
Claremont Colleges Claremont Colleges 

Scholarship @ Claremont Scholarship @ Claremont 

CGU Theses & Dissertations CGU Student Scholarship 

Fall 2020 

Ensemble Learning Methods for Educational Data Mining Ensemble Learning Methods for Educational Data Mining 

Applications Applications 

Joshua Ryan Beemer 
Claremont Graduate University 

Follow this and additional works at: https://scholarship.claremont.edu/cgu_etd 

Recommended Citation Recommended Citation 
Beemer, Joshua Ryan. (2020). Ensemble Learning Methods for Educational Data Mining Applications. 
CGU Theses & Dissertations, 282. https://scholarship.claremont.edu/cgu_etd/282. 

This Open Access Dissertation is brought to you for free and open access by the CGU Student Scholarship at 
Scholarship @ Claremont. It has been accepted for inclusion in CGU Theses & Dissertations by an authorized 
administrator of Scholarship @ Claremont. For more information, please contact scholarship@cuc.claremont.edu. 

https://scholarship.claremont.edu/
https://scholarship.claremont.edu/cgu_etd
https://scholarship.claremont.edu/cgu_student
https://scholarship.claremont.edu/cgu_etd?utm_source=scholarship.claremont.edu%2Fcgu_etd%2F282&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarship@cuc.claremont.edu


Ensemble Learning Methods for Educational Data Mining Applications

By

Joshua Beemer

Claremont Graduate University and San Diego State University

2020



Copyright c© 2020

by

Joshua Beemer

All Rights Reserved



APPROVAL OF THE DISSERTATION COMMITTEE

This dissertation has been duly read, reviewed, and critiqued by the Committee

listed below, which hereby approves the manuscript of

Joshua Beemer

as fulfilling the scope and quality requirements for meriting the degree of

Doctor of Philosophy

Richard Levine, Chair
Department of Mathematics and Statistics, San Diego State University

John Angus
Institute of Mathematical Sciences, Claremont Graduate University

Barbara Bailey
Department of Mathematics and Statistics, San Diego State University

Juanjuan Fan
Department of Mathematics and Statistics, San Diego State University

Claudia Rangel-Escareño
Institute of Mathematical Sciences, Claremont Graduate University

Approval Date



ABSTRACT OF THE DISSERTATION

Ensemble Learning Methods for Educational Data Mining Applications
by

Joshua Beemer
Doctor of Philosophy in Computational Science - Statistics

Claremont Graduate University and San Diego State University, 2020

Student success efficacy studies are aimed at assessing instructional

practices and learning environments by evaluating the success of and characterizing

student subgroups that may benefit from such modalities. We develop an ensemble

learning approach to perform these analytics tasks with specific focus on estimating

individualized treatment effects (ITE). ITE are a measure from the personalized

medicine literature that can, for each student, quantify the impact of the

intervention strategy on student performance, even though the given student either

did or did not experience this intervention (i.e., is either in the treatment group or

in the control group). We illustrate our learning analytics methods in the study of

a supplemental instruction component for a large enrollment introductory statistics

course recognized as a curriculum bottleneck at San Diego State University. As

part of this application, we show how the ensemble estimate of the ITE may be

used to assess the pedagogical reform (supplemental instruction), advise students

into supplemental instruction at the beginning of the course, and quantify the

impact of the supplemental instruction component on at-risk subgroups.

Higher Education researchers and Institutional Research practitioners

struggle with the analysis of observational study data and estimation of treatment



  

effects. Propensity score matching has widely been accepted to counteract inherent 

selection bias in these studies. We present an ensemble learner for propensity score 

estimation, and consider the use of inverse probability of treatment weighting

(IPTW), variance stabilization weighting, and weight truncation to improve 

treatment effect estimation over propensity score matching.

We run a simulation study to validate the treatment effect and propensity 

score estimation performance of the ensemble learner compared to logistic 

regression and random forest within the matching and weighting techniques. The 

results show that the use of the ensemble learner and variance stabilization with 

truncation result in the lowest mean squared error for treatment effect estimation. 

We contribute a new package in the statistical software environment R, matchED, 

that will provide educational researchers with a tool to help analyze student success 

study data and present actionable results. A tutorial guides the user through the 

use of each function and it’s parameters. A student success intervention is evaluated 

using the matchED package, and we are able to show that the intervention does help 

reduce an inherent equity gap between students in the intervention and their peers.
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CHAPTER 1

Introduction

Student success is a top priority in higher education, with universities

pushing for increased graduation rates, stronger retention rates, smaller

achievement gaps, and overall better academic performance from students

(Pelletier, 2019). In order to improve these metrics universities rely on student

success programs to target at-risk students and provide timely interventions for

them to succeed. Adequately evaluating student success programs is crucial for

meeting the expectations of university stakeholders. Universities must continuously

look for ways to improve the impact of student success programs and interventions

on student learning and success (Rincones-Gómez, 2009).

As a response to the pressure by university stakeholders to uphold student

success and evaluate student success interventions, universities look to institutional

researchers to find new ways of applying learning analytics and educational data

mining methods to educational data (Huebner, 2013). “Learning analytics is the

measurement, collection, analysis, and reporting of data about learners and their

contexts, for purposes of understanding and optimizing learning and the

environments in which it occurs”(1st International Conference on Learning

Analytics and Knowledge, 2011). Learning analytics and educational data mining

research support data-informed approaches and decisions within the educational

setting (Prado et al., 2017). Hora et al. (2017) present that higher education
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institutions hold a strong emphasis on making decisions based on evidence, and the

use of data to inform these decisions is vital. Researchers have access to a myriad

of educational and student data through student information databases, learning

management systems, and course assessments. Researchers thus have the

opportunity to perform statistical analyses of student success innovations (Spoon

et. al., 2016).

He et al. (2018) summarizes that in recent learning analytics literature

institutional researchers primarily use logistic regression as their modeling approach

to predict student performance metrics. Kučak et al. (2018) looks at the use of

machine learning in the educational setting and states a major benefit of machine

learning is its ability to utilize educational data and predict student performance

accurately. We shift the narrative further by introducing novel ensemble learning

methods for individualized treatment effects, and propensity score matching and

weighting techniques. Institutional researchers can use these learning analytics

techniques to evaluate student success interventions and student performance in

higher education.

In Chapter 2 introduce of an ensemble learner for student success studies.

We look at a study at San Diego State University with the goal to evaluate student

success in a bottleneck course, a course with high withdrawal or failure rate where

students get “stuck”. In the study we compare students who participated in the

supplemental instruction intervention to those that did not. To analyze this

intervention, develop an early warning system to identify at-risk students, and
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study the impact on at-risk subgroups we look at using an ensemble learner to

estimate individualized treatment effects.

Due to the nature of the university setting, most student success studies

must be analyzed as observational studies, with random treatment assignment on

students being unethical. This becomes a limiting factor for institutional

researchers when trying to draw inference. We find that the ensemble learner in

combination with matching or weighting methods offers the researcher the ability

to control for confounding variables and selection bias, normally handled by

randomization, and draw inference from estimated treatment effects.

The simulation study in Chapter 3 will evaluate and validate the ensemble

learner compared to logistic regression and random forest for propensity score

estimation. A comparison of propensity score matching, inverse probability of

treatment weighting, variance stabilization of weights, and truncation of weights is

used to better estimate treatment effects. Data was generated to represent possible

real world variable types, and “subjects” probability of treatment was simulated

with five models varying in complexity, from main effects only to a model with

three-way interactions and quadratic terms. Through these comparisons we show

that the ensemble learner best estimates propensity scores compared to logistic

regression and random forest, and methods to truncate and stabilize the weights

provide the best estimate of treatment effects.

In Chapter 4 we contribute a new R-package (R Core Team, 2020), matchED

that offers institutional researchers an accessible way to estimate propensity scores

and treatment effects for their educational data mining applications. We explain
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the functions and parameters within the R-package and offer a walk-through

tutorial that users can reference as a guide to the package. To show the package in

use we present a current student success intervention study.

In Chapter 5 we conclude with a discussion of results from our research, and

offer challenges that we encountered along the way. We offer recommendations to

further our research and future direction we are considering to take our analysis.
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CHAPTER 2

Ensemble Learning for Estimating

Individualized Treatment Effects in Student

Success Studies

2.1 Introduction

In striving to improve graduation rates and reduce achievement gaps,

Universities have experimented with a suite of instructional practices and learning

environments (for example, see the 2015 issue 2 of Peer Review from the

Association of American Colleges & Universities). Broadly speaking, these

strategies foster student success and engagement through common and

collaborative intellectual experiences, student research and internships, and study

abroad experiences (Kuh, 2008) as well as supplemental instruction and

instructional technologies (for example see Dawson et al., 2014; Henrie et al., 2015).

An analytics goal is identifying at-risk students that will benefit from one or more

of these intervention strategies and, early in their college careers, advise these

students accordingly. On the flip side, we also must evaluate each instructional

practice and each learning environment on at-risk subgroups for purposes of

strategic planning, resource allocation, and program development.

We propose an ensemble learning approach to estimate individualized

treatment effects (ITE) to characterize at-risk students and assess student success
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and retention under intervention strategies. ITE were introduced in the

personalized medicine literature (Dorresteijn, 2011) to quantify the difference in an

outcome of interest between treatment and control for any subject, whether they

experience only the treatment or only the control modality. In our setting, ITE

allow us to predict the performance difference between experiencing an intervention

strategy or not for each student. We may use these predictions to

• evaluate the success of an intervention;

• characterize student subgroups that may benefit from an intervention;

• evaluate the impact of an intervention on at-risk subgroups;

• quantify the impact of an intervention on individual students; and

• provide an early warning system to advise students into an intervention.

An ensemble learning approach provides a natural analytics environment

within which to leverage the wealth of data on students from student information

system databases and learning management systems to estimate ITE and student

success measures. The student success measures may include categorical outcomes,

such as non-repeatable grade in a course (e.g., C or better), graduation success,

and retention, or continuous outcomes such as course grade (e.g., on a four-point

GPA scale), final exam score, and time to graduation. In a learning analytics

setting, a set of base learners are trained and then used to predict the student

success outcome of interest for each student. A meta-learner combines these base

learner predictions for each student. Moon et al. (2007) proves that in the case of

classification, an ensemble average (meta-learner) over a suite of classifiers (base

learners) will improve accuracy over a single classifier (single base learner). The
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case is not as clear cut in a regression context, though Moreira et al. (2007) presents

a number of approaches to create an ensemble with improved prediction accuracy.

To our knowledge, the educational literature contains only a few student

success studies that take advantage of ensemble learning. Pardos et al. (2011)

considers ensemble methods to combine latent student knowledge predictions from

multiple models of data within a tutoring system. Kotsiantis et al. (2010) considers

the use of ensemble methods to predict student success in distance learning using

three different techniques (WINNOW, naive Bayes, and 1-nearest neighbour).

Cortez and Silva (2008) compares several ensemble techniques to assess student

performance under binary, multi-class factor, and continuous responses. Though no

ensemble learning approach is applied, Jayaprakash (2014) evaluates a set of base

learners (logistic, SVM, decision trees, and naive Bayes) for predicting academic

risk. To our knowledge, the education literature contains only two applications of

estimating treatment effects, in the context of digital learning environments

without random assignment. Beck and Mostow (2008) apply learning curve analysis

using nonlinear regression to estimate individual student learning in acquiring

reading skills. Pardos, Dailey, and Heffernan (2011) apply Bayesian knowledge

tracing to study the effectiveness of tutorial help in a math tutoring system.

In Section 2.2, we detail our ensemble learning approach and computation of

ITE. In Section 2.3, we step through the applications of ITE in student success

studies. For purposes of illustration, we evaluate the success of a supplemental

instruction course introduced in a San Diego State University (SDSU) large

enrollment introductory statistics course. We stress that the ensemble learning
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approach we propose is modular. In our application we fix the set of base learners

we consider. However, as a function of application ease, computational

cost/complexity, or prediction performance, any base learner may be used as part

of the ensemble. Analogously, we introduce stacked generalization (Alpaydin, 2010,

Chapter 17) to construct the meta-learner. Again, this component of the ensemble

learner is modular, allowing flexibility in choice of meta-learner for combining the

base learner predictions. In Section 2.4, we provide a concluding summary,

limitations of our proposed approach, and recommendations for future research.

