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ABSTRACT

AVIATION ECONOMICS: SAFETY, MONOPSONY, AND SMALL SAMPLE INFERENCE

BY

MARC SLEIMAN

December, 2021

Committee Chair: Dr. Pierre Nguimkeu

Major Department: Economics

This dissertation consists of three essays on aviation. The first chapter investigates the re-

lationship between competition and airline safety. The U.S. airline industry transports almost a

billion passengers a year. Accidents still cause much apprehension and angst among the public;

the two 737 Max crashes are the latest examples. Despite massive improvements in safety over

the last decades which are largely due to technological improvements, there is still a lack of re-

search done on the effect of market conditions. We provide a simple theoretical model to explain

the relationship between safety and competition. Using data from 1995 to 2018, we employ a

negative binomial regression to evaluate the impact of competition through the Inverse Herfindahl

Hirschman Index, Concentration Ratio 4 and 8, on injury outcome of passengers involved in an

airline accident. Since accidents are costly both directly and indirectly through brand image de-

terioration, a competitive market may incentive airlines to reduce risks of accidents. Meanwhile,

since safety is unobserved by passengers, under a highly competitive environment where profit

margins are thinner, airlines cut costs, some of which are related to safety. Our result suggests that

a less competitive industry has a positive impact on safety, suggesting that excess profits are in part

reinvested into safety measures.

The second chapter tests the hypothesis that monopsony power is an important determinant of

wages and employment in the U.S. pilot labor market. We estimate the labor supply curve of the

U.S. airline industry using firm-level employment and accident data from 1995 to 2018. Utiliz-

ing a labor demand instrument, the prevalence of aircraft accidents, allows us to directly measure

monopsony power. We also investigate the effects of competition, as measured by the Inverse



Herfindahl-Hirschman Index, on the labor supply elasticity. We estimate a labor supply elastic-

ity of 2.56, indicating that airlines have substantial monopsony power in pilot hiring, resulting in

a labor shortage and wages 28.11% below the marginal revenue products. We also find that as

market competition rises, airlines slightly lose market power in hiring: wages increase as compe-

tition increases. The source of monopsony power lies elsewhere, mostly in the training and career

structure, which we address and provide policy recommendations.

The third chapter proposes a new method to calculate the p-values of a treatment variable in a

cross-sectional small sample. Causal evaluation is becoming increasingly popular in industry and

government. In small sample scenarios inference is more difficult. This often occur for several

reasons such as budget constraints or noncompliance, but also in phenomena with low frequency.

Small samples complicate causal evaluations for at least three reasons: (i) they are associated with

greater sampling error, (ii) p-values based on standard tests are not trustworthy and the statisti-

cal power of these tests can be too low to detect significant program effects, (iii) the validity of

parameter inference strongly depends on distributional assumptions. This paper proposes a sim-

ple approximation for the p-values to use in the regression analysis of treatment effects models

with normal or nonnormal error distributions. The approximation is derived from recent develop-

ments in likelihood analysis and has a third-order distributional accuracy. Thus, for very small or

medium-sized samples, the proposed method has a remarkably higher accuracy compared to tradi-

tional ones that usually rely on normality or large samples. The method is then applied to aviation

data to evaluate the impact of accidents on airfares, which is relevant to both airlines and insurance

companies.
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Introduction

This dissertation consists of three essays on aviation. The first chapter investigates the relationship

between competition and airline safety. The U.S. airline industry transports almost a billion pas-

sengers a year. Accidents still cause much apprehension and angst among the public; the two 737

Max crashes are the latest examples. Despite massive improvements in safety over the last decades

which are largely due to technological improvements, there is still a lack of research done on the

effect of market conditions. I provide a simple theoretical model, adapted from (Golbe, 1986), to

explain the relationship between safety and competition. Using data from 1995 to 2018, I employ a

negative binomial regression to evaluate the impact of competition through the Inverse Herfindahl

Hirschman Index, Concentration Ratio 4 and 8, on injury outcome of passengers involved in an

airline accident. Since accidents are costly both directly and indirectly through brand image deteri-

oration, a competitive market may incentive airlines to reduce risks of accidents. Meanwhile, since

safety is unobserved by passengers, under a highly competitive environment where profit margins

are thinner, airlines cut costs, some of which are related to safety. My result suggests that a less

competitive industry has a positive impact on safety, suggesting that excess profits are in part rein-

vested into safety measures. I find that older pilots are safer. Since there is a pilot shortage, airlines

and the Federal Aviation Administration (FAA )are looking into ways to find and retain pilots. In

light of the ongoing discussion to extend the retirement age from 65 to 67, this chapter is in favor

of extending the retirement age. Also, since a less competitive market provides safety, I propose

that the FAA creates new Safety Performance Index’s (SPI), one that takes into account accident

severity (and not just frequency) and one that is ex-ante by performing more audits. The latter

will increase barriers to entry, which should help the market be less competitive while encouraging

safety.

The second chapter tests the hypothesis that monopsony power is an important determinant of

wages and employment in the U.S. pilot labor market. I estimate the labor supply curve of the

U.S. airline industry using firm-level employment and accident data from 1995 to 2018. Utiliz-

1



ing a labor demand instrument, the prevalence of aircraft accidents, allows us to directly measure

monopsony power. We also investigate the effects of competition, as measured by the Inverse

Herfindahl-Hirschman Index, on the labor supply elasticity. We estimate a labor supply elasticity

of 2.56, indicating that airlines have substantial monopsony power in pilot hiring, resulting in a

labor shortage and wages 28.11% below the marginal revenue products. We also find that as mar-

ket competition rises, airlines slightly lose market power in hiring: wages increase as competition

increases. The source of monopsony power lies elsewhere, mostly in the training and career struc-

ture. Specifically, the U.S. has a unique training and hiring mechanism that delays a pilots entry

into a major airline. Pilot training takes at least 4 years, with a large requirement on flight hours

to be able to join a regional airline for a few years to be eligible to join a major airline. In most of

the world, pilots are quickly trained to access any airlines. I propose that the U.S. goes through a

similar system, by including ab initio training. As a pilot’s compensation is highly dependent on

seniority, a sooner entry into a major airline will increase lifelong earnings.

The third chapter provides a new method for approximating the p-value for a treatment vari-

able in small cross-sectional samples. Causal evaluation is becoming increasingly popular in in-

dustry and government. In small sample scenarios inference is more difficult. This often occur

for several reasons such as budget constraints or noncompliance, but also in phenomena with low

frequency. Small samples complicate causal evaluations for at least three reasons: (i) they are

associated with greater sampling error, (ii) p-values based on standard tests are not trustworthy

and the statistical power of these tests can be too low to detect significant program effects, (iii)

the validity of parameter inference strongly depends on distributional assumptions. This paper

proposes a simple approximation for the p-values to use in the regression analysis of treatment

effects models with normal or nonnormal error distributions. The approximation is derived from

recent developments in likelihood analysis and has a third-order distributional accuracy. Thus,

for very small or medium-sized samples, the proposed method has a remarkably higher accu-

racy compared to traditional ones that usually rely on normality or large samples. The method

is then applied to aviation data to evaluate the impact of accidents on airfares, which is relevant

2



to both airlines and insurance companies. Results show that the confidence interval found in our

third-order likelihood method differs from other first-order likelihood methods, which affects in-

ference.

3



Chapter 1

Competition and Airline Safety

1.1 Introduction

The aviation industry, which represents approximately 5.2 percent of Gross Domestic Product and

376,000 jobs in the United States, faces substantial obstacles, such as volatile oil prices Hansman

et al. (n.d.), and a pilot shortage (Meredith, 2018). Worldwide, air traffic grows at a high rate,

doubling every fifteen years (Airbus, 2017). In the United States, there is nearly a billion passen-

gers traveling a year 1. Safety is a major concern for travelers and has significantly improved over

the past decades, so much that it has become the safest mode of transportation. Specifically, over

the past two decades, there has been a reduction in American commercial aviation fatalities by 95

percent FAA (2018); worldwide accidents have fallen by 80 percent since 1997 (Airbus, 2017).

The International Civil Aviation Organization (ICAO), a branch of the United Nations, adopts and

recommends practices that all member countries should follow. An example is the use of Safety

Performance Indexes (SPI) to keep track of the safety record in the respective country. An SPI is

defined by the ICAO as the process of measuring and monitoring safety related outcomes associ-

ated with a given operational system or organization (Thong, 2015). Such safety improvements

are also due to advances in technologies, infrastructure, and labor training, as well as oversight by

the Federal Aviation Agency (FAA, 2018). Meanwhile, it should be mentioned from the start that

aviation safety is not a definite term, as it can vary in both frequency and severity. Frequency is

measured as accident rate, while severity can be measured both in terms of aircraft damage and

passenger injury (Moses and Savage, 1990). Aviation accidents are expressed by accident rates

(eg, per million departures), which allows for more relevant comparison. As stated by Phillips

and Talley (1996), analyzing the evolution over time remains problematic because accidents vary

in severity. Some accidents can be minor, with a single person slightly injured (for example by

turbulence). Others can be major, where death is the unfortunate fate of everyone on board (Moses

1https://www.bts.dot.gov/newsroom/2018-traffic-data-us-airlines-and-foreign-airlines-us-flights
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and Savage, 1990). Most research regarding airline safety was conducted in the 1990?s to examine

the effect of the Airline Deregulation Act that deregulated the airline industry in 1978. While this

abrupt shock has changed the competitive environment and was worth investigating, little work

has been done to examine how changes in competition would affect safety from a more general

perspective. Accidents cannot be entirely prevented, and the last two fatal crashes related to the

Boeing 737 Max (grounded as of this writing) have, for some, awakened fear of travel and shown

us the importance of safety in the airline industry. Aircraft safety is one of the most important char-

acteristic an airline can aim to achieve. While it is of tremendous importance, it is also unobserved

by passengers. Hence there runs the risk of airlines underproviding safety, whether intentional or

not, especially when there is stress on profits. While under-regulation can leave too much leeway

for airlines to take a risk by cutting back on safety, too much regulation may also have detrimental

effects due to the large compliance costs. Multiple studies have shown that consumers are willing

to pay for a safer product (Saad, 2007; Ortega, Wang, and Olynk Widmar, 2015). Such a difference

in consumer’s willingness to pay for safety is founded on the fact that the consequences can be dire

otherwise. Partial liability and reputation concerns motivate firms to make socially desirable safety

investments. Furthermore, the fear of flying adds to the distortion of passenger’s risk assessment.

This fear is irrational, and this can be demonstrated with different statistics. For instance, the mor-

tality rates for air travel and automobile travel is 0.07 and 7.28 fatalities per billion passenger miles

respectively; air travel is over a hundred times safer (Weisman and Van Doren, 2020). Additionally,

Chen and Hua, 2017 explain how the greater the reputation loss, the greater the safety investments.

With all the media hype concerning aircraft accidents, reputation is a strong motivator to not cut

on safety too much. Airlines also face product liability, thus if they operate a low-safety opera-

tion, they face both high liability and high reputation loss. However, despite these three factors

incentivizing airlines to produce some safety, there is an inherent risk that they would underpro-

vide it since it is unobserved. Generally, economists believe that competitive markets are better

for consumers than consolidated markets. While this holds true for prices, it may not be the case

for safety, as it is not for customer satisfaction in the airline industry. The purpose of this research

5



is to further examine whether or not this finding holds in the U.S. commercial airline industry for

the dimension of safety by examining the effect of competition on passenger injury severity. We

find that as the market becomes more competitive, passenger injuries get worse, meaning that a

competitive environment can have negative consequences on safety.

1.2 Literature Review

1.2.1 The Impact of Accidents

Commercial aircraft accidents are costly, both directly and indirectly. Direct costs include costs of

repairs, passenger and family compensations, underutilization of capital, and the loss of lives and

injuries. Meanwhile, indirect costs include brand image deterioration, loss of economic efficiency

of injured passengers, and loss from insurance companies (CMTA, 2015). (Čokorilo et al., 2010)

made a study on evaluating the costs of an aviation accident by taking the case study of an Airbus

A320, which is a medium haul aircraft, carrying around 150 passengers. The authors classify

the costs of the aircrafts "physical damage, loss of resale value, loss of use, site contamination

clearance, airline costs for delays, airport closure, deaths and injuries, loss of staff investments,

loss of baggage, search and rescue costs, airline immediate response, cost of investigation, third

party damage, increased cost of insurance, loss of reputation, and other costs." Some assumptions

were made in the cost evaluation, such as a 6 month period to repair an aircraft, airport closure

is omitted, investigation costs are half a million e, third party damage is omitted, the value of

statistical life (which is how much society is willing to pay to prevent a fatality) is 1.82 million e,

the minimum and maximum cost of loss of reputation are 0 and 380 million e, respectively. As

plane depreciates, the formula uses the aircraft age in years to compute the cost bounds. Results

show that the minimum and maximum costs for a 12-year-old A320 with minor damage to be 34

million e, and 414 million e, respectively. The minimum and maximum costs for an A320 that

has 0 years of age, and catastrophic damage are 211 million e, and 591 million e, respectively.

Surviving passengers also suffer from Post-traumatic Stress Syndrome (PTSD) regardless of their

level of injury (Gouweloos et al., 2016).
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In terms of financial cost, several studies have examined the effect of a crash. Research by (Li et

al., 2015) examined the impact of TransAsia Airways GE222 accident on July 23rd, 2014 in Taiwan

on public perception. The authors studied the relationship between the stock price fluctuation and

the media index.2 Interestingly, during the survey, there was another accident on flight GE235 that

occurred. In the wake of the accident, public perception was initially negative, but improved over

time as the accident fades away from memory. Results also showed that survey respondents that

participated both before and after the last accident were significantly more affected. Meanwhile,

over time, public perception improves, and confidence towards the affected airline is gradually

regained but will regress again with an accident recurrence. Lastly, the authors find that the media

have a significant influence on public perception, and can accentuate the fear of flying, which

impacts the stock price Li et al. (2015).

Any negative media coverage on an aircraft accident affects public perception, and thus demand

for air travel. (Zotova, 2017a) has examined the effect of a crash on airline pricing using the case

of Alaska Airline Flight 261.3 By looking into the effects of the crash on airfares4, the author has

found that the relative fares of Alaska Airlines compared to its competitors have dropped for a few

months after the crash, accompanied with a decrease in the number of passengers. The latter is

coherent with the findings of (Bosch, Eckard, and Singal, 1998), that has shown that airline stocks

react to demand shocks of accidents to reflect the airline’s impact on revenue. Hence, clearly a

severe accident such as a crash causes a reduction in travel demand.

1.2.2 Deregulation

Concern for air safety had attracted attention from economists, particularly after the Airline Dereg-

ulation Act of 1978 was signed by the then-President Jimmy Carter. Experts were afraid that the

deregulation, which increased the number of players in the industry, had put pressure on profits. A

2The media index was computed by taking the expected value based on news readership of the sum of the number
of news article posted on different news sources.

3The flight from Puerto Vallarta, Mexico to Seattle, Washington state had crashed into the ocean. Unfortunately,
there were no survivors.

4a difference in difference model was employed on airfare data obtained from the DB1B database.
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higher level of competition may incentivize airlines to cut back on expenses such as maintenance,

which may affect air safety. Talley and Bossert Jr (1990) have conducted a study examining the

determinants of aircraft accidents5 and found that relative maintenance expenditures were cut, but

were not statistically significant in predicting accidents, while pilot experience was. This research

has been confirmed by Kennet (1993) who examined data obtained by engine manufacturer Pratt

& Whitney. After the deregulation, airlines had put more hours of use on their aircraft engines be-

fore their next overhaul, but this did not cause a rise in engine failures. Hence, the stronger forces

from the competitive market had incentivized airlines to adapt by improving maintenance quality.

Meanwhile, these results are not sufficient to claim that the competitive forces of the markets do

not affect safety.

Phillips and Talley (1992) investigated factors that determined air safety from a perspective of

aircraft damage.6 Results of the study showed that pilot experience and airline safety investments

significantly reduced the severity of aircraft damage during an accident. By employing the same

data, Phillips and Talley (1996) looked into determinants of airline accident severity from a passen-

ger perspective7 and also found that pilot experience was a significant determinant in improving

safety. Both pieces of research had found that commuter airlines were less safe than scheduled

carriers.

Meanwhile, the studies did not look into the effects of the pilot’s age on safety8 Since the

retirement age of commercial pilots has shifted from 60 to 65 in December 2007, it is particularly

relevant today (Bahrami, 2009).

Safety is difficult to observe by consumers, and its equilibrium level is difficult to determine.

Hence it is unknown whether or not consumers accurately estimate the probability of accidents and

5Talley and Bossert Jr (1990) employed linear and log-linear model on data from the National Transportation
Safety Board (NTSB), the FAA Statistical Handbook of Aviation, and the FAA’s Public Affairs Office in Washington.

6The authors employed data from the NTSB from the years of 1983 to 1986. Since aircraft damage severity is a
categorical dependent variable, an ordered probit model was used.

7The SUR model was used to look at the different levels of injuries.
8age has a 55% correlation with flight experience (measured in total flight hours) for pilots are scheduled carriers.

Pilots take different tracks to building hours to be eligible to enter a company that offers a stable job. For instance, the
Air Force track is a 10 year contract, where pilots fly less 20 (Pawlyk, 2018) hours a month in comparison to airline
pilots who fly at least 65 (we had access to a Delta Airlines contract to obtain this information).
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incidents, which are, nevertheless, rare. Moses and Savage (1990) explain that safety is a function

of three categories. First, economic incentives, which are insufficient since airlines have an incen-

tive to under provide safety since it is hard for passengers to determine. Hence, comes the second

category, surveillance. It is usually done by the government, but not always efficient. Lastly, since

passengers, airlines, and the government employ airports and use airspace, the third category, in-

frastructure, is a crucial component to safety. By examining multiple research, the authors do find

that despite an improvement in safety after the implementation of the Airline Deregulation Act,

there was a lack of infrastructure investment and surveillance that could be responsible for some

of the accidents.

1.2.3 Competition and Quality

Generally, economists believe that competitive markets are better for consumers than consolidated

markets. While this may be true in most dimensions observed by consumers, it may not always

be true. For instance, recent studies reveal that mergers can have positive outcomes for consumers

as well. A study on the merger between United and Continental Airlines shows an increase in

customer satisfaction(Andersen and Weisstein, 2019). A study on the consolidation of the freight

railroad industry finds that "market consolidation appears to be an effective safety tool" (Shashoua,

Sridhar, and Mittal, 2017). The authors urged managers to look at the effect of merger on not only

revenue and sale but also substantial "indirect savings from safety improvement." The authors also

pointed to the higher prices as a resource for improving safety.

