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21 Abstract

22 Parents can have profound effects on offspring fitness. Little, however, is known about the 

23 mechanisms through which parental genetic variation influences offspring physiology in natural 

24 systems. White-throated sparrows (Zonotrichia albicollis, WTSP) exist in two genetic morphs, 

25 tan and white, controlled by a large polymorphic supergene. Morphs mate disassortatively, 

26 resulting in two pair types: tan male x white female (TxW) pairs, which provide biparental care 

27 and white male x tan female (WxT) pairs, which provide female-biased care. To investigate how 

28 parental composition impacts offspring, we performed RNA-seq on whole blood of WTSP 
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29 nestlings sampled from nests of both pair types. Parental pair type had a large effect on nestling 

30 gene expression, with 881 genes differentially expressed (DE) and seven correlated gene co-

31 expression modules. The DE genes and modules expressed at higher levels in WxT nests with 

32 female-biased parental care function in metabolism and stress-related pathways resulting from 

33 the overrepresentation of proteolysis and stress-response genes (e.g. SOD2, NR3C1). These 

34 results show that parental genotypes and/or associated behaviors influence nestling physiology, 

35 and highlight avenues of further research investigating the ultimate implications for the 

36 maintenance of this polymorphism. Nestlings also exhibited morph-specific gene expression, 

37 with 92 differentially expressed genes, comprising immunity genes and genes encompassed by 

38 the supergene. Remarkably, we identified the same regulatory hub genes in these blood-derived 

39 expression networks as were previously identified in adult WTSP brains (EPM2A, BPNT1, 

40 TAF5L). These hub genes were located within the supergene, highlighting the importance of this 

41 gene complex in structuring regulatory networks across diverse tissues. 

42

43 Keywords

44 Transcriptome, parental effects, early life stress, nestling, RNAseq, ornithology

45

46 Introduction

47 Parents can have profound impacts on offspring development and fitness. Parental effects 

48 can manifest throughout the developmental period, both pre- and post-natally (reviewed in 

49 Meaney 2001, Lupien et al. 2009) and can be mediated through parental behaviors, genetics and 

50 physiology during early development (Trivers 1972). Parents play a substantial role in 

51 establishing the early life environment of offspring. For example in birds, parental decisions on 

52 nest placement, incubation behavior, and nest defense could strongly impact developmental 

53 conditions of the egg. These parental behaviors will impact exposure to sunlight, humidity, 

54 temperature, and other environmental impacts of the eggs, which can influence developmental 

55 physiology (e.g. Nord & Nilsson 2011). In addition to parental behaviors, prenatal effects often 

56 arise via physiological maternal effects. Developing offspring are susceptible to the maternally 

57 created environment (e.g. maternal hormones, immune state, nutrition), which influence 
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58 offspring physiology (Mousseau & Fox 1998, Jacquin et al. 2012; reviewed in Gluckman et al. 

59 2008, Wolf & Wade 2009, Cottrell & Secki 2009). 

60 During the post-natal stage, provisioning plays a prominent role in offspring 

61 development, with the quality and quantity of food items crucial for offspring development 

62 (Royle 2012, van Oers et al. 2015, Griebel et al. 2019). Similar to the prenatal stage, parental 

63 behaviors could also have strong impacts on offspring physiology. In many species, offspring are 

64 left alone during parental foraging trips, increasing environmental exposure (Lloyd and Martin 

65 2004) and predation risk (Lima 2009). Parental separation can also increase offspring anxiety 

66 (Millstein & Holmes 2007). Siblings must also compete to optimize food intake, body 

67 temperature regulation, and preening (Mock & Parker 1997). Thus, this postnatal environment, 

68 largely mediated through parental effects, can be a potential source of early life stress (ELS) in 

69 offspring, which may result in life-long fitness effects (reviewed in Monaghan 2014).

70 ELS has broad effects on organisms, including impaired neural development, 

71 neuroendocrine signaling, behavior, and physiology (McEwen 2007, Monaghan 2014). For 

72 example, ELS is associated with impaired neuroendocrine function and corresponding impaired 

73 hypothalamic-pituitary-adrenal (HPA) development, which leads to an increased stress response 

74 sensitivity later in life (e.g. Heim et al. 2008, Spencer et al. 2009, Crespi et al. 2012, Spencer 

75 2017). ELS can exacerbate behavioral alterations as organisms develop and mature including 

76 symptoms of anxiety and depression in the postnatal environment (Noguera et al. 2017) and 

77 result in impaired behavior as reproductive adults (e.g. Krause et al. 2009, reviewed in Bolton et 

78 al. 2017). While the organismal effects of ELS are well studied, the genetic underpinnings are 

79 relatively underexplored. 

80 Much of the genetic work in the context of ELS has focused on gene regulatory impacts, 

81 particularly in mammalian biomedical models (reviewed in Szyf et al. 2007, Szyf 2009, 

82 Silberman et al. 2016, Alyamani & Murgatroyd 2018). In particular, the quality of parental care 

83 can have strong impacts on offspring health resulting from epigenetic modifications (Liu et al. 