2.2 Analytics Methods

In this section we detail the ensemble learning approach for student success

study analytics applications. We then detail predicting individualized treatment

effects (ITE) with the ensemble learner.

2.2.1 Ensemble Learning

Ensemble learning entails combining predictions from a set of base learners.

Intuitively, the ensemble balances base learners that over fit and under fit the data,

with an aim of improving overall prediction accuracy. An ensemble learner will see

the greatest gain in predictive performance when combining diverse predictions,

that is, base learner predictions that are not highly correlated. A basic ensemble

learner is a weighted sum of the predictions from each base learner, weights by

minimizing an objective criterion such as mean squared error, likelihood, or entropy

(Alpaydin, 2010, Chapter 17). We focus on stacked generalization (Wolpert, 1992)

to combine the base learners. The particular form we use is a variation of stacked
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regression introduced to the statistics literature by Brieman (1996) and LeBlanc

and Tibshirani (1996).

Algorithm 1 presents pseudocode for our proposed ensemble learner. The

algorithm requires three data subsets created within nested cross-validation loops.

Suppose we have n students in our data set. Let the size of the validation set be

denoted by KE. The first cross-validation loop (steps 1-3) randomly divides the

data into n/KE subsets of students of size KE. For example, in leave-one-out

cross-validation, KE = 1; in ten-fold cross-validation, KE = n/10; etc. In each cycle

of the first cross-validation loop, we put aside the KE students for that subset as a

validation set. The remaining nT = (n−KE) students we call the ensemble training

set.

We perform K-fold cross-validation on the ensemble training set. That is,

we randomly partition the ensemble training set into nE/K subsets of K students

each (step 5). In each cycle of this cross-validation loop (step 6), we put aside the

K students for that subset as a testing set. We then train each base learner chosen

on the training set of nE −K students left. Again, this training may be performed

using leave-one-out cross validation by setting K = 1. The trained base learners are

then used to predict the outcome of interest for each of the K students in the

testing set. At the end of this loop (steps 5-6), we have a prediction for each of the

nE students in the ensemble training set from each base learner.

The meta-learner entails a regression (step 7) of the true outcome on the

predictions from each base learner for the nE students in the ensemble training set.

The regression coefficients represent the weights for combining the base learners
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Algorithm 1 Ensemble Learner: Stacked Generalization

1. Randomly partition the data into subsets of size KE.

2. Fix cross-valdiation counter cv = 1. (Note that cv ∈ {1, . . . , n/KE}.)
3. Label the subset of KE students in data partition cv as the validation set and

the remaining nE = (n−KE) as the ensemble training set.

4. Choose L base learners for constructing the ensemble learner.

5. Randomly partition the ensemble training set into subsets of size K.

6. For each partition,

• Label the subset of K students as the test set and the remaining nE −K
students as the training set;

• Fit each of the L base learners to the training set;

• Obtain a prediction for each student in the test set from each fitted base
learner.

end-loop over each K-fold cross validation partition.

7. Regress true outcome on the predictions from each base learner: L predictions
for each student as inputs into the regression model on nE students.

8. Fit each of the L base learners to the ensemble training set.

9. Obtain a prediction for each student in the validation set from each fitted base
learner from step 8.

10. Combine the predictions from step 9 using the regression coefficient estimates
from step 7 as weights in the linear combination.

11. Increment cv by one.

12. Repeat steps 3-10 until cv > n/KE.
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into an ensemble prediction. Breiman (1996) notes that the base learner predictions

may be highly correlated leading to challenges if linear regression (via ordinary

least squares, OLS) is used as the meta-learner. Ridge regression (James et al.,

2013, Chapter 6), a common approach in the presence of multi-collinearity, is

suggested. As an extension, Reid and Grudic (2009) proposes regularization which

also allows for lasso or elastic net (James et al., 2013, Chapter 6) regression

techniques. These latter methods provide an alternative method of shrinkage

estimation that may select a weight of zero (sparse model) for a base learner. In

our application, we find ridge regression sufficient for estimating ITE. However,

regularization provides options for stacked generalization to avoid overfitting and

improve predictive performance.

The so-called validation set contains students left out of the process for

constructing the meta-learner. We thus may use the meta-learner to make

predictions for each of the students in the validation set at the conclusion of the

outer cross-validation loop (over cv). First, each base learner is trained on the

ensemble training set (set 8). A set of predictions is then made for each student in

the validation via each base learner (step 9). We thus will have L predictions for

each of the n/KE students in the validation set. These L predictions are combined

using the meta-learner (step 10). We thus come out of the outer cross-validation

loop with predictions for each student in the data set, predictions made in groups

of n/KE.

With nested cross-validation loops, Algorithm 1 appears computationally

costly for large data sets. However, the outer cross-validation loop (steps 1-3;
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validation set) is easily performed in parallel on say a cluster computer. The inner

cross-validation loop (steps 5-6; ensemble training set) may also be performed in

parallel upon identification of the validation set.

2.2.2 Individualized Treatment Effects

In student success studies, we wish to quantify the difference in outcome

under an intervention and under a control regime (typically no intervention). Of

course the student will typically either experience the intervention or not. A

crossover type design or randomized controlled experiment is typically not an

option for studying, for example, instructional practices and learning environments.

We can apply the ensemble learning algorithm predictions of Section 2.2.1 to

compute an individualized treatment effect for each student. Algorithm 2 presents

the pseudocode.

Algorithm 2 Individualized Treatment Effects (ITE)

1. Separate data into treatment group and control group

2. Train the ensemble learner of Algorithm 1 on the treatment group

3. Train the ensemble learner of Algorithm 1 on the control group

4. Obtain a “under treatment” prediction for control group subjects using the
treatment group trained learner from step 2

5. Obtain a “no-treatment” prediction for treatment group subjects using the
control group trained learner from step 3

6. Compute ITE for the control group as the difference of the predicted outcome
from step 4 and the observed outcome

7. Compute ITE for the treatment group as the difference of the observed outcome
and the predicted outcome from step 5
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In a given study we will have a set of students that receive the “treatment”

(experience the intervention strategy) and a set of students that receive the

“control” (do not experience the intervention strategy). We may train an ensemble

learner on each group separately using Algorithm 1. We then predict the

“no-treatment” outcome for the treatment group students using the ensemble

learner trained on the control group. The individualized treatment effect for these

treatment group students is the difference of the observed outcome under treatment

and the predicted outcome under control (step 6). Analogously, we predict the

“under treatment” outcome for the control group students using the ensemble

learner trained on the treatment group. The individualized treatment effect for

these control group students is the difference of the predicted outcome under

treatment and the observed outcome under control (step 7). Overall, the ensemble

learner is serving as a best guess of the outcome for the treatment (control) group

students if they had experienced the control (treatment). Note that the ITE here

are formulated as (outcome under treatment) minus (outcome under control). Thus

the treatment group ITE are (observed-predicted) and the control group ITE are

(predicted-observed).

2.3 Application: Impact of Supplemental
Instruction Section on Student Success in

Introductory Statistics

The California State University (CSU) Chancellor’s Office instituted the

“Promising Practices for Course Redesign” program aimed at improving student

success in bottleneck, typically large enrollment courses. Introductory Statistics
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was identified by CSU as one such bottleneck course, affecting STEM, business,

and quantitatively-oriented non-STEM majors. Of particular concern are

repeatable grades (at CSU these are grades of C- or worse as well as a withdrawal,

W) which in turn potentially lead to lower (STEM) retention/persistence rates,

decreased graduation rates, and increased time to graduation.

The San Diego State University (SDSU) Introductory Statistics course

under consideration here (STAT 119) enrolls on the order of 1200 students per

semester with DFW rate around 30%. DFW denotes grades of D (1.0 on a

four-point grade scale), F (failing grade; 0.0 on a four-point grade scale), and

withdrawal from the course. To combat this high DFW rate, one arm of our course

redesign project introduced supplemental instruction sections to the course. Each

section enrolls 20-30 students and meets twice per week for one hour each. The

sections are lead by Statistics graduate student teaching assistants (TA) trained

prior to the semester for developing an active problem solving environment in the

classroom (Savery, 2006). Rather than students watching TAs solve problems, the

sessions entail students working through problems related to the topics of the week.

The TAs circulate around the room answering questions and facilitate group/class

discussions of common conceptual difficulties. Due to caps in general elective units

for major programs, this supplemental instruction section is selected voluntarily by

STAT 119 students for one additional credit unit.

The supplemental instruction section differs from the UMKC model of

Supplemental Instruction (SI; often capitalized to note this particular

implementation) originally proposed in 1973 (Martin and Arendale, 1993). In
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particular, though students in our study volunteer into the supplemental

instruction section, they must enroll in a one-unit course STAT 119A. Furthermore,

STAT 119 students who perform below a 70% on an algebra assessment the first

week of classes are strongly encouraged to enroll in the supplemental instruction

section. Typical SI implementations use “near-peers”, namely students who

recently took and succeeded in, above a chosen grade threshold, the given course.

The STAT 119A instructors are statistics graduate students. That said, the STAT

119A instructors are trained using the SI peer-assisted learning model, facilitate

topic content and study skill discussions much like traditional SI sessions, and are

regularly evaluated by a course coordinator (akin to an SI supervisor). See Dawson

et al. (2014) for discussion of deviations from the traditional SI model in practice.

We consider a Fall semester offering of supplemental instruction in STAT

119 enrolling 17% of students in the course. We consider three student success

outcomes: final exam score (on a scale of 0 to 300), final grade in the course (on a

four-point GPA scale), and non-repeatable grade indicator (binary response of

whether a student received a grade of ‘C’ or better). Table 2.1 presents descriptive

summaries of the STAT 119 and STAT 119A students over a number of key

variables in this study. Variables that are not self-explanatory: admission basis

identifies a student as a first-time freshman or transfer student; first-generation

college identifies a student as being the first in the immediate family to attend

college; quiz 0 is an algebra assessment made at the beginning of the semester; and

the AP indicators present whether a student took AP Calculus and AP Statistics in

high school. STAT 119 is offered in a standard lecture format and in a hybrid
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modality, where the two class meetings each week are divided into one live lecture

and one synchronous, but archived, online lecture. Table 2.1 thus reports the

percentage of students enrolled in the hybrid offering and average number of online

units for each group. The complete set of inputs for our model are presented later

in Tables 2.3 and 2.4.

We use this study data to illustrate ensemble learning for performing

predictive and learning analytics in student success studies as follows:

• Does the supplemental instruction section work? Quantify the impact of the
supplemental instruction section on course success.

• On whom does the supplemental instruction section work? Identify
characteristics of students benefitting from the supplemental instruction
section.

• By how much does the supplemental instruction section work? Quantify the
impact the supplemental instruction section has on student success for
individuals and for at-risk subgroups.

We note that though our illustration is specifically for this supplemental instruction

section, the analytics work up may be used generally to study any intervention

strategy or pedagogical innovation for evaluating outcomes in student success

studies.

In the remainder of this section, we first evaluate the ensemble learner for

predicting student success. We then step through a series of analyses afforded by

the ensemble learner prediction of individualized treatment effects within a student

success study. All analyses were performed in the open source statistical software

package R (R Core Team, 2020) environment. The ensemble learner of Algorithm 1

is performed using leave-one-out cross-validation for the validation set (KE = 1)
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and ten-fold cross-validation for the ensemble training-testing (K = 10). The base

learners used are linear regression (or logistic regression depending on the

outcome), lasso regression, classification and regression trees (CART), bagging,

boosting, random forest, naive Bayes, linear discriminant analysis, support vector

machines, and k-nearest neighbors. We refer the reader to James et al. (2013) for

details on these methods. Ridge regression is used to combine the base learners

(step 7 of the Algorithm 1).