For decades, the industry has witnessed many airlines emerge, merge, and shut down opera-

tions. Changes in the airline market concentration have led economists to mostly investigate airline

mergers. (Kwoka and Shumilkina, 2010) has studied airfare fluctuations after the merger of USAir

and Piedmont and found that if a route was served by one carrier, and the other was a potential

entrant, then ticket prices on that route would increase by 5 to 6 percent. (Luo, 2014) has analyzed

the effect of market competition and market price by instigating the merger between Northwest and

Delta Airlines. Results have shown that airfares on routes that the two airlines competed on did
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not change significantly after the merger. Additionally, results showed that changes in the presence

of low-cost carriers have a much larger effect on prices than legacy carriers. Meanwhile, (Shen,

2017) has examined the price effects of the United and Continental Airlines merger, which are two

legacy carriers and found that routes on which the two used to compete with have seen an increase

in airfare by 7.8 percent, but fares on adjacent routes have not changed much.

1.2.4 The Government’s Role

Safety is difficult to observe by consumers, and its equilibrium level is difficult to determine. Hence

it is unknown whether or not consumers accurately estimate the probability of accidents and inci-

dents, which are, nevertheless, rare. Moses and Savage (1990) explain that safety is a function of

three categories. First, economic incentives, which are insufficient since airlines have an incentive

to under provide safety since it is hard for passengers to determine. Hence, comes the second

category, surveillance. It is usually done by the government, but not always efficient. Lastly, since

passengers, airlines, and the government employ airports and use airspace, the third category, in-

frastructure, is a crucial component to safety. By examining multiple research, the authors do find

that despite an improvement in safety after the implementation of the Airline Deregulation Act,

there was a lack of infrastructure investment and surveillance that could be responsible for some

of the accidents.

A modern example of governance failure is in the case of the two Boeing 737 Max crashes,

which were in some ways due to inadequate FAA oversight. The FAA had delegated too much

responsibility to the manufacturer to certify parts of the new aircraft (Seattle-Times, 2019). The

proper amount of delegation from the FAA to the manufacturers must be investigated, especially

since we are about to see many changes in transportation.9 Investments in infrastructure to improve

safety and attain environmental sustainability have been part of the FAA’s agenda. The FAA is in

9For one, artificial intelligence will eventually reduce the number of pilots in command from currently two to one
(Bellini, 2018). Supersonic jets may see the sky again after the Concorde retired in 2003 (Gulliver, 2018). Lastly, the
modernization of the air transportation system in an environmentally sustainable way is a primary national objective
(FAA, 2015).
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charge of implementing safer, more efficient, and environmentally responsible air transport through

its Next Generation Air Transportation System. With a budget of $35.8 billion over about two

decades, the total benefits are valued to be $160.6 billion by 2030 due to improvements in safety

and efficiency (NexGen, 2016).

1.2.5 Technology Improvements

In addition to government regulatory work, technologies to improve aircraft safety have been

drastic since the 1960s. The positive result also comes from a combination of developments in

multiple areas. First, the engineering of aircraft and cockpit technology have significantly re-

duced accidents. Each new generation of aircraft has offered significant safety improvements10.

For example, the inclusion of more automation, weather radars, Traffic Collision Avoidance Sys-

tem (TCAS), and a wind shear detection system have improved safety and significantly reduced

the Loss of Contol (LOC) (Airbus, 2017)11. Second, infrastructure investments, that include

ground radars to monitor aircraft at the airport and during low visibility, weather radars, and

communication technologies have their role to play. Technology improvements have been en-

hanced by advances in communication protocols. The industry’s ability to share learned lessons

of accidents plays a sizable role. For instance, the aviation industry adopted a common prac-

tice called Crew Resource Management (CRM). CRM is a means of communication, cooperation,

and behavior among all crew members, both onboard and on the ground. It is applied in sit-

uations where human error can have disastrous consequences. Captain Chesley Sullenberger’s

10First generation of aircrafts are the early commercial jets from 1952 that have dials and guages in cockpit, and early
auto-flight systems. Aircrafts include Comet, Caravelle, BAC-111, Trident, VC-10, 707, 720, DC-8, Convair 880/890.
Second generation jets from 1964 have further integrated flight automation with elaborate auto-pilot and auto-throttle
systems. Aircrafts include Concorde, A300B2/B4, Mercure, F-28, BAe146, VFW 614 727, 737-100 & -200, 747-
100/200/300/SP, L-1011, DC-9, DC-10. Third generation aircrafts from 1980 have glass cockpit, electronic cockpit
displays, improved navigation performance and Terrain Avoidance Systems, to reduce CFIT accidents. Aircrafts
include A300-600, A310, Avro RJ, F-70, F-100, 328JET, 717, 737 Classic & NG, 757, 767, 747-400/-8, Bombardier
CRJ, Embraer ERJ, MD-80, MD-90. Fourth generation aircrafts have fly-by-wire technology that helps protect flight
envelope. Aircrafts include A318/A319/A320/A321, A330, A340, A350, A380 777, 787, Embraer E-Jets, Bombardier
C-Series (Airbus, 2017)

11"Studying the statistics over the life of each generation of jets shows that an 85% reduction in fatal CFIT acci-
dents has been achieved between the second and third generation of jets. In addition to this achievement, the fourth
generation of jets has added a 75% reduction in fatal LOC-I accidents compared to the third generation."
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astonishing landing in the Hudson River is in part due to such a training system (Shively et

al., 2018). Moreover, data sharing among airlines, manufacturers, and authorities have also en-

abled them to identify risks that need to be addressed more effectively and improve safety re-

search.12.

During the 1990s, there was much academic research done in the area of aviation safety, par-

ticularly to study the effects of the Airline Deregulation Act of 1978. Since then, transportation

economists have done less to examine safety in the aviation sector when it comes to understanding

the impact of competition. This paper intends to pick up again the work on airline safety. Specif-

ically, the contribution will reexamine the factors that affect injuries of those onboard, both fatal

and non-fatal, and investigate how market competition affects human safety in the airline industry.

The rest of the paper proceeds as follows. Section 3 will provide model to illustrate the relation-

ship between safety and competition. Section 4 will discuss the model, variables, and specification

used to examine the factors that affect accident severity on passengers and crew members. Section

5 provides a discussion on the data and the results obtained from estimating our model. Section 6,

the final section, provides a conclusion.

1.3 Model and Variables

1.3.1 A Simple Illustrative Model of Safety and Competition

The purpose of this section is to provide a simple illustration of how competition affects safety

to provide intuition behind the ongoing mechanism. We adapt the model of (Golbe, 1986) by

incorporating competition and changing the measure of safety (to a more abstract notion to incor-

porate severity rather than just having frequency) in her model of safety and profits. In this model,

we assume that airfares are a function of the level of competition, z, where a greater value of z

corresponds to a more competitive market. At a price P(z), an airline will produce Q units of trans-

portation, with a level of safety s per unit of transportation, where s is a scalar such that s ∈ (0, 1),

12Such cooperation has contributed to the technological advancements both in aircraft and infrastructure and has
also led to a convergence of cockpit procedures and an implementation of Standard Operating Procedures (SOP)
worldwide (Skybrary, 2018)
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s = 0 if it there is no safety at all, and if s = 1 if there is perfect safety. A firms quantity of trans-

portation provided function Q is increasing in safety and decreasing in price. The cost function

increases with quantity provided, and with safety (for example through training, maintenance, and

aircraft add-ons). We also assume that the cost of an accident D is a function of safety s. The

expected airlines profit function, denoted by Π, can be written as:

Π = P (Z)Q− C(s,Q, Z)−QD(s,Q) (1.1)

The cost also varies with the level of competition in several aspects. On one hand, competition

will increase costs, for instance, by decreasing firms wage bargaining power, thus raising wage

costs (Sleiman, 2021). Similarly, a more competitive market may reduce existing airlines size,

which will constrain reduce their economies of scale on items such as kerosene, spare parts, and

meals on board. On the other hand, the greater competitive intensity will push companies to

become more creative and efficient, which will cut costs, such as in the paper of Kennet (1993)

that showed how after deregulation, airlines have cut engine maintenance costs13. Furthermore,

the analysis of the effect of competition on cost can be taken a step further. Most economists

agree that competition plays a significant role in attaining efficient allocation of resources, often

formalized by the notion that a competitive equilibrium is Pareto optimal. One additional notion

brought by (Hart, 1983) is that competition induces discipline, which in turns reduces managerial

slack. This notion supplements the work of (Winter, 1971), who had modeled competition as a

form of natural selection. In his model, inefficient firms experience losses that forces them to find

new techniques that are cost improving, which will lead firms to efficiently allocate resources in the

long run. In similar lines of research, (Hermalin, 1992; Schmidt, 1997) discuss how competition

induces business stealing effect and scale effect. The business stealing effect occurs when firm-

level demand functions are elastic have a lower cost, they win over competition. In a competitive

market, firms are price takers, firms with higher costs have an increase marginal value in decreasing

13There was no compromising safety found
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their costs. The scale effect occurs due to an increase in competition, when at least one rival firm

charges a lower price, causing the firm to experience a drop in market share and in profits. As

a response, the firm is pushed to find cost saving solutions to be able to match its price to be

competitive.

Consider R to be the additive risk premium such that for a utility function U, U [E(Π)− R] =

E[U(Π)]. With the assumption of normally distributed returns, we can state the firm’s maximiza-

tion problem under the Arrow-Pratt certainty equivalence as:

max
s

E(Π̄)−R
(
E(Π̄), V ar(Π̄)

)
(1.2)

Here, the bar on Π̄ signifies expected profits. From this equation, we can see that not just risk-

averse, but risk-neutral firms will invest in safety. One assumption in profits is that Π̄Z ≤ 0. We

can say that for a fixed cost borne by an accident, the variance of profits depends on the the level of

competition and safety: V ar(Π̄) = f(s, Z), where s is the only variable that the airline can control.

Here, s is a measure of safety that takes into account both frequency and severity of accidents. We

can therefore rewrite the firm’s maximization problem:

max
s

Π̄(s, Z)−R(Π̄, s) (1.3)

From here on, the subscripts denote the variable with respect to which the partial derivatives were

taken.

Taking first order conditions for a maximum, we get:

Π̄s −RΠ̄Π̄s −Rs = 0 (1.4)

For simplicity, we can restrict ourselves to the risk-neutral firms, given that some of them can

absorb the shock, in which case we have R = 0. We now have a simplified equation for our first

order condition:
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Π̄s = 0 (1.5)

To focus on the relationship between safety and competition, we consider the effect of changes

in safety and competition on profits. We perform the comparative statics analysis by total differen-

tiation of the first order conditions with respect to safety and competition:

[
Π̄sZ

]
dz +

[
Π̄ss

]
ds = 0 (1.6)

We can rearrange the terms, we get an expression of ds
dz

:

ds

dz
= −

[
Π̄sZ

] [
Π̄ss

]−1 (1.7)

This can be rewritten as:
ds

dz
= −

[
Π̄sZ

]
[SOC]−1 (1.8)

where SOC is always negative14. Hence, we only need to examine the sign of the first bracket.

Since for a risk-neutral firm R = 0, we have:

sign

(
ds

dz

)
= −

sign
(
Π̄sZ

)
sign (SOC)

= sign
(
Π̄sZ

)
= sign (CsZ) (1.9)

We can see that the effect of competition on safety depends on the sign of the cross derivative

of the cost function with respect to safety and competition. This comes down to understanding

how the cost of providing an additional unit of safety varies with the level of competition. Airlines

can provide additional safety by investing in newer fleets (or fleet equipment upgrades that are

optional), hiring more qualified pilots, providing additional safety training and resources to crew

members, investing in flight support (with dispatchers, meteorology) with safety departments, and

better maintenance plans.

14Our objective function (profits) is concave.
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There are many ways in which the cost of safety will increase with a more competitive market.

As the market becomes more competitive, fleet investments become more expensive as airlines

have a smaller bargaining power. Wages of specialized personnel rises, thus making the acquisi-

tion of human resources more expensive. The cost of providing more training may remain constant

for airlines that do it all in house but could rise for small airlines that outsource a portion of it (such

as to simulator centers). Therefore, in some dimensions, the cost to provide additional safety in-

creases with competition.

Meanwhile, there are other ways in which the cost of safety will decrease with competi-

tion. Market forces also push companies to be more creative in how they provide safety. For

instance, as the market becomes more competitive, there is greater marginal return to using big

data. One common application is for airlines is to use machine learning in predictive mainte-

nance to simultaneously cut costs and improve safety (Bree, 2009; Oh, 2017). Predictive main-

tenance is often described as "the intelligent way to maximize machine availability." By antic-

ipating failure, maintenance departments can optimize schedules and plans to keep costs low.

Similarly, using flight data, airlines analyze problems, included safety related ones, and come

up with solutions such as updates of flight procedures, installation of optional safety gadgets

(Oh, 2017). A more competitive market is more conducive to fostering such innovation (Vives,

2008).

The actual sign is an empirical question that we examine next in the paper. Given that we do

not observe safety, the proxy we use is accidents. Furthermore, we will be using the Herfindahl

index as a proxy for competition. Hence, the probability of an accident is a function of safety. The

objective is to examine how the probability of an accident varies with competition. Specifically,

we will examine how the severity of injuries related to accidents varies with competition. Since

the probability of an accident and the severity of an injury is a monotonic function of safety, we

can restrict our problem the problem to understanding the relationship that exists between safety

and competition.
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1.3.2 The Model

Similarly to Phillips and Talley (1996), this paper will look at the conditional probability of severity

given the occurrence of an accident. Hence, the probability of occurrence of a given level of

severity for an accident is the product of the probability of an accident with the probability that

the level of severity occurs, conditional on the fact that an accident has occurred. Let A denote

accident and I denote injury. Then the former can be mathematically expressed as:

P (A ∩ I) = P (A) P (I| A) (1.10)

In February 2009, Colgan Air Flight 3407, marketed under Continental Connection, crashed

and killed all 49 people on board. Since then, 8 billion passengers have been flying on U.S. carriers

without a fatal crash occurring. Such improvements are due to the collaboration of federal regula-

tors, industry executives, and unions stepping in after a few fatal crashes in the 1990’s. Data shar-

ing played a big role in the cooperation among different parties. Aircraft and ground technology

leaps were substantial, such as radar and cockpit technologies, reliability of engine and electrical

systems. Had there not been any improvements, with the former accident rate of the early 1990’s,

today we would be seeing at least one crash a week. Over the past two decades, accidents have been

on average less severe: there are fewer fatalities and less severe aircraft damages. Nowadays, air-

crafts on the ground are more at risk of being involved in an accident than in the air. (Pasztor, 2021).

Let’s now elaborate on how the NTSB classifies the intensity of accidents, first by looking

at how aircraft damage is measure, then by looking at how injuries are accounted for. There are

four levels of damage: no aircraft damage, minor damage, substantial damage, and destroyed.

Substantial damage is damage that "adversely affects the structural strength, performance, or flight

characteristics of the aircraft, and which would normally require major repair or replacement of

the affected component." Minor damage is a "damage that neither destroys the aircraft nor causes

substantial damage." An aircraft is considered destroyed if "the aircraft is not repairable, or, if

repairable, the cost of repairs exceeds 50% of the cost of the aircraft when it was new" (Skybrary,

2017).
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Turning our attention to injuries, there are also four levels of injuries dataset: fatal injury,

serious injury, minor injury, and no injury. A fatal injury is "an injury that results in death in the

accident itself, or up to 30 days after the accident." A serious injury is "an injury that requires more

than 2 days of hospitalization up to 7 days after the accident. Fracture of any bone (except simple

fractures of the toes, fingers, or nose). Serious injury also include injury to an internal organ, any

muscle or tendon damage, any second- or third-degree burn, or any burn covering more than 5

percent of the body." A minor injury is "an injury that requires less than 2 days of hospitalization

up to 7 days after the accident." (Skybrary, 2017). We also combine serious injury with minor

injury to create the non-fatality variable. Our injury variable groups all kinds of injuries into a

single dependent variable.

Since accidents have been less severe over time, there is a decreasing number of fatalities, as

explained above. Most injuries are non-fatal. We can see from the graph (available in the appendix)

that plots the cumulative distribution on injuries that for flights involved in an accident, there is

nearly 90% are not fatally injured. That number is 73% for non-fatal injuries. On average, we have

0.82 non-fatal injuries and 0.56 fatal injuries per accident, bringing the average total injuries per

flight to 1.38. Hence, we choose to make our dependent variable, injuries, account for all types of

injuries, both fatal and non-fatal.

Since a more severe accidents are both more damaging to the plane and more harmful to pas-

sengers, there is a positive relationship between the severity of aircraft damage and injury. We can

therefore specify the following equation:

I = F1(D) (1.11)

where D is a discrete variable for Damage, reported by severity level, and I is the injury count.

As noted by Phillips and Talley (1992) an aircraft’s accident severity is a function of both

airline safety investments and operating conditions. Safety investments are as the name suggests,

investments to increase the safety of the airline operations. Hence, greater safety investments

should reduce both the likelihood and severity of an accident. Examples include investing in human
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capital, such as by hiring more experienced pilots, mechanics, flight dispatchers, etc. Operating

conditions contains both external and internal factors. Weather and market conditions, that exhibit

market pressure on airlines are external factors, while internal factors including training, updating

procedures, and crew scheduling policies15. The former would require investments in developing

and implementing new technologies or improved regulation; the latter is directly under the airlines

control. Hence,

D = i(airline safety investments, airline operating conditions) (1.12)

We substitute the Damage equation D into F1 to obtain the reduced-form model equations:

I = F2(airline safety investments, airline operating conditions) (1.13)

By estimating equation F2, we will be able to examine how airline safety investments and

airline operating conditions affect the number of people injured on board of an aircraft involved in

an accident.

