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ABSTRACT

The objective of this research was to explore a cost-effective and non-invasive 

methodology to characterize spatial variability of hydraulic conductivity using airborne 

electromagnetic (AEM) signatures as an alternative to traditional techniques such as 

borehole sampling. The relationship of AEM measured apparent resistivity and magnetic 

field strength was explored using a small dataset that included 180 natural moisture (NM) 

content data and a total dataset of 546 grain size distributions that excluded the NM. The

grain size distributions were used to develop soil indicator parameter and to estimate the

*
hydraulic conductivity (K ) using pedo-transfer functions. Predictive models were 

developed using three techniques; artificial neural network regression (ANNR), support

vector regression (SVR), and artificial neural network classification (ANNC). The sole
*

use of non-invasive parameters to characterize K proved insufficient. The inclusion of 

supplemental invasively collected parameters showed ANNR to best characterize the 

relationship (R = 0.64) with the smaller dataset; while the SVR model performed best

with the total dataset (R = 0.57). ANNC was shown to be a viable alternative (overall
*

accuracy = 88%) when broad characterization of K was sufficient. This study lays out a
*

methodology that could be used for future K characterization using improved data set.
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1.0 INTRODUCTION

Any design of facility or structure requires the knowledge of the subsurface 

hydraulic characteristics. These subsurface hydraulic characteristics are especially 

significant in northern latitudes where a disruption in the groundwater flow can alter the 

thermal energy balance leading to costly implications such as those caused by frost heave 

and excessive ice or hydraulic pressure. A parameter used to reflect the physical flow 

characteristics of the subsurface geologic medium is the hydraulic conductivity (K) 

measured in LT-1. Hydraulic conductivity is known to have one of the highest degree of 

variability of all geotechnical and hydraulic properties with its magnitude varying over 

ten orders of magnitude ranging between 10-9 cm/s for clayey soils to 100 cm/s or higher 

for coarse gravel and crushed rock (Mbonimpa et al., 2002). Due to the large range of 

values and a high degree of natural spatial variability that is dependent on the deposition, 

highly clustered data sets are often required to accurately characterize the subsurface 

groundwater flow regime. Because areas of potential development especially in the 

arctic often involve vast regions of remote, rugged, and environmentally sensitive land, 

conventional methods of investigation such as borehole sampling and well tests can be 

economically prohibitive and environmentally invasive.

The Alaska Highway corridor between Delta Junction and Tok, Alaska, has long 

been of significant importance due to its role as a vital land-based transportation link 

between interior Alaska and the rest of the North America. More recently the 

significance of this corridor has been elevated due to a proposed buried chilled natural
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gas pipeline extending from Alaska’s North Slope to Alberta, Canada with an estimated 

cost of thirty five billion dollars that would travel through the corridor. Recent 

investigations into the area have shown that the majority of the corridor to be underlain 

by the pipeline falls under a discontinuous permafrost regime (Reger and Solie, 2008). A 

project of this type and scale will most certainly have a significant influence on the 

thermal balance of the subsurface. Due to the strong connection between energy and 

water balances (Woo, 1986), mitigating the danger of differential frost heave from the 

formation of ice lenses in the soil inducing potentially damaging loads to the pipeline in 

areas of discontinuous permafrost is critical (Kim et al., 2008). Because of the limited 

amount of available hydrologic data in the area, adequately addressing this issue in the 

design of the pipeline would require a significant amount of borehole sampling to 

characterize the hydraulic regime influencing the thermal energy balance of the 

subsurface. Such sampling will add considerably to both the cost and the potential for 

environmental damage.

A viable alternative to the large scale borehole sampling employs the relationship 

between hydraulic and electrical properties shown in lab and field scale research (Archie, 

1942; Topp et al., 1980; Slater and Lesmes, 2002; Friedman, 2005; Doussan and Ruy, 

2009). By employing the high density data coverage of the airborne electromagnetic 

(AEM) survey (less than 3 meter sample spacing) which measures the apparent resistivity 

and magnetic field strength, in conjunction with the relationship between electrical and 

subsurface hydraulic properties, an alternative method of subsurface hydraulic 

characterization using machine learning algorithms may be explored. Due to a limited
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amount of hydraulic data the relationship between subsurface hydraulics and the AEM 

data will be explored using empirically derived hydraulic conductivity data estimated 

using grain size distributions. The method could offer potential improvements by 

characterizing the high degree of spatial variability while potentially providing cost 

savings and lowering the risk of environmental damage.

1.1 RESEARCH HYPOTHESES

Considering the complexity of quantifying the hydro-geophysical relationship 

within the Alaska Highway corridor between Delta Junction and Tok, Alaska the 

hypothesis of this research is bifold, as presented below:

1) That there exists a correlation between electrical properties and hydraulic 

conductivity of a porous media. On basis of this hypothesis, the research 

addresses the characterization of hydraulic conductivity of an example study 

area using AEM data.

2) That relationship between electrical properties and subsurface hydraulic 

conductivity is multifaceted and necessitates the use of machine learning 

algorithms to overcome the issues of complexity and multi-dimensional 

data.

1.2 OBJECTIVE

The objective of this research is to explore the relationship between the 

geophysical data acquired through an AEM survey and the estimated hydraulic 

conductivity values by using machine learning algorithms (MLA) so that it may be used
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in predictive modeling or characterization of subsurface heterogeneity. Due to a limited 

amount of hydraulic data within the area empirically derived hydraulic conductivity data 

estimated using grain size distributions will be used in place of field measured values to 

explore the relationship. In order to accomplish this, the following items are included in 

the scope of this research:

1) Review of past studies and research outlining the general hydrogeologic 

conditions of the study area.

2) Determination of applicable machine learning algorithms for the 

development of predictive models from which hydraulic conductivity can be 

estimated.

3) Refinement and analysis of AEM data.

4) Compilation, refinement, and analysis of geologic data.

5) Development of hydraulic data set using the available grain size 

distributions in conjunction with empirically derived functions.

6) Analysis of the statistical relationships between the hydraulic, geophysical 

and geologic data.

7) Development and analysis of predictive models estimating hydraulic 

conductivity using machine learning algorithms.
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2.0 BACKGROUND

The characterization of subsurface hydraulic conductivity using AEM surveys 

cannot be complete without first understanding of the topics and theory that this research 

is based upon. This chapter provided a brief description of the topics, theory, and 

literature pertaining to the items listed below:

• Overview of study area detailing its location and the general hydrologic and 

geologic conditions.

• Summary of the theory behind the relationship between the electrical and 

hydraulic properties of a porous geologic medium.

• Overview of AEM surveys.

• Evaluation of the estimation of hydraulic conductivity using grain size 

distributions.

2.1 STUDY AREA

The area of interest for this study lies along the Alaska Highway corridor in 

interior Alaska bounded by the city of Delta Junction (65°02’16” N, 145°43’56” W) at 

the North West extent and the city of Tok (63°20’ 12” N, 142°59’8” W) at the South East 

extent (Figure 2.1). The corridor is approximately 108 miles long in the northwest 

direction lying primarily in the Yukon-Tanana lowlands. The lowlands consist primarily 

of unconsolidated glacial and alluvial deposits by the Alaska Mountain Range to the 

Southwest and the Yukon-Tanana upland to the northeast. The peaks of the Alaska 

Range adjacent to the Tanana highway corridor rise to elevations of over 6,500 ft above
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sea level while the hills of the Yukon-Tanana upland north of the corridor rise to over 

3,300 ft above sea level. The main axial stream within the area is the Tanana River, a 

large, meandering, braided stream traveling in the northwest direction along the lowland 

(Reger et al., 2008). The stream descends from the approximate elevations of 1,600 to

1,000 ft above sea level between Tok and Delta Junction, respectively.
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Figure 2.1: Location and bounds o f study area [digital elevation model o f study area 
adapted from Solie and Burns, (2007) and image o f Alaska adapted from Saskal, (2008)].
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2.1.1 Hydrogeology of Upper Tanana River Valley

The first hydrologic investigations within the upper Tanana River Valley were 

conducted by Pewe (1955) investigating the groundwater and springs in the vicinity of 

Big Delta in his study of permafrost and groundwater in the Middle Tanana Valley.

Pewe (1955) found the groundwater gradient to slope in the northwest direction at three 

to five feet per mile. Subsequently, further investigations confirmed the observations 

noted in Pewe (1955) through surveys of piezometric levels, ground water gradients, and 

soils (U.S. Army Corps of Engineers, 1959; Wallner et al., 1961; Holmes, 1965).

The general hydrogeology, water quality and surface water conditions were first 

mapped by Anderson (1970) in his investigations into the general hydrologic conditions 

in the Tanana Basin. He found that the main supply to the aquifers came from seepage 

from the surrounding glacial streams indicating that the water table and natural water 

content of the surrounding drainages are likely to be higher than the plateaus and valley 

floors . Wilcox (1980) later reported on the hydrogeology of the Delta-Clearwater area, 

describing the ground and surface water conditions of the area as well as the influence of 

permafrost. It was noted that the main rivers and creeks in the area including the Tanana 

River are perched above the groundwater table and provide a significant amount of 

recharge to the aquifer. The loss of water from the rivers to the aquifer was shown 

through the significant increase in water table depth measured from wells as the distance 

from surface water corridors increased. The water table depth was shown ranged from 

near surface to roughly up to 400 ft below the surface one mile away from local wells 

sampled.
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More recently detailed surficial and engineering geologic investigations and maps 

have been provided by Reger et al., (2008). The maps and report detail the distribution of 

unconsolidated geologic material and their depositional characteristics. These 

delineations provide a base from which significant alterations in subsurface hydraulic 

characteristics can be related back to the changes in physical properties of the geologic 

media.

