
RESEARCH ARTICLE

Interclutch variability in egg characteristics in

two species of rail: Is maternal identity

encoded in eggshell patterns?

Emily W. Johnson, Susan B. McRaeID*

Department of Biology, East Carolina University, Greenville, North Carolina, United States of America

* mcraes@ecu.edu

Abstract

Maternal signatures are present in the eggs of some birds, but quantifying interclutch vari-

ability within populations remains challenging. Maternal assignment of eggs with distinctive

appearances could be used to non-invasively identify renesting females, including hens

returning among years, as well as to identify cases of conspecific brood parasitism. We

explored whether King Rail (Rallus elegans) eggs with shared maternity could be matched

based on eggshell pattern. We used NaturePatternMatch (NPM) software to match egg

images taken in the field in conjunction with spatial and temporal data on nests. Since we

had only a small number of marked breeders, we analyzed similar clutch images from a

study of Eurasian Common Moorhens (Gallinula chloropus chloropus) with color-banded

breeders for which parentage at many nests had been verified genetically to validate the

method. We ran 66 King Rail clutches (n = 338 eggs) and 58 Common Moorhen clutches (n

= 364 eggs) through NPM. We performed non-metric multidimensional scaling and permuta-

tional analysis of variance using the best egg match output from NPM. We also explored

whether eggs could be grouped by clutch using a combination of egg dimensions and pat-

tern data derived from NPM using linear discriminant analyses. We then scrutinized specific

matches returned by NPM for King Rail eggs to determine whether multiple matches

between the same clutches might reveal maternity among nests and inform our understand-

ing of female laying behavior. To do this, we ran separate NPM analyses for clutches photo-

graphed over several years from two spatially distant parts of the site. With these narrower

datasets, we were able to identify four instances where hens likely returned to breed among

years, four likely cases of conspecific brood parasitism, and a within-season re-nesting

attempt. Thus, the matching output was helpful in identifying congruent egg patterns among

clutches when used in conjunction with spatial and temporal data, revealing previously

unrecognized site fidelity, within-season movements, and reproductive interference by

breeding females. Egg pattern data in combination with nest mapping can be used to inform

our understanding of female reproductive effort, success, and longevity in King Rails. These

methods may also be applied to other secretive birds and species of conservation concern.
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Introduction

Since the 1800s, researchers and bird enthusiasts have pondered the question of why some spe-

cies lay decorated eggs and what purpose this could serve [1]. Egg shapes vary from elliptical to

spherical, ground colors range from white to bright blue to brown, and eggshells can be heavily

patterned with additional pigments [2–5]. Alfred Russel Wallace was the first to suggest that

variation in egg coloration represented the general fitness and health of the hen and that egg

color and patterning were only constrained by predation [1]. The adaptation of pigment pat-

terns in eggs is driven by natural selection with predation selecting for crypsis through patterns

adapted to nest substrates [6]. Various hypotheses have additionally been proposed to explain

variation in egg pigmentation within and between species, including thermoregulation of the

embryo [6], enhanced shell strength [7], and antimicrobial properties of pigments [8].

In birds that lay maculated or spotted eggs, pattern ‘signatures’, unique or distinctive sets of

characteristics, can develop that potentially allow a breeder to discriminate between its own

eggs and those of others [2,9–12]. For example, maternal egg signatures can develop when con-

specifics nest in close proximity and risk mistaking a neighbor’s nest for their own, such as in

colonial seabirds [13–15]. Maternal signatures can alternatively develop in response to brood

parasitism [10]. Misdirected parental care is costly and reduces the host’s ability to invest in its

own young. A host that recognizes a foreign egg may reject it, avoiding the cost of raising the

parasite’s offspring [11,12]. Egg rejection requires hosts to be able to recognize their own eggs

and distinguish those of the parasite. This has driven selection in many interspecific parasites

for eggs that mimic those of the host, and in hosts for female-specific egg patterning [3,11].

Thus, brood parasitism can select for within-population egg variation, specifically reducing

variation within clutches and increasing variation among clutches [16]. Here, hosts evolve egg

signatures as a form of anti-parasite defense [9,13,14,17–19].

In conspecific brood parasitism (CBP), hosts and parasites are members of the same popu-

lation [20], so selection for egg signatures will depend on the costs of parasitism to hosts and

the benefits to parasites. Some populations experience both conspecific and interspecific para-

sitism. For example, colonial nesting Ploceus weaverbirds are parasitized by Diederik Cuckoos

(Chrysococcyx caprius) as well as conspecifics, and individual females have developed distinc-

tive female-specific coloring and patterning [9,17]. Exhibiting some of the most striking exam-

ples of egg signatures known, Ploceus weaverbird eggs vary greatly between females in ground

color and patterning while showing strong consistency within clutch, facilitating assignment

of maternal identity based on eggshell appearance [17,18].