1.3.3 Variables

In a cockpit, the Pilot in Command 1 (the captain) has the highest authority followed by the Pilot

in Command 2 (the first officer). Airplanes can be commanded by one pilot for small taxi planes,

to as many as four pilots for an ultra-long flight (generally over twelve hours). Since investment in

hiring more experienced pilots is a safety investment, we include the variable Captain Experience,

which is the total cumulative hours of flight experience the first pilot in command of the flight

has, measured in thousands of hours. Due to a large amount of missing data on the second pilot

in command (also known as the co-pilot or first officer), we would lose many observations by

including the variable in the model. Since the captain has the most crucial role during a flight,

particularly in decision making and managing a crisis, it is a small loss of information to omit

15that can affect to crew fatigue
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the first officer’s hours information. More experience allows pilots to assess risks better, manage

stress, as well as to make sounder judgment calls, and more appropriately handle the aircraft. A

more experienced pilot will conduct the flight in a manner that should reduce the severity of an

accident or incident, which is directly related to the injury and fatality count.

In 2008, the Fair Treatment for Experienced Pilots Act has raised the mandatory retirement

age for FAR Part 12116 pilots from 60 to 65, partially due to the beginning of a large retirement

wave. In light of the ongoing debate regarding further raising the mandatory retirement age to 67

to dampen the pilot supply shortage, we add the variable Age, which is the pilot age. While an

older pilot has more experience, his or her mental sharpness may diminish.

Aircraft Weight is the size of an aircraft, measured by its weight in ten thousand pounds. Size

can be an essential factor since larger aircraft are not as affected by degraded weather conditions17.

Therefore, there could be a negative relationship between size and the severity of the accident.

Aircraft Age is the age of the aircraft, measured in the number of cumulative flight hours it has,

measured in ten thousand hours. Older aircraft are more likely to break down, Partially because as

it ages, it becomes more difficult to predict when a part will breakdown or be due for maintenance.

It can be hypothesized that more frequent aircraft mechanical inspections will decrease the proba-

bility of a mechanical failure, which can sometimes compromise safety, and therefore the severity

of an accident or incident. Meanwhile, recent advances in predictive maintenance have reduced

the probability of mechanical failures using big data (Korvesis, Besseau, and Vazirgiannis, 2018).

Turning our attention to airline operating conditions, we start with some variables on flying

conditions. When the weather is clear enough, and the pilot can clearly see where he is going, a

flight is performed under visual meteorological conditions. When the weather degrades, such as

through fog, rain, or haze, the flight is being conducted under instrument meteorological condi-

tions, which requires the pilots to make reference to instruments primarily. Hence, in the latter

case, a visual approach for landing is not permitted. The indicator variable Favorable Flying

16FAR Part 121 are schedule operations (usually with larger aircrafts) and FAR Part 135 are unscheduled operations
(usually smaller planes, such as a 10 seater).

17Larger aircrafts are more stable during windy weather conditions
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Conditions equals one when the flight is being conducted in visual flying condition and zero oth-

erwise18. A factor that affects visibility is whether or not the flight happened during the day or

night time. During the night time, the reduced visibility provides additional difficulty operating an

aircraft that is undergoing a complication. The indicator variable Dark Flying Conditions equals

one when the flight is being conducted during the night and zero otherwise. Hence, we expect

that Favorable Flying Conditions to have a negative relationship with accident severity and Dark

Flying Conditions to have a positive relationship.

Our last variable related to airline operating conditions is Last 90 Days, which is the cumula-

tive number of hundred hours the captain has flown during the past 90 days as a proxy for fatigue.

While Phillips and Talley (1996) use the frequency of aircraft landings during the last 90 days, this

data is not available anymore. They argued that takeoffs and landings are the most stressful part

and therefore cause more fatigue, thus short haul pilots are subject to more fatigue. However, we

disagree. Long haul pilots who perform fewer takeoffs and landings still fly the same number of

hours but instead have to deal with jet lag, which is burdensome on the body in its own way. We

expect to find that there is a positive relationship between Last 90 Days and the severity of an acci-

dent. We create an interaction variable of Age and Last 90 Days, as it is plausible that older pilots

may be affected differently to the amount of hours flown in the last 90 days than younger ones.

Finally, we have our measures of competition, which are specific to FAR Part 121 carriers.

First, we start by explaining the Herfindahl-Hirschman Index HHI, which is considered by many

economists as a superior index. Government agencies such as the Federal Reserve Bank, the De-

partment of Justice employ this measure. To calculated the HHI for passenger carriers, we sum

the squared percentage of passengers each airline carries in the market on a monthly basis Specifi-

cally, the formula is HHI =
∑n

i=1(MSi)
2 A more concentrated market means that it is closer to

a monopoly, causing the index to become larger. A pure monopoly has an HHI index of 10,000; a

market that comes closer to perfect competition, will have an HHI index getting closer to zero. We

proceed with the assumption that the United State is a single market and that all airlines compete

to obtain a greater market share of that market. As each FAR Part 121 carrier has its own hub,

18Details of visual flight rules are available at ICAO Annex 2
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they each compete to bring passengers from one point to another and try to expand to capture the

largest market share possible. Then, we have Concentration Ratio 4, and 8, which are computed

by summing the market shares of the top 4 and 8 airlines respectively. Since these ratios cut out

firms, they do not offer a comprehensive picture of the industry. Moreover, the HHI takes into

account the sizes of each firm. For example, suppose two markets each have 10 firms with the fol-

lowing markets shares: two firms with 20% and the rest with 10% in the first market and two firms

with 35%, two firms with 10%, and the rest with 2.5% for the second market. Each market will

have an HHI of 1,400 and 2,675 respectively. For the reasons mentioned, concentration ratios are

considered an inferior measure of competition, but still provide some useful insight of the market.

Government agencies that use the HHI index consider markets with an HHI below 1,500 as uncon-

centrated, markets with an HHI between 1,500 and 2,500 as moderately concentrated, and markets

with an HHI above 2,500 as highly concentrated. Instead of measuring market concentration, we

want to measure market competition. To do so, we use the framework of (Boydstun, Bevan, and

Thomas III, 2014) to create a variable Competition by subtracting HHI from the maximum value of

HHI, 10, 000, which is the opposite of concentration. With this new definition, a value of 8, 500 or

greater is competitive, a value between 7, 500 and 8, 500 is moderately competitive, and less than

7, 500 is uncompetitive. The sign of these three variables is not predictable: on the one hand, a

more competitive market may force airlines to cut costs, such as maintenance costs, or make work

conditions more stringent which would affect employee morale, hence have a negative impact on

safety. On the other hand, a highly competitive market leaves little mercy for a serious accident

such as crash, particularly nowadays that they are rare and large media attention. Thus, airlines

have an incentive to maintain high safety standards, as a mistake would be costly to their image.

We perform the same operation for Concentration Ratio 4 and Concentration Ratio 8 variables: we

create a competition ratio variable by subtracting the Concentration Ratio from 100. This allows us

to see how much market share is left for competition instead of how much market share is already

taken. Our summary statistics will provide the raw Competition numbers; in our regression we use

the standardized variable.
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1.3.4 Model Specification

Since our outcome is a count of people on board that fall into one of several categories, we es-

timated a negative binomial regression. Because a negative binomial distribution is a mixture

between the Gamma and Poisson distribution, that under certain conditions converge towards a

Poisson distribution, we therefore provide a succinct revision of the theory of the Poisson regres-

sion to introduce the Negative Binomial model as provided by (Greene, 2008). Since the other

models provide poor fit, we choose to provide results of the most suited model, the Negative Bino-

mial regression.

The regression specification for the Poisson regression is:

Prob[Y=yit|xit, xt] =
exp(−λit)λyitit
Γ(1 + yit)

,

with,

λit = exp(β0 + β1Xit + β2Competitiont + αi + τt)

Where xit is the vector of control covariates presented above for airline i at time t,Competitiont

is a monthly measure, αi is the airline fixed effect, τt is the year fixed effect, and ϵit is the idiosyn-

cratic error19.

In the Poisson model,

E[yit|xit, xt] = λit,

and

V ar[yit|xit, xt] = λit.

But since in our data, as in many cases, has over-dispersion, we employ the negative binomial

model:

E[yit|xit, xt] = exp(β0 + β1Xit + β2Competitiont + αi + τt + ϵit) = hitλit,

19variables Yit and Xit are from data collected from a specific day, unlike Competition which is monthly.
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where hit = exp(ϵit) has a G(θ, θ) distribution with mean 1 and variance k;

f(hit) =
θθexp(−θhit)hθ−1

it

Γ(θ)
, hit ≥ 0, θ > 0

The marginal negative binomial distribution below is obtained after hit is integrated out of the

joint distribution,

Prob[Y = yit|xit, xt] =
Γ(θ + yit)r

θ
it(1− rit)

yit

Γ(1 + yit)Γ(θ)
, (1.14)

with θ > 0, and rit = θ/(θ + λit)

We thus obtain:

E[yit|xit, xt] = λit

and

V ar[yit|xit, xt] = λit[1 + (1/θ)λit] = λit[1 + kλit]

Where k = V ar[hit].

1.4 Data and Results

The data for all variables except the Inverse HHI index comes from the NTSB database; the later

comes from the Bureau of Transportation Statistics (BTS) form 41 T-10020. Both datasets are public.

Aircraft accidents and serious incidents are rare occurrences that must be reported to the NTSB,

but non-serious incidents do not have to be reported (AOPA, 2016). Therefore, information col-

lection on accidents is more reliable than on incidents. Hence, it is easier for airlines to avoid

disclosing incidents than accidents. According to the NTSB’s definition, an accident is an occur-

20The Air Carrier Statistics database, also known as the T-100 data bank, contains domestic and international airline
market and segment data. Certificated U.S. air carriers report monthly air carrier traffic information using Form T-
100. The data is collected by the Office of Airline Information, Bureau of Transportation Statistics. The tables in this
database provide domestic market, domestic segment, international market, international segment, combined table for
domestic and international market, combined table for domestic and international segment data by certificated U.S.
air carriers. This database is frequently used by the aviation industry, the press, and the legislature to produce reports
and analyses on air traffic patterns, carrier market shares, as well as passenger, freight, and mail cargo flow within
the aviation mode. The data is conducive to producing carrier load-factors, but does not contain carrier financial
information.
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rence associated with the operation of an aircraft that takes place between the time any person

boards the aircraft with the intention of flight and all such persons have disembarked, and in which

any person suffers death or serious injury, or in which the aircraft receives substantial damage. An

incident is an occurrence other than an accident, associated with the operation of an aircraft, which

affects or could affect the safety of operations (CFR-830.2, n.d.).

After an accident or incident occurred, the NTSB promptly sends a team of multiple specialists

of different expertise on site for investigation21 (NTSB, n.d.). An example of an accident with no

injuries is an aircraft that flew over an active volcano, landed safely, but the aircraft must be written

off. The following is a non-exhaustive list of examples of incidents provided by the Cornell Law

School’s Legal Information Institute (CFR-830.5, n.d.):

• Inability of any required flight crew member to perform normal flight duties as a result of

injury or illness

• Failure of any internal turbine engine component that results in the escape of debris other

than out the exhaust path

• Flight control system malfunction or failure

• Controlled in-flight fire

• Damaged wing-tips

Table 122, which constitutes the summary data of FAR Part 121 carriers, reveals that the mean

of Damage is 2.024, which implies that on average, the aircraft involved in the accidents received

minor damage. Furthermore, among those aboard the flights involved in the accidents about 97

percent were not injured. The dataset contains 291 observations with no damage, 213 with minor

damage, 327 with substantial damage, and 19 destroyed. Captains have an average of 11,620 hours

21The NTSB makes the data regarding the accidents and incidents investigated publicly available in Microsoft
Access format.

22We use ratios instead of counts of injuries to provide a better understand of injuries: while a number of injuries
may seem arbitrarily large, it could be relatively small in proportion to the airplane size (number on board)
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of experience and have flow 176.2 hours in the last 90 days, which is 58.73 hours per month. The

average age of aircrafts is 27,940 hours, with an average weight of 160,900 pounds (80.45 tons)23.

Average last inspection was done about 659 flight hours before the accident. Moreover, about 24%

of the flights were operated in dark flying conditions, and 82% of flights were operated during

visual flying conditions. With a mean Competition value of 9071.8 ranging from 8749.3 to 9277.1,

the market is considered competitive.

Table 2 presents the mean of each level of injury by aircraft damage severity. Aircraft that

were involved in one accident and were not damaged resulted in almost no fatalities, an average of

2.78 percent of people on board suffering non-fatal injuries, while an average of 97.2% of people

on board were not injured at all. Accidents that sustained minor damaged had, on average, 0.04

percent fatal injuries, 0.84 percent non-fatal injuries, and the remainder were non-injuries. On

average, aircraft that were severely damage had 0.01 percent fatal injuries, 0.57 percent non-fatal

injuries, and 99.12 percent non-injuries. Airplanes that were destroyed in an accident have, on

average, resulted in 93.77 percent fatal injuries, 5.23 percent non-fatal injuries, and 1 percent no

injuries. Mostly, injuries occur if an accident causes an aircraft to be destroyed.

Equation (13) is estimated through the equation (14) and is presented in Table 3 in columns

one through three. Regressions control for year and airline fixed effects, with standard errors

clustered at the airline level. Table 3A, 3B, and 3C present negative binomial regression results

with FAR Part 121 operators24 to examine the effect of market competition on safety of scheduled

commercial airlines through the Inverse HHI, Inverse CR8, and Inverse CR4. Tables 3B and 3C

show results with Inverse CR8 and Inverse CR4 respectively in the appendix.

As expected, experience, measured by the captain’s total hours of flight experience decreases

the count of suffering from injuries with one and five percent significance. Dark flying conditions

affect, which is a proxy for degraded flying conditions, negatively affect safety at one percent

significance.

23This corresponds to a medium haul aircraft.
24As the two types of operations FAR Part 121 and 135 are very different, and our primary focus is on sched-

uled operators which carry most passengers transported in the U.S. Airspace, we do not present results for Part 135
operations.
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When looking at the effect of a captain’s fatigue through the proxy of the number of hours

flown in the last 90 days, our results, significant at five percent, suggest that more flight hours

in the last 90 days correspond to an increase in juries up until the turning point age of 35.5 and

37.5 for regressions (1) and (3) respectively and then a decrease in injuries. Meanwhile, while just

looking at age, our results in regression (2) show that age increases injuries until the turning point

age of 46.4 and decreases after. Hence, older pilots after a threshold, like more experienced pilots,

are safer.

Regression results show that greater competition will increase the count of people on board

that will suffer from any kind of injury conditional on having an accident. Specifically, from Table

3A, we see that the parameter estimate of Competition is positive and significant at 5%, which

is confirmed in Table 3B and Table 3C for the parameter estimate of Competition Ratio 8 and 4

respectively. A one standard deviation increase in Competition increases the odds of receiving

any injury in an accident by 447% to 465%. As the top 8 firms increase their market share by

one standard deviation, there is an increase in the odds of receiving any injury by 45% to 47%.

Furthermore, when the top 4 firms increase their market share, we find that the parameter estimate

is significantly positive. These findings imply that a less competitive environment allows firms to

increase their safety because they have a stronger ability to use economies of scale to cut cost and

reinvest in safety25.

Hence, there we find evidence that a less competitive market will increase safety. This result

is consistent with the findings of (Shashoua, Sridhar, and Mittal, 2017). As airlines charge higher

prices on routes that two airlines competed on before their merger (Shen, 2017), the higher profits

are then reinvested into safety. The of significance of this results imply that more competition has

an adverse effect on safety. Since safety is not observed by consumers, under a less competitive

environment, the pressure to under-provide it diminishes; firms are more capable to invest in safety

measures, such as training and aircraft technology upgrades.26 to name a few. Investments in the

25Cost cutting measures are discussed in Section 3
26Air France flight 447 had crashed an A330. After investigation, the airline decided to invest in pitot tubes for their

A330, as it may have prevented the crash
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aviation sector require large capital and labor investments that are not easily adjustable in the short

run. Under such conditions, the lessening of financial pressures induced by market forces enable

airlines to operate more safely.

1.5 Discussion

We conclude our study of the effects of competition on market safety by addressing a few points.

First, our results confirm previous research by finding that poor flying conditions, such as dark

skies, affect air safety. Specifically, poor flying conditions increase the count of passengers and

crew injured. We also confirm that that total pilot experience decreases the proportion of people

injured on board for Part 121 carriers.

Second, we see that when there is an increase in additional hours flown in the last 90 days,

the count of injuries falls after the turning point age of 37.5. Thus, as pilots get older, the effect

of fatigue causes them to make less accidents. A possible explanation is that over time, as pilots

move up in the seniority, they are more likely to get the flights that they bid for. Hence, with

their experience and seniority, they make a schedule that better fits them. This result is important

because the FAA has enacted PL111-216 in 2010 after the Colgan Air crash that would impose

Part 121 airlines to follow specific rules to curtail pilot fatigue27. Airlines should investigate the

effects of fatigue based on schedules and update their scheduling mechanism to make sure that

better rest if provided for those with little seniority.

Third, in light of an ongoing debate in the aviation world regarding extending mandatory pilot

retirement age, we find evidence that older pilots provide are safer. While cognitive skills may

decline over time, the experience gain makes up for it28. This is particularly interesting for two

reasons. First, since back in 2008, the mandatory retirement age of Part 121 operators had been

moved from 60 to 6529. There were concerns that extending the retirement age would have adverse
27Quoting directly from the act: the Administrator of the Federal Aviation Administration shall issue regula-

tions, based on the best available scientific information, to specify limitations on the hours of flight and duty time
allowed for pilots to address problems relating to pilot fatigue. https://www.congress.gov/111/plaws/publ216/PLAW-
111publ216.pdf

28As planes are becoming more automated, flying has shifted to become more about planning and decision making.
29"The legislation, known as the Fair Treatment for Experienced Pilots Act, raised the upper age limit from age 60 to

28



safety consequences, which we now see is not the case. Second, since nowadays there appears to

be a potential pilot supply shortage, authorities have discussed potentially extending the retirement

age to 67. Due to the evidence that shows that older pilots can provide additional safety through

their experience, this paper provides initial evidence in favor for extending the retirement age to 67.