84 1997, Meaney 2001, Weaver et al. 2004). These gene regulation studies primarily use changes in 

85 DNA methylation as an indicator of ELS (Murgatroyd et al. 2009, Kinnally et al. 2011, Lewis & 

86 Olive 2014) and recent work has expanded these approaches into non-mammalian organisms 

87 (e.g. Rubenstein et al. 2016, Moghadam et al. 2017, Pértille et al. 2017, Gott 2018, Sheldon et al. 
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88 2018). DNA methylation studies of ELS investigate changes to the structure of DNA, but are 

89 often limited in the functional implications of ELS (i.e. transcription and translation). In general, 

90 these modifications are thought to alter transcriptional activity of genes in the modified genomic 

91 region (Berger 2007, Lowdon et al. 2016). Indeed, several studies have also taken candidate gene 

92 approaches to investigating gene expression in the context of ELS (Marco et al. 2014, Diaz-Real 

93 et al. 2017, Anastasiadi et al. 2018, Reshetnikov et al. 2018). However, very few studies assess 

94 genome-wide transcription under ELS (Moghadam et al. 2017), particularly in the context of 

95 parental effects (but see: Weaver et al. 2006). 

96 In this study, we examined the white-throated sparrow (Zonotrichia albicollis, WTSP) to 

97 assess the role of parental genotype on offspring gene expression. WTSPs exist in two plumage 

98 morphs, tan (T) and white (W), that are found in both sexes and in roughly equal frequencies 

99 (Lowther 1961). These morphs are genetically determined by alternative alleles of a supergene, a 

100 group of linked genes that are inherited together, show limited recombination, and maintain 

101 complex behavioral traits (i.e. WTSP morphs; Schwander et al. 2014, Taylor & Campagna 2016).  

102 The WTSP supergene resulted from a complex chromosomal rearrangement comprising multiple 

103 inversions (hereafter referred to as “inversion” or “inverted”).  This inversion contains ~1,100 

104 genes on chromosome two, termed ZAL2m (Throneycroft 1975, Thomas et al. 2008, Romanov et 

105 al. 2009, Tuttle et al. 2016). W morphs are nearly always heterozygous for the inversion 

106 (ZAL2/ZAL2m) and T morphs are always homozygous (ZAL2/ZAL2; Thorneycroft 1966, 1975). 

107 This unusual polymorphism in WTSPs influences hormonal profiles and the behavior of 

108 both sexes, and thus has the potential to influence pre- and post-natal environments for the 

109 offspring of different morphs. W morph males maintain higher levels of testosterone during the 

110 pre-laying, incubation, and brooding stages and oestradiol during the laying and brooding stages 

111 (Horton et al. 2014). Only oestradiol has been shown to differ between adult female morphs 

112 during the breeding season and is higher in W morph females during the pre-laying and laying 

113 stages (Horton et al. 2014). These genetic and hormonal differences also translate into striking 

114 behavioral differences. W morphs of both sexes, for example, are highly territorial and sing 

115 frequently whereas T morphs are far less territorial and aggressive (Lowther 1962, Kopachena & 

116 Falls 1993, Tuttle 2003, Horton & Holberton 2010, Horton et al. 2014). More importantly from 

117 the perspective of offspring, males of each morph also differ in paternal investment (Knapton & 
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118 Falls 1983, Horton et al. 2014). W morph males are promiscuous and provision nestlings very 

119 little. T morph males defend their within-pair paternity through mate guarding and are highly 

120 paternal. Females tend to provision at intermediate levels, but T morph females may compensate 

121 for unassisted care from W morph males and provision more than W morph females (Knapton & 

122 Falls 1983).  A final wrinkle in this complex mating system is that morphs nearly always mate 

123 with the opposite morph (98.5%, Tuttle et al. 2016), resulting in two stable pair types: T male x 

124 W female (TxW) and W male x T female (WxT) (Lowther 1961, Tuttle 2003, Tuttle et al. 2016). 

125 Because males differ in paternal investment, this results in two distinct parental care strategies. 

126 TxW pairs provide biparental care and WxT pairs provide female-biased parental care.  In this 

127 study we examined gene expression profiles of offspring from both pair-types in order to assess 

128 the physiological consequences of variation in parental genotype.

129

130 Methods

131 Field based sample collection

132 All nestling whole blood samples in this study came from a breeding population of 

133 WTSPs at the Cranberry Lake Biological Station in northern New York, USA (SUNY-ESF, 

134 44.15ºN, 74.78ºW) and were collected during the 2015 breeding season. We only used samples 

135 collected during the first clutch (June 7 - June 15, 2015), as WTSP males may increase paternal 

136 investment in replacement broods (Horton et al. 2014). We collected ~80µL blood in capillary 

137 tubes via brachial venipuncture on days 5-7 post-hatch. Approximately 60µL blood was 

138 preserved in Longmire’s lysis buffer (Longmire et al. 1992) for genotyping and ~20µL was 

139 immediately placed in RNAlater. Within six hours of collection, samples were placed 

140 temporarily into liquid nitrogen, before being shipped overnight on dry ice to -80ºC storage until 

141 RNA extraction. All animal sampling protocols were approved by the Indiana State University 

142 Institutional Animal Care and Use Committee (IACUC 562158-1:ET/RG, 562192-1:ET/RG).

143

144 Molecular sexing & genotyping

145 Nestling DNA was extracted from erythrocytes using the DNA IQ® magnetic extraction 

146 system (Promega Corp, Madison, WI USA). To determine sex and morph, we used PCR to 

147 fluorescently label and amplify a region of the chromo-helicase-DNA-binding gene, and a region 
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148 of the vasoactive intestinal peptide following Griffiths et al. (1998) and Michopolous et al. 

149 (2007). The PCR products were run and analyzed on an ABI PRISMTM 310 genetic analyzer.

