
Journal of Humanistic Mathematics Journal of Humanistic Mathematics 

Volume 12 | Issue 1 January 2022 

Makers Do Math! Legitimizing Informal Mathematical Practices Makers Do Math! Legitimizing Informal Mathematical Practices 

Within Making Contexts Within Making Contexts 

Amber Simpson 
Binghamton University--SUNY 

Signe Kastberg 
Purdue University 

Follow this and additional works at: https://scholarship.claremont.edu/jhm 

 Part of the Arts and Humanities Commons, and the Mathematics Commons 

Recommended Citation Recommended Citation 
Amber Simpson & Signe Kastberg, "Makers Do Math! Legitimizing Informal Mathematical Practices Within 
Making Contexts," Journal of Humanistic Mathematics, Volume 12 Issue 1 (January 2022), pages 40-75. 
DOI: 10.5642/jhummath.202201.05. Available at: https://scholarship.claremont.edu/jhm/vol12/iss1/5 

©2022 by the authors. This work is licensed under a Creative Commons License. 
JHM is an open access bi-annual journal sponsored by the Claremont Center for the Mathematical Sciences and 
published by the Claremont Colleges Library | ISSN 2159-8118 | http://scholarship.claremont.edu/jhm/ 

The editorial staff of JHM works hard to make sure the scholarship disseminated in JHM is accurate and upholds 
professional ethical guidelines. However the views and opinions expressed in each published manuscript belong 
exclusively to the individual contributor(s). The publisher and the editors do not endorse or accept responsibility for 
them. See https://scholarship.claremont.edu/jhm/policies.html for more information. 

https://scholarship.claremont.edu/jhm
https://scholarship.claremont.edu/jhm/vol12
https://scholarship.claremont.edu/jhm/vol12/iss1
https://scholarship.claremont.edu/jhm/vol12/iss1
https://scholarship.claremont.edu/jhm/vol12/iss1/5
https://scholarship.claremont.edu/jhm/vol12/iss1/5
https://scholarship.claremont.edu/jhm?utm_source=scholarship.claremont.edu%2Fjhm%2Fvol12%2Fiss1%2F5&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/438?utm_source=scholarship.claremont.edu%2Fjhm%2Fvol12%2Fiss1%2F5&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/174?utm_source=scholarship.claremont.edu%2Fjhm%2Fvol12%2Fiss1%2F5&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarship.claremont.edu/jhm/policies.html


Makers Do Math!

Legitimizing Informal Mathematical Practices

Within Making Contexts

Amber Simpson

Department of Teaching, Learning and Educational Leadership,
Binghamton University–SUNY, New York, USA

asimpson@binghamton.edu

Signe Kastberg

Department of Curriculum & Instruction, Purdue University,
West Lafayette, Indiana, USA

skastber@purdue.edu

Abstract

In this paper, we argue that making activities within non-formal learning environ-
ments (e.g., museums, libraries) provide opportunities to engage youth in what
we define as mathematical practices for making, everyday mathematical practices
within the context of making activities. The mathematical practices identified
from two non-formal school-based contexts highlighted three mathematical prac-
tices for making: informal measurement, spatial reasoning, and curiosity. These
practices are identified in prior scholarship as being beneficial and foundational
for the understanding of mathematical concepts. As educators and researchers
turn to non-formal and informal contexts, with an eye toward understanding ways
youth engage in the activity of making, descriptions of mathematical practices
for making build upon prior everyday mathematical practices and open up a new
landscape of inquiry.

Keywords: mathematics, making activities, informal measurement, spatial
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1. Introduction

. . . because our parents and our grandparents created the world’s
largest economy and strongest middle class not by buying stuff,
but by building stuff — by making stuff, by tinkering and invent-
ing and building; by making and selling things first in a growing
national market and then in an international market . . . [75]

As exemplified in this quote, making is not a new phenomenon; yet, in the
21st century, researchers have explored its potential to engage youth in the
process of “designing, building, modifying, and/or repurposing material ob-
jects, for play or useful ends, oriented toward making a ‘product’ of some sort
that can be used, interacted with, or demonstrated” [58, page 3]. Scholarship
has documented the practices gained by youth through the processes of cre-
ating a prototype or model of a product (i.e., making) such as (a) developing
creative thinking and problem-solving skills [6, 59]; (b) persisting through
constraints and challenges [85, 112]; and (c) collaborating with peers toward
a shared goal [54]. While making integrates and encompasses a range of dis-
ciplines such as art, engineering, science and technology [5, 88], less is known
about youths’ engagement in mathematics in making-related environments
or making spaces. The majority of mathematics education and scholarship is
grounded in formal learning environments [79] or implemented less frequently
in out-of-classroom contexts than other disciplines such as technology and
science [18].