Figure 2.1. Correlation matrix plot for individual learners.
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2.3.1 Ensemble Learning Performance
Evaluation

Table 2.2 presents the root mean squared error (RMSE) for predicting final

exam score (out of 300) and course grade (four-point scale) by the ensemble learner

and the individual learners that make up the ensemble. As mentioned in

Section 2.1, high correlations are a cause for concern as ensemble learners present

the greatest gains when combining individual learners that show diversity in

predictions. As Table 2.2 shows, despite the correlated predictions presented in

Figure 2.1, the ensemble learner out-performs any single learner for both outcomes.
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Table 2.1. Summary statistics on a number of key variables for students en-
rolled in the STAT 119: Introductory Statistics course as a whole, the subset of
STAT 119 students who enrolled in the STAT 119A supplemental instruction
course, and the subset of STAT 119 students who did not enroll in the STAT
119A supplemental instruction course. Categorical variables are summarized
as percentages for the category names (e.g., “Gender (female)” shows 48%
of the STAT 119 students are female). Continuous variables are summarized
through the average for that group with standard deviation in parentheses.

STAT 119 Enrolled in Not Enrolled in
(n=1032) STAT 119A (n=169) STAT 119 A (n=863)

Gender (female) 48% 64% 45%
EOP 14% 22% 13%
Live in Dorm 52% 32% 56%
Age 19.5 (2.3) 19.7 (2.3) 19.4 (2.3)
Low Income 33% 40% 32%
Level (Freshman, 74%, 12%, 63%, 20%, 77%, 10%,
Soph, Junior, Senior) 9%, 5% 12%, 5% 8%, 5%
Admission Basis 92% FTF 92% FTF 92% FTF
First-Gen College 18% 22% 17%
Online Units 1.6 (3.5) 2.5 (4.0) 1.4 (3.4)
Hybrid Class 78% 79% 77%
SAT Math 553 (81) 519 (82) 561 (79)
SAT Verbal 509 (99) 496 (97) 512 (99)
HS GPA 3.47 (0.46) 3.44 (0.45) 3.48 (0.46)
Took Calculus? (AP) 38% (23%) 36% (17%) 38% (24%)
Took Statistics? (AP) 32% (14%) 30% (9%) 32% (15%)
Quiz 0: Score 0.75 (0.24) 0.72 (0.23) 0.75 (0.24)
Quiz 0: Time (min.) 27.9 (11.3) 28.4 (11.4) 27.8 (11.3)
HW 1: Score 0.95 (0.17) 0.96 (0.15) 0.94 (0.17)
HW 1: Time (min.) 80.9 (56.7) 80.1 (51.1) 81.2 (57.8)
Final Exam 0.67 (0.24) 0.71 (0.19) 0.66 (0.25)
% Pass Course 74% 83% 72%
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Table 2.2 also compares the accuracy of the ensemble learner and individual

learners in predicting a non-repeatable grade in the course (‘C’ or better binary

response). The classification ensemble was found by averaging the predicted

probabilities from each learner and obtaining an ‘optimal’ threshold of 0.77 using

the OptimalCutpoints R package (Lopez-Raton, et al., 2014) for predicting a

binary response. Under this threshold, the ensemble learner has the highest

classification success. Figure 2.2 presents ROC curves for the ensemble learner and

the individual learners. Table 2.2 presents, in the last column, the area under the

curve (AUC) for each of these ROC curves. With respect to this ROC comparison,

the ensemble learner out-performs the individual learners.

Figure 2.2. ROC curves comparing the ensemble learner with each of the
individual learners from Table 2.2.
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2.3.2 Success of the Intervention

In our study, the average individualized treatment effect for final exam score

was 9.3 with a standard error of 1.48. The average individualized treatment effect

for final course grade was 0.45 with a standard error of 0.03. These average ITE are

both significantly greater than zero (p < 0.0001). Enrolling in a supplemental

instruction section not only leads to a moderate improvement in final exam score

(on the 300 point scale), but it leads to an increase of almost a half a grade point,

on average, in final course grade. (The course is graded on a four-point scale where

4.0=A, 3.0=B, 2.0=C, 1.0=D, and 0.0=F.)

The ITE may be used, say at the beginning of a course, to flag students that

may benefit from the supplemental instruction course. We may characterize these

at-risk students through demographic and educational markers. To this end, the

ITE were split into two subgroups: the top 25% and a comparison group (centered

around 0). These subgroups were then analyzed to identify average characteristics

of students that benefited the most and were not affected by the recitation course

respectively; see Tables 2.3 and 2.4. The inputs on these two tables are

self-explanatory for the most part, however a handful require further

documentation (see description of Table 2.1 as well):

Math Level: highest math class completed

(algebra, pre-calculus, calculus, . . . )

Participation: score on iClicker questions in Week 2

Quiz 0: beginning of semester algebra assessment

Calc Level: applied calculus, calculus 1, calculus 2, calculus 3
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Learning Community: specialized dorm

Compact Scholar: program partnership with a local school district

First-Gen Some College: no college degrees in the family

Admission Basis: first-time freshman or transfer student.

Tables 2.3 and 2.4 suggest that students that may benefit the most from the

supplemental instruction course have weaker educational preparation (significantly

lower SAT Math, HS GPA, math level, and previous experience with calculus and

statistics), and performed worse at the beginning part of the course (lower clicker

score, quiz 0 grade, and performance on homework 1). Furthermore, those students

are significantly more likely to be EOP, low income, first-generation, commuter,

and/or part-time students. These findings could be considered further as early

at-risk indicators for success in the course.



24

2.3.3 Subgroup Analysis

Student success efficacy studies include not only broad-sweeping evaluations

of an intervention for students in general, but focus on the impact of the

intervention on pre-defined at-risk subgroups. As an example, the STAT 119 class

enrolled 32 students from an underrepresented minority (URM) group. For sake of

masking, we do not identify the specific URM group. These 32 students displayed

ITE significantly greater than zero (p = 0.007; the average individualized treatment

effect in this group is +24 with a standard deviation of 51). The students scored a

205 out of 300 (68%) on the final exam (standard deviation 44).

Table 2.5 presents characteristics of the 32 students compared to the other

1030 students enrolled in the course. Of note, this URM group contained

significantly more EOP, low income, Pell-eligible, transfer, commuter students.

2.3.4 Impact of the Intervention Strategy

The previous two sub-sections considered the impact of the supplemental

instruction course on groups of students. The ITE may be used as a form of

personalized learning, for each individual student determining if they may benefit

from a given intervention strategy. As an illustration, we characterize students who

would be predicted to improve their course performance by a letter grade if they

had enrolled in the supplemental instruction course. These example students are

based on actual students from the STAT 119 class. However, for the sake of

confidentiality, we used the STAT 119 students to identify key inputs and then

fabricated this group of students for illustration purposes. That said, we also are

presenting the summary statistics with a qualifier, rather than exact values, so
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there is no chance specific students may be identified. All of these students are

envisioned to enroll in the hybrid course section.

• F→C student, predicted treatment effect of 130. Female, Freshman, Pell
grant, Kinesiology, commuter student with low SAT math and verbal scores.
Has experience with online courses, but no previous statistics or calculus
courses. Scored above 85% on quiz 0, and handed HW 1 in on time scoring
above 95%. Final exam score of 37%.

• F→C student, predicted treatment effect of 111. Male, URM, Freshman,
Finance, commuter student with HS GPA below 3.0. Did not take Statistics
nor Calculus, scored below 70% on quiz 0, but scored 97% on HW 1. Final
exam score 54%.

• C→B student, predicted treatment effect of 51. Female, International, first
generation, EOP, Freshman Management student living on campus, with HS
GPA below 3.5 and low SAT math and verbal scores. Took AP Calculus; but
scored below 55% on quiz 0 and below 75% on HW 1. Final exam score of
62%.

• C→B student, predicted treatment effect of 45. Male, first-generation,
Freshman, Undeclared, commuter student with HS GPA below 3.2 and no
experience with online courses. Scored above 90% on quiz 0 and 100% on HW
1. Final exam score of 61%.

• C→B student, predicted treatment effect of 39. Female, URM, Pell grant,
Senior, International Security and Conflict Resolution, commuter student
with HS GPA below 3.3. No previous statistics nor calculus courses; scored
below 50% on quiz 0 and above 90% on HW 1. Final exam score of 73%.

• B→A- student, predicted treatment effect of 13. Male, International, first
generation, Pell grant, Sophomore, Marketing, commuter student with low
SAT verbal score but high SAT math score. No previous statistics nor
calculus courses; scored above 80% on quiz 0 and 100% on HW 1. Final exam
score of 78%.

• B→A student, predicted treatment effect of 22. Female, URM, first
generation, EOP, Pell grant, Freshman International Business student living
on campus with low SAT math and verbal scores. No previous statistics nor
calculus courses; scored above 70% on quiz 0 but did not submit HW 1. Final
exam score of 85%.
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• B→A student, predicted treatment effect of 38. Female, Pell grant, Freshman,
Economics student living on campus with solid SAT math and verbal scores.
Had calculus, but no previous statistics course; did not take quiz 0 nor
submit HW 1. Final exam score of 90%.

2.4 Discussion

We propose using an ensemble learning approach to make predictions in

student success studies of intervention strategies such as instructional practices and

learning environments, which we will address further in Chapter 4. In our

application evaluating success of a supplemental instruction session in a large

enrollment introductory statistics course, we found that the ensemble learner

out-performed the base learners in classifying a repeatable grade (C- or worse) and

predicting final exam score. In this application, base learner predictions were

highly correlated, limiting the predictive performance of the ensemble learner.

Applications with more diverse predictions will show markedly better performance

by the ensemble learner. We also introduced the concept of individualized

treatment effect to evaluate an intervention strategy in student subgroups, identify

at-risk students that may benefit from the intervention strategy, and quantify the

impact of an intervention to advise individual students into that intervention. As

part of the illustration, we presented a set of “example students” that provides

further insight on characteristics to be considered when developing early warning

systems for student success.

The application of our approach found that students enrolling in the

supplemental instruction course performed significantly better than students who

did not enroll with respect to final exam score and course grade in a large
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enrollment introductory statistics course. These results align with findings in the SI

effectiveness review article of Dawson et al. (2014). Of particular note, Dawson et

al. (2014) summarize a study by Hodges et al. (2001) where students were either

mandated to attend SI sessions (25% of students) or voluntarily attend SI sessions

(25% of students). While both groups of SI attendees performed significantly better

with respect to DFW-rate than non-attendees, the group mandated to attend SI

performed better than the group attending SI voluntarily. Our implementation

required students to enroll in, and regularly attend supplemental instruction

sessions. A beginning of semester algebra assessment was also used to strongly

encourage students. While not a mandate, our model follows more closely to the

mandatory attendance of Hodges et al. (2001). Of course none of the SI

effectiveness studies provide in-depth subgroup analysis nor individual assessments

as we are able to perform through individualized treatment effects.

As a final comment, our proposed application of individualized treatment

effects is not limited to course-level analytics problems of the type considered in

this paper. ITE may be applied broadly to learning analytics and academic

analytics tasks, in the terminology of Long and Siemans (2011). These problems

include evaluation of program/department, institutional, and state/national driven

intervention strategies for at-risk subgroups. The ITE approach also allows for

flexibility in the array of outcomes to assess in these arenas as well, for example

program success, (STEM) program retention, time to graduation, graduation rates,

and student engagement. As illustrations of learning analytics applications at

different scales, we highlight three:
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• At a system level, California State University (CSU) recently proposed a
“Graduation Success Initiative” (http://graduate.csuprojects.org/),
setting graduation rate goals for each of its 23 campuses. To justify funding
from the state legislature, the CSU will need to assess treatment effects
relative to the success of programs aimed at achieving these goals, with
respect to the impact of the initiative on at-risk subgroups, and for a
cost/benefit analysis.

• At an institution level, major concerns at Universities across the country are
STEM persistence and closing the achievement gap (PCAST, 2012). The
SDSU Compact Scholar program, briefly mentioned in Section 3, represents a
program aimed at improving student engagement and graduation rates to this
end in a local school district. Individualized treatment effect estimates are
critical to improving program educational practices and evaluating program
students relative to graduation success benchmarks and key learning
outcomes.

• At a College or Department level, individualized treatment effects are critical
for evaluating, for example, new online degree and certificate programs or
advising systems and strategies. Again focus is on time to graduation or time
to enter major, graduation success, and post-graduation success measures.

