)2
#

· · · $(#−1)(#−1)
#


.

Now, multiplying F by the first row ®ℎ of H, the :th eigenvalue is

�(:) = %$0:
# − &̃

′′(−Δ)$1:
# − &̃

′′(−2Δ)$2:
# − · · · − &̃

′′((2 − #)Δ)$(#−2):
#

− &̃′′((1 − #)Δ)$(#−1):
#

As stated in Section 2.4, the exponents of $# are #-periodic such that
$
9:

#
= $

(#−9):
#

. This allows us to combine many of the terms of �(:). For
example, the 9th term after P and the 9th term from the end can be reduced
as follows:

−&̃′′(9Δ)$ 9:

#
− &̃′′((9 − #)Δ)$(#−9):

#
= −&̃′′(9Δ)$ 9:

#
− &̃′′((9 − #)Δ)$−9:

#

= −&̃′′(9Δ)
[
$
9:

#
+ $−9:

#

]
= −&̃′′(9Δ)

[
4

2�9:
# 8 + 4−

2�9:
# 8

]
= −&̃′′(9Δ)

[
2 cos

(2�9:
#

)]
As long as # is an odd integer, there will be an even number of terms to
pair and every term after % will be simplified in this way. For this reason,
we assume from here onward that # is an odd integer to obtain a concise
expression of eigenvalues that can be numerically evaluated. The resulting
expression assuming an odd integer # is

�(:) = % − 2&̃′′(Δ) cos
(2�:
#

)
− · · · − 2&̃′′

(
# − 1

2 Δ

)
cos

(2�#−1
2 :

#

)
= % − 2

(#−1)/2∑
ℓ=1

&̃′′(ℓΔ) cos
(2�ℓ :
#

)
(2.14)

Now we re-index the problem such that, # = 2" + 1 and instead the agents’
positions are G∗

8
= 8Δwhere 8 ∈ {−",−" + 1, .., "}. Now the eigenvalues

for an odd number of individuals are given by

�(:) = % − 2
"∑
ℓ=1

&̃′′(ℓΔ) cos
(2�ℓ :
#

)
: ∈ {−",−" + 1, ..., "}. (2.15)
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2.6 Symmetries of the system

Now, I will describe the implications of other symmetries of the system
from a classical mechanics perspective. A symmetry of a system is defined
by a transformation that leaves the action of the system unchanged. An
action in physics is a functional that is the time integral of the Lagrangian
of the system. Given a mechanical system with # generalized coordinates,
G8 for 8 ∈ {1, 2, 3, ..., #} or x, the Lagrangian and the corresponding action
respectively are:

! = ) −*,

([x(C)] =
∫ C1

C0

!(C , x, ¤x) 3C,

where ) is the total kinetic energy of the particles and * is the total
potential energy due to the system’s social forces. In classical mechanics,
the dynamics of the system is governed by the function x(C) that makes the
action stationary. Consider a transformation to each coordinate such that
G′
8
= G8 + �. Kinetic energy depends on ¤x and the potential energy depends

on the distance between particles |G8 − G 9 |, both of which are invariant
under the transformation. Because the Lagrangian is unchanged by the
transformation so is the action and our system is transitionally invariant. As
a consequence, if the system is shifted along the real line by a constant, the
energy of the system remains unchanged as well. As was demonstrated in
Section 2.4, a vector ®E(1) of ones is always an eigenvector of a circulant matrix.
By Equation 2.8, the symmetry means that the corresponding eigenvalue
�(1) is equal to zero,

�(1) = ℎ1 + ℎ2 + · · · + ℎ# = % − 2
"∑
ℓ=1

&̃′′(ℓΔ) = 0.

