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Higher Frequency Network Activity Flow Predicts Lower
Frequency Node Activity in Intrinsic Low-Frequency
BOLD Fluctuations
Sahil Bajaj1, Bhim Mani Adhikari1, Mukesh Dhamala1,2*

1 Department of Physics and Astronomy, Georgia State University, Atlanta, Georgia, United States of America, 2 Neuroscience Institute, Joint Center for Advanced Brain

Imaging, Center for Behavioral Neuroscience, Georgia State University, Atlanta, Georgia, United States of America

Abstract

The brain remains electrically and metabolically active during resting conditions. The low-frequency oscillations (LFO) of the
blood oxygen level-dependent (BOLD) signal of functional magnetic resonance imaging (fMRI) coherent across distributed
brain regions are known to exhibit features of this activity. However, these intrinsic oscillations may undergo dynamic
changes in time scales of seconds to minutes during resting conditions. Here, using wavelet-transform based time-
frequency analysis techniques, we investigated the dynamic nature of default-mode networks from intrinsic BOLD signals
recorded from participants maintaining visual fixation during resting conditions. We focused on the default-mode network
consisting of the posterior cingulate cortex (PCC), the medial prefrontal cortex (mPFC), left middle temporal cortex (LMTC)
and left angular gyrus (LAG). The analysis of the spectral power and causal flow patterns revealed that the intrinsic LFO
undergo significant dynamic changes over time. Dividing the frequency interval 0 to 0.25 Hz of LFO into four intervals slow-
5 (0.01–0.027 Hz), slow-4 (0.027–0.073 Hz), slow-3 (0.073–0.198 Hz) and slow-2 (0.198–0.25 Hz), we further observed
significant positive linear relationships of slow-4 in-out flow of network activity with slow-5 node activity, and slow-3 in-out
flow of network activity with slow-4 node activity. The network activity associated with respiratory related frequency (slow-
2) was found to have no relationship with the node activity in any of the frequency intervals. We found that the net causal
flow towards a node in slow-3 band was correlated with the number of fibers, obtained from diffusion tensor imaging (DTI)
data, from the other nodes connecting to that node. These findings imply that so-called resting state is not ‘entirely’ at rest,
the higher frequency network activity flow can predict the lower frequency node activity, and the network activity flow can
reflect underlying structural connectivity.
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Introduction

The brain consists of a collection of anatomically distinct and

functionally relevant networks of brain regions [1,2]. It is a self-

organizing dynamical system [3] with ongoing neural oscillations

coherent across distributed brain regions during resting state-

under no explicit tasks or no external sensory stimulation [4,5,6].

The brain’s underlying structural connectivity determines the

coherent neural activity. Recent neuroimaging studies provided

evidence for the relationship between the underlying brain

structural network (structure) and coherent oscillations (function)

during resting conditions [7,8,9,10,11,12]. However, the details of

the relationship between the brain function and structure are still

being revealed. Here, in this study, we evaluated how the

frequency band-specific net information flow from a brain node

correlates with the net anatomical connections to (or from) the

node from BOLD fMRI and diffusion tensor imaging (DTI) data.

Even during resting conditions, networks of brain regions can be

spontaneously active [13,14,15,16,17,18]. These networks exhibit

low-frequency (,0.1 Hz) oscillations or fluctuations (LFO) in

functional magnetic resonance imaging (fMRI) blood-oxygen level

dependent (BOLD) signals. These intrinsic BOLD oscillations are

related with slow neuronal oscillations [19] possibly reflecting

modulation of cortical excitability and long distance synchroniza-

tion [20,21,22]. The level of these oscillations and the co-variation

among the network nodes are temporally dynamic dependent on

levels of awareness and arousal during resting conditions. A

previous study by Chang and colleagues [23] suggested the

dynamic nature of resting state functional connectivity. Despite

tremendous progress in studying BOLD LFO across various brain

regions, the dynamic nature of these fluctuations and the

relationship with the underlying structural connectivity remains

to be understood well. In the current study, without relying on the

common temporal stationarity assumptions about BOLD LFO, we

investigated the temporal dynamics of several frequency bands of

BOLD LFO in the default-mode network (also known as task-

negative network) comprising of the posterior cingulate cortex

(PCC), the medial prefrontal cortex (mPFC), left middle temporal

cortex (LMTC) and left angular gyrus (LAG). We then evaluated

the structure-function relationship from DTI fiber tracts and the

BOLD LFO in the network.
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FMRI BOLD fluctuations recorded in eyes-open or eyes-closed

resting conditions have provided opportunities to study the

patterns of node and network-level activities in the brain. Jiao

and colleagues [24] reported a linear relationship between node

activity and network activity during eyes-closed resting conditions.

