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Abstract

Machine Learning Methods for the Analysis of Metagenomes
by

Vito Adrian Cantu Alessio Robles

Claremont Graduate University and San Diego State University: 2020

As of October 2020, there are 18.6× 1015 DNA base pairs publicly available in the

Sequence Read Archive and this number is growing at an exponential rate. As DNA

sequencing prices continue to drop, many research groups around the world have incorporated

high throughput sequencing in their research, giving us access to sequences from many

distinct ecosystems. This has revolutionized the field of metagenomics, which aims to fully

characterize all organisms and their interactions in a particular system. Nevertheless, the

plethora of available data has made its analysis difficult as traditional techniques such as

genome assembly or sequence alignment are bound to fail due to the high noise of

metagenomes, or take an impractically long time due to their size. Through this thesis, we

explore those challenges and develop techniques to meet them.

Chapter 1 serves as an introduction to the fields of metagenomics and machine

learning and the applications where the two meet. Chapter 2 examines the different kinds of

noises in sequencing datasets and presents PRINSEQ++, a C++ multi-threaded software for

quality control of sequencing datasets. Chapter 3 describes the analysis of 63 metagenomic

samples from children with ”nodding syndrome” using Random Forest to give insights into

the etiology of the disease. Chapter 4 explores the use of artificial neutral networks to classify

phage structural proteins derived from metagenomes.



v

I wanted to write that my work consists of two parts: of the one which is here, and of
everything which I have not written. And precisely this second part is the important one.

– Ludwig Wittgenstein
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CHAPTER 1

INTRODUCTION

1.1 DNA

Desoxyribonucleic acid (DNA) is an organic molecule composed of two coiled

polymeric chains that form a double helix[104]. Each of the two strands is a “Polynucleotide”

composed of any combination of four monomeric units called nucleotides. Each nucleotide is

made up of one of four nitrogen containing bases (cytosine [C], guanine [G], adenine [A], or

thymine [T]), a ribose molecule, and a phosphate group[3]. The DNA double helix is

stabilized by hydrogen bonds between the bases of opsite chains that are only formed with the

specific pairings A-T and C-G. This fact has two important consequences, two DNA strands

will form a double helix only if their nucleotide sequences are complementary, and each

strand has all the information needed to deduce the complementary strand. As such, a DNA

molecule can be represented naturally by a long string of the characters ‘A’, ‘C’, ‘T’, and ‘G’.

Long (thousands to millions of bases) double stranded DNA molecules are called

chromosomes. The information contained in the sequences of specific regions of the

chromosome, called genes, can be used by the cell as a blueprint, via transcription and

translation, to produce proteins that serve as enzymes or structural components. DNA

polymerase, one such enzyme, can synthesize the complementary strand of single-stranded

DNA molecule making it double-stranded. During cell division, each chromosome is split

into its two complementary strands and each strand is replicated by DNA polymerase. This

generates two identical chromosomes, one for each of the divided cells.
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The DNA double helix has a radius of 2nm (2 ∗ 10−9 metre) and a length of 0.34 nm

per base. At 3.2 Gbp (Gigabases, or 3.2 ∗ 109 bases), all unique chromosomes of a human cell

(humans have two copies of each chromosome) measure about 1 metre long. For other

organisms, genome sizes range from a few kilobases (103bps) for some viruses, to hundreds

of gigabases (109 bp) for some plants.

1.2 DNA SEQUENCING

Given the physical size of DNA, and that two distinct DNA molecules have eerily

similar chemical properties, elucidating the nucleotide sequence of a particular DNA

molecule (aka DNA sequencing) remains challenging despite 40 years of innovation since the

first genome, phage MS2 [33] was published in 1976. (Phage φ-x174, sometimes credited as

the first genome, was published in 1977 [86]). Several techniques and technologies have been

developed to sequence DNA. Most of them can only sequence small fragments (reads),

anywhere from 35bp for early illumina to a median of 10,000bp for Oxford Nanopore

MinION. Furthermore, there is a chance for the technique to misidentify a base (error rate).

The process of reconstructing the original DNA sequence from these fragments is called

assembly. The naive way to do this is to look for overlapping segments at the ends of each

fragment and merge them iteratively to generate large sequences (called contigs). This

computationally expensive and modern assemblers use De Bruijn graphs to find these

overlaps efficiently [7]. Ambiguous assemblies are produced on repeated regions (either in

tandem repeats or with repeats in different parts of the genome) when the repeat is larger than

the fragment size. Under ideal conditions, each contig corresponds to a complete

chromosome but sequencing errors and repeated regions most often than not causes that

several contigs correspond to a chromosome with some unknown regions (gaps) between

them. Most sequencing protocols require a few nanograms of DNA. Depending on the

sample, this might be hard to obtain. In that case, random polymerase chain reaction (PCR)

can be used to amplify (increase the concentration of) DNA in a nonspecific way. If the
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flanking sequences for a region of interest are known, PCR can be performed to increase the

concentration of DNA from that region, in essence both aplifying and purifying the sample.

1.2.1 Sanger sequencing

This method is named after Frederic Sanger, who in 1980 was awarded the Nobel

Prize for the second time ”for their contributions concerning the determination of base

sequences in nucleic acids” [1]. Sanger sequencing is one of the first sequencing methods and

it is still in use today. In its original form, the target sequence is replicated in four different

reactions with the four standard nucleotides. Each reaction is spiked with different

di-deoxy-nucleotide labeled with radioactive phosphate. Di-deoxy-nucleotides are inserted in

the DNA normally, but prevent further DNA elongation (the addition of nucleotides by DNA

polymerase). This generates DNA chains of specific sizes (those whose position corresponds

to the spiked di-deoxy-nucleotide base). The DNA sequence can be inferred from the bands of

the four reactions in an electrophoresis gel. In its current form, the four di-deoxy-nucleotides

are labeled with different fluorescent dyes and the electrophoresis is performed in capillary

tubes. Even though the cost per base is high, Sanger sequencing is still in use today as it can

sequence long strands of DNA (1,000bp) and a single reaction costs only a few dollars.

1.2.2 Ilumina (solexa) sequencing

Ilumina performs an initial random PCR where adapters with known sequences are

added at the start of each DNA fragment, then an additional PCR is performed on the surface

of a glass coated with the DNA complementary to the adapter. This produces clonal DNA

“clusters” with distinct sequences. Sequencing is performed by cycles, first adding

nucleotides modified with different fluorescent dyes according to the base and a removable

protective group on the ribose sugar to prevent the addition of more than one base. A high

resolution camera determines the position and base added at each cluster. Finally, the

protective group and fluorescent dye are removed and the cycle starts anew. Via “bridge

amplification” Illumina can sequence up to 300 bp of each end of a DNA molecule. The
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highest output equipment can produce up to 20 billion (20 ∗ 109) sequences or a total of 6 Tbp

(6 ∗ 1012bp), in theory enough for a large plant genome. Ilumina is currently the cheapest

sequencing technology at just $5 per gigabase. Using tag sequences, up to 384 different

samples can be sequenced in a single experiment.

1.2.3 Oxford Nanopore

Nanopore sequencing uses a fundamentally different approach. DNA is put in one of

two chambers with a grid of impermeable membrane patches dividing them. Each patch has a

nanopore (a protein that forms a hole in the membrane) and an ampmeter that measures the

current flowing through the pore. A voltage difference between the two chambers pushes

DNA and ions in the buffer through the pore (phosphate groups in DNA are negatively

charged). While the current generated by the flow of ions is known and constant, it is

disrupted by the DNA in a sequence dependent way. By measuring the current across time for

a pore, the sequence of the DNA molecule can be inferred.

Nanopore is the sequencing technology that produces the longest reads (up to 2

millions bases in a single read have been reported [82]) and data is produced in real time as

the DNA goes through the pore. Yet its high error rate (5%-25% [107]) and cost ($30-$45 per

gigabase) makes it not ideal for large projects. Nanopore is most often used to complement

Illumina in resolving assemblies or in time sensitive applications[53].

1.3 METAGENOMICS

Metagenomics is the study of genetic material recovered directly from environmental

samples[43]. Forgoing the need for clonal cultures greatly increases the number of organisms

that can be studied. Indeed, early metagenomic work [5] (1995) on the diversity of the 16s

gene, (a gene common to all bacteria) estimated that more than 99% of bacteria are not

cultivable. Furthermore, it has become increasingly evident that knowing the full genome of
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an organism helps very little to understand an ecosystem, as bacterial communities are distinct

and complex[106].

The limitations of a single genome were made painfully evident when the human

genome was published in 2001 [57]. At the time it was stated that “Genetic prediction of

individual risks of disease and responsiveness to drugs will reach the medical mainstream in

the next decade or so” [20]. Twenty years later, this has yet to happen. Given our close

relationship with the microbes in our body, it is now accepted that we will need to gain a deep

understanding of our microbiota both in health and disease[77].

There are two type of metagenomic studies, targeted and untargeted. they differ

according to the kind of data that is collected. In targeted metagenomics, only partial genomic

information is collected. DNA is extracted from all cells in the sample and a set of genes are

amplified by PCR, or cloned in artificial chromosomes or plasmids, and only these marker

genes are sequenced. The most used marker gene is the small subunit ribosomal RNA (16S in

Bacteria and Archaea, 18S in Eukarya) as it is present in all organisms and it is taxonomically

informative [78]. The analysis of targeted metagenomic data is simpler as the data produced is

less complex and many public databases of marker genes are available [26]. The number and

identity of taxa that can be found in a metagenome can vary depending on the marker gene

used [38]. Taxa whose target gene is too divergent or absent are excluded from the analysis.

In untargeted metagenomics, the DNA is sequenced without targeted amplification.

This allows the identification of new taxa and new genes, the elucidation of the metabolic

capacities of the community, and ultimately to gain a better understanding of the ecosystem.

Untargeted metagenomic data is significantly harder to analyse as the resulting DNA

sequences are heterogeneous, most taxa are new and not found in public databases, and

considerably more sequences are needed to draw meaningful observations. Environmental
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samples contain anywhere from a few to thousands, or even millions [35, 82] of different taxa.

If the community of interest is host associated, care must be taken to exclude its sequences.

This can be done by fractional filtration of the sample and removing any leftover host

sequences computationally. For example, in human associated samples, without removing the

human genetic material it is not uncommon to have 95% or more human sequences [74].

1.4 BIG DATA IN METAGENOMICS

A single metagenomic experiment can produce as much as 6 ∗ 1012 bases [49].

Inferring relative abundance of species, metabolic pathways, interspecies interactions, and

many more useful data from this information is a significant computational challenge, is

increased as the number of samples in a study grows or if public metagenomes are used.

As of October 2020 there are 18.6 ∗ 1015 metagenomic bases (8.6 Petabytes) in the

public section of the sequence read archive (SRA), up from 4.5 ∗ 1013 bases (0.08 Petabytes)

just 10 years ago. In the same timeframe the cost of sequencing per gigabase fell from $780 to

$8 (97.5 fold reduction)[60] while the computing cost per Gigaflop only fell from $1.80 to

$0.03 (60 fold reduction) [109]. From a computational standpoint, the problem with the rapid

growth in available data is that most naive approaches to analyze metagenomes run in

quadratic time (or worse). If you double the size of the input, the analysis will take four times

as long (or you would need a computer four times as fast).

Out of necessity many advanced computational approaches have been used to analyze

metagenomes in a manageable timeframe. In this thesis two such approaches have been used

to develop tools for metagenome analysis. The first is parallel computing, which will be

explored in detail in Chapter 2. The Second is Machine Learning. Specific tools and

methodologies using Machine Learning will be explored in chapter 3 and 4. A brief

introduction to machine learning follows.
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1.5 MACHINE LEARNING

A machine learning algorithm is one whose performance improves with experience. It

consists of three parts [70] :

1. Experience, in the form of data.

2. A task, the algorithm that produces an output

3. An objective function, a way to measure the performance of a given output.

This algorithm is said to be “learning” if it’s performance for a given task improves as

more data is available. In a broader sense, a Machine learning algorithm tries to approximate

the real mathematical function (Freal) that maps the inputs of a task to its outputs by

optimizing the objective function in response to some data. In a sense, the objective function

acts as a proxy for the distance between the model and Freal.

Some underlying assumptions of all machine learning methods is that all the observed

data is generated by Freal, that such a function exists, that it (or a close approximation) is

computable, and that the method can approximate it. This approximation takes a distinct form

(representation) for different ML methods, such as decision trees in random forest, long

matrix multiplication in neural networks, or dendrograms in hierarchical clustering. The set of

all possible approximations to Freal given a representation and the model hyperparameters

(parameters that don’t change during learning) is called the hypothesis space. The space is

structured in such a way that learning is equivalent to a numerical optimization problem to

find the hypothesis (Freal approximations) whose output maximizes (or minimizes) the

objective function. Using more data to generate a model will always result in a model closer

to Freal [99], this is true even for unsupervised methods [36].

ML methods can be roughly divided into three groups: supervised learning,

unsupervised learning, and reinforcement learning. Supervised methods are those where each
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data point has a label attached to it. This label can have any form such as a categorical

variable, a scalar, a vector or even a tensor. More often than not, the objective of a supervised

ML algorithm is to learn the relationship between data and label so that new observations can

be labeled. Unsupervised ML methods, on the other hand, don’t use labeled data and aim to

learn about the underlying structure of the data. Clustering and dimensionality reduction are

common examples of unsupervised learning. Finally, a reinforcement ML algorithm

“decides” on an action from the input and a probabilistic model to generate and output that is

then used as input in an iterative manner. Each iteration gives the model a reward depending

on the value of the objective function. Self driving cars are a common application of

reinforcement learning.