School and academic mathematics can be defined as practices of students
and teachers and practices of academic mathematicians, respectively [68].
More specifically, school mathematical practices are described as those
practices used by mathematically proficient students [82]. For example,
mathematically proficient students should be able to apply their knowledge
and understanding of mathematics to solve problems situated in
everyday contexts [20]. Yet, students often have narrow views of how they
use mathematics outside of school, as their perceptions of mathematics are
grounded in school activities such as calculating sums and estimation,
as opposed to mathematical practices such as ways of thinking and sense-
making [36, 63]. Additionally, Nicol [74], Stevens [94], and Nasir and Hand
[71] argue that focusing on school and academic mathematical practices
rather than everyday mathematical practices limits students’ learning
of mathematics and may lead to deficit labeling of students.
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More broadly, school mathematics too often defines what counts as mathe-
matics [72], which, for many then, is narrowly focused on a set of standards
that must be met through successful performance on tests or sanctioned
mathematical practices. However, we do know that the knowing and doing
of mathematics outside the “norm” is consequential for mathematics partic-
ipation, identity, and sense of belonging [31, 44, 76].

Given the above context, Arcavi [2] concluded that more research is needed
to discover and uncover mathematical practices in different situations and
environments; particularly, situations that may seem non-mathematical to
students and educators. We contend that broadening our views as to what
constitutes a mathematical practice will push us as mathematicians and ed-
ucators to think about where and how learning happens; where and how
students are afforded opportunities to explore mathematics and engage in
mathematical practices within cultural and authentic contexts [24, 26, 39].

In this paper, we consider environments characterized as non-formal [30],
specific contexts providing structured, educator-directed making activities
that offer opportunities for youth exploration.1 These making activities are
typically not designed to engage youth in mathematical practices or knowl-
edge construction and application; instead they are designed with principles
of making practices (e.g., collaboration) and integration of new tools and
technologies (e.g., conductive tape) at the forefront.

In what follows, we argue that making activities within non-formal learn-
ing environments (e.g., museums, libraries) provide opportunities to engage
youth in what we define as mathematical practices for making: everyday
mathematical practices within the context of making activities. We ground
this argument in Civil’s [16] everyday mathematical practices and illustrate
three specific mathematical practices — informal measurement, spatial rea-
soning, and curiosity. These practices are identified in the literature as sup-
porting knowledge construction of mathematics through experiences and in-

1 Here, making refers to a specific type of activity people engage in at specific locations,
sometimes called “makerspaces’. The latter are usually “collaborative work space(s) inside
a school, library or separate public/private facility for making, learning, exploring and
sharing that uses high tech to no tech tools. These spaces are open to kids, adults,
and entrepreneurs and have a variety of maker equipment including 3D printers, laser
cutters, cnc machines, soldering irons and even sewing machines” (from https://www.

makerspaces.com/what-is-a-makerspace/, last accessed on January 15, 2022.

https://www.makerspaces.com/what-is-a-makerspace/
https://www.makerspaces.com/what-is-a-makerspace/
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formal meaning-making explorations in out-of-school contexts [26, 43]. The
significance of this paper is the identification and illustration of mathemati-
cal practices for making that extend Civil’s everyday mathematical practices
to the domain of non-formal making learning environments.

We begin with defining and characterizing everyday mathematical practices
and mathematical practices for making (Section 2). Next, we ground informal
measurement, spatial reasoning, and curiosity in the literature (Section 3).
After describing the study contexts from which we draw our examples (Sec-
tion 4), we highlight the ways youths were engaged in the three identified
mathematical practices while making (Section 5). We conclude by arguing
for the recognition of and legitimization for youth’s informal ways of thinking
about and doing mathematics in a variety of learning environments through
making activities (Section 6). A brief final section (Section 7) summarizes
this paper, contextualizing it in the broader projects of clarifying and ex-
panding the construct of mathematical practice and improving the general
societal perceptions of mathematics.

2. Theoretical Grounding

In this study, everyday mathematical practices are defined as mathematical
practices that youths and adults engage in outside of school and in con-
trast to mathematical practices in formal school environments [68].2 Civil
[16] characterized mathematics outside of school as (a) occurring through an
apprenticeship model, (b) working on contextualized problems, (c) provid-
ing agency to the person working on the task, and (d) involving mathematics
that is not apparent but hidden in the process. Additionally, everyday math-
ematical practices are socially valued and grounded in applied problems in
everyday contexts [36]. For example, home and communal activities such as
crocheting [22], basket weaving [1], sewing [40], laying carpet [61], cornrow
designs in hair [27], money transactions and cooking [84], and Latinx jazz,
mambo, and salsa compositions [100] have been found to engage youth in
everyday mathematical practices and inform their mathematical thinking.

We consider mathematical practices for making as a specialized form of every-
day mathematical practices as characterized by Civil [16]. The mathematical

2 We agree with Carraher [12] that framing everyday and school mathematics in oppo-
sition are problematic, but that “any pair of terms is going to raise issues” (page 27).
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practices for making occur within a making space or environment and afford
youth opportunities to engage in making activities that promote mathemati-
cal practices through informal measurement, spatial reasoning, and curiosity,
as evidenced in our video data. Similar to Civil [16] and grounded in maker
education research [7, 53], we characterize mathematical practices for making
as

• occurring through social interactions in which youths and adults are
teaching and learning from one another [7, 81];

• working through making activities that are contextualized and promote
youth exploration, imaginative play, and/or inquiry of mathematics
[33, 81];

• providing opportunities for taking an active role in personalization of
the making process and/or object through mathematical strategies,
tools (e.g., dynamic software, measuring tape, fingers), and/or risk
taking (e.g., trying a non-traditional approach to the problem through
the use of mathematics) [55]; and

• involving mathematics that may not be apparent to youths and/or edu-
cators, but hidden within the process of making as it does not resemble
mathematical work in school settings [94].