Protoporphyrin, the pigment responsible for colors ranging from red to purple and brown,

is typically expressed as spotting or speckling on the eggshell [21]. These maculations can

range in size from pinprick speckles to spots and blotches covering large portions of the egg-

shell. Within species, protoporphyrin pigmented eggshell pattern variation has been used to

determine maternity and discriminate between clutches in populations of birds such as the

Herring Gull (Larus argentatus) [22], the Great Tit (Parus major) [23], Ploceus weaverbirds

[9,17,18], and in cases of hosts of the interspecific parasite the Common Cuckoo (Cuculus
canorus) [10].

Recent technological and statistical advances have furthered our ability to detect and com-

pare variability in patterning and color. A variety of photo-based pattern detection and match-

ing programs developed using information theory can identify and discriminate biological

patterns in various contexts. For example, conservationists have used matching algorithms to

identify individual newts [24], manta rays [25], whale sharks [26] and sea turtles [27] based on

their distinctive skin and shell patterns for re-sighting purposes. Information theory-based
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methods lack the subjectivity of earlier methods of pattern detection and recognition and take

less time to complete [25,26].

NaturePatternMatch (hereafter, NPM) was developed specifically to evaluate matching

characteristics of avian eggshells [10]. The program performs analysis of pattern features on

high-quality digitized images of individual eggs and locates the best matching egg image

among a sample of other eggs in the population. Images are converted to grayscale, and the

program characterizes major pigment features on the eggshell surface to match it with the egg

it most closely resembles [10,28]. Statistical tests such as principal component analyses, non-

metric multidimensional scaling and cluster analysis can then be used to identify differences

among differently patterned groups [10,15,29].

We investigated the existence of maternal egg signatures and whether they could be used to

match eggs to clutches or hens in two species of rails that lay protoporphyrin maculated eggs,

the King Rail and the Eurasian Common Moorhen. We theorized that both species evolved

female-specific signatures in response to a history of CBP. Rails are well-known for exhibiting

CBP and many species have developed anti-parasite defense strategies to mitigate the costs of

parasitism such as nest abandonment, egg rejection and burial [30–34].

King Rail populations have declined significantly in the last decades [35]. There is an urgent

need to be able to identify breeders in populations of conservation concern to monitor individ-

ual reproductive effort and success, but this remains a challenge because sightings of secretive

marsh birds are rare even if adults are banded. Recognizing maternal egg signatures could pro-

vide an alternative means to non-invasively identify within-season renesting attempts by the

same hen, and annual return rates of breeding females. Moreover, reliable maternal egg signa-

tures could be used to detect incidences of reproductive interference (i.e. CBP) contributing to

our understanding of social behavior.

To test whether NPM could be used to group eggs based on maternity, we studied a resident

population of King Rails breeding in a coastal refuge and collected standardized clutch images

over a period of 10 years. Due to the difficulty of catching and resighting King Rails, only a

small proportion of breeders were marked. Therefore, we included data from a British popula-

tion of the confamilial Common Moorhen (G. c. chloropus) with individually marked breeders

for comparison. This was a well-studied population at Peakirk Waterfowl Gardens, Cam-

bridgeshire, U.K., where identity of breeders was known from frequent re-sightings of marked

birds at nests. There was also information on laying sequence and genetic parentage, including

confirmed instances of CBP. The species are similar in size, developmental mode, parental

care behavior, and both exhibit large within-population ranges in clutch size. A low rate of

nest parasitism has been recorded in the King Rail population, and at least 10% of Common

Moorhen nests were parasitized annually at Peakirk Waterfowl Gardens [36].

After initial tests of the ability of NPM to group eggs of each species according to clutch or

hen, we investigated whether assignment success could be improved using linear discriminant

analyses combining pattern data from NPM output in conjunction with a pigmentation index

and egg dimensions. Finally, by comparing the matching output of NPM with the dates and

mapped locations of King Rail nests, we identified instances of nesting by the same females

both within and between years, as well as cases of CBP.

Materials and methods

Study sites and field data collection

King Rails in coastal North Carolina. This study was approved by the Institutional

Animal Care and Use Committee of East Carolina University (Permit Number: D253c),

under Federal Bird Banding Permit #23728 (SBM), State Wildlife Collection License
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#19-SC00967 (SBM), U.S. Fish and Wildlife Service (Refuge Special Use Permit Number:

19004). All procedures were carried out in accordance with protocols outlined in these

permits.

We studied a breeding population of King Rails at Mackay Island National Wildlife Refuge

located on Knotts Island, NC, USA (36˚ 310 N, 75˚ 580 W). This population has been moni-

tored annually during the breeding season (April-July) 2011–2020. King Rail pairs were

located using auditory callback [37] and field teams found nests via intensive and systematic

searching of appropriate marsh habitat on foot. Nests found before clutch completion were

monitored daily during the laying period to determine laying sequence and afterward at least

every 3 days to determine their final fate (depredated, hatched, deserted). When a new nest

was located, the length and width of each egg was measured using dial calipers (± 0.1 mm;

SPI). Each egg was given a unique number with a permanent marker (Sharpie). After clutch

completion, a standardized photo was taken of the eggs laid out on a flat surface. The eggs

were cleaned of debris (feces, mud, water droplets, vegetation) and placed on a custom-made

board with egg-shaped holders covered in black velvet (to absorb light). The eggs were posi-

tioned such that they were not touching, in a consistent orientation and numerical order, and

the identification numbers were not visible. Each picture included a size standard (ruler), a

color standard (the same set of 10 plastic leg bands of different primary and secondary colors),

and a label with the nest identity and date. Digital photographs were taken with a Nikon Cool-

pix P340 camera held approximately 12 inches directly above the clutch. The camera model

varied in some years.