Chang and Glover [23] reported a time-varying feature of resting-

state functional connectivity. Zuo and colleagues [6] reported

differential spatial distribution of four narrowly defined slow

frequency bands of BOLD LFO within the brain in eyes-closed

conditions. Here we evaluated time-varying activity of the default

brain nodes and network, and the relationship between node

activity and network in-out flow (net causal flow into a node) over

various frequency bands of BOLD LFO with recently added

Granger causality in the standard wavelet tools [25,26]. We used

the seed-based correlation approach [13,27], and extracted time

series from the seed node PCC (the posterior cingulate cortex) and

other significantly positively correlated regions. In a seed-based

correlation approach, a certain brain region is first chosen as a

seed, and the average time-series of the seed region is used to

compute cross-correlation coefficients with all other voxel time-

series in the brain, and highly correlated voxels to the seed region

are identified using a threshold for correlation value [13,28]. PCC

is a commonly selected seed region [23,29,30]. The PCC-

correlated network is often assumed to be associated with mind

wandering or day-dreaming [31,32,33,34]. In our analysis, the

PCC-correlated network involved these four nodes: the posterior

cingulate cortex (PCC) (–6, –52, 40), medial prefrontal cortex

(mPFC) (0, 48, –4), left middle temporal cortex (LMTC) (–57, –19,

–11) and left angular gyrus (LAG) (–46, –64, 25). These co-

ordinates are in the Montreal Neurological Institute (MNI)

coordinate system. For the univariate and multivariate spectral

analyses of the extracted BOLD fMRI time series from these

nodes, we subdivided the frequency range 0 – 0.25 Hz into the

following four bands as in the work of Zuo and colleagues [6] (i)

slow-5: 0.01–0.027 Hz, (ii) slow-4: 0.027–0.073 Hz, (iii) slow-3:

0.073–0.198 Hz, and (iv) slow-2: 0.198–0.25 Hz. This division is

based on the experimentally observed categories of neural

oscillations on a log-scale with frequency [6,20,35].

In this study, we thus planned for the detailed spectral analysis

of the characteristics of fMRI BOLD signals and the time-varying

nature of the brain network activity during rest.

We evaluated the dynamic nature of default-mode networks,

detailed frequency contents of low-frequency BOLD network

oscillations, and its relationship of net information flow with the

underlying anatomical connectivity.

Materials and Methods

Participants
A total of 49 healthy adults (28 males, 21 females) aged between

18–36 years underwent scanning. All participants provided

written, informed consent. Georgia State University Institutional

Review Board, and the Joint Institutional Review Board of

Georgia State University and Georgia Institute of Technology,

Atlanta approved experimental protocols. During functional MRI

runs, participants were instructed to keep their eyes open fixated at

the central cross on a screen, relax and try not to fall asleep. None

of the participants in fMRI runs were found to move significantly

or have fallen asleep. We had resting-state fMRI data from 17

participants (mean age: 25.1764.68 years, 12 males, 5 females)

and DTI data from 32 participants (mean age = 27.765.17 years,

16 males, 16 females). There were 6 common participants who

had both fMRI and DTI data. All 49 participants’ imaging data

(fMRI, DTI, or both) were included in the final analysis.

Imaging
Magnetic resonance imaging was performed at two locations: at

CABI (Georgia State and Georgia Tech Center for Advanced

Brain Imaging, Atlanta) and BITC (Georgia Tech and Emory

University Biomedical Imaging Technology Center, Atlanta) using

3-Tesla Siemens whole-body MRI scanners. Functional imaging

was 7 minute and 54 sec long, and included a T2*-weighted echo

planner imaging (EPI) sequence (echo time (TE) = 40 ms;

repetition time (TR) = 2000 ms; flip angle = 90o; field of view

(FOV) = 24 cm, matrix = 64664; number of slices = 33 and slice

thickness = 5 mm). High-resolution anatomical T1-weighted

images were acquired for anatomical references using an

MPRAGE sequence with an isotropic voxel size of 2 mm.