Although we use this characterization of mathematical practices for making
to identify opportunities to engage youths in everyday mathematical activ-
ities in non-formal making learning environments (i.e., afterschool program
and free period in school), we contend this characterization is applicable to
a range of making spaces.

3. Literature Review

In this paper, we describe three mathematical practices for making — infor-
mal measurement, spatial reasoning, and curiosity. In this section, we define
each practice before situating it within relevant scholarship that highlights
students’ use and understanding of these practices as constructed in their
everyday activities.
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3.1. Informal measurement

We define informal measurement as intuitive and cultural approaches for
determining the size of an attribute through the use of non-geometric tools
and nonstandard units such as straws, feet, rope, and estimation [104]. Ed-
ucators in a museum setting referred to informal measurement as intuitive
precision or measurement in relation to existing pieces and objects. These ed-
ucators argued that a craftmanship version of precision should be accounted
for within mathematical practices.3 As argued by researchers, the use of
informal forms of measurement is beneficial and foundational for all grade
levels and a practical skill we use every day (e.g., parking a car, carrying
a large object through a door, distance) [37, 104]. As confirmed by Smith,
van den Heuvel-Panhizen, and Teppo [93], “measurement is among the most
sensible, contextually situated and practical domains of mathematics for stu-
dents” (page 618).

In a measurement activity, the tool used is often determined by the social and
cultural nature of the activity itself; it is linked to a purpose [62, 78]. Owens
and Kaleva [78], for instance, described how a rope was employed as a tool
to determine and compare the height and girth of a pig during bride-price
and other recognition ceremonies of cultural groups in Papua New Guinea.
A wide range of activities involved non-standard units of length — use of
paces to measure the width of a garden plot, use of string to measure the
circumference of shells, and use of sticks with a mark to represent some unit
for the construction of a canoe. In addition, the practice of measurement
is social and cultural in nature as exemplified by the unit of measurement
[25, 37, 78, 95]. For example, 56 Indigenous students in Years 3 to 6 in
Aboriginal schools in north-western Australia were asked, “how far is it to
the [Fitzroy] river” [37]. Of the 56 students, none used a standard length
of measurement such as meters, but instead used the time it would take to
get (e.g., walk) to the river. This method was noted by Grootenboer and
Sullivan [37] as reasonable and relevant within the context of the question
and within the students’ everyday experiences.

As identified in these examples, and as argued by other scholars [26, 56, 64],
mathematical knowledge of measurement concepts is built through experi-
ences and exploration in cultural and meaningful contexts, most often in

3 J. Barnes, personal communication, March 8, 2018.
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out-of-school contexts. However, students’ understanding of measurement as
constructed in their everyday activities is often suppressed and de-valued in
school contexts, as home and school mathematics are characterized by differ-
ent social and cultural systems [25, 68]. Scholars in mathematics education
have argued for the transition to formal measurement to build upon students’
use of non-standard units and tools [19, 43]. Further, scholars have argued
that this process be cyclical, where the stages of development between formal
and informal approaches to measurement inform one another, as opposed to
the application of measurement concepts showing up at the final stages [56].

In supporting and making connections between in- and out of school learn-
ing opportunities, youth “become more mathematically powerful” [56, page
30]. As such, measurement concepts should be developed through contex-
tual open-ended questions and problems; questions and problems that are
not foreign but cultural and situational, have more than one solution, and
afford educators’ insights into students’ learning [37, 56]. Making and tin-
kering activity may support youths’ development of measurement in that the
activities are grounded in youths’ interests, contextualized and situational,
and afford exploration and choice [5, 81].

3.2. Spatial reasoning

Spatial reasoning is defined in this study as the ability to perform mental
manipulations of visual representations, the ability to transform objects and
spatial configurations into other visual arrangements, an awareness of spatial
components, and the ability to discover relationships between components
and new visual arrangements [3]. Examples of spatial reasoning activities
include orienting, decomposing, diagramming, symmetrizing, transforming,
scaling, and visualizing [111]. An extensive body of scholarship has con-
sistently shown a strong relationship between spatial ability and success in
mathematics [35, 42, 73, 99]. Individuals with high performance on spatial
reasoning measures are more likely to pursue and obtain a career in a STEM
field [107]. As Mix and Chen assert [66], “the relation between spatial ability
and mathematics is so well established that it no longer makes sense to ask
whether they are connected” (page 206). Additionally, more recent research
has concluded that the development of spatial reasoning of young children
serves as a strong predictor of later mathematics achievement [38, 106].