Fourth, we find evidence that a less competitive market will decrease the odds of being injured

in an accident. Airline safety investments are costly; hence a less competitive market allows as pre-

vious research by (Shen, 2017; Gerardi and Shapiro, 2009) has shown, firms to charge higher prices

that yield greater profit margins, which can be reinvested into safety. Hence airlines reinvest into

safety a portion of their excess profits gained in a less competitive environment. Potentially, merg-

ers have had some positive impact on safety. As airlines often have difficulties to survive and policy

makers have struggled with the question of approving airline mergers, particularly because of its

effects on airfares, our results suggest that it is advisable to approve a merger when considering

the safety perspective. While it may be tempting to think about putting barriers to entry, we must

be careful about which are put into place. We have several policy recommendations to improve

safety and make passengers aware of the unobserved safety level. First, we recommend that the

FAA create a new SPI that measures the operation safety performance of the U.S. airline industry

not solely based on frequency but also taking into account the severity of accidents. According to

the ICAO’s Safety Management Manuel, there is no single SPI that is applicable to all cases, so the

more the better (Doc 9859 2018). This would allow the FAA to have a new tool to monitor safety

from a new dimension. Currently, the FAA uses an SPI that measures safety as a "rate of fatalities

per 100 million person on board", thus does not yet take into account severity nor aircraft damage.

Second, we recommend making an ex-ante SPI for each airline, by performing more audits on ar-

eas such as training, maintenance, and scheduling. Both of these scores should be made public and

displayed by both airlines and travel agency websites. Such a practice will allow passengers to be

aware of the safety level of each airline, which will help close the asymmetry of information gap.

age 65. The legislation became effective December 13, 2007. The intended effect of this action is to update the Code
of Federal Regulations to reflect the recent legislation" https://www.federalregister.gov/documents/2009/07/15/E9-
16777/part-121-pilot-age-limit
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Lastly, we encourage the implementation of congestion pricing. Congestion pricing 33 is a

mechanism where landing fees are a function of the level of congestion at the airport instead of the

current practice where airlines pay a fee based on the empty weight of the aircraft. Consequently,

congestion pricing will cost more during peak hours. Since most accidents happen near landing

and take-off strips, congestion pricing which will reduce the amount of flights around peak times

will have an effect of reducing traffic density, thus reducing accident frequency and severity.

Table 1.1: Summary Statistics

Variable Definition Min Max Mean SD
Captain Experience Captain total flight experience (1,000 hrs) 1.595 38.58 11.62 5.978
Last 90 Days Captain last 90 days of flight time (100 hrs) 0.12 3.1 1.762 0.5268
Age Captain age 24 64 46.21 9.456
Aircraft Age Aircraft age in (10,000 hrs) 0.0031 10.35 2.794 1.987)
Aircraft Weight Aircraft weight in (10,000 lbs) 0.28 213.3 16.09 15.56
Dark Flying Conditions Dummy variable for dark flight conditions 0 1 0.2419 0.4283
Favorable Flying Conditions Dummy variable for visual flight conditions 0 1 0.8203 0.3840
Injury Percent onboard with any injury 0 265 1.3836 7.009
Damage Damage level of aircraft 1 4 2.024 0.8939
Competition Inverse Herfindahl Hirschman Index 8749.3 9277.1 9071.8 147.13
Competition Ratio 8 Inverse Concentration Ratio 8 13.52 33.58 23.82 6.024
Competition Ratio 4 Inverse Concentration Ratio 4 32.52 55.27 47.04 5.849
Observations 850

Table 1.2: Injury Summary Statistics by Damage Level

Aircraft Damage
Mean None Minor Severe Destroyed

Injuries
Non-Fatal Injury 0.0152 0.0278 0.0084 0.0057 0.0523

(0.0524) (0.0682) (0.0354) (0.0269) (0.1585)
FatalInjury 0.0124 0.0001 0.0004 0.0001 0.9377

(0.1092) (0.0009) (0.0047) (0.0004) (0.2061)
No Injury 0.9695 0.9722 0.9841 0.9912 0.0100

(0.1321) (0.0681) (0.0908) (0.0613) (0.0412)

The numbers provide mean probability values.
Corresponding standard deviations below in parenthesis.
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Table 1.3: Negative Binomial Estimation Results - Inverse HHI

(1) (2) (3)
VARIABLES Injury Count Injury Count Injury Count

Captain Experience -0.0870∗∗∗ -0.0826∗∗ -0.0829∗∗

(0.0336) (0.0356) (0.0349)

Last 90 Days 1.840 -0.381∗∗ 1.265
(1.166) (0.187) (1.097)

Age 0.0960 0.346∗ 0.361
(0.0722) (0.210) (0.220)

Age x L90D -0.0490∗ -0.0356
(0.0266) (0.0242)

AGE Squared -0.00372 -0.00320
(0.00232) (0.00225)

Aircraft Weight 0.0303∗ 0.0339∗ 0.0329∗

(0.0160) (0.0174) (0.0178)

Aircraft Age -0.0743 -0.0789 -0.0764
(0.0980) (0.0956) (0.0958)

Dark Flying Conditions 0.931∗∗∗ 0.872∗∗∗ 0.938∗∗∗

(0.295) (0.312) (0.298)

Favorable Flying Conditions 0.406 0.343 0.338
(0.403) (0.432) (0.408)

Competition (Inverse HHI) 1.727∗∗ 1.731∗∗ 1.699∗∗

(0.774) (0.811) (0.818)
Observations 850 850 850
Pseudo R-squared 0.1625 0.1636 0.1645

Robust standard errors in parentheses
*** p<0.01, ** p<0.05, * p<0.1

Variables explained: Captain Experience is the total experience of the captain
in thousands of hours. Last 90 Days is the total number of (hundred) hours
the captain has flown the past 90 days. Age is the age of the captain. Air-
craft Weight is the aircraft weight in thousands of pounds. Aircraft Age is the
aircraft age in thousand of flight hours. Dark Flying Conditions is a dummy
variable equal to 1 if the flight is operated under dark flying conditions, and 0
otherwise. Favorable Flying Conditions is a dummy variable equal to 1 if the
flight is operated under visual flight conditions, and 0 otherwise. Competition
is the standardized inverse Herfindahl Hirschman Index.
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Chapter 2

Monoposony Power in the U.S. Airline Industry: Are Pilots Underpaid?

2.1 Introduction

The rise in ownership concentration across many U.S. industries has brought renewed attention

to the monopsony power of employers and to the lack of bargaining power of workers (Autor

et al., 2020; Krueger, 2018). The monopsonistic labor market model predicts that firms have

market power in hiring as a result of an upward sloping labor supply curve (Robinson, 1969).

An upward sloping labor supply curve provides firms with an incentive to reduce employment

and pay workers a wage below their marginal products. In this paper, we investigate U.S. airline

monopsony power over their pilots, and bring empirical evidence to the growing policy debate on

the effects of employer monopsony power on workers (CEA, 2016, Mellman, 2019).1

The U.S. airline industry, which carried about 800 million passengers in 2018, is an interesting

case for the study of monopsony power for several reasons.2 A slew of bankruptcies and mergers

has increased market concentration in the airline industry over the past 15 years. At the same

time, media coverage points to concerns over labor shortages and safety (Meredith, 2018; Airbus,

2017). There are also reports that airlines have exploited their pilots, especially at smaller and

budget carriers, by paying below market wages, and by shifting the training cost to employees

(Gall, 2018).

The fact that there are only a small number of commercial airlines operating in the U.S. market

hiring from a large pool of potential workers intuitively suggests that airlines have market power.3

There are several possible theoretical approaches to studying monopsony power. Modern search

theory predicts that search frictions lead to wages below the marginal product (Mortensen, 2003).

In the context of the aviation industry, we expect firm characteristics and switching costs to be

likely causes of frictions. If workers differ in their valuation of firm’s non-wage characteristics,

1In 2019, the Federal Trade Commission (FTC) held Hearings on Competition and Consumer Protection in the
21st Century, which included three hearings on monopsony power.

2https://www.bts.dot.gov/newsroom/2018-traffic-data-us-airlines-and-foreign-airlines-us-flights
3See Table C.5 for a list of all carriers in our sample.
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firms will be able to set wages. There is considerable variation in airline size, prestige, and along

other dimensions, which results in heterogenous quality of airlines as employers. For example,

working at a regional carrier is substantially different from working at a legacy carrier. Pilots face

significant cost switching costs because benefits that accrue with tenure are non-transferrable.4

Lastly, firms tend to have market power if their workers are highly-skilled, specialized and lack

alternative occupations, which applies to pilots (Link and Landon, 1975; Muehlemann, Ryan, and

Wolter, 2013).

We estimate monopsony power in the airline industry by directly estimating the residual labor

supply curves facing individual airlines. Estimating the labor supply curve is of course complicated

by the fact that we only observe a single equilibrium set of prices and quantities for an airline

in a given time period. The resulting simultaneity problem calls for an instrumental variables

estimation strategy that provides a demand shifter, as proposed in the seminal work by Wright,

1928. Using the incidence of aviation accidents as an instrument for the number of pilots employed,

we can estimate the labor supply curve and the wage elasticity of labor supply. Importantly, we use

a firm-level instrument – accidents to an individual airline – to estimate the firm-level (or residual)

labor supply. Labor supply elasticity smaller than infinity and wages below the workers’ marginal

revenue product are evidence for monopsony power. We estimate an inverse labor supply elasticity

of 2.55 across all airlines, which implies that airlines pay pilots 30.95% below the marginal revenue

product.5 These results suggest that, on average, airlines have monopsony power in hiring pilots.

To further support our finding that airlines exercise market power in hiring, we analyze the

relationship between the market concentration, as measured by the (inverse) Herfindahl-Hirschman

Index (HHI), and the labor supply elasticity. Over the sample period, market concentration varies

considerably as a result of bankruptcies, mergers, and new entrants. As expected, airlines’ market

power in hiring rises when the market becomes more concentrated.

4Seniority is airline specific. All seniority benefits such as compensation, scheduling, and buddy passes improve
over time.

5A competitive labor market is characterized by an inverse labor supply elasticity of zero.
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The existence of great and persistent monopsony power in the heavily unionized aviation in-

dustry suggests that unions ability to counter employer market power may have limits. What does

this mean for policy-makers and regulators that want to ensure fair labor market conditions? Low-

wage workers can be protected by minimum wage laws. Wage floors, of course, do not bite for

comparatively high-paid workers such as pilots.

A monopsonistic labor market is not pareto optimal and policy intervention can help reach a

second-best outcome. One plausible approach to limiting monopsony power in high-skill labor

markets is antitrust enforcement. Historically, antitrust enforcement has been primarily concerned

with the impact of a lack of competition on product prices and consumer welfare. Little attention

has been paid to labor market power, and airline mergers are no exception6. In the past two decades,

regulators approved more than a dozen mergers, which cut the number of airlines operating in the

U.S. in half. The Department of Justice, presented with the option to challenge mergers, has never

cited labor market competition as a concern. These decisions to not challenge mergers is supported

by the established norm that markets are considered unconcentrated if the HHI does not rise above

1,500. The U.S. aviation industry has not crossed this threshold between 1995 and 2018. This

makes it all the more surprising that we find robust evidence of airlines’ ability to set wages,

suggesting that a product-market based measure of market concentration, such as the HHI, may be

insufficient as a basis for competition policy.

As with other jobs, pilot performance potentially varies with the level of job satisfaction, which

in turn is a function of their compensation, job amenities, and other factors. A crucial output of

pilot performance is the safety of the aircraft. Pilots bear sole responsibility for the operation of the

aircraft and the safety of everyone on board. Passengers are interested in having a pilot that is fit

to fly and able to perform optimally. Poor compensation and job satisfaction could thus undermine

safety. There is some evidence that pilots are experience high levels of stress and low levels of job

security (GOOSE Recruitment, 2020).7

6https://www.justice.gov/atr/events/public-workshop-competition-labor-markets
7Aviation recruiters GOOSE Recruitment and aviation publisher FlightGlobal surveyed pilots and published a

report discussing pilot career satisfaction (GOOSE Recruitment, 2020). We will not discuss all the findings. The
interested reader is invited to look at the full report at https://www.goose-recruitment.com/the-pilot-survey-2021.
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Our finding that pilots are paid below their MRP may contribute to poor job satisfaction among

pilots. In turn, we may observe safety improvements as a result of higher wages.

2.2 Monopsony in the Labor Market

2.2.1 Motivation

Much of the work in labor economics relies on the assumption that markets are near perfect compe-

tition. In perfect competition, firm-level labor supply elasticity is infinite, and the firm can hire or

fire workers without adjusting the wage.8 Workers are paid a wage equal to their marginal revenue

product. In practice, there are many situations with significant labor market frictions and we have

reason to suspect that employers have the power to set wages. This is the case in a monopsonistic

labor market. Robinson, 1969 first introduced the term “monopsony”, which describes a market

with a single buyer. The term monopsony is now commonly used to describe factor markets with

a small number of employers that face increasing labor supply curves and, as a result, possess

significant market power (technically, an “oligopsony”). A growing body of literature provides

empirical evidence on employer market power in various settings, suggesting that monopsonistic

markets are by no means an oddity.

2.2.2 The Static Monopsony Model

A firm with monopsony power faces an upward-sloping labor supply curve, which implies that it

can pay wages below competitive levels without losing all its workers. This creates an incentive to

maximize profits by reducing employment relative to the competitive market, which introduces a

wedge between the marginal revenue product of labor and the wage (see Figure 1, distance between

wmrp and wm). The difference between the MRP, and the wage paid by a monopsonist has been

termed the “rate of exploitation” and is captured in the form of rent by the monopsonist (Hicks,

1932; Pigou, 2013). It is important to note that the “rate of exploitation” does not tell us how much

less workers are paid relative to the case of perfect competition.

8Firms are wage takers.
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The firm maximizes profits Π as follows:

Π = R(L)−W (L)L (2.1)

where R(L) is the revenue function, L is the quantity of labor, W (L) is the wage rate and W (L)L

is the total wage cost.

The first-order conditions yield:

R′(L) = W ′(L)L+W (L) (2.2)

The first-order conditions can be rearranged as follows:

R′(L)−W (L)

W (L)
=

1

ϵLw
= ϵ, (2.3)

where ϵNw is the wage elasticity of labor supply facing the monopsonistic firm. The static profit

maximization problem of a monopsonistic firm provides us with a way to measure monopsony

power: We can estimate the (inverse) labor supply curve to a firm and derive the size of the wedge

between the marginal revenue product and the wage.9

In a review of the literature, Manning concludes that “the elasticity of the labor supply curve

facing the firm does not seem to be close to infinite but that it is hard to get a very precise estimate

of it (2003).” Generally, estimates of 2-5 are considered reasonable. Estimates in this range imply

that employers have a size-able degree of monopsony power: an elasticity of 5 implies that wages

are 17% below the marginal revenue product (MRP) and an estimate of 2 implies that wages are

33% below the MRP.10

9With respect to the standard formula of the wage elasticity of supply, we estimate the inverse labor supply elasticity
because in our empirical specification we have the (log)wage on the Left-hand-side of the equation and the quantity
of labor on the Right-hand-side.

10We obtain the exploitation gap by solving the static optimization problem of the monopsonist and empirically
estimating the labor supply elasticity. Given a wage of 100 and an estimated elasticity of 2, the exploitation gap of 50
is calculated as follows:

1.

n
MRP − w

w
=

1

ϵ

⇒ MRP − 100

100
=

1

2

⇒ MRP = 150
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2.2.3 Literature Review

Economists have studied monopsony power in a variety of sectors and with a number of ap-

proaches. A handful of papers have been able to estimate firm-level labor supply curves. This

includes the work of Falch, 2010 on teachers, Goolsbee and Syverson, 2019 on university profes-

sors, Boal, 1995 on coal miners, and Hirsch and Schumacher, 1995, Matsudaira, 2014, Staiger,

Spetz, and Phibbs, 2010, and Sullivan, 1989 on nurses. Several of these studies exploit a one-

time policy change with differential impacts on average wage across firms to estimate the labor

supply curve. Authors typically rely on indirect methods because the data needed to identify clas-

sical monopsony power includes firm-level labor demand shifters that are not commonly available.

Some authors, for example Falch, 2010 and Goolsbee and Syverson, 2019, identified suitable in-

strumental variables to directly estimate the residual labor supply elasticity, that is, the labor supply

to the individual employer. We follow this approach.

Crémieux and Van Audenrode, 1996 analyze the effect of mergers on the earnings and employ-

ment of pilots, flight attendants, and mechanics in the US airline industry between 1971 and 1990.

Increased market concentration should increase the bargaining power of the remaining airlines. In

contrast, by increasing market share and monopoly power, a merger may increase the total rents, a

share of which may or not go to labor. Their results show that mergers had no impact on pilots??

earnings, essentially leaving the question of whether airlines hold monopsony power over pilots

unanswered. Although Crémieux and Van Audenrode (1996) show that mergers have no signifi-

cant impact on pilot employment, we explicitly account for mergers in our analysis because both

the time period under consideration (1971-1992 vs 1995-2018) and our identification strategy are

different.11

Our test of monopsony power centers on estimating the residual labor supply curve facing

each airline. Two things are needed to estimate the residual labor supply curve to a firm. First, it

requires firm-level data on average wage and quantity. Second, it requires firm-level instruments

11See Table C.7 for a list of mergers in our sample period.
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for labor demand to get around the reverse causality problem (see, for example, Falch, 2010). In

the following sections we present firm-level data on average wage and pilot employment and a

labor-demand shifting instrument.

2.3 Background

2.3.1 Pilot Training

The United States has a unique and archaic pilot training system. Originally, the system was

designed where military pilots would join airlines after their Navy or Air Force contract had termi-

nated. While this was how the vast majority of pilots were trained, a few went through the private

training route. Nowadays, most pilots get training at a flight school. This is due to a few reasons.

First, the growth of commercial aviation has grown steadily over the past decades and outpaced the

growth in military aviation. Second, the military has been offering more competitive compensation

to retain its pilots, hence a smaller percent of military pilots are going to fly for airlines. Unlike the

rest of the world, the US has not changed the structure of its pilot training program, and instead

made it more cumbersome.

Becoming a pilot is costly, both in terms of the training hours required and the financial cost.

