
Claremont Colleges Claremont Colleges 

Scholarship @ Claremont Scholarship @ Claremont 

CGU Theses & Dissertations CGU Student Scholarship 

Fall 2021 

Measuring Machine Learning Model Uncertainty with Applications Measuring Machine Learning Model Uncertainty with Applications 

to Aerial Segmentation to Aerial Segmentation 

Kevin James Cotton 
Claremont Graduate University 

Follow this and additional works at: https://scholarship.claremont.edu/cgu_etd 

 Part of the Applied Mathematics Commons, and the Mathematics Commons 

Recommended Citation Recommended Citation 
Cotton, Kevin James. (2021). Measuring Machine Learning Model Uncertainty with Applications to Aerial 
Segmentation. CGU Theses & Dissertations, 271. https://scholarship.claremont.edu/cgu_etd/271. 

This Open Access Dissertation is brought to you for free and open access by the CGU Student Scholarship at 
Scholarship @ Claremont. It has been accepted for inclusion in CGU Theses & Dissertations by an authorized 
administrator of Scholarship @ Claremont. For more information, please contact scholarship@cuc.claremont.edu. 

https://scholarship.claremont.edu/
https://scholarship.claremont.edu/cgu_etd
https://scholarship.claremont.edu/cgu_student
https://scholarship.claremont.edu/cgu_etd?utm_source=scholarship.claremont.edu%2Fcgu_etd%2F271&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/115?utm_source=scholarship.claremont.edu%2Fcgu_etd%2F271&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/174?utm_source=scholarship.claremont.edu%2Fcgu_etd%2F271&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarship@cuc.claremont.edu


Measuring Machine Learning Model Uncertainty with

Applications to Aerial Segmentation

By

Kevin J Cotton

Claremont Graduate University

2021



© Copyright Kevin J Cotton, 2021

All rights reserved.



APPROVAL OF THE DISSERTATION COMMITTEE

This dissertation has been duly read, reviewed, and critiqued by the Committee listed below,

which hereby approves the manuscript of Kevin J Cotton as fulfilling the scope and quality

requirements for meriting the degree of Doctor of Philosophy in Mathematics.

Dr. Allon Percus, Chair

Professor of Mathematics

Claremont Graduate University

Dr. Marina Chugunova

Professor of Mathematics

Claremont Graduate University

Dr. Weiqing Gu

Professor of Mathematics

Harvey Mudd College



ABSTRACT

Measuring Machine Learning Model Uncertainty with Applications to Aerial Segmentation

By

Kevin J Cotton

Claremont Graduate University: 2021

Machine learning model performance on both validation data and new data can be better measured

and understood by leveraging uncertainty metrics at the time of prediction. These metrics can

improve the model training process by indicating which training data need to be corrected and

what part of the domain needs further annotation. The methods described have yet to reach

mainstream adoption, and show great potential. Here, we survey the field of uncertainty metrics

and provide a robust framework for its application to aerial segmentation.

Uncertainty is divided into two types: aleatoric and epistemic. Aleatoric uncertainty arises from

variations in training data and can be the result of poor training data or an inherently stochas-

tic observation. Epistemic uncertainty arises from predicting on inputs that are out of class of

the training data. Both measures inform the machine learning engineer on what areas of data

need better or more training, and also help downstream processes quantify the usefulness of a

prediction.

We survey the current tools for measuring uncertainty, including the autoencoder for measuring

epistemic uncertainty and the Bayesian neural network. The latter replaces each trained weight

with a random variable with which we approximate the true, unknown distribution of each weight

with a two parameter (mean and variance) normal distribution. Bayes by Backprop trains these

parameters by minimizing the Kullback–Leibler divergence between the approximating normal

distribution and the unknown distribution. Our contribution is a novel application of the Bayesian

neural network with Gaussian weights applied to the U-Net model for aerial segmentation.

Using the DroneDeploy dataset, we build and train our Bayesian U-Net model and gather epistemic

and aleatoric uncertainty metrics. Experimentally, we find that these metrics are correlated to



model performance on unseen data and thus provide immediate value to a modeling and prediction

workflow. We show the usefulness of these metrics for both per-pixel uncertainty estimation and

per-image uncertainty estimation.
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Chapter 1

What is Uncertainty

One can think of model uncertainty as an understanding of what a model does and does not

know. [18] Specifically, machine learning model uncertainty can be defined as a metric or set of

metrics that give indication of the confidence of the model prediction on any given input data.

There are different quantitative metrics of uncertainty, but we can broadly define such metrics as

the probability that a given prediction is correct. Some such metrics can be conveniently mapped to

[0,1], with 0 being the least likely to be an accurate prediction, and 1 being the most likely. [32]

A neural network has a set of weight that are set at training through backpropagation. For classifi-

cation tasks, many networks end with a softmax function. The softmax function maps all real values

to [0, 1], providing a probabilistic interpretation. For example, 1 is a high confidence prediction

while 0.01 is a very low confidence prediction.

The problem that an uncertainty metric is trying to solve can easily be seen when feeding out-of-

class data to a classification neural network. The classification model may naively predict the closest

in-class label with a high softmax output. [16] The softmax output of a classification network that

is thresholded and used to assign the class can be a poor indicator of model certainty and may fail

to flag data outside the manifold of the training data. This is an example of epistemic uncertainty.

For instance, an image classification model that was never trained on samples of dogs will have no

ability to predict “dog” when fed such an image. The challenge is to enable the model to report

that it does not know what the class is, rather than making some other arbitrary prediction.
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A different kind of uncertainty arises from noise in the training data. Aleatoric uncertainty can

be a result of mislabeled classes or targets in the training set, or of a natural stochasticity of the

targets. A simple example is if some cats were mislabeled as dog in the training set. Another

example, in the case of a regression model with a real number target, would be a certain area of

the domain that has training samples giving a large degree of variance in the output.

In all of these cases, we seek to build a model that gives an associated certainty metric for each

output. When a model makes a prediction, we would like to know how certain it is of its predic-

tion.

1.1 Types of Uncertainty

St̊ahl et al. [32] and Kana [17] review the two types of uncertainty that we mention above.

• Epistemic Uncertainty: uncertainty that is derived from what the model does not know.

The input is outside of the manifold of training values. This uncertainty can be reduced by

including more training values.

• Aleatoric Uncertainty: uncertainty that arises from stochasticity of the observations. This

level of uncertainty cannot be reduced by including more training data, but could possibly be

reduced by more consistent training data. (Unless the stochasticity is inherent in the data.)

Aleatoric uncertainty is localized.

These types of uncertainty will be further discussed ed subsequent chapters. Note that, when con-

sidering model accuracy on new data, one must also consider the model chosen and its ability to

correctly capture the structure of the data. Though we will not cover it here, this kind of uncertainty

that arises from the model choice and its parameters can be defined as Structural Uncertainty.

All of these uncertainties are inherently hard to measure. When feeding an unknown class to

EfficientNet, it can predict the wrong class with very high (>80%) certainty. In their example,

Hüllermeier et al. [16] show how EfficientNet will confidently predict panda cookies as a “typewriter”

and a pile of logs as a “stone wall.”

This measure of certainty, as we can see, is very poor for these examples. This is an example

2



of using the last layer of the network, the softmax layer, as a fuzzy indicator of certainty. Since

we assign the class as that which corresponds to the node with the highest softmax output, it

would make sense to use this output as a proxy for certainty. But, as we can see and as shown

experimentally, that is quite a poor metric when the input class was not in the domain of training

data.

1.2 Methods

Finding a robust metric for uncertainty is an open problem in Machine Learning. There exists a

few methods that St̊ahl et al. explore [32], with much room for research still open. I have adapted

this list, and added to it with my own methods that we will explore in more detail.

• Using the Softmax Output of a deep neural network as a proxy for certainty. This is the

least robust method, and has been shown to give unreliable results. The softmax output is

rightly thresholded and used to assign a prediction, but it does not give a good measure of

model certainty. Further, this method does not work for a regression output.

• Use of an Autoencoder Network as a separate network on the training set gives a different

proxy metric of certainty. The autoencoder can signal inputs that lie outside the training

domain, and thus will have a lower certainty. Autoencoders are of interest in their own right,

in that they act unsupervised on a training data set. They can be thought of as a clustering

technique. Any new input then has a metric of how close or far it is from the training dataset.

• The Bayesian Neural Network, or BNN, is our main subject of exploration and contribu-

tion. Through training random weights, we produce a random model that gives a stochastic

output. This property is leveraged to produce not only a prediction, but also metrics for

epistemic and aleatoric uncertainty.

• Characterizing data as a multivariate random normal distribution: This method acts

as a simplified variational autoencoder and provides a metric for any piece of data to the

dataset characterization. We can use this metric as a proxy for uncertainty.