The principal factors observed in these reports (Wilcox, 1980; Reger et al., 2008) 

include that the aquifer system of the highway corridor is primarily composed of thick 

unconsolidated alluvial and glacial deposits of gravel, sand, and silt at depths of over 

2,500 feet. The water table within these aquifers ranges from near surface to over 400 ft 

below the ground surface indicating that the subsurface is relativly permeable and well 

drained. These large relatively permeable aquifers are resultant of the terminal moraines, 

broad piedmont fans, and coarse outwash of the Alaska Mountain Range. The 

stratification of the deposits varies widely with lenticular deposits of gravel, sand, and silt 

forming an interconnected system of aquifers separated by leaky confining layers. This 

system of aquifers is bounded to the North and South by the bedrock of the Alaska 

Mountain Range and Yukon-Tanana uplands, respectively. These formations provide the 

hydro-geologic boundaries controlling regional groundwater flow defining the Tanana 

River drainage basin shown in Figure 2.2.
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Figure 2.2: Delineation o f the hydrogeologic boundaries.
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2.2 HYDRO-GEOPHYSICAL RELATIONSHIP

Water and the accompanying electrolytes that are found in the pore spaces of 

much of the near surface rocks and soils have been shown to be the important factors 

controlling the electrical conductivity (the ability of a media to conduct electric current) 

of geologic media (Zhdanov, 2009). The relationship between the conductivity of the 

porous medium and the water filled pore spaces is well known and described using the 

Archie’s law (Archie, 1942, 1947, 1950) as,

at = aawW m (2.1)

where, ot is the bulk electrical conductivity of the geologic medium with units of 

Siemens per meter, ow is conductivity of the water in the pore spaces with units of 

Siemens per meter, W is the water content as a volume fraction of the medium, and a and 

m are empirical parameters accounting for the physical characteristics of the medium. 

Because the conduction of electrical current through geologic media takes place almost 

entirely through the fluid within the pore spaces, it is influenced by the same constraining 

factors that influence fluid flow such as porosity, connectivity, and tortuosity (Lesmes 

and Friedman, 2005).

In the case of solid electrolytes which account for the majority of rock-forming 

minerals, the electrical conductivity is largely dependent on quantity and mobility of free 

charged particles. The number and mobility of these charged particles is significantly 

influenced by multiple factors including water content, chemical composition, weathering 

process, and temperature. Typical conductivities of unsaturated rock and sediment are 

under 100 milliSiemens per meter (mS/m) but can be amplified to multiple thousand
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mS/m depending on the water content and salinity (Zhdanov, 2009). In geophysical 

surveys the measurement of electrical resistivity (p) measured in units of ohm-meters is 

often used in place of electrical conductivity. This is done with the understanding that for 

isotropic materials electrical resistivity is simply defined as the reciprocal of electrical 

conductivity shown below:

p = o _1 (2.2)

The key step in quantifying the hydro-geophysical relationship is the 

transformation of the measured geophysical data to their corresponding hydraulic 

properties. Studies done in various geologic settings have shown multiple types of 

relationships including direct, inverse, and log relationships with widely varying degrees 

of accuracy ranging from an R of 0.5 to 0.96 depending on the medium and wave 

frequency employed (Slater and Lesmes, 2002). These studies indicate a complex 

relationship that is dependent both on the physical and chemical characteristics of the 

fluid and geologic media as discussed above. Because of this, we are inclined to believe 

that the relationship is too complex to employ universal functions to describe such 

relationship and that a site dependent approximation would be more applicable.

2.2.1 Electromagnetic Survey Measurements

The frequency domain electromagnetic (FDEM) method is commonly employed 

in geologic and hydrologic investigations due to its versatility, high density data

coverage, and range of coverage (Paine and Minty, 2005). FDEM surveys typically map

*
the primary measurement of apparent electrical resistivity (p ) and the secondary
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measurement magnetic field strength (H) measured in ohm-meters (Q-m) and nano 

Teslas (nT) respectively.

The primary FDEM measurement , apparent electrical resistivity (p*), which 

measures how strongly a material opposes the flow of electrical current, is of special 

interest in geologic and hydrologic investigations due to the relationship between the

conduction of electrical current and fluid flow (see Section 2.2). Apparent electrical
*

resistivity (p ) differs from electrical resistivity in that it is the volume average of a 

heterogeneous material (Figure 2.3) rather than the intrinsic property of microscopic 

volume of material.

Figure 2.3: Illustration o f apparent resistivity as a volume average.
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The secondary FDEM measurement of magnetic field strength (H), measures 

changes in earth magnetic field. The magnetic field strength is not influenced by changes 

in the shallow subsurface hydraulic parameters but has been shown to be useful in 

hydrogeologic investigations through their ability to delineate basin geometry and certain 

types of faults, paleochannels, eolian deposits, and igneous intrusions that could have 

implications with respect to regional groundwater flow (Paine and Minty, 2005).

The magnetic survey generally employs the use of the International Geomagnetic 

Reference Field (IGRF), which is a mathematical description of the earth’s main 

magnetic field to map deviations from the expected. By removing the IGRF, flight lines 

flown at different times can be merged and appropriately compared with previous 

surveys. Deviations from the expected field strength indicate changes in magnetic 

permeability of the media. Magnetic permeability is the ability of a material to be 

magnetized through the application of an external field. The magnetic field strength and 

magnetic permeability can be related through Maxwell’s third constitutive equation 

relating the behavior of electromagnetic waves to the electrical properties of the earth 

(Huang and Fraser, 2001):

B = p H (2.3)

where H is the magnetic field strength with units of teslas, p is the magnetic 

permeability with units of henries per meter of free space, and B is the resulting magnetic 

induction with units of weber per square meter (Zhdanov, 2009).
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2.2.2 Airborne Electromagnetic Surveys

The airborne FDEM survey equipment is typically composed of multiple 

transmitter and receiver coils housed together in a “bird”. The bird is towed behind an 

airborne platform on a predesigned survey grid. Throughout the operation, each 

transmitter coil emits an EM field at a fixed frequency. The electromagnetic fields 

propagate through the ground interacting with the geologic medium inducing eddy 

currents. These eddy currents in turn induce a secondary electromagnetic field. The 

receiver coils measure the resulting EM field, which is the super position of the primary 

and secondary fields as shown in Figure 2.4.

Figure 2.4: Basic electromagnetic system (Source: Scrivens (2005)).
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The strength of the secondary EM field and depth of exploration is a complex 

relationship between the transmitted frequency and the electrical resistivity of the ground. 

Generally, as the conductivity of the ground increases, the strength of the secondary field 

increases, while the depth of exploration decreases. Due to inverse relationship between 

exploration depth and both EM frequency and ground conductivity, FDEM surveys 

employ multiple frequencies to provide a relative representation of how the conductivity 

of the ground changes with increasing depth. The skin depth can be approximated as the 

depth at which the transmitted field strength is reduced to thirty seven percent of its 

original strength. The exploration depth, also known as skin depth can be calculated 

using the equation

where 5 is the skin depth (meters), p is the resistivity (ohm-m), f  is the frequency 

(cycles/s) (Telford et al., 1990). While the exploration depth will vary depending on the 

frequency and conductivity of the subsurface, the maximum achievable penetration for 

low frequencies is around 500 m (Kearey et al. 2002).

The magnetic field strength is generally measured using magnetometer attached to 

the “bird” with the EM transmitter coils. The cesium magnetometer, which was 

employed in this study, measures the magnetic field strength by quantifying its influence 

on cesium -  133 atoms contained within the sensor. The instruments are extremely 

sensitive to alterations in magnetic field with changes as small as 0.001 nT being 

registered.
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While AEM surveys provide an excellent tool in geological and hydrologic 

studies, there are significant limitations and potential sources of error accrued during both 

the collection and interpretation of the data. AEM surveys measure the local deviations 

of apparent resistivity and magnetic field strength from what is assumed to be a constant 

background fields (Kearey et al., 2002). In reality these fields are not constant and can be 

influenced by factors such as temperature and solar wind. While background 

measurements are taken at multiple times throughout the survey, the changes can be non

linear varying over time and difficult to account for. The changes in background fields 

have been shown to be the most significant source of poor data quality (Valleau, 2000). 

Other potential sources of error accrued during the survey include, non-geologic noise 

from electronics, vibration, and the helicopter or plane which can influence measurement 

of local EM waves.

In addition to the potential error incorporated through the AEM survey the 

interpretation of the data can be ambiguous. Because the AEM data is being used to 

deduce the physical properties of unknown geologic media, determining what represents 

an accurate measurement and what might be attributed to measurement errors can be 

difficult. AEM measurements do not respond uniquely to certain geologic media and 

physical characteristics and the interpretation of the data requires general knowledge of 

the subsurface hydrology and geology is necessary to interpret the data. Even with an 

extensive knowledge of the survey area various measurements are likely to be interpreted 

and attributed incorrectly to a certain physical characteristic of the medium. The AEM
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data is used in this study with an understanding of the limitations and error likely 

introduced through its use.

2.3 ESTIMATION OF HYDRAULIC CONDUCTIVITY

Due to the lack of available hydraulic data within the study area alternate methods 

of estimating the subsurface hydraulic parameters were needed. The issue of insufficient 

hydraulic data is not unique to this study due to the costs associated with the collection of 

supplemental data. Due to the need for alternative methods in subsurface hydraulic 

characterization, functions have been developed that estimate relationships between soil 

hydraulic parameters and more easily acquired soil data, such as the porosity, bulk 

density, grain size distribution, organic carbon, along with multiple other physical 

properties depending on the method (B0 rgesen et al., 2008). Bouma (1989) introduced 

the term pedo-transfer function (PTF), which he described as the translation of available 

soil data into soil data needed. By employing the long established relationship between 

the grain size distribution of a porous medium and hydraulic conductivity (Freeze and 

Cherry, 1979), PTFs can be employed to augment limited hydraulic data sets using grain 

size distribtuion information collected during geotechnical studies such as the case in this 

research.

Due to the large degree of difficulty in including all the possible variables in a 

porous medium, PTF’s are not universally applicable with their accuracy varying greatly 

depending on the geologic setting. Studies evaluating the applications of different PTF’s 

to the same porous geologic medium have shown that their estimates can differ by factors 

of ten or twenty (Vokovic and Soro, 1992). The incorporation of PTFs in any study,
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needs to come with an understanding of the limitations. The fact that no PTF can account 

for all of the physical variations in a porous medium influencing fluid flow is shown by

the continual development of new methods and alterations of existing methods. The high

*
degree of uncertainty expected in the estimated hydraulic conductivity (K ) values of 

one-half to one order of magnitude (Schapp and Leij, 1998) demonstrates that they are 

not a adequate replacement for direct hydraulic conductivity measurements and should 

only be used as an additional tool or where limited data is available, such as the case in 

this research. PTF’s are employed in this study with a full understanding of the 

limitations and error likely introduced through their use.