Limitations

In our application, the ensemble learner presented the best predictive

performance across each outcome measure considered. Furthermore, no single

learner came out on top across all of the outputs. See Table 2.2 for performance

details. However, the ensemble learner out-performed the best single learner by less

than one percentage point in accuracy and 0.02 in ROC AUC for predicting a C or

better grade, and less than 0.01 in RMSE for predicting course grade. A user may

thus decide to employ a single learner such as LASSO, which performed close to

best across the board. From both a computational complexity and interpretable

machine learning perspective, LASSO is less computationally expensive (i.e., faster
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to fit) and allows for the relationship between inputs and the output to be

explained through coefficient estimates.
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Table 2.3. Final exam outcome: Summaries for students falling in the top 25%
in ITE and students falling in a similarly sized comparison group with ITE
of zero on average. The p-values are from significance tests between the two
groups on each input. The top part of the table considers continuous-valued
inputs, presenting the mean value and standard deviation in parentheses for
each. The bottom part of the table considers categorical inputs. Except for the
multi-category inputs, the features are ordered according to percent difference
between the top 25% and comparison groups.

Continuous inputs Top 25% Comp Group p-value
Homework 1, Days Late 1.60 (7.79) 0.02 (0.19) 0.00
Online Units 2.48 (4.24) 1.26 (3.20) 0.00
Calc Level 0.32 (0.48) 0.61 (0.73) 0.00
Participation Week 2 0.70 (0.45) 0.92 (0.26) 0.00
Quiz 0, Grade 0.65 (0.28) 0.83 (0.16) 0.00
SAT Math 516.83 (75.25) 599.67 (78.85) 0.00
Math Level 4.48 (1.41) 5.16 (1.57) 0.00
SAT Verb 479.83 (99.73) 538.04 (94.94) 0.00
HS GPA 3.3 (0.49) 3.66 (0.35) 0.00
Homework 1, Grade 0.90 (0.24) 0.99 (0.04) 0.00
Term Units Attempted 14.07 (2.16) 14.39 (1.93) 0.09
Homework 1, Time in Minutes 84.13 (54.39) 78.21 (50.14) 0.22
Quiz 0, Time in Minutes 28.54 (13.93) 27.24 (9.00) 0.23
Age 19.99 (2.86) 19.13 (1.74) 0.00
HS Grad Year 2011.48 (2.83) 2012.31 (1.70) 0.00
Final Exam 172.3 (55.44) 244.74 (46.61)
Treatment Effect 75.72 (33.37) 0.01 (9.18)
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Categorical inputs Top 25% Comp Group p-value
Compact Scholar 12% 3% 0.00
First-Generation College 25% 10% 0.00
EOP Student 21% 9% 0.00
Part-Time Student 51% 23% 0.00
Learning Community 14% 28% 0.00
Live in Dorm 35% 67% 0.00
Stat AP 10% 19% 0.01
Low Income 41% 22% 0.00
First-Generation Some College 44% 24% 0.00
Gender (female) 50% 45% 0.27
Location of Last Math Course 0.00

SDSU 25% 14%
HS 60% 81%
TRANS 15% 5%

Calc AP 0.00
0 83% 65%
1 16% 28%
2 1% 7%

College 0.07
Business 20% 12%
Sciences 47% 54%
Liberal Arts 33% 34%

Admin Basis 0.00
FTF 69% 88%
LD 3% 5%
UD 28% 7%
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Table 2.4. Course grade outcome: Summaries for students falling in the top
25% in ITE and students falling in a similarly sized comparison group with ITE
of zero on average. The p-values are from significance tests between the two
groups on each input. The top part of the table considers continuous-valued
inputs, presenting the mean value and standard deviation in parentheses for
each. The bottom part of the table considers categorical inputs. Except for the
multi-category inputs, the features are ordered according to percent difference
between the top 25% and comparison groups.

Continuous inputs Top 25% Comp Group p-value
Homework 1, Days Late 0.85 (6.66) 0.22 (1.93) 0.16
Calc Level 0.38 (0.53) 0.51 (0.68) 0.02
Online Units 1.79 (3.79) 1.51 (3.43) 0.39
Participation Week 2 0.76 (0.42) 0.86 (0.34) 0.00
Math Level 4.62 (1.45) 5.02 (1.57) 0.00
SAT Math 535.88 (80.41) 567.08 (81.06) 0.00
Quiz 0, Grade 0.73 (0.24) 0.77 (0.2) 0.04
Homework 1, Time in Minutes 81.51 (49.52) 85.6 (59.7) 0.41
Homework 1, Grade 0.94 (0.18) 0.97 (0.12) 0.06
SAT Verb 502.79 (104.47) 518.12 (97.71) 0.10
HS GPA 3.43 (0.47) 3.53 (0.48) 0.02
Quiz 0, Time in Minutes 28.94 (11.84) 28.17 (10.14) 0.44
Term Units Att. 14.07 (2.16) 14.39 (1.93) 0.09
Age 19.61 (2.65) 19.23 (1.84) 0.07

HS Grad Year 2011.84 (2.63) 2012.21 (1.78) 0.07
Final Grade 1.71 (1.23) 3.21 (0.90)
Treatment Effect 1.09 (0.49) -1.17 (0.37)
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Categorical inputs Top 25% Comp Group p-value
Stat AP 10% 20% 0.01
Learning Community 15% 25% 0.01
Compact Scholar 9% 6% 0.29
Part-Time Student 38% 28% 0.03
EOP Student 17% 13% 0.37
First-Generation College 22% 17% 0.21
First-Generation Some College 39% 31% 0.08
Live in Dorm 48% 59% 0.01
Low Income 35% 29% 0.17
Gender (female) 48% 51% 0.52
Location of Last Math Course 0.00

SDSU 20% 12%
HS 70% 80%
TRANS 10% 7%

Calc AP 0.15
0 77% 73%
1 21% 21%
2 2% 5%

College 0.19
Business 16% 12%
Sciences 56% 52%
Liberal Arts 28% 35%

Admin Basis 0.01
FTF 72% 82%
LD 4% 5%
UD 24% 13%
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Table 2.5. Average student characteristics for the 32 students from an under-
represented minority group in STAT 119. Parenthetical values are standard
deviations except in the last two rows which report the proportion of stu-
dents taking AP Calculus and AP Statistics. The admission basis row presents
percentage of students admitted as first time freshman (FTF; not transfer stu-
dents).

URM group Remainder of class
Gender (female) 53% 48%
EOP 56% 14%
Live in Dorm 38% 51%
Age 19.1 (0.9) 19.5 (2.3)
Low Income 72% 33%
Level (Freshman,
Soph, Junior, Senior) 65%, 28%, 6%, 0% 74%, 12%, 9%, 5%
Admission basis 47% FTF 92% FTF
First-Generation College 19% 18%
Online units 2.25 (2.95) 1.61 (3.48)
Hybrid class 81% 78%
SAT Math 477 (80) 553 (81)
SAT Verbal 481 (90) 509 (99)
HS GPA 3.53 (0.32) 3.47 (0.46)
Took calculus? (AP) 34% (28%) 40% (26%)
Took statistics? (AP) 31% (16%) 33% (14%)
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CHAPTER 3

Simulation Study: Ensemble Learning

Validation

3.1 Introduction and Motivation

Observational studies are at the heart of data analytics for institutional and

student success research. With these studies comes a lack of randomization and

therefore biased causal inferences from potential confounding variables.

Randomized experiments would normally be our go to solution, but due to ethical

reasons are not applicable for institutional research. In order to interpret accurate

treatment effects from an observational study we look to matching techniques.

Matching pairs a treated subject with a non-treated subject that have the nearest

propensity score, the probability that a subject will receive the treatment which are

based on the subject’s observed covariates. These pairings balance characteristics

among subjects and helps to control selection bias (Rosenbaum and Rubin, 1983).

In 2017 San Diego State University ran a pilot study for Supplemental

Instruction (SI) as an intervention for at risk students in bottleneck courses on

campus. SI, based on the model engineered at the University of Missouri-Kansas

City in 1973, allows students to voluntarily enroll in a supplemental peer guided

course that meets twice a week outside of class, and follows the main course in

subject matter. SI gives students the opportunity to discuss topics, work problems,
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and ask questions in a more intimate group setting (Martin and Arendale, 1993;

Dawson et al., 2014). It was important to analyze the treatment effects for this

intervention to assess improvement of student success in the bottleneck courses.

Dawson et al. (2014) summarize that SI participation improves mean exam scores

and decreases course failure, but offer the caveat that due to the voluntary nature of

SI these findings are based on observational studies and not randomized controlled

trials. Guarcello et al. (2017) expands this idea stating that “self-selection may

bias commonly practiced analyses towards positive intervention effects” and gives

the example of “already higher performing students disproportionately attending SI

sessions which could have, in and of themselves, no significant positive effects.” To

account for volunteer bias, that may influence SI’s intervention effect, matching was

used to match those who attended SI with those who did not.

After balancing the treatment and control group’s covariates through

matching we showed “the odds of passing the course (i.e., final course grade of C or

better) for students who attended at least one SI Session were 2.2 times higher

than those who did not attend any SI Sessions (n = 299; p value = 0.006; 95% CI

of 1.3–3.8)” and “students who attended two or more SI Sessions were 2.8 times

more likely to pass the course than those who did not (n = 196; p-value = 0.03;

95% CI of 1.2–6.9)” (Guarcello et al., 2017).

With the success of the SI pilot study and the corresponding paper,

Guarcello et al. (2017), we have pushed to further improve how students are

matched for institutional research. The aforementioned study used simple

propensity scores estimated by logistic regression to match treated and control
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subjects. We propose looking beyond logistic regression, to other models, to

enhance propensity score estimation, adding propensity score weighting to better

estimate the treatment effect, and include truncation and stabilization methods to

further improve weighting (Austin, 2015). These methods provide an alternative to

logistic regression, when logistic regression struggles with interactions and

non-linearities (He et al., 2018), and large number of covariates affect propensity

score estimation accuracy (McCaffrey et al., 2005). We will evaluate these

refinements through a simulation study. Wrapping these matching techniques in

accessible software, a R (R Core Team, 2020) package, for educational researchers

and any persons analyzing observational studies in general.

Ensemble learning methods have proven to be a useful tool in analyzing

treatment effects within student success studies as shown in Beemer et al. (2017),

which is presented in Chapter 2. In the article, an ensemble learner leverages a

group of base learners, statistical models, by weighting and combining the

predictions from each base learner to obtain an overall better prediction for the

true outcome. These ensemble learner predictions allow for treatment effects to be

computed, and give the researcher the ability to identify at risk students within the

study. With the previous success of ensemble learning methods over individual base

learners, we propose to add an ensemble learner as a third model for propensity

score estimation. An ensemble learner should provide more accurate propensity

score estimation translating to better treatment effect estimation through matching

and weighting methods.

3.2 Methods: Ensemble Learner
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In Beemer et al. (2017) and Chapter 2 the ensemble learner uses a mix of

stacked generalization and stacked regression. Using cross-validation and looping

over the data, each observation has its own prediction from each individual learner.

Based on the literature of Wolpert (1992), Breiman (1996) and LeBlanc and

Tibshirani (1996), the ensemble weights the predictions from the individual learners

using a ridge regression. Ridge regression uses a penalty function to minimize

coefficients of covariates that are weak predictors of the outcome (James et al.

2013, Chapter 6). In this case, the predictions from the individual learners are the

covariates and the coefficients act as the weights, which in linear combination

become the ensemble learner.

We present an updated version of the ensemble learner presented in Beemer

et al. (2017) and Chapter 2. The ensemble learning method starts with k-fold

cross-validation: randomly split the data into subsets of size k, removing one subset

and training the base learners on the remaining subsets. The trained base learners

are then used to make predictions for the subset that was removed. This ”leave one

out” method is repeated using the next subset until predictions are made for all

observations. The predictions are then stacked, but instead of using a ridge

regression to weight the predictions, as described above from Beemer et al. (2017),

a random forest approach is used to regress the true outcome against the

predictions. We mention in Chapter 2 that the ensemble learner presented the best

predictive performance across each outcome measure considered, but only slightly

out-performed the base learners. We look to use random forest as our new

ensemble learner to improve the ensembles overall performance. In medical research
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random forest has proven to be a reliable meta-learner (Wang et al, 2018), and a

good alternative to regression methods in educational research (Spoon et al., 2016;

He et al., 2018).