In the United States, obtaining all necessary licenses and certificates to work as a commercial pilot

costs approximately $100,000.12 In response to safety concerns following the Colgan Air regional

airline crash in February 2009, the number of flight hours to obtain a Airline Transport Pilot (ATP)

certificate have been increased. Specifically, the training hours required to become a regional

airline pilot were increased from 250 hours to 1,500 hours (with some exceptions).13 Flight hours

are typically accumulated as a flight instructor, which comes with modest compensation. Flying

80 hours a month, adds approximately two years to complete the required hours.14 In short, the

more stringent training requirements delay labor market entry for commercial pilots by at least two

12https://atpflightschool.com/become-a-pilot/flight-training/pilot-training-cost.html. There are no FAFSA loans for
flight school

13Public Law 111-216, which was enacted on August 1st 2010 https://www.congress.gov/111/plaws/publ216/PLAW-
111publ216.pdf

14It is an improbable upper bound to reach
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years. Once a pilot obtains an ATP, he/she typically joins a regional airline and remains there for

four to seven years before joining a carrier that operates larger aircrafts. The following section will

provide some light on the career paths. Additional information on the training path is presented in

the appendix.

2.3.2 Pilot Career Paths

Let’s begin by explaining some fundamental terminology regarding the regulations and structure of

the industry. We will present a summary; for a more complete explanation, view the work done by

(McGee, 2015). There are two types of commercial flight operations: FAR Part 121, FAR Part 125,

and FAR Part 135. FAR Part 121 is for scheduled flight operations, such as when we fly a regional,

low-cost, or legacy carrier (these are larger aircrafts). FAR Part 135 operations are for charter

flights, such as island hopping, flying to small airports, private jets where seats are sold (these are

smaller aircrafts). Both are flying from selling seats to passengers. FAR Part 91 operations are

flights that are conducted for personal use through a small single engine plane to a large plane used

for FAR Part 121 operations. The highest paid and most prestigious job a pilot can obtain is one

at major airline, then at a low-cost airline, followed by one at a regional airline, and lastly at either

a FAR Part 135 or 91 operation. Pilot hiring at commercial airlines is based on a point system,

where the more points you have, the more likely you are to be hired next. For instance, more total

flight hours, more hours on multiengine, more hours of pilot in command 15, having more years

of college education earn more points. To reach the goal of flying for a FAR Part 121 operation,

there are several requirements that must be met16. Since having a college degree is an important

component, many earn at least a bachelor’s degree17.

When a pilot gets a job flying an aircraft certified to be operated with two pilots, he or she must

obtain a type rating for that specific aircraft to be qualified to operate that specific aircraft. This is

the first time that a pilot will learn how to fly with someone else in the cockpit. While this license

15Here is the FAA’s official definition of PIC: 1. The PIC has the final authority and responsibility for the operation
and safety of the flight. 2. Has been designated as pilot in command before or during the flight; and 3. Holds the
appropriate category, class, and type rating, if appropriate, for the conduct of the flight.

16The requirements are airline specific, and mostly revolve around education and experience,
17A university degree allows to enter sooner a major airline, and offers alternative jobs in case of being furloughed.
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can be obtained without a job, it is usually paid for by the airline. The type rating can either be

as Pilot-in-Command (for captains) or Second-in-Command (for first officers). On their first job,

pilots start as Second-in-Command.

A typical career path for a pilot looks as follows: after the training is completed, pilots remain

flight instructors as a career, until they can fly for a regional airline as Part 121. Regional pilots

usually stay with the company four to seven years before being able to advance to a major airline

or cargo airline that is also Part 121. Military pilots can obtain their ATP with 750 hours and when

completing their service can join the major airlines directly instead of entering a regional carrier

first.

Figure 2.1: Training and Career Path

When a pilot joins a major airline, pilots usually start as a first officer on a smaller plane, then

move on to a larger plane, become a captain on a small plane, and spend the end of their career as

a captain on a large plane. Since a pilot’s hourly wage is a function of aircraft size and seniority,

they try to move on larger planes as quickly as possible. When a pilot joins a low-cost airline,

they (usually) just climb up the seniority list since there is just one airplane type; the largest wage

increase occurs when the pilot is promoted from first officer to captain. The following diagram

shows the career evolution of a pilot joining a major airline:
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Figure 2.2: Career Evolution
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2.3.3 Pilot Wages

The wage structure of commercial pilots in the United States has multiple components, most of

which relate directly to the number of hours worked. Pilots are paid an hourly rate for every flight

hour. This rate varies with seniority (number of years they have been with the airline), the type

of aircraft (larger and faster aircrafts that generate more revenue warrant a higher hourly rate),

and the level of responsibility (captains get paid more than copilots). See Figure C.1 for wages

over time and Table C.1 and Table C.2 are examples of compensation tables at Delta Airlines.

Contracts specify a minimum of hours, which guarantees base earnings, and overtime pay, for

flight hours beyond the minimum.18 When the flight takes place also affects a pilot’s wage: night

flights, flights on holidays, and flying during requested time off, are usually paid at a higher hourly

rate. Standby pilots, who are on duty and ready to fly in case another pilot cannot fly (i.e. due

to sickness), receive a guarantee of productive, paid, hours that day. For example, a pilot that

has waited a day on standby, but did not replace a pilot, will be compensated for a given number

of hours of productivity as specified in the contract. Further compensation is paid to pilots that

perform non-flying duties such as crew repositioning, attending mandatory training course etc.

Active pilots that serve as instructors are paid a varying premium for their work.19 Our outcome

variable is the average wage that an airline pays to its pilots. This measure includes all components

of compensation discussed above but does not include any benefits the airline may offer.

18Delta Airlines, the minimum guarantee is 65 hours of flight per month. The FAA restricts pilots to a total of 1,000
hours a year.

19There are different types of instructors. Non-active pilot performing ground instruction work spend most of
their time providing theoretical training to pilots in classrooms. Active pilots train pilots in simulators, either for a
pilot’s first-time training on the aircraft or for active pilots that train to remain legally current on handling normal and
abnormal flight procedures. There are also in-flight instructor that continue the pilot’s training on the aircraft during
normal revenue flights. Lastly, there are examiners that certifies that the pilot meets the required level of competency
to perform his flight duty with another qualified pilot on the aircraft.
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2.3.4 Unions

As in other industries, commercial airline pilots vote on whether or not they want to join a union.

The two largest unions in the United States are the Air Line Pilots Association (ALPA), and

Teamsters. Unions represent the pilots and negotiate labor contracts with the airline. Broadly

speaking, unions negotiate average wage and work conditions, though contracts are highly com-

plex and often span hundreds of pages. For instance, the union may negotiate specifics of work

conditions, such as crew rest times (how many consecutive hours a pilot can fly), restrictions

on time zone changes to account for jet lag and the resulting recovery time. Contracts are typ-

ically renegotiated every four years and negotiations often last more than a year. Unions and

airlines also negotiate amendments while contracts are in force. When incidents and accidents

occur, an internal investigation is required to determine the root cause. If work conditions have

led to an accident, contracts are amended accordingly, for example to include further scheduling

restrictions.

2.3.5 Safety

Safety is a major concern for travelers and has significantly improved over the past decades (Airbus,

2017). Accidents do not happen because of a single mistake or a failure of equipment, but are

typically the result of a sequence of unfortunate occurrences, such as equipment malfunction and

multiple pilot errors. Studies show that pilot error is the principal cause of accidents, as pilots are

supposed to navigate difficult situations (Oster, Strong, and Zorn, 2010). Most accidents happen

close to airports, during poor weather or in difficult terrain. We might expect that there is a greater

risk of accidents when an airline experiences financial stress, but there is no conclusive evidence to

support this. Rose, 1990 shows that lower profitability is correlated with greater a greater accident

rate, particularly among small airlines. However, Wang, Hofer, and Dresner, 2013 show that safety

investments (that reduce the risk of an accident) are not affected by an airline’s financial health.

Further, Gaba and Greve, 2019 show that less profitable airlines are more likely to replace older
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aircraft and modernize their fleet, which not only reduces cost but also increases reliability. In sum,

an airlines financial health is not a reliable determinant of safety, and accidents are most likely to

happen as result of issues during flight operations.

2.3.6 Competition

We start by introducing the Herfindahl-Hirschman Index, a widely accepted measure, to assess

market concentration in the airline industry. The HHI is calculated by squaring the market share

of each firm competing in the market and then summing the resulting numbers. See Figure C.1

for HHI over time. For example, for a market consisting of four firms with market shares of 20,

20, 30, and 30 percent, the HHI is 2,600 (202 + 202 + 302 + 302 = 2,600). The HHI takes into

account both the number of firms and the relative sizes of the firms in a market. Hence, the index

increases as the number of firms in the market decreases and as the disparity in size between those

firms increases. The index approaches zero in a market with many firms of similar size and reaches

its maximum of 10,000 points if there is a single firm in the market. Market regulators commonly

employ the HHI to guide market policy. U.S. regulatory agencies generally consider markets in

which the HHI is below 1500 to be unconcentrated, and markets with an index between 1500 and

2,500 points to be highly concentrated.20 Further, the U.S. Federal Trade Commission presumes

that transactions that increase the HHI by more than 200 points in highly concentrated markets

are likely to enhance market power. In this paper, we create the Competition Index, defined as the

inverse HHI, by subtracting the HHI from 10,000 (Boydstun, Bevan, and Thomas III, 2014). With

this new measure of competition, a value of 8,500 or greater is competitive, a value between 7,500

and 8,500 is moderately competitive, and less than 7,500 is uncompetitive. Our summary statistics

present the raw numbers, but our regression will use a standardized variable. From our descriptive

table below, we can see that the passenger airline market is competitive.

20See U.S. Department of Justice & FTC, Horizontal Merger Guidelines §5.3 (2010).
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2.4 Data

We use aviation accident and injury data from the National Transportation Safety Board (NTSB)

and information on airlines, the number of pilots, demographic characteristics, and average wage

from the Bureau of Transport Statistics (BTS) for the years 1995-2018. Serious incidents and

accidents are rare occurrences that must be reported to the NTSB. Non-serious incidents do not

have to be reported (AOPA, 2016).21 After an accident or incident occurred, the NTSB sends a

team of specialists to the accident site for investigation. Table C.11 shows descriptive statistics of

the U.S. aviation industry. We have over 900 airline-year observations and airline-level statistics

on pilots. The outcome variable of interest is the (log) average compensation per pilot, which is

the mean of the pilot average wage, benefits, and pension at a given airline. This measure does not

include other compensation or benefits such as, for example, traveling allowance, hotel quality, or

whether or not one has to pay for their uniform. The main regressor of interest is the (log) number

of pilots at an airline. The instrument is the accident count per airline in the previous year22. We

split this sample into passenger airlines and cargo airlines. Our analysis is restricted to passenger

airlines and contains 666 airline-year observations.

Data on pilot employment and compensation was collected from the Bureau of Transportation

Statistics, Form 41, schedules P5.2, P6 and P10. Form P5.2 and P6 are quarterly information,

while form P10 is yearly information, hence our unit of time is yearly. We control for inflation

by making our compensation variable in dollars figure of the year 2018.23 Since we do not have

21According to the NTSB definition, an accident is an occurrence associated with the operation of an aircraft that
takes place between the time any person boards the aircraft and point in time when passengers disembark. Further,
accidents are occurrences resulting death or serious injury of persons, or in which the aircraft receives substantial
damage. Accidents are distinct from incidents, which are occurrences associated with the operation of an aircraft,
which affects or could affect the safety of operations (CFR-830.2, n.d.).

22The airline can take a little while to adjust to the effects of the accidents
23Payroll data is provided by U.S. carriers for the Department of Transportation. P5.2, P6, and P10 data are sub-

mitted by large certificated air carriers; i.e. carriers operating at least one aircraft certified for 61 seats or more or a
payload of 18,001 lbs. or more.
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individual-level data, nor data on seniority, we are unable to control for seniority.24 We also obtain

net income of airlines from P5.2 as a control variable to capture the effect of profitability on wages.

2.5 Aviation Accidents as Instruments

Aviation accidents are rare but widely publicized events that loom large in the public imagination.

When an airline experiences an accident, fewer people will buy tickets from this airline (Zotova,

2017b). We propose that accidents are an exogenous shock to consumer demand. We use this shock

as an instrumental variable for the number of pilots employment by an airline in the following year.

For this instrument to be valid, an accident has to affect demand for tickets from the affected airline.

Further, the accident should not affect demand at competing airlines (those that did not experience

an accident) or alter overall ticket demand. To further bolster this claim we estimate equation

(5) for pilots at cargo airlines. We propose that pilots are well aware of the risk of an accident

occurring and do not update their belief when an accident does occur at their airline. Further, we

hold that pilots at passenger airlines and cargo airline pilots do not differ in that regard. If these

propositions hold true, accidents at a cargo airline should not affect the number of pilots employed

by an airline because cargo accidents do not result in a demand shock. As expected, we show that

in the case of cargo airlines there is no relationship between accidents and the number of pilots

(see Table 9). This supports the idea that accidents cause a demand shock that exogenously shifts

the demand for pilots of passenger carriers. See Figure C.1 for accidents over time and Figure C.2

for the relationship between accidents and passenger volume.

How does an aviation accident affect pilot employment? The affected airline typically imple-

ments changes in its operation to improve safety or are forced to scale back their operations and

hire fewer pilots. Airlines routinely evaluate what led to an accident, and consider whether the

findings warrant further changes that could improve the safety of their aircrafts. Given the signif-

icance of human error, plausible adjustments would involve improving the working conditions of
24We could construct a seniority measure analogous to the one constructed by (Crémieux and Van Audenrode,

1996). However, many airlines are part of our sample for only a few years, as they do not always follow federal
reporting requirements. Therefore, we are not confident that a valid seniority measure can be constructed from the
available data.
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pilots and hiring more staff to ensure safer operations (Billings and Reynard, 1984). In short, if an

airline that experienced an accident wants to improve safety, it may hire additional pilots (rather

than reduce employment). If the airline experiences significant financial strain as a result of the

demand shock, it may have to cut labor costs. Airlines cannot adjust wages in the short-term be-

cause of the union-negotiated employment contracts.25 However, bankruptcy protection provides

airlines an opportunity to renegotiate union contracts, which is why we include an indicator for

bankruptcy protection (Chaison, 2007). See Table C.6 for airline bankruptcies over time. Given

the lack of alternatives, the primary way for airlines to cut labor costs is to adjust the rate at which

they hire pilots (i.e. to replace retiring pilots).26 This implies that it is likely that pilots’ wages are

affected by the demand shock (resulting from an accident) only through airlines’ demand for labor.

Monopsonistic firms capture rents by setting wages below the competitive market level, thereby

creating a labor shortage. We want to rule out that the observed labor shortage is caused by factors

other than monopsony power. Are there any supply-side mechanisms that could have led to the

observed pilot shortage? A plausible reason for an undersupply of pilots are the costs associated

with obtaining the required training and licenses to work for a commercial airline. For example,

in order to work for a commercial airline with regular scheduled flights, pilots need to obtain an

Airline Transport Pilot License (ATPL). However, this licensure requirement does not appear to

restrict the supply of pilots. Data from the FAA’s U.S. Civil Airmen Statistics contains the number

of pilots that have obtained the ATPL for the years 2005 to 2018, spanning most of our sample

period.27 In Table C.8 we show the number of pilots that have an active ATPL license and the

number of pilots employed by commercial airlines as observed in our data. The number of pilots

holding an ATPL exceeds the number of pilots employed at commercial airlines, making it unlikely

that supply-side frictions are responsible for the observed pilot shortage.

25We exclude charter carriers from our analysis for two reasons. First, they operate differently from scheduled
carriers. Specifically, contract structures for charter pilots differ from those of scheduled carriers. Second, charter
carriers have low rates of unionization (45.6%) compared to scheduled carriers that are unionized at a rate of 85.17%,
which would threaten the exclusion restriction.

26Training pilots and ensuring that they are current on an aircraft is expensive. Hence, the savings from not filling a
vacant position are even greater than the nominal wage expenditures

27This can take anywhere from 750 flight hours for military pilots up to 1,500 flight hours for students in a flying
school
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2.6 Estimation Strategy

Our test of monopsony power focuses on estimating the residual labor supply curve facing each

airline. Equation (4) is the firm-level wage equation as a function of the number of pilots.28 Robust

standard errors are clustered at the airline level.

log(wageit) = β0 + µ log(pilotsit) +X
′

itγ + αi + τt + ϵit (2.4)

where wageit is the average wage paid by an airline i in year t and pilotsit is the amount of labor

(number of pilots) that airline i employs in time t. The airline fixed effect is αi, the year fixed effect

is τ . The coefficient µ is the inverse of the labor supply elasticity facing the individual airline. In

a competitive labor market the firm-level labor supply is infinite and we would observe µ = 0. In

contrast, if µ > 0, the airline faces an upward sloping residual labor supply. X ′
it is a vector of

firm-level control variables that includes net income, and indicators for mergers, bankruptcies and

pilot unions at an airline, as well as a market competition index.

In order to estimate Equation (4) using 2SLS we estimate the following first-stage. Equation (5)

is the first stage equation of the number pilots on the number of accidents resulting from aviation

incidents for airline i in year t− 1. The airline fixed effect is αi, the year fixed effect is τ . Robust

standard errors are clustered at the airline level.

log(pilotsit) = θ0 + θ1 accidentsit−1 +X
′

itδ + αi + τt + υit (2.5)

In Table 2 we estimate equation (4) using OLS and 2SLS. The instrumental variable strategy

relies on the assumption that the incidence of accidents affect pilot average wage only through the

demand for air tickets and that pilot employment changes resulting from accidents are driven by

the firms’ response to the demand shock. We made this argument in section V.

28The outcome is the average wage by firm.
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We are interested in how the labor supply elasticity varies with a measure of competition,

through the inverse HHI. We ask, does employer monopsony power increase as the market becomes

more competitive? We estimate this by adding the interaction between the number of pilots with

Competition:

log(wageit) = β0+µ log(pilotsit)+ η log(pilotsit) ∗Competitiont+X
′

itγ+αi+ τt+ ϵit (2.6)

Our additional variable is the interaction between the endogenous variable, log(pilotsit), with

an exogenous one, Competition. Hence, this interaction has an endogenous component that must

be corrected during the first stage. The predicted value of log of pilots being exogenous can be

replaced in the interaction to correct the endogeneity.

2.7 Results

We start by looking at the reduced form relationship of the log of the average wage on the log

number of pilots. The results for equations (4) and (6) are in Table C.17.29 Each regression

includes airline and year fixed effects. We are interested in the labor supply elasticity, given by the

inverse of the coefficient associated with the log number of pilots. The OLS coefficient of 0.0281,

presented in column (1) implies a labor supply elasticity of 35.6, indicating minor monopsony

power but is very noisily estimated. The issue, of course, is that both supply and demand may be

moving simultaneously. As a result, we cannot interpret the OLS regression as a supply curve. To

identify the residual labor supply elasticity facing a single airline, we use the lagged number of

accidents to instrument for labor demand at the individual airline.