To minimize the error incurred through the use of PTF’s, three relevant and 

widely used methods were chosen based on a survey of available literature. The use of 

the three different methods allows for the comparison of the estimated values and the 

selection of the most accurate method for the given soil. The first PTF selected was 

developed by Hazen (1911) for predicting the hydraulic conductivity (or permeability) of 

saturated sands:

K* = CHDf0 (2.5)

where K* is the estimated saturated hydraulic conductivity (cm/s), CH is Hazen’s 

empirical coefficient which ranges between 1 to 1000 but is often assumed to be 100, and 

D10 is the grain size that is 10% finer by weight (effective grain size) (cm). While this 

equation was developed for clean sands with a coefficient of uniformity (D60/D10) of less 

than two, it has been widely employed to a range of in-situ soils due to its simplicity, 

with varying degrees of success (Carrier, 2003).
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The second PTF selected was developed by Kozeny (1927) and Carman (1938):

fluid (cp), CK-C is the Kozeny-Carman empirical coefficient usually assumed equal to 5,

S0 is the specific surface area of the porous media per unit volume, and e is the void ratio. 

The Kozeny-Carmen PTF is one of the most widely accepted methods to estimate 

hydraulic conductivity using the physical characteristics of the soil medium (Odong, 

2007). The fact that this function requires a greater depth of knowledge concerning the 

physical properties of both the fluid and soil has limited its application even though 

simple methods of estimation for these parameters have been shown to be quite accurate 

(Carrier, 2003).

The third PTF selected was developed by Cosby et al., (1984):

where SA is the sand content percentage, and CL is the clay content percentage. 

This method was developed using multi-linear regression with 1448 U.S. soil samples to 

estimate the model parameters of the Campbell equation (1974). Recent studies have 

shown that the hydraulic conductivity estimated by the PTF compares well with 

measured data (Budiman and McBratney, 2000; Mermoud and Xu, 2006). The three 

PTF’s will be referred to hereinafter as Hazen, KC, and Cosby, respectively.

3
where y  is the unit weight of the fluid (g/cm ), q is the dynamic viscosity of the

K* = 2.54 * io(-°-6+-012UA)-aoo64(cx)) (2.7)
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3.0 DATA AND METHODS

There is a need to quantify hydro-geophysical relationship of the Alaska Highway 

corridor between Delta Junction and Tok, Alaska and provide an alternate method 

mapping the spatial variability of hydraulic conductivity. To address this problem 

relevant data from the study area was compiled and alternate methods of analysis were 

investigated. This chapter provides a brief description of the types of data used as well as 

the pattern learning methods employed to characterize the hydro-geophysical 

relationship.

3.1 DATA

All data used in the research has been compiled from reports and surveys by state 

and federal government agencies as well as private contractors. The data employed in 

this study can be grouped into three types; geophysical, geologic, and hydraulic. The 

following details the source and content of the three types of data.

3.1.1 Geophysical Data

The electromagnetic and magnetic (geophysical) data employed in this study was 

collected by a helicopter based frequency domain electromagnetic survey. The survey 

was performed using a Resolve EM system by Fugro Airborne surveys for the Alaska 

Department of Geologic and Geophysical Surveys (ADGGS). The geophysical survey 

was conducted on a sixteen mile swath along the Alaska Highway corridor from Delta 

Junction, Alaska to the Canadian border that covered roughly 3,045 square miles (Burns 

et al., 2006). The survey measured the magnetic field and the inphase and quadrature
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components of six frequencies; 391, 1800, 3245, 8184, 39500, and 132760 hertz (Hz). 

The flight lines were flown with a one-quarter mile spacing and the magnetic and 

electromagnetic data collected from each frequency was interpolated onto an eighty 

meter grid using a modified Akima technique (Akima, 1970).

3.1.2 Geologic Data

The geologic data employed in this study consists of 546 borehole samples 

collected between 1964 and 1993 by the Alaska Department of Transportation (ADOT) 

(Livingston, 1964, 1969; Slater, 1976; Brazo, 1980; Grahek, 1981, 1983, 1984; Brazo, 

1987, 1993; Butler, 1993) at depths ranging from zero to twenty three feet. For each 

sample the grain size distribution analysis was performed while the natural moisture 

content was only recorded for 180 of the samples.

3.1.3 Hydraulic Data

The hydraulic data consists of 211 soil permeability measurements collected 

during a United States Department of Agriculture (USDA) soil survey (Swanson, 2009). 

The measurements are not spatially referenced and were collected based on soil type. 

The samples are concentrated at the northern extent of the study area but encompass a 

wide range of soil types found throughout the study area.
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3.2 METHODS

Due to the complex nature of the hydro-geophysical relationship, the 

characterization of hydraulic conductivity using both geophysical and geologic input 

parameters can be difficult to achieve mathematically and numerically. Recent studies 

have shown machine learning algorithms, which are adaptable pattern learning methods 

of analysis, to be a powerful and versatile tool, especially useful in pattern recognition, 

signal processing, and function approximation (e.g. Rizzo and Dougherty, 1994; Tamari 

et al., 1996). Their strength comes in their ability to approximate highly complex non

linear relationships, such as the case in this research.

In this study the hydro-geophysical relationship was analyzed using three types of 

machine learning algorithms. The machine learning algorithms employed are artificial 

neural network regression (ANNR), support vector regression (SVR), and artificial neural 

network classification (ANNC). Before employing the machine learning algorithms the 

input parameters were first individually analyzed to characterize their statistical, 

distributional, and spatial properties. The understanding of the statistical, distributional, 

and spatial characteristics of each of the hydraulic, geophysical, and geologic parameters 

is integral before their relationships can be used in a predictive manner. We structure the 

rest of the methodology into three subsections. These subsections provide a brief 

background of the machine learning algorithms and their associated parameters employed 

in this study.
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3.2.1 Artificial Neural Networks

Recent studies have shown, Artificial Neural Networks (ANN), which is an 

adaptable pattern learning method of analysis, to be a powerful and versatile tool 

especially useful in pattern recognition, signal processing, and function approximation 

(e.g., Rizzo and Dougherty, 1994; Tamari et al., 1996; Ghanbarian-Alavijeh et al., 2010). 

Hence, ANN was used to provide a regression and classification of the data to simulate 

the hydraulic conductivity using input parameters of apparent resistivity, spatial 

coordinates, soil indicator, and natural moisture content.

The architecture of an ANN is based on that of biological neurons such that it is 

composed of a network of interconnected neurons each with multiple inputs and outputs. 

The neurons are generally structured into three layers (Figure 3.1): The input layer, 

which provides the input parameters that are believed to have a relationship with the 

target output to each node of the first hidden layer. The hidden layer/s, which multiply 

the inputs by the associated weights, sums the weighted inputs and biases, and then 

operates on the sum using an activation function, the output layer. The output layer, 

which applies a second set of weights, sums the weighted inputs and associated bias, and 

operates on the sum with an activation function, with the result being the output of the 

model. Activation functions are used within the network to account for the non-linearity 

and multidimensionality of complex data sets (Sarle, 2002) providing the network the 

ability to model nonlinear functions. The weights and bias of each neuron are generally 

optimized using a subset of the total data set with a training algorithm that iteratively
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adjusts the weights and bias of each neuron using a subset order to minimize the error 

between the predicted output and target output.

Input Layer Hidden Layer Output Layer Targets

W  On

Figure 3.1: Feedforward multilayered artificial neural network.

The ANNR analysis in this study was performed using the MATLAB® Neural 

Network Tool box which employs the structure of a two layer feed forward network. To 

account for the non-linearity of the data, sigmoid activation were employed due to their 

ability to fit multi dimensional mapping problems and have been shown to be most 

applicable for continuous value targets with a bounded range (Jordan, 1995) such as the 

case with this research. The network was trained using the Levenberg-Marquardt 

backpropagation training algorithm. Recent studies have shown that the Levenberg-
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Marquardt backpropagation training algorithm which is a variation of Newton’s method 

to be a computationally efficient, robust and accurate algorithm due to the absence of 

second derivatives and a learning rate that changes based on rate of change in the error 

function (Hagan et al., 2002).

The use of ANNC offers an alternative to regression techniques through the 

recognition of classifications rather than numerical values. In this study we employed the 

use of classification to represent ranges of hydraulic conductivity values. The hydraulic 

conductivity values were grouped into three clusters (high, medium, and low) using the k- 

means clustering algorithm (Serber, 1984). The algorithm employs the square Euclidean 

distance between the points to minimize the inter cluster difference in the specified k 

number of clusters. The ANNC analysis was performed using Neuroshell Classifier 

(Ward Systems, Frederick, MD, USA 2008), a neural network simulator, which employs 

a proprietary training algorithm (TurboProp2, 2003) to simultaneously minimize the 

number of misclassifications and optimize the number of neurons.
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3.2.2 Support Vector Machines

Support Vector Machines (SVM) is a relatively new development in the field of 

machine learning algorithms. Studies have shown SVM to have significant advantages 

over ANN such as the absence of local minima, simple geometric interpretation, and 

sparseness of solution (Farag and Mohamed, 2004). These advantages are in part due to 

the utilization of the structural risk minimization principle, which has been shown to be 

superior to the empirical risk minimization principle employed by ANN (Gunn, 1998). 

The structural risk minimization principle helps address the issue of over fitting a model 

by balancing the complexity of the model with its ability to fit the training data.

SVM was first developed for classification problems and has been successfully 

employed in hydrological engineering investigations in several instances (Asefa et al., 

2004; Twarakavi et al., 2006; Wohlberg et al., 2006). SVM was extended to regression 

(SVR) problems when Vapnik (1995) introduced the s- insensitive loss function. The s- 

insensitive loss function sets limits to the amount the target values that can deviate from 

the modeled regression line, where deviations larger than s are not accepted.