3



1.3 Roadmap

In this work, we will first explore types of uncertainty arising in machine learning. We distinguish

between aleatoric and epistemic uncertainties, and then further divide aleatoric uncertainty into

homoscedastic and heteroscedastic varieties. We survey the current methods for producing an

uncertainty estimate, including: using the softmax output, the autoencoder, and the Bayesian

neural network.

In Chapter 2, we explore the autoencoder in more depth, and then train on MNIST data. We

then show that, when fed new, out of class data, the trained autoencoder gives a higher metric of

uncertainty, serving as a good proxy for aleatoric uncertainty.

Chapter 3 introduces the Bayesian neural network (BNN): a network that replaces the trained

weights with trained probability distributions. We go through the theory of the BNN, and how one

trains and predicts with it.

Chapter 4 discusses our implementation of methods to characterize uncertainty. Section 4.1 presents

an analytical framework for a fully connected BNN.We apply a BNN implementation by Blundell, et

al. [4] to a polynomial regression problem. Section 4.3 applies the BNN to MNIST data and explores

the calculated uncertainties. Finally, Section 4.4 considers a simplified method of characterizing a

dataset that aims to achieve similar results to the autoencoder.

Chapter 5 continues with the regression implementation of the BNN and further studies ways of

measuring uncertainty. Our main contribution is in chapter 6, where we turn our attention to aerial

segmentation. We develop a novel Bayesian U-Net model with Gaussian weights, and train on the

DroneDeploy dataset. We show that the Bayesian U-Net can effectively be used to produce both

per-pixel and image wide metrics for both epistemic and aleatoric uncertainty. We demonstrate

this experimentally, with examples of each metric.

We conclude by offering some further perspectives on the application of uncertainty metrics to a

comprehensive workflow for improving machine learning model performance.
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Chapter 2

Autoencoders

The autoencoder is a useful tool for measuring epistemic uncertainty; that is, it does well at

characterizing the manifold of training data and giving a metric of closeness to this manifold for

any new input data. When the Euclidean distance metric from the autoencoder is high, then the

expected aleatoric certainty from the model is low. A schematic for an autoencoder is given in

Figure 2.1.

Figure 2.1: A generic autoencoder network with encoder and decoder portion. X is the input
image, and X̂ is the reconstructed output image.

Grover et al. show how we can use autoencoders to learn compressed projections of data. [13] Es-

sentially, they reduce the dimensionality of an input data through downsampling into a bottleneck,

and then upsample to the original. The bottleneck provides a limit for how much information is

passed through; and the network is trained to minimize the RMSE (or other kind of error) between
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the input and the output data. RMSE is defined as

RMSE =

√√√√ 1

n

n∑
i=1

(x̂i − xi)2 (2.1)

Where the sum is over all n pixels, xi is the original pixel value, and x̂i is the reconstructed pixel

value. This same metric is used on new input data and its re-projection at prediction time to give

a measure of closeness to the training data. When this metric is high, and above a certain, set

threshold, we can assume the the data is different enough from the training data that any model

from the training data will not give a good prediction.

Figure 2.2: We have trained an autoencoder on MNIST data and show MNIST reconstructions
here. See section 2.2 for more on the MNIST dataset.

Figure 2.3: Using the same model as above, we look at the reconstruction of out-of-domain data
on the MNIST autoencoder. The reconstructions do not resemble the inputs well in this case.

We illustrate this point in figure 2.2 and 2.3 above. A single autoencoder is trained on MNIST

data. When reconstructing MNIST data, the reconstruction error is low; but, when reconstructing

non-MNIST data (out of class data), the reconstruction error is high. The encoding has learned

many features about MNIST data, but does not know as much about non-MNIST data.

6



2.1 Types of Autoencoders

An autoencoder can take the form of a fully connected network, a convolutional network, or others.

For convolutional autoencoders, max pooling is used to downsample the image and up-sampling

is used to reconstruct it. St̊ahl et al. [32] use a fully connected autoencoder with the following

number of neurons, in order: 1000, 250, 50, 10, 50, 250, 1000. The reduction in neurons essentially

downsamples the data, then it is upsampled with an increase in neurons.

A convolutional autoencoder downsamples with pairs of convolution followed by max pooling, and

upsamples with transpose convolution layers. Normal convolution is either shape preserving (with

unit stride), or a downsampling operation (with a stride greater than 1). Transpose convolution,

on the other hand, increases the dimensionality by using a fractional stride. [10] It is a very useful

upsampling operation that is employed in segmentation tasks. [35] Another kind of upsampling

that has more recently been applied to image segmentation is atrous convolution, as described in

the groundbreaking paper and architecture DeepLabv3 [6] The atrous convolution layer has very

recently been applied to the autoencoder, and has been coined an atrous convolution autoencoder

(A-CAE). [36]

2.2 Measuring Epistemic Uncertainty with an Autoencoder

We will demonstrate how one can train an autoencoder to capture a characterization of a dataset,

and then use it measure epistemic uncertainty on new data.

For this example we are using the standard MNIST dataset of hand drawn numbers from 0-9. [21]

This is a dataset of 60,000 training and 10,000 test data, each a grayscale image of shape 32x32.

Figure 2.4 shows a small random sample.

Figure 2.4: Sample of 10 images from the regular MNIST dataset. Each data is a 32x32 grayscale
picture of a hand drawn digit from 0-9.

This will serve as our in-class dataset, and what we train our model on. The autoencoder will

7



be taught to learn a representation of the MNIST data through the process of compressing and

decompressing. When data that is not MNIST (non-MNIST) is fed into the model, it will have a

higher reconstruction error.

As our non-MNIST data, we will use the Extended MNIST (EMNIST) dataset, shown in Figure 2.5,

that adds hand drawn lowercase letters from a-z and uppercase letters from A-Z. [7] We will also use

the Fashion MNIST (FMNIST) dataset, shown in Figure 2.6, that is exclusively grayscale images

of articles of clothing. [34] All of these datasets have the same data shape and are grayscale.

Figure 2.5: Sample of 10 images from the regular Extended MNIST (EMNIST) dataset.

Figure 2.6: Sample of 10 images from the regular Fashion MNIST (FMNIST) dataset.

We train a model on just the MNIST data in order to learn a representation of such data. We

have split the data into a training and test set. The test set of MNIST, along with non-MNIST

data is then passed through the trained autoencoder model to predict certainty. As is shown in

Figure 2.7, the reconstruction error is, on average, lower for unseen MNIST data than for non-

MNIST data.

To use this model in practice to gauge whether data is in-class or out-of-class requires selection of

a proper threshold, and thus a tolerance for higher alpha or beta errors.

Predicting on out-of-class data is an example of epistemic uncertainty. The model has no categories

for letters, only digits. Thus, this is only part of the puzzle. To understand aleatoric uncertainty,

we must pair the data with a prediction model and look at prediction accuracy.

8



Figure 2.7: Histogram of autoencoder reconstruction error of MNIST and extended-MNIST (char-
acters only) data. X-axis is RMSE of the reconstruction, where units are in pixel values from 0-255.
Y-axis is normalized frequency.

2.3 Variational Autoencoders

Variational autoencoders (VAEs) are a type of autoencoder with a Bayesian bottleneck that serve

as a regularized representation of the dataset in compressed, latent space. Accordingly, one can

sample from the trained latent space, passing the sample through the decoder to re-construct an

output, and use the VAE in a generative fashion. Traditional autoencoders do not serve well for

this purpose, as the meaningful latent space has very arbitrary values, and it is not known which

values to use for generative tasks. [24]

Rocca provides an introduction to the mechanics of VAEs. [26] In figure 2.8, we see the differ-

ence between the training and generative process of the VAE. In training, input data is passed

through an encoder and downsampled to a latent space representation before it is decoded to re-

construct the input. The reconstruction error plus the KL divergence (acting as a regularizer) is

then backpropagated to update the layer weights. In the generative process, one samples from the

prior distribution on the latent space, and then passes the sample through the decoder to get a

generative output.

9



Figure 2.8: Detail from Rocca on how a VAE can be used in a generative fashion, by sampling from
the latent space and passing this sample through the decoder. Figure reproduced from [26].

As we will see in section 3.5, VAEs have a strong connection to BNNs and can be considered a

subset of BNNs as the bottleneck is similarly trained by minimizing the KL divergence between a

Gaussian and an unknown posterior. There, we will explain this connection further after having

looked at the mechanics of the BNN.
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Chapter 3

The Bayesian Neural Network

3.1 BNN Summary

In their paper, Blundell et al. introduce “a new, efficient, [and] principled” algorithm for construct-

ing and backpropagating on a Bayesian neural network. [4] A Bayesian neural network (or BNN)

is a neural network (NN) in which the weights have been replaced with random variables. In the

process of training, we do not change the weights directly, but instead train the parameters of each

weight. In this chapter, we will look more closely at the implementation by Blundell et al., and

construct our own simple BNN on a regression task.