Common Moorhens in Britain. Common Moorhen data were obtained from a study of a

resident population of wild birds nesting at Peakirk Waterfowl Gardens, Cambridgeshire, UK

(52˚ 380 4600 N, 0˚ 160 1600 W) [36]. The moorhens in this population had small territories

among the exhibits of captive waterfowl and were multiple-brooded. Breeding individuals

were marked with unique color band combinations and were observed daily. DNA finger-

printing was also used to confirm parentage and to identify parasitic eggs [38]. This resulted in

a dataset with many clutches of known genetic maternity. Clutches were photographed at

completion of laying with a wing rule for scale. Eggs were placed on a flat surface, in a consis-

tent orientation, spaced so that none were touching and no writing was visible. No color stan-

dard was used, but the same cloth background material was used for almost all photographs

(Fig 1) [39]. The following measures were collected for each egg in the field: length (±0.1mm),

width (±0.1mm), and mass (g, measured within 24 hrs of laying). Data were collected during

the 1991–1993 breeding seasons (March-August) by SBM. For more details see McRae [36,39]

and McRae and Burke [38].

Pattern matching analysis

Individual egg images were matched to their correct clutches based on spot patterning using

the program NaturePatternMatch v1.05. We ran photos of 66 King Rail clutches (338 eggs, 58

repaired using photoshop, 2 to 10 eggs per clutch, mean = 5.1) through NPM from all years

except 2013 (all photos were of inadequate quality) and 2018 (few photos were available).

Clutch photos that were out-of-focus, of low resolution, or in which all the eggs were dirty

were also excluded. This led to the exclusion of 32 King Rail clutch photos. Some individual

egg images had to be removed from the analysis because they were dirty or had visible marker

numbering that could not be cropped out and repaired. In some cases, they were removed

because the photograph was overexposed, shadowy, or the eggs had surface shine. We retained

in the analysis partial clutches of as few as two eggs because adequate matching can occur even

with only two eggs per clutch [10].
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We used photographs of 58 Common Moorhen clutches taken between 1991–1993 (364

eggs, 5 to 10 eggs per clutch, mean = 6.3). The Common Moorhen clutches were photographed

using Kodak 200 print film. We scanned 10.16x15.24 cm (4x6 inch) prints from 1991 and 1992

of Common Moorhen clutches (n = 37) using a Canon Pixma TS3122 printer at 600 DPI (dots

per inch). We scanned negatives of the clutch photos from 1993 using a Nikon Super CoolScan

9000 (ED 1.01) (n = 21). The same criteria for Common Moorhen egg exclusions were used as

were used for King Rails. Clutch images included in the analyses had to be in focus with good

lighting and feature at least 5 clean eggs laid by a banded female. To increase the probability of

having unrelated hens, and avoid possible effects of heritability of eggshell patterning, we

excluded communal nests where hens were almost always first order relatives, such as mother

and daughter [39]. Most hens in this population laid 2 to 4 clutches per season, and we

included a small number of photographs of 2 or 3 clutches within a season from the same hen

(1992 n = 7, 1993 n = 3). In one instance, we had suitable clutch photos from a female in all 3

years. For a subset of 7 females, we included clutches from two years.

We ran analyses of images for each year independently, excluding 2011 and 2015 (due to

small sample sizes). For King Rails, we also ran all years combined, and all years together but

divided by location within the refuge, denoted as North or South side. These two road-accessi-

ble areas of marsh where they bred were ~10km apart. A radiotelemetry study of King Rails

found that tracked individuals did not move between the North and South sides of the refuge

Fig 1. Representative clutch images of the Common Moorhen (left) and the King Rail (right) demonstrating the

variation in patterning and color within and between clutches.

https://doi.org/10.1371/journal.pone.0261868.g001
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[40]. This also allowed us to narrow the sample for comparison to proximate nests within- and

among years, because a female may show site fidelity. For the moorhens, each year was run

separately (due to differences in image capture and processing), and with all years combined.

We extracted from the NPM output (SIFT files) the total number of features detected, the scale

(size) of the largest feature, and the dominant orientation of the largest feature for each egg to

be used in subsequent analyses.

Quantifying pigment on eggshell surfaces

To estimate the amount of surface of each egg that was pigmented, egg images were rendered

in black and white, and the proportion of black pixels was measured. First, each color image

was converted to grayscale (8-bit) using ImageJ (NIH v. 1.52). The background was then

removed and Bernsen thresholding, an algorithm which uses variance to calculate a threshold

for each pixel [41], was performed. Bernsen thresholding was chosen because, upon visual

inspection, black areas on egg images thresholded using this method more closely matched the

pigmented areas on the color images when comparing to those thresholded using other

methods.