This result confirms our original definition of % in Section 2.3 and gives us a
constraint on our numerical results. Every row and column of our Hessian
matrix individually sums to zero. The expression for the :th eigenvalue
becomes,

�(:) = 2
"∑
ℓ=1

&̃′′(ℓΔ)
(
1 − cos

(2�
#
ℓ :

))
. (2.16)





Chapter 3

Continuum Formulation

3.1 Discrete energy

So far, we have considered a general potential, &̃(A), where the repulsive
and attractive contributions apply to each pair of individuals. For biological
swarms, however, repulsion functions as a collision avoidance mechanism
and thus only acts locally. In our continuum model derivation, we ensure
that any repulsive potential energy chosen only acts on the nearest neighbors
of any focal individual. To account for this, we rewrite our discrete model
in such a way that repulsion only acts locally. We separate &̃(A) into two
potentials such that

&̃(A) = '(A) + �(A), (3.1)

where '(A) is a repulsive potential energy and �(A) is an attractive potential
energy. Consequently, we define the energy contribution of particle 9 by

4 9(®G) =
1
2

[
'
(Δ+

9

ℎ

)
+ '

(Δ−
9

ℎ

)]
+ 1

2

#∑
8=1

<�(G 9 − G8), (3.2)

where the constant ℎ = !
# is the average distance between particles, Δ+

9
=

(G 9+1 − G 9), and Δ−9 = (G 9 − G 9−1). The factors ℎ in '(A) and < multiplied to
�(A) ensure that repulsion and attraction remain bounded as # approaches
infinity. We find the total energy by summing over all individual energies
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such that

�(®G) =
#∑
9=1

<4 9(®G) =
#∑
9=1

<

2

[
'
(Δ+

9

ℎ

)
+ '

(Δ−
9

ℎ

)]
+

#∑
8=1

#∑
9=1
9≠8

<2

2 �(G8 − G 9) (3.3)

3.2 Discrete to continuum

To derive the analogue continuum model, we define a discrete mass density
function

�3(G) =
#∑
8=1

<�(G − G8) 3G,

where each particle of mass < has position G8 . The �-function is defined by

�(G) =
{

1 G = 0,
0 >Cℎ4AF8B4.

Using the discrete density �3(G), we find the cumulative density function to
be

Ψ3(G) =


0 G < G1

<[1/2 + (8 − 1)] G = G8 , 8 = 1, ..., #
8< G8 < G < G8+1 , 8 = 1, ..., #
" G > G# ,

where we have used the convention that integrating up to a �-function yields
half the mass of integrating through it. To establish correspondence between
discrete and continuum models, we constrainΨ3(G8) = Ψ2(G8) whereΨ2(G)
is a continuous cumulative density function,

Ψ2(G) =
∫ G

0
�(G) 3G,

and �(G) is the continuous density of the swarm. As# →∞ for a fixed value
of ",Ψ3(G) converges toΨ2(G). Now, we will go through the derivation of
the continuum energy term by term. First consider the attractive term,

��(®G) =
#∑
8=1

#∑
9=1
9≠8

<2

2 �(G8 − G 9).
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By the cumulative density we know,

< = Ψ2(G8+1) −Ψ2(G8) =
∫ G8+1

G8

�(G) 3G ≈ �(G8)Δ+8 , (3.4)

where the approximation comes from a Riemann sum. Using the approxi-
mation we can rewrite the attractive energy,

��(®G) = 1
2

#∑
8=1

#∑
9=1
9≠8

�(G8)�(G 9)�(G8 − G 9)Δ+8 Δ
+
9 .

We take the limit of infinite particles where both sums turn into integrals
and the attractive energy function turns into an attractive energy functional,

lim
#→∞

��(®G) =,�[�(G)] = 1
2

∫ !

0

∫ !

0
�(G)�(H)�(G − H) 3G3H. (3.5)

Now we will consider the repulsive energy and its continuum limit. Using
Equation 3.4, the repulsive energy can be reformulated,

�'(®G) = 1
2

#∑
9=1

<

[
'
(Δ+

9

ℎ

)
+ '

(Δ−
9

ℎ

)]
=

1
2

#∑
9=1

"

#

[
'
(

"

!�(G 9)
)
+ '

(
"

!�(G 9)
)]

=

#∑
9=1

"

!
'
(

"

!�(G 9)
)
ℎ.