The regression problem can be stated as:

Given a training data set D = {(Xj, t t) |i  = 1,2,..., n} of input vectors xi, and target 

outputs ti, the goal of SVR is to determine a functionf(x) that minimizes the error 

between the predicted output and target output (yi), using the least complex model 

possible (degree of flatness). The key difference between SVR and ANN is the inclusion 

of the s- insensitive loss function which helps reduce the risk of overtraining. This is 

done by only training the model using samples that lie outside specified margin of error.
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These instances are known as support vectors. The support vectors define the models 

hyper-plane (regression line) as shown in Figure 3.2. All data points that fall within the 

error margin s, do not contribute to the optimization of the regression line. The number of 

support vectors and distance from the regression line correlates to the error and 

uncertainty within in the model. In this study we identify areas of high uncertainty and 

error by splitting each input parameter into ten equally distributed intervals and analyze 

the quantity of support vectors in each range. This allows for the identification of gaps in 

the data set as well as what ranges of variables represent the strongest relationship.

Figure 3.2: Nonlinear SVR using Vapnik's e-insensitive loss function.
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In complex and non-linear problems it may not be feasible to develop a function 

f(x) where all errors are < s. To accommodate such problems, the “soft margin” loss 

function (Bennett and Mangasarian, 1992) was incorporated into SVR. The “soft 

margin” loss function incorporates slack variables leading to the optimization

problem as stated in Vapnik, (1995).

Where w is the weight vector associated with the input parameters, b is the bias

variables accounting for error outside of the margin s, and C is a constant used to control 

the magnitude of the penalty that is associated with error that fall outside of the margin. 

By controlling the magnitude of penalties associated with the errors greater then s, the 

constant C>0 determines the tradeoff between the flatness of the function f(x) and the 

amount to which error deviations are tolerated (Farag and Mohamed, 2004; Twarakavi et 

al., 2005).

In complex problems, issues of dimensionality and nonlinearity may arise and 

need to be overcome to characterize the relationship between the input space (predictor 

variables) and target space (output). In order to accomplish this characterization, the 

input space is mapped into a higher dimensional feature space using a nonlinear mapping

i
minimize

subject to

determined by its location relative to the origin of the input space, f* , ^  are the slack
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function called a kernel function. In this study, we employ the Gaussian radial basis 

kernel function (3.2) due to its wide degree of use.

With the inclusion of the Gaussian radial basis kernel, three SVR model 

parameters need to be optimized during training: the Gaussian radial basis function 

parameter y, magnitude of error penalty constant C, and the error margin s. For this 

study, we implemented a grid search algorithm within the training of the model that 

optimized the parameters based on coefficient of determination between the target and 

predicted output. The SVR algorithm employed for this research is available in the 

e1071 package (Dimitriadou et al., 2007) with code adapted from Oommen and Baise 

(in-press) was employed for the analysis.
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4.0 EXPLORATORY DATA ANALYSIS

A statistical, spatial, and correlational analysis was done to derive inferences on 

the distribution and spatial characteristics of the samples containing apparent resistivity, 

magnetic field strength, grain size distribution, and natural moisture content data within 

the study area. Additionally the grain size distributions obtained from the ADOT 

borehole samples provided the necessary information to estimate supplemental hydraulic 

conductivity data to augment the insufficient hydraulic data set. The three major analysis 

techniques used were the histogram analysis, semi-variogram analysis, and correlation 

analysis. The histogram analysis was carried out to understand the statistical distribution 

of the data, while the semi-variogram analysis was performed to provide valuable 

information on the spatial continuity and roughness of a data set that descriptive statistics 

and histograms fail to quantify. The correlation analysis was performed to measure the 

strength and direction of a linear relationship between parameters.

4.1 GEOPHYSICAL DATA ANALYSIS

4.1.1 Electromagnetic Data Analysis

The EM data collected during the ADGGS survey was analyzed to determine the 

statistical and spatial characteristics of the data along with how it corresponds to the 

surficial geologic units mapped by Reger et al. (2008) and known surface and subsurface 

water corridors such as the Tanana River and its tributaries. The units of measurement 

for the EM data are ohm-meters. Due to the relatively shallow depths of the borehole 

samples (zero to twenty three feet) only the high range frequencies of 40,000 (40K) and
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140,000 (140K) Hz collected during the geophysical survey were used in this study. The 

resulting apparent resistivity measured at these frequencies has a higher sensitivity and 

pertain to the geologic media near the surface as previously discussed (Section 2.2.2).

From the summary statistics of the apparent resistivity at 140K and 40K Hz given 

in Table 4.1 it is observed that the means are relatively low with values of 1294 and 985 

Q-m, respectively in comparison to maximums with values 4622 and 2770 Q-m, 

respectively. The low means coupled with the positively skewed distributions shown in 

their respective histograms (Figure 4.1) indicate that the electromagnetic waves are 

responding to the less resistive surface water and moisture rich soil near the surface. 

While one would expect that resistivity surveyed at 140K Hz would be lower than that of 

40K Hz due to its sensitivity to surface water, we can see from the histograms and 

variance that mean was skewed by the outlying data points. A more representative value 

for the apparent resistivity surveyed at 140K Hz would be the median with a value of 

921.78 Q-m. This value aligns more closely with the distribution shown in the histogram 

(Figure 4.1a).

Table 4.1: Summary statistics o f the apparent resistivity data.

p * at 140K Hz p at 40K  Hz

COUNT 556 556
M EAN 1294.33 Q-m 986.59 Q-m
M EDIAN 921.78 Q-m 930.81 Q-m
MINIM UM 73.81 Q-m 125.11 Q-m
M AXIM UM 4622.56 Q-m 2770.08 Q-m
VARIANCE 808988.17 (Q-m)2 233204.78 (Q-m)2
STANDARD DEVIATION 898.61 Q-m 482.47 Q-m
SKEW NESS 1.21 0.64
KURTOSIS 1.07 0.22
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From the contour plots of the resistivity at 140K and 40K Hz shown in Figure

4.2, it is observed that the areas of lowest resistivity correspond to the Tanana River, 

tributaries, and low lying areas . This strengthens our hypothesis that the EM fields are 

responding to the surface and subsurface volumetric water content. It is also observed 

that the areas of highest resistivity are concentrated on the southern edge of the area 

likely corresponding to the granitic outcroppings and the piedmont fans of the foot hills 

of the Alaska Range described by Reger et al. (2008).

From the contour map of the difference between the apparent resistivity measured 

at 140K and 40 K Hz shown in Figure 4.3 it is observed that the majority of values lie 

within ± 500 Q-m of each other. The overall similarity correlates to the observations 

made from the summary statistics (Table 4.1) and individual contour plots (Figure 4.2). 

It can also be observed that the areas with a positive difference between approximately 

1000 and 4000 Q-m are at the base of many of the streams and rivers initiating from the 

Alaska Mountain Range. This indicates that lower frequency (40K Hz) waves 

penetrating to a deeper depth are likely encountering the subsurface groundwater flowing 

through the alluvial outwash whereas the higher frequency waves are not penetrating 

deep enough to interact with the less resistive material. The largest dissimilarities 

between the two frequencies lie on the southern most extent of the study area. This 

indicates that the lower frequency (40K Hz) responds to an increased amount of bed rock 

with depth. Overall it is observed that for the majority of the area, the two frequencies 

are responding to roughly the same subsurface material.
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(b)

Figure 4.2: Contour plots o f apparent resistivity
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Figure 4.3: Contour plot o f difference between p measured at 140K and 40K Hz.
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The apparent resistivity at 140K and 40K Hz were tested for spatial variance 

using semi-variogram analysis. Semi-variogram analysis provides valuable information 

on the spatial continuity and roughness of a data set that descriptive statistics and 

histograms fail to quantify. Figure 4.4 shows the experimental semi-variogram of 

apparent resistivity at 140K Hz evaluated perpendicular to the flight lines with a forty 

five degree tolerance. The estimated sill shown at approximately 800,000 (Q-meter) 

corresponds to the calculated variance in the summary statistics (Table 4.1). From the 

semi-variogram it is observed that the data points lose their spatial continuity at a lag 

distance of 6,500 meters. This roughly corresponds to the large surficial geologic units 

mapped by Reger et al. (2008). The experimental semi-variogram of apparent resistivity 

at 40K Hz shown in Figure 4.5 roughly correlates to the variance shown in the summary 

statistics (Table 4.1) with a sill of 235,000 (Q-meter) . The range of data correlation is 

shown to be at roughly 5,500 meters indicting that the geologic media increases in 

heterogeneity with an increase in depth.
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Figure 4.4: Semi-variogramp*at 140KHz.

Figure 4.5: Semi-variogram o f p*at  40KHz.
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4.1.2 Magnetic Data Analysis

In addition to the apparent resistivity data, magnetic data was collected through 

the AEM survey. While the earth’s magnetic field is not influenced by moisture content 

and geologic pore structure in the shallow surface, it can be useful in the identification of 

hydrologic basin geometry, igneous intrusions, faults, paleochannels, and eolian deposits 

(Paine and Minty, 2005). The magnetic data was analyzed to understand the 

characteristics of the data set and provide a supplemental input through its relationship to 

the subsurface geologic composition.

From the summary statistics of the magnetic data given in Table 4.2, and 

histogram in Figure 4.6, it is observed that the data is concentrated around the mean of 

57093 nT with a range of 794 nT. Previous studies interpreting magnetic data have used 

magnetic values exceeding + 500 nT from the mean as symbolizing anomalous values 

(Oommen, 2006). The narrow range of the data set (56803 to 57597 nT) combined with 

the low number of anomalous values shown in contour map (Figure 4.7) indicate that the 

magnetic susceptibility of the geologic material is relatively homogenous throughout the 

study area.

Table 4.2: Statistical summary o f magnetic data.

COUNT 556 VARIANCE 16774.92
M EAN 57093.86 nT STANDARD DEVIATION 129 .40
M EDIAN 57046.85 nT SKEW NESS 1.32
M INIM UM 56803.81 nT KURTOSIS 2.15
M AXIM UM 57597.21 nT
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While the summary statistics (Table 4.2) and histogram (Figure 4.6) indicate a 

homogenous smooth data set, the experimental semi-variogram of the magnetic data 

evaluated perpendicular to the flight lines with a forty five degree tolerance shown in 

Figure 4.8 indicates a low degree of spatial continuity accompanied by an estimated lag 

distance of less than 4,000 meters. This observation indicates that the magnetic field is 

likely responding to the changes in the subsurface geology. While the variations in 

magnetic susceptibility have not been shown to directly correlate to changes in the 

hydraulic structure of the geologic media they might provide an indicative parameter and 

therefore are used for further analysis.
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Figure 4.7: Contour plot o f magnetic data.