Figure 3.1: Here, we reproduce the figure from Blundell et al. [4]. On the left is traditional neural
network with fixed weights that are set at training. On the right, the weights are replaced by
distributions whose parameters are set during training.

The motivation of using a BNN as opposed to a traditional NN where the weights are trained and

fixed is that BNNs lend well to producing uncertainty metrics. Building off of work by Kendall
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and Gal [18] and Kwon et al. [20], we will first implement a data dependent metric on epistemic

uncertainty, and then construct a metric for aleatoric uncertainty.

There are two types of metrics for aleatoric uncertainty. Homoscedastic uncertainty is constant for

any input after training, and measures the overall aleatoric noise in the model. This metric gives a

scalar that can be loosely interpreted as noise of training data overall. Heteroscedastic uncertainty,

on the other hand, is data dependent and seeks to give a localized metric of aleatoric noise. A

good heteroscedastic uncertainty metric will be very helpful in identifying where noise exists in the

training data.

3.2 Construction

We can consider a traditional NN as a probabilistic model P (y|x,w), where for a given input x ∈ Rp

and trained set of weights w, a prediction y ∈ Y is given. In a Bayesian neural network (BNN), w

are independent random variables whose parameters have been trained by a technique called Bayes

by Backprop [4].

Further, for a regression model, output y ∈ Y provides a real number R and P (y|x,w) is defined

to be a Gaussian distribution (as we will see, this corresponds to the squared loss).

For a traditional NN, we can train as follows. For a set of N training data D = {(xi, yi)|i ∈

[1, ..., N ]}, we seek to find w that maximize P (D|w). Using maximum likelihood estimation (MLE),

we seek to find, through gradient descent:

WMLE = argmax
w

logP (D|w) (3.1)

= argmax
w

log
∏

P (yi|xi,w) (3.2)

= argmax
w

∑
logP (yi|xi,w) (3.3)

For a BNN, on the other hand, we seek to find the posterior distribution P (w|D), given a prior on
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the weights P (w). Using Bayes formula, we have:

P (w|D) = P (D|w)P (w)

P (D)
(3.4)

It is not enough to say that the posterior is proportional to the normalized product of the likelihood

and prior, for we would like a complete description of the posterior that we can sample from

directly. More specifically, as we see above, the posterior P (D|w) cannot be computed directly.

Thus, the true posterior distribution P (w|D) is intractable, but can be estimated by a variational

approach.

Graves [12] and previously Hinton and Van Camp [15] proposed using a variational method to the

find parameters θ of q that minimizes the Kullback-Leibler (KL) divergence between the true pos-

terior P (w|D) and approximating posterior q(w|θ). The KL divergence is derived from Shannon’s

source coding theorem [12,29], and though not symmetric, provides a good approximation of twice

the squared Fisher distance. [3]

The KL divergence is one of a collection of metrics that measure the distance between two proba-

bility distributions that can be considered. Others include the Kolmogorov-Smirnov distance, total

variation, and the Kantorovich-Wasserstein metric, which is defined using the optimal transport

problem [2]. The KL divergence, in addition to approximating the squared Fisher metric, has some

useful properties we will consider.

We let q be a Gaussian distribution with parameters θ = (µ, σ). The KL divergence is defined as

follows:

KL[q(w|θ)||P (w|D)] =
∫

q(w|θ) log q(w|θ)
P (D|w)P (w)

dw (3.5)
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We then want to find θ that minimizes the KL divergence, and define our cost function as:

F (D, θ) = KL[q(w|θ)||P (w|D)] (3.6)

=

∫
q(w|θ) log q(w|θ)

P (D|w)P (w)
dw (3.7)

=

∫
q(w|θ) (log q(w|θ)− logP (D|w)− logP (w)) dw (3.8)

= Eq(w|θ) [log q(w|θ)− logP (D|w)− logP (w)] (3.9)

To do this, we use the gradient descent update algorithm that is simplified as:

θ ← θ − α
∂F

∂θ
(3.10)

3.3 Bayes by Backprop

Blundell et al. [4] have shown that, in our case, the partial derivative of the expectation can be

re-written as follows. Here ϵ is a random variable with density q(ϵ) and w = t(θ, ϵ) and t is a

deterministic function:

∂

∂θ
Eq(w|θ)[f(w, θ)] = Eq(ϵ)

[
∂f(w, θ)

∂w

∂w

∂θ
+

∂f(w, θ)

∂θ

]
(3.11)

We let f(w, θ) = log q(w|θ)− logP (D|w)− logP (w), and seek to find ∂
∂θEq(w|θ)[f(w, θ)].

So that the standard deviation would be well behaved while training (σ should remain positive),

let us parameterize σ as σ = log(1 + exp(ρ)). Then,

∂F

∂µ
= Eq(ϵ)

[
∂f(w, θ)

∂w

∂w

∂µ
+

∂f(w, θ)

∂µ

]
(3.12)

∂F

∂ρ
= Eq(ϵ)

[
∂f(w, θ)

∂w

∂w

∂ρ
+

∂f(w, θ)

∂ρ

]
(3.13)

In order to evaluate the expectations we approximate F using Monte Carlo sampling. Since Eq(ϵ)

is the expectation over random Gaussian noise ϵ, we sample ϵ, and then compute just the inside of

the expectation to update the parameters. This is a special case of Monte Carlo sampling where
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the sample size is 1 for each update. This approach works, as it acts as stochastic gradient descent.

It is important to note that though w is a vector of weights, each weight is independent and thus

only pointwise operations take place.

The update happens in batches, where the batch size can be the entire training dataset. For each

batch, we draw a single sample w from the posterior distribution that is then used to updated the

same posterior. We start by sampling from a unit Gaussian, and then shifting by parameters θ to

obtain a sample of weights:

ϵ ∼ N (0, I) (3.14)

w = µ+ log(1 + exp(ρ)) · ϵ (3.15)

With f(w, θ) defined above, and, since ∂w
∂µ = 1 and ∂w

∂ρ = ϵ
1+exp(−ρ) , we calculate the following

gradients:

∆µ =
∂f(w, θ)

∂w
+

∂f(w, θ)

∂µ
(3.16)

∆σ =
∂f(w, θ)

∂w

ϵ

1 + exp(−ρ)
+

∂f(w, θ)

∂ρ
(3.17)

Finally, we update our parameters:

µ← µ− α∆µ (3.18)

ρ← ρ− α∆σ (3.19)

Let us look at how we compute the gradients ∆µ and ∆σ. ϵ is a known sample, and µ and ρ are

fixed from the previous state of the variational posterior. We need only find ∂f(w,θ)
∂µ , ∂f(w,θ)

∂ρ , and

∂f(w,θ)
∂w .

3.4 The Loss Function

We interpret f(w, θ) = log q(w|θ)− logP (w)− logP (D|w) as follows. Since q is the approximating

variational posterior, log q(w|θ) penalizes samples that are far from the posterior. P (w) is the
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prior, and thus acts as a regularizing term on the weights. Finally, logP (D|w) is a data dependent

term that corresponds to the prediction error. With a Gaussian prior and Gaussian posterior, we

know that:

q(w|θ) ∼ N (µposterior, σposterior) (3.20)

P (w) ∼ N (µprior, σprior) (3.21)

To find their partials, we need only differentiate the normal PDF.

The data dependent term requires more consideration. P (D|w) =
∏n

i=1 P (yi|xi,w) is the proba-

bility of obtaining the data with given weights w and n samples in the batch. Then,

logP (D|w) =
n∑

i=1

logP (yi|xi,w) (3.22)

We fix P (yi|xi,w) = P (yi) to be a Gaussian, and consider its PDF:

p(yi) =
1

σ
√
2π

exp

(
− 1

2σ2
(yi − ŷi)

2

)
(3.23)

log p(yi) = log
1

σ
√
2π
− 1

2σ2
(yi − ŷi)

2 (3.24)

= C − γ (yi − ŷi)
2 (3.25)

The σ term for the probability of the data, as we will see later, corresponds to the aleatoric noise

on the data. For now, we keep it fixed at an arbitrary value with no loss to the model. Then, for

gradient descent, taking the partial derivative w.r.t. the output ŷi gives:

−∂ log p(yi)

∂ŷi
= − 1

σ2
(yi − ŷi) (3.26)

Thus,

∂ log p(yi)

∂w
=

∂ log p(yi)

∂ŷi
· ∂ŷi
∂w

(3.27)

=
1

σ2
(yi − ŷi) ·

∂ŷi
∂w

(3.28)
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and ∂ŷi
∂w is found by differentiating through the network. Since w is a fixed sample, the P (D|w)

term has no dependence on µ or ρ.