In the limit of infinite # , ℎ becomes an infinitesimal such that,

lim
#→∞

�'(®G) =,'[�(G)] = �

∫ !

0
'
( �

�(G)
)
3G, (3.6)

where � = "
! is the average density of the swarm. Finally, the complete

continuum energy in functional form is given by,

,[�(G)] = �

∫ !

0
'
( �

�(G)
)
3G + 1

2

∫ !

0

∫ !

0
�(G)�(H)�(G − H) 3G3H. (3.7)
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3.3 Linear stability of homogeneous density

We use variational calculus to determine whether a constant density solution
is a minimizer of our energy functional,,[�(G)]. Let

�(G) = �̄ + &�̃(G), (3.8)

where �̄ is a constant density solution of total mass " and &�̃(G) is a zero
mass perturbation. We can expand the functional such that,

,[�(G)] ≈,[�̄] + &,1[�̄, �̃] + &2,2[�̄, �̃], (3.9)

where ,1 is the first variation and ,2 the second variation. For �̄ to be
an equilibrium solution the first variation must equal zero and, for that
equilibrium to be a stable minimizer, the second variation must be greater
than zero.

The first variation is given by,

,1[�̄, �̃] = −
∫ !

0

�̃(H)�2

�̄(H)2 '
′
( �

�̄(H)
)
3H +

∫ !

0
�̃(H)

∫ !

0
�̄(G)�(G − H) 3G3H

=

∫ !

0
�̃(H)

[ ∫ !

0
�̄(G)�(G − H) 3G − �2

�̄(H)2'
′
( �

�̄(H)
)]
3H. (3.10)

Because �̃(H) is a zero mass perturbation, its integral over the period [0, !] is
zero. As long as the bracketed portion of Equation 3.10 is a constant, then
the first variation is equal to zero. Moreover, if the bracketed expression is
not constant then one can find a perturbation such that the first variation is
nonzero indicating that the solution is not an equilibrium of the system. For
,1[�̄, �̃] = 0, ∫ !

0
�̄(G)�(G − H) 3G − �2

�̄(H)2'
′
( �

�̄(H)
)
= Λ(H), (3.11)

where Λ(H) is a constant function of H. The repulsive term in Equation 3.10
is contant in H because �̄(H) is constant. The integral of attraction can be
shown also to be constant in H. Consider a substitution such that G − H = I
and 3G = 3I. Then the integral becomes,∫ !

0
�̄(H + I)�(I) 3I, (3.12)
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where �̄(H + I) is still a constant and �(I) is a periodic function for 0 < I < !

so that the integral results in a constant in H. Thus, we have shown that if
�̄(G) is a constant function, then it is an equilibrium of the energy functional
defined in Equation 3.7.

For the constant density equilibrium to be stable, ,2 must be greater
than zero. The second variation is given by,

,2[�̄, �̃] =
∫ !

0
�̃(G)2

[
�2

�̄3'
′
(�
�̄

)
+ �3

2�̄4'
′′
(�
�̄

)]
3G + 1

2

∫ !

0

∫ !

0
�̃(G)�̃(H)�(G − H) 3G3H

=

∫ !

0
�̃(G)2

[
�
]
3G + 1

2

∫ !

0

∫ !

0
�̃(G)�̃(H)�(G − H) 3G3H, (3.13)

where � is a constant. To arrive at stability conditions, we must use a Fourier
series approximation of the perturbation �̃(G). Suppose,

�̃(G) =
∞∑
==1

0= cos
(2=�
!
G
)
+ 1= sin

(2=�
!
G
)
. (3.14)

The first term of Equation 3.13 can be expressed in terms of an !2-inner
product such that,

,'
2 [�̄, �̃] = �

∫ !

0
�̃(G)2 3G = �

〈
�̃(G), �̃(G)

〉
= �

∞∑
==1

∞∑
<=1

[
0=0<

〈
cos

(2=�
!
G
)
, cos

(2<�
!