Figure 4.8: Semi-variogram magnetic data.
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4.2 GEOLOGIC DATA ANALYSIS

4.2.1 Grain Size Distribution Analysis

The borehole grain size distributions were condensed into three major 

constituents; gravel (retained on a #4 sieve), sand (retained on #200 sieve), and fines 

(passing #200 sieve) based on their percentage of the total by weight. Along with the 

major soil constituents effective grain size (Deff) was calculated for each grain size 

distribution using the equation developed by (Carrier, 2003):

Deff = 100% /\ Y J(fi/D ave i)] (41)

where fi, is the fraction of particle between two sieve sizes and Dave is the average 

particle size. The effective grain size is representative of the overall distribution of 

gravel, sand, and fines as well as being a primary input for the estimation of hydraulic 

conductivity using the PTF developed by Carmen (1938) and Kozeny (1927). The 

distribution of the three constituents (gravel, sand, and fines) and the effective grain size 

are significant due to their physical implications controlling subsurface groundwater 

flow.

From the summary statistics shown in Table 4.3 and histogram plots shown in 

Figure 4.9, it is observed that sand has the highest mean percentage of 42.89% with the 

distribution equally distributed around the mean, while gravel has the second highest 

mean with 34.89% and appears to have a negatively skewed bimodal distribution with 

high concentrations of samples falling around zero and fifty percent. The fine grained 

soil had the lowest mean with 22% and a negatively skewed distribution. The more
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equally distributed percentages of sand and gravel compared to the fines indicate a 

porous media, which correlates to the previous hydrogeologic observations noted in 

Section 2.1.1.

Table 4.3: Statistical summary o f borehole sample grain size distributions

% Gravel %Sand %Fines Deff
COUNT 546 546 546 546
M EAN 34.87 42.89 22.18 1.80E-02
M EDIAN 40 42 12 1.36E-02
M INIM UM 0 0 1 1.89E-03
M AXIM UM 98 98 100 0.277
VARIANCE 523.40 252.55 514.36 3.30E-04
STANDARD DEVIATION 22.88 15.89 22.68 1.82E-02

SKEW NESS -0.21 0.66 1.60 6.20
KURTOSIS -1.09 1.38 1.70 76.64

From Figure 4.9d it is observed that the effective grain size distribution is 

negatively skewed with values concentrated at the low end of its range between 0.014 

and 0.026 with a mean of 0.02 cm. This indicates that hydraulic conductivity of the 

samples will likely be negatively skewed and concentrated at the low end of the spectrum 

as well. The few outlying samples that extend the range to 0.28 cm are composed of 

samples with high percentages of gravel.
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Figure 4.9: Histograms o f primary grain size distribution parameters.

To further group the grain size distributions and provide a supplemental input, 

soil indicators (SI) were employed. Indicator variables have long been used in geo- 

statistical modeling techniques as a means of characterizing heterogeneity in terms of 

hydrogeologic lithofacies (Fogg et al., 1998). To provide this classification input 

parameter, the soils were grouped into nine subsets. The subsets are based on the degree
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of sorting and percentages of fines, using the unified soil classification system (Howard, 

1988).

Due to the absence of information concerning organic contents and plasticity 

characteristics in the grain size analysis data, all soils with greater than 50% of the 

material passing a No. 200 (0.074 mm) sieve were grouped into the single classification 

of fine grained soils, while sand, gravel, clay, and silt mixtures were grouped based on 

their degree of sorting and percentage of fines. From Figure 4.10 it is observed that the 

soil SI grouping encompassing the largest number of samples was the poorly graded 

gravelly-sand-clay-silt (GMC) classification with 180. GMC includes soils with more 

than 50% of the material by weight passing the No. 4 sieve (5 mm) and greater than 12% 

passing the No. 200 sieve. The remaining soil indicators all classified based on their 

percentage passing No. 4 and No. 200 sieve sizes range from four to ninety five samples.

From the semi-variogram of the soil indicator shown in Figure 4.11 it is observed 

that there is no spatial continuity within the data set. The complete lack of spatial 

dependence is counterintuitive of both the common geologic deposition characteristics 

and observations made in geologic investigations in the area (Reger et al., 2008). The 

most probable cause for this lack of spatial dependence may be attributed to the irregular 

sampling pattern and depth of the borehole samples. If the number of borehole samples 

was increased and the samples were taken at smaller intervals, SI would likely 

demonstrate a spatial dependence correlating to the depositional characteristics of the 

area.
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Figure 4.11: Semi-variogram o f soil indicator
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4.2.2 Natural Moisture Content Analysis

Of the 546 borehole samples, 180 included natural moisture (NM) content values. 

From the summary statistics shown in Table 4.4 it is observed that the mean natural 

moisture content is roughly 16% with the data ranging from one to over a hundred 

percent. The high values, specifically the values exceeding one hundred percent likely 

correlate to ice lenses and ice rich soils, while the low values likely correlate to well 

drained soils located high above the water table. We can see from the histogram plot 

shown in Figure 4.12 that the data is negatively skewed with the highest concentration of 

values lying between six and twelve percent. The concentration of values at the low end 

of the range confirms deep water table and relatively well drained soils noted in previous 

hydrologic investigations in the area.

Table 4.4: Statistical summary o f natural moisture content from borehole samples.

% NM

COUNT 180
M EAN 16.40
M EDIAN 10.65
MINIM UM 1.3
M AXIM UM 122.5
VARIANCE 318.75
STANDARD DEVIATION 17.85
SKEW NESS 2.59
KURTOSIS 9.47
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Figure 4.12: Histogram natural moisture content percentage.

The semi-variogram of NM shown in Figure 4.13 indicates a complete lack of spatial 

dependence in NM with a large nugget. While NM likely has a high degree of natural 

spatial variability throughout the area, the most probable reason for the complete lack of 

any spatial dependence indicated in the semi-variogram is the inconsistency in sample 

spacing, depth, and temporal variability of the measurements. The NM measurements 

were collected between early spring and late fall over the course of forty years. Due to 

the large seasonal fluctuations in surface and subsurface runoff, the NM content is likely 

to vary widely throughout the year. Even with the time differences and reduced data set 

size, NM has been included in this analysis with the knowledge of its limitations due to 

its significance in the hydro-geophysical relationship.
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Figure 4.13: Semi-variogram o f natural moisture content percentage.
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4.3 H YDRAULIC DATA ANALYSIS

4.3.1 Estimation of Hydraulic Conductivity

By using the 546 grain size distributions obtained during the ADOT geotechnical 

investigations (Livingston, 1964, 1969; Slater, 1976; Brazo, 1980; Grahek, 1981, 1983, 

1984; Brazo, 1987, 1993; Butler, 1993), the previously discussed PTF’s (Section 2.3); 

Hazen (1911), Kozeny (1927), Carmen (1938), and Cosby et al. (1984) were employed to 

estimate the hydraulic conductivity using the available grain size distribution data. The 

accuracy of each PTF was judged by comparing their statistical distribution in 

comparison to the data set collected during the USDA soil survey (Swanson, 2009).

4.3.2 Comparison of Hydraulic Conductivity Estimates

From the basic statistics shown in Table 4.5, it is observed that the mean 

hydraulic conductivities estimated using Hazen’s, KC, and Cosby’s PTF are skewed 

towards the lower end of the range with means of .0225, .0098, and .00053 cm/s, 

respectively. While the mean of the estimated values using Cosby’s PTF resembles the 

mean of the USDA values most closely with an absolute difference of 3.25E-04 cm/s, to 

accurately compare the values estimated using the PTFs to the USDA measured values 

the distributions must be normalized to test if they come from the same population. Past 

studies have shown that the log transformed data best represents the distribution of 

hydraulic conductivity values (Freeze, 1975). The histograms of the lognormally 

transformed data shown in Figure 4.14 confirm that such transformation holds true for 

our data set. From the lognormal distribution parameters shown in Table 4.6, it is
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observed that the means of the lognormal populations shifted to larger values for the 

Hazen, Karmen-Cozeny, and Cosby PTFs with values of 0.068, 0.0103, and 0.00055 

cm/s respectivly. The largest distributional change was observed with the values 

estimated using the Hazen PTF where the lognormal mean was more than triple the raw 

mean. The large distribuional shift of the values estimated using Hazen’s PTF is likely 

due to the large disparity between the mean and median of the estimated values of 1.69E- 

02 cm/s as well as the distribution being composed of discrete values rather then 

continuously distributed values (Figure 4.13a) due to its sole reliance on the D10 particle 

size.

The differences between the lognormal population mean, varaince, and standard 

deviations of the estimated and USDA measured hydraulic conductivity values shown in 

Table 4.7 confirm that Cosbys PTF provides the the most accurate method of estimation 

with the smallest discrepancy between the lognormal means of 0.00204 cm/s. Even 

though the difference of 0.00204 cm/s between the mean of USDA measured values and 

Cosby PTF estimated values mean is substantial, it provides the best fit relative to the 

other methods and is therefore used in futher analysis.

A spatial analysis of the hydraulic conductivity values estimated using Cosby’s 

PTF indicates a lack of spatial dependence, shown by the large nugget effect observed in 

the semi-variogram (Figure 4.15). The lack of spatial dependence corresponds to both 

the high degree of natural variability in hydraulic conductivity as well as the irregular 

sample spacing and depth. Measurements taken at smaller intervales such as ten feet 

would likely show some degree of spatial continuity.
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*
Table 4.5 Statistical properties o f estimated K  .

PTF Hazen K-C Cosby USDA

COUNT 546 546 546 211
M EAN 2.25E-02 9.81E-03 5 .38E-04 2.58E-03

M EDIAN 5.63E-3 3.09E-03 4 81E-04 1.41E-03
M INIM UM 2.50E-05 9.77E-05 4 .06E-05 1.41E-05
M AXIM UM 1.81E-01 2.47E-01 2 95E-03 1.41E-02
VARARIANCE 2.04E-03 5.29E-04 1.38E-07 1.42E-05
STANDARD DEVIATION 4.51E-02 2.30E-02 3 71E-04 3.75E-03
SKEW NESS 2.23 6.33 2.82 2.40
KURTOSIS 4.19 50.52 11.15 4.76

*
Table 4.6: Lognormal distribution parameters o f K  .

