Claremont Colleges

Scholarship @ Claremont

CGU Theses & Dissertations CGU Student Scholarship

Fall 2021

Measuring Machine Learning Model Uncertainty with Applications
to Aerial Segmentation

Kevin James Cotton
Claremont Graduate University

Follow this and additional works at: https://scholarship.claremont.edu/cgu_etd

Cf Part of the Applied Mathematics Commons, and the Mathematics Commons

Recommended Citation

Cotton, Kevin James. (2021). Measuring Machine Learning Model Uncertainty with Applications to Aerial
Segmentation. CGU Theses & Dissertations, 271. https://scholarship.claremont.edu/cgu_etd/271.

This Open Access Dissertation is brought to you for free and open access by the CGU Student Scholarship at
Scholarship @ Claremont. It has been accepted for inclusion in CGU Theses & Dissertations by an authorized
administrator of Scholarship @ Claremont. For more information, please contact scholarship@cuc.claremont.edu.

https://scholarship.claremont.edu/
https://scholarship.claremont.edu/cgu_etd
https://scholarship.claremont.edu/cgu_student
https://scholarship.claremont.edu/cgu_etd?utm_source=scholarship.claremont.edu%2Fcgu_etd%2F271&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/115?utm_source=scholarship.claremont.edu%2Fcgu_etd%2F271&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/174?utm_source=scholarship.claremont.edu%2Fcgu_etd%2F271&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarship@cuc.claremont.edu

Measuring Machine Learning Model Uncertainty with

Applications to Aerial Segmentation

By
Kevin J Cotton

Claremont Graduate University

2021

© Copyright Kevin J Cotton, 2021

All rights reserved.

APPROVAL OF THE DISSERTATION COMMITTEE

This dissertation has been duly read, reviewed, and critiqued by the Committee listed below,
which hereby approves the manuscript of Kevin J Cotton as fulfilling the scope and quality

requirements for meriting the degree of Doctor of Philosophy in Mathematics.

Dr. Allon Percus, Chair
Professor of Mathematics

Claremont Graduate University

Dr. Marina Chugunova
Professor of Mathematics

Claremont Graduate University

Dr. Weiqing Gu
Professor of Mathematics

Harvey Mudd College

ABSTRACT

Measuring Machine Learning Model Uncertainty with Applications to Aerial Segmentation
By

Kevin J Cotton

Claremont Graduate University: 2021

Machine learning model performance on both validation data and new data can be better measured
and understood by leveraging uncertainty metrics at the time of prediction. These metrics can
improve the model training process by indicating which training data need to be corrected and
what part of the domain needs further annotation. The methods described have yet to reach
mainstream adoption, and show great potential. Here, we survey the field of uncertainty metrics

and provide a robust framework for its application to aerial segmentation.

Uncertainty is divided into two types: aleatoric and epistemic. Aleatoric uncertainty arises from
variations in training data and can be the result of poor training data or an inherently stochas-
tic observation. Epistemic uncertainty arises from predicting on inputs that are out of class of
the training data. Both measures inform the machine learning engineer on what areas of data
need better or more training, and also help downstream processes quantify the usefulness of a

prediction.

We survey the current tools for measuring uncertainty, including the autoencoder for measuring
epistemic uncertainty and the Bayesian neural network. The latter replaces each trained weight
with a random variable with which we approximate the true, unknown distribution of each weight
with a two parameter (mean and variance) normal distribution. Bayes by Backprop trains these
parameters by minimizing the Kullback—Leibler divergence between the approximating normal
distribution and the unknown distribution. Our contribution is a novel application of the Bayesian

neural network with Gaussian weights applied to the U-Net model for aerial segmentation.

Using the DroneDeploy dataset, we build and train our Bayesian U-Net model and gather epistemic

and aleatoric uncertainty metrics. Experimentally, we find that these metrics are correlated to

model performance on unseen data and thus provide immediate value to a modeling and prediction
workflow. We show the usefulness of these metrics for both per-pixel uncertainty estimation and

per-image uncertainty estimation.

Acknowledgements

I would like to thank my advisor, Prof. Percus, for his continual support and patience while I
refined my topic. I would also like to thank my other committee members, Prof. Chugunova and
Prof. Gu, each having spent a good deal of time working with me on my topic. All of whom were

instrumental at my time at CGU.

I want to also thank those whom I worked with at JPL during my internship for all the wisdom
they imparted and for instilling a passion for research; namely my mentors Daniel Nunes and Karl

Mitchell.

I also want to acknowledge my company, Woven Planet, for providing a context to implement the

topics I research here.

Finally, I would like to thank my parents and my family for supporting me and my pursuits. I

could not do it without them.

vi

Contents

(1

What is Uncertainty|

[1.1 Types of Uncertainty|.