A standardized 3.4 x 2.4 cm block in which a scaled oval was drawn was superimposed over

each egg image. The oval was centered at the edge of the large pole of the egg and fit within

both the narrowest and shortest eggs in the analysis, ensuring that the same total area was mea-

sured on every egg. This was done to capture the greatest area on all eggs, while also measuring

the area of the egg where pigment was greatest (large pole). Bernsen thresholding produces a

ring of black pixels around the egg, but placement of the scaled oval just within the black out-

line ensured that the pixels creating the black outline around the egg were not being counted.

The number of black pixels within the oval was measured using the histogram tool. The num-

ber of white pixels within the oval was also measured, enabling the expression of the propor-

tion of black pixels as a percentage.

Statistical analyses

Non-metric multidimensional scaling. All analyses were performed using R version

4.0.2 [42]. To investigate how often eggs were matched with an egg of the correct clutch based

on comparisons of clutches both within and between years, we conducted non-metric multidi-

mensional scaling (NMDS). Though the goal of this study was to determine if females have

maternally distinct eggs, NPM identifies the best pair-wise match between individual egg

images; it does not specify the correct hen or match to clutch. For this reason, we used NPM to

find best matches and then calculated the proportion of within clutch matches for both species.

To determine if variation in patterning existed among clutches and hens, we performed Per-

mutational Multivariate Analysis of Variance (PERMANOVA) for both species.

Linear discriminant analysis of egg characteristics. Eggs laid by different hens vary in

size and shape as well. To incorporate this variation, we performed a linear discriminant analy-

sis to determine if eggs of each species could be grouped by clutch or hen using a combination

of eggshell pattern characteristics and egg dimensions. Exclusions were made due to missing

data (n = 27 King Rail eggs, n = 3 Common Moorhen eggs) leaving 337 King Rail eggs and 361

Common Moorhen eggs in the analysis. The grouping variable was clutch for King Rails, and

clutch or hen for the Common Moorhens. Both datasets were also verified for among year dif-

ferences by using year as a grouping variable. The covariates included were egg length (mm),

egg width (mm), egg mass (g, Common Moorhens only), percent black pixels, number of fea-

tures, scale of the largest feature, and dominant orientation of the largest feature.
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Spatial and temporal analysis of King Rail matching results

Maps of all King Rail nests for which we had usable clutch photographs were created in Arc-

GIS (Version 10.7). Imagery data were downloaded from open access platform NOAA Data

Access Viewer (2018 NOAA Ortho-rectified color Mosaic of Dismal Swamp and Albemarle

and Chesapeake Canals, Virginia) on 24 October 2019. Imagery data had horizontal units in

meters referenced to the North American Datum of 1983 (NAD83 NSRS2007) projected to

UTM Zone 18. Nest data were in the WGS84 projection so we performed a batch re-projection

to convert them to the same projection as the imagery data (NAD83 NSRS2007 UTM Zone

18N). Each mapped nest was color-coded by year and labeled with its nest ID. Nests from all

years were mapped on the North and South sides of the refuge. The NPM output was scruti-

nized to determine whether symmetrical (eggs from both clutches reciprocally match one

another) or multiple matches could be found among clutches in spatially proximate nests

within and between years on each side of the refuge.

Matching was detected first using NPM output from analyses where we ran image data

grouped by clutch, using the criterion for inclusion that eggs in one clutch had symmetrical or

multiple matches to eggs in another. If a queried clutch had multiple matches to the same

other clutch, then the clutch images were inspected visually (denoted Tier I; Fig 2).

We also identified cases where more than one egg in a clutch matched eggs in the same other

clutch when the NPM run was batched by clutch without symmetrical matching (e.g. when egg

A’s closest match is B, but egg B’s closest match is egg C). Next, for each clutch, we tallied all the

cases identified in the top 8 matches for each egg (in NPM run with each egg in an individual

folder) and selected any cases where four or more matched the same other clutch. We used the

top 8 matches, because 8 was the average clutch size in the population. We then visually evaluated

the inter-clutch matches and selected the match most visually similar to the queried clutch. We

used approximate laying dates and final nest fates to further verify these matches as potential

renesting attempts, parasitism attempts, or returning breeders. These matches were denoted as

Tier IIa for between season matches and Tier IIb for within season matches (Fig 2).

Results

Are pattern differences detectable among clutches?

NMDS and PERMANOVA analyses revealed that there were detectable pattern differences

among eggs in different clutches and eggs laid by different females for both King Rails and

Common Moorhens. PERMANOVA tests for King Rails returned significant differences for

individual years 2012, 2014, 2019, 2020, and all years together grouped by clutch (Table 1).

Though PERMANOVA tests yielded no significant differences between clutches specifically

for 2016, 2017, and all years combined grouped by year, this may have been influenced by the

fact that relatively low total numbers of eggs were included from 2016 and 2017. The year 2014

also had a relatively low number of eggs, but it is likely that the 4 clutches included in 2014

were more distinctive than those from 2016 and 2017.