1.6 TRAINING A MACHINE LEARNING MODEL

Training a machine learning is typically divided in the following three steps:

1.6.1 Method selection and data collection

The ML method to be used is driven by the particular questions to be answered and the

training data available. The first thing to consider is whether the ML method can even answer

the question. For example, Support Vector Machines can only do a binary classification and

linear regression can only approximate linear functions. A more complex model that can

approximate nonlinear functions (like Neural Networks) typically has a larger hypothesis

space to explore and more parameters to approximate. This means that more training data

would be needed. While the exact number or training examples needed depends on the

specific problem and how correlated the examples are, a good starting guess is to use 10

examples for every parameter to approximate[41]. For applications where little data is

available and generating new data is time consuming and/or expensive, this can preclude the

use of some complex ML methods.
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In general, you want to use as much training data as you possibly can, with a few

caveats. (i) Be aware of any bias in the data. ML models have been known to learn sexist[10]

and racist[76] behavior from data. (ii) Be aware of unbalanced data, especially with

classification methods. If one of the classes has many more training examples than the others

the data is said to be unbalanced. If nothing is done about it, the classifier might learn to

always guess the majority class, as it gives a high accuracy. An unbalanced dataset can be

addressed by undersampling the majority class, oversampling the minority clases, weighting

each class differently during learning and/or artificially generating new training examples

(data augmentation[111]). Data augmentation is common in image classification, where

slightly rotating or translating the image shouldn’t change its label. For applications where

data augmentation is feasible, it can also solve the problem of too few training examples per

parameter.

While it is important to keep these problems in mind, when comparing the

performance of a model trained on a small well-curated dataset vs. a very large uncurated one

(several orders of magnitude larger), the model trained on the largest dataset almost always

performs better[42].

1.6.2 Feature extraction

ML methods can only use numeric data, both inputs and labels need to be transformed

to a numeric vector (or matrix or tensor) of fixed size. This is sometimes a restriction on the

method itself and sometimes a restriction on the heuristics used to optimize run time. This can

be done in two ways, encoding and feature extraction.

Encoding is representing the data as a tensor. Images are typically represented as a

matrix where each entry is the grayscale intensity of a pixel or a 3D tensor of red, blue, and

green intensities. Categorical variables can be represented by a “one-hot” encoding, a vector

of length equal to the number of categories with 1 in the entry that represents a specific label
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and 0 everywhere else. This encoding has the advantage of not assuming any natural ordering

between the labels. DNA sequences can be encoded as a matrix of one-hot encoded size 4

columns (one per base) padded or trimmed to a specific row length[62]. Most encodings are

reversible, that is the original data can be reconstructed from the encoding.

Feature extraction aims to generate a vector with numbers that represent properties of

the data. For example a DNA sequence can be represented by a size 4 vector with the

proportion of each base as entries or a node in a network can be represented by a vector with

different topological features[98]. The DNA feature vector can be extended to include the

length of the sequence, the frequency of dinucleotides, molecular weight etc. The more

features you extract from the data the better your method becomes, but more features

increases the number of parameters to be estimated and you get diminishing returns,

especially with correlated features (in this case the molecular weight can be deducted from the

nucleotide frequency and the proportion of each base). Furthermore, features can be

transformed by any number of functions. For example, Z-score and sigmoids are common

choices as they prevent the features from spanning several orders of magnitude. Most of the

time, it is impossible to reconstruct the original data from a feature vector.

The choice of encoding and feature vector can greatly influence the performance of

any ML method [72].

1.6.3 Training, Validation and Testing

Training an ML model is equivalent to numerically finding the element of the

hypothesis space that optimizes the objective function. Validation is using a metric on the

model (which may or may not be the objective function) to measure how well it performs

compared to other models. Validation is often used to tune “hyperparameters”. That is

parameters that are chosen a priori and are not modified during training (e.g. the number of

trees in Random Forest or the number of layers and neurons in artificial neural networks).
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Training and validation are method specific, but there are some commonalities depending on

the type of ML method.

Supervised methods split the data into the training/validation set and a testing set (a

90/10 split is common). The testing set is set aside for the moment. The training/validation set

is further split into training and validation sets (again, 90/10 is common). The training set is

used to train several models with different hyperparameters, feature vectors, and/or encodings.

Then the model is used to predict labels of the validation set. As the real labels are known, the

proportion of correctly predicted labels (accuracy) can be computed. The model with the

highest accuracy is chosen as the best model. During validation the model is learning from the

validation set. To avoid this overtraining bias, the accuracy on the test set, which has never

been used to approximate parameters, is also reported.

In unsupervised methods all data is used to train several models with different

hyperparameters. The objective function or the “silhouette coefficient”[55] can be used to

determine the best model. In reinforcement learning, the cumulative reward over all iterations

is used as a validation metric. If the best possible decision is known, the difference between

its reward and the reward gained by the algorithm’s decision is called “regret”. Either the

smallest regret or the highest cumulative rewards can be used to select the best model.

1.7 MACHINE LEARNING IN METAGENOMICS

Many machine learning methods have been implemented to interrogate metagenomic

samples (see Table 1.1). Machine learning is currently used in metagenomic analysis to

answer the following questions:
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1.7.1 OTU clustering and contig/read binning

Targeted metagenomics (amplicon sequencing) is a popular way to explore the genetic

diversity of a sample by clustering sequences into Operational Taxonomic Units (OTU).

OTUs are groups of closely related sequences. Depending on how close you require them to

be, OTUs can be a proxy for species, genus or other taxonomic level. The 16S gene is the

most used marker for OTU clustering [65], but any conserved gene should work. Contig (or

read) binning is the analogous question for untargeted metagenomics. Both OTU clustering

and contig binning typically require a distance function d and a threshold t under which two

sequences are considered close enough. In the case of OTU clustering, alignment score (or

sequence similarity) is a natural choice for distance. For contig binning, the choice of distance

is less obvious. A combination of k-mer distribution and contig abundance (coverage) is often

used as it has been observed that the distribution of k-mer compositions is stable across a

single genome and varies between genomes[54].

No matter the metric used, computing the pairwise distance of all OTUs or contigs is

slow and escalates poorly as more sequences are considered. Heuristic greedy clustering saves

time by first sorting the sequences by some meaningful criteria (e.g. CD-HIT[59] uses

length), computes the distance of the fist sequence to all other sequences and forms a cluster

out of itself and all sequences t or closer and removes them from the list. This process is

repeated for the new first sequence on the list until all sequences are in a cluster.

1.7.2 Taxonomic assignment and diversity profiling

While OTU clustering and contig binning give us groups of sequences that represent a

single taxa it doesn’t tell us which taxa. Taxonomic assignment aims to label each sequence

or cluster with the most specific label from the taxonomic hierarchy, clearly a supervised ML

problem. Traditionally, this has been done using non ML methods such as sequence identity

to large databases[8]. As both public databases and metagenomic studies increase in size, the
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length of time taken for the database comparisons prevent those methods from being practical

because the complexity is O(m× n) where m =number of sequences in database and n is

number of sequences in sample. Once a ML model is trained, labels can be assigned to new

observations in linear time O(n). The features used for this classification are nucleotide

k-mers of different sizes[100], but Laplace smoothed k-mer counts[79], CG content[16] and

hidden Markov model alignments[23] have also been used.

Diversity profiling aims to elucidate the proportion of each taxa in a sample. While

this proportion can be easily derived from the taxonomic assignment of reads, contigs or

OTUs, some approaches forgo this intermediate step to gain speed. For example FOCUS[90]

uses non-negative least squares on the k-mer frequencies of known taxa to infer which

proportion of those would have given rise to the observed k-mer frequency in a metagenome.

1.7.3 Comparative metagenomics

Comparative metagenomics interrogates full metagenomic samples as they relate to

other samples. Supervised methods assign a label to each sample, instead of to the contigs or

OTUs in it. K-mer composition and their correlations[27], OTUs frequencies[95], and contig

coverage (see chapter 4) have all been used as features. An active area of research is to use

comparative metagenomics as diagnostics. For instance, DectICO[27] has been used to

classify irritable bowel disease and asthma samples. Furthermore, some ML methods such as

Random Forests can interrogate the features for their contribution to the classification. If the

features used are contigs or OTUs this provides an indication of which organisms or genes are

associated with the disease (more on this on Chapter 3)

Unsupervised methods cluster metagenomes by similarity. Some distances used are

the Unifrac distance[63] (the fraction of taxa present in only one sample, weighted by the

length of its branch) for OTUs or the Jaccard distance between the k-mer sets of the two
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metagenomes[50]. If the metagenomes were cross-assembled [29], the Euclidean distance

between the vectors of contig hits per sample can be used.

1.7.4 Gene prediction and annotation

Most protein coding genes contain common DNA sequence features; they start with

the 3-mer (codon) ATG, followed by some number of non overlapping 3-mers and end with a

stop codon (usually TAA, TAG, TGA). Any section of DNA with these properties is called an

Open Reading Frame (ORF) but not all ORFs are translated into proteins. Gene prediction

ML aims to learn properties of protein coding ORFs from a database of known genes and

known non coding ORFs so that new ORF in a metagenomic sample can be labeled. Common

features used are ORF length, CG content, k-mer profiles, and distance between contiguous

ORFs[45, 75, 84, 112].

Gene annotation is the process of elucidating the biological function of a gene. Doing

this experimentally is so expensive and time consuming that it has only been done for a

handful of genes[66]. Computational gene annotation has traditionally been done by sequence

identity to genes of known function, the assumption being that two genes that are similar are

homologous (share a common ancestry) and thus have the same function. As databases and

metagenomic experiments become larger, this approach becomes intractable. Another

limitation is that due to convergent evolution, two proteins that share functions are not

necessarily homologous. PhANNs[14] uses amino acid k-mer profiles and some biochemical

functions to train an artificial neural network to annotate phage ORFs (more on this on chapter

4).
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Table 1.1. Some machine learning methods

Algorithm type output representation
Hypothesis space Metagenomics application Example tool

K-nn supervised categorical of feature space
Labeled partition

OTU clustering
Binning, DOTUR[87]

Support Vector Machines supervised scalar of feature space
Labeled partition

comparative MG
Gene prediction or annotation,

DectICO[27]
PVP-SVM[67],

MetaDistance[61],

Linear regression supervised scalar Linear model binning Tetra[96]

Logistic regression supervised categorical Linear model comparative MG
Gene prediction or annotation, MetaGene[75]

Non negative least square supervised vector Vector space Diversity profiling FOCUS [90]

Random Forest supervised categorical Decision trees
gene annotation

comparative MG,
Taxonomic assignment,

16S classifier[16]

Neural Network supervised
categorical
tensor or
Scalar,

Neural networks Gene prediction and annotation PhANNs[14]
Orfelia[45],

PCA unsupervised vector of features
Linear combination binning CONCOCT[4]

k-means unsupervised categorical means binning Metacluster[103]

Hierarchical clustering unsupervised categorical dendrogram OTU clustering ESPRIT[93]

Hidden Morkow model supervised categorical network Gene prediction MetaGeneMark[112]
FragGene Scan[84],
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CHAPTER 2

PRINSEQ++

In this chapter we examine the different sources of noise in sequencing datasets and

present PRINSEQ++, a C++ multi-threaded software for quality control of sequencing

datasets. We also measure PRINSEQ++ speed against other commonly used QC tools.

2.1 INTRODUCTION

As DNA sequencing prices fall, high-throughput sequencing is being used in new and

creative ways and areas such as personalized medicine [110] and recreational genomics [32].

This brings about novel challenges for the techniques we use to analyze and draw conclusions

from sequencing data, in particular speed and scalability.

Quality control is a crucial step in the analysis of sequencing datasets as low-quality

sequences, sequence contamination, and artifacts can eventually lead to erroneous

conclusions. Most applications for quality control and preprocessing are written in high level

programming languages such as Perl (prinseq-lite [88]) or Java (fastQC [6]) which are slower

to execute and provide limited multi-threading support.

Since its publication in in early 2011, prinseq-lite has been cited more than 1,500 times

and downloaded more than 54,000 times. In the same time interval, the number of bases in the

Sequence Read Archive has grown 617x (from 74 Tbp to 45,704 Tbp) while the computing

cost per Gigaflop only fell from $1.80 to $0.03 (60 fold reduction) [109] . It is clear that a new

tool, one that has the usefulness of prinseq-lite while being drastically faster, is needed.
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PRINSEQ++ implements all the functionality of the Prinseq-lite tool, adds some new

features, but can run 16x times faster as it is written in C++ and can take advantage of

multi-threading.

2.2 NOISE IN METAGENOMES

No sequencing experiment is 100% accurate. From the different affinity of the

polymerise for distinct nucleotides to small errors in manufacturing, noise is always present in

sequencing datasets. Systemic errors produce noise that can be mitigated once the processes

that generate them are understood. We explore some common sources of noise and methods

to reduce it.

2.2.1 Sequence quality

During a sequencing run, each base is assigned a quality score (Q), ranging from 1 to

40, representing the error probability (p). Q = 10⇒ p = 0.1 , Q = 20⇒ p = 0.01 and in

general Q = −10log10p. A Q of 30 (p = 0.001) is acceptable for Illumina bases and Q=20 is

acceptable for Nanopore bases. The quality tends to degrade closer to the 3’ end of the read.

PRINSEQ++ allows you to remove reads with low mean quality score, reads where

any base is lower quality than a set threshold and/or to trim the read 3’ (or 5’) end until a

desired mean quality score is reached.