1.2 Methodsl o

1.3 Roadmap| e

2__Autoencoders|

2.1 Types of Autoencoders|.o

[2.2 Measuring Epistemic Uncertainty with an Autoencoder|

The Bayesian Neural Network|

3.1 BNN Summary|

Implementations|

4.1 Analytical Approach|

4.2 Regression Implementation| o o 0.

4.3 MNIST implementation|

4.4 Characterizing Datasets|

vii

11
11
12
14
15
17

[6 Measuring Uncertainty|

b.1 Epistemic Uncertainty|
5.2 Homoscedastic Aleatoric Uncertaintyl
5.3 Heteroscedastic Aleatoric Uncertainty|

[6 Applications to Aerial Segmentation|

[7 Results on Aerial Segmentation|

[8 Conclusions and Further Perspectives|

8.1 Summary] L e e e e

8.2 A Workflow for Improving Model Pertormance|

(A Code Excerpts|

[A.1 U-Net Pytorch Code Excerpts|.,

|A.2 Bayesian U-Net Pytorch Code Excerpts|

viii

33
33
34
34

37
38
40
42
43

45
45
52
o7

59
99
60

List of Figures

[2.1 A generic autoencoder network with encoder and decoder portion.| 5
2.2 Reconstruction MNIST data on MNIST trained autoencoder) 6
2.3 Reconstruction of non-MNIST data on MNIST trained autoencoder) 6
2.4 Sample of MNIST data.| 7
2.5 Sample of EMNIST data.] o 8
2.6 Sample of FMNIST data.| o o 8
[2.7 Autoencoder reconstruction error histogram on MNIST and non-MNIST data. ... 9
[2.8 Variational Autoencoder (VAE): training vs generative.| 10
|3.1 Bayesian neural network structure.|o 0oL 11
B2 VAFE connection to BNNIJ 18
4.1 Regression data generation.| Lo 22
4.2 BNN confidence interval on regression problem.| 23
4.3 BNN epistemic uncertainty on MNIST and non-MNIST data. 25
4.4 Mean per-pixel values of MNIST data) 28
4.5 Per-pixel variance of MNIST data.| 28

4.6 100 random samples from the multivariate normal distribution that characterizes the

MNIST dataset. o 29
4.7 Flower data set). 30
4.8 Mean values for the flower dataset) 0oL 31
4.9 Variance matrix for flower dataset)o 31
[4.10 Random samples from the flower multivariate random normal distribution.| 32

X

5.1 Plot of data, prediction, and epistemic uncertainty on regression problem.| 34

[6.1 DroneDeploy dataset example.| o L 38
6.2 U-Net architecturel o 41
6.3 U-Net training curve on DroneDeploy dataset.| 42
[7.1 Bayesian U-Net prediction on disk with high uncertainty.| 46
[7.2 Bayesian U-Net prediction on ambiguous clutter.| 47
[7.3 Bayesian U-Net prediction on unambiguous ground. 48
7.4 Bayesian U-Net prediction on washed out building.| 49
[7.5 Bayesian U-Net prediction on snow.| 50
[7.6 Bayesian U-Net prediction on ambiguous vegetation| 51
[7.7 Correlation between Bayesian U-Net epistemic uncertainty and mloU.[. 53
[7.8 Bayesian U-Net validation on ground.| 54
[7.9 Bayesian U-Net validation onsnow.|. 99
[7.10 Bayesian U-Net validation on truck.| 56
[7.11 Bayesian U-Net validation on ground/vegetation. 57
8.1 Proposed worktlow for continuous model performance improvement.| 60

List of Tables

[6.1 Class distribution of DroneDeploy dataset.|. 40

[7.1 Comparison of epistemic and aleatoric uncertainty for varying dataset size.| 58

xi

Chapter 1

What is Uncertainty

One can think of model uncertainty as an understanding of what a model does and does not
know. [18] Specifically, machine learning model uncertainty can be defined as a metric or set of
metrics that give indication of the confidence of the model prediction on any given input data.
There are different quantitative metrics of uncertainty, but we can broadly define such metrics as
the probability that a given prediction is correct. Some such metrics can be conveniently mapped to

[0,1], with 0 being the least likely to be an accurate prediction, and 1 being the most likely. [32]

A neural network has a set of weight that are set at training through backpropagation. For classifi-
cation tasks, many networks end with a softmax function. The softmax function maps all real values
to [0, 1], providing a probabilistic interpretation. For example, 1 is a high confidence prediction

while 0.01 is a very low confidence prediction.

The problem that an uncertainty metric is trying to solve can easily be seen when feeding out-of-
class data to a classification neural network. The classification model may naively predict the closest
in-class label with a high softmax output. [16] The softmax output of a classification network that
is thresholded and used to assign the class can be a poor indicator of model certainty and may fail
to flag data outside the manifold of the training data. This is an example of epistemic uncertainty.
For instance, an image classification model that was never trained on samples of dogs will have no
ability to predict “dog” when fed such an image. The challenge is to enable the model to report

that it does not know what the class is, rather than making some other arbitrary prediction.

A different kind of uncertainty arises from noise in the training data. Aleatoric uncertainty can
be a result of mislabeled classes or targets in the training set, or of a natural stochasticity of the
targets. A simple example is if some cats were mislabeled as dog in the training set. Another
example, in the case of a regression model with a real number target, would be a certain area of

the domain that has training samples giving a large degree of variance in the output.

In all of these cases, we seek to build a model that gives an associated certainty metric for each
output. When a model makes a prediction, we would like to know how certain it is of its predic-

tion.

1.1 Types of Uncertainty

Stahl et al. [32] and Kana [17] review the two types of uncertainty that we mention above.

e Epistemic Uncertainty: uncertainty that is derived from what the model does not know.
The input is outside of the manifold of training values. This uncertainty can be reduced by

including more training values.

e Aleatoric Uncertainty: uncertainty that arises from stochasticity of the observations. This
level of uncertainty cannot be reduced by including more training data, but could possibly be
reduced by more consistent training data. (Unless the stochasticity is inherent in the data.)

Aleatoric uncertainty is localized.

These types of uncertainty will be further discussed ed subsequent chapters. Note that, when con-
sidering model accuracy on new data, one must also consider the model chosen and its ability to
correctly capture the structure of the data. Though we will not cover it here, this kind of uncertainty

that arises from the model choice and its parameters can be defined as Structural Uncertainty.