For Common Moorhens, PERMANOVA revealed significant differences between clutches

for 1992, 1993, and all three years together (Table 1). There were also significant differences

when all years were combined and grouped by either year or clutch and between hens in 1993.

R2 values indicate that the greatest differences for all years combined were detected when data

were grouped by clutch, secondarily by hen, and lastly by year.

That no significant differences between clutches and between hens were observed for Com-

mon Moorhens in 1991 and specifically between hens in 1992 (Table 1) was likely due at least

in part to methodological differences in image processing. We partitioned the data according
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to year for the Common Moorhens primarily to test for methodological differences in image

processing and secondarily according to hen and clutch to see how matching of eggs was

affected in the case of multiple clutches per hen. R2 values indicated that the greatest amount

of variation in the eggs was explained when clutch was used as the grouping variable rather

than hen or year. This suggests that eggs could be more similar within a clutch than eggs from

another clutch by the same hen, but only a small number of hens with multiple clutches were

included. Alternatively, it could have resulted from differences in lighting or photography.

Fig 2. Process and decision tree for identifying cases of renesting females, likely conspecific brood parasites and renests in King

Rails by combining NaturePatternMatch output with spatial and temporal data.

https://doi.org/10.1371/journal.pone.0261868.g002
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Greater similarity of eggs within clutch was clearly demonstrated by three clutches from the

same Common Moorhen female (Fig 3). NPM matched eggs from the same female within and

between seasons, despite differences in photography and image processing. Matching was

greater within clutch, but additional correct hen matches were detected.

Despite there being statistically significant differences among clutches and hens for Com-

mon Moorhens, and within and between years and among clutches for King Rails, it was

Table 1. PERMANOVA output for King Rails and Common Moorhens.

Species Year Number of clutches Number of eggs Number unique hens R2 p
King Rail All together by clutch 66 337 - 0.46 0.00

Common Moorhen 1991 by clutch 7 39 7 0.08 0.85

1991 by hen 7 39 7 0.08 0.82

1992 by clutch 30 200 22 0.36 0.00

1992 by hen 30 200 22 0.01 0.12

1993 by clutch 21 125 18 0.40 0.00

1993 by hen 21 125 18 0.39 0.00

All together by clutch 58 364 38 0.39 0.00

All together by hen 58 364 38 0.29 0.00

All together by year 28 364 38 0.17 0.00

PERMANOVA R2 statistics provide information on detectable differences among clutches or hens. Significance was set at 0.05. All years were evaluated together for

King Rails and Common Moorhens, and each year was also evaluated individually for Common Moorhens. Grouping was by clutch for King Rails and by clutch or hen

for Common Moorhens.

https://doi.org/10.1371/journal.pone.0261868.t001

Fig 3. Three Common Moorhen clutches laid by the same hen in two separate years. The clutch in the first row was

laid in 1992 and the lower two rows are clutches laid in 1993. Colored outlines indicate eggs that matched best with

another egg in the same clutch. Arrows indicate NPM matches between clutches. Though a high degree of within-

clutch matches suggests a possible confound of photographic differences, matches of eggs with shared maternity both

within season and between years occurred in spite of these photographic differences.

https://doi.org/10.1371/journal.pone.0261868.g003
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challenging to define these pattern differences, and clutches remained difficult to distinguish.

Visual inspection suggested that this may have been due in part to pattern variability within

clutches. Based on pattern data alone, only a minority of clutches from either species had very

distinctive maternal egg signatures.

Classifying eggs by clutch based on pattern, percent pigmentation, and

dimensions

We used linear discriminant analysis to determine whether clutches could be discriminated

using a combination of eggshell pattern variables and egg dimensions. The percent of correctly

classified eggs was low for both species due to a strong degree of overlap among clutches and

hens with some eggs grouping very closely together and others being more variable (Fig 4).

The mean percent of eggs correctly classified was higher for Common Moorhens (by

clutch = 32.7%, by hen = 32.5%) than for King Rails (by clutch = 20.4%).

Among years, differences in photography in the King Rail study, and in digital image pro-

cessing of the moorhen clutches could have influenced accuracy of matching. The mean per-

centage of eggs assigned to their own clutch was slightly elevated for King Rails (29.5%) but

was much higher for Common Moorhens (66.7%). The higher classification rate for Common

Moorhens when year was used as a grouping variable was likely influenced by the photo-

graphic processing methods among years and was therefore unlikely to be biologically

meaningful.

Identifying cases of parasitism, returning breeders, and renesting attempts

in King Rails

We mapped and identified spatially proximate King Rail nests across all years. We then looked

for symmetrical or repeated NPM matching among spatially proximate nests based on images

analyzed for the North and South sides independently. Instances of matching among clutches

Fig 4. Linear discriminant analysis of King Rail clutches. In each plot, a single clutch of eggs is highlighted (red

symbols within ellipse) in relation to other clutches (grey ellipses). Graphs A and B are examples of clutches with

closely grouped eggs. Graphs C and D show clutches with greater variance.

https://doi.org/10.1371/journal.pone.0261868.g004
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were divided into three categories: Tier I based on symmetrical matching or physical proximity

and non-symmetrical matching (where eggs in both clutches do not reciprocally match each

other), Tier IIa between-year non-symmetrical matching, and Tier IIb within-season non-

symmetrical matching.