Spatial reasoning is often internal to individual learners and expressed through
actions as opposed to verbal acts of communication [111]. Such reasoning
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cannot be disassociated with other mathematical concepts but instead should
be acknowledged for its complex interplay with many aspects of doing math-
ematics [111]. Scholars have identified positive association and application
of spatial reasoning with other mathematical representations, concepts, and
reasoning [35, 38, 70], such as fluency in shifting between two-dimensional
and three-dimensional spaces [34], geometrical foundations such as charac-
teristics of triangles [13] and parallel lines [92], and the relationship between
quantitative concepts and spatial situations such as calculating the number
of squares in an array [4]. Further, research has supported the development of
spatial reasoning within activities that occur across contexts (e.g., preschool
centers, home) — block play [13], robotics [34], puzzles [53], perspective
drawing [102], and hand tools (e.g., screwdriver) [45]. In general, these ac-
tivities afford learners opportunities to experiment with spatial orientations
and transformations, decomposing and recomposing figures, symmetry, and
mental imagery.

Regardless of the cumulative evidence that highlights the importance of spa-
tial reasoning and its development in young children prior to entering formal
schooling, little time is dedicated to spatial reasoning in young children’s
early formal schooling experiences [103] and receives little attention in the
mathematics standards adopted in countries such as Canada and the United
States [10]. Together, this lack of attention may lead to a deterioration of
children’s spatial reasoning skills developed prior to formal schooling [69].
Francis, Khan, and Davis [34] even explored how requiring students to sit
idle may limit the development of spatial reasoning; their research highlighted
movements often characterized as fidgeting or distracting as co-occurring
with formal acts and behaviors of spatial reasoning.

Similar to informal measurement, spatial reasoning skills and concepts are
built through experiences and exploration in cultural and meaningful con-
texts [62, 111]. Therefore, school mathematics curricula should be reconcep-
tualized to incorporate opportunities to build spatial reasoning as a means
for problem solving and making decisions within cultural and meaningful
daily events [24].

3.3. Curiosity

In this paper, we align with Mehta, Keenan, Henriksen, and Mishra’s [65] de-
scription of curiosity as foundational to participation in STEM and building
a sense of wonder.
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A cognitive-emotional desire to seek, to anticipate, and to un-
derstand and/or solve problems or phenomena. This is the intel-
lectual equivalent of an itch that must be scratched. The desire
to learn about the unknown is, arguably, a fundamental human
trait. We are capable of reacting to feelings of awe, admiration,
and respect with sense of curiosity that kindles a desire to seek,
anticipate, and solve problems and answer questions, in essence,
to understand . . . Reacting to nature, one may feel like a detective
who wants to solve new mysteries. [65, page 131]

These problems or phenomena are encountered within our daily lives and
experiences [77].

Curiosity can also be discipline specific [80]. For example, Weible and Zim-
merman [110] described curiosity in science as three interrelated components:
stretching or seeking out novel experiences and information, embracing or
testing out experiences that are unpredictable, and science practices or par-
ticipating in science practices for the attainment of a scientific understanding.
Further, research has identified curiosity as a foundation for individuals who
pursue and enter a STEM field [96, 105] and as a basis for a parent’s abil-
ity to build upon and enhance their children’s curiosity as children traverse
schooling [38].

Human environment and social interactions support and/or hinder curiosi-
ties with significant developmental and educational outcomes [29]. As young
children, and even as adults, we are naturally curious about our experiences
within and observations of our world — why do leaves change their color?
why do birds build nests? why might every even number greater than two
be the sum of two primes? In fact, there is evidence that curiosity begins in
infancy [29, 57]. However, as argued by researchers, providing opportunities
for learners to be curious in formal schooling is limited at best and is a ne-
cessity that should be cultivated as opposed to being minimized [28, 29]. For
example, Engel [28] found that on average curiosity was explicitly expressed
by 21 elementary students less than one time every two-hour period. En-
gel explained this finding as situated within our current schooling model of
addressing standards and evaluating student proficiency as defined through
standardized testing. Leas et al. [52] further noted how curiosity was con-
strained by cookbook or procedural activities that limited authentic learning
and reasoning.
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Given these constraints of school -based learning, learning environments out-
side the formal school context may serve as an avenue to support students’
interests and curiosities, opportunities that are so often eliminated in class-
room settings [6, 98]. In particular, making activities are developed in such
a way to foster curiosity and wonderment [48].

4. Method

The mathematical practices for making examples provided in this paper are
from two prior research studies conducted in two non-formal learning envi-
ronments that provided making and tinkering activities for youth in grades
3-6 [85, 87]. In particular, these making spaces were physically located in a
school setting, and making activities were designed to connect to academi-
cally valued learning [97].

The first was an afterschool program developed and implemented by a local
science museum located in the midwestern region of the United States. The
afterschool program, entitled After School EdVentures (ASE), occurred in a
local elementary school. The purpose of the program was to engage youth
with STEM-enriched activities, as well as support the state’s academic con-
tent and process standards in science. The program occurred twice a week
for 45 minutes each day.

ASE staff developed and implemented two units, one focused on electric-
ity/circuitry concepts and the second focused on engineering design pro-
cesses. The first unit was taught in a six-week period spanning from Novem-
ber 2015 to December 2015 and created around utilizing innovative low-tech,
yet easy to use, material and tools (e.g., conductive tape, LED lights, screw-
drivers) grounded in the tenets of maker education [60]. The second unit
was facilitated in a six-week period spanning from April 2016 to May 2016.
The goal of this second unit was to extend youths’ engagement in the iter-
ative process and to promote collaboration among youth as the majority of
activities involved a team challenge. Although these two units were overtly
activities situated in the domains of science and engineering, we expected
that mathematical practices for making would be used, based on research
highlighting that mathematics is used in concert with other disciplines in
making spaces [83], as well as Civil’s [16] characteristic of mathematics being
a hidden process within everyday activities.