Now, to calculate ∂f(w,θ)
∂µ and ∂f(w,θ)

∂ρ we only need to differentiate log q(w|θ). This is because both

P (D|w) and P (w) have no dependence on µ or ρ since w now represents a fixed sample.

3.5 Connection to VAEs

A variational autoencoder (VAE) is similar to the BNN in that its latent space is represented as

a Gaussian with a prior. Through training, we seek to minimize the KL divergence between the

latent Gaussian and a true, unknown distribution using Bayes theorem.

The training process of a VAE is equivalently the variational method outlined by Kendall and Gal

for BNNs. [26] That is, the weights in the latent space are set to be Gaussians whose mean and

standard deviation are trained by backpropagation. If we look at the training diagram produced by

Rocca [26], one might think that the Bayesian layer is different from the BNN in this way: instead

of the parameters of the Bayesian layer being set in training, they are decided by a split head from

the previous layer. Both of these configurations are in fact congruent. In the method of Kendall

and Gal, a weight w is sampled from a Gaussian with fixed parameters µ and σ and multiplied by

an input x to get output y; where ϵ is Gaussian noise.

y = xw = x(µ+ σ · ϵ) (3.29)

= xµ+ (xσ) · ϵ (3.30)

In the split head approach (described later in detail, in Section 5.3), input x is first split into two

by trained weights w1 and w2, producing the parameters of the Gaussian.

µs = w1x (3.31)

σs = w2x (3.32)
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Then, the Gaussian is sampled.

y = µs + σs · ϵ (3.33)

= w1x+ (w2x) · ϵ (3.34)

Now it is easy to see that the split head weights are exactly the trained parameters in the first

approach. That is,

µ = w1 (3.35)

σ = w2 (3.36)

Figure 3.2: The latest space in the VAE, as shown in this figure reproduced from [26], is trained in
the same way as in the work of Blundell et al. [4].

To make a traditional autoencoder a VAE, you only need to add a linear BNN layer right after

the encoder portion (and thus representing the latent space). The parameters of this BNN layer

are adjusted during training and define the distribution to be sampled from in the generative

mode.

As we see in figure 3.2, Rocca [26] implements the same reparameterization technique described

in the work of Blundell et al. [4], but only for the latent space. They suggest doing this for each

weight in the model.
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An and Cho propose the use of VAEs for anomaly detection (which is a form of epistemic uncer-

tainty), and apply this to the MNIST dataset. [1] Instead of using the reconstruction error directly

as the uncertainty metric, they propose using the reconstruction probability. They calculate the

reconstruction error in much the same way we predict with a BNN; that is, they take the Monte

Carlo estimate of the log probabilities. In practice, this means taking the mean of a set a distances

that are computed for independently sampled outputs of the VAE.
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Chapter 4

Implementations

4.1 Analytical Approach

The central question regarding overall aleatoric uncertainty in the model is the following: How can

one create a metric to measure the overall variation of the model, independent of a specific input.

Just as a traditional neural network is a function with a set of inputs and outputs, a BNN is simply

a function of random variables–specifically Gaussians. The trained model as a whole is itself a

random variable, and its overall variance can be calculated. This is made easier due to the fact

that each weight produces a value that is uncorrelated with other weights, when it is sampled.

To make this clearer, consider just a single node of a single, fully-connected layer of a BNN defined

by:

Yi = f(yi) = f(x1w1 + x2w2 + · · ·+ xnwn) (4.1)

Where f is the activation function, xi is the layer input, and wi is the layer weights. Further,
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wi ∼ N(µi, σ
2
i ). If we let f(yi) = cyi, then

Var[f(yi)] = Var[cyi] (4.2)

= c2Var[yi] (4.3)

= c2Var[x1w1 + x2w2 + · · ·+ xnwn] (4.4)

If we consider xi a fixed value, then

Var[f(yi)] = c2(x21Var[w1] + x22Var[w2] + · · ·+ x2nVar[wn]) (4.5)

Var[f(yi)] = c2(x21σ
2
1 + x22σ

2
2 + · · ·+ x2nσ

2
n) = c2

n∑
i=1

x2iσ
2
i (4.6)

We see that the variance has a dependency on the layer inputs as well as the weight variances, and

the variance of the BNN will ultimately have a dependency on the the model inputs. Thus, this

measure of variance will ultimately be data dependent and correspond to heteroscedastic aleatoric

uncertainty.

4.2 Regression Implementation

For our first implementation, we build a single layer, sixth-order polynomial regression model.

yi = w0 + w1x+ w2x
2 + w3x

3 + w4x
4 + w5x

5 + w6x
6 (4.7)

Data has been generated by a fourth-order polynomial in the interval [0,1] with added Gaussian

noise that is non-uniform. We show this in figure 4.1.

We aim to train our variational posterior weight distributions w = [w0, w1+ ...+w6] with Bayes by

Backprop. For starters, we let our prior on our weights be an i.i.d. unit Gaussian, and we initialize

the posterior as follows.

P (w) ∼ N (µprior = 0, σprior = I) (4.8)

q(w|θ) ∼ N (µposterior = 0.1 · I, σposterior = 0.1 · I) (4.9)
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Figure 4.1: Data (blue) generated from a fourth-order polynomial (red) with non-uniform Gaussian
noise.

We train as above, with a batch size of the whole data set, for 10,000 iterations. Take special note

of ∂ŷi
∂w . This term is specific to the model definition and is at the core of backpropogation. For this

case,

∂ŷi
∂wi

= xi (4.10)

∂ŷi
∂w

= [1, x, x2 + ...+ x6] (4.11)

Once we have trained our model, we can predict on it either by taking the expectation on the

weights, or by taking multiple random samples from the model for a given input, and constructing

a confidence interval. Here, we take 100 samples for each input, and construct an 80% confidence

interval as seen in figure 4.2.

Later, we will look at data-dependent uncertainty metrics on our model.
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Figure 4.2: 80% confidence interval from our model (red) to the data (blue) generated from a
fourth-order polynomial (green) with non-uniform Gaussian noise.
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4.3 MNIST implementation

A Bayesian neural network (BNN) replaces each weight of the model with a random variable.

We can approximate the weight distributions with a two parameter normal distribution through

variational learning. Training on the model thus adjusts the mean and variance of each weight by

minimizing the Kullback–Leibler divergence between the approximating normal distribution and

the true, unknown distribution.

The Kullback-Leibler divergence is a measure between two probability distributions P and q on the

same probability space X and is defined in equation 3.5.

Predicting with a BNN can be deterministic (by taking the expected value of the weights to serve

as fixed weights), or stochastic (by randomly sampling from the weights). Blundell et al. give a

more in-depth overview of BNNs [4].

A BNN can produce both a prediction and an uncertainty metric; the later is found by looking at

the variance of prediction from a set of samples from the stochastic model. Kwon et al. propose a

method to distinguish between epistemic and aleatoric uncertainty in a BNN [20]. Experimental

results show that a BNN does very well at giving an error metric that encompasses both types of

uncertainty. But, the division between the two types can seem unclear at first inspection.

Kwon et al. give a formula that, applied to a BNN, will give error metrics for both epistemic and

aleatoric uncertainty metrics separately. The aleatoric uncertainty metric seeks to give a measure

of the inherent noisiness in the dataset, while the epistemic uncertainty metric seeks to quantify

the level of confidence on a particular domain of data.

Shridhar et al. provide PyTorch code for implementing a BNN and predicting both kinds of un-

certainty as detailed by Kwon et al. [31]. For this experiment, we train a Bayesian-CNN (BCNN)

on MNIST data and predict on both MNIST and non-MNIST data. We ran the model on 50,000

MNIST and 50,000 non-MNIST samples, and recorded the uncertainty metric of each. MNIST

samples are split into correct and incorrect groupings. As the model has a high level of accuracy,

the account of incorrect predictions is relatively small. In figure 4.3, we see a good division between

the “Correct MNIST” distribution, and the other distributions.
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Figure 4.3: Histogram of epistemic uncertainty metrics on 50,000 samples from MNIST and non-
MNIST as defined in the second part of equation 4.12 below.

The MNIST dataset is a large set of 28 by 28 pixel, greyscale, hand drawn, labeled characters (zero

to nine[0-9]) that is a common starting point for ML based tasks. The set includes 60,000 training

and 10,000 test images. [21] Here, we use the MNIST dataset to explore BNNs.

The formulation for both uncertainties by Kwon et al. is completely dependent on the sampled

outputs of the BNN, and is given by the diagonal matrix element:

Uk(xi) =

[
1

T

T∑
t=1

diag(p̂t)− p̂⊗2
t︸ ︷︷ ︸

aleatoric

+
1

T

T∑
t=1

(p̂t − p̄)⊗2

︸ ︷︷ ︸
epistemic

]
kk

(4.12)

for class k and data input xi, where p̄ = 1
T

∑T
t=1 p̂t. p̂t is the vector of softmax outputs of the BNN

that have been passed through the final Softmax function, T is the number of predictions made on

the same input data, and v⊗2 = vvT . The weights of the BNN are sampled each time randomly

from their respective distribution.