PTF Hazen K-C Cosby USDA

T* 6.82E-02 1.03E-02 5.49E-04 2.59E-03
m2 6.6824 1.14E-03 1.61E-07 2.39E-05
m 2.5850 3.38E-02 4.01E-04 4.89E-03

x*, m2, m - estimated mean, variance, and standard deviation respectively 
o f the lognormal population

Table 4.7: Comparison o f population parameters between estimated and USDA 
measured K.

USDA (K) vs.
Hazen (K*) K-C (K*) Cosby (K*)

ii*P diff 0.38997 0.91094 1.00849
s2s diff 5.75732 0.94287 1.08762

sdiff 1.46589 0.33691 0.57714

T*diff 6.56E-02 7.74E-03 2.04E-03
2

W diff 6.68241 1.12E-03 2.00E-05

©diff 2.58015 2.89E-02 4.49E-03
p*, s2, s are the estimated mean, variance, and standard deviation
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Figure 4.15: Semi-variogram o f K* obtained using (Cosby et al., 1984) PTF
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4.4 CORRELATION ANALYSIS

Prior to using the compiled dataset in the development of predictive models, the 

relationships between hydraulic, geophysical, and geologic parameters need to be 

understood. From the basic correlation coefficient analysis shown in Table 4.8 it can be 

observed that the strongest correlation between parameters is that between the apparent 

resistivity at 140K and 40K Hz. with a coefficient of correlation of 0.81. This 

corresponds to both the similarities shown in the contour plots (Figure 4.2) and our 

assumption that the two frequencies are responding to roughly the same geologic media. 

From Table 4.8 it is also observed that the estimated hydraulic conductivity is shown to 

have a correlation of 0.54 with the soil indicator. This indicates that while there is a 

relationship between the estimated hydraulic conductivity and the soil indicator it is 

likely due to both parameters being derived from the same grain size distribution. When 

the hydraulic conductivity is plotted against the soil indicator classes (Figure 4.16) it can 

be observed that while a positive correlation is visible, the ranges of hydraulic 

conductivity values in each soil indicator class overlap and vary widely from 0.0022 to 

0.0002 cm/s. This allows for the inclusion of the soil indicator in predictive model 

development without the parameters influence overshadowing the potential contribution 

of the other predictive variables.

From Table 4.8, it can be observed that the relationship between the estimated 

hydraulic conductivity and the geophysical parameters of apparent resistivity at 140K and 

40K Hz, and magnetic field strength is observed to be weak with correlation coefficients 

of -0.11,-0.13, and -0.15, respectively. It can also be observed that the relationship
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between the relative difference between the apparent resistivity measured at 140K and

*
40K Hz. (p diff) and the estimated hydraulic conductivity is lower than that of the 

individual parameters with correlation coefficient of -0.06. Because of this the apparent 

resistivity measured at the two frequencies (140K and 40K Hz.) will be used as 

individual parameters in further analysis rather than the relative difference.

Table 4.8: Coefficient o f correlation between parameters

X  Y p*140K p*40K p^jff H SI NM

X -

Y -0.97 -
p*140K -0.35 0.36 -

p*40K -0.13 0.10 0.81 -

P diff -0.44 -0.47 0.87 0.42 -

H 0.12 -0.15 -0.03 0.10 -0.13 -
SI -0.04 0.04 -0.10 -0.10 -0.07 -0.15 -

NM 0.03 -0.01 0.27 0.19 0.25 0.14 -0.59 -

K* -0.03 0.04 -0.11 -0.13 -0.06 -0.15 0.54 -0.47

The scatter plot of hydraulic conductivity against the apparent resistivity at 140K 

Hz (Figure 4.17a) and magnetic field strength (Figure 4.17b) shows a homogenous 

distribution with no apparent relationship or trend. This strengthens the hypothesis that 

this relationship is too complex to employ universal functions or basic regression 

techniques to quantify the relationship and that a site dependent approximation using 

machine learning algorithms would be more suitable.
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K* vs. p*  at 140K Hz.
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Figure 4.17: Scatter plot o f geophysical parameters p at 140K and H  vs. K*
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5.0 RESULTS AND DISCUSSION

The key objective of this study is to characterize the hydro-geophysical 

relationship in a manner that may be employed in a predictive model thus limiting the 

amount of borehole samples needed (or possibly eliminating the need of borehole 

sampling) to accurately characterize subsurface hydraulic conductivity. The correlation 

analysis in the previous chapter (Section 4.4) demonstrated that if there is a relationship 

between hydraulic conductivity and the geologic and geophysical parameters it is likely 

complex and non-linear. In order to quantify this complex relationship we employ 

machine learning algorithms thus capitalizing on their ability to capture complex patterns 

and physical relationships.

5.1 MEASURES OF PERFORMANCE

One of the main issues in the development of predictive models is the verification 

of accuracy and resilience. Ideally this would be done by testing the models on a 

supplemental data set. Due to the additional costs and time requirements involved in the 

collection of supplemental data it is not always feasible. One of the main concerns when 

using a single data set to both train and test a model is over-fitting. Over-fitting can 

occur when a model is accurately fit to a specified data set but when provided with an 

independent data set for verification the performance is significantly reduced. An 

alternative method that both minimizes the risk of over training and avoids the costs of 

collecting supplemental data is to divide the data set into two statistically similar subsets. 

One subset is used to develop the model and the second is used to validate the accuracy
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of the model. This has shown to be the most reliable method to verify the accuracy of a 

model when additional data is not available (Dutta, 2006).

Due to the limitations in the number of natural moisture content measurements 

with respect to the other parameters, two data sets were created. This was done to test the 

significant of natural moisture content as an input parameter while not limiting the 

number of samples in the data set.

Two distinctly different data sets were used in this research for the 

characterization of hydraulic conductivity. One set was the complete data set excluding 

the natural moisture content data with a total of 546 samples (Total Dataset). The second 

data set was a reduced set of data that included the samples with natural moisture content 

as a parameter with a total of 180 samples (NM Dataset). Each data set was split into two 

statistically similar subsets of 80% and 20% using a genetic algorithm developed by 

Ganguli et al., (2003) with their statistical properties shown in Table 5.1 and Table 5.2 

respectively. The subset composed of 80% of the data was used to develop the models 

while the smaller subset (20%) was used to test the model. The use of 80% of the data 

for development and 20% to test the model is a widely employed technique (Bowden et 

al., 2002; Oommen, 2006) that ensures that a sufficient number of points are supplied to 

train the model.

While the above methods help ensure the accuracy and reliability of the models 

developed, measures of performance are needed to quantitatively compare the results. In 

this study the accuracy is based on difference between the actual values (target data) and 

predicted values. This was calculated using performance measures such as:
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2
Coefficient of Determination (R ):

f s ,n=i {(Pi - p)(Ti - t )} i 2 (51)
l E ! i i ( P i - P ) 0-5][S,N= i(T i-T )“-5]J

Coefficient of Correlation (r):

Z f l iO T -  p )(Ti -T )>  (5 2 )
r  {[S!1i ( P |- P ) 2][E!1i (T]-T)2]}»'5

Root Mean Square Error (RMSE):

^  (5 3 )

Mean Absolute Error (MAE):

(Z H ilP i-  Til) (5 4 )MAE =
N

where Pi is the predicted value, P is the mean of the predicted values, Ti is target 

value, T is the mean of the predicted values, and N is the number of samples.

The use of the multiple performance measures listed above provides a more 

comprehensive understanding of the model’s accuracy. The coefficient of determination 

(R ) serves as a primary measure by representing the proportion of variability in the target 

data set that is accounted for by the predictive model. The second key performance 

measure is the coefficient of correlation (r) which measures the strength and direction of 

a linear relationship between the target and predicted data set. While these two
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correlation based measures are the most widely used methods to evaluate the 

performance of predictive models, their limitations with respect to sensitivity to extreme 

values and insensitivity to additive and relative differences between the target and 

predicted data (Oommen, 2006) necessitate the inclusion of supplemental measures.

By employing RMSE and MAE as additional measures of performance analysis, 

the predictive characteristics can be better clarified. RMSE gives a relatively high weight 

to large errors while MAE weights all averages equally. By comparing the RMSE and 

MAE, the degree of outlying errors can be assessed. For example, a model with a large 

RMSE but with a small MAE would indicate that while most data points are being 

predicted with a low degree of error, a few samples are not being accounted for and are 

producing large errors. When the RMSE is equal to the MAE the magnitudes of all the 

errors are equal.
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Table 5.1: Statistical summary o f training and testing subsets from Total Dataset

COUNT
TRAINING  
437 (80%)

TESTING  
109 (20%)

INPUT M EAN STDEV M EAN STDEV
K* 0.00053 cm/s 0.00037 0.00053 cm/s 0.00036
X 615031.4 m 22717.46 614951.7 m 22922.95
Y 7072783m 10862.17 7072791m 11117.98
SI 4.42 1.85 4.43 1.81
p*140K 1294.97 Q-m 891.21 1291.75 Q-m 935.91
p*40K 986.29 Q-m 479.43 987.79 Q-m 498.88
H 57093.86 nT 128.87 57093.8 nT 132.68

Table 5.2: Statistical summary o f the training and testing subsets from NM  Dataset

COUNT
TRAINING  
144 (80%)

TESTING  
36 (20%)

INPUT M EAN STDEV M EAN STDEV
K* 0.00056 cm/s 0.00049 0.00051 cm/s 0.00045
X 612999.36 m 21995.42 610984.68 m 18262.49
Y 7073462.9 m 10595.85 7074292.90 m 8706.98
SI 4.09 2.48 3.43 2.10
p*140K 1234.93 Q-m 790.03 1329.48 Q-m 983.50
p*40K 954.48 Q-m 406.55 1003.57 Q-m 477.54
H 57103.28 nT 135.91 57140.96 nT 174.63
NM 15.59 % 15.66 19.39 % 24.79
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5.2 ANALYSIS OF HYDRO-GEOPHYSICAL RELATIONSHIP

5.2.1 Neural Network Regression Analysis

Multiple networks were developed to test different combinations of input 

parameters and to determine the most accurate modeling method. Table 5.3 shows the 

performance measures obtained for the validation of the ANNR models. From Table 5.3 

it is observed that using apparent resistivity as the only input parameter is insufficient to 

characterize the hydraulic conductivity (with our data) with coefficient of determination 

of .04. The regression plot of the target values against the predicted values (Figure 5.1) 

shows that values are being both under and over predicted with all of the values greater 

then 7.5E-04 cm/s being under predicted. This lack of trend with respect to the target and 

predicted values is shown with a low correlation coefficient of 0.21. The inclusion of the 

magnetic field strength, spatial coordinates, soil indicator, and natural moisture content 

individually, improved the performance with coefficients of determination 0.11, 0.16, 

0.37, and 0.36 respectively. While the results are improved the ANNR models failed to 

accurately characterize the relationship. The increased accuracy achieved through the 

addition of the soil indicator and natural moisture content indicate that these parameters 

each provide information in the characterization of the hydro-geophysical relationship but 

are insufficient without supplemental parameters.