Algorithm 3 Ensemble Learner

1. Randomly partition data into cross-validation subsets, size k.

2. Leave one subset out as test set, remaining subsets are the training set.

3. Train base learners on training set.

4. Predict test set using trained base learners.

• Repeat steps 2-4 leaving out a different cross-validation subset as the test
set.

• Continue until all cross-validation subsets have been the test set only once,
and have predictions.

5. Stack predictions from each base learner in a data frame.

6. Weight the stacked predictions from the base learners using a random forest.

7. Weighted predictions become the final ensemble learner prediction.

We add the ensemble learner as a third model to compare propensity score

estimation for matching and weighting methods. The ensemble will have the ability

to weight the predictions from logistic regression, random forest, boosting, bagging,

k-nearest neighbor, support vector machines, neural networks, and naive Bayes. A

weighted combination of these base learner predictions should provide a more

accurate propensity score estimation than any one base learner.
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3.3 Methods: Matching

3.3.1 Propensity Score Matching (PSM)

Propensity scores, ei, are the probability of a subject’s assignment to a

treatment, while taking into account the subjects characteristic variables,

ei = P (Z = 1|X).

Here Z is a binary indicator of whether a subject is in the treatment group (Z=1)

or not (Z=0) and X represents all observed inputs. Propensity scores rely on two

primary assumptions. First, treatment assignment is independent of the outcome

conditional on the observed covariates,

(Y (1), Y (0))q Z|X

where Y(1) and Y(0) are the possible subject outcomes for the treatment and

control groups. This assumption is known as the “no unmeasured cofounders”

assumption, meaning that all variables that affect the outcome and treatment

assignment have been measured. Second, every subject has a probability of

receiving the treatment greater than zero,

0 < P (Z = 1|X) < 1.

Together the two assumptions establish if the treatment assignment is strongly

ignorable. Conditioning on the propensity score supports obtaining unbiased

average treatment effect estimates (Rosenbaum and Rubin, 1983). Propensity

scores can be used to estimate treatment effects for observational studies, and
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propensity scores act as a balancing score. As a balancing score, treated and

control subjects with similar propensity scores will have similar characteristic

variables (Rosenbaum and Rubin, 1983). The propensity score method entails the

following steps. First estimate the propensity score for each subject via a predictive

model such as logistic regression or random forest. Second, starting with a random

treated subject, match that subject to the nearest neighbor propensity score from

the control group, and remove that control subject from the pool of future matches.

We continue this matching until all treated subjects are matched with a control

subject. The final matched set will have an equal number of treated to control

subjects, with a goal of having a balanced distribution of covariates for both

treated and control groups.

Logistic regression is typically used to estimate propensity scores where

treatment status is regressed on a set of observed covariates (Austin, 2005).

Logistic regression is a strong tool for statistical analysis, however as McCaffrey, et

al. (2005) points out, large numbers of covariates tend to hurt its ability to

accurately estimate propensity scores, as a result of multi-collinearity.

Non-linearities and interaction terms can also increase the number of covariates and

can add to over-fitting if iterative model building and variable selection are not

performed, further affecting propensity score estimation. Due to many

demographic variables in institutional research, this can be a common hurdle in

analysis. In order to account for large amounts of covariates, interactions, and

non-linear terms we look to the use of random forests. Random forests have shown
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great success in educational research and for analyzing student success from

pedagogical interventions (Spoon et al., 2016; He et al., 2018).

Random forest selects subsets of training data to grow individual trees by

using bootstrap aggregation. Then at each split, in a tree, a small subset of

covariates are chosen randomly, from which a single covariate is selected to create

the decision rule at that split. Each split within a tree is binary and leads to

another split or terminal node. The individual trees continue to grow until the

terminal nodes are homogeneous, a preset tree depth is met, or a minimum number

of observations is reached in a terminal node. This process is repeated to grow

many trees, which becomes the forest. From this forest, the response variable is

predicted as a majority vote or average, for classification or regression respectively,

of the predictions from all the trees (Brieman, 2001). Unlike logistic regression,

random forest is unaffected by interactions and non-linearities as a result of the

binary splits, and by taking bootstrapped samples for each tree, over-fitting is

reduced (Lee, 2010).

3.4 Methods: Weighting

Austin and Stuart (2015) offers inverse probability of treatment weighting,

variance stabilization, and truncation of weights as ways to better estimate

treatment effects in observational studies. These methods give an educational

researcher alternatives to propensity score matching, while still accounting for

observed covariates in the study. This section will walk-through the three

propensity score weighting methods.
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3.4.1 Inverse Probability of Treatment
Weighting

Inverse probability of treatment weighting (IPTW) adjusts the

under-represented and over-represented subjects within the control and treatment

groups by assigning weights,

wi =
Zi
ei

+
1− Zi
1− ei

where Zi and ei are the treatment indicator and propensity score (i = 1, . . . , n, for

n of observations), respectively. IPTW gives higher weights to those in the

treatment group with low propensity scores and those in the control group with

high propensity scores, giving a more accurate estimation of the treatment effect

(Rosenbaum, 1987). We propose to use IPTW in combination with regression

models, as referenced in Austin (2015), to improve estimation of causal treatment

effects compared to propensity score matching.

3.4.2 Variance Stabilization of Weights

When the propensity scores are small in the treatment group and close to

one in the control group, IPTW will assign a large weight to those subjects. Thus a

small group of subjects carry a large proportion of the propensity score weight

leading to potentially poor treatment effect estimation. To account for the increase

in variability, we stabilize the weights by multiplying the treatment indicator, Zi by

the marginal probability of treatment, Pr(Z = 1), and control, Pr(Z = 0), in the

overall sample (Austin, 2015). The adjusted weight is

wi =
ZiPr(Z = 1)

ei
+

(1− Zi)Pr(Z = 0)

1− ei
.
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3.4.3 Truncation of Weights

Lee, Lessler, and Stuart (2011) proposes trimming or truncating the weights

assigned by IPTW, again to account for large weights being assigned to small or

close to one propensity scores within treatment and control groups, respectively.

The truncation is done by designating a minimum and maximum threshold, and if

weights exceed the threshold they are set to that threshold (Austin, 2015). We

chose a threshold of the 10th and 90th percentiles to truncate the propensity score

weights, after evaluating minimizing bias at different thresholds.

3.4.4 Methods Summary

The simulation study, described in the following section, will assess the

different options that will be available to practitioners in the MatchED R-package.

Logistic regression, random forest, and an ensemble learner will be available for

propensity score matching, inverse probability of treatment weighting, variance

stabilization of weights, and truncation or trimming of weights. This assessment

will guide the input and parameter settings relevant to users.

3.5 Simulation Study and Design

We use a simulation study to evaluate propensity score matching and

weighting, looking beyond logistic regression and random forest to an ensemble

learner, and adding truncation and variance stabilization methods to improve

weighting, all to better estimate treatment effects. In this section we explain how

the data is generated and the measures of interest we look at to evaluate treatment
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effect estimation. We present results from the study, and offer recommendations on

model choice for treatment effect estimation.

3.5.1 Data Generation

Data generation follows previous work by Hallett (2014), Setoguchi et al.

(2008), and Su (2006). Eight covariates (x1 to x8) were simulated to represent

possible variable types in real world studies. These covariates were generated as

follows:

• x1 is generated from a Bernoulli distribution with probability of success
p=0.5.

• x2 is a nominal variable with 5 levels (A, B, C, D, E), with probabilities
(10%, 20%, 30%, 20%, 20%).

• x3, x4 are generated from a discrete uniform distribution from 0 to 1 with
intervals of 0.2, making them ordinal variables with 5 levels (0.2, 0.4, 0.6, 0.8,
1.0), with equal probabilities.

• x5 to x8 are generated to be continuous variables from a discrete uniform
distribution from 0 to 1 with intervals of 0.02.

A binary treatment status (Z) is generated from a Bernoulli distribution

with parameter p, which is the true propensity score. The true propensity score

was estimated using a logistic regression,

P (Z = 1|X) =
1

1 + e−βf(x)
,

where the function f(x) is based on models found in Setoguchi et al. (2008).

Setoguchi et al. presents seven models that use covariates in varying scale of

additivity and linearity, integrating different interaction terms, to determine

probability of treatment selection. For this simulation study four models from

Setoguchi et al. and a fifth model containing three-way interactions and
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non-linearity terms were adopted to estimate the true propensity score. The five

treatment selection models are as follows:

• Model A: Additivity and linearity (main effects only)

P (Z = 1|X) = (1 + exp[−(β0 + β1X1 + β2X2 + β3X3 + β4X4 + β5X5+

β6X6 + β7X7 + β8X8)])
−1

• Model B: Moderate non-linearity (three quadratic terms)

P (Z = 1|X) = (1 + exp[−(β0 + β1X1 + β2X2 + β3X3 + β4X4 + β5X5+

β6X6 + β7X7 + β8X8 + β9X
2
3 + β10X

2
5 + β7X

2
7 )])−1

• Model C: Mild non-additivity (four two-way interaction terms)

P (Z = 1|X) = (1 + exp[−(β0 + β1X1 + β2X2 + β3X3 + β4X4 + β5X5+

β6X6 + β7X7 + β8X8 + β9X3X4 + β10X4X5+

β11X5X6 + β12X6X7)])
−1

• Model D: Moderate non-additivity and non-linearity (ten two-way interaction
terms and three quadratic terms)

P (Z = 1|X) = (1 + exp[−(β0 + β1X1 + β2X2 + β3X3 + β4X4 + β5X5+

β6X6 + β7X7 + β8X8 + β9X
2
3 + β10X

2
5 + β7X

2
7+

β12X3X4 + β13X4X5 + β14X5X6 + β15X6X7+

β16X7X8 + β17X3X8 + β18X5X7 + β19X4X8+

β20X3X5 + β21X6X8)])
−1

• Model E: Severe non-additivity and non-linearity (six two-way interaction
terms, four three-way interaction terms and one quadratic term, one cubic
polynomial and one square root term)

P (Z = 1|X) = (1 + exp[−(β0 + β1X1 + β2X2 + β3X3 + β4X4 + β5X5+

β6X6 + β7X7 + β8X8 + β9X
2
4 + β10X

2
6+

β11
√
X8 + β12X3X4 + β13X4X5 + β14X5X6+

β15X6X7 + β16X7X8 + β17X3X8 + β18X3X5X7+

β19X4X6X8 + β20X3X4X5 + β21X6X7X8)])
−1
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Model coefficients were corrected to keep treatment selection around 25% for

all five models. This is the average percent of treatment selection found in the

Supplemental Instruction study with which we are motivating our methods and

software.

Table 3.1. Coefficients Used for Each Covariate Model

Model β0 β1 β2 β3 β4 β5 β6 β7 β8 β9 β10
A -0.5 -0.5 1.2 -1.0 -0.62 -0.7 -0.4 0.6 0.2
B -0.5 -0.5 -1.2 -1.2 -0.72 0.7 0.4 0.6 0.2 0.3 -0.4
C -0.5 -0.5 -1.2 -1.2 -0.72 0.7 0.4 0.6 0.2 0.3 -0.4
D -0.5 -0.5 -1.2 -1.2 -0.72 0.7 0.4 0.6 0.2 0.3 -0.4
E -0.5 -0.5 -1.2 -1.2 -0.72 0.7 0.4 0.6 0.2 0.3 -0.4

Model β11 β12 β13 β14 β15 β16 β17 β18 β19 β20 β21
A
B 1.1
C 1.1 0.46
D 1.1 -0.2 0.42 -0.8 0.9 -1 0.32 -0.45 0.36 -0.47 0.35
E 1.1 -0.2 0.42 -0.8 0.9 -1 -0.32 -0.45 -0.36 0.47 0.35

Two sets of continuous outcomes were calculated using the covariates and

treatment status, as previously detailed, using a simple linear model,

• Model 1:

Y = α00 + α0Z + α1X1 + α2X2 + α3X3 + α4X4+

α5X5 + α6X6 + α7X7 + α8X8 + ε,

and a more complex model that incorporates non-linear and two-way
interaction terms,

• Model 2:

Y = α00 + α0Z + α1X1 + α2X2 + α3X
2
3 + α4X

2
4+

α5lnX5 + α6

√
X6 + α7X7X8 + α8X3X7 + ε,

where ε ∼ N(0,1). These two models allow us to evaluate treatment effect

estimation for simple and complex data. The true treatment effect α0 and other
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coefficients in Models 1 and 2 are defined in Table 3.2. The coefficients for the

outcome models were set to simulate strong and weak covariate effects, while still

keeping the treatment effect strongest.