Diffusion-weighted images (DTI) were acquired with 30 diffu-

sion-encoding directions with an isotropic voxel size of 2 mm (b

value = 1000 s/mm2; 60 slices; TR = 7700 ms; TE = 90 ms;

FOV read = 204 mm, slice thickness = 2 mm) plus one reference

volume without diffusion weighting (b-value = 0 s/mm2). DTI

acquisition took approximately 10 minutes.

FMRI Preprocessing
FMRI data were preprocessed by using SPM8 (Wellcome Trust

Centre for Neuroimaging, London; http://www.fil.ion.ucl.ac.uk/

spm/software/spm8/). The preprocessing steps involved slice time

correction, realignment, normalization and smoothing. Motion

correction to the first functional scan was performed within

participant using a six-parameter rigid-body transformation. All

participants included in this analysis had less than 2 mm of

translation in all directions and less than 1.5u of rotation about the

three axes. The mean of the motion-corrected images was then

coregistered to the individual structural image using a 12-

parameter affine transformation. The images were then spatially

normalized to the Montreal Neurological Institute (MNI) template

[36] by applying a 12-parameter affine transformation, followed

by a nonlinear warping using basis functions [37]. Images were

subsequently smoothed with an 8-mm isotropic Gaussian kernel

and band-pass-filtered in the temporal domain.

DTI preprocessing and analysis
DTI data were preprocessed using FSL software package

(http://www.fmrib.ox.ac.uk/fsl/) [38]. Raw data were first

converted to analyzable format using dcm2nii in MRIcron

software (http://www.mccauslandcenter.sc.edu/mricro/mricron/

index.html) developed by Dr. C. Rorden. The DTI data were first

corrected for eddy currents and head motion, followed by removal

of non-brain tissues. After that, a diffusion tensor model was fitted

at each voxel to compute, among other measures, fractional

anisotropy (FA). The FA maps created were then processed using

the track-based spatial statistics routine [38] in which each

individual FA map was aligned to the standard 16161 mm3 in

MNI space. These aligned FA maps were averaged to create a

mean FA map, and a thinning algorithm was applied to create a

mean FA skeleton that represents the centers of all fiber bundles

common to all participants. After that, each participant’s aligned

FA map was projected onto the skeleton such that an alignment-

invariant track representation of FA values was achieved for each

participant.

Furthermore, to track fibers connecting different nodes within

the default mode network, we used MedINRIA (http://www-sop.

inria.fr/asclepios/software/MedINRIA/) software package. Trac-

tography was done using the preprocessed data of each participant

obtained from FSL. Initially, fibers were extracted as a whole over

the head and then limited to specific regions. We used the

Network Activity Predicts BOLD Node Activity
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following parameters to extract fibers: FA = 200; minimum length

= 3 mm; sampling = 1; smoothness = 10.

Regions of Interest (ROIs)
For resting state fMRI connectivity analysis, we selected the

posterior cingulate cortex (PCC) with an 8 mm radius sphere

centered at (–6, –52, 40) in the MNI coordinate system as a seed

region based on fMRI literature. This region is generally

considered as a seed region for one of the default mode networks

[23,29,30]. The correlated regions to the PCC were the medial

prefrontal cortex (mPFC); the left middle temporal cortex (LMTC)

and the left angular gyrus (LAG) (figure 1). MARSBAR software

package (http://marsbar.sourceforge.net/) was used to make

masks and extract BOLD time series for further time-frequency

brain node and network analysis.

For DTI analysis, regions of interest (ROIs) were defined for

each participant. A sphere of radius 12 mm–15 mm was drawn

for each ROI with the help of the landmarks of these masks and

the brain atlas.

Time-Frequency Node and Network Activity Analysis
The node and network activities were analyzed by using the

wavelet-transform based power, coherence and Granger causality

techniques [25,39]. The spectral density matrices S (t, f) were first

estimated by using the direct wavelet transforms (W (t, f)) of the

fMRI time series extracted from different ROIs. We used the

Morlet wavelet as the mother wavelet [40]. The wavelet spectral

density estimated for nodes l and m as a function of time and

frequency is Sl,m t,fð Þ~SWl ,WmT, where ,*. is averaging over a

combination of multiple voxel time series in the nodes l and m.