*
The most accurate results using the Total Dataset was found using p , spatial 

coordinates, and SI with an R  of 0.44. While the accuracy is still poor, the correlation 

between the target and predicted values is significantly higher with a correlation
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coefficient of 0.65. The improved correlation is shown in the scatter plot (Figure 5.2)

with predicted values being more evenly distributed along the regression line. The best

*
overall results were found using the NM Data set using inputs of p , spatial coordinates, 

soil indicator, and natural moisture content with an R  of 0.64. From the regression plot 

(Figure 5.3) it can be observed that the overall accuracy as well as prediction of the 

larger values is improved over the other models. The correlation of coefficient of 0.8 

indicates that the strength of the relationship between the target and predicted values is 

high although the overall accuracy is still lacking.



Table 5.3: Performance measures for the ANNR model analysis.

M odel Inputs RM SE MAE r R2

p* 0.00036 0.00023 0.21 0.04

p* H 0.00035 0.00022 0.34 0.11

p* XY 0.00034 0.00021 0.40 0.16

p* SI 0.00029 0.00017 0.61 0.37

p* NM 0.00039 0.00026 0.60 0.36

p* H XY 0.00037 0.00025 0.23 0.05

p* H SI 0.00032 0.00021 0.57 0.33

p* XY SI 0.00028 0.00017 0.66 0.44

p* H NM 0.00041 0.00025 0.56 0.31

p* XY NM 0.00045 0.00030 0.40 0.16

p* SI NM 0.00038 0.00024 0.64 0.40

p* H XY SI 0.00028 0.00018 0.65 0.43

p* H XY NM 0.00038 0.00025 0.62 0.38

p* H SI NM 0.00039 0.00024 0.62 0.38

p* XY SI NM 0.00029 0.00020 0.80 0.64

p* H XY SI NM 0.00033 0.00022 0.73 0.53

AVERAGE 0.00035 0.00026 0.54 0.32

67
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Figure 5.1: Regression plot ANNR model results 'with an input o fp i

Figure 5.2: Regression plot o f ANNR model results with inputs ofp*, SI, andXY.
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Figure 5.3: Regression plot o f ANNR model results 'with inputs ofp*, XY, SI, NM.
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5.2.2 Support Vector Regression Analysis

Due to the inability of ANNR to successfully characterize the hydro-geophysical

2
relationship with an average R  of 0.32, SVR was employed as an alternative method of 

analysis. Table 5.4 shows the performance measures, optimum model parameters, and 

number of support vectors for each of the models developed. From Table 5.4 it can be 

observed that similar to ANNR, using the apparent resistivity as the only input parameter 

is insufficient to characterize the hydraulic conductivity with R  of 0.03. The low degree 

of accuracy is correlated with the high degree of uncertainty found in the data set with all 

437 samples in the training data set being employed as support vectors. The regression 

plots of the target values against the predicted values shown in Figure 5.4 indicates that 

the model is roughly being fit to the mean of the hydraulic conductivity (5.38E-4 cm/s) of 

the data set without accounting for any deviation.

The incorporation of magnetic field (H), spatial coordinates (X and Y), and the 

soil indicator (SI) provides the best results with an R  of 0.57. The regression plot of the 

target values against the predicted values shown in Figure 5.5 indicates that the model’s 

accuracy decreases as the magnitude of the target value increases. While the uncertainty 

is decreased relative to the use of apparent resistivity as the sole input, it is still quite high 

with 271 (61.59%) of the training instances being classified as support vectors.

The best performance using the reduced data set with natural moisture content 

was an R  of 0.49 using input parameters as apparent resistivity, magnetic field, soil 

indicator, and natural moisture content. The high degree of uncertainty in the data set
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and complexity of the model is shown with 100% of the training data being used as 

support vectors.

The concept of support vector was then used to analyze the data set of the best 

performing combination of input parameters (p*, XY, H, and SI) to better characterize 

the uncertainty within each parameter and to identify gaps in the data set that can be used 

to guide future data collection. It is inmporating to state here that SVR method helps in 

determining data gaps in a model as opposed to the ANNR method, which is a significant 

streanthg of the SVR method (OOmmen and Baise, in Press). Figure 5.6 shows the 

distribution of the support vectors in the range of the input parameters. It is observed that 

of the input parameters, apparent resistivity at 140K Hz has the least amount of 

uncertainty and lowest percentage of support vectors, whereas, SI has the highest amount 

of uncertainty and highest percentage of support vectors.

It is observed from Figure 5.6 that the distribution of support vectors within the 

ranges of spatial coordinates (X and Y) appears to be evenly distributed with roughly 60 

to 80% of the training data as support vectors. The large amount of support vectors 

throughout the data ranges indicates that there is a relatively high degree of uncertainty in 

the spatial variability of K*. This confirms what was observed in the variogram analysis 

of K* shown in Figure 4.14. From the distribution of support vectors it is observed that 

of apparent resistivity data measured at 140K Hz which ranged from 74 to 4,723 Q-m 

over 80% of values greater than 4,168 Q-m employed as support vectors. This indicates

the need for supplemental data from areas with higher apparent resistivity in order to
*

obtain a more accurate predictive model for K characterization.
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From the distribution of support vectors for magnetic field strength (Figure 5.6), 

it can be observed that values of magnetic field strength, which range from 56,804 to 

57,597 nT are shown to be well sampled at the high (<57,597 nT) and low (>56,883 nT) 

end of the range with less than 50% being employed as support vectors. The magnetic 

strength values in the mid range between 57,518 and 56,883 nT were poorly sampled 

with between 70% and 80% being employed as support vectors. The high degree of 

uncertainty observed in the middle range indicates that the extreme values have a 

stronger relationship with changes in the hydraulic conductivity. This observation aligns 

with characteristics of magnetic field strength measurements in that it was not influenced 

by subtle changes in the shallow subsurface hydraulic parameter. The high and low ends 

of the range are likely recognizing more significant changes in the subsurface such as 

igneous intrusions or changes in deposition influencing the subsurface hydraulic 

conductivity.

From Figure 5.6 it can be observed that the strongest relationship between the 

indicator parameters and hydraulic conductivity exists for apparent conductivity 

measured at 140K and 40K Hz, between values of 3,258 to 3,713 Q-m and 2,241 to 2,506 

Q-m, respectively with less than 40% being employed as support vectors. The 

distribution of support vectors for both frequencies is similar in that the top end range is 

the most poorly sampled followed by well sampled ranges of data. The poor sampling at 

the top end of the data range for the apparent resistivity measured at both 140K and 40K 

could possibly be due to error incurred at these points during the survey or insufficient 

number of data points in this range to accurately characterize the changing relationship.



Table 5.4: Performance measures and parameters for the SVR model analysis.

M odel Inputs Y £ C SV RM SE MAE r R2

p* 0.001 0.001 1 437 0.00042 0.00025 0.18 0.03

p* H 0.001 0.141 1 330 0.00042 0.00024 0.24 0.06

p* XY 0.281 0.481 1 151 0.00040 0.00023 0.31 0.1

p* SI 0.081 0.121 13 309 0.00034 0.00017 0.67 0.46

p* NM 0.011 0.001 5 138 0.00041 0.00026 0.47 0.49

p* H XY 0.061 0.361 3 201 0.00041 0.00023 0.28 0.08

p* H SI 0.161 0.181 19 255 0.00033 0.00018 0.70 0.50

p* XY SI 0.101 0.381 19 141 0.00030 0.00017 0.75 0.56

p* H NM 0.211 0.181 2 90 0.00037 0.00024 0.55 0.33

p* XY NM 0.091 0.071 1 121 0.00036 0.00022 0.61 0.39

p* SI NM 0.011 0.001 1 142 0.00040 0.00024 0.62 0.48

p* H XY SI 0.081 0.181 15 271 0.00030 0.00016 0.75 0.57

p* H XY NM 0.101 0.431 16 126 0.00041 0.00030 0.45 0.39

p* H SI NM 0.011 0.001 1 143 0.00040 0.00024 0.63 0.47

p* XY SI NM 0.011 0.001 5 140 0.00037 0.00023 0.65 0.49

p* H XY SI NM 0.011 0.001 1 143 0.00039 0.00024 0.62 0.47

AVERAGE 196 0.00038 0.00023 0.53 0.37
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Figure 5.4: Regression plot o f SVR model results 'with an input ofp*
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5.2.3 Neural Network Classification Analysis

Due to the relatively poor performance of the regression algorithms with the best 

results observed showing a R  of 0.64, alternative methods of analysis were explored. 

Table 5.5 shows the statistical properties of the high, medium, and low clusters of 

hydraulic conductivity grouped using the k-means clustering algorithm. These 

classifications were used as the target output of the previously derived subsets shown in 

Table 5.1 and Table 5.2.