The second-stage coefficient of 0.400 in column (2) (significant at the 5% level) implies a resid-

ual labor supply elasticity of 2.5. Given the average wage of $117,519, pilots face an exploitation

gap of $47,007 or 28.6%.30 This estimate is large but not unreasonable (Manning, 2003). The

finding indicates that airlines have substantial monopsony power in the labor market for pilots.

29First-stage results are presented in Table 12 of the appendix.
30The results are not meaningfully different if we exclude control variables from the regression.
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Note that the variable Competition, which is the inverse HHI, has been standardized. The omitted

dummy variable category for the type of airline is "Legacy carrier" referring to the major air-

lines. The coefficients for low-cost carriers (LCC), minor- and regional airlines are included in the

table.

Column (4) presents the 2SLS results that allow us to measure the effect of market concentra-

tion on the labor supply elasticity.31 To do so, we take the partial effect with respect to the log

number of pilots and obtain 0.391-0.0239*Competition. At the mean value of the standardized

Competition, 0, we obtain an inverse elasticity of 0.391, which corresponds to an elasticity of

2.56. This implies pilots are paid 28.11% below their marginal product. We perform a test of joint

significance and a test on the partial effect evaluated at the mean and find that results are signifi-

cant at 1%. An increase in Competition by 1 one standard deviation from the mean would cause

an increase in elasticity by approximately 0.17 points, which corresponds to pilots being paid an

additional 1.26%.

Our results from Table 4 show that as competition increases, wages increase slightly. When

taking the partial effect with respect to Competition, we see that the turn around point for the log

of quantity of pilots is at 13.47 , but the maximum value in our data is 9.52; the turn around point is

never reached. The partial effect of Competition evaluated at the minimum, mean, and maximum

values of log number of pilots yield values of 0.243, 0.165, and 0.094 respectively, implying that

within the range of existing firm sizes, an increase in competition has a positive effect on wages.

It would take a very large firm (more than twice the size of the largest current firm) to see wages

fall as a result of an increase in competition.

2.8 Policy Implications - Pilot Training Reform

According to our results, competition only slightly explains monopsony power. The source of

monopsony power lies, at least partially, in the training structure and career flow path. In most

of the world, pilots go through a different training program that allows them to enter a (final)

31Column (3) is the OLS regression that includes the interaction term.
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job much earlier, which has wage ramifications. We propose that U.S. carriers adopt the similar

approach. Specifically, many foreign companies have "Ab initio" programs that work as follows:

potential pilots take a thorough interview exam,32, if the potential pilot passes the exam, then he/she

has the job guaranteed by the company contingent on successfully accomplishing the studies33

Many carriers will finance the education by requiring that the pilot stays with the airline over a

certain period of time. In most countries, such as in Europe, pilots can join the airline with 250

flight hours, which is what the United States had as a requirement for pilots to join a regional

airline before PL 111-216 was implemented, which significantly increased flight hours with the

intention of improving safety. Pilot Source Study conducted by Embry-Riddle has shown that

there were no safety improvements linked to the PL 111-216. Therefore, we advise that pilots join

airlines through an Ab initio program with 250 hours. An Ab initio program would allow pilots to

enter a major airline directly after flight school is completed, allowing them to join the seniority

list sooner, hence, to reach a higher earning for longer. Currently, the time they spend at flight

schools providing instruction and the time they spend at a regional airline do not count towards the

seniority. These years would then count towards seniority and earn higher wages. The training and

career path would then look as follows:

Figure 2.3: Proposed Training and Career Path

Flight School
4 Years

Regional
Airlines

Low Cost
Airlines

Major
Airlines

32This exam varies by airline, but usually incorporates an aptitude test, a psychological exam, interview questions,
and quantitative skills.

33Currently, only United Airlines has a contact with a flight academy to provide guidance in recruitment and training.
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Training to become a pilot is risky. Pilots in training incur financial costs, yet only after they

complete their training and apply for a job is the payoff revealed. One alternative is to screening

applicants prior to training, which could allow airlines to attract better quality pilots. Entering

the workforce earlier could also benefit pilots. Pilots in training would not have to spend time

becoming instructors. Instead, they would enter a major or low-cost airline directly, much like

U.S. military pilots (or as is done in many other countries). The productivity of pilots is fairly

constant throughout their career. Entering sooner would enable pilots to enter the seniority list

sooner. Once on the seniority list of a major carrier (or low cost carrier), pilots are paid a wage

closer to their marginal product. Consequently, their total lifelong (average) earnings will higher;

the wage gap will be smaller. Below is a wage simulation showing the current path taken by

pilots34 to the proposed path with direct entry. In this example, we use the Delta Airlines wages

for the A320 and A350. The average wage in the current path in comparison to the proposed path

is $154,467 and $180,314 respectively; the lifelong difference in earnings between the two options

are $6,487,600 and $7,933,800, which is a difference of $1,446,20035.

2.9 Conclusion

The U.S. airline industry, despite having seen a decrease in competitiveness over the past two

decades, remains competitive according to the U.S. regulatory agencies. We show that airlines

have a substantial ability to set wages, a common phenomenon for employers of highly specialized

and skilled labor. Using aircraft accidents as an instrument for the labor demand we estimate the

residual labor supply curve. We find that pilots are, on average, paid 28% below their marginal

revenue product, a pareto inefficient outcome. We also find that a commonly used measure of

market competition, the inverse HHI, is a poor predictor of monopsony power. Monopsony power

is likely originating elsewhere. We make the case that the training structure and career trajectory

introduce frictions that suppress wages. Time-intensive and expensive training programs do not

34Here pilots have to be instructors for a couple years, spend 7 years in a regional airline (at Sky West), and then go
from being a FO on the A320, A350, then Captain on the A320, then A350.

35We do not include pension and benefits
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select high ability candidates ex-ante, which means some graduates are not suitable to work as

airline pilots.Policy changes after the Colgan Air crash in 2009 increased the training duration,

delaying entry into the labor market.

In order to mitigate the efficiency loss, we propose implementing ex-ante training screening that

will make pilots eligible for a shorter training program (similar to Ab initio programs or military

training). Providing student loans could relax financing constraints, which could attract more

applications, and allow for selection of higher ability candidates. Graduating pilots would be

qualified to start their career at higher paying low-cost or legacy carrier. Simulations show a

lifelong earning difference of $1,446,200. While training and hiring frictions may not be the only

source of monopsony power, it can be addressed by policy maker by implementing pilot training

reform.
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Chapter 3

Improved Likelihood-Based Inference for Treatment Effects in Small Samples:

Application to Aviation Data

3.1 Introduction

Small samples complicate causal inference because of sampling error, lack of power and distri-

butional assumptions. We apply recent likelihood theory to derive p-values that more accurately

assess the treatment effect parameter for the impact evaluation in the regression analysis context

with normal or general non-normal error distributions. For this, we use the conditional likelihood-

based method developed in (Fraser and Reid, 1995), which has O(n−3/2) distributional accuracy

and uses conditional techniques to assess the departure of data from a hypothesized parameter

value. Within this intrinsic conditional framework the likelihood methods invoke distributional

techniques closely related to the saddle-point approach. As such, they have been found to give

exceptionally high accuracy even in the case of minimal sample size. A particular merit of this

approach is that it provides substantial improvements on the usual methods (e.g. likelihood ratio,

Wald, bootstrap tests) and is superior in terms of central coverage and error rate even for very

small sample sizes. These results have particular appeal to applied researchers dealing with impact

evaluation models when the sample size is very small. The procedure is applied to a real data set

from aviation industry to reassess the impact accidents on airfares, which could have ramifications

for airlines that want to hedge against losses.

The approach proposed in this paper is based on recent developments in analytical approxima-

tions for parametric inference in small samples, initiated by Fisher (1934) but largely overlooked

until new developments were stimulated by Efron and Hinkley (1978) and (Barndorff-Nielsen and

Cox, 1979). A flood of subsequent work is summarized in the books of (Cox and Barndorff-

Nielsen, 1994), (Pace and Salvan, 1997), and(Severini, 2000). The efforts of many researchers,

particularly (Barndorff-Nielsen, 1983; Barndorff-Nielsen, 1986) , Fraser (1990), (Fraser, Reid,

and Wu, 1999), have led to an elegant theory of near-exact inference based on small samples from
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parametric models. Its theoretical basis is the saddle-point and related approximation discussed by

Daniels (1954, 1987), and further developments have been well described by Reid (1988, 1995,

2003). These methods are highly accurate in many situations, and can be conducted regardless of

the sample size in order to determine the extent to which first-order methods can be relied upon.

The two main contributions of this paper are as follows. First, higher-order likelihood theory is

used to obtain highly accurate p-values for treatment effect in impact evaluation models. Second,

an empirical application is given in which the impact of a government protectionist training policy

is examined using data from aviation industry with a limited number of participants.

3.2 Background

Let Y1, . . . , Yn be independently and identically distributed from a parametric model with log-

likelihood function given by l(θ; y). Assume the full parameter θ = (ψ, λ′)′ is p dimensional.

The variable ψ represents the scalar component interest parameter and the vector λ is the p − 1

dimensional nuisance parameter. Maximization of this function with respect to θ yields the max-

imum likelihood estimate θ̂ = (ψ̂, λ̂′)′. The constrained maximum likelihood estimate denoted by

θ̂ψ = (ψ, λ̂′ψ)
′ is obtained by maximizing the log-likelihood function over λ for a fixed value of

ψ. Based on the log-likelihood function, two familiar statistics can be used to compute confidence

intervals for ψ. The Wald statistic (q)

q = (ψ̂ − ψ){jψψ(θ̂)}−1/2 (3.1)

and the signed log-likelihood ratio statistic (r)

r = sgn(ψ̂ − ψ)[2{l(θ̂)− l(θ̂ψ)}]1/2, (3.2)

where jψψ(θ̂) is represented in the estimated asymptotic variance of θ̂:

jθθ
′
(θ̂) = {jθθ′(θ̂)}−1 =

 jψψ(θ̂) jψλ
′
(θ̂)

jψλ
′
(θ̂) jλλ

′
(θ̂)

 .
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The matrix jθθ′(θ) is the information matrix which contains the second derivatives of the log-

likelihood function:

jθθ′(θ) =

 −lψψ(θ) −lψλ′(θ)

−lψλ′(θ) −lλλ′(θ)

 =

 jψψ(θ) jψλ′(θ)

jψλ′(θ) jλλ′(θ)

 .
The statistics given in (3.1) and (3.2) are asymptotically distributed as the standard normal with

an O(n−1/2) rate of convergence. These approximations are thus accordingly known as first-order

approximations. Tail probabilities for inference on ψ can be approximated using either of these

statistics with the cumulative standard normal distribution function Φ(·), i.e. Φ(q) and Φ(r). These

first-order methods can however be extremely inaccurate when the sample size is small or when

the original distribution not normal.

For higher-order inference on the parameter ψ, (Barndorff-Nielsen, 1991) derived a third-order

tail probability approximations using saddlepoint methods:

r∗ = r − 1

r
log

(
r

Q

)
(3.3)

The statistic r∗ is known as the modified signed log-likelihood ratio statistic and the statistic r is

the signed log-likelihood ratio statistic defined in (3.2). The statistic Q is a standardized maximum

likelihood departure whose expression depends on the type of information available. Approxi-

mation (3.3)has an O(n−3/2) rate of convergence to the standard normal distribution and is thus

referred to as third-order approximation.

For exponential family models, several definitions for Q exist, see for example, Barndorff-

Nielsen (1991), Pierce and Peters (1992), Fraser and Reid (1995), and Jensen (1995). The deriva-

tion of Q given by Fraser and Reid (1995) is used in this paper. They use tangent exponential

models to derive a highly accurate approximation to the p-value for testing a scalar interest pa-

rameter. Obtaining Q involves two main components. The first component requires a reduction

of dimension by approximate ancillarity. This step reduces the dimension of the variable to the
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dimension of the full parameter. The second component requires a further reduction of dimension

from the dimension of the parameter to the dimension of the scalar interest parameter. These two

components are achieved through two key reparameterizations: from the parameter θ to a new

parameter φ(θ), and from the parameter φ(θ) to a new parameter χ(θ).

The ancillary directions V can be obtained as follows:

V =
∂y

∂θ′

∣∣∣∣∣
θ̂

= −
(
∂z

∂y′

)−1(
∂z

∂θ′

) ∣∣∣∣∣
θ̂

. (3.4)

The variable z represents a pivotal quantity of the model whose distribution is independent of θ.

These ancillary directions are used to calculate the locally defined canonical parameter, φ:

φ′(θ) =

[
∂l(θ; y)

∂y

]
V. (3.5)

Given this new reparameterization, the original parameter of interest must thus be recalibrated.

This recalibration results in the new parameter χ:

χ(θ) =
ψφ′(θ̂ψ)∣∣∣ψφ′(θ̂ψ)

∣∣∣φ(θ), (3.6)

where ψφ′(θ) = ∂ψ(θ)/∂φ′ = (∂ψ(θ)/∂θ′)(∂φ(θ)/∂θ′)−1. The modified maximum likelihood

departure is then constructed in the φ space. The expression for Q is given by

Q = sgn(ψ̂ − ψ)|χ(θ̂)− χ(θ̂ψ)|

{
|ȷ̂φφ′(θ̂)|
|ȷ̂(λλ′)(θ̂ψ)|

}1/2

, (3.7)

where ȷ̂φφ′ and ȷ̂(λλ′) are the observed information matrix evaluated at θ̂ and observed nuisance

information matrix evaluated at θ̂ψ, respectively, calculated in terms of the new φ(θ) reparameter-

ization. The determinants can be computed as follows:

|ȷ̂φφ′(θ̂)| = |ȷ̂θθ′(θ̂)||φθ′(θ̂)|
−2

|ȷ̂(λλ′)(θ̂ψ)| = |ȷ̂λλ′(θ̂ψ)||φ′
λ(θ̂ψ)φλ′(θ̂ψ)|

−1
. (3.8)
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The interested reader is directed to Fraser and Reid (1995) and Fraser, Reid and Wu (1999)

for the mathematical details of the methodology. Given the overall objective is to obtain highly

accurate confidence intervals for the interest parameter ψ, we can use Q and r in formulas (3.3) to

obtain a (1− α)100% confidence interval for ψ as follows.

CIψ =
{
ψ : |r∗(ψ)| < zα/2

}
, (3.9)

where zα/2 is the (1− α/2)100th percentile of the standard normal distribution.

3.3 Accurate Inference for the Treatment Effect Parameter

Consider the following specification of the usual treatment effects model. The outcome variable, yi,

is related to the k–vector of exogenous covariates (containing the intercept), xi, and the treatment

indicator, Di (that takes the value 1 if unit i is treated, and 0 otherwise), by

yi = ψDi + x′iβ + ϵi, ϵi|Di, xi ∼ N(0, σ2) (3.10)

where ψ is the scalar parameter capturing the treatment effect of interest, β is a parameter vector

of size k × 1, and ϵi is a normally distributed disturbance term with variance σ2.

We are interested in determining whether there is a causal relationship between the treatment

status D and the outcome y. We are therefore focusing in testing the the significance of the treat-

ment effect parameter ψ, that is the null hypothesis is, ψ = 0, against the alternative hypothesis

ψ ̸= 0. Our framework however, allows us to test for a general hypothesis of the formH0 : ψ = ψ0

against the alternative H1 : ψ ̸= ψ0, for some finite value ψ0 ∈ R.

Implicit to our model specification is the assumption that the treatment status is exogenous.

This assumption may be restrictive in many empirical applications where participation to the pro-

gram in voluntary and hence endogenous to the outcome. However in many cases such as in

experimental and quasi-experimental studies, this is fairly reasonable. The application we dis-
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cussed is one where a policy has been implemented by the government, and can be thought of as

being fairly exogenous to the outcome considered at the airline company level, as we discussed

in the application section. Since our focus is in deriving a method for inference when the size of

the sample is the main issue, we abstract from the dependence of Di on ϵi and/or some auxiliary

covariates. Our procedure can however be easily extended to accommodate these cases as well, as

we discuss later.

For a random sample of size n, equation (3.10) can be re-written in the matrix form as

y = ψD +Xβ + ε, (3.11)

where y = [y1, . . . , yn]
′, X = [x1, . . . , xn]

′, D = [D1, . . . , Dn]
′, and ε = [ε1, . . . , εn]

′.

For the parameter vector θ = (ψ, λ′)′ = (ψ, β′, σ2)′, the probability density function of ε is

given by

f(y; θ) =
1

(2πσ2)n/2
exp

[
− 1

2σ2
(y − ψD −Xβ)′ (y − ψD −Xβ)

]
The notation here follows the notation in the previous section, where λ = (β′, σ2)′ corresponds

to the nuisance parameter vector of the model. The log-likelihood function (with the constant

dropped) is then given by

l(θ; y) = −n
2
log σ2 − 1

2σ2
(y − ψD −Xβ)′ (y − ψD −Xβ) (3.12)

The overall maximum likelihood estimate (MLE) of θ, denoted as θ̂, is obtained by simultane-

ously solving the first-order conditions lθ(θ̂; y) = 0.

lψ(θ̂; y) =
1

σ̂2
D′

(
y − ψ̂D −Xβ̂

)
= 0

lβ(θ̂; y) =
1

σ̂2
X ′

(
y − ψ̂D −Xβ̂

)
= 0

lσ2(θ̂; y) = − n

2σ̂2
+

1

2σ̂4

(
y − ψ̂D −Xβ̂

)′ (
y − ψ̂D −Xβ̂

)
= 0

(3.13)
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By solving this system, it is easy to obtain the following result:

ψ̂ = (D′MXD)
−1
D′MXy;

β̂ = (X ′MDX)
−1
X ′MDy;

σ̂2 =
1

n

(
y − ψ̂D −Xβ̂

)′ (
y − ψ̂D −Xβ̂

)

where MZ is the “residual maker” from the matrix Z, defined by MZ = I − Z ′(Z ′Z)−1Z.