This method revealed two potential instances of a breeder returning between years. In the

first case, eggs laid in nests 19–22 and 20–05 (i.e. likely by the same hen in 2019 and 2020) rep-

resented a probable case of site fidelity. The coordinates of these nests were only 61m apart

and were situated in a narrow triangular stretch of marsh searched annually that typically had

~3 breeding pairs in it (Tier I in Table 2, Fig 5). The eggs in these clutches featured small mac-

ulations largely centered around the large pole of the egg and were similar in shape.

In the second case, clutches 16–17 and 17–22 were inferred to have been laid by the same

hen in consecutive years (2016 and 2017). NPM identified matching eggs between nests whose

GPS coordinates were only 33m apart (Tier I in Table 2, Fig 5). All the eggs in these clutches

were strikingly similar in coloration and shape, with relatively small, dispersed maculations.

Spatial proximity, similar appearance and independent matching by NPM strongly suggested

a breeding hen with site fidelity.

The first instance of CBP identified occurred with two nests that were only 91m apart (20–

20 and 20–21; Tier I in Table 2, Fig 5). The nests were synchronous, with both hatching on the

same day. Pattern matching in conjunction with this spatio-temporal pattern suggested a case

of brood parasitism by a King Rail hen of her close neighbor.

We queried in NPM individual egg-matching data from the North and South sides of the

refuge separately, disregarding finer spatial proximity of nests within those regions. We tested

Table 2. Putative cases of conspecific brood parasitism, renests and return breeders identified using NPM match data.

Tier Criteria Nest ID Distance apart (m) Estimated first egg date Nest fate Last date active Inferred link

Tier I Physical proximity and/or symmetrical

matching

20–20 91 5/4/2020 H/D 6/2/2020 CBP

20–21 5/3/2020 H 6/2/2020

16–17 33 4/27/2016 H 5/25/2016 Returning

breeder17–22 5/7/2017 H 6/8/2017

19–22 61 6/3/2019 H 6/30/2019 Returning

breeder20–05 4/22/2020 P 5/22/2020

Tier II a Between year, non-symmetrical matching 16–29 1357 - P 6/7/2016 Returning

breeder19–05 4/28/2019 H/D 5/28/2019

15–25 1319 6/2/2015 P/D - Returning

breeder19–28 - D 6/23/2019

Tier II

b

Within season, non-symmetrical matching 19–08 851 5/9/2019 H/D 6/4/2019 CBP

19–15 5/27/2019 P/H 6/22/2019

12–21 3305 4/21/2012 P 5/13-15/2012? Renesting attempt

12–51 6/23/2012 P 7/15-17/2012?

20–10 440 Early May D 5/17/2020 CBP

20–20 5/4/2020 H/D 6/2/2020

14–03 623 4/9/2014 H 5/12/2014 CBP

14–04 4/9/2014 H 5/12/2014

Each pair of nests shown here had at least two eggs match based on two different criteria with NPM output. Tier I nest pairs were identified by physical proximity and/

or symmetrical matching. Tier II nest pairs had at least two eggs in one clutch match eggs in the other and at least four matches between the clutches among the top 8

matches for the query clutch. Tier IIa nests had between-year non-symmetrical matches. Tier IIb nests had within-season non-symmetrical matches. Nest dates (M/D/

YYYY) were also used in evaluating matches identified using NPM and mapped nest locations. Date ranges with a question mark were approximated. Nest fates are

abbreviated as H (hatched), D (deserted), or P (depredated). Some nests experienced multiple fates (e.g. partial predation followed by parental desertion, P/D).

https://doi.org/10.1371/journal.pone.0261868.t002

PLOS ONE Maternal signatures in eggshell patterns of rails

PLOS ONE | https://doi.org/10.1371/journal.pone.0261868 January 13, 2022 11 / 18

https://doi.org/10.1371/journal.pone.0261868.t002
https://doi.org/10.1371/journal.pone.0261868


the sensitivity of our method by increasing the stringency for acceptable matches decremen-

tally from the top 8 (mean clutch size) to the top 5 matches for each egg. Using the higher

thresholds for acceptance, only one pair of clutches with matches that we inferred to be a

returning breeder dropped out (n = 65 clutches total, 40 on South side of refuge, 25 on North

side). Thus, considering the top 8 matches for each egg, we identified six instances of best

matches between nests (non-symmetrical matching of egg image pairs) (Tier II in Table 2,

Fig 6). Non-symmetrical matches between nests from different years that were not spatially

proximate to one another were denoted as Tier IIa. Within-season non-symmetrical matches

between nests that were not spatially proximate were classified as Tier IIb (Table 2).

Between seasons (Tier IIa criteria) we found two additional clutch matches, three and four

years apart, respectively, indicative of likely returned breeding females. The nests were farther

apart than the instances identified above (Tier I criteria). Yet, as well as having several non-

symmetrical matches identified by NPM, upon visual inspection, eggs in both pairs of clutches

were also shaped similarly.