All of these uncertainties are inherently hard to measure. When feeding an unknown class to
EfficientNet, it can predict the wrong class with very high (>80%) certainty. In their example,
Hiillermeier et al. [16] show how EfficientNet will confidently predict panda cookies as a “typewriter”

and a pile of logs as a “stone wall.”

This measure of certainty, as we can see, is very poor for these examples. This is an example

of using the last layer of the network, the softmax layer, as a fuzzy indicator of certainty. Since
we assign the class as that which corresponds to the node with the highest softmax output, it
would make sense to use this output as a proxy for certainty. But, as we can see and as shown
experimentally, that is quite a poor metric when the input class was not in the domain of training

data.

1.2 Methods

Finding a robust metric for uncertainty is an open problem in Machine Learning. There exists a
few methods that Stahl et al. explore |32, with much room for research still open. I have adapted

this list, and added to it with my own methods that we will explore in more detail.

e Using the Softmax Output of a deep neural network as a proxy for certainty. This is the
least robust method, and has been shown to give unreliable results. The softmax output is
rightly thresholded and used to assign a prediction, but it does not give a good measure of

model certainty. Further, this method does not work for a regression output.

e Use of an Autoencoder Network as a separate network on the training set gives a different
proxy metric of certainty. The autoencoder can signal inputs that lie outside the training
domain, and thus will have a lower certainty. Autoencoders are of interest in their own right,
in that they act unsupervised on a training data set. They can be thought of as a clustering

technique. Any new input then has a metric of how close or far it is from the training dataset.

e The Bayesian Neural Network, or BNN, is our main subject of exploration and contribu-
tion. Through training random weights, we produce a random model that gives a stochastic
output. This property is leveraged to produce not only a prediction, but also metrics for

epistemic and aleatoric uncertainty.

e Characterizing data as a multivariate random normal distribution: This method acts
as a simplified variational autoencoder and provides a metric for any piece of data to the

dataset characterization. We can use this metric as a proxy for uncertainty.

1.3 Roadmap

In this work, we will first explore types of uncertainty arising in machine learning. We distinguish
between aleatoric and epistemic uncertainties, and then further divide aleatoric uncertainty into
homoscedastic and heteroscedastic varieties. We survey the current methods for producing an
uncertainty estimate, including: using the softmax output, the autoencoder, and the Bayesian

neural network.

In Chapter [2| we explore the autoencoder in more depth, and then train on MNIST data. We
then show that, when fed new, out of class data, the trained autoencoder gives a higher metric of

uncertainty, serving as a good proxy for aleatoric uncertainty.

Chapter 3| introduces the Bayesian neural network (BNN): a network that replaces the trained
weights with trained probability distributions. We go through the theory of the BNN, and how one

trains and predicts with it.

Chapter [discusses our implementation of methods to characterize uncertainty. Section [4.1] presents
an analytical framework for a fully connected BNN. We apply a BNN implementation by Blundell, et
al. [4] to a polynomial regression problem. Section applies the BNN to MNIST data and explores
the calculated uncertainties. Finally, Section [4.4] considers a simplified method of characterizing a

dataset that aims to achieve similar results to the autoencoder.

Chapter [5| continues with the regression implementation of the BNN and further studies ways of
measuring uncertainty. Our main contribution is in chapter [f], where we turn our attention to aerial
segmentation. We develop a novel Bayesian U-Net model with Gaussian weights, and train on the
DroneDeploy dataset. We show that the Bayesian U-Net can effectively be used to produce both
per-pixel and image wide metrics for both epistemic and aleatoric uncertainty. We demonstrate

this experimentally, with examples of each metric.

We conclude by offering some further perspectives on the application of uncertainty metrics to a

comprehensive workflow for improving machine learning model performance.

Chapter 2

Autoencoders

The autoencoder is a useful tool for measuring epistemic uncertainty; that is, it does well at
characterizing the manifold of training data and giving a metric of closeness to this manifold for
any new input data. When the Euclidean distance metric from the autoencoder is high, then the

expected aleatoric certainty from the model is low. A schematic for an autoencoder is given in

Figure 2.1}
A
X_,.qé &

Figure 2.1: A generic autoencoder network with encoder and decoder portion. X is the input
image, and X is the reconstructed output image.

Grover et al. show how we can use autoencoders to learn compressed projections of data. [13] Es-
sentially, they reduce the dimensionality of an input data through downsampling into a bottleneck,
and then upsample to the original. The bottleneck provides a limit for how much information is

passed through; and the network is trained to minimize the RMSE (or other kind of error) between

the input and the output data. RMSE is defined as

RMSE = | =) (& — ;)2 (2.1)

i=1
Where the sum is over all n pixels, x; is the original pixel value, and ; is the reconstructed pixel
value. This same metric is used on new input data and its re-projection at prediction time to give
a measure of closeness to the training data. When this metric is high, and above a certain, set
threshold, we can assume the the data is different enough from the training data that any model

from the training data will not give a good prediction.

7]zl /]old]/]7]als]7
7]zl /jol4l/]7]alsl7

Figure 2.2: We have trained an autoencoder on MNIST data and show MNIST reconstructions
here. See section [2.2] for more on the MNIST dataset.

alAlclalAlAlalolalA
=|2lajolslalalzlald

Figure 2.3: Using the same model as above, we look at the reconstruction of out-of-domain data
on the MNIST autoencoder. The reconstructions do not resemble the inputs well in this case.