Table 3.2. True Treatment Effect (α0) and Other Outcome Model Coefficients
(α00, α1, . . . , α8)

α00 α0 α1 α2 α3 α4 α5 α6 α7 α8

0.5 1.5 0.5 0.3 0.7 0.6 0.1 -1.2 -0.5 -1.0

The simulation study consists of eight covariates and ten models (5

treatment selection models each with 2 outcome models). The simulation was ran

twice: each of the 10 models has 100 data sets simulated with first a sample size of

n = 500 and second with a larger sample size of n = 1000.

3.5.2 Measures of Interest

The simulation study focuses on minimizing three measures of interest:

standardized absolute mean difference as a percentage (SMD), for matching only,

bias, and mean squared error (MSE).

The first step in evaluating a “good match” from propensity score matching

is the balance correction for covariates between the treatment and control groups.

SMD gives us a percentage difference between the treatment and control group

covariates after the groups have been matched. SMD is calculated as

SMD =
|Xctrl −X trt|√

s2ctrl+s
2
trt

2

∗ 100

where X is the sample mean and s2 is the sample variance. Bias is calculated by,

bias = α̂0 − α0
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where α̂0 is the estimated treatment effect and α0 is the true treatment effect. The

primary performance measure to evaluate different matching and weighting

techniques will be MSE because it takes into account bias,

MSE = SE2 + bias2 or
n∑
i=1

(α̂0 − α0)
2

N

where n and N are the sample size and number of iterations, respectively, and

standard error is the standard deviation of α̂0.

3.5.3 Simulation Results

Simulation Sample Size: n = 500

Propensity scores were predicted from logistic regression, random forest, and an

ensemble learner for the true propensity score models A-E, and from these

predictions a mean squared error (MSE) was computed. Table 3.3 shows that the

ensemble learner performs better than random forest and logistic regression for

every treatment selection model. Ensemble learning propensity score prediction

performance, especially for more complex models, support the idea of using an

ensemble learner over random forest or logistic regression for propensity matching

and weighting techniques.

Table 3.3. Logistic Regression, Random Forest, and Ensemble Learner Propen-
sity Score MSE for Models A-E (n = 500)

A B C D E
LR 0.041 0.052 0.054 0.048 0.047
RF 0.039 0.048 0.049 0.044 0.044
EL 0.018 0.017 0.017 0.017 0.018
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As mentioned above, we use SMD to measure balance between treatment

and control group covariates after matching. Tables 3.4 and 3.5 show the SMD

before matching, after matching using logistic regression, random forest, and

ensemble learning for models A-E. Logistic regression, random forest, and ensemble

learning matching reduced the SMD for all five treatment selection models,

compared to before matching. Austin et al. (2007) notes that a standardized mean

difference greater than 10% suggests an imbalance in a covariate. Balance is

achieved by matching with all three propensity score estimation models. Overall,

SMD largely decreased from before to after matching with logistic regression,

random forest, and the ensemble learner, meaning covariate balance did improve

between treatment and control groups.

Table 3.4. Model A, B, and C: Covariate Balance Percentages (n = 500)

Model A Model B Model C
Covariate Before LR RF EL Before LR RF EL Before LR RF EL

x1 21.7 5.4 6.4 6.1 22.7 6.3 9.0 5.8 23.4 5.6 8.5 6.1
x2 22.2 4.9 5.6 6.7 25.0 6.9 7.1 6.8 24.5 4.8 6.4 6.0
x3 25.5 5.2 6.4 6.0 22.7 5.3 6.9 7.0 25.1 6.4 6.4 5.4
x4 16.2 5.6 6.7 5.9 18.4 6.1 5.2 4.8 19.6 5.9 6.4 5.7
x5 18.7 4.7 6.9 5.7 11.0 5.7 5.6 5.3 29.2 6.6 6.1 6.6
x6 12.8 5.4 6.1 5.5 13.6 5.9 5.9 5.8 31.4 6.6 6.6 6.5
x7 17.8 4.5 6.2 5.4 47.1 8.1 9.3 8.0 19.9 5.4 6.3 6.4
x8 7.8 5.0 5.5 4.6 8.1 5.1 5.8 5.3 9.3 5.0 5.5 5.6

mean 17.8 5.1 6.2 5.7 21.1 6.2 6.9 6.1 22.8 5.8 6.5 6.0

Table 3.6 outlines the measures of interest (bias and MSE) for matching,

inverse probability of treatment weighting, variance stabilization, and weight

truncation for logistic regression, random forest, and ensemble learning propensity
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Table 3.5. Model D and E: Covariate Balance Percentages (n = 500)

Model D Model E
Covariate Before LR RF EL Before LR RF EL

x1 22.7 5.7 8.3 6.6 22.0 5.3 8.8 7.3
x2 26.7 6.0 6.9 7.0 25.5 5.6 7.0 6.0
x3 26.4 5.9 6.9 6.3 38.2 7.6 7.4 6.8
x4 10.0 5.4 5.7 5.9 9.5 5.0 5.5 5.6
x5 11.1 6.1 6.6 5.6 14.9 5.8 5.5 5.0
x6 19.1 6.7 6.4 6.5 17.7 4.7 5.4 5.4
x7 38.0 6.5 9.1 6.7 13.6 5.6 5.8 4.8
x8 9.7 5.6 6.1 6.0 11.8 5.6 5.9 5.7

mean 20.5 6 7 6.3 17.9 5.6 6.4 5.8

score estimation. These results offer comparisons between models, logistic

regression, random forest, and ensemble learning, and between matching and

weighting.

We look first at the performance, MSE, of propensity score estimation

models within matching and weighting techniques. The ensemble learner

outperforms, smallest MSE, logistic regression and random forest the majority of

the time for matching, IPTW, and variance stabilization, and always outperforms

logistic regression and random forest for weighting with truncation and variance

stabilization with truncation. Now looking across all matching and weighting

techniques, the ensemble learner boasts the lowest MSE for every treatment

selection model A-E and for both outcomes. As we implement matching and

different weighting techniques, we see in Table 3.6 that the lowest MSE for

treatment effect estimation consistently comes when utilizing weighting with

truncation or variance stabilization with truncation.
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Simulation Sample Size: n = 1000

As we increase the sample size from 500 to 1000, logistic regression, random forest,

and the ensemble learner predict true propensity scores for Models A-E with

smaller MSE compared to the sample size of 500. Table 3.7 shows that the

ensemble learner outperforms logistic regression and random forest for all Models

A-E for predicting true propensity score as the outcome.

Table 3.7. Logistic Regression, Random Forest, and Ensemble Learner Propen-
sity Score MSE for Models A-E (n = 1000)

A B C D E
LR 0.039 0.049 0.052 0.045 0.045
RF 0.041 0.049 0.05 0.045 0.047
EL 0.017 0.016 0.015 0.015 0.017

The covariate balance after matching for logistic regression, random forest,

and the ensemble learner shows a good balance with all SMD below a 10%

difference between treatment and control groups, for all models A-E in Table 3.8

and 3.9. Again we see a large decrease in SMD from before to after matching. The

largest decrease in SMD for most individual covariates comes from matching using

propensity scores estimated by the ensemble learner.
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Table 3.8. Model A, B, and C: Covariate Balance Percentages (n = 1000)

Model A Model B Model C
Covariate Before LR RF EL Before LR RF EL Before LR RF EL

x1 23.5 3.9 5.0 4.7 21.4 4.4 7.2 4.3 21.3 4.3 7.9 4.8
x2 22.4 3.5 4.8 6.3 25.4 3.7 6.7 6.4 25.1 3.8 6.4 5.6
x3 26.3 3.8 6.1 4.9 20.1 4.0 4.6 4.2 24.5 4.9 5.5 4.6
x4 15.2 3.5 4.1 4.6 18.2 4.6 5.4 4.2 20.8 4.5 5.3 4.8
x5 17.2 3.4 6.6 4.0 9.1 3.9 4.2 4.0 28.2 4.8 4.8 4.7
x6 11.1 3.8 5.0 3.9 10.1 3.4 4.5 4.6 32.3 5.3 5.7 5.1
x7 16.9 3.9 5.1 4.0 44.7 6.7 7.2 5.8 21.7 4.8 4.5 5.0
x8 7.9 3.8 4.4 3.8 7.5 3.4 3.9 4.7 7.0 3.8 3.7 3.7

mean 17.5 3.7 5.1 4.5 19.6 4.2 5.5 4.8 22.6 4.5 5.5 4.8

Table 3.9. Model D and E: Covariate Balance Percentages (n = 1000)

Model D Model E
Covariate Before LR RF EL Before LR RF EL

x1 22.6 3.9 7.6 4.6 22.3 4.6 7.1 5.0
x2 25.2 3.8 7.5 7.5 26.3 4.1 8.5 6.9
x3 25.9 4.4 5.5 4.9 37.7 5.5 7.3 5.5
x4 8.9 3.9 4.1 3.9 7.9 3.5 3.6 4.2
x5 10.4 4.1 4.2 3.7 15.3 4.5 4.6 4.4
x6 17.3 4.7 4.2 4.2 4.9 4.0 4.1 4.0
x7 37.7 5.8 7.1 5.7 12.4 3.9 4.3 4.2
x8 8.2 4.3 4.0 4.0 9.1 4.1 3.6 4.0

mean 19.5 4.4 5.5 4.8 17.0 4.3 5.4 4.8
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From Table 3.10 we can see that using truncation, whether truncating

weights or variance stabilization truncation, results in estimated treatment effects

with the lowest MSE. For estimation models the ensemble learner out performs

logistic regression and random forest for the majority of treatment effect

estimation. The ensemble learner outperforms the other two propensity score

estimation models for all treatment selections models A-E and for both types

outcome models, simple linear and a more complex model. With the larger sample

size of n=1000 we do see an overall decrease in MSE for treatment effect estimation

across logistic regression, random forest, and the ensemble learner. We see that as

the sample size becomes larger the distinction between propensity score estimation

models, between matching or weighting, and whether to truncate or to not.

3.5.4 Recommendations From Simulation

The simulation has shown that using the ensemble learner yields the best

estimates for propensity scores, with the ensemble learner having the lowest MSE

compared to logistic regression and random forest, as shown in both Tables 3.3 and

3.7. The ensemble learner consistently had the lowest MSEs across matching and

weighting methods. Comparing matching, inverse probability of treatment weights,

variance stabilization weighting, and truncation for both inverse probability of

treatment weights and variance stabilization weighting we see that using truncation

with weighting produces the best treatment effect estimates with the lowest MSE.

With these results from the simulation study we recommend the use of an ensemble

learner in conjunction with variance stabilization weighting with truncation.
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CHAPTER 4

An Ensemble Learner for Propensity Score

Matching and Weighting Techniques

4.1 Motivation

A main obstacle in learning analytics is the development of algorithms and

models that come from researchers with learning analytics backgrounds (Gasevic et

al., 2014). With this in mind, as data scientists with backgrounds in institutional

research and learning analytics, we take on the task of developing analytic methods

for institutional researcher. In our development of such analytic methods we take

into consideration that our peers in institutional research have varying backgrounds

and expertise. We aim to make our methods accessible and able to be implemented

by those willing to expand their analytics toolkit.

EDUCAUSE in 2019, as part of their “Student Genome Project”, argues

that student success initiatives and data-driven decision-making are two of the top

priorities to focus on in higher education. We focus our contribution to learning

analytics and educational data mining on student success studies, and the

evaluation and validation of student success interventions. Student success studies

and interventions are a vital part of higher education, especially with the ever

changing learning environments that continues to evolve in pandemic era

conditions.



58

In this chapter, we develop a R-package matchED to wrap the different

matching and weighting techniques, presented in Chapter 3, into a user friendly

software geared towards institutional researchers and higher education researchers

for use in student success studies. The package will give the researcher the

opportunity to try several ways to match or weight their data, and select the

underlying model for propensity score estimation. To illustrate the methods and

matchED R-package, we analyze a real world student success intervention aimed at

underprivileged communities. From the results of the simulation study, in Chapter

3, parameter input recommendations to achieve best model and treatment effect

estimation performance will be used to analyze the study. We exposit this chapter

as a pseudo-manual that explains the functions and parameters available within the

package. For ease of use and to further the accessibility of the package, we present

a package tutorial. This tutorial provides users the ability to walk-through a

student success application of the package to better understand its workings.