Within season (Tier IIb criteria), we identified three clutch matches indicative of CBP (Fig

6). In each pair of nests, the estimated initiation and hatch dates were within 3 weeks of one

another, and matches were based on distinctiveness of specific eggs. Visual inspection revealed

Fig 5. Aerial photo of (A) South and (B) North sides of Mackay Island NWR with mapped King Rail nests color-

coded by year. According to Tier I criteria, (A) Nests 19–22 and 20–05 and (B) Nests 17–22 and 16–17 each likely

represent an instance of a returning female breeder. Whereas Nests 20–20 and 20–21 represent a probable case of

conspecific brood parasitism. Double headed arrows among eggs indicate symmetrical pattern matching. Single

headed arrows among eggs indicate non-symmetrical pattern matching from query egg to selected match. Imagery

data used to create maps available from open access platform NOAA Data Access Viewer (https://coast.noaa.gov/

dataviewer/#/).

https://doi.org/10.1371/journal.pone.0261868.g005
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intraclutch variation in egg appearance specifically in nests 14–03, 19–15 and in both 20–10 &

20–20. In one further match inferred to be a within-year renesting attempt, the estimated nest

initiation dates were nearly two months apart, and matching results involved each of the eggs

in the analysis.

Discussion

Pattern-based eggshell matching

NaturePatternMatch, PERMANOVAs, and linear discriminant analyses revealed that King

Rails and Common Moorhens appear to have detectable maternal egg signatures and that

accurately matching eggs to clutches or hens is possible in some instances. In each species,

there was considerable overlap in trait values among clutches that made discrimination diffi-

cult based on pattern alone. Yet, some individuals had very distinctive eggs when combina-

tions of traits were considered. Matching using additional variables of egg dimensions and

percent pigmentation in conjunction with pattern variables slightly improved discrimination

of clutches.

Using NPM, King Rails consistently yielded lower rates of within-clutch matching than

Common Moorhens. There was considerable similarity in patterning among eggs in different

clutches in both species. Lower egg assignment percentages for King Rails was not entirely

unexpected. Though Common Moorhen eggs appear to be more variable overall, King Rails

appear to have greater within-clutch variability than Common Moorhens.

Our analyses included images of King Rail clutches spread over more years compared to the

moorhens. Given this fragmented sampling regime, there may have actually been few King Rail

hens in our sample that laid in more than one nest. Matching might have been lower among

years because few hens may be represented in more than one year. Though many of the same

Fig 6. Spatial relationships among King Rail nests with matching eggs identified by NPM. Maps of the (A) South

and (B) North sides of Mackay Island NWR show King Rail nests color-coded by year. Mapped nest pairs with

matching eggs are labeled in adjacent boxes along with the physical distance between them. (C) Corresponding images

with matching King Rail eggs from different clutches indicated by arrows based on Tier II criteria. Arrows indicate the

direction of non-symmetrical matching from query egg to its NPM-assigned best match. Imagery data used to create

maps available from open access platform NOAA Data Access Viewer (https://coast.noaa.gov/dataviewer/#/).

https://doi.org/10.1371/journal.pone.0261868.g006

PLOS ONE Maternal signatures in eggshell patterns of rails

PLOS ONE | https://doi.org/10.1371/journal.pone.0261868 January 13, 2022 13 / 18

https://coast.noaa.gov/dataviewer/#/
https://doi.org/10.1371/journal.pone.0261868.g006
https://doi.org/10.1371/journal.pone.0261868


areas were surveyed for nests each year, the entire area searched in any year was only a small pro-

portion of the total available marsh. Further attrition of the dataset of usable images reduced the

number of matches among nests we were able to find within and between years. Consistency in

photography and image processing should improve matching rates in future studies.

CBP as an evolutionary driver of variable egg patterns. King Rails in this study had large

home range sizes [40] whereas the Common Moorhens from the British study had small territo-

ries and nested at a higher density [43]. High nest density would be expected to be associated with

increased levels of CBP, as this conditional reproductive strategy is to some extent opportunistic

and density-dependent [44,45]. Nevertheless, high rates of CBP are also correlated with high rates

of nest loss [31,43], and nest predation rate was much higher at the King Rail site [47]. Historically

higher population size and breeding density in King Rails could have been associated with a

higher rate of CBP, which may have selected for egg variability among females. The global popula-

tion size of King Rails has decreased substantially in recent decades due to range contraction [35].

However, the microsatellite allele frequency distributions in this population are indicative of high

genetic diversity and outbreeding [46].

Neither the Common Moorhens [36] nor the King Rails [47] in this study showed well-

developed anti-parasite tactics such as recognition and rejection of foreign eggs. Yet, female-

specific eggshell signatures may be retained in populations with a history of parasitism. Gomez

et al. [48] argued that a Polish population of the confamilial Eurasian Coot (F. atra) has

retained maternally distinctive eggs though the level of CBP is now negligible due to widely

dispersed nests. Using another pattern matching program and a supervised machine learning

algorithm, they were able to assign eggs to clutches with an accuracy of 53.3% [48].