2.2.2 Sequence complexity

Sequence complexity measures how much a particular sequence of symbols differs

from a random sequence of symbols using the the same alphabet. Complexity has been used

to elucidate if an undeciphered script is written in a real language[83]. In the context of DNA,

you would expect close the random (about 90% of the max shannon’s index [85] ) distribution

of 3-mers. Low sequence complexity, whether biological or generated by the sequencer is

commonly non informative and can severely affect the quality of a subsequent genome
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assembly. PRINSEQ++ allow you to remove sequences with complexity under some cutoff

value.

Total sequence complexity is evaluated as the mean complexity of windows of size 64

or less and step size 32 over the whole sequence. Two methods are available in PRINSEQ++,

block-entropies (Shannon-Wiener) and DUST[71] (used by the blast algorithm to mask low

complexity regions). Both scores are scaled to the [0,1] interval to make the score valid for

sequences of any length. In each window, the deviation of the actual counts of each

trinuclotide to the expected counts is computed as:

For DUST:

CD =
K∑
i=1

ni(ni − 1)(w − 2)s

2(l − 1)l
(2.1)

For block entropy:

CE = −
K∑
i=1

ni

l
logk

(ni

l

)
(2.2)

Where K is the size of the set of all tri-peptides (43 = 64), ni is the counts of the ith

trinucleotide, w is the window size(64 except at the end of the sequence), l is the the number

of trinucleotides in the window (62 for a window of size 64) and s is the scaling factor 1/30

2.2.3 Sequence duplication

Sequence duplications may occur at different steps of the sequencing protocol [37].

Traditionally, duplicated sequences are hard to detect as the naive approach is to compare

every single sequence to every other. This is problematic in a multi-threaded environment

were each thread holds in memory a few sequences at most and cross talk between threads

needs to be minimum in the interest of speed.
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PRINSEQ++ uses a probabilistic data structure, a Bloom filter [9][80], to identify

duplicate sequences. A Bloom filter is bit-array where every sequence is transformed by

several fast (non-cryptographic) hash functions into a bit-array of the same size and the results

are operated by a bit-wise OR. To see if a sequence is already in the filter (if it is duplicated)

one only need to check the corresponding bits. Bloom filters have false negative rate of 0 (you

can be sure that an sequence is not in the structure), and a false positive rate of

≈
(
1− e−kn/m

)k where k is the number of hash functions, n is the number of elements in the

structure and m is the number of bits in the bit array. Reading and writing from a bloom filter

is fast and can be done asynchronously.

2.2.4 IUPAC ambiguity code

The International Union of Pure and Applied Chemistry (IUPAC) define ambiguity

codes for nucleotides whose identity is not fully known [51]. The most common one in

metagenomes is N which represent an unknown nucleotide. A large number of Ns in a

sequence might indicate low quality or short sequences. Furthermore, some downstream

analysis tools (such as those that encode DNA in 2-bit characters) have trouble dealing with

Ns and are either converted to As or a random base. PRINSEQ++ allows you to filter out read

that have high count of N bases, either by percentage or by absolute number.

2.3 PARALLELIZATION

Most parallelization models, like OpenMP, MPI or Cuda, require the user to know the

size and shape of the input a priori. Counting the number of sequences in a FASTA or FASTQ

file requires reading it completely, which is slow and non trivial (especially so for compressed

files). PRINSEQ++ uses POSIX threads (pthreads, an application programming interface

(API) designed to allow maximum freedom to developers of multi-threaded applications.

With the exception of sequence duplication, the quality control and preprocesing is

independent for each sequence pair. Each thread performs all necessary operations on one
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sequence pair at the time. This includes: reading from file, uncompressing if necessary,

checking for duplicates and other filters, compressing if necessary, and writing to the

corresponding output file if the read pair passes all filters. This model drastically reduces

run-time, is input size agnostic, and uses little memory.

2.3.1 Speedup

To assess the effect of increasing the number of threads on speed and the speedup of

PRINSEQ++ over prinseq-lite, we measured run-time of prinseq-lite and PRINSEQ++ on

several FASTQ pair files of different sizes. A pair of FASTQ files from a metagenomic

sample were downloaded from the sequence read archive (Run:SRR7091319). The FASTQ

files were cut into files of 1, 2, 3, 4, 5, 10, 15, 20, 25, 30 million read pairs. PRINSEQ++ and

prinseq-lite were run on those files with equivalent filtering options ("min len 100 -min gc

40 -max gc 60 -lc method entropy -lc threshold 90" for prinseq-lite and ”-min len

100 -min gc 40 -max gc 60 -lc entropy=0.9” for PRINSEQ++).

Run-time was measured using GNU time 1.7 on a 24 cores Intel Xeon CPU X5650

running at 2.67GHz with 189Gb of RAM. Each measurement was done three times and the

mean time and 0.95 confidence interval were plotted on Figure 2.1. Table 2.1 shows the

speedup of multi-threaded PRINSEQ++ over prinseq-lite and over single-threaded

PRINSEQ++. It is noteworthy that even using a single thread, PRINSEQ++ is about twice as

fast as prinseq-lite. This speed gain arose mainly from the switch from Perl to C++.

Table 2.1. Speedup of multi-threaded PRINSEQ++
Threads speedup over prinseq-lite speedup over PRINSEQ++ (1 thread)

1 1.98 x 1 x
2 3.77 x 1.93 x
4 7.26 x 3.7 x
8 12.96 x 6.62 x

16 16.47 x 8.39 x
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Figure 2.1. prinseq-lite and PRINSEQ++ runtime comparison

There are two main reasons why the speedup does not scale linearly with the number

of threads for PRINSEQ++. Input and output files need to be accessed synchronously There is

a small overhead in creating a thread. A thread cannot write or read if another thread is doing

so, and must wait for it to finish. As the number of threads increases this happens more often

and more time is spent waiting for access to files. Additionally, there is little advantage in

using more threads than the number of cores in the CPU, as this will cause multiple threads to

run on the same core and share execution cycles.

2.4 QC TOOLS COMPARED

In the section we compare PRINSEQ++ speed and performance against other

commonly used QC tools.
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2.4.1 Run time

Programs were restricted to a single thread with a minimum sequence length of 100

base pairs. Additionally, 15 base pairs at each end were trimmed. The time trials were run in

triplicate for each size fastq file.

Figure 2.2. Run-time comparison of QC tools for fastq files using a single thread. Error
bars use a 0.95 confidence interval.

2.4.2 Features comparison

As no two QC tools have the same implementation and features, a comparison based

solely on speed is unfair and uninformative. Table 2.2 shows a comparison of the features

implemented for each software tool.
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2.4.3 Memory usage

For all software compared, memory usage is not affected that much by the number of

sequences in the input file as only a few sequences need to be loaded in memory at the time.

How many sequences are loaded in memory, what extra information is needed on how

efficiently it is represented determine the memory usage. PRINSEQ++ only store two

sequence and the bloom filter in memory, using only a few Mbytes (see Figure 2.3).

Figure 2.3. Memory usage comparison of QC tools for fastq files using a single thread.
Error bars use a 0.95 confidence interval.
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Table 2.2. Features of various sequencing QC tools
Multi- Fasta Fastq Length CG% Quality Trimming Compressed

threaded Input Input Filter Filter Filter Files IO

PRINSEQ++ X X X X X X X X
prinseq-lite X X X X X X

fastp X X X X X X Output only
fastQC X Output only

trimmomatic X X X X X Input only

2.5 CODE AVAILABILITY

PRINSEQ++ code and binaries are available in GitHub

https://github.com/Adrian-Cantu/PRINSEQ-plus-plus and can be built using GNU Autotools

or Conda.

2.6 CONCLUSION

PRINSEQ++ is fast and efficient and can significantly reduce the run-time of

sequencing datasets analysis. This is critical in applications that are time-sensitive or where

the amount of data is so large that slower method are not feasible. PRINSEQ++ has the

capacity or reading from, and writing to compressed files without ever uncompressing the

whole file, this drastically reduces use hard-drive use. PRINSEQ++ emulates prinseq-lite

syntax, thous it can be easily added to any pipeline currently using prinseq-lite.
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CHAPTER 3

HALOMONAS ELONGATA AND ITS

RELATION TO NODDING SYNDROME

3.1 NODDING SYNDROME

Nodding syndrome (NS) is a neuropsychiatric and epileptiform disorder of unknown

etiology that primarily affects children under fifteen years old. The disease is characterized by

stunted growth, neurological deterioration, and the eponymous head-nodding epileptic

seizures[48]. Nodding syndrome was first reported in Tanzania in 1965,[2] with subsequent

reports in Liberia[102], South Sudan[91], Uganda [89] and the Democratic Republic of the

Congo[17]. Many possible causes for nodding syndrome have been proposed, including

prions[48], mercury exposure[34], or genetic factors[28] but they each have weak correlations

with nodding syndrome cases. An alternative hypothesis is that nodding syndrome is related

to infection with the filarial parasite Onchocerca volvulus, the cause of onchocerciasis and

river blindness. Female blackflies (genus Simulium) transmit O. volvulus, and cases of

nodding syndrome occur where both the blackflies and O. volvulus are endemic. The

increased application of ivermectin (which kills the microfilaria but not the adult O. volvulus)

to reduce the incidence of onchocerciasis also resulted in a localized reduction in NS cases,

suggesting that O. volvulus is involved in both diseases [18]. However, O. volvulus does not

cross the blood-brain-barrier and there is no evidence of O. volvulus in cerebrospinal fluid

(CSF), suggesting that the connection between O. volvulus and NS are indirect. A

high-throughput proteomic screen identified antibodies in NS patients that react with human

proteins. This lead to the hypothesis that onchocerciasis results in cross-reacting autoimmune

antibodies[52]. In this model, patients infected with O. volvulus produce antibodies against

the Onchocerca volvulus’ tropomyosin protein that react with the Human leiomodin-1 protein
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in the brain causing neurotoxicity. Anti-leiomodin-1 antibodies were detected in the CSF of

NS patients and were cross-reactive to O. volvulus. However, leiomodin-1 antibodies were

also present in almost one-third of unaffected control cases from the same village. Moreover,

neurological damage may trigger higher levels of antibodies in the bloodstream obfuscating

cause and effect [101].

Like many other parasites, Onchocerca volvulus harbors the intracellular

endosymbiont Wolbachia [56]. The levels of Wolbachia in the filarial parasite correlate with

disease outcome, suggesting that the endosymbiont contributes to virulence of the

nematode[44] . However, Wolbachia endosymbionts are essential for Oncherca, contributing

to their metabolism and reproductive success [47, 94]. Tetracyclines can be used to reduce

Wolbachia load in the nematode, resulting in sterilization or death of O. volvulus.

Doxycycline has been used previously to treat onchocerciasis [25] and it is currently being

used in a clinical trial to investigate whether it impacts the frequency of epileptic episodes,

microfilarial mass, and autoimmune antibodies [101, 47].

For an unbiased exploration of the causes of nodding syndrome, and to explore the

possibility of a viral connection with Nodding Syndrome, we extracted viral DNA from the

plasma, buffy coat, and cerebrospinal fluid (CSF) of eighteen nodding syndrome patients, as

well as nine plasma samples of healthy children from the town of Titule, Bas-Uélé Province

of the Democratic Republic of Congo (Figure 3.1). We were unable to identify any eukaryotic

viruses uniquely associated with NS, nor identify any Wolbachia-like sequences in these

samples (but neither have been found in CSF previously). We identified a few sequences that

were similar to Onchocerca flexuosa, but none that were similar to O. vulvulus. However, our

novel computational analysis of the sequences revealed a correlation between nodding

syndrome and a virus (phage) that infects Halomonas-like bacteria that we hypothesize is

associated with Onchocerca volvulus and is associated with the disease.
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3.2 NODDING SYNDROME METAGENOMES

A case control study was previously conducted in Titule, Bas-Uélé Province of the

Democratic Republic of Congo (Figure 3.1) in June 2014 to determine the biological

correlates of nodding syndrome. This study was supported by the local health program “Relais

Communautaire”, led by the Head Doctor and a team of volunteer members. The Relais

Communautaire was a community surveillance network involved in the prophylaxis and

treatment of onchocerciasis using Ivermectin. Titule is holoendemic for onchocerciasis with a

very high prevalence of epilepsies, the common clinical presentation of NS. This case control

study revealed that Onchocerca volvulus DNA was detected by PCR in 26/34 (76%) of cases

and 10/14; 71% controls[19]. A subset of these samples was used for metagenomic analysis.

Figure 3.1. Titule, Democratic Republic of Congo

Eighteen individuals with NS were enrolled as cases[19]. Case definitions included a

history of at least 2 episodes of unprovoked generalized tonic seizures and absence of known

etiology. Nine healthy individuals with no clinical symptoms, that lived in the same or nearby

villages and who did not belong to a family with cases of epilepsy were recruited as controls.

A written informed consent was obtained from each participant in his/her native language by

physicians using a standardized questionnaire. After the interview, cases and controls were

examined by a physician. Lumbar punctures were performed by a physician, who had
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received special training in neurology while working as a medical doctor in a trypanosomiasis

treatment program. After the procedure patients were able to rest and received paracetamol.

Blood samples were collected from all cases and controls in heparinized collection vials.