50 Informal Mathematical Practices Within Making Contexts

The second context was from three classes, a third grade, a fourth grade,
and a fifth grade class, in an intermediate public school (i.e., Grades 3-
5) located in the northeast region of the United States. Youth from the
three identified classes were invited to participate in three days of STEM-
related making activities in the “TinkerLab” during a 30-minute free period
at the beginning of June 2019. These activities were created and initiated
by the TinkerLab teacher with the intent of promoting the application of
mathematical concepts and skills.

4.1. Data Sources

Prior to collecting data, we obtained approval from the relevant Institutional
Review Boards. We informed caregivers of the study and asked them to
return an informed consent form if they wished to opt their child out of the
study. We also explained the study to the children involved and asked for
daily assent before they were allowed to volunteer to wear a chest-mounted
GoPro camera. Our use of GoPro cameras was intentional; these cameras
are equipped with a wide-angle lens, providing an expansive field of view of
each individual’s engagement with tools and material, as well as interactions
with facilitators and peers. This also allowed the research team to view the
data from the perspective of the children themselves as opposed to relying
on a stationary or researcher-held camera [11].

Within the first study, we accumulated 54 videos from 11 youth participants
in the electricity/circuitry unit and 47 videos from 8 youth participants in
the engineering design unit. Each video was 20 to 45 minutes in length.
In the second study, we collected 14 videos of the first activity, 14 videos
of the second activity, and 6 videos of the third activity. Each video was
approximately 15 to 22 minutes in length.

4.2. Description of selected mathematical practices for making

The mathematical practices for making came out of the results of a study
that aimed to use the video data to look for and examine incidences of school
mathematics practices as defined by the eight Standards for Mathematical
Practice in the Common Core State Standards [20]. Throughout our coding
process, we documented other instances in which we each perceived youth
to be engaged in mathematics practices not necessarily grounded within the
eight standards for mathematical practice. We did not establish criteria for
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these “other” instances beforehand as they were not the focus of our initial
analysis and instead were grounded in our own understanding of mathemat-
ics. At the conclusion of the initial analysis, we met to discuss our codes,
including instances in which we coded for practices not aligned with the eight
mathematical practices defined in the Common Core [20].

It was apparent that what we observed as practices were not aligned with
the standards for mathematical practice. For example, one of the making
activities was creating and using tightly rolled sheets of paper (i.e., beams)
to create a structure that would hold the most composition notebooks. One
youth, Kaylee, decided to build a cube. We observed Kaylee place one arm
horizontally across the tops of two vertical beams perceived to be straight.
She “marked” this length on her arm before placing a beam across her arm
and cutting the same length as her marked arm. Our memo on this moment
noted “Kaylee measured the length of the distance between the two pieces
of paper using her arm, a tool at her disposal, but not one necessarily rec-
ognized for its precision and accuracy; does not produce a standard unit of
measurement. What would Kaylee say? It is the length from this vein to
this mole on my arm.”

Such memos motivated the team to consider what we noticed in the data
that resonated with prior research. Specifically we wanted to connect what
we were seeing with the mathematical ways of understanding concepts as
experienced in daily and cultural contexts. We revisited the video data with
the following question in mind: In what ways do youth engage in math-
ematical practices for making in non-formal learning environments? The
mathematical practices for making that we developed were derived from our
alignment of the practices in the literature and practices we identified youth
using through making activities.

5. Insights

Through our analysis, we observed youth engaged in the following everyday
mathematical practices for making within the non-formal making programs:
informal measurement, spatial reasoning, and curiosities. These mathemat-
ical practices for making were not observed within isolated activities, but
spanned the video data set. In this section, we describe and share evidence
or examples of each mathematical practice for making [12]. The intent of the
examples is to illustrate and characterize the ways that youth engaged in the
doing of and thinking about mathematics within different making activities.
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In addition, the examples were chosen based on quality of the videos and
capturing images. Pseudonyms are used throughout the manuscript.

5.1. Informal measurement

Children were observed using their bodies as a form of measurement in the
making activities. One example is from the first engineering design mak-
ing activity developed as part of the ASE afterschool program. Youth were
tasked with constructing 3D structures/models from nets. Daniel first cre-
ated a house by folding the nets for a cube and a triangular pyramid (see
in Figure 1A). He decided to add a garage; yet, there was no more available
nets for a cube. Daniel placed his thumb on one vertex of the house and
his index finger on an adjacent vertex to measure the length of one edge of
a cube. As observed in Figure 1B, he then used this length measurement,
represented by the space between his thumb and index finger, to draw lines
segments of a net. The utilization of a non-standard unit of length was rea-
sonable to Daniel within the context of the making activity and was a tool
that was readily available as youth were not provided with a ruler or another
standard measuring tool.

Figure 1: A) Daniel’s house using two nets. B) Daniel is using the length between his
thumb and index finger to draw a line (indicated by white arrow) the approximate length
of one edge of the cube.