G
)〉
+ 1=1<

〈
sin

(2=�
!
G
)
, sin

(2<�
!

G
)〉]

= �

∞∑
==1

∞∑
<=1

!

2

[
0=0<�=< + 1=1<�=<

]
= �

∞∑
==1

!

2

(
02
= + 12

=

)
Now consider the second term of Equation 3.13 where �(A) can also be
re-expressed as a Fourier series. Because the attractive potential is an even
periodic function, it has a cosine series approximation, such that

�(G − H) = 20
2 +

∞∑
9=1

2 9 cos
(29�
!
(G − H)

)
. (3.15)



18 Continuum Formulation

Using an angle-sum trigonometric identity, the series can be written as,

�(G − H) = 20
2 +

∞∑
==1

2 9

[
cos

(29�
!
G
)

cos
(29�
!
H
)
+ sin

(29�
!
G
)

sin
(29�
!
H
)]
.

The attractive term of,2[�̄, �̃] becomes a large expression,

,�
2 [�̄, �̃] =

1
2

∞∑
==1

∞∑
<=1

∞∑
9=1

[ ∫ !

0

∫ !

0

20
2

(
0= cos

(2=�
!
G
)
+ 1= sin

(2=�
!
G
))
3G3H

+
∫ !

0

∫ !

0
2 9

(
0= cos

(2=�
!
G
)
+ 1= sin

(2=�
!
G
))

cos
(29�
!
G
)

cos
(29�
!
H
)
3G3H

+
∫ !

0

∫ !

0
2 9

(
0= cos

(2=�
!
G
)
+ 1= sin

(2=�
!
G
))

sin
(29�
!
G
)

sin
(29�
!
H
)
3G3H

]
,

that can be simplified massively by evaluating the terms as inner products.
The first double integral vanishes because each trigonometric function is
integrated independently over a full period. So, the attractive term of second
variation is,

,�
2 [�̄, �̃] =

!2

8

∞∑
==1

∞∑
<=1

∞∑
9=1

2 9

(
0=0<� 9=� 9< + 1=1<� 9=� 9<

)
=

∞∑
==1

2=!
2

8

(
02
= + 12

=

)
.

Finally, the complete second variation is,

,2[�̄, �̃] =
!

2

∞∑
==1

(
� + 2=!4

) (
02
= + 12

=

)
. (3.16)

With this equation, we can evaluate the stability of the constant density
equilibrium solution, �̄. The stability of constant density to the :th Fourier
mode of the perturbation is given by the sign of,(

� + 2:!4
)
.

When the expression is positive, it is a stable mode and, when negative, an
unstable mode.



Chapter 4

Numerical Results

4.1 Potential energy functions

First, we consider a class of potential energy function called the Morse
potential which is characterized by short ranged repulsion and long ranged
attraction while being asymptotic to zero. These properties make it such that
two particles interacting flow to theminimumof the potential at intermediate
values of A. One such function is

&(A8 9) = 4−|A8 9 | − ��4−|A8 9 |/� , (4.1)

where A8 9 = G8 − G 9 , � is a parameter of attraction strength, and � is a
parameter for the length scale of attraction. The function has two terms:
the first is the repulsive contribution, '(A8 9) = 4−|A8 9 | and the second is
the attractive contribution, �(A8 9) = −��4−|A8 9 |/� . Notice that repulsion is
nonzero over the entire interval which is whywe consider this to be a "global"
repulsion function but we refer to it as Morse repulsion.

In a previous thesis by Quentin Barth (2019), this interaction potential
was periodicitized to the interval between [0, !]. His result is that the
potential between any two individuals 8 and 9 is

&̃(A8 9) =
∞∑

==−∞
&(G8 − (G 9 + =!))

=
cosh

(
!/2− | A8 9 |

)
sinh(!/2) − ��

cosh
(
!/2−|A8 9 |

�

)
sinh

(
!