Samples were processed as previously described [15, 24]. Briefly, 110 µl of

cerebrospinal fluid, plasma or buffy coat collected from nodding syndrome patients and

controls were spun down to remove cells and 100 µl of the supernatant was subjected to

DNase treatment to eliminate background cellular DNA with 20 U TURBO™DNase

(Ambion). Nucleic acids were extracted from the pre-treated samples as described by Boom

[11]. In order to subsequently detect RNA viruses a reverse transcription with 200 U of

Superscript II (Invitrogen) and non-ribosomal hexamers [31] was performed followed by a

second strand synthesis with 5 U of Klenow fragment (3’-5’ exo-) (New England Biolabs) and

7.5 U of RNase H (New England Biolabs). Samples were purified by a phenol chloroform

extraction and ethanol precipitation. Subsequent Illumina MiSeq library prep on the dsDNA

was performed as described [21]. This treatment should greatly reduce the concentration of

Human DNA, leaving mostly bacterial and viral DNA. A total 63 libraries (18 NS plasma, 18

NS buffy coat, 18 NS CSF, and 9 control plasma) 2 x 250bp were sequenced at the Sanger

institute (UK) and have been publicly available in the SRA (

https://www.ncbi.nlm.nih.gov/bioproject/PRJEB9580 since September 9, 2015).

3.3 RESULTS

To perform an unbiased identification of sequences that are enriched in nodding

syndrome, sequences were assembled into contigs and machine learning was used to classify

the contigs. All metagenome reads were assembled together (Cross Assembly) and 27,341

(82.5%) of the 33,142 contigs larger than 800 nt (see Table 3.3) were assigned a taxonomic

annotation[46]. Twenty-two contigs were identified as coming from Onchocerca flexuosa,

though none were identified as O. volvulus .

https://www.ncbi.nlm.nih.gov/bioproject/PRJEB9580
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The metagenome reads were mapped to the assembled contigs to generate a matrix

(the contig/hits table) that indicates how many times a contig is observed in each sample . An

unpaired t-test was used to compare normalized contig/hits for the nodding syndrome samples

(n=54) and controls (n=9). 132 contigs were significantly different between the two groups

(p-value ≤ 10−6). Of those contigs, 65 were identified as being from the genus Halomonas

and an additional 11 were from the family Halomonadaceae but the genus could not be

identified. Table 3.1 shows the details for the 12 top contigs by t-test p-value. Those results

strongly suggest that a member of the Halomonas genus co-occurs with NS.

Table 3.1. 12 top contigs by t-test p-value.
contig annotation genra family −log10(p-value)

NODE 180 Halomonas beimenensis Halomonas Halomonadaceae 10.04

NODE 588 Halomonas sp. HG01 Halomonas Halomonadaceae 10.0

NODE 382 Halomonas sp. 1513 Halomonas Halomonadaceae 9.89

NODE 738 Halomonas sp. 1513 Halomonas Halomonadaceae 9.79

NODE 216 Halomonadaceae Chromohalobacter Halomonadaceae 9.77

NODE 438 Halomonadaceae NA Halomonadaceae 9.70

NODE 578 Chromobacteriaceae Pseudogulbenkiania Chromobacteriaceae 9.657

NODE 449 Halomonas sp. HG01 Halomonas Halomonadaceae 9.52

NODE 183 Halomonas aestuarii Halomonas Halomonadaceae 9.50

NODE 269 Halomonas sp. HG01 Halomonas Halomonadaceae 9.43

NODE 302 Halomonas Halomonas Halomonadaceae 9.26

NODE 146 Halomonas sp. 1513 Halomonas Halomonadaceae 9.19

3.3.1 Random Forest

A Random Forest model was trained to distinguish between Nodding Syndrome

samples and controls. Random Forest is a machine learning ensemble method for

classification that works by re-sampling the metagenomes and constructing decision trees

using the hits to contigs for each sample. Since the metagenomes are re-sampled with

replacement, in each iteration some metagenomes may be sampled twice or more, while other

metagenomes will not be sampled (This method of re-sampling is also known as
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bootstrapping). Each metagenome is, on average, left out from one third of the subsampled

sets, however, by repeating the sampling and building the decision trees many times, the entire

data set is analyzed. Each tree in the random forest votes to classify a metagenome as either a

nodding syndrome case or a control. The out-of-bag (OOB) error is the proportion of

misclassified left-out samples when using only the trees where they were left out. The OOB

error is a good estimator of the generalization error [12] and can be used to assess the quality

of the model. Our final RF model has a OOB error of 1.59% (one misclassification, see Figure

3.5-C).

From this model, the importance of each contig to the classification can be measured

by permuting the values for each row of the hit/contig matrix one at time and classifying the

modified columns. The OOB error will increase if the permuted contig was important for the

classification. The importance of a contig is expressed as the mean decrease accuracy, that is,

the average number of extra misclassified metagenomes per tree. We trained two random

forest models: The first using all contigs (figure 3.5-A), the second, using the 100 most

important contigs in the first model(Figure 3.5B). At a family level, from the 100 most

important contigs 70 were annotated as ”Halomonadaceae”. At the genus level, 58 were

annotated as ”Halomonas” (see Table A.2). From the most important 12 contigs from the

second RF, 11 are ”Halomonas” (see Table 3.2, Figure 3.2). This strengthens the hypothesis

that a member of the Halomonas genus co-occurs with NS. The identity of those contigs to the

closest halomonas reference is around 80%.
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Figure 3.2. Boxplots of the top 12 contigs across sample type
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Table 3.2. Annotation of the top 12 contigs
contig annotation genus family importance

NODE 1117 Halomonas Halomonas Halomonadaceae 0.0295

NODE 201 Halomonas sp. HG01 Halomonas Halomonadaceae 0.0090

NODE 183 Halomonas aestuarii Halomonas Halomonadaceae 0.0082

NODE 15387 No hits NA NA 0.0074

NODE 180 Halomonas beimenensis Halomonas Halomonadaceae 0.0067

NODE 170 Halomonas sp. 1513 Halomonas Halomonadaceae 0.0053

NODE 1172 Halomonas sp. 1513 Halomonas Halomonadaceae 0.0052

NODE 65 Halomonas sp. 1513 Halomonas Halomonadaceae 0.0044

NODE 946 Halomonas Halomonas Halomonadaceae 0.0041

NODE 953 Halomonas beimenensis Halomonas Halomonadaceae 0.0040

NODE 454 Halomonas sp. 1513 Halomonas Halomonadaceae 0.0038

NODE 1331 Halomonas sp. 1513 Halomonas Halomonadaceae 0.0036

3.3.2 Halophage

Manual exploration of the assembly graph around Halomonas contigs with high

importance reveals that an Halomonas contig (NODE 705) along with other non Halomonas

contigs form a circular DNA structure 57 kbp in length (see Figure 3.3). Furthermore,

NODE 705 and NODE 81 (another Halomonas contig) share a 56 bp region which has

sequencing depth roughly equal to the sum of adjacent regions in NODE 705 and NODE 81 .

This suggests that this 57 kbp region is a phage, and that it is found both as a circular

molecule and inserted in the Halomonas genome in our samples. We named this phage

“Halophage”. We looked for the function of ORFs in the Halophage using various tools (see

Figure 3.4) on identify some clearly phage genes such as an integrase and several phage tails.
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Figure 3.3. Halophage contigs - regions homologous to halomonas are shown in blue

Figure 3.4. Halophage annotation

3.4 METHODS

The libraries were cross assembled [29] by concatenating all the reads into two files

(forward and reverse). Low quality read pairs were removed using PRINSEQ++ (see chapter

2) [13] (-min len 50 -min qual mean 30 -entropy=0.5). Overall, 97.8% (43,341,616 R1

reads and 44,322,504 R2 reads) passed quality control and were assembled using Metaspades

[7] v3.12 (–only-assembler -K21,33,55). This resulted in 33,142 contigs larger than 800 bp.

Quality of the assembly was assessed using Quast [39]. The raw reads of all libraries were
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mapped against the large contigs using bowtie [58] (–sensitive -p 20 –no-unal).

Table 3.3. Cross assembly stats
# contigs (> 800 bp) 33,142

# contigs (≥ 1,000 bp) 24,838

# contigs (≥ 5,000 bp) 3,238

# contigs (≥ 10,000 bp) 1,485

# contigs (≥ 25,000 bp) 533

# contigs (≥ 50,000 bp) 218

Total length (> 800 bp) 108,438,303

Total length (≥ 1,000 bp) 101,036,476

Total length (≥ 5,000 bp) 60,044,439

Total length (≥ 10,000 bp) 47,990,624

Total length (≥ 25,000 bp) 33,487,583

Total length (≥ 50,000 bp) 22,820,351

Largest contig 671,078

Total length 108,438,303

GC (%) 63.54

N50 6,922

N75 1,980

L50 2,239

L75 10,410

# N’s per 100 kbp 0

MEGAN [46] was used to annotate those contigs by parsing the results of a blastn

search against the non redundant nt database (NCBI’s database that includes sequences from

the Nucleotide Sequence Database Collaboration and RefSeq sequences [73]) and assigning

each contig to a node on the taxonomic tree. For example, if a contig only has hits against E.

coli W3110, it will be assigned to that terminal node. On the other hand, if a contig has hits

against several distinct γ-proteobacteria, it will be assigned to the internal node

“gammaproteobacteria”.

All original reads were mapped to the assembled contigs to construct the contig/hit

table where columns represent metagenomes, rows represent contigs and entries represent
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how many read pairs in that virome mapped to that contig (a read pair maps to a contig if

either of the two reads maps to that contig).

Each column in the contig/hit table was RPT normalized (divide by 1,000 times the

number of reads in that virome) so that the numbers in the table represent hits per 1,000 read

pairs. Columns were split in two classes, cases (18 CSF, 18 buffy coat and 18 plasma) and

control (9 plasma) to train a Random Forest model using the ‘randomForest” [97] package in

R (importance=TRUE ,ntree=2000). This model has a 9.25% out of bag error rate (3 control

samples are misclassified as cases, see figure 3.5-A). To reduce the noise induced by the large

number of contigs (it is unlikely that many of the 33,142 contigs are relevant to the model) the

100 contigs with the highest mean decrease accuracy measure (i.e. the 100 contigs that

contributed most information to the random forest) were used to train a new Random Forest

model (importance=TRUE ,ntree=300). This model has a 1.59% out of bag error rate (1

control sample is misclassified as a case, see figure 2). The top 100 contigs were sorted

according to their mean decrease accuracy in the second model and annotated using MEGAN

[46]. Table S1 contains the t-test p-value, MEGAN annotation, importance (mean decrease

accuracy), and rank for each of the 100 top conigs. Figure S1 has a similar graph to figure 4

for the top 100 contigs.

The halophage (Figure 3.4) was identified by mapping the top 100 contigs, using blast,

to the assembly graph of the full cross assembly using Bandage [108]. Open Reading Frames

were obtained through PATRIC [105] using the bacteriophages gene annotation recipe which

uses PHANOTATE [68]. Gene annotations were obtained from PATRIC subsystems, the

Conserved Domains Database search [64] and PHANNS [14]. Genome map was generated

using EasyFig [92].
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3.5 DISCUSSION

While the epidemiological association between Onchocerca volvulus and NS has been

consistently demonstrated, many studies trying to establish a causal link have been

inconclusive [28, 34]. Still, the question of why NS is not found in many areas where

onchocerciasis is common remains. It has been hypothesized [18] that NS might be caused by

a pathogen that also has Simulium spp. as a vector. It could be a filarial parasite closely related

to O. volvulus, an alternative or additional endosymbiont to Wolbachia, or even a virus. With

more than 1,700 Simulium species described, it is not unreasonable to have a blackfly species

whose distribution matches NS incidence.

We were unable to identify any sequence from any Wolbachia species or from

Onchocerca volvulus. We identified sequences from Onchocerca flexuosa. Onchocerca

flexuosa unique as it is the only member of the Onchocerca genus that does not require an

Wolbachia endosymbiont [69]. The idea that Nodding syndrome might be caused by

Onchocerca flexuosa when it has Halomonas as an endosymbiont invites further exploration.
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Figure 3.5. Proportion of control votes for different RF models
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CHAPTER 4

PHANNS

For any given phage genome, me are unable to assign function to 50-90% [30] of

genes using similarity searches. Yet, Phage have analogous structural proteins with similar 3D

structure that are needed to infect and replicate in their host. In this work, we present

PhANNs (PHage ANNs) an Artificial Neural Networks to classify any phage ORF into one of

eleven structural classes. We use a database of 538,213 manually curated phage protein

sequences and we reach f1-score of 0.87.

This Chapter consist of a brief introduction to complement the one on the paper, a

copy of the peer-reviewed paper “PhANNs,a fast and accurate tool and web server to classify

phage structural proteins” and a discussion expanding on the context of this tool and exploring

data and experiments that were cut from the paper or send to supplementary material.

4.1 INTRODUCTION

Phages, or viruses that infect bacteria, are the most common biological entity on the

Earth [40]. Yet, we are unable to assign function to 50-90% of their genes. This is mainly due

to the fact that most methods to elucidate gene function are based on homology, but phages

have no common origin. Nevertheless, phages across distinct groups encode analogous

structural proteins that performs the same function.

Artificial Neural Networks (ANN) are proven universal approximators of functions in

Rn [22], including the function that maps features extracted from a phage protein sequence to

its structural class. In this work, we construct a well curated database of phage structural

proteins and use it to train a feed-forward ANN to assign any phage protein to one of eleven



39

classes (ten structural plus ”others”). Furthermore, we developed a webserver where protein

sequences can be uploaded for classification. The full database, as well as the code for

PhANNies and the webserver, are available for download at https://edwards.sdsu.edu/phanns.