Given this information about the likelihood function and the overall maximum likelihood es-

timate the information matrix jθθ(θ̂) can then be constructed using the second derivatives of the

log-likelihood function given by:

lψψ(θ; y) = − 1

σ2
D′D

lψβ(θ; y) = − 1

σ2
D′X

lψσ2(θ; y) = − 1

σ4
D′ (y − ψD −Xβ)

lββ(θ; y) = − 1

σ2
X ′X

lβσ2(θ; y) = − 1

σ4
X ′ (y − ψD −Xβ)

lσ2σ2(θ; y) =
n

2σ4
− 1

σ6
(y − ψD −Xβ)′ (y − ψD −Xβ)

(3.14)

Hence the observed information matrix is given by

jθθ(θ̂) =
1

σ̂2


D′D D′X 0

X ′D X ′X 0

0 0
n

2σ̂2

 .

The most commonly used statistic for testing the value of ψ is the student t-test statistic defined

by:

t =
ψ̂ − ψ

sψ̂
=

√
n− k

n
q (3.15)
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where sψ̂ is the standard error of ψ̂ from ordinary least square estimation (OLS) and q is the statistic

given in (3.1). Clearly, t is a degree-of-freedom adjustment of the statistic q.

The constrained maximum likelihood estimate of θ, denoted as θ̂ψ, is obtained by simultane-

ously solving the first-order conditions lθ(θ̂ψ; y) = 0.

lβ(θ̂; y) =
1

σ̂2
ψ

X ′
(
y − ψ̂D −Xβ̂ψ

)
= 0

lσ2(θ̂; y) = − n

2σ̂2
ψ

+
1

2σ̂4
ψ

(
y − ψ̂D −Xβ̂ψ

)′ (
y − ψ̂D −Xβ̂ψ

)
= 0

(3.16)

Similarly, we can construct the constrained information matrix jλλ′(θ) using the the following

second-order derivatives:

lββ(θ̂ψ; y) = − 1

σ̂2
ψ

X ′X

lβσ2(θ̂ψ; y) = − 1

σ̂4
ψ

X ′
(
y − ψD −Xβ̂ψ

)
lσ2σ2(θ̂ψ; y) =

n

2σ̂4
ψ

− 1

σ̂6
ψ

(
y − ψD −Xβ̂ψ

)′ (
y − ψD −Xβ̂ψ

) (3.17)

Which yields the following observed constrained information matrix:

jλλ′(θ̂ψ) =
1

σ̂2
ψ

 X ′X 0

0
n

2σ̂2
ψ

 .

For the proposed third-order inference approach, two components are required to obtain the

new locally defined canonical parameter φ(θ) given by (3.5). The first is the sample space gradient

evaluated at the data, which is the derivative of (3.12) with respect to y given by

∂l(θ; y)

∂y
= − 1

σ2
(y − ψD −Xβ)

The second is the ancillary direction V which can be obtained from the full-dimensional pivotal

quantity, z(y; θ), defined here as the vector of independent standard normal deviates given by:
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z(y; θ) =
1

σ
(y − ψD −Xβ)

Following (3.4) the ancillary direction array is then obtained as follows

V =

(
∂z

∂y′

)−1(
∂z

∂θ′

) ∣∣∣∣∣
θ̂

=

[
−D, −X, −y − ψ̂D −Xβ̂

2σ̂2

]

Using the above results, the new locally defined canonical parameter is obtained as

φ(θ)′ =
∂l(θ; y)

∂y′
V = [φ1(θ), φ2(θ), φ3(θ)]

=

[
1

σ2
(y − ψD −Xβ)′D,

1

σ2
(y − ψD −Xβ)′X,

1

σ22σ̂2
(y − ψD −Xβ)′ (y − ψ̂D −Xβ̂)

]

where φ1(θ), φ2(θ) and φ3(θ) are respectively, a 1× 1, 1× k and 1× 1 parameter vectors.

The above expression therefore shows the dimension reduction from n, the dimension of the

variable y, to k + 2, the dimension of the model parameter vector θ.

Obtaining further reduction to the dimension of the interest parameter ψ, requires χ(θ). Fol-

lowing (3.6), the scalar parameter χ(θ) involves both φ(θ) and the constrained maximum likeli-

hood estimate θ̂ψ. The latter can be obtained by maximizing the likelihood function (3.12) with

respect to λ = (β′, σ2)′, while holding ψ fixed at its hypthesized value. This yields a vector

θ̂ψ = (ψ, λ̂′ψ)
′ = (ψ, β̂′

ψ, σ̂
2
ψ)

′ defined by

β̂ψ = (X ′X)
−1
X ′ (y − ψD) ; σ̂2

ψ =
1

n

(
y − ψD −Xβ̂ψ

)′ (
y − ψD −Xβ̂ψ

)
where ψ is the hypthesized treatment effect to be tested. The other required component of χ(θ)

is the quantity ψφ′(θ) = ∂ψ(θ)
∂θ′

[
∂φ(θ)
∂θ′

]−1

which is evaluated at the constrained MLE θ̂ψ. In this

expression, the first term is given by

∂ψ(θ)

∂θ′
=

[
∂ψ(θ)

∂ψ
;
∂ψ(θ)

∂β′ ;
∂ψ(θ)

∂σ2

]
= [1; 01×k; 0],
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whereas the second term is given by

φθ′(θ̂ψ) =
∂φ(θ)

∂θ′

∣∣∣∣∣
θ̂ψ

=


∂φ1(θ)

∂ψ

∂φ1(θ)

∂β′
∂φ1(θ)

∂σ2

∂φ2(θ)

∂ψ

∂φ2(θ)

∂β′
∂φ2(θ)

∂σ2

∂φ3(θ)

∂ψ

∂φ3(θ)

∂β′
∂φ3(θ)

∂σ2


∣∣∣∣∣∣∣∣∣
θ̂ψ

= − 1

σ̂2
ψ


D′D X ′D

e′ψD

σ̂2
ψ

D′X X ′X 0

D′e

2σ̂2
0

1

2σ̂2σ̂2
ψ

e′ψe

 ,

where eψ = y − ψD −Xβ̂ψ, and e = y − ψ̂D −Xβ̂. Furthermore,

φθ′(θ̂) =
∂φ(θ)

∂θ′

∣∣∣∣∣
θ̂

=


∂φ1(θ)

∂ψ

∂φ1(θ)

∂β′
∂φ1(θ)

∂σ2

∂φ2(θ)

∂ψ

∂φ2(θ)

∂β′
∂φ2(θ)

∂σ2

∂φ3(θ)

∂ψ

∂φ3(θ)

∂β′
∂φ3(θ)

∂σ2



∣∣∣∣∣∣∣∣∣∣∣
θ̂

= − 1

σ̂2


D′D X ′D

e′D

σ̂2

D′X X ′X 0

D′e

2σ̂2
0

1

2σ̂4
e′e

 ,

φλ′(θ̂ψ) =
∂φ(θ)

∂λ′

∣∣∣∣∣
θ̂ψ

=


∂φ1(θ)

∂β′
∂φ1(θ)

∂σ2

∂φ2(θ)

∂β′
∂φ2(θ)

∂σ2

∂φ3(θ)

∂β′
∂φ3(θ)

∂σ2



∣∣∣∣∣∣∣∣∣∣∣
θ̂ψ

= − 1

σ̂2
ψ


X ′D

e′ψD

σ̂2
ψ

X ′X 0

0
1

2σ̂2σ̂2
ψ

e′ψe

 ,

With the calculation of the determinants given in (3.8), the departure measure, Q, can then be

calculated from (3.7). Third-order inference for the treatment effect ψ can then be obtained from

plugging the above quantities into either (3.3) or by computing the associate p-values.

3.4 Application to Aviation Data

In the simulation section, we have confirmed the theoretical accuracy of our third-order approxi-

mation model for the treatment effect. In this section, we present an empirical example to illustrate

the usefulness of our method. Applying our approximation for p-values to a regression framework,

we test the effect of airline accidents, our exogenous treatment, on airfares. Our accident data

comes from the National Safety Transportation Board. Accidents is a dummy variable equal to

one if the airline had an accident during the year 1996 or during the last quarter of 1995 and 0
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otherwise1. Our control variables are computed using data from the Bureau of Transportation

Statistics. We also control for the average city population size of each airline’s destination end-

points (U.S. Census data). The unit of observation is an airline, with a sample size of 30. Airfare

data is obtained from the U.S. Department of Transportation’s DB1B database, which is a 10

percent quarterly sample of all domestic airline tickets. Yearly averages of airfares have been com-

puted. This application has been inspired by (Gerardi and Shapiro, 2009) and (Zotova, 2017a).

The following regression model is employed:

log(airfares)i = β0 + ψaccidenti + βXi + ϵi (3.18)

where log(airfares) is the log of the average airfare price, accident is the treatment variable for

each airline and our control variables are the mean population of the endpoint cities, the number

of routes each airline operates, the average market share for airline on the routes that it serves,

the quantity of payload, that is of cargo transported in pounds, and the average distance of its

flights. The variables mean population, market share, routes, and distance are yearly averages

by airline, the variable payload is the total payload transported by airline. Specifically, to compute

the market share variable, we calculate each airline’s market share per route, and then take the

average across routes.

Larger cities cause higher demand for the route, which should increase fares. Since more

densely populated cities simultaneously attract more competition to deserve the demand, the effect

of the market forces can push prices down. For a fixed distance, flights between two large cities

are cheaper than flights between a large and small city, which is cheaper than a flight between two

small cities (such as between two remote destinations). As in airline becomes larger, it serves more

routes, which is positively correlated with greater market share (correlation 0.373). With more

routes, the airline can serve more destinations, many of which are less populated (even remote)

that can be more expensive. Similarly, an airline’s ability to set ticket prices is expected to rise

with its market share on a particular route. Hence, we expect a positive sign for the coefficient.

1We code the treatment to be equal to one if the airline had an accident in the previous quarter of the year examined
since Zotova (2017) has demonstrated that the effects of accidents on airfares last for approximately a quarter.
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Airlines can carry payload in the "belly"2 of the aircraft, also known as cargo.3 Cargo also

generates revenue, which means greater payload capacity reduces pressure to generate revenue on

seats sold to passengers. Therefore, carrying more payload allows airlines to be more competitive

on airfares. Hence, we expect a negative sign. The variable distance is added to capture the effect

of the variable cost. To operate a flight, airlines need to pay for wages, fuel, maintenance, traffic

routes (airlines have to obtain traffic rights to fly on a route and pay per mile flown) etc. As the

distance becomes larger, carriers may need a larger plane that costs more to land4. Hence, distance

should have a positive effect on prices. However, larger aircrafts also provide economies of scale,

which can have a negative impact on fares.

Table 2 below provides descriptive statistics of our data. Table 3 provides reports results from a

naive regression. Table 4 presents the estimation for the computed maximum likelihood estimators.

In both tables, to provide more interpretable results, the variables mean population, payload

have been divided by 100,000, departures been divided by 10,000, routes, distance has been

divided by 1000, and marketshare have been divided by 100. We can see that the estimators

used to generate the results in Table 3 and 4 give similar values, however, the maximum likelihood

estimator provides smaller standard errors. The MLE estimates are then used to build confidence

intervals for ψ as described in the previous sections. Table 5 reports the 95% confidence intervals

for ψ obtained using the statistics r, Q, t, and r∗. The resulting confidence intervals display

variation that could lead to different inferences about ψ. We can see that the confidence intervals

vary in both width and range. These results show that r∗ provides greater precision of our parameter

estimate and captures a different range of estimates for ψ. These four statistics can lead to different

decisions in terms of inference. MethodsQ, t, and r contain points of disagreement with r∗, such as

0.42, hence a parameter estimate of 0.43 would be be significant in other methods but insignificant

in ours. In all confidence intervals, the value zero is included, implying that accidents do not have

2The belly of an aircraft is located in the bottom of the plane where luggage’s and cargo are stored.
3Cargo includes mail, boxes, containers, or animals, which can be transported as a third party for other airlines.
4Landing costs are priced according to the empty weight of an aircraft
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an effect on airfares on a yearly level. This result is consistent with Zotova (2017) who found in

her research on the impact of a crash on airfares that prices are only affect for a few months and

dissipate soon after, making the impact on a yearly level minimal.

3.5 Conclusion

This paper employs a third-order likelihood theory to derive more trustworthy p-values for testing

the significance of an exogenous treatment variable in cross-sectional linear regressions for small

and medium sample settings. We illustrate the implementation of the proposed method using a

regression of airfares on accidents and control variables. Our results show that our method captures

points of disagreement, which stresses the advantages of this approach.

Table 3.1: Summary Statistics

Variable Variable Definition Min Max Mean SD
Airfares Average airfare (in dollars) 38.46 211.563 120.65 46.34
Accident Dummy variable (=1 for accident) 0 1 0.467 0.507
Mean Population Average end city population size 225.563 11,100 3,987.2 2,227.3

at destination endpoints (in thousands)
Routes Total number of routes per airline 12.645 1261.826 311.647 382.462
Market Share Average market share on routes deserved 25.974 87.019 58.885 16.148
Payload Total payload quantity (in thousands) 230.900 4572.794 1474.188 1035.808
Distance Average distance of flights performed 143.86 2,938.414 760.186 534.569
Observations 30

Table 3.2: Results for the naive regression

Parameter Estimates Standard Error
Accident -0.1843 0.142
Mean Population (divided by 100,000) 0.00495 0.004
Routes (divided by 1000) 0.0963 0.049
Market Share (divided by 100) 0.326 0.399
Payload (divided by 100,000) -0.0146 0.0058
Distance (divided by 1000) -0.0415 0.0145
Observations 30
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Table 3.3: Results for the maximum likelihood estimation

Parameter Estimates Standard Error
Accident -0.1843 0.1216
Mean Population (divided by 100,000) 0.00495 0.003
Routes (divided by 1000) 0.0963 0.0423
Market Share (divided by 100) 0.326 0.3416
Payload (divided by 100,000) -0.0146 0.0049
Distance (divided by 1000) -0.0415 0.0125
Observations 30

Table 3.4: Results for 95% CI for ψ

Methodology 95% CI for ψ
r (-0.06, 0.42)
Q (-0.05 , 0.42)
t (-0.05 , 0.43)

r* (-0.1 , 0.47)
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Appendices

Appendix A. Appendix for Chapter 1

Figure A.1: CDF of Injury Count
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Table A.1: Negative Binomial Estimation Results Inverse CR8

(1) (2) (3)
VARIABLES Injury Count Injury Count Injury Count

Captain Experience -0.0807∗∗ -0.0771∗∗ -0.0774∗∗

(0.0338) (0.0373) (0.0361)

Last 90 Days 1.893 -0.383∗∗ 1.370
(1.227) (0.180) (1.149)

Age 0.0932 0.328 0.345
(0.0730) (0.208) (0.219)

Age x L90D -0.0503∗ -0.0380
(0.0283) (0.0257)

1em] AGE Squared -0.00357 -0.00302
(0.00231) (0.00222)

Aircraft Weight 0.0328∗∗ 0.0360∗∗ 0.0350∗∗

(0.0159) (0.0170) (0.0174)

Aircraft Age -0.0601 -0.0642 -0.0613
(0.101) (0.0994) (0.0996)

Dark Flying Conditions 0.861∗∗∗ 0.800∗∗∗ 0.874∗∗∗

(0.286) (0.301) (0.285)

Favorable Flying Conditions 0.278 0.227 0.221
(0.367) (0.405) (0.377)

Inverse CR8 0.388∗∗ 0.372∗∗ 0.372∗∗

(0.174) (0.176) (0.173)
Observations 850 850 850
Pseudo R-squared 0.1634 0.1642 0.1653

Robust standard errors in parentheses
*** p<0.01, ** p<0.05, * p<0.1

Variables explained: Captain Experience is the total experience of the captain
in thousands of hours. Last 90 Days is the total number of (hundred) hours
the captain has flown the past 90 days. Age is the age of the captain. Air-
craft Weight is the aircraft weight in thousands of pounds. Aircraft Age is the
aircraft age in thousand of flight hours. Dark Flying Conditions is a dummy
variable equal to 1 if the flight is operated under dark flying conditions, and 0
otherwise. Favorable Flying Conditions is a dummy variable equal to 1 if the
flight is operated under visual flight conditions, and 0 otherwise. Inverse CR8
is the inverse of Concentration Ratio 8, measured as 100-CR8.
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Table A.2: Negative Binomial Estimation Results Inverse CR4

(1) (2) (3)
VARIABLES Injury Count Injury Count Injury Count

Captain Experience -0.0890∗∗∗ -0.0844∗∗ -0.0849∗∗

(0.0341) (0.0356) (0.0350)

Last 90 Days 1.872 -0.361∗ 1.280
(1.225) (0.187) (1.135)

Age 0.0978 0.361∗ 0.377∗

(0.0759) (0.209) (0.219)

Age x L90D -0.0493∗ -0.0355
(0.0280) (0.0251)

AGE Squared -0.00388∗ -0.00337
(0.00230) (0.00220)

Aircraft Weight 0.0288∗ 0.0327∗ 0.0317∗

(0.0160) (0.0173) (0.0178)

Aircraft Age -0.0760 -0.0822 -0.0798
(0.0989) (0.0967) (0.0964)

Dark Flying Conditions 0.950∗∗∗ 0.895∗∗∗ 0.961∗∗∗

(0.290) (0.306) (0.296)

Favorable Flying Conditions 0.435 0.372 0.367
(0.403) (0.433) (0.408)

Inverse CR4 0.278∗ 0.286∗ 0.283∗

(0.153) (0.152) (0.158)
Observations 850 850 850 850
Pseudo R-squared 0.1627 0.1641 0.1651

Robust standard errors in parentheses
*** p<0.01, ** p<0.05, * p<0.1

Variables explained: Captain Experience is the total experience of the captain
in thousands of hours. Last 90 Days is the total number of (hundred) hours
the captain has flown the past 90 days. Age is the age of the captain. Air-
craft Weight is the aircraft weight in thousands of pounds. Aircraft Age is the
aircraft age in thousand of flight hours. Dark Flying Conditions is a dummy
variable equal to 1 if the flight is operated under dark flying conditions, and 0
otherwise. Favorable Flying Conditions is a dummy variable equal to 1 if the
flight is operated under visual flight conditions, and 0 otherwise. Inverse CR4
is the inverse of Concentration Ratio 4, measured as 100-CR4.
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Appendix B. Appendix for Chapter 2

Appendix B.1. Pilot Training Additional Information

The following information in this section has been retrieved from the Federal Aviation Adminis-

tration’s website.