The use of body parts was not the only non-standard mathematical tool
used within the making process [78]. Youth were observed using object-to-
object comparison as a form of measurement, which has been found to be a
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common practice of tradespeople (e.g., carpet laying [62]) and referred to by
museum educators as an intuitive form of measurement.4 The majority of
these instances were observed within the engineering design processes unit.
For instance, youth were challenged with building the tallest tower using ten
pieces of spaghetti and ten small marshmallows. Janelle was observed using
spaghetti pieces as a “ruler.” As illustrated in Figure 2A, Janelle aligned
one spaghetti noodle to a piece in her prototype, a piece situated between
two marshmallows. She broke the spaghetti noodle into two pieces, one piece
being approximately the same length of that measured, and included the
measured piece in between two marshmallows (see Figure 2B and Figure 2C)
before incorporating them into her prototype.

Figure 2: These figures show Janelle’s use of a spaghetti noodle for object-to-object com-
parison in the construction of a tower.

Some children also used an object-to-object comparison method in building
a paper rollercoaster or a marble run. To suspend the rollercoaster, they
constructed supports (i.e., triangular prisms) by folding 8.5-inch by 11-inch
sheets of paper into fourths. They were often observed aligning rollercoaster
supports and cutting the supports at the same height. As observed in Figure
3A, Allie aligned a 11-inch tall support to a shorter support and used scissors
to create supports of the same height (see Figure 3B). Some youth used this

4 J. Barnes, personal communication, March 8, 2018.
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technique of comparing the support heights to determine an appropriate
height of additional supports so that the rollercoaster sloped downward (see
Figure 3B and Figure 3C).

Figure 3: Object-to-object comparison of roller coaster supports.

In a last example of informal measurement as an everyday mathematical
practice for making, we observe what Bright [9] referred to as measurement
estimation, which is a physical measurement in the absence of a standard
instrument such as a ruler. During a making activity in which youth were
asked to construct an object from folding 1′′×11′′ strips of paper into shapes
(e.g., circles, rectangles), we first observed Colin estimating one-third the
length of the strip of paper as marked by his thumb in Figure 4A. Next, he
folded the strip of paper in half (see Figure 4B), then slid one end of the strip
of paper until about one-third of the length from the top or other end of the
strip of paper (see Figure 4C). We believe this length is about the same place
in which Colin marked this estimation with his thumb.

Figure 4: Colin’s use of measurement estimation to fold a strip of paper about one-third
from one end.
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Spatial Reasoning

Making activities in the informal learning settings afforded youth opportuni-
ties to manipulate or transform an object or tool, actions that are represen-
tative of spatial reasoning [111]. For example, the first day in the TinkerLab
was free-making time. Youth had access to a range of material, resources,
and tools (e.g., plastic cups, tape, Legos) to make a physical and/or digital
object. Marvin chose to create an object from pattern blocks. The resulting
object was symmetrical. The concept of symmetry is foundational in spatial
reasoning [91]. In this example, after laying the triangle pattern block on
the table (Figure 5A), Marvin used his thumb and index finger to rotate the
pattern block in Figure 5B and Figure 5C. He then fit the triangle in the
space between a square and trapezoid (Figure 5D).

Figure 5: Marvin’s transformation of a pattern block.

This pattern block is outlined with a black triangle in the final design (see
Figure 6). Martin transformed the block by rotating it to align the angle of
the triangle with the angle created by the square and trapezoid. To accom-
plish the symmetric pattern, Marvin likely created a mental construct — a
vertical line of symmetry — about which his pattern block was reflected.

Figure 6: Marvin’s pattern blocks creation.
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Another example of the use of rotation was observed when children were
asked to take apart electronic devices (e.g., cd player, keyboard, toy flash-
light) to discuss circuitry and repurpose components into a piece of art.
Screwdrivers were the most common tool utilized. In operating the screw-
driver, children had to “take into account the spatial relation between the
handle and the artifact’s functional end,” as well as “whether these two com-
ponents lie in the same spatial plane (e.g., aligning a flat-head screwdriver
into the groove of a screw)” [45, page 228]. As Jung and colleagues [45] point
out, using such handheld tools requires translating the screwdriver to an ob-
ject (i.e., electronic device) while also orienting or rotating the screwdriver
in relation to the screw.

In Figure 7, Billie is observed taking apart a cd player. In Figure 7A, she is
orienting the head of the screwdriver into the head of the screw. Similarly, in
Figure 7B, Billie attempted to orient a wire cutter under a set of wires. This
took several tries as the wires were securely attached to the blue plastic cover.
As this example illustrates, Billie demonstrated spatial reasoning through
anticipating where to position and orient the tool (e.g., screwdriver) to then
produce physical activity that resulted from the anticipated orientation and
position of the tool.

Figure 7: Billie’s orientation of two tools — screwdriver and wire cutter — to take the
electronic device apart.