4.1.1 Phages

Phages are composed of capsid proteins that encapsulate their genome. A portal

protein is used to pack the DNA or RNA genome inside the capsid. Some phages also have a

complex structure called tail attached to the capsid by Collar Proteins and/or Head-Tail

joining proteins. Tail itself is composed of tail proteins and/or tail shaft. Furthermore tail

fibers might be attached to the tail. Figure 4.1 shows a phage.

Major tail
Minor tail
Tail Shaft

Major capsid
Minor capsid

Baseplate

Portal

Collar
HTJ

Tail fiber

Figure 4.1. Phage structural proteins

4.1.2 Artificial neural networks

An artificial neural network is a mathematical model loosely inspired by the human

brain. It consist of several neurons (aka perceptrons) linked together. Each neuron takes

inputs either form the model of from other neurons, performs some operation on them

(traditionally a lineal combination) and returns some output.

https://edwards.sdsu.edu/phanns
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The multi-layer ANN architecture consists of ordered groups (aka layers) of neurons

that are all connected to every neuron on the previous and next group. No connections are

made within a layer. The first layer is the input layer and the last one is the output layer (see

Figure 4.2)
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I408
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200

O1

O11

Input
layer
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Figure 4.2. A multi-layer ANN

The process of ”training” an ANN consist of tuning the models parameters (the

coefficients of the lineal combination in this case) to make the input and known output to

match closely for a large set of known training examples.

4.2 PAPER
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Abstract

For any given bacteriophage genome or phage-derived sequences in metagenomic data

sets, we are unable to assign a function to 50–90% of genes, or more. Structural protein-

encoding genes constitute a large fraction of the average phage genome and are among the

most divergent and difficult-to-identify genes using homology-based methods. To under-

stand the functions encoded by phages, their contributions to their environments, and to

help gauge their utility as potential phage therapy agents, we have developed a new

approach to classify phage ORFs into ten major classes of structural proteins or into an

“other” category. The resulting tool is named PhANNs (Phage Artificial Neural Networks).

We built a database of 538,213 manually curated phage protein sequences that we split into

eleven subsets (10 for cross-validation, one for testing) using a novel clustering method that

ensures there are no homologous proteins between sets yet maintains the maximum

sequence diversity for training. An Artificial Neural Network ensemble trained on features

extracted from those sets reached a test F1-score of 0.875 and test accuracy of 86.2%.

PhANNs can rapidly classify proteins into one of the ten structural classes or, if not predicted

to fall in one of the ten classes, as “other,” providing a new approach for functional annota-

tion of phage proteins. PhANNs is open source and can be run from our web server or

installed locally.

Author summary

Bacteriophages (phages, viruses that infect bacteria) are the most abundant biological

entity on Earth. They outnumber bacteria by a factor of ten. As phages are very different

from each other and from bacteria, and we have relatively few phage genes in our database

compared to bacterial genes, we are unable to assign function to 50–90% of phage genes.

In this work, we developed PhANNs, a machine learning tool that can classify a phage
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gene as one of ten structural roles, or “other”. This approach does not require a similar

gene to be known.

This is a PLOS Computational Biology Software paper.

Introduction

Bacteriophages (phages) are the most abundant biological entity on the Earth [1]. They modu-

late microbial communities in several possible ways: by lysing specific taxonomic members or

narrow groups of microbiomes, they affect the microbial population dynamics and change

niche availability for different community members. Via transduction and/or lysogeny, they

mediate horizontal transfer of genetic material such as virulence factors [2], metabolic auxil-

iary genes [3], photosystems and other genes to enhance photosynthesis[4], and phage produc-

tion in general, by providing the host with immunity from killing by other phages. Temperate

phages can become part of the host genome as prophages; most bacterial genomes contain at

least one, and often multiple prophages [5,6].

Phage structures (virions) are composed of proteins that encapsulate and protect their

genomes. The structural proteins (or virion proteins) also recognize the host, bind to its sur-

face receptors and deliver the phage’s genome into the host’s cell. Phage proteins, especially

structural ones, vary widely between phages and phage groups, so much so that sequence

alignment based methods to assign gene function fail frequently: we are currently unable to

assign function to 50–90% of phage genes [7]. Experimental methods such as protein sequenc-

ing, mass spectrometry, electron microscopy, or crystallography, in conjunction with antibod-

ies against individual proteins, can be used to identify structural proteins but are expensive

and time-consuming. A fast and easy-to-use computational approach to predict and classify

phage structural proteins would be highly advantageous as part of pipelines for identifying

functional roles of proteins of bacteriophage origins. The current increased interest in using

phages as therapeutic agents [8,9] motivates annotations for as much of the phage genome as

possible. Even if they are somewhat tentative and not experimentally validated, annotations of

the relatively non-toxic structural proteins versus the potentially host health-threatening toxins

and other virulence factors could inform decisions whether to choose one specific phage versus

another.

Machine learning has been used to attack similar biological problems. In 2012, Seguritan

et al. [10] developed Artificial Neural Networks (ANNs) that used normalized amino acid fre-

quencies and the theoretical isoelectric point to classify viral proteins as structural or not struc-

tural with 85.6% accuracy. These ANNs were trained with proteins of viruses from all three

domains of life. They also trained two distinct ANNs to classify phage capsid versus phage

non-capsid ORFs and phage “tail associated” versus phage “non-tail-associated” ORFs. Subse-

quently, several groups have used different machine learning approaches to improve the accu-

racy of predictions. The resulting tools are summarized in Table 1.

Each of these previous approaches has important limitations: 1) The classification is limited

to two classes of proteins (e.g.,”capsid” or “not capsid”). 2) Training and testing sets were small

(only a few hundred proteins in some cases), limiting the utility of these approaches beyond

those proteins used in testing. 3) Methods that rely on predicting secondary structure (e.g.,

VIRALpro [11]) are slow to run. In general, these newer methods have improved accuracy at

the cost of lengthening the time required for training, or have used very small training and/or

test sets.
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Artificial Neural Networks (ANN) are proven universal approximators of functions in Rn

[12], including the mathematical function that maps features extracted from a phage protein

sequence to its structural class. We have constructed a manually-curated database of phage

structural proteins and have used it to train a feed-forward ANN to assign any phage protein

to one of eleven classes (ten structural classes plus a catch-all class labeled "others"). Further-

more, we developed a web server where protein sequences can be uploaded for classification.

The full database, as well as the code for PhANNs and the webserver, are available for down-

load at http://edwards.sdsu.edu/phanns and https://github.com/Adrian-Cantu/PhANNs

Methods

Database

In this work, we generated two complementary protein databases, "classes" and "others". The

"classes" database contains curated sequences of ten phage structural functions (Major capsid,

Minor capsid, Baseplate, Major tail, Minor tail, Portal, Tail fiber, Tail sheath, Collar, and

Head-Tail Joining). These functional classes are not exhaustive (and we will add more classes

in the future); they represent the dominant structural protein roles present in most (but not

all) phages [13]. The terms/descriptors for these classes are addressed in the next section.

Major capsid proteins are those that form the phage head. Many but not all phages also encode

minor capsid proteins that decorate and/or stabilize the head or proteins present at the vertices

of the icosahedral heador at the center of the hexon faces. Portals form a ring at the base of the

phage head and serve to dock the packaging complex that translocates the genome into the

phage head. Head-tail joining (aka head-tail connector or head completion) proteins form

rings inserted between the portal ring and the tail. The collar is present in some phages, e.g. the

Lactococcal phages, at the base of the neck/top of the tail to which the so-called whiskers

attach. Major tail proteins form the inner tail tube of the tailed phages, whereas the tail sheath

(aka the tail shaft) proteins form the outside of the tail, and permit contraction. Minor tail

Table 1. Summary of previous ML-based methods for classifying viral structural proteins.

Reference Method Target proteins Database size Accuracy

Seguritan et al.[10] ANN structural (all viruses) versus non-structural (all viruses) 6,303 structural 85.6%

7,500 non-structural

Seguritan et al.[10] ANN capsid versus non-capsid (phages only) 757 capsid 91.3%

10,929 non-capsid

Seguritan et al.[10] ANN Tail-associated versus non-tail (phages only) 2,174 tail 79.9%

16,881 non-tail

Feng et al.[33] Naïve Bayes structural versus non-structural 99 structural 79.15%

208 non-structural

Zhang et al.[34] Ensemble Random Forest structural versus non-structural 253 structural 85.0%

248 non-structural

Galiez et al.[11] SVM capsid versus non-capsid 3,888 capsid 96.8%

4,071 non-capsid

Galiez et al.[11] SVM tail versus non-tail 2,574 tail 89.4%

4,095 non-tail

Manavalan et al.[35] SVM structural versus non-structural 129 structural 87.0%

272 non-structural

This work ANN Ten distinct phage structural classes plus “others” 168,660 structural 86.2%

369,553 non-structural

https://doi.org/10.1371/journal.pcbi.1007845.t001
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proteins may comprise several kinds of proteins associated with the tail, including the tape

measure protein. Baseplate proteins are those that are attached to the tail and to which the tail

fibers are attached, the latter being a relatively common determinant of host range. The "oth-

ers" database contains all phage ORFs that do not encode proteins annotated as “structural” or

as any of the ten categories above.

The database of "classes"

Sequences from the ten structural classes were downloaded from NCBI’s protein database

using a custom search for the class title (the queries are in the “ncbi_get_structural.py” script

in the GitHub repository). Curation consisted of grouping sequences by their description (part

of the fasta header) and deciding which descriptions to include. The list of included headers

for each class can be found here https://github.com/Adrian-Cantu/PhANNs/tree/master/

model_training/01_fasta; the variations of terms included are too many to be included here.

All the terms preceded by a “+” (or “+ +”) were included in the respective database. In the par-

ticular case of tail fibers, we did not include the descriptions “phage tail fiber assembly protein”

(3,662 proteins) nor many “partial protein” variations (1,500+ proteins).

This method for collecting data has the limitation that a proportion of phage sequences in

the database are misannotated and that NCBI has no controlled vocabulary for bacteriophage

protein functions so it is occasionally difficult to account for misspelled annotations and/or

alternative naming. However, it is clear from previous machine learning applications that a

larger number of training examples is more important for optimal model performance than a

perfectly curated training set [14]. To minimize inclusion of wrongly annotated protein

sequences, we manually curated the databases to address these limitations.

The "others" database

To generate a database for the "others" class, all available phage genomes (8,238) were down-

loaded from GenBank on 4/13/19. ORFs were found using the GenBank PATRIC [15] server

with the phage recipe [16]. Sequences annotated as structural or any of the ten classes were

removed during manual curation. Furthermore, the remaining sequences were de-replicated at

60% together with sequences in the “classes” database using CD-hit [17]. Any phage ORF that

clustered with a sequence from the "classes" database was removed from the "others" database.

Training, test, and validation split

Sequences in each class were clustered at 40% using CD-hit and split into eleven sets (10 for

cross validation and one for testing, as shown in Fig 1). Once the clusters were established, to

prevent loss of the sequence diversity available within the clusters, which is essential for opti-

mal training, the clusters were expanded by adding back within each set all the representatives

of that set (described in Fig 1). Subsequently, the sets corresponding to each structural class

were merged. We named the generated sets 1D-10D and TEST. Splitting the database this way

ensures that the different sets share no homologous proteins while recapturing all the sequence

diversity present in each class. Finally, 100% dereplication was performed to remove identical

sequences (See Table 2). The effect of the cluster expansion on performance is explored in S1

and S2 Figs.

Extraction of features

The frequency of each dipeptide (400 features) and tripeptide (8,000 features) was computed

for each ORF sequence in both the “classes” and “others” databases. As a potential time-saving
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Fig 1. Non homologous database split—To ensure that no homologous sequences are shared between the test, validation, and training sets the sequences from

each class (Major capsid proteins in this figure) were de-replicated at 40%. In the de-replicated set, no two proteins have more than 40% identity and each sequence

is a representative of a larger cluster of related proteins. The de-replicated set is then randomly partitioned into eleven equal size subsets, (1dMcp-10dMpc plus TestMpc).

Those subsets are expanded by replacing each sequence with all the sequences in the cluster it represents (subsets 1DMpc-10DMpc plus TESTMpc). Analogous subsets are

generated for the remaining ten classes and corresponding subsets are combined to generate the subsets used for 10-fold cross-validation and testing (1D-10D and

TEST).

https://doi.org/10.1371/journal.pcbi.1007845.g001

Table 2. Database numbers—Raw sequences were downloaded using a custom script available at https://github.com/Adrian-Cantu/PhANNs. All datasets can be

downloaded from the web server. �Numbers before and after removing sequences at least 60% identical to a protein in the classes database.

Class Raw sequences After manual curation After de-replication at 40% After expansion and de-replication at 100%

Major capsid 112,987 105,653 1,945 35,755

Minor capsid 2,901 1,903 261 1,055

Baseplate 75,599 19,293 401 6,221

Major tail 66,513 35,030 536 7,704

Minor tail 94,628 80,467 918 18,002

Portal 210,064 189,143 2,310 59,745

Tail fiber 29,132 18,514 1,222 7,256

Tail sheath 37,885 35,570 599 15,349

Collar 4,224 3,709 339 2,105

Head-Tail joining 60,270 58,658 1,317 15,468

Total structural 694,203 547,940 9,848 168,660

Others 733,006 643,735/643,380� 106,004 369,553

https://doi.org/10.1371/journal.pcbi.1007845.t002
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procedure during neural net training while also permitting classification of more diverse

sequences, each amino acid was assigned to one of seven distinct "side chain" chemical groups

(S1 Table). The frequency of the "side chain" 2-mers (49 features), 3-mers (343 features), and

4-mers (2,401 features) was also computed. Finally, some extra features, namely isoelectric

point, instability index (whether a protein is likely to degrade rapidly; [18]), ORF length, aro-

maticity (relative frequency of aromatic amino acids; [19]), molar extinction coefficient (how

much light the protein absorbs) using two methods (assuming reduced cysteins or disulfide

bonds), hydrophobicity, GRAVY index (average hydropathy; [20]) and molecular weight,

were computed using Biopython [21]. All 11,201 features were extracted from each of 538,213

protein sequences. The complete training data set can be downloaded from the web server

(https://edwards.sdsu.edu/phanns).