2�
) A8 9 ∈ [0, !], (4.2)
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such that 8 is effected by an infinite amount of mirrors of particle 9 outside
the boundary. This allows us to simulate large swarms while ignoring edge
effects. With a substitution of A∗ = A − !bA/!c, the function &̃(A∗) is fully
periodic for use in numerical simulation. Note that &̃(A∗) is even such that
&̃(A∗) = &̃(−A∗) and periodic such that &̃(A∗ + !) = &̃(A∗).

Secondly, we use the same Morse attraction function, �(A), as above but
construct a repulsion function '(A) that is singular at the origin and has
a parameter that varies the length over which repulsion is nonzero. This
singular repulsive potential must have a continuous first derivative with
compact support such that the repulsive "force" reaches and remains at zero
at some point G = !A < !. One such function we created is

'′(A) = −?
( 1
!A

)1+? (!A
A

)1+? (
1 − A

!A

)
�

(
!A − A

)
,

where ? is the exponent of 1
A and �

(
!A − A

)
is the Heaviside function that

becomes zero for A > !A . Now we can integrate this function to find our
repulsive energy

'(A) = −?
( 1
!A

)1+? ∫ A

∞

(
!A

I

)1+? (
1 − I

!A

)
�

(
!A − I

)
3I

= !
−?
A

[(
!A

A

)?
+

?

1 − ?
(
!A

A

)?−1
− 1

1 − ?

]
�

(
!A − A

)
. (4.3)

We consider this kind of repulsive potential to be "local" even though the
function is well defined globally because !A determines some radius within
which particles repel each other. We call this the singular repulsion function.
In all of our analyses using singular repulsion, we set ? = 2.

4.2 Stability in discrete model

4.2.1 Global repulsion

In Chapter 2 we derived Equation 2.16, an analytical expression for the
eigenvalues of the Hessian of our system at an even spacing equilibrium.
Using our Morse potential, the eigenvalue equation becomes

�(:) = 2
"∑
ℓ=1

[cosh (!/2 − ℓΔ)
sinh(!/2) − �

�

cosh ( !/2−ℓΔ� )
sinh ( !2� )

] (
1 − cos

(2�
#
ℓ :

))
.
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In this case, attractive and repulsive potential functions are effective globally.
We numerically evaluate this result in MATLAB in two ways. Firstly, we
build our Hessian and call an built-in function for the eigenvalues of a matrix.
Then, we apply the Fast Fourier Transform (FFT) to the first row vector of
the Hessian. We compare these two sets of eigenvalues against the results
of our analytic expression to find that they agree for various numbers of
individuals as long as # is an odd integer. As a measure of verification
of the analytical eigenvalues, we sort the vectors and return the maximum
absolute value of the difference between the vectors. The analytical equation
has a maximum difference with the numerical eigenvalues on the order of
10−15 using both the FFT and eig() functions for # = 51.

We also find the transition to instability of constant density predicted by
our eigenvalue equation as the strength of attraction increases. In Figure
4.1, we see that the set of eigenvalues is positive definite for � < 0.4483 and
contains at least one negative eigenvalue for greater values of �.

Figure 4.1 The strength of attraction, �, is on the x-axis in discrete steps and
the resulting eigenvalues from Equation 2.16 with Morse potential are on the
y-axis. The set of parameters used is # = 51, ! = 100, and � = 1.5. The
values of � we use are 30 evenly spaced points between 0 and 1.

Furthermore, we use an optimization routine in MATLAB to compare
the bifurcation point to instability of even spacing as � increases with that
predicted by our analytical equation. We use the fmincon() function to find
the vector of positions that minimizes the energy at the given parameter
values. In this case we use parameters, # = 15, ! = 20, and � = 10. We
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find that the optimization routine predicts a transition from even spacing
to a clumped state at � = 0.0963 while our analytical equation predicts the
instability to lie at � = 0.0955 for the same parameters.