In the United States, pilots have to obtain several licenses to be able to operate. The private

pilot license is the first step. This license allows a person to become pilot-in-command of a single-

engine aircraft after having taken a written and practical exam after having accomplished of a legal

minimum of 40 hours of flight, with at least 10 hours solo and 20 hours with a Certified Flight

Instructor (CFI). This license carries a visual flying rating (VFR), which permits aircraft operation

in clear weather conditions only since navigation is done by sight.

The next step is for the student to obtain an instrument flying rating (IFR). This add-on rating

is not a separate license. It allows a pilot with a private pilot license to operate a single engine

aircraft in deteriorated weather. Pilots learn to use their instruments to navigate despite a reduction

in visibility due to rain, fog, haze, or low clouds. An instructor that provides training for this rating

is called a CFII, where the second letter I is for "instrument." The exam also requires the completion

of a written and practical component but can only be taken after logging at least 50 hours of cross-

country flight as Pilot-In-Command, and 40 hours of instrument time which includes a minimum

of 15 hours of instrument flight training. This step is crucial, as all flights 18,000 feet above mean

sea level, such as commercial- and private jet flights requires pilots to have this rating.

To obtain the commercial pilot license, the pilot must have completed a minimum of 250 hours

of flight time, with at least 100 hours of pilot-in-command. With this license, a pilot is restricted to

fly for hire clients with the restrictions of being within 50 miles from the original airport and must

operate within VFR rules. Similarly, the exam has a written and practical component.

Next, student pilots complete add-ons where they obtain their Multi-Engine rating. As obvious

as it sounds, it allows a pilot to go from a single engine aircraft to a multi-engine one. Training

requires a double engine plane, which can go higher, faster, and further. This option is available

for both VFR and IFR licenses as Pilot-In-Command.
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After having completed 1,500 hours, with 500 hours of cross-country time, 100 hours of night

flight, 50 hours of multi-engine, and 75 hours of instrument flying, a pilot is now eligible to obtain

the Airline Transport Pilot (ATP). Obtaining the ATP must be done after receiving the commercial

license and instrument rating. This license is required to work as a commercial pilot in an airline.

Many pilot students who want to reach their 1,500 hours fast and at a lower cost to make a profes-

sion out of flying do so by the route of CFI because instruction time is logged as Pilot-In-Command

hours. It should be made stated that after the Colgan Air crash in February 2009, Congress had

passed PL 111-216 (in August 2010) to take safety measures including increasing the number of

flight hours required from 250 to 1,500 before joining a FAR Part 121 operation. Of course, PL

111-216 also includes other measures that are airline specific. Further pathways to build flight

hours are 5:

• To operate in Part 125 as Second-in-Command or co-pilot, which is flying private jets (this

requires a type rating discussed below)

• Part 135, which is the operation of commercial aircraft of up to 30 passengers 6

• Part 137, which is flying for agricultural purposes

However, there are exemptions on the number of hours. For instance, if a flying school is

accredited to provide an associate degree or a bachelor’s degree, then the total hour requirement

falls to 1,250 and 1,000 hours respectively, which would grant the pilot an R-ATP. The above

licenses and ratings can be obtained either through a part 61 school, which is a learn as you go, or

a part 141 school, which follows a strict course structure approved by the FAA.

5these are not the norm.
6These hours do not count as PIC unless the pilot is a captain, instructor, or examiner
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Appendix C. Tables and Figures

Table C.1: Delta Airlines Captain Pay Scale (Hourly)

Year 737-700/800 737-900 757-300 767-300 767-400ER 777 A319/A320 A321 A330-200 B717 MD88 MD90 A350 A330-900

12 284 286 296 296 334 354 274 286 334 256 269 269 354 339
11 282 283 293 293 332 351 272 283 332 254 266 266 351 336
10 280 281 290 290 329 349 270 281 329 252 263 263 349 334
9 278 279 287 287 327 346 268 279 327 250 260 260 346 331
8 276 277 285 285 324 343 266 277 324 248 258 258 343 329
7 273 275 283 283 322 341 264 275 322 246 256 256 341 326
6 271 273 281 281 320 338 262 273 320 244 254 254 338 324
5 269 270 278 278 317 335 260 270 317 242 252 252 335 321
4 267 268 276 276 314 333 257 268 314 240 250 250 333 318
3 265 266 274 274 312 330 255 266 312 238 248 248 330 316
2 263 264 272 272 309 327 253 264 309 236 245 245 327 313
1 261 262 269 269 307 325 251 262 307 235 243 243 325 311

Table C.2: Delta Airlines First Officer Pay Scale (Hourly)

Year A319 A320 A321 B717 MD88 MD90 A350 B737 B738 B739 B763ER B764ER B757 A330-900 A220

12 187 187 195 175 184 184 242 194 194 195 202 228 202 232 180
11 186 186 193 173 182 182 240 192 192 193 200 226 200 229 177
10 183 183 191 171 179 179 237 191 191 191 197 224 197 227 175

9 181 181 189 169 176 176 234 188 188 189 194 221 194 224 172
8 179 179 187 167 174 174 232 186 186 187 192 219 192 222 170
7 175 175 183 164 170 170 226 182 182 183 188 214 188 217 166
6 171 171 178 159 166 166 220 177 177 178 183 208 183 211 162
5 166 166 173 155 162 162 215 172 172 173 178 203 178 206 158
4 162 162 169 152 158 158 210 168 168 169 174 198 174 201 154
3 159 159 165 148 154 154 205 164 164 165 170 194 170 196 150
2 136 136 141 126 131 131 175 141 141 141 145 165 145 168 128
1 92 92 92 92 92 92 92 92 92 92 92 92 92 92 92

Table C.3: Skywest Captain Pay Scale (Hourly)

Year CRJ200 CRJ700 CRJ900 E175

20 118 125 128 126
19 117 124 127 125
18 116 123 126 124
17 115 122 125 123
16 114 121 123 122
15 112 119 121 120
14 109 116 118 116
13 106 112 114 113
12 103 109 111 110
11 100 106 108 106
10 97 103 105 103

9 94 100 102 100
8 91 97 98 97
7 89 94 96 95
6 86 91 93 92
5 84 89 90 89
4 81 86 88 87
3 79 84 86 84
2 77 82 83 82
1 75 80 81 80

72



Table C.4: Skywest First Officer Pay Scale (Hourly)

Year CRJ200 CRJ700 CRJ900 E175

8 62 62 62 62
7 61 61 61 61
6 60 60 60 60
5 59 59 59 59
4 58 58 58 58
3 56 56 56 56
2 51 51 52 52
1 46 46 46 46

Table C.5: Carrier Classification

Regional Carriers Minor Carriers Low Cost Carriers Legacy Carriers Cargo

1 Air Wisconsin Airlines Aloha Airlines ATA Airlines Alaska Airlines ABX Air
2 Business Express Continental Micronesia AirTran Airways America West Airlines Air Transport International
3 Chautauqua Airlines Hawaiian Airlines Allegiant Air American Airlines Aloha Airlines
4 Colgan Air Miami Air International Frontier Airlines Continental Air Lines Amerijet International
5 Comair North American Airlines Independence Air Delta Air Lines Arrow Air
6 Compass Airlines Omni Air International JetBlue Airways Northwest Airlines Astar USA
7 Endeavor Air Tower Air Kiwi International Trans World Airways Atlas Air
8 Envoy Air USA 3000 Airlines National Airlines US Airways Centurion Cargo
9 ExpressJet Airlines USAir Shuttle Reno Air United Air Lines Emery Worldwide Airlines
10 GoJet Airlines Virgin America Southwest Airlines Evergreen International
11 Horizon Air Spirit Airlines Federal Express Corporation
12 Mesa Airlines Sun Country Airlines Florida West Airlines
13 Mesaba Airlines Valujet Airlines Gemini Air Cargo Airways
14 Midway Airlines Vanguard Airlines Kitty Hawk Aircargo
15 Midwest Airline Western Pacific Airlines Kitty Hawk International
16 PSA Airlines Lynden Air Cargo Airlines
17 Republic Airline Polar Air Cargo Airways
18 Shuttle America Southern Air
19 SkyWest Airlines USA Jet Airlines
20 Trans States Airlines World Airways
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Table C.6: Bankruptcies

Airline Name Date Filed Date Emerged

1 Allegiant Air 2000 2001
2 Aloha Airlines 12/30/2004 02/17/2006
3 America West Airlines 06/27/1991 08/10/1994
4 Amerijet International 08/22/2001 31/12/2001
5 Arrow Air 07/01/2010 0
6 ATA Airlines 10/26/2004 03/01/2006
7 Atlas Air 01/30/2004 07/14/2004
8 Business Express 01/22/1996 04/17/1997
9 Champion Air 03/31/2008 0
10 Colgan Air 04/01/2012 04/17/2013
11 Comair 09/14/2005 0
12 Continental Airlines 12/03/1990 04/16/1993
13 Endeavor Air 04/01/2012 04/17/2013
14 Frontier Airline 04/10/2008 09/10/2009
15 Hawaiian Airlines 03/21/2003 05/18/2005
16 Independence Air 11/07/2005 01/05/2006
17 Kiwi International 09/30/1996 0
18 Mesa Airlines 01/05/2010 01/20/2011
19 Midway Airlines 08/13/2001 10/30/2003
20 National Airlines 12/06/2000 11/06/2002
21 Northwest Airlines 09/14/2005 05/18/2007
22 Republic Airline 02/25/2016 04/20/2017
23 Ryan International Airlines 03/06/2012 0
24 Southern Air Transport 09/28/2012 03/14/2013
25 Sun Country Airline 10/06/2008 12/04/2008
26 Tower Air 02/29/2000 0
27 Trans World Airways 01/10/2001 0
28 Trans World Airways 06/30/1995 08/04/1995
29 US Airways 08/11/2002 03/18/2003
30 US Airways 09/12/2004 09/16/2005
31 Vanguard Airlines 07/29/2002 0
32 Western Pacific Airlines 10/05/1997 02/04/1998
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Table C.7: Mergers

Carriers Date

1 AirTran and ValueJet 1998
2 American Airlines and Reno Air 1999
3 Delta Airlines and Atlantic Southeast Airlines 1999
4 American Airlines and Trans World Airways 2001
5 US Airways and America West Airlines 2007
6 Southwest Airlines and ATA Airlines 2007
7 Republic Airline and Midwest Airlines 2008
8 Delta Airlines and Comair 2010
9 ExpressJet & SkyWest Airlines 2011
10 United Airlines and Continental Airlines 2012
11 Endeavor Air and Mesaba Airlines 2012
12 Southwest Airlines and AirTran Airways 2012
13 Alaska Airlines & Virgin America 2012
14 Shuttle America and Chautauqua Airlines 2014
15 American Airlines and US Airways 2015
16 Republic Airline and Shuttle America 2017

Table C.8: Estimated Number of Pilots

Year ATPL Commercial Airlines

2005 141,992 74,475
2006 141,935 74,039
2007 143,953 73,488
2008 146,838 75,599
2009 144,600 72,009
2010 142,198 73,681
2011 142,511 71,372
2012 145,590 73,494
2013 149,824 74,411
2014 152,933 75,778
2015 154,730 76,437
2016 157,894 80,071
2017 159,825 83,072
2018 162,145 87,004
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Figure C.1: Key Variables over Time
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Figure C.2: Key Relationships

Figure C.3: Monopsony in the Labor Market (static)

O

Exploitation Gap

w

Labor

Marginal Revenue Product

Supply

Marginal Labor Cost

Em

wmrp

wm

77



Table C.9: Estimating the Wage Elasticity (Cargo Carriers)

(1) (2) (3)
OLS 2SLS 1st stage: log no. pilots

Log Number of Pilots -0.175 -1.061
(0.102) (2.855)

Union membership 0.202 0.586 0.445∗

(0.170) (1.298) (0.215)

Bankruptcy protection -0.351∗ 0.223 0.566∗∗∗

(0.136) (1.587) (0.0933)

Competition 0.00161 0.00415 0.00238∗

(0.00166) (0.00823) (0.00102)

Accidents T-1 -0.00771
(0.0244)

Airline FE Yes Yes Yes
N 251 229 229
Underidentification 0.114
Weak identification 0.100
Standard errors in parentheses
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

Figure C.4: Pilot Wage Simulation
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Table C.10: 2SLS First-stage Results

(1) (2) (3)
Log No. Pilots Log No. Pilots Log No. Pilots*Comp

Accidents T-1 0.0409∗∗∗ -0.0444 -3.987∗∗∗

(0.00805) (0.0610) (0.598)

Union membership 0.399∗∗∗ 0.409∗∗∗ 4.084∗∗

(0.0836) (0.0898) (1.401)

Bankruptcy protection -0.0633 -0.0757 -0.453
(0.0734) (0.0762) (0.869)

Merger event 0.104 0.113 0.970
(0.0666) (0.0669) (0.771)

Competition Index (Std.) 0.574∗∗∗ 0.571∗∗∗ 12.69∗∗∗

(0.101) (0.101) (1.032)

IHS of Net Income in 10s of Millions 0.0101 0.00679 0.151
(0.00733) (0.00760) (0.0778)

Low-cost carrier -1.249∗∗∗ -1.254∗∗∗ -11.56∗∗∗

(0.0943) (0.0984) (1.473)

Regional carrier -2.529∗∗∗ -2.532∗∗∗ -24.00∗∗∗

(0.0714) (0.0733) (0.729)

Minor carrier -2.218∗∗∗ -2.223∗∗∗ -20.40∗∗∗

(0.0987) (0.101) (1.169)

Accidents T-1 * Competition 0.0000929 0.00478∗∗∗

(0.0000627) (0.000594)

Airline FE Yes Yes Yes

Year FE Yes Yes Yes
N 617 617 617
Standard errors in parentheses
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001
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Table C.11: Sample Characteristics: Passenger vs. Cargo

All Carrier Types
Mean Std. Dev. Min Max

Number of pilots 1846 (2584) 27 13,621
Wage 124,165 (60,164.3) 11,892.7 556,126
Accidents .95 (1.8) 0 11
Union membership .74 (.44) 0 1
Net Income (10s of Millions) 7.2 (164) -2,705 2,822

N 912

Passengers
Mean Std. Dev. Min Max

Number of pilots 2230 (2838) 60 13,621
Wage 117,519 (54,950.2) 16,897.6 278,310
Accidents 1.1 (2) 0 11
Union membership .85 (.36) 0 1
Net Income (10s of Millions) 6.2 (191) -2,705 2,822
Competition Index 9,067 (162) 8,767 9,305

N 665

Cargo
Mean Std. Dev. Min Max

Number of pilots 849.1 (1263) 27 4,392
Wage 141,210 (71,316.3) 11,892.7 556,126
Accidents .42 (1.2) 0 9
Union membership .46 (.5) 0 1
Net Income (10s of Millions) 10 (33) -36 197
Competition Index 6,990 (948) 5,768 8,716

N 232

Note: Total number of observations: Airline x Year.
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Table C.12: Sample Characteristics: Legacy Carriers

Legacy Carriers
Mean Std. Dev. Min Max

Number of pilots 5654 (3419) 892 13,621
Wage 182,849 (36,952.5) 87,143.1 278,310
Accidents 3.2 (2.6) 0 11
Union membership 1 (0) 1 1
Net Income (10s of Millions) 6.8 (380) -2,705 2,822

N 166

Table C.13: Sample Characteristics: Low-Cost Carriers

Low-cost Carriers
Mean Std. Dev. Min Max

Number of pilots 1387 (1873) 61 8,940
Wage 126,189 (42,504.4) 37,778.9 255,554
Accidents .7 (1.4) 0 7
Union membership .66 (.47) 0 1
Net Income (10s of Millions) 17 (51) -83 357

N 160

Table C.14: Sample Characteristics: Regional Carriers

Regional Carriers
Mean Std. Dev. Min Max

Number of pilots 1165 (868.7) 109 4,257
Wage 69,762.1 (20,646.1) 16,897.6 177,276
Accidents .43 (.85) 0 7
Union membership .89 (.31) 0 1
Net Income (10s of Millions) .045 (15) -178 44

N 258
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Table C.15: Sample Characteristics: Minor Carriers

Minor Carriers
Mean Std. Dev. Min Max

Number of pilots 270.4 (185.1) 27 824
Wage 124,607 (38,339.5) 58,902.6 362,056
Accidents .14 (.44) 0 3
Union membership .81 (.39) 0 1
Net Income (10s of Millions) 2.1 (8.3) -16 38

N 91
Note: Total number of observations: Airline x Year.

Table C.16: Firm Characteristics by Union Status

Non-Union Union
Mean Mean

Number of pilots 801 2,489
Wage 92,772 121,944

N 103 563
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Table C.17: Estimating the Wage Elasticity (Passenger Carriers)

(1) (2) (3) (4)
OLS 2SLS OLS 2SLS

Log Number of Pilots 0.0281 0.400∗∗ 0.0194 0.391∗∗

(0.0678) (0.130) (0.0675) (0.126)

Union membership 0.200∗∗ 0.0637 0.200∗∗ 0.0691
(0.0603) (0.0824) (0.0706) (0.0891)

Bankruptcy protection 0.113 0.125 0.102 0.113
(0.0573) (0.0649) (0.0549) (0.0637)

Merger event -0.134 -0.173∗ -0.127 -0.166∗

(0.0787) (0.0697) (0.0774) (0.0680)

Competition Index (Std.) -0.227 0.149 -0.0513 0.322∗

(0.114) (0.138) (0.142) (0.136)

IHS of Net Income
(10s of Millions) 0.000770 -0.00362 -0.00248 -0.00668

(0.00427) (0.00530) (0.00444) (0.00472)

Low-cost carrier -0.250∗ 0.289 -0.270∗ 0.273
(0.106) (0.181) (0.111) (0.181)

Regional carrier -1.242∗∗∗ -0.177 -1.262∗∗∗ -0.194
(0.178) (0.336) (0.178) (0.323)

Minor carrier -0.342∗ 0.566 -0.373∗ 0.540
(0.161) (0.296) (0.162) (0.290)

Competition Index (Std.)
* Log Number of Pilots -0.0245∗ -0.0239

(0.00948) (0.0124)

Airline FE Yes Yes Yes Yes
N 665 617 665 617
Underidentification 8.766 8.745
Weak identification 25.62 12.57
Standard errors in parentheses
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001
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