The diagonal (l = m) elements of the spectral density matrix (S (t, f))

represent the node activity in terms of spectral power and the

network activity is derived from the off-diagonal (l?m) elements.

The coherence between node l and m is Clm~
SWl ,W

�
mT

SWlTSWmTð Þ .

The causal influence I(t, f) from node l to node m is computed by

factorizing the spectral matrix S into minimum-phase spectral

factors, deriving the transfer function H(t, f) and noise covariance

matrix S, and using H and S in Granger causality formula [39]:

Il?m~ln
Smm

Smm{ Hlmj j2
P

ll {

P2
lmP

mm

� � ð1Þ

After we computed time-frequency Granger causality spectra

from one node to another, we estimated the net causal flow into a

node m i.e. total causality towards node m minus the total

causality away from the node m, as follows:

Fm~
XN

i~1

Ii?m{Im?ið Þ ð2Þ

where N is the total number of nodes in a network and the self-

causality is assumed to be Ii?m = 0 for l = m. Here, a positive F

represents the net incoming information flow towards the node

(sink) and a negative F refers to the net outgoing flow away from

the node (source).

Results

In this study, we computed wavelet-based time-frequency

power, coherence and Granger causality spectra from fMRI

BOLD time series recorded under eyes-open resting conditions,

evaluated the relationships between node activity and network

activity, and network activity and structural connectivity. The

brain nodes included PCC, mPFC, LMTC and LAG of the

default mode network.

Dynamic nature of resting state network
Figure 1 shows voxel-averaged time series from the four nodes

and the group-level functional connectivity (correlation coeffi-

cients, c) values between pairs of these nodes over three

representative time-windows. Paired t-test, underlying the hypoth-

esis that the samples come from distributions with equal means at

5% significance level (p , 0.05), is used to determine whether

there is significant difference between powers calculated over

windows using a sample size of n = 79 (n = N/3 where N = 237 is

the total number of scans). The functional connectivity value of

one link significantly changed in going from the first window

(r12 = 0.6866) to the second window (r12 = 0.5699) at p = 0.0343

(t-stat = 2.31, sd = 0.34). Also, several connectivity values changed

in going from the second window (r23 = 0.5766, r12 = 0.5699,

r14 = 0.2763) to the third window (r23 = 0.6854, r12 = 0.6850,

r14 = 0.4173) at p = 0.0435 (t-stat = –2.19, sd = 0.34), p = 0.0340

(t-stat = -2.31, sd = 0.34) and p = 0.0263 (t-stat = –2.44, sd = 0.27)

respectively. Here r12, r14, r23 represent correlation coefficients

from regions 1 to 2, 1 to 4 and 2 to 3 respectively and sd represents

standard deviation. These results indicated that the network-level

activity was dynamic. The dynamic nature of the network could be

reflected in the node-level activity. To evaluate that, we computed

wavelet-based time-frequency spectral map as shown in figure 2.

These results of wavelet power spectra confirm that the BOLD

fluctuations occur at low frequency (,0.1 Hz) oscillations and

reveal further that these fluctuations might be varying in their

amplitudes over time. We computed average power over different

bands (slow 2 to slow 5) below 0.25 Hz for each region and each

participant. We separated these frequency-averages into different

time-windows; each of length 19 scans (38 seconds). One-way

ANOVA within each participant was conducted to see whether

the power in fixed time-windows varied significantly across time.

We found that the power varied significantly in slow-4 band

(0.0027–0.073 Hz) for 11 out of 17 participants with F (3, 43)

$4.42 and p,0.009. Figure 3 shows these results from 6

representative participants, which were chosen arbitrarily out of

11 subjects whose data showed significant power variation over

time. These results support that the amplitudes of resting-state

node and network activity as reflected by fMRI BOLD

fluctuations can change over time at frequencies below 0.1 Hz

(for frequencies at slow-4).

Node-Network Activity Relation
We computed the wavelet power, coherence and Granger

causality spectra for all four regions (PCC, mPFC, LMTC and

LAG). We evaluated the relationship between the power (node

activity) and the net causal flow (network activity) into each node.