150

151 RNA extraction, library preparation, & sequencing

152 We sampled a total of 45 nestlings for RNA extraction, but due to issues with RNA 

153 quality after extraction (RNA concentration=0ng/ul or RIN < 7), only 32 were used for 

154 sequencing. These samples represent 23 nestlings from eight TxW pairs and nine nestlings from 

155 three WxT pairs. The 23 nestlings from TxW nests included 12 female, 11 male, 12 T morph, 

156 and 11 W morph individuals. The nine nestlings from WxT nests included six female, three male, 

157 three T morph, and six W morph individuals.

158 We removed RNAlater and homogenized whole blood tissue samples with Tri-Reagent 

159 (Molecular Research Company). Total RNA was purified with a Qiagen RNeasy mini kit 

160 (Valencia, CA, USA), followed by DNase treatment and further purification. We quality assessed 

161 RNA with an Agilent Bioanalyzer (RIN > 7) (Wilmington, DE, USA). Both library preparation 

162 and sequencing were performed at the University of Illinois Roy J. Carver Biotechnology Center. 

163 A library was prepared for each RNA sample using the Illumina HT TruSeq (San Diego, CA, 

164 USA) stranded RNA sample prep kit. Libraries were distributed into four pools with equimolar 

165 concentrations and quantitated via qPCR. Each of the pools was sequenced on an individual lane 

166 of an Illumina HiSeq 2500 using the Illumina TruSeq SBS sequencing kit v4 producing 100-

167 nucleotide single-end reads. 

168

169 Creation of masked reference genome

170 The WTSP reference genome was generated from a male T morph individual (Tuttle et al. 

171 2016). Thus, the reference genome does not contain any sequence data from the ZAL2m 

172 inversion. To avoid any potential bias in mapping reads derived from W morph individuals onto 

173 a T morph genome, we generated a masked reference genome for this study. To do so, we used 

174 previously published whole genome sequences from three W morph adults (Tuttle et al. 2016). 

175 Reads were adapter trimmed with Trim Galore! v0.3.8 

176 (https://github.com/FelixKrueger/TrimGalore) and aligned to the WTSP reference genome with 

177 bwa mem v 0.7.10-r789 using default parameters (Li 2013). We converted and sorted the 
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178 resulting SAM alignment to BAM format with samtools view and samtools sort, respectively 

179 (samtools v1.2, Li et al. 2009). We then merged all genomic scaffolds corresponding to the 

180 ZAL2m inversion, as identified in Tuttle et al. (2016), with samtools merge. We called SNPs 

181 within the inversion using samtools mpileup and bcftools call v 1.2 (Li et al. 2009, Li 2011). We 

182 only kept SNPs that were heterozygous in each of the three individuals with SnpSift v 4.3p 

183 (Cingolani et al. 2012) and used these SNPs to mask the reference genome with bedtools 

184 maskfasta v 2.21.0 (Quinlan & Hall 2010).

185

186 Quality control, read mapping, differential expression, & gene ontology 

187 We trimmed Illumina sequencing adapters from each of the 32 libraries with Trim 

188 Galore! v0.3.8 which uses Cutadapt v1.7.1 (Martin 2011). Trimmed reads were then mapped to 

189 the masked reference genome with STAR v2.5.3a using default parameters (Dobin et al. 2013). 

190 The mapping results were then quantified and assigned gene IDs with htseq-count v0.6.0 (Anders 

191 et al. 2015) specifying ‘-s reverse’ and ‘-i gene’. We then removed lowly expressed genes by 

192 summing the counts for each gene across all 32 samples, dividing by 32 to obtain the study 

193 average, and removing genes with an average read count of < 5. 

194 All statistical analyses were performed with R v3.5.0 (R Core Team 2013). We first 

195 identified outlier samples based on visual inspection of sample distance in a dendrogram within 

196 WGCNA (Horvath 2011).  Two samples, one T female and one T male representing an entire 

197 TxW nest, were identified as outliers and removed from all future analyses (Figure S1).  Using 

198 the remaining 30 samples, we normalized reads accounting for sequencing depth and assessed 

199 differential expression with DEseq2 (Love et al. 2014). We performed variance stabilizing 

200 transformation of reads in DEseq2 and performed PCA and hierarchical clustering based on 

201 Euclidean distance of gene expression profiles with pcaExplorer v2.6.0 (Marini & Binder 2016). 

202 Differential expression analyses utilized pairwise comparisons between nestling morph and pair 

203 type (i.e. parental morphs). We controlled for sex in morph comparisons and sex, morph, and 

204 nest ID for pair type comparisons. To include nest ID in the pair type comparison, we followed 

205 the “individuals nested within groups” guide in the DEseq2 manual. We did not include nestling 

206 age in analyses, as most samples were 6 days old (n=21), limiting comparisons with nestlings 

207 aged Day 5 (n=3) or Day 7 (n=6). Network analysis (see below) did not reveal any effect of age 
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208 on variables of interest (morph, pair type; data not shown). We also tested for an interaction 

209 between nestling morph and pair type utilizing a grouping variable as outlined in the DEseq2 

210 manual. DEseq2 determines differential expression with a Wald test followed by Benjamini & 

211 Hochberg (1995) FDR correction. Genes were considered differentially expressed (DE) if the 

212 FDR corrected p-value was < 0.10. Details for each model run, including the R code used, are in 

213 this project’s GitHub repository.