We illustrate this point in figure and above. A single autoencoder is trained on MNIST
data. When reconstructing MNIST data, the reconstruction error is low; but, when reconstructing
non-MNIST data (out of class data), the reconstruction error is high. The encoding has learned

many features about MNIST data, but does not know as much about non-MNIST data.

2.1 Types of Autoencoders

An autoencoder can take the form of a fully connected network, a convolutional network, or others.
For convolutional autoencoders, max pooling is used to downsample the image and up-sampling
is used to reconstruct it. Stahl et al. [32] use a fully connected autoencoder with the following
number of neurons, in order: 1000, 250, 50, 10, 50, 250, 1000. The reduction in neurons essentially

downsamples the data, then it is upsampled with an increase in neurons.

A convolutional autoencoder downsamples with pairs of convolution followed by max pooling, and
upsamples with transpose convolution layers. Normal convolution is either shape preserving (with
unit stride), or a downsampling operation (with a stride greater than 1). Transpose convolution,
on the other hand, increases the dimensionality by using a fractional stride. [10] It is a very useful
upsampling operation that is employed in segmentation tasks. [35] Another kind of upsampling
that has more recently been applied to image segmentation is atrous convolution, as described in
the groundbreaking paper and architecture DeepLabv3 [6] The atrous convolution layer has very

recently been applied to the autoencoder, and has been coined an atrous convolution autoencoder

(A-CAE). [36]

2.2 Measuring Epistemic Uncertainty with an Autoencoder

We will demonstrate how one can train an autoencoder to capture a characterization of a dataset,

and then use it measure epistemic uncertainty on new data.

For this example we are using the standard MNIST dataset of hand drawn numbers from 0-9. [21]
This is a dataset of 60,000 training and 10,000 test data, each a grayscale image of shape 32x32.

Figure [2.4] shows a small random sample.

HECQ DG ENODEDNDEE

Figure 2.4: Sample of 10 images from the regular MNIST dataset. Each data is a 32x32 grayscale
picture of a hand drawn digit from 0-9.

This will serve as our in-class dataset, and what we train our model on. The autoencoder will

be taught to learn a representation of the MNIST data through the process of compressing and
decompressing. When data that is not MNIST (non-MNIST) is fed into the model, it will have a

higher reconstruction error.

As our non-MNIST data, we will use the Extended MNIST (EMNIST) dataset, shown in Figure[2.5]
that adds hand drawn lowercase letters from a-z and uppercase letters from A-Z. |7] We will also use
the Fashion MNIST (FMNIST) dataset, shown in Figure that is exclusively grayscale images

of articles of clothing. [34] All of these datasets have the same data shape and are grayscale.

dEHOERNHEAREEMEEE

Figure 2.5: Sample of 10 images from the regular Extended MNIST (EMNIST) dataset.

ST N -

Figure 2.6: Sample of 10 images from the regular Fashion MNIST (FMNIST) dataset.

We train a model on just the MNIST data in order to learn a representation of such data. We
have split the data into a training and test set. The test set of MNIST, along with non-MNIST
data is then passed through the trained autoencoder model to predict certainty. As is shown in
Figure the reconstruction error is, on average, lower for unseen MNIST data than for non-

MNIST data.

To use this model in practice to gauge whether data is in-class or out-of-class requires selection of

a proper threshold, and thus a tolerance for higher alpha or beta errors.

Predicting on out-of-class data is an example of epistemic uncertainty. The model has no categories
for letters, only digits. Thus, this is only part of the puzzle. To understand aleatoric uncertainty,

we must pair the data with a prediction model and look at prediction accuracy.

Histogram of reconstruction errors for MNIST and extended-MNIST data

MNIST reconstruction errors
non-MNIST reconstruction errors
0.4 4
0.3 4
0.2 4
0.14
0.0 T T T T T T

Figure 2.7: Histogram of autoencoder reconstruction error of MNIST and extended-MNIST (char-
acters only) data. X-axis is RMSE of the reconstruction, where units are in pixel values from 0-255.
Y-axis is normalized frequency.

2.3 Variational Autoencoders

Variational autoencoders (VAEs) are a type of autoencoder with a Bayesian bottleneck that serve
as a regularized representation of the dataset in compressed, latent space. Accordingly, one can
sample from the trained latent space, passing the sample through the decoder to re-construct an
output, and use the VAE in a generative fashion. Traditional autoencoders do not serve well for
this purpose, as the meaningful latent space has very arbitrary values, and it is not known which

values to use for generative tasks. [24]

Rocca provides an introduction to the mechanics of VAEs. [26] In figure we see the differ-
ence between the training and generative process of the VAE. In training, input data is passed
through an encoder and downsampled to a latent space representation before it is decoded to re-
construct the input. The reconstruction error plus the KL divergence (acting as a regularizer) is
then backpropagated to update the layer weights. In the generative process, one samples from the
prior distribution on the latent space, and then passes the sample through the decoder to get a

generative output.

encoder

e

training
process

encoded vector

(in latent space)
P decoder

input d

generation sampler decoded content
process

(reconstructed input /
generated content)

sampled vector
(from latent space)

Figure 2.8: Detail from Rocca on how a VAE can be used in a generative fashion, by sampling from
the latent space and passing this sample through the decoder. Figure reproduced from .

As we will see in section [3.5] VAEs have a strong connection to BNNs and can be considered a
subset of BNNs as the bottleneck is similarly trained by minimizing the KL divergence between a
Gaussian and an unknown posterior. There, we will explain this connection further after having

looked at the mechanics of the BNN.