A last example is from the circuitry unit developed as part of the ASE af-
terschool program and exemplifies how visualization of space is utilized by
youth in making activities in anticipation of where to place an object [3].
Youth were asked to build something using LEGOs and magnetic bits (i.e.,
littleBits, [51]) that snap together to form a circuit. Travis was building a
rectangular structure to hold a fan Bit (see Figure 8A). Throughout the con-
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struction of this structure, Travis did not measure the length and width of
the fan Bit nor hold the fan Bit in place and build around it. Instead, Travis
visualized the amount of physical space needed in his LEGO construction for
the fan Bit to fit and be supported upright. For example, Travis attempted
to place the fan Bit inside the rectangular structure, but the fan Bit sat on
top. He stated, “I forgot I’ve got to make it wider . . . Every time I have
to make it wider and wider.” Travis then proceeded to remove the purple
LEGO piece to widen the structure (see Figure 8B). In the next instance,
Travis stated, “Is this wide enough? Yes, I made it too wide.” Notice the gap
between the fan Bit and the blue and green LEGOs in Figure 8C, illustrating
a failed attempt of visualizing an appropriate amount of space.

Figure 8: Travis’s attempts to create a “perfect” Lego structure to house a fan Bit.

Curiosity

In the contexts we observed, children engaged in making tasks that became
a springboard for posing questions of curiosity [65]. These questions were,
on the surface, not grounded in school mathematics or in formal ways of
thinking about mathematics; the mathematics was hidden within the process
of exploring their questions through making [94]. This is in contrast with
viewing mathematical curiosity as posing questions upon completion of an
“interesting” problem [47].

Many examples of curiosities we observed in this study can be characterized
by the asking of a “what if” question. This is a practice associated with
in-the-moment puzzlement and wonder, deeper thinking, exploration, and
motivation and interest in a particular concept [14, 15, 80]. For instance, in
the ASE program, youth were provided with plastic cups and challenged with
building the tallest tower in the shortest amount of time. At the conclusion
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of the challenge, Kellie decided to “build around herself.” She began enclos-
ing herself in a circular tower of plastic cups, yet the tower was extending
vertically as opposed to completely enclosing Kellie. After some time, Kellie
posed a serendipitous question, “What if we bring the cups in a little bit on
every level and make a little roof?” In other words, Kellie became interested
in and curious about constructing a hemispherical dome as a roof.

At another instance, near the end of the engineering unit in the ASE program,
youth were tasked with building a ramp out of a limited number of wooden
blocks on one end of a gym with the goal of releasing a ball to roll between
two cones at the other end of the gym (see Figure 9).

Figure 9: One example of a ramp created by Kellie and Chelsie.

We observed Kellie and Chelsie posing what-if questions to one another as
part of the engineering design process. The questions were embedded in
mathematical thinking around ways to manipulate the ramp to ensure the
ball would roll between the two cones on an uneven gym floor. For instance,
after several attempts, Chelsie stated “I noticed that the ball always wants
to move this way. What would happen if we angle the ramp more this way
because even if [the ball] goes all the way over there, it could still go in.”
After shifting the angle of the ramp was not as successful as hoped, Kellie
and Chelsie changed their course of action. Kellie asked, “What do you think
would happen if we extended the length of the tracks?” Chelsie immediately
countered with “Yeah, but what if we build the structure taller so that it
[the ball] goes faster?”

One last example of a curiosity may be characterized as searching for an
unknown. Shin and Kim [90] refer to this as forward curiosity. A group of
youth were collectively interested in stacking the cups inside one another to
make an arch or a parabola (see Figure 10). They began by constructing
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two tall vertical towers and attempted to bring them together to connect in
the middle. Questions from this construction included: How tall should the
towers be to stand on its own? How far apart should the leg of the towers
be to be so that the tops of the towers join in the middle of the arch? What
additional support might be needed to hold the base of the tower? The youth
continued to explore and test these ideas until it was time to clean up.

Figure 10: One group’s attempt to create an arc with two towers of stacked plastic cups.

6. Discussion

In this paper, we argue that, and illustrate how, making activities provide
opportunities for youth to engage in a specialized form of everyday mathe-
matical practices as characterized by Civil [16], which we call mathematical
practices for making. Mathematical practices for making occur through so-
cial interactions in context. Social interactions offer moments for youth to
teach and learn from one another. Making activities are contextualized and
promote exploration, play, and inquiry of mathematics. In addition, mathe-
matical practices for making allow for personalization and the use of mathe-
matics that is embedded in the activity. Youth are afforded opportunities to
personalize the making process through use of mathematical strategies and
tools, as well as non-traditional mathematical strategies and tools. Mathe-
matics within the process of making is not explicit, but lies hidden within
the process.
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The mathematical practices identified from two non-formal school-based con-
texts highlighted three mathematical practices for making: informal mea-
surement, spatial reasoning, and curiosity. These practices are identified in
prior scholarship as being beneficial and foundational for the understanding
of mathematical concepts such as numerical and arithmetic representations
[35, 38, 70] and standard units of measurement [104]. These practices are
also utilized in workplace environments [62] and associated with pursuing
and obtaining a career in a STEM field [105, 107].

Aligned with the argument of Nemirovsky, Kelton, and Civil [72] regarding
informal mathematics education, we view making spaces as new social and
learning spaces in which youth are able to experience, express, and build upon
mathematical practices in a context that is not bounded by standardized
tests and textbooks. Formal or school-based tasks, while powerful forms of
learning, often strip the complexity and authenticity of engaging in “worldly”
problems [17, 68, 72]; making and tinkering tasks give rise to mathematical
practices of making when the problem and process demand it. For example,
we observed instances of youth using their body as a form of measurement
when needed to accomplish the goal of the making task.