The net causal flow F was computed according to the definition

described in Eq. (2). We found that the slow-5 node was related to

the slow-4 network activity, and the slow-4 node activity was

related to the slow-3 network flow. Figure 4 A–D shows, in a

representative participant, the wavelet power spectra for the slow-

4 frequency band and the net causal flow for the slow-3 frequency

band for the nodes: PCC, mPFC, LMTC and LAG. These plots

show that the peak values of power occurred around the same time

where the maximum in-out flow occurred at 400 sec for PCC, 350

sec for MPFC, 362 sec for LMTC and 458 sec for LAG but at

different frequencies. Similarly, figure 5A–D shows, also in a

Network Activity Predicts BOLD Node Activity
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representative participant, the wavelet power spectra for the slow-

5 frequency band and the net causal flow for the slow-4 frequency

band for these nodes. The peak activities are marked in these plots.

These plots also show that the peak values of power occurred

around the same time where the maximum in-out flow occurred at

290 sec for PCC, 426 sec for MPFC, 392 sec for LMTC and 426

sec for LAG but again at different frequencies. We considered only

the peak activities and computed the group level-averages for all

these regions.

participants, at each node along with the slow-4 band-integrated

in-out causal flow at the corresponding node. Similarly, figure 6 B

shows corresponding plots for the slow-4 and slow-3 frequency

bands. A Pearson product-moment correlation coefficient is

computed to assess the relationship between the peak values of

in-out causal flow towards the node and the node power

corresponding to same time where we have peak in-out causal

flow. A significant positive linear correlation is found between the

slow-4 in-out flow and the slow-5 power (c = 0.2502 at p = 0.0396,

n = 68) and the slow-3 in-out flow and the slow-4 power

(c = 0.2841 at p = 0.0189, n = 68) when we consider data from

all four nodes in all participants (figure 7 A–B). We did not find

such relations in the other combinations of in-out flow and power

at same (in-out flow at slow-3, 4 and 5 frequency bands with power

at slow-3, 4 and 5 frequency bands respectively) or different

frequency bands (in-out flow at slow-3, 4 and 5 frequency bands

with power at slow-5, 3 and 3 or 4 frequency bands respectively).

Hence, we can see that the greater the net flow into a node, the

higher the activity at that node at a lower frequency.

Structure-Function Relationship
The DTI analysis on fiber tractography using MedINRIA (http://

www-sop.inria.fr/asclepios/software/MedINRIA/) showed the fol-

lowing structural connections to exist between network nodes: (i)

R1–R2 in 25 out of 32 participants, (ii) R1–R3 in 20 out of 32, (iii) R1–

R4 in 19 out of 32, (iv) R2–R3 in 18 out of 32, (v) R2–R4 in 6 out of 32,

(vi) R3–R4 in 30 out of 32 participants, where R1, R2, R3, and R4

stand for the posterior cingulate cortex (PCC), medial prefrontal cortex

(mPFC), left middle temporal cortex (LMTC) and left angular gyrus

(LAG) respectively. We determined the number of connecting fibers to

each of the four nodes from rest of the three nodes for each participant.

Figure 8 shows the connecting fibers of the PCC with the other three

nodes of the network. We compared the in-out flow at slow-3

frequency with the number of fibers averaged over all the participants

among the regions (figure 9A). A Pearson correlation coefficient was

computed to assess the relationship between the in-out causal flow

towards the node and the fiber density from or to the node (figure 9 B).

There was a significant correlation of c = 0.49 between the two at

p = 0.02 for all the 6 common participants scanned during fMRI and

DTI data collection. These results show that node activity depends on

the causal flow and the causal flow in turn can show dependence on the

fiber density.

Figure 1. Voxel-averaged time-series for four brain regions and correlation coefficients between pairs. (A) Times-series averaged over
all the trials for four nodes, and (B) positive significant correlation coefficients (c) were found to be significantly varying from one window to next.
doi:10.1371/journal.pone.0064466.g001

Network Activity Predicts BOLD Node Activity
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Figure 6A shows the slow-5 band-integrated power, averaged over



Figure 2. Time-frequency power spectra from a representative participant. For regions: (A) PCC, (B) mPFC, (C) LMTC, and (D) LAG, the white
dotted lines marked the region for fluctuations for frequencies at slow-4.
doi:10.1371/journal.pone.0064466.g002