Utility of pattern-based egg matching for rails and other species. In both Common

Moorhens and King Rails, a high degree of phenotypic overlap in egg pattern among clutches laid

by different females made discrimination of clutches difficult. Eggs laid by different female Com-

mon Cuckoos similarly showed a high degree of phenotypic overlap and were also difficult to clas-

sify using automatic clustering methods, such as random forest analysis, or human assessment

[29]. Better success in discriminating eggs has been demonstrated in species under strong selec-

tion for egg recognition. For example, NPM was used in a comparative study to evaluate egg sig-

natures in four alcid species [15]. Razorbills (Alle alle) and Dovekies (Alca torda) had very little

identity information (weak signatures) in their eggs compared to Common and Thick-billed

Murres (Uria aalge, U. lomvia). Both murre species nest in dense colonies on exposed ledges on

cliffs and possess egg recognition [13,49]. In contrast, Razorbills and Dovekies nest in less dense

colonies, oftentimes in burrows, and egg recognition has not been noted in either species [14].

NPM evaluates eggshell patterning exclusively. Yet, eggs vary in many other ways including

shape, dimensions, and color, all of which are perceived and processed simultaneously by the ver-

tebrate brain [50]. Gómez et al. [48] included 27 variables of eggshell color, spottiness, size, and

shape in their classification models. They found that when fewer variables were included correct

egg classification decreased, suggesting that multiple eggshell characteristics are used by birds for

egg recognition. Due to how the vertebrate visual cortex processes all aspects of egg variation

simultaneously, humans may be better at visually discriminating eggs than any program currently

available (though opinions on this differ [29,48,51]). Nevertheless, we were able to use matching

output from NPM in combination with spatial and temporal data collected in the field to identify

probable cases of parasitism and returning breeders that were previously undetected.

Application of pattern matching to identify maternity in field studies

We mapped the coordinates of King Rail nests and ran pattern matching data from spatially

separate areas of the refuge to improve our chances of identifying instances of CBP and within
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season re-nesting attempts, and to identify hens that returned as breeders among years. We

were able to identify four likely incidences of parasitism, one within-season renesting attempt

and four instances of returning breeders, all of which were previously unrecognized. The best

match output of NPM was thus useful in a practical way to make inferences about maternal

identity of eggs.

In each case of inferred CBP among King Rails, the nests were relatively close to one

another (mean inter-nest distance = 501m, range = 91-851m). Females using a mixed strategy

of brood parasitism and nesting typically target nearby host nests. Common Moorhen brood

parasites were usually from neighboring territories and laid in their own nest immediately

after laying parasitically [38]. Moreover, brood parasitism is only successful when parasitic

eggs hatch at the same time as host eggs, and local conditions may favor synchronized breed-

ing attempts among neighbors [43]. Estimated mean King Rail territory sizes were large (~3

ha) [40]. Brood rearing King Rails in this population are also known to travel significant dis-

tances away from their nests (average maximum distance: ~600 ± 200 m) [40]. It is therefore

conceivable that female King Rails travel comparable distances to renest or to parasitize

another nest.

Four cases of among-year site fidelity of breeding females were identified based on pattern

matching of eggs in conjunction with proximity of mapped nests. Two of these occurred in

sequential years, whereas the others were three and four years apart, respectively, well within a

reasonable timeframe for an adult King Rail to survive and breed again, even given a high esti-

mated rate of adult predation [52]. A single other case of a female nesting in a territory adja-

cent to the one she nested in the year before had been documented in this population

previously, discovered by parentage analysis based on microsatellite genotyping [46]. While

site fidelity among territorial males had been reported in this resident population previously,

based on radiotelemetry [40], this new evidence supports a level of nest site fidelity among

breeding females as well.

An alternative explanation for these matches is the possibility that different hens laid the

eggs but they were close relatives (mother-daughter, sisters) and shared heritable characteris-

tics of their eggshell patterns. Eggshell patterning has been found to be a female sex-linked her-

itable trait in Great Tits, where eggs of daughters match best with their mothers and maternal

grandmothers [23]. Similarly, a study of Japanese Quail (Coturnix japonica) suggested inter-

mediate or high levels of heritability in eggshell coloring and patterning [53]. While we cannot

discount the possibility of closely related King Rail hens, testing this hypothesis will have to

wait until we have a better understanding of recruitment patterns and rates in this population.

NPM and other egg matching programs have been shown to match eggs correctly without

considering genetic information [10,29]. While it will be important in the future to validate

studies using pattern matching programs to characterize eggs of different species with genetic

parentage and pedigree data, image matching techniques offer an alternative minimally inva-

sive sampling method. Collecting genetic samples through capture can be stressful for the ani-

mals, and demanding of limited field resources, whereas photographing clutches and

evaluating the egg images is a less invasive way to monitor breeders. This has important impli-

cations for working with secretive species and species of conservation concern. Pattern analy-

sis techniques should continue to be investigated as a potential monitoring method for species

laying maculated eggs.
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