10

Chapter 3

The Bayesian Neural Network

3.1 BNN Summary

In their paper, Blundell et al. introduce “a new, efficient, [and] principled” algorithm for construct-
ing and backpropagating on a Bayesian neural network. [4] A Bayesian neural network (or BNN)
is a neural network (NN) in which the weights have been replaced with random variables. In the
process of training, we do not change the weights directly, but instead train the parameters of each
weight. In this chapter, we will look more closely at the implementation by Blundell et al., and

construct our own simple BNN on a regression task.

Figure 3.1: Here, we reproduce the figure from Blundell et al. [4]. On the left is traditional neural
network with fixed weights that are set at training. On the right, the weights are replaced by
distributions whose parameters are set during training.

The motivation of using a BNN as opposed to a traditional NN where the weights are trained and

fixed is that BNNs lend well to producing uncertainty metrics. Building off of work by Kendall

11

and Gal |18] and Kwon et al. [20], we will first implement a data dependent metric on epistemic

uncertainty, and then construct a metric for aleatoric uncertainty.

There are two types of metrics for aleatoric uncertainty. Homoscedastic uncertainty is constant for
any input after training, and measures the overall aleatoric noise in the model. This metric gives a
scalar that can be loosely interpreted as noise of training data overall. Heteroscedastic uncertainty,
on the other hand, is data dependent and seeks to give a localized metric of aleatoric noise. A
good heteroscedastic uncertainty metric will be very helpful in identifying where noise exists in the

training data.

3.2 Construction

We can consider a traditional NN as a probabilistic model P(y|x, w), where for a given input x € R?
and trained set of weights w, a prediction y € Y is given. In a Bayesian neural network (BNN), w
are independent random variables whose parameters have been trained by a technique called Bayes
by Backprop [4].

Further, for a regression model, output y €) provides a real number R and P(y|x,w) is defined

to be a Gaussian distribution (as we will see, this corresponds to the squared loss).

For a traditional NN, we can train as follows. For a set of N training data D = {(z;,y;)|i €
[1,..., N}, we seek to find w that maximize P(D|w). Using maximum likelihood estimation (MLE),

we seek to find, through gradient descent:

WMLE — arg maxlog P(D|w) (3.1)
= arg maxlogHP(yﬂxi,w) (3.2)
= arg maleog P(yi|zi, w) (3.3)

For a BNN, on the other hand, we seek to find the posterior distribution P(w|D), given a prior on

12

the weights P(w). Using Bayes formula, we have:

_ P(Djw)P(w)

PWID) = == (3.4)

It is not enough to say that the posterior is proportional to the normalized product of the likelihood
and prior, for we would like a complete description of the posterior that we can sample from
directly. More specifically, as we see above, the posterior P(D|w) cannot be computed directly.
Thus, the true posterior distribution P(w|D) is intractable, but can be estimated by a variational

approach.

Graves [12] and previously Hinton and Van Camp [15] proposed using a variational method to the
find parameters 6 of ¢ that minimizes the Kullback-Leibler (KL) divergence between the true pos-
terior P(w|D) and approximating posterior ¢(w|f). The KL divergence is derived from Shannon’s
source coding theorem [1229], and though not symmetric, provides a good approximation of twice

the squared Fisher distance. [3]

The KL divergence is one of a collection of metrics that measure the distance between two proba-
bility distributions that can be considered. Others include the Kolmogorov-Smirnov distance, total
variation, and the Kantorovich-Wasserstein metric, which is defined using the optimal transport
problem [2]. The KL divergence, in addition to approximating the squared Fisher metric, has some

useful properties we will consider.

We let ¢ be a Gaussian distribution with parameters § = (u, o). The KL divergence is defined as

follows:

KLlg(wl6) [P(wiD)] = [a(wlo)log awl6) (3.5)

(Dlw)P(w)

13

We then want to find € that minimizes the KL divergence, and define our cost function as:

F(D,6) = KLlg(w|6)||P(wiD)] (3.6)
= [atwio)tog o (37)
= [a(wlo) (o a(wlo) 105 P(DIw) — log P(w) du (33)
— Eywio) log (wl9) — log P(Dlw) — log P(w)] (39)

To do this, we use the gradient descent update algorithm that is simplified as:

OF
—a— 1
0«0 sy (3.10)

3.3 Bayes by Backprop

Blundell et al. [4] have shown that, in our case, the partial derivative of the expectation can be
re-written as follows. Here € is a random variable with density ¢(e¢) and w = ¢(f,¢) and ¢ is a

deterministic function:

9 of(w,0)0 of(w,0
59 Eatwlo) [f (W, 0)] = Eq(gjv)a‘g + (g;) (3.11)

We let f(w,0) =logq(wl|f) —log P(D|w) — log P(w), and seek to find %Eq(ww) [f(w,8)].

So that the standard deviation would be well behaved while training (o should remain positive),

let us parameterize o as o = log(1 + exp(p)). Then,

OF Bf(w,0)dw Of(w,0
5 = Eao [févv‘;)(;:—ngz)] (3.12)
OF Bf(w,0)dw Of(w,0
55 = o [fgv‘;)a‘:Jrf(av;)] (3.13)

In order to evaluate the expectations we approximate F' using Monte Carlo sampling. Since E
is the expectation over random Gaussian noise €, we sample €, and then compute just the inside of

the expectation to update the parameters. This is a special case of Monte Carlo sampling where

14

the sample size is 1 for each update. This approach works, as it acts as stochastic gradient descent.
It is important to note that though w is a vector of weights, each weight is independent and thus

only pointwise operations take place.