Figure 3. Time-varying nature of power in 6 sample participants. Slow-4 frequency band activity fluctuates significantly (A–F). Overall, there
is a significant power variation across different time windows, each of size 38 sec in the slow-4 band (0.0027–0.073 Hz) for 11 out of 17 participants.
doi:10.1371/journal.pone.0064466.g003

Network Activity Predicts BOLD Node Activity

PLOS ONE | www.plosone.org 5 May 2013 | Volume 8 | Issue 5 | e64466



Discussion

Here in this study, we found that the low-frequency BOLD

fluctuations and brain network activity during resting conditions

can vary over time, but in specific lower frequency bands (slow-4,

and slow-5). The lower-frequency (slow-4 and slow-5) activities in

the default-mode nodes are correlated with the higher frequency

(slow-3 and slow-4) network activities. The net network activity

flow in slow-3 frequency band into a node is correlated with the

number of DTI fiber tracts leading to the node. Our findings are

confirmation and extension of the findings from three previous

studies. Zuo and colleagues [6] had found that fMRI BOLD

fluctuations can be reliably broken into various low-frequency

bands specific to different brain regions. Chang and Glover [23]

had showed that resting-state networks can vary over time. Jiao

and colleagues [24] had showed that the causal information flow

can predict power in a node. The non-stationary nature of

functional network was also reported recently by Liu and Duyn

but the oscillatory aspects of these networks were not investigated

[41].

Using the nonparametric spectral approach to wavelet power,

coherence, Granger causality [25,39] we revealed the time-varying

nature of low-frequency node activity and network activity. Time-

varying amplitudes of oscillations occurred below 0.1 Hz. The

network-level correlation and coherence were changing over time

also in the frequency bands less than 0.1 Hz. It indicated that the

resting state might not be always at rest. The reasons behind this

unrest could be a change in behavior (awareness or arousal levels)

or due to the intrinsic nature of self-organized systems like the

neuronal systems in the brain [41]. A similar observation recorded

from unconscious, anesthetized macaques [42] suggests that some

of this non-stationarity cannot be just unconstrained mental

activity. A recent publication by Smith propose the idea that

automatic processes like breathing, heart rate, mind wandering

and daydreaming keep some of the brain circuits active and these

activities may have been dubbed the resting state [43]. Cardiac

processes also cause low frequency fluctuations which may act as

sources of variance in fMRI BOLD signals at resting state [44].

Situations like ‘eyes opening’ and ‘eyes closing’ are also known to

affect BOLD signal fluctuations [45]. The ongoing fluctuating

metabolic processes in the brain could be reasons for time-varying

behaviors of the node and network activities. However, the

network activity associated with respiratory related frequency

(slow-2) was found to have no relationship with the node activity in

any of the frequency intervals. According to Raichle and

colleagues, the activity during resting state keeps the brain in an

organized fashion and spontaneous activity helps to keep the

neuron connections continuous with age and learning [46].

Morcom and Fletcher propose that default mode network is more

active at rest than during an explicit task and there exists a

physiological baseline, which can be observed when the partici-

pants are awake, but resting with eyes closed [47]. Frank and

Karlsson ’s work on memory consolidation state that the activity in

human brains during resting state could reactivate the patterns

that correspond to past experiences [48]. These points point us to

the different possibilities of how the different neural processes

could be the reasons for these time-varying fluctuations. A direct

positive significant correlation between these frequency pairs of

network and node activity: (slow-5 node, slow-4 network) and

Figure 4. Wavelet power and in-out causal flow. Power at slow-4 frequency (left column) and in-out flow at slow-3 frequency (right column) for
regions: (A) PCC, (B) mPFC, (C) LMTC, (D) LAG. Dotted boxes are used to highlight that the higher values of power and the in-out flow originate at
around the same time points but at different frequencies.
doi:10.1371/journal.pone.0064466.g004
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(slow-4 node, slow-3 network) indicates that there is a structure in