214 We next tested for gene ontology (GO) enrichment among DE genes with GOrilla (Eden 

215 et al. 2007, 2009). For each DEseq2 comparison, we ordered the list of genes based on ascending 

216 FDR values, excluding any genes in which DEseq2 did not assign a FDR value. The WTSP 

217 genome is not completely annotated, so any loci without a gene symbol were excluded from GO 

218 analyses (n=1,926). GOrilla places greater weight on genes located at the top of the list (i.e. DE 

219 genes), while accounting for the contribution of each gene in the given comparison. GO 

220 categories were considered significantly enriched if the FDR corrected p-value <0.05. GOrilla 

221 does not support WTSP annotation; so, all analyses were based on homology to human gene 

222 symbols. 

223

224 Weighted gene co-expression network analysis (WGCNA)

225 We used the WGCNA package in R (Zhang & Horvath 2005, Langfelder & Horvath 

226 2008) to identify modules of genes with highly correlated expression patterns in our dataset. 

227 WGCNA identifies modules of co-regulated genes blind to the experimental design. These 

228 modules are then correlated with external traits, offering a systems-level view into how 

229 conditions impact transcriptional networks. Within these networks, we can then perform GO 

230 analyses as described above and identify network hubs, which are the most highly connected 

231 genes within that network. To create networks, we first exported variance stabilizing transformed 

232 (vst) read counts from DEseq2, removed genes with an average vst < 5 averaged across all 30 

233 samples, and imported the subsequent list of 8,982 genes into WGCNA. To build the co-

234 expression matrix, we chose a soft thresholding power (β) value of 12, at which the network 

235 reaches scale-free topology (Figure S2). We generated a signed network with minimum module 

236 size of 30 genes and merged highly correlated modules (dissimilarity threshold = 0.20, which 

237 corresponds to R2 = 0.80). We then correlated the eigengene, which is the first principal 
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238 component of a module, of these merged modules with external traits (pair type, nestling morph, 

239 nestling sex, nest ID). Modules with p < 0.05 were considered significantly correlated with a 

240 given trait. For all morph-specific results, we tested for an enrichment of inversion genes with a 

241 chi-squared test using a Fisher’s exact test  (p < 0.05).

242 To visualize the interaction of genes within a module, we generated the intramodular 

243 connectivity (IM) score for each gene, which represents the interconnection of module genes. We 

244 exported all IM scores for modules of interest and imported into VisAnt v5.51 (Hu et al. 2013) for 

245 visualization. To maximize network clarity, we only plotted the top 300 interactions based on IM 

246 scores. Thus, we only visualized the most connected genes. To identify hub genes, we visualized 

247 the Degree Distribution (DD) for the network and selected the most connected genes above a 

248 natural break in the distribution. This resulted in one to nine hub genes per module. 

249 To understand the biological function of modules correlated with traits of interest, we 

250 performed a target vs background GO analysis in GOrilla. For each module, we tested the 

251 assigned genes for each module against the entire list of 8,982 genes used for the WGCNA 

252 analysis. GO categories were significant with a FDR corrected p-value < 0.05. 

253

254 Results

255 Sequencing results

256 We sequenced each sample to an average depth of 29.4 million reads (range = 16.2-58.5 

257 million reads). The 32 libraries were distributed into four pools in equimolar concentration. One 

258 pool contained only four samples, which corresponded to the four samples with lowest RNA 

259 concentrations. This pool was sequenced to an average depth of 56.17 million reads per library.  

260 The remaining three pools were sequenced to an average depth of 25.62 million reads per library. 

261 Samples mapped to our masked genome at an average rate of 91.08% (range = 88.19%-92.87%) 

262 (Table S1). A total of 8,982 genes had count values ≥ 5 across all samples, which included 641 

263 located in the W morph inversion. Samples did not segregate by pair type or morph in PCA or 

264 hierarchical clustering (Figures S3, S4).

265

266 Differential Expression – Morph
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267 Ninety-two genes were differentially expressed between morphs. Sixty-five of these 

268 genes (71%) were located in the inversion, representing a significant enrichment (χ2=553.73, 

269 df=1, p<0.00001) (Table S2). The inversion represents only 641 out the 8,892 genes (7%) 

270 sampled here. Additionally, expression of 59 of these 92 genes was higher in W morph nestlings, 

271 including several innate immune related genes (e.g. IFIT5, IL20RA, EIF2AK2, RSAD2). There 

272 was GO enrichment of three categories: “immune response” (p = 0.019), “mitotic cell cycle 

273 process” (p=0.029), and “defense response to virus” (p = 0.049) (Table S3). 

274

275 Differential Expression – Pair Type

276 Pair type had the largest effect on gene expression, with 881 genes DE between offspring 

277 from the two different pair types (FDR < 0.10, Table S2). Some known stress response genes 

278 were more highly expressed in nestlings in WxT nests, including the glucocorticoid receptor 

279 (NR3C1), superoxide dismutase (SOD)1 & SOD2, DEP domain-containing mTOR-interacting 

280 protein (DEPTOR), and several ubiquitin-mediated proteolysis pathway genes (e.g. UBE2D3, 

281 PSMD3, PSMD6). Additionally, immune system related genes were also expressed more highly 

282 in WxT nests, including cytokines (e.g. IL2RA, IL7R), suppressor of cytokine signaling 1 

283 (SOCS1), and five putative major histocompatibility complex (MHC) class I loci. No GO 

284 categories were significantly enriched, however.