4.2.2 Local repulsion

Now we use Morse attraction and the repulsion function defined by Equa-
tion 4.3 as the terms of our pairwise potential energy. Repeating the analysis
of the previous section, we verify the analytical equation with singular
repulsion against the FFT and eig() functions. We find that the maximum of
the difference between vectors is on the order of 10−13, which means that our
analytical eigenvalues agree very well with numerical counterparts. We can
also see by comparing Figure 4.1 and Figure 4.2 that even spacing becomes
unstable more quickly with singular repulsion at � = 0.2069.

Figure 4.2 The strength of attraction, �, is on the x-axis in discrete steps and
the resulting eigenvalues from Equation 2.16 with Morse attraction and singu-
lar repulsion are on the y-axis. The set of parameters used is # = 51, ! = 100,
� = 1.5, and !A = 2. The values of � we use are 30 evenly spaced points
between 0 and 1.

Next, we compare bifurcation points between the analytical equation
and our optimization routine with singular repulsion. We use parameters,
# = 15, ! = 20, � = 10, and !A = 6. We find that the optimization routine
predicts a transition from even spacing to a clumped state at � = 0.2601
while our analytical equation predicts the instability to lie at � = 0.2613 for
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the same parameters. As an example, Figure 4.3 shows the optimal particle
configurations for each value of �.

Figure 4.3 The strength of attraction, �, is on the x-axis in discrete steps and
the optimal particle positions with Morse attraction and singular repulsion are
on the y-axis. The set of parameters used is # = 15, ! = 20,� = 10, and !A =
6. The values of � we use are 30 evenly spaced points between 0 and 1. Notice
how the particles transition from even spacing to clumped in our optimization
routine.

4.2.3 Hysteresis

We use our optimization routine with Morse and singular repulsion to
investigate whether there is evidence of hysteresis in the system with respect
to attraction strength. Hysteresis is when the state of a system depends on
the history or trajectory of its parameters as they change. In our case, we vary
the attraction strength in ascending and descending order to see whether
the transition between clumped and constant density states are at different
values of �. To ensure that the direction of � is taken into account, we use
the method of continuation wherein the initial condition of the optimization
routine is redefined to be near the optimal solution for the previous value of
�. If ®G2DAA4=C is the equilibrium at the current value of � and ®G?A4E8>DB is the
equilibrium for the previous value, then the initial condition for the next
value of � will be the tangent line approximation, G0 = 2®G2DAA4=C − ®G?A4E8>DB .
Because our state space is large with # particles, we demonstrate hysteresis
by measuring the size of the swarm.
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We find hysteresis with bothMorse and singular repulsion. UnderMorse
repulsion, even spacing is stable for � < 0.0964 when ascending and stable
for � < 0.089 when descending. The difference between bifurcation points is
less than 0.01. By contrast, under singular repulsion, even spacing is stable
for � < 0.2602 when ascending and stable for � < 0.22 when descending. In
this case the difference between bifurcation points is about 0.04. In Figure
4.4, we see the differences between ascending and descending � on the size
of the swarm with Morse repulsion. We use a higher density of points near
the transition to resolve clearly where the bifurcation occurs in each case. In
Figure 4.5, we see the same hysteresis analysis for singular repulsion. Notice
that the x-axis on Figure 4.4 ranges between � = 0 and � = 0.5. When � = 1
and � = 10, Morse attraction is sufficiently strong to collapse the swarm to
a single point where the size of the swarm is on the order of 10−11. Using
singular repulsion however, the potential function diverges to infinity at
the origin such that the particles within repulsion range of each other are
repelled much stronger. The size of the swarm doesn’t reach 1 until � = 200.