We can see in this formulation that the aleatoric uncertainty is an inverse measure of how close the
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prediction is to zero or one. When closer to 0.5, this metric is high. The epistemic uncertainty, on

the other hand, is a measure of the variance of the predictions irrespective of their mean.

To understand the above formulation, consider a class that is undersampled. One would expect the

variance of that class to be high and thus high epistemic uncertainty. Now consider a class that is

well represented, but is very noisy. One would expect the model weights to converge to a value, but

the prediction to be closer to 0.5. These respectively correspond to a high epistemic and aleatoric

uncertainty above.

To apply this definition of uncertainty, we consider the metric on only the final prediction class.

The epistemic portion then becomes the mean squared difference between the predictions in the

prediction-mean–that is the variance of prediction. The aleatoric portion then becomes the average

value of p̂t − p̂2t . Considering that p̂t is a prediction from [0,1], this value approaches 0 as the

prediction approaches the endpoints, and is highest when the prediction is closest to 0.5. In this

way, the aleatoric uncertainty is just looking at how “confident” the softmax output is. This can

be a good classifier for incorrectly predicted, in-class data as shown by St̊ahl et al. [32].

These uncertainty metrics might be improved by considering not only the variation of the model

output (the prediction uncertainty), but also the variation of the internal weights (the model

variability). Since the model weight parameters are fixed after training, such an analysis of its

weight variability should be done without respect to any specific input. This can give a better

aleatoric uncertainty metric, and thus tell the model engineer when the model has trained on

sufficient data. And in some cases, it might tell the data engineer when the aleatoric uncertainty

is no longer improving with the addition of more data (such might be the case with noisy, or

inconsistent data).
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4.4 Characterizing Datasets

As we have seen in section 4.1, the analytical variance of the Bayesian model presented is wholly

dependent on the mean vector and covariance matrix of the model inputs. Thus, it would be

reasonable to think that one might characterize a particular dataset by only its mean and covariance,

and that would be enough to assess model certainty on the whole data set. This method might

work particularly well if you have access to a large dataset that is unseen by the model, but where

running each sample through the model and measuring certainty would be too computationally

expensive. The idea is as follow:

1. For each dataset (for example, training subset and unseen dataset) perform any preprocessing

steps and compute the mean and covariance of the data (that is, the mean and covariance

on what would be the inputs to the model). Thus you have a multivariate random normal

distribution that is representative of the dataset.

X ∼ N (µ,Σ) (4.13)

2. For each multivariate random normal distribution, sample someN times and pass each sample

through the BNN, computing the uncertainty metric as described above. Let U(xi) be the

uncertainty metric for data xi. Take an average of the uncertainties across the samples. This

serves as the uncertainty metric for the model on the dataset xi.

1

N

N∑
i=1

U(xi) (4.14)

27



MNIST Data

We can classify the MNIST data of size n×n with the following mean and covariance matrix. The

n×n mean matrix is shown in figure 4.4, and the variance matrix in figure 4.5. The full covariance

matrix is n× n× n× n.

Figure 4.4: MNIST mean values on a per-pixel basis, normalized from [0,1].

Figure 4.5: MNIST Variance Matrix, normalized from [0,1].
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Having calculated µ and σ for our dataset (MNIST digits), we can model with a multivariate normal

distribution, and sample from this distribution. Calculating the certainty metric on these samples

should give us a good idea of the overall uncertainty on the dataset as a whole.

In figure 4.6, we see 100 random samples from our multivariate random normal distribution that

represents the MNIST dataset. Many of these samples have characteristics of numerals, and some

could even be interpreted as a specific numeral. Overall, it is not a bad characterization of the

MNIST dataset in a compact form.

Figure 4.6: 100 random samples from the multivariate normal distribution that characterizes the
MNIST dataset.

29



Flower images

Using a small dataset of 633 images of daisies cropped to 128x128 pixels, we can apply the same

technique.

Figure 4.7: Flower data set.

Trying the same approach on an image set of cropped flowers, shown in figure 4.7, does not give

as good results. As the flowers are not centered, and the cropping is not consistent, the mean

(figure 4.8) and variance matrix (figure 4.9) appear pretty flat, and the random samples from the

characterization are very noisy. We see examples of these random samples in figure 4.10. The

samples have no resemblance to flowers.
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Figure 4.8: Mean values for the flower dataset.

Figure 4.9: Variance matrix for flower dataset.
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Figure 4.10: Random samples from the flower multivariate random normal distribution.

From these two experiments, it is evident that this method is more effective on clean datasets such

as MNIST than on other datasets that bear more complexity.
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Chapter 5

Measuring Uncertainty

5.1 Epistemic Uncertainty

Kwon et al. [20] propose a data dependent metric for epistemic uncertainty that is exactly the

variance of a set of predictions from a single input to the model. Recall that a BNN can be used for

inference in a deterministic mode, by using the weight means, or in a random mode, by sampling

from the weights. By taking a set of samples, and thus a set of predictions from an input, we can

take the variance and get a metric for epistemic uncertainty.

Uepistemic =
1

T

T∑
t=1

(p̂t − p̄)2 (5.1)

Here, T predictions p̂t are sampled from the model, and p̄ is the mean of these predictions. For

classification, p̂t is the output of the final softmax layer; but for our regression case, it is the raw

prediction.

In Figure 5.1, we implement this metric on our polynomial model from Section 4.2. The data-

dependent epistemic uncertainty shown as a blue line is low when close to the data, and increases

rapidly past x = 1.0, where the data points end. Note, furthermore, that although there is more

noise on the interval [1/3,2/3], we do not see a higher epistemic uncertainty. This is expected, as

noise in data is an example of aleatoric uncertainty.
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Figure 5.1: From data (blue dots) generated from the green curve, we plot the prediction in red
and the epistemic uncertainty in blue.

5.2 Homoscedastic Aleatoric Uncertainty

Homoscedastic uncertainty assumes constant aleatoric noise across the data, thus we might only

obtain a scalar estimate of such uncertainty. Kendall and Gal present the distinction between

this kind and heteroscedastic uncertainty. [18] On our single layer model, we can measure the

homoscedastic uncertainty by taking the mean of the variances of each weight.

Ualeatoric =
1

T

T∑
t=1

σ̂t
2 (5.2)

For our model, we get a measure of 1.06302 for homoscedastic uncertainty.

5.3 Heteroscedastic Aleatoric Uncertainty

Kendall and Gal propose a method to build a BNN that predicts not only epistemic uncertainty,

but also heteroscedastic (data-dependent) aleatoric uncertainty. [18] They build a BNN with a split

head, where one head gives the prediction and the other gives the heteroscedastic model uncertainty

34



for the given input. That is, for sampled weights ŵ ∼ q(w), the model gives:

[ŷ, σ̂2] = f ŵ(x) (5.3)

With this split head, Kendall and Gal then propose the following loss function, while omitting the

weight normalization term for brevity (and to prevent ambiguity):

LBNN (θ) =
1

N

∑
i

1

2σ̂2
i

||ŷi − yi||2 +
1

2
log σ̂2

i (5.4)

Here, σ̂i is the data dependent output of the split head, not a hyperparameter as we saw above.

We can easily update our loss with our above construction. Recall our loss function: f(w, θ) =

log q(w|θ) − logP (w) − logP (D|w). We pick up from our exploration of the last data term in

section 3.4, P (D|w) =
∏n

i=1 P (yi|xi,w). Also recall: P (yi|xi,w) = P (yi) is fixed to be a Gaussian,

and consider its PDF keeping in mind that both σ̂ and ŷ are now data dependent:

p(yi) =
1

σ̂i
√
2π

exp

(
− 1

2σ̂2
i

(yi − ŷi)
2

)
(5.5)

− log p(yi) =
1

2σ̂2
i

(yi − ŷi)
2 + log σ̂i

√
2π (5.6)

and since

logP (D|w) = log

n∏
i=1

P (yi|xi,w) =

n∑
i=1

log p(yi) (5.7)

Our final loss term becomes:

− logP (D|w) =

n∑
i=1

log σ̂i
√
2π +

1

2σ̂2
i

(yi − ŷi)
2 (5.8)

We have found above, and still holds true that:

∂ log p(yi)

∂ŷi
=

1

σ̂2
(yi − ŷi) (5.9)
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We then just need to find the partial derivative w.r.t. σ̂:

−∂ log p(yi)

∂σ̂
=

1

σ
− 1

σ3
(yi − ŷi)

2 (5.10)

We will follow the lead of Kendall and Gal; and, instead of predicting the standard deviation, we

will predict the log variance si := log σ̂i
2. Recalling our data distribution:

p(yi) =
1

σ̂i
√
2π

exp

(
− 1

2σ̂2
i

(yi − ŷi)
2

)
(5.11)

− log p(yi) =
1

2
exp(−si) (yi − ŷi)

2 +
1

2
si + log

√
2π (5.12)

Differentiating w.r.t. ŷi and s yields:

∂ log p(yi)

∂s
=

1

2
exp(−si)(yi − ŷi)

2 − 1

2
(5.13)

∂ log p(yi)

∂ŷi
= exp(−si) (yi − ŷi) (5.14)
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Chapter 6

Applications to Aerial

Segmentation

In their paper titled Aerial Imagery Pixel-level Segmentation, Heffels and Vanschoren look at apply-

ing current state of the art segmentation models to aerial segmentation problems. [14] Specifically,

they use the DeepLabv3+ Xception65 architecture on the DroneDeploy dataset [9] and achieves an

mIoU of 70%. They also benchmark the use of the more fundamental U-Net architecture on the

same data.