The update happens in batches, where the batch size can be the entire training dataset. For each
batch, we draw a single sample w from the posterior distribution that is then used to updated the
same posterior. We start by sampling from a unit Gaussian, and then shifting by parameters 6 to

obtain a sample of weights:

e ~N(0,1) (3.14)

w = u+ log(1l +exp(p)) - € (3.15)

With f(w,0) defined above, and, since %—VJ =1 and %—‘;’ = m, we calculate the following
gradients:
Of(w,0) 0f(w,0)
A = 3.16
" ow + ou ()
0 0
ow 1+exp(—p) dp

Finally, we update our parameters:

pi— p— Ay, (3.18)

pp—al, (3.19)

Let us look at how we compute the gradients A, and A,. € is a known sample, and ;1 and p are

fixed from the previous state of the variational posterior. We need only find %‘Z’e), %‘Z’G), and

of(w,0)

ow

3.4 The Loss Function

We interpret f(w,) = log q(w|f) —log P(w) —log P(D|w) as follows. Since g is the approximating

variational posterior, log g(w|f) penalizes samples that are far from the posterior. P(w) is the

15

prior, and thus acts as a regularizing term on the weights. Finally, log P(D|w) is a data dependent
term that corresponds to the prediction error. With a Gaussian prior and Gaussian posterior, we

know that:

Q(Ww) ~ N(Np@st@riora Uposterior) (320)

P(W) ~ N(Mpriorv Uprior) (321)

To find their partials, we need only differentiate the normal PDF.

The data dependent term requires more consideration. P(D|w) = [[;_; P(yi|xi, w) is the proba-

bility of obtaining the data with given weights w and n samples in the batch. Then,

log P(D|w) =) log P(y;|zi, w) (3.22)
=1

We fix P(yi|z;,w) = P(y;) to be a Gaussian, and consider its PDF":

1 1)
p(yi) = v P (—%2 (yi — yi)2> (3.23)
log p(y:) = log U\}% - %‘2 (yi — i) (3.24)
=C—v(yi— i (3.25)

The o term for the probability of the data, as we will see later, corresponds to the aleatoric noise
on the data. For now, we keep it fixed at an arbitrary value with no loss to the model. Then, for

gradient descent, taking the partial derivative w.r.t. the output g; gives:

dlog p(y:) 1 X
— = ———5 Y —Y; 2
% - (yi — i) (3.26)

Thus,

dlogp(yi) _ Ologp(yi) I

ow 0v; ow (3.27)
_ L5y 9%
= ﬁ (yz - yz) ow (3'28)

16

and % is found by differentiating through the network. Since w is a fixed sample, the P(D|w)

term has no dependence on p or p.

and

Now, to calculate 2/ g;:’g) of (8";’0) we only need to differentiate log g(w|@). This is because both

P(D|w) and P(w) have no dependence on p or p since w now represents a fixed sample.

3.5 Connection to VAEs

A variational autoencoder (VAE) is similar to the BNN in that its latent space is represented as
a Gaussian with a prior. Through training, we seek to minimize the KL divergence between the

latent Gaussian and a true, unknown distribution using Bayes theorem.

The training process of a VAE is equivalently the variational method outlined by Kendall and Gal
for BNNs. [26] That is, the weights in the latent space are set to be Gaussians whose mean and
standard deviation are trained by backpropagation. If we look at the training diagram produced by
Rocca [26], one might think that the Bayesian layer is different from the BNN in this way: instead
of the parameters of the Bayesian layer being set in training, they are decided by a split head from
the previous layer. Both of these configurations are in fact congruent. In the method of Kendall
and Gal, a weight w is sampled from a Gaussian with fixed parameters p and o and multiplied by

an input x to get output y; where € is Gaussian noise.

y:xw:x(u+0-6) (3.29)

=apu+ (zo)-€ (3.30)

In the split head approach (described later in detail, in Section , input z is first split into two

by trained weights w; and ws, producing the parameters of the Gaussian.

s = WX (3.31)

Os = WaT (3.32)

17

Then, the Gaussian is sampled.

Y= et e € (3.33)

= w1z + (waz) - € (3.34)

Now it is easy to see that the split head weights are exactly the trained parameters in the first

approach. That is,

= wi (3.35)
o = w (3.36)
N(o,) —

\/h

o,=h(x)

Figure 3.2: The latest space in the VAE, as shown in this figure reproduced from [26], is trained in
the same way as in the work of Blundell et al. [4].

To make a traditional autoencoder a VAE, you only need to add a linear BNN layer right after
the encoder portion (and thus representing the latent space). The parameters of this BNN layer
are adjusted during training and define the distribution to be sampled from in the generative

mode.

As we see in figure Rocca [26] implements the same reparameterization technique described
in the work of Blundell et al. [4], but only for the latent space. They suggest doing this for each

weight in the model.

18

An and Cho propose the use of VAEs for anomaly detection (which is a form of epistemic uncer-
tainty), and apply this to the MNIST dataset. [1] Instead of using the reconstruction error directly
as the uncertainty metric, they propose using the reconstruction probability. They calculate the
reconstruction error in much the same way we predict with a BNN; that is, they take the Monte
Carlo estimate of the log probabilities. In practice, this means taking the mean of a set a distances

that are computed for independently sampled outputs of the VAE.

19

Chapter 4

Implementations

4.1 Analytical Approach

The central question regarding overall aleatoric uncertainty in the model is the following: How can
one create a metric to measure the overall variation of the model, independent of a specific input.
Just as a traditional neural network is a function with a set of inputs and outputs, a BNN is simply
a function of random variables—specifically Gaussians. The trained model as a whole is itself a
random variable, and its overall variance can be calculated. This is made easier due to the fact

that each weight produces a value that is uncorrelated with other weights, when it is sampled.