The significance of these mathematical practices for making within non-
formal learning contexts lies in the potential to build upon youths’ everyday
experiences and explorations in cultural and meaningful contexts [24, 26, 28].
Furthermore, these practices can help youth make connections that support
and reach “across the divide between formal and informal learning, pushing
us to think more expansively about where and how learning happens” [39,
page 498].

Too often, such opportunities to engage in everyday mathematics, and ev-
eryday mathematics for making, are viewed as illegitimate ways of thinking
in formal schooling environments [25, 28, 34], and devalued by parents as
inappropriate ways to engage in mathematics [21, 109]. Together with other
researchers [24, 37, 56], we contend there is value in maker spaces and ac-
tivities. Documenting children’s actions in such spaces provides insights into
intuitive thinking that can serve as the basis for curriculum development and
instructional practices that build from children’s own intuitive mathematical
understanding in school mathematics curriculum. Additionally, we contend
that recognizing and leveraging children’s mathematical practices of making
will support their sense of belonging within a STEM community or discipline
[31] and their identity as a mathematics learner [44, 76].
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Beyond the school curriculum, legitimizing children’s ways of doing math-
ematics in out-of-school contexts and capitalizing on their informal ways
of thinking mathematically can encourage them to view mathematics as a
human endeavor that supports them in reaching their potential as individ-
uals and citizens in creating a better world for self and others [23]. Similar
to everyday mathematical practices, mathematical practices for making are
grounded in everyday contexts that also have applications to home, commu-
nal, and artistic activities such as basket weaving [1], cornrow designs in hair
[27], and carpentry [67]. Children, as newcomers or peripheral participants
engaged in making activities, are afforded the opportunity to begin develop-
ing the mathematical skills and practices to move toward full participation
in daily life and grow into life-long learners, engaged citizens, community
members, and “influential other[s]” [8, 49, 50].

We urge scholars to collect additional video data in a variety of making spaces
(e.g., community centers, homes, libraries, and playgrounds) to continue to
build upon our preliminary exploration here of ways youth are engaged in
mathematical practices for making. What additional mathematical practices
for making do youth utilize in such activities? For example, what heuris-
tic strategies and practices (e.g., systematic experimentation) might youth
employ through the making process? It can be argued that the value of
heuristics in making undergirds the formal decision-making in solving mathe-
matical problems [89, 108]. How are these practices shaped by peers, siblings,
educators, and parents? How are these practices influenced by the available
tools and materials [46]? In what ways are youth resourceful in their thinking
about mathematics when tools such as rulers are not available? How might
these practices develop over time and transfer to other learning contexts?

There are also opportunities to expand this investigation to a range of age
groups and communities as making is an activity that spans young children
to adults [41] and occurs on a global scale [84]. How do mathematical prac-
tices for making look similar and/or different across age bands and culture?
Legitimizing ways of doing mathematics through using these practices as a
human endeavor may serve as a foundation for engaging learners in complex
and authentic problems grounded in everyday experiences.

We acknowledge that the mathematical practices for making identified in this
paper are limited by our own understanding of and perspective on mathemat-
ics as teacher educators, researchers, and learners of mathematics, as well as
our knowledge of and perspective on makerspaces as learning environments.
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As Civil asks, “how can we “uncover” the mathematics in contexts in which
we may have no experience with or may look very different from our back-
ground in academic mathematics?” [17, page 53] Formal education is like a
rubber band that keeps pulling us back into our “truths” of what constitutes
learning. For example, when implementing making activities in a non-formal
school-based context, we noted in ourselves a reliance on step-by-step in-
structions as “experts” of the content as opposed to allowing for exploration
and experiences with failure [87]. This pull is disproportionate to the time
we spend in classrooms, considering we only spend an average of 5% of our
lives in classrooms [32].

7. Conclusion

Civil’s description of everyday mathematical practices [16] laid the founda-
tion for our thinking around ways mathematics is practiced outside of formal
schooling. The significance of this study is the application of Civil’s definition
to the domain of non-formal making learning environments. The identifica-
tion and illustration of mathematical practices for making extends the robust
descriptions of mathematical practices in the context of everyday practices
toward environments designed to support the development and creativity of
youth as they seek to contribute to social situations beyond the classroom.

In addition, this paper begins to address Arcavi’s [2] call for the discov-
ery of mathematical practices that are often viewed as non-mathematical to
youth and adults and build an understanding of ways youth utilize and apply
mathematics in out-of-class contexts, contexts that have been developed from
need, but have not been researched as much as formal mathematics class-
rooms [78]. As researchers turn to non-formal and informal contexts, with an
eye toward understanding ways youth engage in the activity of making, de-
scriptions of mathematical practices for making open up a new landscape of
inquiry. In such a landscape, informal measurement, spatial reasoning, and
curiosity are used as tools within the texture of activity. We also hope that
further exploration of whether (and if so, how) mathematical practices for
making may develop and serve the evolving goals of a maker will contribute
to societal understanding of mathematics as lived rather than done.
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