4.2 MatchED: Functions and Capabilities

4.2.1 pscorED: Estimating Propensity
Scores

The pscorED function in the MatchED package estimates propensity scores

using logistic regression, random forest, or an ensemble learner chosen by the user.

A propensity score is the probability of treatment assignment given a subject

baseline characteristics (Rosenbaum and Rubin, 1983). A subject’s probability of

treatment should be greater than 0, and users should include as many observed

characteristics as possible to help improve model accuracy.
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• formula: A formula describing the model to be fit, where the response is a
binary treatment indicator and the predictors are pre-treatment baseline
characteristics.

• trt: A binary treatment indicator of whether a subject was treated or not
(should be the response in formula).

• data: A data frame that contains the variables in the model called by
formula.

• model: The model to estimate propensity scores with. “lr” (Logistic
Regression), “rf” (Random Forest), “el” (Ensemble Learner) are the current
model options.

• ensemble: The list of models to use as base learners to build the ensemble
learner. Base learners: “lr” (Logistic Regression), “rf” (Random Forest), “bt”
(Boosting), “bg” (Bagging), “svm” (Support Vector Machine),“nb”
(Naive-Bayes), “knn” (K-Nearest Neighbor), and “nn” (Neural Network) are
current base learners available.

• kfold: The number of folds for cross-validation. i.e., if kfold is 10, 10-fold
cross-validation will be used.

The user has many options to modify the ensemble learner by choosing

different subsets of base learners, and computational speed can be adjusted by

increasing or decreasing the number of k-folds used during cross-validation. The

function outputs a vector of propensity scores, size n, where n is the number of

subjects in the data provided by the user.

4.2.2 matchED: Propensity Score Matching

The matchED function in the MatchED package is used to match data using

the MatchIt package (Ho et al., 2007) and propensity scores found using the

function pscorED to create a matched set. This pre-processing balances baseline

characteristics between the treated and control groups, mimicking a
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pseudo-randomization of treatment assignment and allowing for causal inference

from further analysis (Rosenbaum and Rubin, 1983).

• formula: A formula describing the model to be fit, where the response is a
binary treatment indicator and the predictors are pre-treatment baseline
characteristics. The formula must be fully typed out even if all variables are
to be used from the data; i.e., “∼.” will not work.

• data: A data frame that contains the variables in the model called by
formula.

• ps: A vector of propensity scores from the function pscorED.

Although the function asks for propensity scores from pscorED, users can

provide their own propensity scores given the vector they provide is the same

length as the data provided and the values within the vector are between 0 and 1.

The matchED function outputs a data set with each treated subject matched to a

control subject by the nearest propensity score. Every treated subject will be

matched with a single control subject. matchED prints a balance check between the

treated and control groups for the baseline characteristics, so the user can verify

balance was achieved through propensity score matching.

4.2.3 weightED: Weighting Propensity
Scores

The weightED function in the MatchED package calculates inverse

probability of treatment weights, variance stabilization weights, or truncated

weights to be utilized for treatment effect estimation.

• trt: A binary treatment indicator of whether a subject was treated or not.
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• trt.value: The value used to represent the treated group within the trt

variable. For instance “1” indicates treated and “0” indicates not treated in a
binary 0/1 treatment variable.

• ps: A vector of propensity scores from the function pscorED.

• method: The type of weights to be calculated. “IPTW” (Inverse Probability
of Treatment Weighting), “Var Stab” (Variance Stabilization Weighting) are
currently available.

• truncate: A logical argument that when TRUE will truncate the weights
specified by method, using a user specified threshold.

• threshold: A two value vector, probabilities between [0, 1], with the lower
bound and upper bound for the threshold to be used to truncate.

The function outputs a vector of weighted propensity scores, size n, where n

is the number of subjects in the data provided by the user.

4.2.4 treatED: Estimating Treatment Effects
Using Propensity Scores

The treatED function in the MatchED package estimates treatment effects

using linear regression or logistic regression and provides the option to use

propensity scores as weights to better the estimation.

• y: A vector of response data. If a factor, logistic regression will be used for
classification, otherwise linear regression will be used.

• x: A data frame of predictors.

• trt: A binary treatment indicator of whether a subject was treated or not.

• weighting: A logical argument, if set to TRUE will perform weighted linear
regression using provided weights. When FALSE, the default, normal
ordinary least squares linear regression will estimate the treatment effects.

• weights: A vector of weights from weightED to be used for weighted linear
regression
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• level: The confidence level, in decimal form, to be used for the confidence
interval of the treatment effect estimate.

The function outputs a treatment effect used to draw conclusions on the

effectiveness of the treatment. Note that if y is a factor then the treatment effect

will be an odds ratio. The output also includes a p-value and the confidence

interval for the treatment effect.

4.3 MatchED Tutorial

With the MatchED package’s functions and parameters listed and defined

above, we will guide the package user through a short tutorial that will show each

function in action. To start the practitioner should have data that is ready to be

analyzed, meaning it has been collected properly, organized, missing data has been

addressed (it should be a complete data set), and “cleaned” to ensure analysis

results are valid and accurate. To clarify the data must be appropriately formatted

to be used by the functions. The data should be c by n, where c is the number of

predictors plus the treatment variable, and n is the sample size. Both the trt and

y vectors should be length n and should correspond with the rows in data, i.e, the

first y and trt value should be the outcome and treatment indicator for the first

subject in data. For the tutorial we will use a set of simulated data that an

institutional researcher might gather for a student success study.

The first step will be to estimate propensity scores, the probability the

subject will receive the treatment; for this the researcher will use pscorED. As

detailed above in Section 4.2.1, the researcher will need to provide a formula that

describes the model to be fit, where the response is the binary treatment indicator
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and the predictors are the pre-treatment baseline characteristics of the subjects in

the study. They then must specify the name of the treatment indicator, trt, and a

data frame that holds the data for the model, data. The data frame for data

should include as many pre-treatment observed characteristics as possible. The

researcher has the freedom of choosing logistic regression, random forest, or the

ensemble learner as the model to estimate propensity scores, and if they choose the

ensemble learner they must further list the base learners in ensemble. By default

all base learners will be used and might cause an increase in computational time

depending on the size of the user’s data. The user can specify any k-fold cross

validation they would like to use, by default 10-fold cross validation is performed.

In the example code below the formula is our binary treatment indicator

regressed on all other predictors in our data, trt is the indicator

“Stud Succ Interv”, data set as “tutorial data”, we have chosen to use the

ensemble learner as our model, all base learners besides logistic regression will be

used for the ensemble learner, and the default 10-fold cross validation is performed.

pscores <- pscorED(formula = Stud_Succ_Interv ~ .,
trt = tutorial_data$Stud_Succ_Interv,
data = tutorial_data,
model = "el",
ensemble = c("rf","bt","bg","nb","knn"),
kfold={10})

pscorED outputs a vector of propensity scores, in the example code stored in

the variable pscores, that can now be used by matchED and weightED, depending

on the user’s choice.
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With the propensity scores calculated we look at the function matchED to

create a set of matched data. The matching process is described in detail in Section

3.3.1. As explained in the formula description for matchED the formula must be

written out containing the binary treatment indicator regressed on all

pre-treatment predictors. In the code below the pre-treatment variables are sex,

age, high school GPA, an indicator if a student is first generation, SAT score, an

indicator if a student is an under-represented minority, an indicator if a student is a

STEM major, and the number of college units accumulated during high school.

data is again specified to be “tutorial data”, and we insert pscores, created above,

as the propensity scores, ps, to be used to match the data.

matched_data <- matchED(Stud_Succ_Interv ~ Sex + Age + HS_GPA +
First_Generation + SAT +
URM + STEM + College_Units,

data = tutorial_data,
ps = pscores)

matchED will store a data set of matched subjects, in this case in

“matched data”, and will automatically output a summary of balance for all data,

balance for matched data, the percent balance improvement, and the sample sizes

for the control and treated groups. This output allows the user to assess the

balance between the treated and control groups before and after matching. The

variable means between control and treated groups should have smaller differences

after matching (Rosenbaum and Rubin, 1983). This output details, in the “Sample

sizes” section, that all 109 treated subjects were matched and 282 control subjects
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were not matched, therefore the size of the matched data set will be 109 treated

subjects matched to 109 control subjects for a total of 218 subjects.

As a parallel to using matchED the researcher might want to calculate

propensity score weights using weightED. In the code below the trt.value is the
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value within the vector that defines if a subject is treated, in our case the value is

‘1’. The user can choose either inverse probability of treatment weighting or

variance stabilization weighting with the method parameter, and can choose

whether the weights should be truncated, using the truncate parameter. If

truncate is set to “TRUE” the user specifies their own threshold or uses the

default, (0.1, 0.9), corresponding to the 10th and 90th percentile. The calculation of

both types of weights and truncation are described in detail in Sections 3.4-3.4.3.

weighting <- weightED(trt = tutorial_data$Stud_Succ_Interv,
trt.value=’1’,
ps = pscores,
method = "Var Stab",
truncate = TRUE,
threshold = c(0.1,0.9))

We now have a matched set of data, “matched data”, and a set of weights,

“weighting”, that can be used to estimate a treatment effect. For this example we

look at the treatment effect the student success intervention has on students’

semester GPA, labeled “Term GPA”. Whether the user decided on propensity

score matching or weighting treatED is used for both to estimate treatment effects.

For both cases the response variable, y, will be “Term GPA”. The other

parameters differ slightly for propensity score matching and weighting.

We look first at the case where propensity score matching was done. We

specify the predictors, x, as “matched data”, the trt is the binary treatment

indicator column in “matched data”, weighting will be “FALSE”, and we will

specify a confidence level, level.
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We then look at the case where propensity score weighting was done. We

specify the predictors, x, as “tutorial data”, the trt is the binary treatment

indicator column in “tutorial data”, weighting will be “TRUE”, we will then

input the weights, weighting, and again specify a confidence level, level.

TE_Matching <- treatED(y = Term_GPA,
x = matched_data,
trt = matched_data$Stud_Succ_Interv,
weighting = FALSE,
level = 0.95)

TE_Weighting <- treatED(y = Term_GPA,
x = tutorial_data,
trt = tutorial_data$Stud_Succ_Interv,
weighting = TRUE,
weights = weighting,
level = 0.95)

treatED outputs a treatment effect coefficient, p-value for the coefficient,

and a confidence interval for the coefficient. If the response variable used in

treatED is continuous, as is in the example above, then the coefficient can be

interpreted as an increase/decrease in the response for those who participated in

the student success intervention. On the other hand if the response variable is a

binary indicator then the coefficient will be interpreted as an odds ratio for those

that participated in the student success intervention. Looking at the example

output below the treatment effect coefficient is 0.4 with a p-value of 0.002 and a

95% confidence interval of 0.145, 0.665. We say that those students that

participated in the student success intervention had on average a significant

increase of 0.4 in their semester GPA compared to those students that did not

participate in the intervention, accounting for all other possible factors.
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Estimate Pr(>|t|) 2.5 % 97.5 %

0.404800988 0.002352813 0.144687874 0.664914102

R by default outputs a large number of decimals, we leave it to the user

whether they want to round the output. The round function provides an easy way

to round all output of treatED to the desired decimal place.

4.4 Student Success Case Study

From the California State University fact book, Timothy White, the

Chancellor of the California State University system, states “The California State

University is key to California’s brightest and most hopeful future, opening the

door to educational opportunities for all and transforming the lives of students and

their families.” Keeping this in mind, universities can offer student success

interventions such as supplemental instruction discussed in Chapter 2, which are

offered while the student is currently enrolled, or even pre-enrollment interventions

that aim to help students succeed when the opportunity is not normally available.

We look at one such student success intervention that is aimed for students who

grow up in underprivileged communities and are given a path that optimally could

afford them the opportunity for entrance into higher education.