To make this clearer, consider just a single node of a single, fully-connected layer of a BNN defined

by:
Yi = f(yi) = f(z1w1 + zowe + - - + zpwy) (4.1)

Where f is the activation function, x; is the layer input, and w; is the layer weights. Further,

20

w; ~ N(ui,o?). If we let f(y;) = cy;, then

Var(f(y;)] = Var[cyi] (4.2)
= C2Var[yi] (4.3)
= cQVar[aclwl + zowy + -+ + THpwy] (4.4)

If we consider x; a fixed value, then

Var[f (y;)] = (a3 Varfwi] + 23Varfws] + - - + 22 Var[w,]) (4.5)
Var[f(yi)] = P (xfo] + 305 + -+ apop) = Y a0} (4.6)
=1

We see that the variance has a dependency on the layer inputs as well as the weight variances, and
the variance of the BNN will ultimately have a dependency on the the model inputs. Thus, this
measure of variance will ultimately be data dependent and correspond to heteroscedastic aleatoric

uncertainty.

4.2 Regression Implementation

For our first implementation, we build a single layer, sixth-order polynomial regression model.

yi = wo + w1z + wer? + wyz® + war* + wsz® + wea® (4.7)

Data has been generated by a fourth-order polynomial in the interval [0,1] with added Gaussian

noise that is non-uniform. We show this in figure 4.1

We aim to train our variational posterior weight distributions w = [wp, w1 + ... + wg] with Bayes by
Backprop. For starters, we let our prior on our weights be an i.i.d. unit Gaussian, and we initialize

the posterior as follows.

P(W) ~ N(,Upm'or =0, Oprior = I) (48)

q(w|0) ~ N (pposterior = 0.1 I, 0posterior = 0.1+ 1) (4.9)

21

000 025 050 075 1.00 1.25 150 1.75 2.00

Figure 4.1: Data (blue) generated from a fourth-order polynomial (red) with non-uniform Gaussian
noise.

We train as above, with a batch size of the whole data set, for 10,000 iterations. Take special note
of %. This term is specific to the model definition and is at the core of backpropogation. For this

case,

gif =g (4.10)
9y 2 6
S 1, z,2°+ ...+ 2] (4.11)

Once we have trained our model, we can predict on it either by taking the expectation on the
weights, or by taking multiple random samples from the model for a given input, and constructing
a confidence interval. Here, we take 100 samples for each input, and construct an 80% confidence

interval as seen in figure

Later, we will look at data-dependent uncertainty metrics on our model.

22

10.0 1

7.5 1

5.0 1

2.51

0.0 1

—2.54

—5.01

—-7.541

0.0

Figure 4.2: 80% confidence interval from our model (red) to the data (blue) generated from a
fourth-order polynomial (green) with non-uniform Gaussian noise.

23

4.3 MNIST implementation

A Bayesian neural network (BNN) replaces each weight of the model with a random variable.
We can approximate the weight distributions with a two parameter normal distribution through
variational learning. Training on the model thus adjusts the mean and variance of each weight by
minimizing the Kullback—Leibler divergence between the approximating normal distribution and

the true, unknown distribution.

The Kullback-Leibler divergence is a measure between two probability distributions P and ¢ on the

same probability space X and is defined in equation

Predicting with a BNN can be deterministic (by taking the expected value of the weights to serve
as fixed weights), or stochastic (by randomly sampling from the weights). Blundell et al. give a

more in-depth overview of BNNs [4].

A BNN can produce both a prediction and an uncertainty metric; the later is found by looking at
the variance of prediction from a set of samples from the stochastic model. Kwon et al. propose a
method to distinguish between epistemic and aleatoric uncertainty in a BNN [20]. Experimental
results show that a BNN does very well at giving an error metric that encompasses both types of

uncertainty. But, the division between the two types can seem unclear at first inspection.

Kwon et al. give a formula that, applied to a BNN, will give error metrics for both epistemic and
aleatoric uncertainty metrics separately. The aleatoric uncertainty metric seeks to give a measure
of the inherent noisiness in the dataset, while the epistemic uncertainty metric seeks to quantify

the level of confidence on a particular domain of data.

Shridhar et al. provide PyTorch code for implementing a BNN and predicting both kinds of un-
certainty as detailed by Kwon et al. [31]. For this experiment, we train a Bayesian-CNN (BCNN)
on MNIST data and predict on both MNIST and non-MNIST data. We ran the model on 50,000
MNIST and 50,000 non-MNIST samples, and recorded the uncertainty metric of each. MNIST
samples are split into correct and incorrect groupings. As the model has a high level of accuracy,
the account of incorrect predictions is relatively small. In figure 4.3 we see a good division between

the “Correct MNIST” distribution, and the other distributions.

24

Epistemic Uncertainty

Correct MNIST
Incorrect MNIST
NON MNIST

160 -
140 -
120 A
100 -
80
60
40 4

20 |\

0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.14 0.16

Figure 4.3: Histogram of epistemic uncertainty metrics on 50,000 samples from MNIST and non-
MNIST as defined in the second part of equation below.

The MNIST dataset is a large set of 28 by 28 pixel, greyscale, hand drawn, labeled characters (zero
to nine[0-9]) that is a common starting point for ML based tasks. The set includes 60,000 training
and 10,000 test images. Here, we use the MNIST dataset to explore BNNs.