Aerial Segmentation is a pertinent topic that has broad reaching applications, ranging from under-

standing deforestation, biological diversity, and poverty [14] to developing high definition lane-level

maps for autonomous driving. The latter involves processing segmentation results over road classes

in order to generate georeferenced map vector data.

Annotation is done at large scale, and suffers from both aleatoric and epistemic uncertainty.

Aleatoric uncertainty often arises when there is a discrepancy between annotations which intro-

duces noise. For example, some annotators might label an airport runway as road, while others

will annotate as background. Epistemic uncertainty arises whenever we take a trained model and

try to predict on new, unseen data. Different geographic regions offer different terrain, and must

be annotated.

37



For our experiments here, we will stick with the U-Net architecture (detailed in section 6.2) on

the DroneDeploy dataset (detailed in section 6.1), with the simple goal of modifying this architec-

ture to use BNN layers and thus produce aleatoric and epistemic uncertainty metrics with each

prediction. With this goal, we aim to show the feasibility of modifying almost any deep learn-

ing architecture to become a BNN by replacing traditional layers with Bayesian layers. We use

a PyTorch implementation of the U-Net architecture found here [25] on the DroneDeploy dataset

outlined here [9].

We have chosen the scalar metric mIoU, also known as the Jaccard distance, to benchmark our

results, as it is well suited for segmentation tasks. [33] For a given semantic class where A is the

ground truth and B is the prediction, the intersection over union (IoU) is defined as:

IoU =
|A ∩B|
|A ∪B|

(6.1)

Where | · | is the cardinality. Now, mIoU is simply the mean IoU across all n classes:

mIoU =
1

n

n∑
i=1

IoUi (6.2)

6.1 The DroneDeploy Dataset

Figure 6.1: DroneDeploy dataset example. [9]

The DroneDeploy dataset [9] is a collection of aerial images, DEMs (Digital Elevation Models), and

associated semantic labels. DroneDeploy offers a web-based photogrammetric processing toolbox

that is marketed for drone imagery. Using geo-referenced aerial imagery, an orthoimage and DTM
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is produced. An orthoimage is a geometrically corrected (orthorectified) photo such that scale is

uniform across the image. In addition, for most applications, precise geo-locations are given for

each pixel. More specifically, a transformation matrix is provided to convert from pixel-coordinates

to geo-coordinates or vice-verse, where the geo-coordinates are in a spatial reference system of your

choosing–the most common of these is WGS84, or the “standard” latitude/longitude.

The DroneDeploy dataset offers a “small” and “medium” size dataset. We use the “medium”

dataset with 55 geoTiffs and associated, pixel-level semantic labels. The codebase found on GitHub

as provided by DroneDeploy [9] will download the data and create a tiled dataset with image and

label chips of size 300x300 pixels. The elevation data is left to future implementation for both their

example and our work here.

In continued research there is potential to leverage the elevation data (in either a raw or normalized

form) as a separate image channel to improve semantic predictions. This is evident by the fact that

buildings are often elevated above their surrounding, water and roads are fairly flat, and vehicles

have some curvature.

The semantic labels and associated (Blue, Green, Red) colors included in the dataset are:

(075, 025, 230) : BUILDING

(180, 030, 145) : CLUTTER

(075, 180, 060) : V EGETATION

(048, 130, 245) : WATER

(255, 255, 255) : GROUND

(200, 130, 000) : CAR

(255, 000, 255) : IGNORE

For our experiments, we have changed ground class to (0, 75, 150) to better differentiate it.

The dataset offers a variety of terrains that include residential, agricultural, and commercial use

areas. Ground and Vegetation classes are the most represented classes at 37.7% and 10.43% respec-
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tively. The full class distribution can be seen in table 6.1. In addition to increasing the amount of

data, prediction quality might be improved by better class differentiation. For example, the ground

class can be divided into road and general terrain.

Using calculations from Heffels [14], we have computed the class distribution of just the classes that

are in the sampled data. There is a “0:Ignore” class that makes up 42.7% of the the raw images,

but this area is ignored by the sampler.

Class Color code Proportion of sampled pixels

1: Building Red 9.8%

2: Clutter Purple 3.5%

3: Vegetation Green 18.2%

4: Water Orange 2.1%

5: Ground White 65.8%

6: Car Blue 0.7%

Table 6.1: Class distribution of DroneDeploy dataset.

To address the problem of class imbalance, Heffels utilized the focal loss introduced by Linn et

al. [22], but has no measurable performance boost. This is worth further exploration in the fu-

ture; since, as we will see, the model performance on the lowest represented classes can be quite

poor.

6.2 U-Net Architecture

The U-Net architecture introduced by Ronneberger et al., shown in figure 6.2, is a landmark, fully

convolutional architecture that won the 2015 ISBI cell tracking challenge with a large margin. [27]

It is able to perform well with a relatively small amount of training images. This network laid the

foundation for today’s state of the art DeepLabv3 architecture.

The U-Net architecture has similarities to a fully convolutional autoencoder in that it has a down-

sampling and an upsampling component; but, with the addition of copy and crop skip connections.

These skip connections bring relevant spatial information from preceding layers to their upsampled

counterparts.
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Figure 6.2: The landmark U-Net architecture by Ronneberger et al. Figure reproduced from [27].

There are a variety of ways to upsample an image layer. In the U-Net architecture, this is done

with linear or bilinear interpolation. DeepLabv3 uses dilated convolutional filters that gets spatial

information from pixels 1,2, or 3 neighbors away. One can imagine a 3x3 grid that is dilated such

that there are n − 1 pixel gaps between each neighboring pixel for dilation rate D. Finally, Chen

et al. proposed an upsampling method called Atrous Spatial Pyramidal Pooling (ASPP). [5] This

method concatenates a collection of upsampled images with different dilation rates to give multiple

fields-of-view. Hefels explores these different upsampling methods in more detail. [14]

Our U-Net architecture [25] has a straightforward PyTorch implementation, excerpts of which are

given in Appendix A.1.

We have run the U-Net architecture on the DroneDeploy dataset and achieved a validation mIoU

of 0.70, which is comparable to results of Heffels et al. [14] with performance that matches that of

DeepLabv3. Our validation mIoU, train loss, and Dice loss are plotted in figure 6.3. This shows

that for a smaller dataset such as this one, there may not be much added benefit to DeepLabv3

when compared to the simpler U-Net. U-Net has been shown to work well on smaller datasets; this

is partly explained due to its smaller number of trained parameters.
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Figure 6.3: Training results of the U-Net architecture on the DroneDeploy dataset. We see fairly
quick convergence to the final mIoU.

6.3 Bayesian Aerial Segmentation: A Bayesian U-Net

In order to build a Bayesian U-Net, we have replaced the traditional convolutional layers with

Bayesian layers as proposed in the work of Blundell et al. and outlined in section 3.1. Additionally,

we have modified the loss to also include the KL divergence, as we seek to minimize this, and we

have also updated the predictor to leverage the stochasticity of the model. With only these three

modifications, we have converted a traditional U-Net to a Bayesian U-Net that gives uncertainty

masks with each prediction mask!

The implementation of the Bayesian CNN was adapted from the work of Shridhar et al. [30], who

give both a direct PyTorch implementation of the method of Blundell et al. and a version with a

local reparameterization technique proposed by Kingma [19] that offers added efficiency. They are

drop-in replacements Conv2d and linear layers. In appendix A.2, we consider the forward pass of

the normal BNN convolutional layer.

In addition to the layer modification, we update the loss function to include the KL loss. The new

loss function is the sum of the Cross Entropy, Dice Loss, and KL Divergence divided by the length

of the training set, 6200 in our case.
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Finally, we calculate uncertainty per pixel using the slight modification to the formulation of Kwon

et al. [20]. We have rescaled their metrics to maintain the same units as the softmax outputs by

taking the square root; on further consideration, this might not be necessary for future experiments.