285 We next tested for a morph-specific response to pair type. Within WxT nests, 40 genes 

286 were DE (p <0.10) between T and W morph nestlings. Twelve of these genes (30%) are located 

287 within the inversion, again reflecting an enrichment of inversion genes among those differentially 

288 expressed between morph (χ2=34.44, df=1, p<0.00001). Only two genes (THSD7B & CFAP44) 

289 were DE between morphs within TxW nests, both of which are uniquely DE between morphs in 

290 TxW nests. No GO categories were enriched in either comparison.

291

292 WGCNA – Morph

293 WGCNA revealed 26 modules, five of which were correlated with morph (Table 1, 

294 Figure 1). The light cyan module (183 genes, R2=0.67, p=5x10-5) and ivory module (72 genes, 

295 R2=-0.66, p=9x10-5) contained genes expressed higher and lower, respectively, in W morph 

296 nestlings relative to T morph nestlings. These modules are both enriched for genes located within 

A
u
th

o
r 

M
a
n
u
s
c
ri
p
t



This article is protected by copyright. All rights reserved

297 the chromosomal inversion (light cyan module = 70/183 (38%) genes, χ2=266.49, df=1, 

298 p<0.00001; ivory module = 40/72 (56%), χ2=261.60, df=1, p<0.00001) (Figure S5). The hubs of 

299 each of these modules are also located in the chromosomal inversion (Table 1, Figure S5). 

300 Additionally, the sky blue module (58 genes, R2=0.53, p=0.003) and dark red module (102 genes, 

301 R2=0.47, p=0.009) (Figure S6) contained genes expressed at higher levels in W morph nestlings 

302 and many of these genes overlap with the immune related genes described in the morph DE tests 

303 above. The hubs of these networks (e.g. sky blue: EIF2AK2, IFIT5, OASL; dark red: TRAF5) 

304 (Table 1) reflect a conserved innate immunity network structure in avian blood (Kernbach et al., 

305 2019) (Figure S6). Lastly, the salmon module (294 genes, R2=-0.50, p=0.005) contained genes 

306 expressed at lower levels in W morph nestlings and did not exhibit any enriched GO categories.

307

308 WGCNA – Pair Type

309 We found seven modules correlated with pair type (Table 2, Figure 1). The blue module 

310 represented genes that are expressed at higher levels in nestlings from WxT nests (1,142 genes, 

311 R2 = -0.45, p=0.01). This module contained both the largest number of genes and 

312 correspondingly, the strongest functional enrichment. Many of these GO enrichments were 

313 related to protein function, resulting from the presence of ribosomal genes. Interestingly, several 

314 GO categories for metabolism, catabolism, and proteolysis were also enriched, driven by genes 

315 encoding ubiquitin-conjugating enzymes and proteasome subunits (e.g. “proteasomal protein 

316 catabolic process”, p=2.34x10-4; “proteasome-mediated ubiquitin-dependent protein catabolic 

317 process”, p=5.32x10-4) (Table S4). Many of these (e.g. PSMF1, PSMD3, PSMD6, UBE2D2, 

318 UBE2D3, UBE3C) were also DE between offspring of the two pair types (Figure 2). Lastly, the 

319 blue module contains one hub gene, NDUFB3 (DD=42) (Figure 2), which is involved in the 

320 mitochondrial electron transport chain.

321 The beige and light green modules represented candidate stress response networks. These 

322 modules showed contrasting expression patterns in nestlings from WxT nests (Figure 4). 

323 Although not significantly enriched for any GO categories, the beige module comprised 335 

324 genes that shower greater expression in WxT nests than in TxW nests (R2=-0.61, p=3x10-4). 

325 DEPTOR, which functions as an inhibitor of the mTOR pathway in response to stress (e.g. 

326 Desantis et al. 2015), was the single hub in the beige module (DD=39, Figure 3). The beige 
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327 module also contained NR3C1, which is activated in response to increased glucocorticoid 

328 secretion. Lastly, the light green module (116 genes, R2=0.60, p=4x10-4) contained genes with 

329 low expression in TxW nests relative to WxT nests. There were three hub genes (DD > 28), 

330 CDK19, CHD4, and EPG5, each with previously described roles in the stress response (Figure 

331 4). 

332 For each pair type module, the correlation was stronger for the overall effect of pair type 

333 than any individual nest, indicating that one nest did not drive the correlation. This trend was 

334 reflected in gene expression plots of hub genes and candidate genes described above (Figure S7). 

335 We did not observe modules correlated with pair type that were also correlated with nestling 

336 morph or sex, suggesting there is no morph or sex-specific response to a given pair type at the 

337 network level.

338

339 Discussion

340 By assessing genome-wide transcription in nestlings raised by different WTSP pair types we 

341 have identified distinct transcriptomic signatures that suggest nestlings raised by WxT pairs 

342 exhibited a stronger stress response relative to nestlings raise by TxW pairs. This is reflected both 

343 by differential expression of several genes involved in protein degradation as well as networks of 

344 co-expressed genes with stress response hubs. Additionally, we identified morph-specific gene 

345 expression driven by innate immunity genes and genes located in the chromosome 2 inversion. 

346 As adults, the genes within the inversion strongly influence the WTSP neural transcriptome 

347 (Balakrishnan et al. 2014, Zinzow-Kramer et al. 2015). Our results here suggest that as nestlings, 

348 parental genotypes and associated behaviors, rather than nestling genotype, have the strongest 

349 influence on the nestling transcriptome. 