The formulation for both uncertainties by Kwon et al. is completely dependent on the sampled

outputs of the BNN, and is given by the diagonal matrix element:

T T
1 o . 1 P
U(oi) = | 3 dins() = 55+ 1. Y-~)| (4.12)
t=1 t=1 kk
aleatoric epi;tgmic

for class k and data input x;, where p = % ZZ;I P¢. Pr is the vector of softmax outputs of the BNN
that have been passed through the final Softmax function, T is the number of predictions made on
the same input data, and v®? = vv?. The weights of the BNN are sampled each time randomly

from their respective distribution.

We can see in this formulation that the aleatoric uncertainty is an inverse measure of how close the

25

prediction is to zero or one. When closer to 0.5, this metric is high. The epistemic uncertainty, on

the other hand, is a measure of the variance of the predictions irrespective of their mean.

To understand the above formulation, consider a class that is undersampled. One would expect the
variance of that class to be high and thus high epistemic uncertainty. Now consider a class that is
well represented, but is very noisy. One would expect the model weights to converge to a value, but
the prediction to be closer to 0.5. These respectively correspond to a high epistemic and aleatoric

uncertainty above.

To apply this definition of uncertainty, we consider the metric on only the final prediction class.
The epistemic portion then becomes the mean squared difference between the predictions in the
prediction-mean—that is the variance of prediction. The aleatoric portion then becomes the average
value of p; — p?. Considering that p; is a prediction from [0,1], this value approaches 0 as the
prediction approaches the endpoints, and is highest when the prediction is closest to 0.5. In this
way, the aleatoric uncertainty is just looking at how “confident” the softmax output is. This can

be a good classifier for incorrectly predicted, in-class data as shown by Stahl et al. [32].

These uncertainty metrics might be improved by considering not only the variation of the model
output (the prediction uncertainty), but also the variation of the internal weights (the model
variability). Since the model weight parameters are fixed after training, such an analysis of its
weight variability should be done without respect to any specific input. This can give a better
aleatoric uncertainty metric, and thus tell the model engineer when the model has trained on
sufficient data. And in some cases, it might tell the data engineer when the aleatoric uncertainty
is no longer improving with the addition of more data (such might be the case with noisy, or

inconsistent data).

26

4.4 Characterizing Datasets

As we have seen in section the analytical variance of the Bayesian model presented is wholly
dependent on the mean vector and covariance matrix of the model inputs. Thus, it would be
reasonable to think that one might characterize a particular dataset by only its mean and covariance,
and that would be enough to assess model certainty on the whole data set. This method might
work particularly well if you have access to a large dataset that is unseen by the model, but where
running each sample through the model and measuring certainty would be too computationally

expensive. The idea is as follow:

1. For each dataset (for example, training subset and unseen dataset) perform any preprocessing
steps and compute the mean and covariance of the data (that is, the mean and covariance
on what would be the inputs to the model). Thus you have a multivariate random normal

distribution that is representative of the dataset.

X ~ N(p,2) (4.13)

2. For each multivariate random normal distribution, sample some N times and pass each sample
through the BNN, computing the uncertainty metric as described above. Let U(x;) be the
uncertainty metric for data x;. Take an average of the uncertainties across the samples. This

serves as the uncertainty metric for the model on the dataset x;.

1 N
~ ; U(x;) (4.14)

27

MNIST Data

We can classify the MNIST data of size n x n with the following mean and covariance matrix. The
n X n mean matrix is shown in figure and the variance matrix in figure The full covariance

matrix iSm X n X n X n.

mu
1
2
3 0.5
5
3 0.45
7
8 0.4
9
}? - 0.35
12
13 0.3
14 C
12 = 0.25
1%
is 0.2
20 = i
21 | 0.15
% =
54 : 0.1
25
26 0.05
27
28 0
TANOMOTOONMNODIIOT~TANMTOLONODNDO — AN MO ON O
Frrrrrr s - NANNNANNNAN

Figure 4.4: MNIST mean values on a per-pixel basis, normalized from [0,1].

Sigma

1
2
3 0.18
4
5
6 0.16
7
8
9 0.14
10
E 0.12
i
15 0.1
17

0.08
18
19
20 0.06
21
22
23] 0.04
24
%g 0.02
27
28 0

TANOTODONMNODDOTTANMTODONODO T~ AN M S LO O N0
Frrrrrrr e NANNNNN NN

Figure 4.5: MNIST Variance Matrix, normalized from [0,1].

28

Having calculated p and o for our dataset (MNIST digits), we can model with a multivariate normal
distribution, and sample from this distribution. Calculating the certainty metric on these samples

should give us a good idea of the overall uncertainty on the dataset as a whole.

In figure we see 100 random samples from our multivariate random normal distribution that
represents the MNIST dataset. Many of these samples have characteristics of numerals, and some
could even be interpreted as a specific numeral. Overall, it is not a bad characterization of the

MNIST dataset in a compact form.

random samples

n

e

=
d
-

TR)

3 Qe

)
R 53

-~

b

4

LRV TS

S
0
"’)
o Gt fop @ Y ‘) 8 Ay @
a3

JRT
w’

IR RNCRE AR G I o
. -

»

«
=
€

& Iy

N
. ~<
Ly Dy e 5D @ <

€y W O AN By O S A (DA

7

3

g

%

i
$nEE
é“-

"y

/ IR

,?:. ‘A

~ S
i@

w R

&

Figure 4.6: 100 random samples from the multivariate normal distribution that characterizes the
MNIST dataset.

29

Flower images

Using a small dataset of 633 images of daisies cropped to 128x128 pixels, we can apply the same

technique.

Figure 4.7: Flower data set.

Trying the same approach on an image set of cropped flowers, shown in f