We take T samples of the model. That is, we pass the input through the model T times, each time

getting a random prediction. Recall that we now have random weights that are defined by normal

distributions with set mean and variance. The final prediction is the mean of the T samples, and

the uncertainties are calculated by:

ualeatorick (x) =

√√√√[
1

T

T∑
t=1

diag(p̂t)− p̂⊗2
t

]
kk

(6.3)

uepistemic
k (x) =

√√√√[
1

T

T∑
t=1

(p̂t − p̄)⊗2

]
kk

(6.4)

for class k and input pixel x, where p̄ = 1
T

∑T
t=1 p̂t. p̂t is the vector of softmax outputs of the BNN

that have been passed through the final Softmax function and v⊗2 = vvT . The weights of the BNN

are sampled each time randomly from their respective distribution.

This is done per pixel, and per class. The final mask per class can be averaged to get a single

uncertainty mask for both aleatoric and epistemic varieties. Alternatively, we can look at the

uncertainties for each class separately. Here, we look at the mean uncertainty across all the classes.

We then average all the pixels in each mask, and produce a single metric per image for both kinds

of uncertainty.

We present and analyze some sample results here to show efficacy.

6.4 Related Work

Late into our research and during our experiments, a similar work was published with some key

differences. Dechesne et al. [8] propose a Bayesian U-Net architecture that, instead of using Bayes

by Backprop, trains a random model through Monte Carlo dropout. In this approach, the dropout

layers are left on even during prediction, thus providing a random model similar to the one we
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train with the exception that instead of approximating with Gaussian distributions, weights are

approximated with Bernoulli distributions. This more simple approach has an efficiency advantage

but limits the complexity that can be learned through model training. Further, here it appears

that the Bernoulli probability is manually set during training, instead of learned.

Instead of providing epistemic and aleatoric uncertainties directly, Dechesne’s work provides pre-

dictive entropy and mutual information, with the latter being “mutual information between the

predictive distribution and the posterior over network weight.” [8]

Dechesne’s experiments were conducted on satellite imagery witch generally has a GSD (ground

surface distance) of 50cm or higher. Our experiments are conducted on drone imagery with a GSD

of approximately 8cm. This lower GSD provides for data with much more detail and provides

for qualitatively different results. Further, we believe that applying the the Bayes by Backprop

approach described by Blundell et al. [4] directly and allowing the weights to be modeled with

two-parameter Gaussian distributions provides a model with a greater richness of uncertainty in-

formation.
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Chapter 7

Results on Aerial Segmentation

7.1 Initial Tests

In order to test the new model architecture, we first consider results in the absence of any specific

tuning of the model or adjustment of hyperparameters. Our goal here is simply to show the efficacy

of our uncertainty estimators in determining the validity of a prediction. As this dataset suffers from

classes with low representation, we see poorer predictions on such classes. However, these initial

tests already demonstrate strong potential in the performance of the uncertainty predictors.

In the results shown here, we are predicting on the entire dataset. In our full predictions presented

later in Section 7.2, we will separate our data into train, test, and validation sets. Further, since our

loss functions are different (the Bayesian U-Net also seeks to minimize KL divergence of the weights),

we get varying behavior of predictions that is most apparent in classes of low representation. A

metric that is more sensitive to class imbalance might improve this problem for future training

runs.

We present some results with uncertainty values that have been linearly scaled from [0, 1] based

on the full set of results. This is done for greater ease of visualization and interpretation of the

uncertainty values.
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In figure 7.1, we see a disc of concrete and structure that is annotated as clutter. Though both the

U-Net and the Bayesian U-Net fail to predict it as clutter, the Bayesian U-Net shows high epistemic

uncertainty there. This is due to the fact that the class “clutter” has only 2% representation in the

dataset — the model simply has not seen enough examples of such data.

Figure 7.1: The disk area labeled as clutter shows high epistemic uncertainty. This disk is not
predicted correctly by either the U-Net or the Bayesian U-Net.
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In contrast, figure 7.2 shows the area of clutter with high aleatoric uncertainty. The model is still

telling us it is uncertain here, but more so because the contents of the “clutter” look similar to

other classes it has seen. This area has a lot of aleatoric noise.

Figure 7.2: The area annotated as “clutter” shows high aleatoric uncertainty.
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Figure 7.3 shows an example where the Bayesian U-Net correctly predicts the whole scene, all of

which is ground, and does so with high confidence.

Figure 7.3: This sample is unambiguously ground to each model, and shows very low uncertainties.
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The Bayesian U-Net does not predict buildings as well as the normal U-Net, while the normal

U-Net tends to over-predict the class “building”. This is due to differences in the loss function.

We do note, however, that they achieve a near-identical mIoU. In figure 7.4, we see the Bayesian

U-Net failing to predict the building as building, but showing a high epistemic uncertainty in this

area, thus telling us the prediction has low confidence.

Figure 7.4: While the Bayesian U-Net does not predict the building well, it shows high epistemic
uncertainty where the building is.
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In our dataset, snow is annotated as ground, because it is not present in most of the data. We see

in figure 7.5 that the normal U-net incorrectly identifies some areas of snow as building, while the

Bayesian U-Net correctly identifies snow as ground. Because of the low class representation, we see

a high amount of epistemic uncertainty where there is snow.

Figure 7.5: The presence of snow in the data is very small, thus we see high epistemic uncertainty
from the Bayesian U-Net.
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Finally, we look at an example where there is an ambiguous border between ground and vegetation.

Both models struggle to identify the border, and the standard U-Net incorrectly identifies parts of

the area as building. This ambiguity is defined as aleatoric noise and is evident in our Bayesian

models’ identification of such noise, as seen in figure 7.6.

Figure 7.6: The division between ground and vegetation is ambiguous to the model, and this results
in high aleatoric uncertainty.
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7.2 Full Predictions

We then moved from an overfit preliminary test to a full experiment. The full dataset was split

into train, test, and validation sets. Of 6888 annotated image chips, 10% were held out for final

validation, and 10% of the remaining were used in model testing during the training process.

The resulting model was then run on the unseen validation data. The prediction mask, epistemic

mask, and aleatoric mask; along with mIoU, mean epistemic uncertainty, and mean aleatoric uncer-

tainty were recorded. Both epistemic and aleatoric uncertainties have been multiplied by a constant

such that their average value is approximately 0.5. To rescale, we looked at a sample of predictions

on the training data, and took the average across all epistemic and aleatoric uncertainties. Thus,

the rescaling factor is set to be constant across all predictions. This rescaling is not necessary;

but, in order to effectively use the estimates, some sort of thresholding must be applied and the

uncertainties must be considered with respect to the distribution of all of the uncertainties.

The benefit of this scaling is that the uncertainty masks that are produced and visualized now have

a meaningful range that is approximately [0, 1], where 0.5 is the mean uncertainty. It is important

to note, however, that a scaled uncertainty of 0.5 does not directly equate to 50% certainty. Instead,

the value should be thresholded and considered in relation to the rest of the data.

From the validation data, the correlation coefficient between the epistemic uncertainty and the

mIoU was measured to be −0.44 (see figure 7.7) and the correlation coefficient between the aleatoric

uncertainty and the mIoU was measured to be −0.55. This shows a negative correlation between the

uncertainty and the mIoU. For greater uncertainty, the expected mIoU goes down, and vice versa.

Should we have chosen a raw threshold of 0.052 aleatoric Uncertainty and kept only predictions

below this, we would have an mIoU 0.87 with 20% of the validation data remaining. This is a very

encouraging result in the efficacy in using this method in a production environment to understand

the quality of the models predictions and to know when a model is starting to “go stale” (no longer

producing good predictions on the stream of incoming data).
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Figure 7.7: We see a negative correlation between the raw epistemic Uncertainty and the mIoU,
suggesting that the metric can be used to gauge prediction quality.
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We present some results from the full experiment. In figure 7.8 we see low uncertainty values for

the ground class for which the Bayesian U-Net predicts with perfect mIoU. The base U-Net model

did not predict most of the image properly; this, again, is due to variation in the loss function and

the low representation of the “building” class, and should not be taken to mean that the Bayesian

U-Net gets a higher mIoU by default.

Figure 7.8: Unseen validation data: The ground class is of low uncertainty and correctly predicted
by the Bayesian U-Net.
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In figure 7.9, we see an input image with snow that appears white, but not fully washed out.

The Bayesian U-Net shows high epistemic uncertainty here, indicating that we do not have many

examples of snow, but it still predicts the class correctly (while the base U-Net fails).