350

351 Gene expression differences resulting from pair type

352 We found 881 genes DE between nestlings raised by the two pair types. Many of these 

353 genes function in the proteasome or ubiquitin-mediated proteolysis. Cells naturally use the 

354 proteasome for degradation of proteins targeted by the ubiquitination process, but genes involved 

355 in proteasome formation (e.g. PSMD6, PSMD11) and ubiquitination (e.g. UBE2B) are up-

356 regulated in cells experiencing mild oxidative stress (Aiken et al. 2011, Shang & Taylor 2011, 

A
u
th

o
r 

M
a
n
u
s
c
ri
p
t



This article is protected by copyright. All rights reserved

357 Livneh et al. 2016) or organisms experiencing abiotic stress (Dhanasiri et al. 2013, Tomalty et al. 

358 2015). Thus, increased expression of these genes in nestlings from WxT nests suggests they are 

359 responding to oxidative stress. As a result, there may be a cost to having a W morph father and T 

360 morph mother at the nestling stage.

361 To complement our differential expression approach, we also constructed co-expression 

362 networks with WGCNA. Using this approach, we identified 26 modules of co-regulated genes in 

363 this dataset (Figure 1), seven of which were significantly correlated with parental pair type. The 

364 blue module contains genes that are expressed at higher levels in nestlings in WxT nests. The 

365 blue module hub gene was NDUFB3 (Module Membership [MM]=0.938, DD=42) (Figure 2), 

366 which encodes a subunit of the mitochondrial membrane respiratory chain. Interestingly, many of 

367 the same proteolysis-related genes highlighted in the differential expression results are also 

368 present in this module, resulting in the enrichment of several metabolism and stress-related GO 

369 categories (Table S4). 

370 Two modules, light green and beige, contained stress responsive hub genes. The light 

371 green module contains genes that are expressed at lower levels in nestlings in WxT nests, with 

372 three hub genes: CDK19, CHD4, and EPG5 (Figure 4). The absence of EPG5 expression (via 

373 knockout) and reduction in CHD4 expression (via knockdown) has been associated with 

374 increased DNA damage (Zhao et al. 2013, Larsen et al. 2010). Similarly, down-regulation of 

375 CDK19 following knockdown is associated with an increased stress response (Audetat et al. 

376 2017). Suppression of these genes in these nestlings could be indicative of increased cellular 

377 damage. The beige module contains genes whose expression is higher in nestlings from WxT 

378 nests and contains one hub gene, DEPTOR, which is an inhibitor of mTOR signaling (Figure 3). 

379 The exact role of DEPTOR remains unclear, but up-regulation likely inhibits the mTORC1 

380 pathway to reduce endoplasmic reticulum stress, promote cell survival, and avoid apoptosis 

381 (Peterson et al. 2009, Desantis et al. 2015, Catena et al. 2016). Thus, nestlings raised in WxT 

382 nests may be activating DEPTOR to alleviate the effects of endoplasmic reticulum stress.

383 Higher expression levels for genes in the beige module in these nestlings and the high 

384 connectivity of DEPTOR to other co-expressed genes provide further support for a 

385 transcriptional stress response in nestlings sampled within WxT nests. The beige module also 

386 contains two well-studied stress responsive genes, superoxide dismutase 2 (SOD2) and the 
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387 glucocorticoid receptor (NR3C1). SOD2 mitigates the effects of exposure to reactive oxygen 

388 species by scavenging free radicals (Zelko et al. 2002). NR3C1 binds glucocorticoids and has 

389 primarily been studied in the context of ELS and methylation of an upstream promoter. NRC3C1 

390 methylation is often associated with down-regulation of NR3C1 (e.g. McGowan et al. 2009) and 

391 impairment of the HPA axis, but up-regulation following methylation has also been observed as 

392 part of the stress response (Turner et al. 2006, Bockmühl et al. 2015). The expression pattern 

393 observed here directly implicates the HPA axis and suggests these nestlings may be activating 

394 SOD2 and NR3C1 to cope with elevated levels of reactive oxygen species and corticosterone, 

395 respectively (Wang et al. 2018, Finsterwald & Alberini 2014). However, further work is needed 

396 to investigate stress physiology, corticosterone levels, and uncover the epigenetic state of NR3C1 

397 in these nestlings and how this may relate to ELS (Banerjee et al. 2011, McCoy et al. 2016, 

398 Rubenstein et al. 2016, Quirici et al. 2016, Greggor et al. 2017). 

399

400 How does parental genotype influence offspring gene expression?

401 In a non-experimental study, we have limited power to make inferences about the 

402 mechanism by which parental genotype impacted offspring gene expression. Given the well-

403 studied reproductive biology of WTSPs, however, two mechanisms seem especially likely: 

404 hormone-mediated maternal effects and/or differences in parental provisioning and behavior. In 

405 weighing the evidence for these two non-mutually exclusive possibilities, we conclude that the 

406 difference in parental provisioning is the most plausible explanation for the observed gene 

407 expression differences. As described above, WTSP morphs differ in hormone levels. Only 

408 oestradiol, however, has so far been shown to differ between adult female morphs during the 

409 breeding season and is higher in W morph females during the pre-laying and laying stages 

410 (Horton et al. 2014). No baseline differences in any other hormone measured to date 

411 (corticosterone, testosterone, DHEA, DHT) have been described during the breeding season 

412 (Spinney et al. 2006, Swett & Breuner 2009, Horton & Holberton 2010, Horton et al. 2014). 