ANN architecture and training

We used Keras [22] with the TensorFlow [23] back-end to train eleven distinct ANN models

using a different subset of features. We named the models to indicate which feature sets were

used in training: the composition of 2-mers/dipeptides (di), 3-mers /tripeptides (tri) or 4-mer/

tetrapeptide (tetra), or side chain groups (sc) (as shown in S1 Table), and whether we included

the extra features (p) or not. A twelfth ANN model was trained using all the features (Table 3).

Each ANN consists of an input layer, two hidden layers of 200 neurons, and an output layer

with 11 neurons (one per class). A dropout function with 0.2 probability was inserted between

layers to prevent overfitting. ReLU activation (to introduce non-linearity) was used for all lay-

ers except the output, where softmax was used. Loss was computed by categorical cross-

entropy and the ANN is trained using the "opt" optimizer until 10 epochs see no training loss

reduction. The model at the epoch with the lowest validation loss is used. Class weights

inversely proportional to the number of sequences in that class were used.

10-fold cross-validation. Sets 1D to 10D (see Fig 1) were used to perform 10-fold cross-

validation; ten ANNs were trained as described above, sequentially using one set as the valida-

tion set and the remaining nine as the training set. The results are summarized in Figs 2, 3, 4,

S1 and S2.

Table 3. Feature types included in each of the 12 models. di—2-mer/dipeptide composition; tri—3-mer/tripeptide composition; tetra—4-mer/tetrapeptide composi-

tion; sc—side-chain grouping; p—plus all the extra features [isoelectric point, instability index (whether a protein is likely to be degraded rapidly), ORF length, aromaticity

(relative frequency of aromatic amino acids), molar extinction coefficient (how much light a protein absorbs) using two methods (assuming reduced cysteines or disulfide

bonds), hydrophobicity, GRAVY index (average hydropathy), and molecular weight, as computed using Biopython. - �Per class score figures are available as supplementary

material.

Model di tri di_sc tri_sc tetra_sc p

di_sc� x

di_sc_p� x x

tri_sc� x

tri_sc_p� x x

tetra_sc� x

tetra_sc_p� x x

di x

di_p x x

tri x

tri_p x x

tetra_sc_tri_p x x x

all x x x x x x

https://doi.org/10.1371/journal.pcbi.1007845.t003
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The PhANNs score. For each input sequence, PhANNs run 10 ANNs predictions (those

trained during the 10-fold cross-validation). Each of those 10 ANNs outputs the soft-max

scores for every class (a number between 0 and 1, such that the score of all classes adds to 1).

PhANNs outputs the per class sum of the ten ANNs scores (the maximum achievable PhANNs

score is 10, as there are ten ANNs). The input sequence is classified as the class with the highest

PhANNs score.

To give a clearer indication of the quality of this prediction we added a “confidence” score

to each prediction. The “confidence” score shows what fraction of sequences in the test set that

were classified as the same class as the input sequence, and with the same PhANNs score or

higher, were correctly classified (True positives). The confidence scores differ depending on

the protein class. For example, a sequence classified as “major capsid” with a PhANNs score of

7 has 97% confidence, while a “Tail fiber” with a PhANNs score of 7 has only 82.4% confi-

dence. The per class relationship between the PhANNs score and the confidence is explored in

Fig 5.

Web server

We developed an easy-to-use web server for users to upload and classify their own sequences.

Although ANNs need substantial computational resources for training the model (between

54,861 and 127,756,413 parameters need to be tuned, depending on the model), the trained

model can make fast de novo predictions. Our web server (https://edwards.sdsu.edu/phanns)

can predict the structural class of an arbitrary protein sequence in seconds and assign all the

Fig 2. Model-specific F1 score—F1 scores (harmonic mean of precision and recall) for each polypeptide model/class combination. All

models follow similar trends as to which classes are more or less difficult to classify correctly. Error bars represent the 95% confidence

intervals.

https://doi.org/10.1371/journal.pcbi.1007845.g002
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ORFs in a phage genome to one of the 10 classes in minutes. The application can also be down-

loaded and run locally for large numbers of queries or if privacy is a concern.

Results and discussion

We evaluated the performance of 120 ANNs (10 per model type) on their respective validation

set. For each ANN, we computed the precision, recall, and F1-score of the 11 classes. A

“weighted average” precision, recall and F1-score, where the score for each class is weighted by

the number of proteins in that class (larger classes contribute more to the score) was com-

puted. The accuracy (fraction of observation correctly classified) is equivalent to the weighted

average recall. The three weighted average scores are represented as a 12th class. This gives us

ten observations for each combination of model type and class, which allows us to construct

the confidence intervals depicted in Figs 2, 3 and 4.

(Figs 2 and S1) shows that all the models follow the same trend as to which classes they pre-

dict with higher or lower accuracy. Some classes of proteins, for example major capsids, col-

lars, and head-tail joining proteins, are predicted with high accuracy. On the other hand, the

minor capsid and tail fiber protein classes seem to be intrinsically hard to predict with high

accuracy irrespective of the model type used (Figs 3 and S2). One reason for this is the limited

size of the training set: the minor capsid protein set is the smallest class, with only 581 proteins

available for inclusion in our database. Even if the classes were weighted according to their size

during training, it appears we do not have enough training examples to identify this class with

Fig 3. Class-specific F1 score—F1 scores (harmonic mean of precision and recall) for each polypeptide model/class combination.

Some classes, such as minor capsid, tail fiber, or minor tail, are harder to classify correctly irrespective of the model used. Error bars

represent the 95% confidence intervals.

https://doi.org/10.1371/journal.pcbi.1007845.g003
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high accuracy. Furthermore, “minor capsid” is often misclassified as “portal” (Fig 6). This

probably reflects an annotation bias, as we found about 800 proteins annotated as “portal

(minor capsid)” in the raw sequences. When the ~800 proteins are analyzed with PhANNs,

over 90% are predicted to be portal proteins. Although these were removed during manual

curation of the training data sets, some (small) fraction of minor capsid proteins in our data-

base may have been annotated as “minor capsid” by homology to one of those 800 sequences.

The predictive accuracy for a specific class of proteins is likely to be affected by the bias in

the training datasets. The bias could be biological and/or due to a sampling bias. An example

of the former is the tail fiber class: the tail fiber is one of the determinants of the host range of

the virus, and is under strong evolutionary selective pressure [24–29]. On the other hand, sam-

pling bias may be introduced due to oversampling of certain types of phages, such as the thou-

sands of mycobacterial phages isolated as part of the SEA-PHAGES project [30], many of

which are highly related to each other.

Average validation F1-scores range from 0.653 for the “di_sc” model to 0.841 for the “tet-

ra_sc_tri” model (Fig 4). Although the average validation F1-score for the top three models

“tri_p” (0.832), “tetra_sc_tri_p” (0.841), and “all” (0.827) are not significantly different from

each other, we decided to use “tetra_sc_tri_p” for the web server and all subsequent analyses

because, while it uses ~7% fewer features than “all” (10,409 vs 11,201), we expect that the tetra

side chain features may be better than the tripeptide features at generalizing predictions and

accessing greater sequence diversity.

Fig 4. Model-specific validation weighted average scores—Precision, recall, and F1 scores for all models. Precision

is higher in all models as the “others” class is the largest and easiest to classify correctly. Error bars represent the 95%

confidence intervals.

https://doi.org/10.1371/journal.pcbi.1007845.g004

PLOS COMPUTATIONAL BIOLOGY PhANNs, a fast and accurate tool and web server to classify phage structural proteins

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1007845 November 2, 2020 9 / 18



Using the “tetra_sc_tri_p” ensemble, we predicted the class of each sequence in the test set

(46,801) by averaging the scores of each of the ten ANNs. Results are summarized in Fig 6 and

Table 4. Doing this we reach a test F1-score of 0.89 and accuracy of 86.2% over the eleven

classes.

Higher accuracy can be reached if one is willing to disregard sequences with low PhANNs

scores. Using only sequences with a PhANNs score of 5 or higher, the F1-score for the test set

is 0.945, accuracy is 94%, with 9,006 of 46,801 (~20%) test sequences being “not classified”. If

using sequences with a PhANNs score of 8 or higher, the F1-score for the test set is 0.982, accu-

racy is 98%, but 19,208 of 46,801 (~41%) test sequences would be “not classified” (see Fig 7).

Table 4 shows summary statistics for the complete test set, while Table 5 shows the same sta-

tistics for the test subset of sequences with PhANNs 8 or greater. The stringency with which

users interpret the PhANNs score may vary depending on their specific need. Therefore we

recommend that the actual PhANNs score (or the confidence score) be reported in addition to

the predicted function class.

Because “minor capsid” is the worst performing class in our test set, we trained an analo-

gous ANN ensemble without that class to explore if accuracy of the remaining classes is

improved. Multiple metrics can be used to assess which model is better. The per class ROC

curves of both models [Fig 8A (with minor capsid class) and 8-B (without minor capsid

class)] and areas under the curves are similar. Removing the minor capsid class from the mod-

els doesn’t significantly alter the relationship between the PhANNs score and the confidence

score (Fig 8C and 8D). The confusion matrices of both models (Fig 8E and 8F) show that pre-

dictions for portal proteins improve, as 3% of them are misclassified as minor capsid. For all

other classes, the two models are similar with respect to which classes are most commonly

Fig 5. Per class relationship between PhANNs score and confidence—The confidence corresponding to a particular class

PhANNs score represents the fraction of true positives (correctly classified) sequences in the test set that were classified as that

class, with a given PhANNs score or higher. As it is uncommon for the highest class PhANNs score to be less than 2, the left side of

the graph includes all test proteins that were classified as that class, and the confidence corresponds to the per class precision (see

Table 4).

https://doi.org/10.1371/journal.pcbi.1007845.g005
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Fig 6. Confusion matrix using the “tetra_sc_tri_p” model—Each row shows the proportional classification of test

sequences from a particular class. A perfect classifier would have 1 on the diagonal and 0 elsewhere. In general, a

protein that is misclassified is predicted as “others”.

https://doi.org/10.1371/journal.pcbi.1007845.g006

Table 4. Results of per class classification for the test set. Support indicates the number of test sequences in each specific class. accuracy (fraction of observation cor-

rectly classified) is equivalent to the weighted average recall (weighted by the support of each class). The macro average is unweighted (all classes contribute the same).

precision recall f1-score support

Major capsid 0.80 0.91 0.85 2,456

Minor capsid 0.07 0.78 0.13 81

Baseplate 0.69 0.75 0.72 851

Major tail 0.55 0.79 0.65 502

Minor tail 0.66 0.82 0.73 1,072

Portal 0.81 0.81 0.81 5,261

Tail fiber 0.35 0.74 0.47 648

Tail sheath 0.97 0.93 0.95 2,031

Collar 0.51 0.86 0.64 300

Head-Tail joining 0.56 0.84 0.67 1,277

Others 0.96 0.86 0.91 32,322

macro avg 0.63 0.83 0.68 46,801

weighted avg 0.89 0.86 (accuracy) 0.87 46,801

https://doi.org/10.1371/journal.pcbi.1007845.t004
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confused. A comparison of per class precision, recall and F1-score can be found in Table 6.

When the minor capsid class is excluded, metrics are just as likely to improve as to worsen,

and the accuracy gain is only 1%; greater accuracy gains can be achieved by disregarding

sequences with low PhANNs scores as “not classified,” as described above. Therefore, we

decided not to exclude the minor capsid class from our model; the performance in this class is

likely to improve in the future, as more sequences become available and, hopefully, are experi-

mentally validated.