Figure 7.9: Unseen validation data: White patches and snow show high epistemic uncertainty.
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In figure 7.10 we see a white truck with target class ”clutter” that has high epistemic uncertainty

and is incorrectly predicted as building from the base U-Net and ground from the Bayesian U-

Net. One might expect that, with more data and better class labels, the model would learn from

contextual information how to correctly classify vehicles on the road.

Figure 7.10: Unseen validation data: The washed out truck is misclassified and shows high epistemic
uncertainty.
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In validation figure 7.11 below, we again see an ambiguous forest with shadows, snow, and barren

trees. The Bayesian U-Net seems to capture this ambiguity more in the output than the base

U-Net, showing splotches of vegetation and ground, while the target class is mostly vegetation.

The uncertainties are relatively high across the whole image.

Figure 7.11: Unseen validation data: The division between vegetative forest and ground is still
ambiguous to the model and it shows above average uncertainty.

7.3 Varying Data Size

A reduction in the amount of data should affect the uncertainty. Recall that epistemic uncertainty

is that which arises from what the model does not know, and aleatoric uncertainty results from noise
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in the data. Therefore, we would expect a random reduction in the training data (while keeping

the validation dataset constant) to increase epistemic uncertainty and leave aleatoric uncertainty

with little difference.

We have randomly reduced our training dataset to 70% and 50% sizes, and have compared the

mean, raw epistemic and aleatoric uncertainties in table 7.1.

Data Size Mean Epistemic Mean Aleatoric

100% 0.0331 0.206

70% 0.0384 0.218

50% 0.0382 0.222

Table 7.1: Comparison of epistemic and aleatoric uncertainty for varying dataset size.

As expected, the epistemic uncertainty increases with a 70% dataset size compared to the original,

though does not change much when further reducing to a 50% size. The aleatoric uncertainty,

on the other hand, only increases marginally while reducing the dataset size. This gives good

indication that each uncertainty metric is statistically performing as expected.

Since the metric rescaling was performed based on the metrics on the validation dataset, it does

not make sense to rescale for this comparison. Accordingly, we might want to consider alternative

rescaling schemes in the future.
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Chapter 8

Conclusions and Further

Perspectives

8.1 Summary

In this work, we started with an introduction to uncertainty metrics and divided them into epistemic

and heteroscedastic aleatoric counterparts. We have tried to develop an intuitive understanding of

each of these components of uncertainty. We then surveyed the leading methods of determining

each.

We have experimented with an autoencoder as a standalone model for epistemic uncertainty esti-

mation, and tested with MNIST and non-MNIST datasets.

Then, we introduced the Bayesian neural network and its construction. We considered its connec-

tion to variational autoencoders. We have implemented a one-layer BNN to a regression problem,

and used the stochasticity of the BNN to construct a confidence interval of the model output. We

have also explored an analytical approach to characterizing a dataset, though this approach appears

intractable for complex networks. Additionally, we have studied a split-head BNN model for our

regression problem.

Our main contribution involves a Bayesian U-Net for aerial segmentation. With our novel construc-

tion, we have trained on the open DroneDeploy dataset, and measured both per-pixel and image
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wide uncertainty on our validation dataset. In addition to individual examples, we have shown

the negative correlation of uncertainty to model performance as measured by the mIoU metric.

Furthermore, we have run our Bayesian U-Net on datasets of randomly reduced size while keeping

the validation set constant. This confirms a general increase in epistemic uncertainty when the

data size is reduced.

8.2 A Workflow for Improving Model Performance

We propose a workflow for iterative model improvement that leverages each uncertainty metric

covered, and is the topic for further research. This workflow is drawn out in figure 8.1.

Machine learning model performance can be thought of as an inversely correlated function to the

models uncertainties. Structural uncertainty, or that which arises from the choice of model and

hyper-parameters, is often that of most interest. New models and hyper-parameter training offers

sometimes marginal gains on performance.

Understanding the effect of data on model performance is often limited to the understanding that

more data leads to better performance. But what is not often considered is that when aleatoric

uncertainty is present in the data, more data with the same amount of aleatoric uncertainty will

not fix the problem. Further, when there is epistemic uncertainty present in the data that can

Figure 8.1: Proposed workflow for continuous model performance improvement.
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be improved by more annotation samples, it is often not known where to draw these samples

from.

By appropriately considering metrics for both epistemic and aleatoric uncertainty, we can improve

the model training process that is aimed at achieving a specific accuracy metric. It is important to

address the cause of each of these uncertainties separately.

High aleatoric uncertainty can arise from either poor annotation quality or ambiguous annotations.

After a round of training on a dataset, one can then predict on the entire annotated dataset

using bootstrapping. That is, we predict on the very data we just trained on, and measure the

uncertainties of each.

By sorting based on aleatoric uncertainty (from an autoencoder or BNN), we can identify the data

with highest aleatoric noise. In the case of poor annotation quality, we can then remove a portion of

the noisy data. If there is a discrepancy in the annotations, we may then go back and correct these

annotations. This gives a method for automatically checking the quality of the whole annotation

batch and highlighting the noisiest of the annotations.

Epistemic uncertainty can be the effect of low representation, but can also result from predicting

on new data that has not yet been seen by the model. For this reason, epistemic uncertainty must

be monitored as new data arrives. When the epistemic uncertainty exceeds a threshold, for some

buffer size, this is a clear indication that more of the new data samples must be annotated. For any

system with an inflow of data that is being predicted on; we must consider a continuous annotation

process if we want to maintain the same prediction quality. As epistemic uncertainty increases,

we take these samples of high epistemic uncertainty and annotate them, then retrain the model.

By annotating on a mixture of samples that have high uncertainty, and some that are randomly

chosen, we may boost the model performance on the new data.

61



Appendix A

Code Excerpts

A.1 U-Net Pytorch Code Excerpts

Our implementation of the U-Net architecture in PyTorch [25] is defined by (where “bilinear” is a

flag for the upsampling interpolation method):

self.inc = DoubleConv(n_channels, 64)

self.down1 = Down(64, 128)

self.down2 = Down(128, 256)

self.down3 = Down(256, 512)

factor = 2 if bilinear else 1

self.down4 = Down(512, 1024 // factor)

self.up1 = Up(1024, 512 // factor, bilinear)

self.up2 = Up(512, 256 // factor, bilinear)

self.up3 = Up(256, 128 // factor, bilinear)

self.up4 = Up(128, 64, bilinear)

self.outc = OutConv(64, n_classes)

where the Down method is defined by:

nn.MaxPool2d(2),

DoubleConv(in_channels, out_channels)
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and the Up method by:

if bilinear:

self.up = nn.Upsample(scale_factor=2, mode=’bilinear’, align_corners=True)

self.conv = DoubleConv(in_channels, out_channels, in_channels // 2)

else:

self.up = nn.ConvTranspose2d(in_channels, in_channels // 2, kernel_size=2, stride=2)

self.conv = DoubleConv(in_channels, out_channels)

DoubleConv is defined by:

nn.Conv2d(in_channels, mid_channels, kernel_size=3, padding=1),

nn.BatchNorm2d(mid_channels),

nn.ReLU(inplace=True),

nn.Conv2d(mid_channels, out_channels, kernel_size=3, padding=1),

nn.BatchNorm2d(out_channels),

nn.ReLU(inplace=True)

The loss function is defined as the sum of the Cross Entropy and the Dice Loss, with an implemen-

tation that looks like:

loss = nn.CrossEntropyLoss(masks_pred, true_masks) \

+ dice_loss(F.softmax(masks_pred, dim=1).float(),

F.one_hot(true_masks, net.n_classes).permute(0, 3, 1, 2).float(),

multiclass=True)

A.2 Bayesian U-Net Pytorch Code Excerpts

To better understand the Bayesian modification to the PyTorch U-Net implementation, we take a

look at the forward pass of the Bayesian convolutional layer.

W_eps = torch.empty(self.W_mu.size()).normal_(0, 1).to(self.device)

self.W_sigma = torch.log1p(torch.exp(self.W_rho))

weight = self.W_mu + W_eps * self.W_sigma
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This is the exact implementation as described by Blundell et al. [4] and detailed in section 3.3.

ϵ ∼ N (0, I) (A.1)

w = µ+ log(1 + exp(ρ)) · ϵ (A.2)

The BNN convolutional layer with local reparameterization does this a little more efficiently, where

the mean and variance are precomputed with convolutional filters over the data.

act_mu = F.conv2d(

x, self.W_mu, self.bias_mu, self.stride, self.padding, self.dilation, self.groups)

act_var = 1e-16 + F.conv2d(

x ** 2, self.W_sigma ** 2, bias_var, self.stride, self.padding, self.dilation,

self.groups)

act_std = torch.sqrt(act_var)

eps = torch.empty(act_mu.size()).normal_(0, 1).to(self.device)

return act_mu + act_std * eps
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