413 Taken together this suggests that hormone deposition into eggs may not differ dramatically 

414 between the morphs. By contrast, there is strong evidence of differences in provisioning among 

415 morph types (Knapton & Falls 1983, Kopachna & Falls 1993, Horton & Holberton 2010, Horton 

416 et al. 2014). Reduced provisioning by W morph males appears to be stable across populations 
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417 resulting in female-biased parental care in WxT nests (Knapton & Falls 1983, Horton et al. 

418 2014). Therefore, parental care variation is a likely source of behaviorally mediated maternal or 

419 paternal effects (see Crean & Bonduriansky 2014) that could explain the strong signature of 

420 stress exposure in the expression data. 

421 Previous work revealed no difference in clutch size between pair types (Knapton et al. 

422 1984, Formica et al. 2004) and no effect of pair type on nestling mass (Knapton et al. 1984, 

423 Tuttle et al. 2017).  Also, nestlings did not differ in mass at time of sampling between the TxW 

424 and WxT nests used in this study (Smith et al. in review). Increased provisioning by females to 

425 compensate for reduced care by males could explain this observation, and this has been observed 

426 previously in a separate WTSP population (Knapton & Falls 1983). In this scenario reduced 

427 brooding and increased maternal separation could also negatively impact nestling physiology and 

428 act as a source of ELS (reviewed in Ledón-Rettig et al. 2013). Somewhat surprisingly, given the 

429 gene expression findings described here, a recent study in our study population did not detect 

430 differences in reactive oxygen metabolites in plasma of offspring of the two different pair types 

431 (Grunst et al. 2019). ROM, however, only provides a limited overview of the stress response and 

432 the RNA-seq response we observed could even mitigate long-term consequences of ELS. The 

433 results here further highlight the utility of blood RNA-seq as a highly sensitive measure of 

434 environmental exposures (Louder et al. 2018). 

435 Our study is limited by the fact that we did not perform a cross-fostering experiment. We 

436 aimed to mitigate potential environmental confounds by restricting sampling of nestlings to a 

437 short time period of nine days and sampling nests of both pair types throughout this period. 

438 Certainly, the environment may influence gene expression in our samples, but consistent changes 

439 among the samples in the two pair types suggest the role of parents is a significant driver of 

440 nestling gene expression, rather than temporal or spatial environmental variation. Although the 

441 two pair types are equally abundant in our study population, our study had unbalanced sample 

442 sizes between the pair types (21 TxW, 9 WxT). The biased sample size resulted from technical 

443 difficulties in RNA extraction, as many of these samples contained very little starting tissue. 

444 Future studies should prioritize larger tissue samples for RNA based analyses. Lastly, aspects of 

445 male behavior during incubation (e.g. provisioning females) could also influence nestling stress 

446 and warrant further targeted behavioral observations of males.
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447

448 Morph-specific gene expression

449 We were also interested in morph-specific gene expression and how nestling morph may 

450 respond to differences in parental pair type. WTSPs have been studied extensively as adults, but 

451 very rarely in other life stages. W morph males and T morph females exhibit earlier reproductive 

452 and actuarial senescence, potentially resulting from the high energy expenditure lifestyle of W 

453 morph males and biased parental care given by T morph females (Grunst et al. 2018a, Grunst et 

454 al. 2018b). There also appears to be annual variation in fitness between the morphs as adults. 

455 Following cold, wet winters, W morph males exhibit lower recruitment in the breeding grounds, 

456 leading to an overproduction of W morph male nestlings, potentially to stabilize morph 

457 frequencies in the population (Tuttle et al. 2017). Thus, morph specific differences may arise in 

458 early life. We found 92 genes DE between morphs, including 14 innate immune-related genes 

459 and genes located within the inversion (65/92 genes, Table S2). WGCNA revealed five modules 

460 correlated with morph (Figure 1). These included two innate immunity-related modules with 

461 increased expression in W morphs (Dark Red & Sky Blue) and two modules enriched with genes 

462 located in the inversion (Ivory = 40/72, Light Cyan = 70/183) (Figures S5, S6). The sky blue 

463 module contains nine hub genes and the dark red module contains one hub gene, both of which 

464 include well-studied anti-viral genes (e.g. sky blue: OASL, RSAD2; dark red: TRAF5). These 

465 genes also form a co-expression module in avian blood following West Nile virus infection 

466 (Kernbach et al., 2019). Adult WTSP morphs differ in their ability to clear infection (Boyd et al. 

467 2018), so the immune activation here may be indicative of an increased parasite load in W morph 

468 nestlings, although further investigation is required. The light cyan module contains genes 

469 expressed at higher levels in W morph nestlings and contains eight hub genes, each located in the 

470 inversion (Table 1). Three of these, EPM2A, BPNT1, and TAF5L, were also identified as hub 

471 genes in brain tissues of adult W morph males (Zinzow-Kramer et al. 2015). These nestlings thus 

472 exhibit expression differences in inversion genes prior to any phenotypic or behavioral 

473 differences, revealing the importance of the inversion in maintaining morph phenotypes 

474 throughout life. Additionally, the conservation of network hub genes in a different tissue and life 

475 stage highlights avenues for further investigation into WTSP gene regulation. 
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476 Despite broad gene expression differences between the morphs, within pair types morph-

477 specific expression was limited. Nestlings in TxW nests only had two genes DE between morphs. 