Fig 7. Effect of disregarding low scoring test proteins—Progression of the weighted average precision, recall and

F1-score of the test set after excluding low scoring proteins. The portion of included proteins is the fraction that can

be classified if you only trust that score or higher. Very few test proteins have PhANNs score of 10 and not all classes

are represented.

https://doi.org/10.1371/journal.pcbi.1007845.g007

Table 5. Results of per class classification for proteins in the test set with a PhANNs score of 8 or higher. Support indicates the number of test sequences in each spe-

cific class. accuracy (fraction of observation correctly classified) is equivalent to the weighted average recall (weighted by the support of each class). The macro average is

unweighted (all classes contribute the same).

precision recall F1-score support

Major capsid 0.99 0.99 0.99 1,563

Minor capsid 0.28 0.96 0.43 45

Baseplate 0.97 0.83 0.89 151

Major tail 0.95 0.97 0.96 307

Minor tail 0.95 0.99 0.97 625

Portal 0.99 0.94 0.97 3,810

Tail fiber 0.89 0.94 0.91 360

Tail sheath 1.00 1.00 1.00 1,495

Collar 0.82 1.00 0.90 98

Head-Tail joining 0.91 1.00 0.95 916

Others 0.99 0.99 0.99 18,223

macro avg 0.89 0.96 0.91 27,593

weighted avg 0.98 0.98 (accuracy) 0.98 27,593

https://doi.org/10.1371/journal.pcbi.1007845.t005
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Fig 8. Comparison of “tetra_sc_tri_p” model trained with and without the Minor capsid class—As minor capsid is the worst performing class in our test set, we

trained an analogous ANN ensemble with it removed. Panels A and B show the ROC curves for the models with and without minor capsid respectively. Panels C and

D show the relationship between PhANNs score and Confidence for the models with and without minor capsid respectively. Panels E and F show the confusion matrix

for the models with and without minor capsid respectively.

https://doi.org/10.1371/journal.pcbi.1007845.g008
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We compared the performance of PhANNs with that of VIRALpro by predicting the func-

tion class of each other’s test set. Doing this requires us to map our 11 classes onto VIRALpro’s

4 (capsid versus not-capsid, tail versus not tail). We decided not to use the PhANNs “collar” or

“baseplate” test set as VIRALpro has a hard time classifying them (presumably because it was

not trained on those classes). Hence we discarded any of the VIRALpro test proteins that

PhANNs predicted as “collar” or “baseplate”. “Capsid” in VIRALpro means either “major cap-

sid” or “minor capsid” in PhANNs. “Tail” in VIRALpro means “Major tail”, “Minor tail”, “Tail

fiber” or “Tail sheath” in PhANNs. This transformation makes possible the comparison of the

two tools. Results are summarized in Table 7. The two tools have similar accuracy, with VIR-

ALpro slightly better at predicting capsid proteins and PhANNs slightly better at predicting

tail proteins. It is important to mention that the VIRALpro predictions took several days on a

200+ CPU cluster (it would take a few years on a laptop). A similarly sized test takes less than

an hour using the PhANNs server.

The utility of the PhANNs tool is to permit more extensive function predictions of meta-

genome sequences from phages used for phage therapy (A. Cobian, N. Jacobson, M. Rojas, H.

Hamza, R. Rowe, D. Conrad, and A. Segall, et al., work in progress) and to better describe the

coding potential of the virome in patients suffering from diseases such as inflammatory bowel

disease versus household controls (A. Segall, R. Edwards, A. Cantu, S. Handley, and D. Wang,

work in progress). In some cases, phage-associated sequences from isolated viromes have no

or very weak functional predictions when using BLAST, RPS-BLAST, or related bioinformatic

tools (work in progress). In parallel, we are experimentally validating some of the predicted

functions using electron microscopy and X-ray crystallography (S.H. Hung, V. Seguritan,

et al., ms. in preparation).

Table 6. The effect on the models’s scores from excluding the minor capsid class (mc)—Most scores are affected only slightly and are as likely to improve as to

worsen.

precision precision (mc) recall recall (mc) F1-score F1-score (mc) support ROC area ROC area (mc)

Major capsid 0.76 0.76 0.92 0.92 0.83 0.83 2456 0.917 0.918

Minor capsid 0.08 - 0.77 - 0.15 - 81 (0) 0.899 -

Baseplate 0.69 0.69 0.74 0.83 0.72 0.75 851 0.621 0.72

Major tail 0.56 0.53 0.77 0.80 0.65 0.64 502 0.918 0.91

Minor tail 0.75 0.70 0.82 0.81 0.78 0.75 1070 0.939 0.94

Portal 0.83 0.80 0.81 0.85 0.82 0.82 5261 0.943 0.945

Tail fiber 0.31 0.32 0.76 0.75 0.44 0.45 648 0.861 0.86

Tail sheath 0.96 0.95 0.94 0.93 0.95 0.94 2031 0.986 0.957

Collar 0.61 0.53 0.84 0.80 0.70 0.63 300 0.865 0.85

HTJ 0.56 0.58 0.84 0.85 0.67 0.69 1277 0.933 0.923

Others 0.96 0.96 0.87 0.88 0.91 0.92 33402 0.838 0.838

macro avg 0.64 0.68 0.83 0.84 0.69 0.74 47879 (47798)

weighted avg 0.90 0.90 0.86 0.87 0.88 0.88 47879 (47798)

https://doi.org/10.1371/journal.pcbi.1007845.t006

Table 7. Comparison of PhANNs with VIRALpro. Results from using VIRALpro test set in PhANNs and PhANNs test set in VIRALpro.

PhANNs test set in TAILpro TAILpro test set in PhANNs PhANNs test set in CAPSIDpro CAPSIDpro test set in PhANNs

test set size 10,805 672 15,107 787

precision 0.28 0.77 0.14 0.82

recall 0.79 0.68 0.86 0.32

accuracy 0.80 0.82 0.70 0.67

F1-score 0.42 0.72 0.25 0.46

https://doi.org/10.1371/journal.pcbi.1007845.t007
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The performance of any machine learning system is limited by the availability and cost of

training examples [14]. Invariably, top performing image and audio classification systems

must augment their training data with synthetic examples created by applying semantically

orthogonal transformations to the training set (i.e., slightly rotating or distorting an image, or

adding background noise to audio) [31,32]. In bioinformatics, the current practice of de-repli-

cation moves us in exactly the opposite direction—perfectly good samples cannot be used if

their overlap with other samples is too high, leaving only one version of the biostring to use for

training, thereby ignoring sequence variations. This despite the fact that biological examples

such as protein sequence data are replete with variations from a consensus sequence or motif.

Our approach overcomes this failing by using all non-redundant data. By splitting the dataset

into the training, validation, and test sets after first de-replicating at 40%, we remove even

slightly redundant samples and make sure that none of the performance is due to data memo-

rization rather than generalization. Augmenting the training set by expanding the clusters to

include all non-redundant samples is the novel idea we have introduced in the present paper

as a way of increasing our training set size and hence our accuracy.

Conclusion

ANNs are a powerful tool to classify phage structural proteins when homology-based align-

ments do not provide useful functional predictions, such as “hypothetical” or “unknown func-

tion”. This approach will become more accurate as more and better characterized phage

structural protein sequences, especially more divergent ones, are experimentally validated and

become available for inclusion in our training sets. This method can also be applied to predict-

ing the function of unknown proteins of prophage origin in bacterial genomes. In the future,

we plan to expand this approach to more protein classes and to viruses of eukaryotes and

archaea.

Supporting information

S1 Table. Side chain groupings.

(XLS)

S1 Fig. Model-specific F1 score—F1 scores (harmonic mean of precision and recall) for

each side chain model/class combination. All models follow similar trends as to which classes

are more or less difficult to classify correctly. Error bars represent the 95% confidence inter-

vals.

(PNG)

S2 Fig. Class-specific F1 score—F1 scores (harmonic mean of precision and recall) for each

side chain model/class combination. Some classes, such as minor capsid, tail fiber, or minor

tail, are harder to classify correctly irrespective of the model used. Error bars represent the

95% confidence intervals.

(PNG)

S3 Fig. Comparison of the validation weighted average F1-score of three models on the

same feature sets—We compared our ANN ensemble trained on 1D-10D sets against a

logistic regression trained on the 1D-10D sets and an ANN ensemble trained on the 1d-

10d sets (40% dereplication, without cluster expansion—see Methods). The ANN ensem-

bles perform significantly better than the logistic regression. Error bars represent 0.95 confi-

dence intervals.

(PNG)
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S4 Fig. Per class comparison of the validation F1-score of three models on the “tetra-

s_sc_tri_p feature” set—In the structural classes, the 1D-10D ANN ensemble performs

slightly better than the logistic regression and significantly better than the 1d-10d ANN

ensemble. In the “others” class (by far the largest), 1D-10D ANN ensemble performs as well as

1d-10d ANN and better than logistic regression. Error bars represent 0.95 confidence inter-

vals.

(PNG)
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4.3 DISCUSSION

Given the length and scope constrains of the PhANNs paper a few interesting data and

discussion were left out. Some of them answer a specific concern, like whether ANNs are

better than a logistic regression for this specific application.

4.3.1 Logistic regression

Logistic regression is a ML technique that models the probability that an observation

belongs to a particular class. While the method doesn’t provide a classification itself, one can

easily be derived by thresholding the probabilities (much in the same way PhANNs thresholds

sigmoid’s outputs). Logistic regression is easier to implement and generates smaller models

than ANN. As opposed to ANNs, logistic regressions also produces interpretable models, that

is we can interpret directly the impact of its parameters on the outcome. If the performance is

better than the ANNs, a Logistic Regression model would be preferred.

To test which model performs better, a logistic regression was trained and evaluated

using 10-fold cross validation on the same feature sets. Figure 4.3 shows that ANN (even the

ones trained in a reduced set) performs better than logistic regression for all feature sets. In

particular, for the feature set “tetra sc tri p” the mean F1 score is 0.86 for the logistic model

and 0.90 for the ANNs trained on the expanded set (and also 0.90 for the reduced set).

4.3.2 Expanded cluster

As shown in figure 4.3, the model trained on the expanded clusters performs about the

same as the one trained on the dereplicated proteins for most feature sets. The ANN trained

on expanded sets however, performs much better at classifying most class (see Figure 4.4).

The mean F1 score is close because the ”others” class is so large compared to the structural

classes.



60

Figure 4.3. Comparison of a Logistic Regression, an ANN trained using the reduced set
and a ANN trained using the expanded set

4.3.3 Model size

A concern while using ANNs is that one can easily define a network architecture that

generate a model that is impractically large, both regarding the number of trainable

parameters and the size of the model files. Using the architecture defined in the PhANNs

paper[14] (two hidden layers of 200 neurons each) the model using only tripeptides has

65,650,611 trainable parameters and uses 751.35 Mb of disk space (see table 4.2). Grouping

the amino acids by side chains (Table 4.1) reduces the number of trainable parameters to

229,203 and the file size to 2.66 Mb.

It is important to note that to do predictions in a efficient manner, the ten models of an

ensemble need to be loaded in memory and that most consumer grade GPUs only have a few

Gb of video RAM. (The models can be run from normal RAM, but performance will be

affected.) Using side chains of the tetrapeptides generates a model with 6,290,013 trainable
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Figure 4.4. “tetra sc tri p” class performance comparison

parameters and file size of 72.02 Mb and the model has a performance comparable to the

tripeptide one (see Figure 4.3. All in all, if memory was a limiting factor the use of side-chain

models would be preferred.

Table 4.1. Side chain groups
Hydrophobic A,I,L,M,V
Hydrophylic N,Q,S,T
Small turn G,P
disulfide C
Positive charge H,K,R
Negative charge D,E
Aromatic F,W,Y
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Table 4.2. Model size
Feature set Trainable parameters File size (Mb)

di sc 54,861 0.67

di sc p 57,317 0.7

tri sc 229,203 2.66

tri sc p 236,363 2.75

tetra sc 6,290,013 72.02

tetra sc p 6,330,101 72.48

di 283,011 3.28

di p 291,083 3.37

tri 65,650,611 751.35

tri p 65,780,283 752.84

tetra sc tri p 110,482,101 1264.41

all 127,756,413 1462.1

4.3.4 Web server

PhANNs use of more complex models is aided by the fact that the main mode of usage

is through the web server. The web server provides both a suitable environment to run

prediction (with enough RAM and the right software installed) and an easy to use graphical

user interface. This allows PhANNs to attract users even if they don’t have the right

equipment or technical know-how. As has been said: “One of the requirements for a

successful scientific tool is its availability. Developing a functional web service, however, is

usually considered a mundane and ungratifying task, and quite often neglected.”[81] Just as

the changing times have forced every molecular biologist to be a little of a bioinformatician,

they are forcing bioinformaticians to be a little of a web developer.
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NODDING SYNDROME SAMPLES

The 63 metagenomes sequenced from the Nodding Syndrome samples taken in the

June 2014 exploration [19] are summarized in table A.1.

Table A.1. NS samples.