BOLD network and network oscillations. The low-frequency node

activity can be predicted from comparatively high-frequency

network activity, which signifies the importance of minute details

of frequency bands in resting-state connectivity from fMRI BOLD

fluctuations. Hence for each node, we predict that the higher the

incoming causal influence, the higher the power of the node

receiving causal information with each of the frequency bands

reflecting a distinct and independent mechanism. These results are

consistent with a study by Jiao and colleagues in 2011 [24]. They

suggested that the relation between incoming causal influence and

causal power could be interpreted in terms of brain’s metabolic

activity, as the signal communication requires higher energy

coupled to the information encoded by neuronal ensembles

Figure 5. Wavelet power and in-out causal flow. Power at slow-5 frequency (left column) and in-out flow at slow-4 frequency (right column) for
regions: (A) PCC, (B) mPFC, (C) LMTC, (D) LAG. Dotted boxes are used to highlight that the higher values of power and the in-out flow originate at
around the same time points but at different frequencies as for the pair (slow-4 power, slow-3 net causal flow) as shown in figure 4.
doi:10.1371/journal.pone.0064466.g005

Figure 6. Spectral peaks of causal flow and related power at lower frequencies. (A) In-out flow at slow-4 and power at slow-5, and (B) in-
out flow at slow-3 and power at slow-4. Units of power and in-out flow are arbitrary but normalized to same scale.
doi:10.1371/journal.pone.0064466.g006
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[24,49,50]. Our analysis showed that frequencies not only less than

0.1 Hz but also in the range 0.1–0.198 Hz play a significant role

for functional connectivity. These results are also consistent with

physical principles of superposition and modulation of waves.

Although the appropriateness of Granger causality techniques

to fMRI time series has been debated in a study by Smith and

colleagues [51], there is plenty of evidence supporting the

effectiveness of Granger causality measures to estimate effective

connectivity from fMRI time series [24,52,53,54,55,56,57,58,59].

As argued in the article by Wen and colleagues, we also restate

that Granger causality is based on the mathematical framework

that extends from the well-accepted measure coherence. In fact,

the nonparametric approach to Granger causality both in the

Fourier and wavelet domains [25,39] demonstrates that Granger

causality can be derived from the spectral matrix just like

coherence. However, we recognize that the relationship between

the Granger causality-based observables and the underlying state

variables is not straightforward as with any statistical measure

derived from BOLD responses.

Finally, we used DTI analysis and confirmed the relationship

between structure and function and revealed further details about

the relationship. We found that the main region PCC was

connected to other nodes in most of the participants. The causal

flow in distinct frequency slow-3 correlated with the number of

fibers leading to the nodes. The fact that we were not able to find

fiber pathways in some of the participants, may be due to the

limitations of current DTI techniques [60].

Although we evaluated the default-mode for the above

relationship, we envision that these results can be extended to

other default-modes. These findings are consistent with Greicius

and colleague’s findings [7], in which a positive linear relation was

found between the fiber density and functional correlation.

Further, the physiological origin of time-varying nature of

functional dynamics during resting conditions still remains a topic

for future investigations, which may require electrophysiological

and behavioral data (e.g. eye movements) to be acquired

concurrently with fMRI from participants at rest, sleep and/or

at reduced consciousness under anesthesia.

Conclusions

In this study, using wavelet-based spectral techniques, we

analyzed time-frequency domain power and Granger causality

from resting state fMRI BOLD signals. We found that the intrinsic

low-frequency fMRI BOLD fluctuations vary in their amplitudes

Figure 7. Linear relationship of the net in-out flow with power for all four nodes. (A) Slow-4 causal flow is related with the power at slow-5,
(B) slow-3 causal flow is related with power at slow-4.
doi:10.1371/journal.pone.0064466.g007

Figure 8. DTI fiber tracts from a representative participant. Fiber pathways between: (A) PCC (R1) and mPFC (R2), (B) PCC (R1) and LMTC (R3),
and (C) PCC (R1) and LAG (R4).
doi:10.1371/journal.pone.0064466.g008
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over time. The dynamic nature of the signals is reflected in the

node and network activities of the default mode brain regions. The

network activity at relatively higher frequencies (slow-3 and slow-4

bands) can predict lower frequency (slow-4 and slow-5) node

activities. We observed a linear relationship of the net in-out causal

flow to a node with the spectral power level at that node. The net

in-out casual flow from a node was also related linearly with the

fiber tracts density connected to the node. These findings suggest

that (i) the so-called resting state may not always be at rest and

there can be moments of ’ups’ and ’downs’ within the resting state,

(ii) the lower frequency node activity can be predicted by a higher

frequency network activity during up-state, and (iii) the node and

network activity depends on the number of fiber tracts leading to

the node.
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