Table 4.1 presents a comparison of students supported by the student

success intervention and their peers not assisted by the intervention. This snapshot

of a few student background characteristics shows that those in the intervention

have a higher rate of being first generation college students and under-represented

minorities. They have lower mean SAT scores, slightly lower mean high school
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Table 4.1. Summary of Student Characteristics for Treatment and Control
Groups. Mean & (Standard Deviation) Reported for Continuous Variables,
and Percentage Reported for Categorical Variables.

Control Treated
First Generation 15.8% 21.0%

Under-Represented Minority 32.4% 62.9%
SAT Score 1209.1 (156.3) 1145.3 (85.1)

High School GPA 3.7 (0.3) 3.5 (0.3)
Transfer Units 22.3 (26.3) 10.8 (11.2)

GPA, and tend to earn, and transfer, fewer college level course units than their

peers at the university.

Table 4.2 looks at the balance before and after matching, between treated

and control groups. Before propensity score matching the standardized mean

difference are large for Hispanic students, under-represented minorities, incoming

units, first generation students, and SAT score between control and treated. After

propensity score matching the standardized mean difference decreases for all

covariates. Matching in this study does balance some characteristics of the treated

and control groups below the recommended standardized mean difference of 10.

Table 4.2. Standardized Mean Difference Before and After Matching

Covariate Before After
Age 62.8 6.7

Gender 10.4 3.2
Eligibility Index 35.9 25.8

SAT Score 50.8 7.3
High School GPA 32.8 18.4
Incoming Units 57.1 8.3
First Generation 13.3 2.6

Under-represented Minority 64.1 7.7
Hispanic 72.2 15.2
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To evaluate the success of the intervention we look at the effect the

intervention has on students grade point average (GPA) at end of their second

semester at the university, specifically the GPA for courses taken on campus. Table

4.3 has the student success intervention coefficient, aka the treatment effect, and

the associated p-value and 95% confidence interval. Looking at the results using

propensity score variance stabilization weighting with truncation, those students

that participated in the student success intervention had on average a

non-significant increase, at the 0.05 level, of 0.053 in their end of second semester

GPA compared to those students that did not participate in the intervention,

accounting for all other possible factors.

Table 4.3. Student Success Treatment Effect, P-value, and 95% Confidence
Interval From Matching and Variance Stabilization With Truncation

Method Treatment Effect P-value 95% C.I.
Matching 0.063 0.196 -0.033, 0.158

Var. Stab. Trunc. 0.053 0.179 -0.024, 0.130

Normally the results presented in Table 4.3 would be glossed over as

non-significant and a result of a failed student success intervention. However, since

students provided with the intervention are perceived to be at a disadvantage due

to their socioeconomic background, an “on par” result or no significant difference

between students in the intervention and those who are not is a success. This

results show that by participating in the student success intervention they were

able to match their peers in GPA at the end of their second semester.
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4.5 Discussion

With the importance of student success studies and relevant learning

analytics methods in higher education matchED gives institutional researchers a set

of machine learning tools to accurately estimate the effect of their student success

intervention. matchED wraps propensity score matching and weighting techniques

into a user friendly software geared towards higher education researchers for use in

student success studies. The packages gives the researcher the opportunity to try

several ways to match or weight their data, and select the underlying model for

propensity score estimation. The package provides a set of default parameters

based on our evaluations in the previous Chapters. Nonetheless, the experienced

user has the flexibility to tune these parameters based on their specific data on

hand. Propensity scores can be estimated by logistic regression, random forest, or

an ensemble learner that is trained with user chosen base learners. The user can

choose to use propensity score matching or weighting techniques, and choose

whether to truncate their weights for treatment effect estimation. We recommend

using the ensemble learner to estimate propensity scores and to weight using

variance stabilization with truncation to estimate the treatment effect based on

results from our simulation studies.

The package manual explains the functions and parameters, and the tutorial

guides researchers through a simulated student success study analysis. We present

example code and output that offers researchers a look at how matchED should be

utilized.
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Lastly we look at an actual student success study and analyze its effect on

students campus grade point average (GPA) at end of their second semester at the

university. We present student characteristics between treated and control groups

to show the differences in student characteristics. Using matchED, specifying the

use of propensity score variance stabilization weighting with truncation, we find

that students in the intervention have an on par second semester GPA compared to

their student peers. We explain that these findings show a successful student

success intervention, with the intervention being able to bring participants to the

same level of success as their peers at the university.
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CHAPTER 5

Conclusion and Discussion

5.1 Results

We develop an early version of our ensemble learner to predict

individualized treatment effects to assess student success studies of intervention

strategies. The ensemble learner had the best accuracy when predicting a

non-repeatable grade in the course, out-performing all individual base learners used

to create the ensemble learner. Furthermore, when looking at predicting final exam

score and course grade the ensemble learner maintained a lower root mean squared

error, out-performing the base learners again. Using the ensemble learner to predict

individualized treatment effects we show that enrolling in a supplemental

instruction course moderately improves the final exam score and leads to an

increase of almost a half a grade point in final course grade, on average. We offer

that predicting individualized treatment effects for students enrolling in a course, in

future terms, can provide an indicator for students that could be at-risk for failing.

We construct an ensemble learner for estimating propensity scores. We

introduce a simulation study to evaluate the ensemble learner’s performance when

estimating propensity scores and compare propensity score matching and weighting

techniques to best estimate treatment effects for student success studies. Our

simulation study compared logistic regression, random forest, and the ensemble
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learner using treatment selection models that are varying in complexity and with a

sample size of 500 and 1000. Tables 3.3 and 3.7 show that the ensemble learner

best estimated propensity scores, out-performing both logistic regression and

random forest for all treatment selection models. When comparing matching and

weighting techniques, propensity score weighting with truncation performed better

than matching for treatment effect estimation, the majority of the time. Diving

further, weighting using variance stabilization with truncation out-performed other

weighting techniques for estimating treatment effects.

Using the results from our simulation study and the validation for our

ensemble learner we built an accessible and user friendly R-package, matchED.

matchED gives researchers a set of machine learning tools to accurately estimate

propensity scores and treatment effects to efficiently and best analyze their own

student success studies. The package has the capability to estimate propensity

scores, do propensity score matching, calculate propensity score weighting, and

estimate treatment effects. We present a package manual that explains the

functions and parameters available to the user and a tutorial that guides users

through the use of each function, with example code. We use matchED to analyze a

current student success study, that provides a higher education opportunity to

students in under-privileged communities. We used the ensemble learner to

estimate the propensity scores and variance stabilization with truncation to

estimate the effect the intervention had on student’s campus grade point average

(GPA) at end of their second semester. We find that students in the intervention
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have “on-par” grade point averages, at the end of their second semester, with their

peers outside the intervention.

5.2 Challenges

We have shown that an ensemble learner is a strong predictive modeling

tool, out-performing all base learners to estimate ITEs and out-performing logistic

regreession and random forest for estimating propensity scores. That said, given a

library of base learners, ensemble learning approaches can be made

computationally efficient for producing predictions. Furthermore, as mentioned in

Section 2.3.1, applications displaying less correlation between the base learner

predictions, and perhaps larger sample size given the cross-validation steps

required, will realize stronger ensemble predictions. In this sense, our application

may provide a level of worst-case scenario for ensemble learning ITE and

propensity score estimates in education analytics.

The non-randomized treatment assignment in observational studies may

lend to selection bias from imbalance between treatment and control subjects

relative to an unobserved confounder. If this important confounder is not collected

or excluded from modeling, treatment effects will thus not be sufficiently adjusted.

Treatment randomization overcomes this challenge by balancing subjects with

respect to all variables/characteristics except the treatment assignment. However

randomized controlled trials are often not an option in education studies.

Model-based adjustments of confounders, as performed by the base learners in this

paper, adjust treatment effects for covariates. Ensemble learning approaches, by

combining predictions over a set of single learners, may improve predictive
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performance (Poliker, 2006) so that the confounder adjustments are potentially less

model-dependent. In a situation where a randomized trial is not an option, no

approach can adjust for important, unobserved confounders. This emphasizes the

importance of study design in observational studies and pursuit of an approach like

ours that is less model-dependent.

In our studies, the inputs to the model consisted of all data available in the

SDSU student information database. These variables encapsulate student

demographics, educational background, academic (particularly mathematics)

preparation, student performance metrics, and SDSU program involvement.

Though we believe this set of covariates captures the primary suite of confounders,

our study does not include direct measures of student attitudes towards statistics

(the course topic under study), social and academic behavior, nor student

motivation. Such measures would need be self-reported, that is, collected through

standardized survey instruments. These student characteristics may be unobserved

confounders that may perhaps bias our idividualized treatment effect or overall

treatment effect estimates.

Ensemble learning methods run the risk of trading off interpretability for

predictive performance. In many applications, an interpretable machine learning

framework is critical to practical use. That said, the flexibility in choice of base

learner and meta-learner allows the user to potentially strike a desired balance (see

e.g., Otte, 2013).
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5.3 Recommendations For Further Study

In our applications, we selected a specific suite of base learners to combine

for the ensemble prediction. But of course at that stage of the algorithm the

meta-learner needs know only the number of base learners and predictions from

each learner. The choice and number of base learners is at the discretion of the

user. Choice of meta-learner is also at the discretion of the user. We chose ridge

regression for two primary reasons. First, Reid and Grudic (2009) suggest

regularized regression in stacked generalization, in fact finding that ridge regression

performed best in their experiments. Second, regularized regression provides for an

interpretable machine learning framework through an optimal weighting of base

learners, with respect to the regression model as a meta-learner.

Polikar (2009) and Moreira et al. (2012) present meta-learner options as

part of their surveys of ensemble learning approaches for classification and for

regression respectively. We will not present an exhaustive list of alternatives for the

meta-learner here, but mention two promising options we are currently pursuing.

Merz and Pazzani (1999) suggests applying principal components regression for

overcoming multi-collinearity issues in correlated base learner predictions. Friedman

and Popescu (2003) proposes an importance sampling learning ensemble (ISLE) for

combining base learner predictions. The models are chosen through a Monte Carlo

sampling scheme and the model weights are chosen by a regularized regression

scheme. Friedman and Popescu (2008) presents ISLE as a unifying ensemble

framework by thinking of the base learners as rules derived from the data. The

correct decision analysis for combining these rules will improve prediction accuracy
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and, more importantly, aid interpretation. Akdemir et al. (2013) extends this rule

ensembles approach by using soft rules (e.g., converting hard binary decision rules

from a decision tree into smooth decision functions via logistic regression).

The study in Chapter 2 serves as a first illustration of ensemble learning for

estimating individualized treatment effects in student success efficacy studies.

Generalizability is a critical component to putting these machine learning

approaches into educational data mining practice. Our current work not only

considers alternative implementations for predictive performance improvement in

our ensemble learning framework, but testing and evaluating the effectiveness of

the methods across a suite of educational data sets.

We find the open source statistical software environment R (R Core Team,

2020) ideal for our educational data mining tasks. Though we coded our own

ensemble learner, we note here that a number of R packages exist to perform

ensemble learning. The package Rminer (Cortez, 2020) presents a suite of 14

classification and 15 regression methods. The package caret (Kuhn, 2008) presents

a training/tuning environment for a set of 23 machine learning methods in R. We

may present an ensemble learning wrapper around the output from these R

packages. The package subsemble (LeDell et al., 2015; Sapp et al., 2014) presents a

subset ensemble prediction method on a set of up to 30 machine learning methods.

Subsemble is a variant of the Super Learner prediction method of van der Laan et

al. (2007), which is implemented in the H2Oensemble (LeDell, 2020) and

SuperLearner (Polley et al., 2020) packages.
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On the front of student success efficacy studies, course (student)

performance, as measured by instructor-created measures of student learning in our

study, provides one avenue for evaluating an intervention. Statistical reasoning,

student attitudes and beliefs, and student evaluation surveys provide important

alternative angles for assessing the effectiveness of an intervention on learning

(Gundlach et al., 2015). The Statistics Education field has validated a number of

concept inventories and standardized assessment instruments which we plan to

incorporate into future studies of reforms in the Statistics classroom.

Our experience and expertise lies within higher education, university

systems. However, we may envision analogous student success studies in public

school (K-12) or community college districts, of (online) tutoring systems, or for

continuing education and adult education programs. In each of these settings,

individualized treatment effects allow us to evaluate and refine

initiatives/programs, assess impact on (at-risk) subgroups, and quantify program

impact relative to resource demands.
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