Sample Raw Reads Sample Type Diagnose Patient

1 743,010 CSF case case 1

2 783,458 CSF case case 2

3 776,621 CSF case case 3

4 702,658 CSF case case 4

5 629,487 CSF case case 5

6 817,455 CSF case case 6

7 688,579 CSF case case 7

8 935,173 CSF case case 8

9 448,273 CSF case case 9

10 72,8997 CSF case case 10

11 781,442 CSF case case 11

12 814,782 CSF case case 12

13 794,087 CSF case case 13

14 773,548 CSF case case 14

15 737,696 CSF case case 15

16 874,566 CSF case case 16

17 788,440 CSF case case 17

18 784,414 CSF case case 18

(table continues)
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Table A.1 (Continued)

Sample Raw Reads Sample Type Diagnose Patient

19 400,416 plasma case case 1

20 322,838 plasma case case 2

21 505,256 plasma case case 3

22 579,633 plasma case case 4

23 419,083 plasma case case 5

24 639,418 plasma case case 6

25 247,951 plasma case case 7

26 516,367 plasma case case 8

27 758,899 plasma case case 9

28 759,494 plasma case case 10

29 1,004,518 plasma case case 11

30 810,147 plasma case case 12

31 748,227 plasma case case 13

32 448,661 plasma case case 14

33 877,799 plasma case case 15

34 766,670 plasma case case 16

35 535,364 plasma case case 17

36 417,883 plasma case case 18

37 738,959 buffy coat case case 1

38 1,300,194 buffy coat case case 2

39 655,510 buffy coat case case 3

40 887,467 buffy coat case case 4

41 765,489 buffy coat case case 5

(table continues)
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Table A.1 (Continued)

Sample Raw Reads Sample Type Diagnose Patient

42 713,629 buffy coat case case 6

43 798,685 buffy coat case case 7

44 939,666 buffy coat case case 8

45 805,433 buffy coat case case 9

46 650,491 buffy coat case case 10

47 814,459 buffy coat case case 11

48 877,937 buffy coat case case 12

49 967,553 buffy coat case case 13

50 661,007 buffy coat case case 14

51 768,428 buffy coat case case 15

52 871,011 buffy coat case case 16

53 773,300 buffy coat case case 17

54 768,602 buffy coat case case 18

55 402,275 plasma control control 1

56 500,492 plasma control control 2

57 725,053 plasma control control 3

58 649,526 plasma control control 4

59 574,179 plasma control control 5

60 569,901 plasma control control 6

61 531,585 plasma control control 7

62 664,373 plasma control control 8

63 585,990 plasma control control 9
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Table A.2 shows annotations and scores for the 100 contigs with highest importance

acording the the first Random Forest model (Imp1). Contigs are ranked according the their

importance in the second RF model (Imp2). The p-value derived from an unpaired t-test is

also included.
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Table A.2. Top 100 contig stats

Contig Annotation Genus familly −log10(p-value) Imp2 Imp1 rank

NODE 1117 Halomonas Halomonas Halomonadaceae 3.68 0.0295 0.0024 1

NODE 201 Halomonas sp. HG01 Halomonas Halomonadaceae 5.11 0.0090 0.0017 2

NODE 183 Halomonas aestuarii Halomonas Halomonadaceae 5.30 0.0082 0.0013 3

NODE 15387 No hits NA NA 5.11 0.0074 0.0005 4

NODE 180 Halomonas beimenensis Halomonas Halomonadaceae 5.46 0.0067 0.0010 5

NODE 170 Halomonas sp. 1513 Halomonas Halomonadaceae 2.66 0.0053 0.0012 6

NODE 1172 Halomonas sp. 1513 Halomonas Halomonadaceae 5.26 0.0052 0.0003 7

NODE 65 Halomonas sp. 1513 Halomonas Halomonadaceae 3.38 0.0044 0.0008 8

NODE 946 Halomonas Halomonas Halomonadaceae 1.78 0.0041 0.0013 9

NODE 953 Halomonas beimenensis Halomonas Halomonadaceae 5.02 0.0040 0.0004 10

NODE 454 Halomonas sp. 1513 Halomonas Halomonadaceae 5.71 0.0038 0.0009 11

NODE 1331 Halomonas sp. 1513 Halomonas Halomonadaceae 4.69 0.0036 0.0007 12

NODE 80 Halomonadaceae Chromohalobacter Halomonadaceae 4.46 0.0030 0.0007 13

NODE 386 Bradyrhizobium sp. SK17 Bradyrhizobium Bradyrhizobiaceae 4.74 0.0030 0.0008 14

NODE 38123 Halomonas Halomonas Halomonadaceae 4.95 0.0029 0.0003 15

NODE 57 Halomonas aestuarii Halomonas Halomonadaceae 4.38 0.0029 0.0010 16

(table continues)
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Table A.2 (Continued)

Contig Annotation Genus familly −log10(p-value) Imp2 Imp1 rank

NODE 1149 Halomonas sp. 1513 Halomonas Halomonadaceae 3.33 0.0028 0.0016 17

NODE 738 Halomonas sp. 1513 Halomonas Halomonadaceae 5.69 0.0027 0.0008 18

NODE 123 Halomonas aestuarii Halomonas Halomonadaceae 4.96 0.0026 0.0012 19

NODE 817 Halomonas aestuarii Halomonas Halomonadaceae 3.90 0.0025 0.0005 20

NODE 497 Halomonas sp. 1513 Halomonas Halomonadaceae 5.76 0.0023 0.0009 21

NODE 35188 Lactobacillales Lactobacillus Lactobacillaceae 3.89 0.0023 0.0004 22

NODE 51 Gammaproteobacteria NA NA 4.58 0.0022 0.0006 23

NODE 451 Halomonadaceae NA Halomonadaceae 3.29 0.0021 0.0006 24

NODE 239 Halomonas Halomonas Halomonadaceae 3.97 0.0021 0.0006 25

NODE 184 Halomonadaceae Chromohalobacter Halomonadaceae 3.71 0.0021 0.0013 26

NODE 269 Halomonas sp. HG01 Halomonas Halomonadaceae 5.77 0.0016 0.0009 27

NODE 439 Halomonas sp. 1513 Halomonas Halomonadaceae 4.70 0.0014 0.0005 28

NODE 228 Halomonas Halomonas Halomonadaceae 4.01 0.0014 0.0010 29

NODE 34109 Homo sapiens Homo Hominidae 1.40 0.0014 0.0003 30

NODE 68 Halomonas Halomonas Halomonadaceae 4.27 0.0013 0.0012 31

NODE 587 Halomonas beimenensis Halomonas Halomonadaceae 4.27 0.0013 0.0003 32

(table continues)
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Table A.2 (Continued)

Contig Annotation Genus familly −log10(p-value) Imp2 Imp1 rank

NODE 391 Halomonadaceae Salinicola Halomonadaceae 3.98 0.0012 0.0005 33

NODE 653 Halomonas beimenensis Halomonas Halomonadaceae 5.61 0.0012 0.0003 34

NODE 285 Halomonadaceae Chromohalobacter Halomonadaceae 5.01 0.0011 0.0010 35

NODE 588 Halomonas sp. HG01 Halomonas Halomonadaceae 5.86 0.0010 0.0007 36

NODE 116 Halomonas sp. 1513 Halomonas Halomonadaceae 4.85 0.0010 0.0012 37

NODE 192 Bradyrhizobium sp. G22 Bradyrhizobium Bradyrhizobiaceae 4.42 0.0010 0.0003 38

NODE 343 Bradyrhizobium sp. SK17 Bradyrhizobium Bradyrhizobiaceae 4.95 0.0009 0.0004 39

NODE 220 Halomonas aestuarii Halomonas Halomonadaceae 3.77 0.0009 0.0007 40

NODE 81 Halomonas sp. 1513 Halomonas Halomonadaceae 3.90 0.0008 0.0005 41

NODE 1385 Halomonas sp. 1513 Halomonas Halomonadaceae 5.08 0.0008 0.0003 42

NODE 216 Halomonadaceae Chromohalobacter Halomonadaceae 5.12 0.0008 0.0012 43

NODE 2132 Pseudomonas putida group Pseudomonas Pseudomonadaceae 3.84 0.0008 0.0003 44

NODE 578 Chromobacteriaceae Pseudogulbenkiania Chromobacteriaceae 5.48 0.0008 0.0006 45

NODE 1360 Pseudomonas fluorescens group Pseudomonas Pseudomonadaceae 4.29 0.0007 0.0004 46

NODE 449 Halomonas sp. HG01 Halomonas Halomonadaceae 5.18 0.0007 0.0005 47

NODE 52 Bradyrhizobium sp. SK17 Bradyrhizobium Bradyrhizobiaceae 3.83 0.0006 0.0004 48

(table continues)
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Table A.2 (Continued)

Contig Annotation Genus familly −log10(p-value) Imp2 Imp1 rank

NODE 265 Halomonas aestuarii Halomonas Halomonadaceae 3.44 0.0006 0.0003 49

NODE 363 Halomonas Halomonas Halomonadaceae 4.99 0.0006 0.0011 50

NODE 481 Bradyrhizobium sp. SK17 Bradyrhizobium Bradyrhizobiaceae 3.78 0.0006 0.0003 51

NODE 689 Gammaproteobacteria Marinobacter Alteromonadaceae 1.61 0.0005 0.0006 52

NODE 106 Halomonas sp. 1513 Halomonas Halomonadaceae 4.92 0.0005 0.0007 53

NODE 150 Halomonadaceae NA Halomonadaceae 4.82 0.0004 0.0006 54

NODE 1479 Halomonas aestuarii Halomonas Halomonadaceae 2.58 0.0004 0.0003 55

NODE 262 Halomonas Halomonas Halomonadaceae 4.54 0.0003 0.0009 56

NODE 204 Halomonas sp. HG01 Halomonas Halomonadaceae 4.59 0.0003 0.0004 57

NODE 389 Halomonadaceae NA Halomonadaceae 5.24 0.0003 0.0003 58

NODE 390 Bradyrhizobium sp. SK17 Bradyrhizobium Bradyrhizobiaceae 3.22 0.0003 0.0004 59

NODE 309 Bradyrhizobium sp. SK17 Bradyrhizobium Bradyrhizobiaceae 3.64 0.0003 0.0003 60

NODE 898 Oceanospirillales Alcanivorax Alcanivoracaceae 4.23 0.0003 0.0003 61

NODE 230 Bradyrhizobium sp. SK17 Bradyrhizobium Bradyrhizobiaceae 4.64 0.0002 0.0005 62

NODE 252 Halomonadaceae Chromohalobacter Halomonadaceae 5.21 0.0002 0.0003 63

NODE 1387 Halomonas aestuarii Halomonas Halomonadaceae 1.05 0.0002 0.0005 64

(table continues)
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Table A.2 (Continued)

Contig Annotation Genus familly −log10(p-value) Imp2 Imp1 rank

NODE 60 Halomonas Halomonas Halomonadaceae 4.16 0.0001 0.0007 65

NODE 382 Halomonas sp. 1513 Halomonas Halomonadaceae 5.82 0.0001 0.0007 66

NODE 12342 Viruses Pegivirus Flaviviridae 1.09 0.0001 0.0005 67

NODE 258 Pseudomonadaceae Azotobacter Pseudomonadaceae 5.55 0.0001 0.0005 68

NODE 448 Halomonas sp. 1513 Halomonas Halomonadaceae 2.98 0.0001 0.0003 69

NODE 1461 Halomonas Halomonas Halomonadaceae 3.60 0.0001 0.0006 70

NODE 767 Halomonas sp. 1513 Halomonas Halomonadaceae 2.52 0.0001 0.0006 71

NODE 109 Bradyrhizobium sp. SK17 Bradyrhizobium Bradyrhizobiaceae 3.15 0.0001 0.0003 72

NODE 332 Halomonas sp. 1513 Halomonas Halomonadaceae 3.38 0.0001 0.0005 73

NODE 397 Bradyrhizobium sp. SK17 Bradyrhizobium Bradyrhizobiaceae 4.52 0.0001 0.0004 74

NODE 908 Halomonas beimenensis Halomonas Halomonadaceae 4.07 0.0000 0.0008 75

NODE 72 Halomonas aestuarii Halomonas Halomonadaceae 4.88 0.0000 0.0009 76

NODE 739 Halomonas sp. 1513 Halomonas Halomonadaceae 3.68 0.0000 0.0008 77

NODE 43514 Bilateria Spirometra Diphyllobothriidae 0.99 0.0000 0.0006 78

NODE 411 Halomonas Halomonas Halomonadaceae 4.46 0.0000 0.0005 79

NODE 1601 Halomonas sp. 1513 Halomonas Halomonadaceae 1.01 0.0000 0.0005 80

(table continues)
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Table A.2 (Continued)

Contig Annotation Genus familly −log10(p-value) Imp2 Imp1 rank

NODE 146 Halomonas sp. 1513 Halomonas Halomonadaceae 5.37 0.0000 0.0004 81

NODE 32405 Viruses Pegivirus Flaviviridae 1.10 0.0000 0.0004 82

NODE 1111 Halomonas aestuarii Halomonas Halomonadaceae 2.06 0.0000 0.0003 83

NODE 663 Halomonadaceae Chromohalobacter Halomonadaceae 1.93 0.0000 0.0003 84

NODE 27077 Homo sapiens Homo Hominidae 0.53 0.0000 0.0003 85

NODE 2264 Halomonas Halomonas Halomonadaceae 1.87 0.0000 0.0003 86

NODE 24450 Homo sapiens Homo Hominidae 1.36 0.0000 0.0003 87

NODE 480 Halomonas sp. 1513 Halomonas Halomonadaceae 4.00 0.0000 0.0003 88

NODE 1114 Halomonas beimenensis Halomonas Halomonadaceae 1.63 0.0000 0.0003 89

NODE 2152 Gammaproteobacteria NA NA 4.82 -0.0000 0.0003 90

NODE 828 Halomonas sp. 1513 Halomonas Halomonadaceae 4.78 -0.0000 0.0004 91

NODE 705 Halomonas Halomonas Halomonadaceae 4.00 -0.0000 0.0003 92

NODE 706 Bradyrhizobium sp. SK17 Bradyrhizobium Bradyrhizobiaceae 4.55 -0.0001 0.0003 93

NODE 2365 Halomonas sp. 1513 Halomonas Halomonadaceae 2.92 -0.0001 0.0004 94

NODE 676 Halomonadaceae Chromohalobacter Halomonadaceae 4.41 -0.0002 0.0003 95

NODE 155 Halomonas Halomonas Halomonadaceae 5.07 -0.0002 0.0003 96

(table continues)
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Table A.2 (Continued)

Contig Annotation Genus familly −log10(p-value) Imp2 Imp1 rank

NODE 12409 Viruses Pegivirus Flaviviridae 1.02 -0.0003 0.0003 97

NODE 438 Halomonadaceae NA Halomonadaceae 5.28 -0.0004 0.0008 98

NODE 409 Bradyrhizobium sp. SK17 Bradyrhizobium Bradyrhizobiaceae 3.96 -0.0005 0.0004 99

NODE 195 Bradyrhizobium sp. SK17 Bradyrhizobium Bradyrhizobiaceae 4.48 -0.0005 0.0003 100
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