478 There was a larger effect of morph within WxT nests, where the number of DE genes increased 

479 to 40. These genes encompassed a wide range of gene functions without any obvious stress-

480 related candidate genes. Of these 40 genes, 34 are uniquely DE within WxT nests and do not 

481 overlap with the overall list of 92 genes DE between morphs using all samples. Interestingly, W 

482 morph nestlings in WxT nests expressed glucocorticoid-induced transcript 1 (GLCCI1) at higher 

483 levels than T morph nestlings. The function of GLCCI1 remains unclear (Kim et al. 2016), but 

484 expression differences between morphs observed here implicates the role of glucocorticoids in 

485 response to pair type. This suggests that nestling morphs may respond differently to the parental 

486 pair type though larger sample sizes will be needed to explore this further.

487

488 Conclusions

489 Using the WTSP, a system with alternative parental care strategies, we show that 

490 nestlings in WxT nests (female-biased parental care) have increased expression of stress-related 

491 genes, and parental genotypes may act as a source of ELS in the species. Nestling morph also 

492 influences transcription, but parental pair type appears to have the greatest effect on their 

493 transcriptome. Combined, this supports the parental effects hypothesis (Wade 1998, Schrader et 

494 al. 2018), where offspring phenotypes are primarily a result of the nest environment and care 

495 received, rather than from offspring genotypes (i.e. T vs. W). Nearly 54% of observed pairs have 

496 been WxT (Tuttle et al. 2016). Thus, roughly half of the nestlings in every population will 

497 experience female-biased parental care. Our results suggest that these differences in parental pair 

498 type have at least short-term consequences on offspring physiology. While we have identified 

499 impacts at the level of transcription, an integrative approach assessing nestling WTSP physiology 

500 and performing cross-fostering experiments will further elucidate the consequences of variation 

501 in parental pair type. Importantly, it remains unclear whether female-biased parental care or 

502 differences in maternal effects translate into long-term fitness consequences for offspring. There 

503 appears to be a cost associated with parental genotype, as less cooperative reproductive strategy 

504 (WxT pairs) accelerates senescence (Grunst et al. 2018a, Grunst et al. 2018b). We show here that 

505 this cost is also translated into nestlings within WxT nests via increased stress-related gene 
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506 expression. This work sets the stage to further explore morph-specific fitness consequences in 

507 nestlings experiencing alternative parental care strategies.
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837 Tables and Figures

838 Table 1. WGCNA modules correlated with morph, strength of correlation (R2), p-value, hub 

839 gene(s) of module, and the degree distribution of hub gene(s).

Module R2 p-value Hub genes DD of 

hub 

gene(s)

Dark Red 0.47 0.009 TRAF5 32

Ivory -0.66 9x10-5 GOPC, HDAC2, HINT3, TAF5L, 

TRMT61B, MARC2

>29

Light Cyan 0.67 5x10-5 BPNT1, EPM2A, LOC102066536 

(GST-like), MAN1A1, MEI4, 

RNASET2, SLC18B1, TTC32

>27

Salmon -0.5 0.005 NSL1 39

Sky Blue 0.53 0.003 DTX3L, EIF2AK2, IFIT5, 

LOC102064521 (OASL), 

>22
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LOC102065196 (IFI27L2), PARP9, 

PARP14, RSAD2, ZNFX1

840

841 Table 2. WGCNA modules correlated with pair type, strength of correlation (R2), p-value, hub 

842 gene(s) of module, and the degree distribution of hub gene(s).

Module R2 p-value Hub genes DD of hub 

gene(s)

Beige -0.61 3x10-4 DEPTOR 39

Blue -0.45 0.01 NDUFB3 42

Cyan 0.46 0.01 HELZ 36

Dark Orange 0.7 1x10-5 NCOA6 45

Light Green 0.6 4x10-4 CDK19, CHD4, EPG5 >28

Orange -0.45 0.01 ZFX 31

Pink 0.37 0.04 LOC102060916 

(C12orf4)

19

843

844

845 Figure 1. WGCNA module-trait correlation matrix. Each box contains the R2 correlation value 

846 followed by p-value in parentheses of a given trait with the module. Correlation values range 

847 from -1 to 1, with orange colors representing positive correlation and blue colors representing 

848 negative correlation.

849

850 Figure 2. (A) Network of blue module, highlighting hub gene NDUFB3, along with normalized 

851 expression plots of (B) NDUFB3, (C) PSMD6, and (D) UBE2D3. NDUFB3 is a hub of the blue 

852 module, while PSMD6 and UBE2D3 represent candidate ubiquitin-mediated proteolysis genes. 

853 TxW represents samples from nests sired by a T male and a W female. WxT represents samples 

854 from nests sired by a W male and a T female. Each circle represents a gene and diamonds 

855 represent hub genes described in Table 2.

856

A
u
th

o
r 

M
a
n
u
s
c
ri
p
t



This article is protected by copyright. All rights reserved

857 Figure 3. (A) Network of beige module, highlighting hub gene DEPTOR, along with normalized 

858 expression plots of (B) DEPTOR, (C) SOD2 and (D) NR3C1. DEPTOR is a hub of the beige 

859 module, while SOD2 and NR3C1 represent candidate stress responsive genes. TxW represents 

860 samples from nests sired by a T male and a W female. WxT represents samples from nests sired 

861 by a W male and a T female.

862

863 Figure 4. (A) Network of light green module and normalized expression plots of hub genes (B) 

864 CDK19, (C) CHD4, and (D) EPG5. TxW represents samples from nests sired by a T male and a 

865 W female. WxT represent samples from nests sired by a W male and a T female. Each circle 

866 represents a gene and diamonds represent hub genes described in Table 2. 
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