4.3 Stability in continuum model

The most significant result that can be demonstrated numerically with our
continuum model is that the constant density minimizer of our energy
functional, ,[�̄], becomes unstable when the total mass of the swarm
crosses some threshold. This is an important feature of our model because
locusts are observed to transition from homogeneous to clumped states
of organization when they increase passed a threshold of average density.
Remember that we derived our continuum model such that any repulsive
potential energy used is only applied to an agent’s two nearest neighbors
so we can test both the Morse and singular repulsion functions operating
locally. First, with singular repulsion, we get the expected result. When
the total mass is low, there are no unstable Fourier modes of an arbitrary
perturbation. In Figure 4.6, the smallest wavenumber is the first to become
unstable and the bifurcation occurs at an average density of 0.29 at the given
parameters. However, if we use Morse repulsion, the stability boundary is
very different. Instead, small wavenumbers are all unstable and, at some
high density, all wavenumbers are stable.
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Figure 4.4 Potential energy is Morse attraction and Morse repulsion. Blue
circles correspond to the equilibrium swarm size as � is iterated in ascending
order, while red crosses correspond to swarm sizes as � is iterated in reverse.
The set of parameters used is# = 15, ! = 20, and� = 10. We can see that the
bifurcation to instability of even spacing occurs at a slightly higher value when
� is ascending rather than descending.
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Figure 4.5 Potential energy is Morse attraction and singular repulsion. Blue
circles correspond to the equilibrium swarm size as � is iterated in ascending
order, while red crosses correspond to swarm sizes as � is iterated in reverse.
The set of parameters used is # = 15, ! = 20, � = 10, and !A = 6. We can
see that the bifurcation to instability of even spacing occurs at a slightly higher
value when � is ascending rather than descending.
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Figure 4.6 Stability of constant density as a function of wavenumber and av-
erage density. A yellow square indicates a stable mode at that average density
and wavenumber, while purple indicates instability. In this figure we use singu-
lar repulsion and Morse attraction with parameters ! = 100, � = 3, � = 0.25,
!A = 20, and �̄ = 10.
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Figure 4.7 Stability of constant density as a function of wavenumber and av-
erage density. The yellow region indicates stable modes of average density
and wavenumber, while purple region indicates instability. In this figure we
use Morse repulsion and Morse attraction with parameters ! = 20, � = 1.5,
� = 0.25, and �̄ = 10.



Chapter 5

Conclusion

In this thesis, we investigate a first order model of particle interactions under
a general pairwise potential energy, &(A), in a one dimensional periodic
domain. Formulating the problem as energy minimization, we are able
to find and analyze the stability of the constant density or evenly spaced
equilibrium of the swarm. We derive an analytical expression for the
eigenvalues of this system that determine the stability of even spacing under
various parameter conditions.

We test our resultswith two interaction potentials. First, aMorse potential
given by Equation 4.2. Secondly, a potential in which the repulsive term in
Equation 4.2 is exchanged for '(A) defined by Equation 4.3. This function
'(A) is constructed to have a variable, !A , determining the range over which
the repulsive force is nonzero. We are interested in this kind of repulsion
because, with a Morse potential, repulsion is effective between all agents
and this is nonbiological. Our new repulsive term is singular at the origin
and can be made to operate locally.

We find that there are two equilibria for our system, even spacing and
clumped configurations. Our eigenvalue expression predicts that the even
spacing configuration has a bifurcation to instability as attraction strength
increases. We verify this bifurcation result with an optimization routine to
find the energy minimizing configurations of the swarm at various values of
�. Using this optimization routine, we demonstrate a weak hysteretic effect
on the equilibrium configuration of the swarm with respect to attraction
strength �.

From this discrete model of particles swarming in one dimension, we
derive its continuum analogue as an energy functional with energy min-
imizing density distributions. In this case, we use calculus of variations
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to determine the stability of a constant density solution. Using singular
repulsion, we find that all possible wavenumbers of an arbitrary perturbation
to equilibrium are stable and, as total mass increases, there is a bifurcation
to instability. If you would like more information on our numerical results
and simulations, please visit my GitHub repository contain all files used:
https://github.com/miguelvelezz/thesis.

In the future, I plan to work on verifying my results against the work of
other researchers attempting to create swarmingmodels with local repulsion.
Principally, Burger et al. (2014) construct a continuum swarming model with
nonlinear local repulsion.

https://github.com/miguelvelezz/thesis
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