Table 5.5: Statistical summary o f k-means clusters

HIGH
CLASSIFICATION

M EDIUM LOW

COUNT 27 256 263
M EAN 1.84E-03 6.27E-04 3.18E-04
M EDIAN 1.75E-03 5.75E-04 3.54E-04
M INIM UM 1.29E-03 4.74E-04 4.06E-05
M AXIM UM 2.95E-03 1.18E-03 4.70E-04
VARIANCE 2.04E-07 2.26E-08 1.51E-08
STANDARD DEVIATION 4.52E-04 1.50E-04 1.23E-04
SKEW NESS 0.78 1.66 -0.80
KURTOSIS 4.38E-03 2.53 -0.58

From the analyses, the following observations were made:

• Similar to the regression analysis, multiple networks were developed to test 

the different combinations of parameters. From Table 5.6 it is observed that 

the overall accuracy average of the classification models is relatively good 

with a value of 76%, however, the model’s ability to correctly classify the 

high value cluster targets is poor with an average of 19%.
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• Similar to the regression analysis the use of apparent resistivity as the sole 

input is shown to be insufficient with the worst overall accuracy of the 

classification models at 56% and 0% correct classification of the high value 

cluster targets. While the inclusion of magnetic field, spatial coordinates, 

and the soil indicator with the apparent resistivity provided the best results 

using the complete data set with an overall accuracy of 78% the prediction 

performance of the high value classification was still poor with only 15% 

correct classifications.

• The most accurate model was developed using the reduced data set with 

apparent resistivity, spatial coordinates, soil indictor and natural moisture 

content with an overall accuracy of 88%. Even with the most accurate 

model the high value clusters were only correctly classified 40% of the time.

ANNC’s inability to accurately predict the high value cluster in comparison to the 

medium and low value clusters is likely in part due to the an insufficient number of 

sample points. From Table 5.5 it can be observed that the medium and low 

classifications have 256 and 263 samples respectively while the high value classification 

has only twenty seven samples.



Table 5.6: Neural network classification results.

M odel Inputs
#

Neurons HIGH

% CORRECT  

M EDIUM  LOW OVERALL

p* 69 0% 43% 74% 56%

p* H 98 0% 58% 77% 64%

p* XY 57 11% 79% 69% 71%

p* SI 116 0% 58% 76% 64%

p* NM 138 0% 87% 86% 79%

p* H XY 124 0% 67% 75% 67%

p* H SI 149 15% 80% 74% 74%

p* XY SI 145 15% 79% 83% 78%

p* H NM 133 13% 88% 86% 81%

p* XY NM 132 33% 91% 83% 82%

p* SI NM 114 33% 90% 84% 82%

p* H XY SI 142 15% 79% 83% 78%

p* H XY NM 103 47% 88% 86% 84%

p* H SI NM 111 40% 93% 86% 85%

p* XY SI NM 104 40% 94% 91% 88%

p* H XY SI NM 93 47% 94% 89% 87%

AVERAGE 114 19% 79% 81% 76%

78
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5.2.4 Comparison of Model Predictions

The performance of the machine learning algorithm models developed in sections

5.2.1 and 5.2.2 have been objectively evaluated using the performance measures 

discussed in Section 5.1. Table 5.7 summarizes the various performance measures of the 

regression models for the most accurate combination of input parameters from both the 

Total Dataset and the NM Dataset. From Table 5.7 it is observed that SVR provided the 

best model (largest coefficient of determination) using the Total Dataset for mapping 

hydraulic conductivity along the Alaska Highway corridor between Delta Junction and 

Tok, Alaska. The best combination of input parameters was found to be the apparent 

resistivity at 140K and 40K Hz, spatial coordinates (X and Y), magnetic field strength, 

and soil indicator with a R  of 0.57. While the overall accuracy of the SVR model is 

poor, the r of 0.75 between the predicted and target outputs leads us to believe that there 

is a relationship between the input parameters and the hydraulic conductivity. The poor 

overall accuracy of the SVR model is likely due to a variety of reasons, such as the 

complexity of hydro-geophysical relationship shown by the high number of support 

vectors (61.59%) indicating a lack of data in certain aspects of the individual parameters 

(see Figure 5.6), errors incorporated through the estimation of hydraulic conductivity, 

large spatial distribution of data, and limitations of the method. If the sources of error 

can be minimized through the incorporation of supplemental hydraulic data with a higher 

spatial density, SVR might be able to capture the relationship indicated by the correlation 

coefficient and characterize the subsurface hydraulic parameters more accurately.
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From Table 5.7 it can also be observed that when using the NM Dataset, ANNR 

provided the best model for the prediction of hydraulic conductivity. The most accurate 

combination of input parameters using this regression technique was found to be apparent 

resistivity at 140K and 40K Hz, spatial coordinates (X and Y), soil indicator and natural 

moisture content with a R  of 0.64. While the overall accuracy of the model may be poor, 

the r of 0.79 indicates that the model is recognizing a relationship between the input 

parameters and target output of hydraulic conductivity. Although the natural moisture 

content should have contributed more significantly based on its importance with respect 

to electrical conductivity, the fact that the geophysical and natural moisture content 

measurements were not taken at the same time most likely contributed to the errors seen.

A comparison of average accuracy of the models developed using ANNR (Table

5.3) and SVR (Table 5.4) reveals that SVR provided a 25% and 10% improvement in the 

coefficient of determination for the Total Dataset and NM Dataset respectively. SVR’s 

drop in improvement over ANNR between the Total and NM Datasets indicate that 

reduction in size of the training subset is more significantly impacting its accuracy. A 

comparison of the regression plots between the predicted and observed values (Section

5.2.1 and 5.2.2) indicates that the accuracy of both machine learning algorithm regression 

techniques decreases as the hydraulic conductivity increases in value. The most probable 

reason for the decrease in accuracy for the lager values is the insufficient number of 

sample points to train the models.

Due to the relatively poor performance of the regression models, ANNC was 

employed as an alternative method. Although the results cannot be directly compared
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due to the difference in their target values, it provides an alternative method of 

classification when the delineation of ranges of values is sufficient or where the 

performance of the regression models proves insufficient.

Table 5.8 summarizes the various performance measures of the classification 

models for the most accurate combination of input parameters from both the Total and 

NM Datasets. From Table 5.8, it is observed that of the models developed using ANNC, 

the best results were achieved using the NM Dataset with input parameters of apparent 

resistivity, spatial coordinates (X and Y), soil indicator, and natural moisture content that 

provided an overall classification accuracy of 88%. As with both regression models, 

ANNC’s ability to predict the high values is significantly lower than the overall average 

with only 40% accuracy in classifications. Table 5.8 also shows that the best results 

achieved using the Total Dataset were with input parameters of apparent resistivity, 

spatial coordinates (X and Y), soil indicator, and magnetic field strength with an overall 

classification accuracy of 78%.
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Table 5.7: Performance measures obtained using the best combination o f input 
parameters from both the Total and the NM  Dataset for the regression models discussed 
in section 5.3.

M ethod Dataset M odel Inputs RM SE MAE r R2

SVR Total p* XY SI H 0.00030 0.00016 0.75 0.57
ANNR Total p* XY SI 0.00028 0.00017 0.66 0.44

SVR NM p* H SI NM 0.00039 0.00024 0.63 0.47
ANNR NM p* XY SI NM 0.00029 0.00020 0.79 0.64

Table 5.8: Accuracy o f the best combination o f input parameters from both the Total and 
NM  Dataset for the classification model discussed in section 5.3.

Dataset M odel Inputs
% CORRECT CLASSIFICATION  

HIGH M EDIUM  LOW  OVERALL

Total p* H XY SI 15% 79% 83% 78%
NM p* XY SI NM 40% 94% 91% 88%
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6.0 CONCLUSIONS AND FUTURE WORK

This study investigated the applicability of characterizing subsurface hydraulic 

parameters on a large scale using geophysical data from an AEM survey. Machine 

learning algorithms were employed to develop predictive models using both the AEM 

data and supplemental geologic parameters. Based on the study results the following 

major conclusions are derived:

• The relationship between geophysical properties and hydraulic properties of a porous 

media was found to be too complex or weak to use the apparent resistivity collected 

during the airborne electromagnetic survey (AEMS) of the Alaska Highway corridor 

as the sole parameter in the characterization of hydraulic conductivity. The inclusion 

of supplemental geophysical, geologic, and spatial parameters with apparent 

resistivity significantly aided in the characterization increasing the performance of the 

predictive models.

• SVR demonstrated its capability to model complex process by providing the best 

performing predictive model using the Total Dataset with input parameters of 

apparent resistivity, spatial coordinates (X and Y), soil indicator, and magnetic field 

strength. The models developed using SVR showed an overall average increase in R 

of 25% and 10% for the Total and NM Datasets respectively over ANN.

• Artificial neural network regression (ANNR) provided the best performing predictive 

model using the smaller NM Dataset with input parameters of apparent resistivity, 

spatial coordinates (X and Y), soil indicator, and natural moisture content.
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• Artificial neural network classification (ANNC) was shown to offer a viable 

alternative to regression techniques in situations where point measurements are not 

needed and broad spatial changes in hydraulic conductivity are desired. The best 

accuracy was found using input parameters of apparent resistivity, spatial coordinates, 

soil indicators, and natural moisture content with 76% accuracy in classifications.

• The accuracy of each of the machine learning algorithms was seen to decrease as the 

value of hydraulic conductivity increased. This is likely due to insufficient data in 

high range of values between 0.00129 and 0.00295 cm/s. Additional data in the high 

range from which to train the models would likely increase the accuracy significantly.

• While NM is theoretically the most important parameter, its inclusion was not as 

significant as expected. This is likely due to an insufficient number of samples and 

the temporal difference in data collected from the boreholes and when the 

geophysical survey was performed.

Recommendations for future work:

• The use of empirically derived hydraulic conductivity values rather than measured 

values likely contributed to the errors seen and over signified the importance of the 

soil indicator. Field derived hydraulic conductivity measurements sampled at 

regular intervals of spacing and depth would likely provide an improved 

characterization of the hydro-geophysical relationship.

• The inclusion of time relative natural moisture content data through additional 

sampling or satellite imagery would provide clarification with respect to its 

influence on hydro-geophysical relationship.
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• An improved hydrologic analysis of the area including the modeling of subsurface 

flow would provide an improved reference from which to compare the predictive 

results.

• Additional analysis using methods such as Multiple Regressive Pattern Recognition 

Techniques (Oommen et al., accepted pending minor revisions) could provide 

improved results through the combination of geo-statistical techniques and machine 

learning algorithms.
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